
Correlation of the scaling exponent � of the diffusivity-density function
in viscous liquids with their elastic properties

Anthony N. Papathanassioua� and Ilias Sakellisb�

Department of Physics, Solid State Physics Section, University of Athens, Panepistimiopolis,
15784 Zografos, Athens, Greece

�Received 26 January 2010; accepted 16 March 2010; published online 16 April 2010�

Fundamental thermodynamical concepts and a solid-state point defect elastic model are used to
formulate a diffusivity-density scaling function for viscous liquids. It is proved in a straightforward
manner that the scaling exponent � describing the density scaling of the diffusivity is related with
the pressure derivative of the isothermal bulk modulus. © 2010 American Institute of Physics.
�doi:10.1063/1.3382645�

I. INTRODUCTION

Viscous liquids constitute an exceptional state of matter
characterized by extraordinary viscosity values compared to
those of ordinary liquids. In the extreme viscosity limit �i.e.,
close to the calorimetric glass transition�, molecular transport
is retarded and most molecular motion is vibrational1 and the
viscous liquid resembles a disordered solid.2 A smart picture
is that of a “solid that flows” rather than ordinary less vis-
cous liquids.1,3 A series of review articles on the properties of
glass forming liquids were published recently.1–4 Ultravis-
cous matter exhibits many interesting features5,6 and univer-
salities that are not well understood yet,2 such as the strongly
non-Arrhenius temperature dependence7 of the structural re-
laxation time and the strong temperature dependence of the
activation energy of the so-called fragile glass formers.1 A
dynamic quantity �, such as structural relaxation time �, vis-
cosity �, or diffusion coefficient D in viscous liquids seems
to scale with some fundamental quantities such as density �
and temperature. A popular scaling expression found in the
literature4,8–11 is

� = F���/T� , �1�

where � denotes the density, � is a scaling exponent, T is the
temperature, and F is a �scaling� function, which is a priori
unknown. Most of the experimental evidence for thermody-
namic scaling is for the structural relaxation time and viscos-
ity. Deviations from inverse proportionality between D and �
occur on approaching the glass transition, whereas enhanced
translation relative to reorientation occurs, so scaling of �
does not guarantee scaling of D. However, these deviations
from Stokes–Einstein may be small enough to not be appar-
ent in a plot of super positioned data. Or maybe they are
subsumed in a small change in �.12 At this stage, it is abrupt
to assume that the diffusivity scaling exponent share a com-
mon value with the exponents derived from diffusivity and
viscosity experiments. The correlation of the scaling expo-
nent �, which is a material constant, with the physical prop-
erties of the viscous state is a matter of ongoing exploration.

Computer simulations of Lennard-Jones liquids, with the ex-
ponent of the repulsive term taking the values 8, 12, 24, and
36, revealed that density scaling is valid and the exponent �
is roughly one third of the exponent of the effective inverse
power repulsive term.13 Molecular dynamics also showed
that strong virial/potential-energy correlations also reflect the
effective inverse power law and scaling occurs in strongly
correlating viscous liquids.13 Recent progress on the role of
underlying solid-state point defect elastic models to the den-
sity scaling of the diffusivity appeared recently.14 On the
other hand, following the Avramov entropy model15 for the
structural relaxation time, � was identified to the thermody-
namic Grüneisen parameter �G.4,11,16,17

The correlation of the scaling exponent � with some ma-
terial’s constant, most likely with the Grüneisen constant, is
the subject of ongoing investigation. Is this the thermody-
namic Grüneisen parameter or is it the Grüneisen constant
related with a specific process �diffusion, relaxation, or vis-
cosity� or some average of different interfering modes? Al-
though the selection of the thermodynamic Grüneisen param-
eter is justified for ordinary liquids, it is more likely
improper to describe the ultraviscous state of matter, i.e., a
solid that flows. This is the reason for turning our attention in
correlating � with some elastic quantity of the viscous liquid
that is firmly defined and well determined experimentally. In
the present work, we formulate a density scaling diffusivity
function D=F�����B / �P�T+1��, where ��B /�P�T is the pressure
derivative of the isothermal bulk modulus B. The scaling
function implies that the scaling exponent � is related with
the pressure derivative of the isothermal bulk modulus.

II. THEORY, RESULTS, AND DISCUSSION

The isothermal bulk modulus B is defined as

B � − ��P/� ln V�T. �2�

Recalling that the density is ��m /V, we get

B = ��P/� ln ��T. �3�

To a first approximation, the bulk modulus is assumed to
increase linearly with pressure
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B�P� = B0 + ��B/�P�TP, �4�

where B0 denotes the zero pressure value of the isothermal
bulk modulus and ��B /�P�T is assumed to be roughly con-
stant. Volumetric data of various viscous liquids confirm that
Eq. �4� is practically a fairly good approximation.18

Equations �3� and �4� merge to

� �P

� ln �
�

T
= B0 + ��B/�P�TP. �5�

By integrating over pressure and density, we get the follow-
ing equation of state �EOS�:

���B/�P�T = 1 +
��B/�P�T

B0
P, �6�

where � denotes furthermore the reduced density. We note
that the latter EOS is merely based on the condition that B(P)
is linear.

Dielectric measurements in viscous liquids indicate that
the logarithm of the relaxation time as a function of pressure
�at constant temperature� have a clear nonlinear
behavior.4,19–21 Information on the dependence of diffusivity
on pressure is merely provided by molecular dynamics
simulations22 in Lennard-Jones mixtures; ln D�P� isotherms
exhibit a downward curvature with respect to pressure. The
increase in the �absolute� value of the slope of the latter
curve with pressure was speculatively interpreted, as a
change in the transport mechanism in viscous liquids, occur-
ring at pressure where hopping of particles become
noticeable.22 Alternatively, it was attributed,22 according to
the free-volume theory, to random close packing occurring at
elevated pressure.

The activation volume controls the pressure evolution of
the diffusivity �act���gact /�P�T, where gact denotes the Gibbs
free energy for diffusion. Linear ln D�P� plots indicates �act is
constant, while curved ones originate from the pressure de-
pendence of �act�P�.23 There is no physical reason to regard
�act as constant; therefore, the compressibility of the activa-
tion volume is generally defined as �act�−�� ln �act /�P�T,23

and can be positive, negative, or zero. The data reported in
Ref. 22 indicate that �act�0 for viscous liquids. A diffusing
entity can either move in a liquidlike environment by making
use of the free volume, or pushing outward its solidlike en-
vironment, or both. No matter what is really the microscopic
mechanism, we focused on the thermodynamic quantity of
the activation volume, i.e., the volume �density� fluctuation
correlated with an activation process. We start from a general
diffusivity equation

D�P,T� = f	2
 exp�− gact/kT� , �7�

where D is the diffusion coefficient, f is a geometrical factor,
	 is the interatomic spacing, 
 is the vibrational frequency of
the diffusing specie �and related with the phonon frequency
involved in the diffusion process�, and k is the Boltzmann’s
constant. Differentiating Eq. �7� with respect to pressure and
considering that pressure does not modify the geometrical
factor f, we get

� � ln D

�P
�

T
= −

�act�P�
kT

+
1

B�P���G −
2

3
� , �8�

where �G is the Grüneisen parameter.24 We further assume
that B�P� is linear �Eq. �4�� and that the pressure dependence
of the absolute value of the bulk modulus of the activation
volume Bact�1 /�act is described by the function B�P� gov-
erning the bulk volume modification upon pressure. The lat-
ter seems quite reasonable, i.e., pressure affects the �absolute
value of� activation volume in the same manner pressure
reduces the volume of the material. A linear Bact�P� implies
that

�act�P� = �0
act�1 +

��B/�P�T

B0
P	1/��B/�P�T

. �9�

Therefore, integration of Eq. �8� yields

ln D �P� = −
�0

actB0

kT�1 + ��B/�P�T�

���1 +
��B/�P�T

B0
P��1+��B/�P�T

−1�

− 1	
+ ��G −

2

3
� 1

��B/�P�T
ln�1 +

��B/�P�T

B0
P� ,

�10�

where the quantity D�P� is dimensionless and denotes the
diffusivity reduced to its zero pressure value D0. It is worth
noticing that curved plots are predicted alternatively by as-
suming that the activation volume is not single valued but
obeys the normal distribution25,26 By using the EOS de-
scribed by Eq. �6�, Eq. �10� can be expressed in terms of the
�reduced� density

ln D����B/�P�T+1�

= −
�0

actB0

kT�1 + ��B/�P�T�
�����B/�P�T+1� − 1�

+ ��G −
2

3
� 1

���B/�P�T + 1�
ln�����B/�P�T+1�� . �11�

Zener27,28 asserted that diffusion is controlled by the shear
modulus and the Gibbs free energy for migration was set
proportional to G. In the 1980s, Varotsos and
Alexopoulos29–32 suggested that the bulk modulus is the elas-
tic quantity that controls migration and established propor-
tionality between Gibbs free energy and bulk modulus �cB�
model�. Research on key role of elastic models to understand
the peculiar properties of viscous liquids was motivated by
Dyre2,33 and still attracts new contributions.34–36 Dyre, trying
to explain the strong temperature dependence of the activa-
tion enthalpy values in viscous liquids, stated that a flow
event occurs by rearrangement of the neighbors of a migrat-
ing molecule shoving aside neighboring molecules �shoving
model� and, thus, the activation enthalpy is proportional to
the shear modulus. However, the question whether shear or
bulk elastic moduli control a migration process in an elastic
medium is well known to solid-state physicists and was de-
bated during the past decades and, now, reached to an an-
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swer: Experimental results for many different types of mate-
rials at various experimental conditions �pressure and
temperature� support the validity of the cB� model. Thus, it
seems that the bulk modulus manifests a migration process
rather than shear modulus.31,37 According to the so-called
cB� model29–32

gact = cB� , �12�

where c is a constant and � is a volume related with the
mean atomic volume. Note that the validity of Eq. �12� has
been checked at ambient pressure in a wide range of solids
extending from silver halides38 to rare gas solids,39 in ionic
crystals under gradually increasing uniaxial stress40 in which
electric signals are emitted before fracture �in a similar fash-
ion as the electric signals detected before earthquakes,41–44 as
well as in disordered polycrystalline materials.37 Differenti-
ating Eq. �12� with respect to pressure we get

�act = B−1���B/�P�T − 1�gact. �13�

In the viscous state, the activation enthalpy is usually tenths
of kT,2,45 sometimes even bigger �a range from 60 to
130 kT�, was reported.46 We can write hact
kT, where  is
a number of the order of 10, which is material dependent.10

The activation entropy sact is only about a few k, thus, gact

=hact−Tsact is on the same order of magnitude as hact. Sub-
sequently, at zero pressure, Eq. �13� is rewritten as

�0
act 




B0
���B/�P�T − 1�kT. �14�

Equation �6�, which interconnects density � with pressure,
and Eq. �14�, which links the activation volume with the
elastic properties of the material and the large value
temperature-dependent activation enthalpy in the viscous
matter, transform the generalized diffusivity-pressure relation
�Eq. �10�� to a density scaling function

ln D����B/�P�T+1�

= −
���B/�P�T − 1�
���B/�P�T + 1�

�����B/�P�T+1� − 1� + ��G −
2

3
�

�
1

���B/�P�T + 1�
ln�����B/�P�T+1�� . �15�

The latter scaling function indicates that the �scaling� expo-
nent � governing ln D=F���� is

� = ��B/�P�T + 1. �16�

As can be seen in Fig. 1, the morphology of the scaling
function is in �qualitatively� agreement with the shape of
diffusivity-density scaling plots obtained from simulated
Lennard-Jones systems.47–49 Moreover, it reproduces recent
results indicating that �reduced� diffusivity versus �reduced�
density �and temperature� isobars collapse on a master
curve.47

The scaling equation �Eq. �15�� predicts large scaling
exponents in relation with those reported from relaxation and
viscosity experiments, which vary from 0.1 to 9.0.4 Values of
��B /�P�T obtained from the analysis of volumetric data of

various viscous liquids are given in Ref. 18, which are
roughly twice the scaling exponents extracted from relax-
ation and viscosity data for various representative material
classes including Van der Waals liquids, polymers, weakly
bonded and ionic materials. Let us consider, for example, the
case of phenylphyhalein-dimethylether, for which we have
��B /�P�T=9.76 at 362.6 K.18 By inserting this value into Eq.
�16�, we find a diffusivity scaling exponent �=10.76, which
is significantly larger than the relaxation scaling exponent
4.5.48 In the absence of available experimental diffusivity-
density measurements, we can compare to simulation results:
molecular dynamics studies, which provide �diffusivity� scal-
ing � values spanning over a broad range, from 3.5 to 14.5
are reported.47,49,50 It is commonly assumed that the scaling
exponents of different dynamic quantities �relaxation, viscos-
ity, and diffusivity� of liquids in the viscous state share a
common value, which is a material’s constant.51 Coslovich
and Roland52 reported recently simulation results in Kob–
Andersen Lennard-Jones mixtures, whereas the relaxation
scaling exponent was found to be compatible with the diffu-
sivity exponent found earlier by the same authors for m
=12 systems.47 However, diffusion and relaxation are phe-
nomena of different scale: diffusion is a long-range process,
while relaxation is a short-range one. This idea is inspired
from the dielectric response of ionic crystals doped with alio-
valent impurities, where the migration enthalpy for vacancy
differs from that when the vacancies form �rotating� electric
dipoles with aliovalent impurities.53 The �effective� environ-
ment of relaxing entities is modified in comparison with that
of a diffusing one. Relaxation and diffusion take place in
approximately similar environments below the mode-
coupling temperature but far above the glass transition,
yielding comparable relaxation and diffusivity gammas.
However, the difference between the effective potentials,
which correspond to each one of the aforementioned mecha-
nisms, by approaching the glass transition, may become
more intense and, subsequently, relaxation gammas may di-
verge each other. Alternatively, the decoupling of transla-
tional diffusivity from rotational diffusivity on approaching
the glass transition in viscous liquids, is understood as a
decoupling of the dynamics occurring on different scales,

FIG. 1. Diffusivity plots of the scaling Eq. �15�, where �= ��B /�P�T+1,
where obtained by regarding different combinations of the parameters  and
��B /�P�T. The term �G−2 /3 was taken equal to unity.
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which arises due to the growing dynamic length scale.54 Dif-
fusivity experiments would be of great value to provide a full
picture of transport in viscous matter, the region close to the
glass transition being of great interest for exploration.

III. CONCLUSIONS

The construction of the diffusivity-density scaling func-
tion was based on the following:

�i� The EOS derived from fundamental thermodynamic
concepts including the assumption �supported from
the experimental data� that the isothermal bulk modu-
lus increases linearly upon increasing pressure.

�ii� Curved diffusivity-pressure isotherms are due to the
pressure dependent activation volume controlling the
diffusion process.

�iii� The Gibbs free energy for diffusion is proportional to
the bulk modulus, which constitutes the so-called
cB� solid-state point defect model. Elastic models
seem to underlie scaling of the dynamic
quantities.14,33,55,56

�iv� The activation energy in fragile liquids is proportional
to kT, with a proportionality factor on the order of 10
�or more�.46

The scaling diffusivity function reproduces qualitatively
the plots of diffusivity versus density and temperature. It
predicts that diffusivity-density isobars collapse on a com-
mon curve, in agreement with recently published simulation
results. It is shown in a straightforward manner that the ex-
ponent governing scaling of diffusivity in viscous liquids is
related with the pressure derivative of the isothermal bulk
modulus, i.e., �= ��B /�P�T+1.
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