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Fundamental thermodynamics and an earlier elastic solid-state point defect model �P. Varotsos and K.
Alexopoulos, Phys. Rev. B 15, 4111 �1977�; Phys. Rev. B 18, 2683 �1978�� are employed to formulate an
analytical second-order polynomial function describing the density scaling of the diffusion coefficient in
viscous liquids. The function parameters are merely determined by the scaling exponent, which is directly
connected with the Grüneisen constant. Density scaling diffusion coefficient isotherms obtained at different
pressures collapse on a unique master curve, in agreement with recent computer simulation results of Lennard-
Jones viscous liquids �D. Coslovich and C. M. Roland, J. Phys. Chem. 112, 1329 �2008��.
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Viscous liquids are briefly characterized as “solids that
flow” rather than ordinary less viscous liquids �1,2� and ex-
hibit many interesting features �3,4� and universal behavior,
which is not yet well understood. In the extreme viscosity
limit �i.e., close to the calorimetric glass transition� molecu-
lar transport is retarded and most molecular motion is vibra-
tional �1� and the viscous liquid resembles a disordered solid
�4�. Dynamics is strongly non-Arrhenius and the activation
energy is strongly temperature dependent for fragile glass
formers �1�. A dynamic quantity � such as structural relax-
ation time �, viscosity �, or diffusion coefficient D in viscous
liquids is assumed to scale with density � and temperature as

� = F���/T� , �1�

where � denotes the density, � is a scaling exponent, T is the
temperature, and F is a function, which is a priori unknown
�5�. The correlation of the exponent � with microscopic or
thermodynamic quantities remains a matter of investigation.
Computer simulations of Lennard-Jones liquids, with the ex-
ponent of the repulsive term taking the values 8, 12, 24 and
36, revealed that density scaling is valid and the exponent �
is roughly one third of the exponent of the effective inverse
power repulsive term �6�. Molecular dynamics also showed
that strong virial/potential-energy correlations also reflect the
effective inverse power law �7� and scaling occurs in
strongly correlating viscous liquids �8�. On the other hand,
following the Avramov entropy model �9� for the structural
relaxation time, � was identified to the thermodynamic Grü-
neisen parameter �G �10–12�. A series of interesting articles
reviewing the peculiar properties of glass forming liquids
were published recently �1,2,4,13�.

Solid-state elastic models seem to play a prominent role
in describing these phenomena. The distinctive role of ther-
modynamic point defect models for understanding the vis-
cous state was mentioned recently by Varotsos �14�. In the
present work, we start from thermodynamic definitions and
by using elastic point defect models, we provide an analyti-
cal equation governing the density scaling of the diffusion
coefficient in viscous liquids. The morphology of the scaling

function agrees with up to date experimental results and
computer simulations. The present formulation predicts that
the scaling function is pressure insensitive, in agreement
with recent computer simulations of binary Lennard-Jones
systems, for various exponent values of the repulsive term of
the potential results �6�.

Isotherms of the logarithm of the relaxation time of vis-
cous liquids as a function of pressure have a clear nonlinear
behavior �13,15–17�. The pressure dependence of logarithm
of the diffusion coefficient provided through molecular dy-
namics simulations �18� deviates from linearity, as well. ln D
vs pressure show a downward curvature. The increase in the
�absolute� value of slope of the latter curve with pressure was
speculatively interpreted as a change in the transport mecha-
nism in viscous liquids occurring at a pressure where hop-
ping of particles becomes noticeable �18�. Alternatively, it
was attributed �18�, according to the free-volume theory, to a
random close packing occurring at elevated pressure. How-
ever, the curvature in diffusion plots was thermodynamically
interpreted earlier: Varotsos and Alexopoulos �19� proposed
a generalized description of diffusion vs pressure isotherms,
which can be used to analyze both linear and curved diffu-
sion plots. If gact denotes the Gibbs free energy for diffusion,
the corresponding activation volume is defined as �act

���gact /�P�T. Since there is no physical argument to regard
�act as constant, the compressibility of the activation volume
may be defined as �T

act�−�� ln �act /�P�T �19�; it can be posi-
tive, negative, or zero. The data reported in Ref. �18� indicate
that �T

act	0 for viscous liquids. The isothermal pressure evo-
lution of the reduced diffusion coefficient is �19�

ln D�P� = − � �act�0�
kT

−
�G

B
�P + � �act�0��T

act

2kT
�P2, �2�

where �act�0� denotes the activation volume value at zero
(ambient) pressure. It is evident that, whenever �T

act is zero
�or �act is constant�, Eq. �2� reduces to a simple well-known
linear relation. From another viewpoint, the curvature may
be interpreted if �act is not single valued, but obeys a normal
distribution �20,21� Note that the quantity D appearing in Eq.
�2� is a reduced one, with respect to the zero-pressure diffu-
sion coefficient.

Starting from the definition of the isothermal bulk modu-*antpapa@phys.uoa.gr
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lus B�−��P /� ln V�T, and recalling that ��m /V we get B
= ��P /� ln ��T, or B����P /� ln ���T, where � is the scaling
constant. Using the symbol � for the reduced density, we get
��=exp�� / B P�. The latter equation provides, to a first ap-
proximation, a linear relation between �� and P,

�� � 1 +
�

B
P . �3�

For P /B
0.1 and �=4, the omission of higher order terms
induces an error of less than 6%. For many viscous liquids, B
is of the order of a few gigapascals �10,22�, so Eq. �3� works
adequately well for pressure less than 1 GPa, otherwise
higher order terms are required. It is necessary to stress that
the linear approximate relation between �� and P is asserted
so as to simplify the mathematical manipulation and it does
not affect the underlying physics hidden behind the formula-
tion, which is the use of well-known solid-state point defect
models to describe the universal behavior of viscous state of
condensed matter.

The interconnection of the scaling parameter � with prop-
erties of viscous liquids is a matter of current interest. In Ref.
�11�, Roland et al., working on the scaling behavior of the
structural relaxation time of supercooled liquids, suggested
that the scaling exponent � is close to the value of the Grü-
neisen parameter, the exact relationship being model depen-
dent. If the intermolecular potential is approximated by an
inverse power law, various equations are derived, which cor-

relate � with �G. Describing the supercooled dynamics with
an entropy model �10�, �=�G is obtained. Following the lat-
ter visualization, by identifying the value of � with �G,
which is a measure of the anharmonicity of phonons, and
assuming that the absolute value of the activation volume
compressibility is comparable with the bulk compressibility
�i.e., 	�T

act	
1 /B� �23�, Eqs. �2� and �3� combine to a unique
relation:

ln D���� = − � �act�0�
kT

·
B

�
− 1���� − 1�

− � �act�0�
2kT

·
B

�2���� − 1�2. �4�

Solid-state elastic point defect models suggest that the
activation volume is proportional to the activation Gibbs free
energy gact �24�. According to the cB� model �24–27�, �act

=B−1� dB
dP −1�gact. As explained in Ref. �28�, the latter relation

can take the form

�act =
2�G

B
gact. �5�

In the viscous state, the activation enthalpy is of the order of
10 kT �or a few tenths of kT� �2,29,30�. We can write hact


�kT. where � is a number of the order of 10, which is
material dependent �30�. The activation entropy sact is only
about a few k, thus, gact=hact−Tsact is of the same order of
magnitude as hact is. Subsequently, Eq. �5� may rewritten as

�act 
 �
2�G

B
kT. �6�

We note that we refer to a constant temperature �i.e., iso-
therms of diffusivity at various pressures� and, therefore, we
skip the temperature dependence of the hact �fragility� and,
subsequently, gact. Equation �6� is used to eliminate �act�0�
from Eq. �4�, which, recalling that � and �G practically share
the common value, reduces to

ln D���� � −
�

�
����2 − �2�1 −

1

�
���� + 2 −

1

�
�� − 1.

�7�

We stress that Eq. �7� does not simply result from a general-
ized diffusion equation by changing the independent variable
from P to ��, but captures the interconnection of diffusion
parameters with elastic properties of the material �within the
frame of the cB� elastic solid-state point defect model� and
the universal feature of glass formers that the activation en-
thalpy is of the order of 10 kT �i.e., hact
�kT, where � is of
the order of 10�. Further work can improve the validity of
Eq. �7�: by including the temperature dependence of the ac-
tivation enthalpy, which does it differently in different mate-
rials �30�. Moreover, additional correction terms may appear
in Eq. �7� by considering second-order �or higher� terms in
Eq. �3�. Simulations of Eq. �7�, at constant temperature, are
presented in Fig. 1. This equation predicts that:

�i� The �natural� logarithm of the reduced diffusion coef-
ficient is a decreasing function of ��.

FIG. 1. �a� Isothermal plots of ln D against ��, according to Eq.
�7�, considering �=10, for different values of the scaling exponent
�. �b� Isotherms of ln D against ��, according to Eq. �7�, for differ-
ent values of the � parameter and �=4. Note that D and � are
reduced dimensionless quantities.
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�ii� The function ln D���� is a second-order polynomial
with downward curvature. The latter form, which is based on
physical arguments, is suitable to fit isothermal density scal-
ing diffusion data, instead of using arbitrary equations �31�.

�iii� The slope of the ln D���� curve depends on �, which
is a characteristic of the material, and the scaling parameter
�, which is also an inherent characteristic of the viscous
liquid and its value, according to the literature, is very close
to the anharmonic Grüneisen constant �32�.

�iv� Different ln D���� isotherms obtained at different
pressures for the same viscous liquid collapse on a unique
master curve. This is due to the fact that � and � are constant
for the viscous liquid under study. The present formalism
gives the theoretical interpretation of computer simulation
results of Lennard-Jones liquids m−6 �8
m
36� in normal
and moderately supercooled states �6�, which indicated that
the diffusion coefficient plotted against �� /T at different
pressures accumulates on a single curve �33�.

The density and temperature scaling of dynamic proper-
ties of viscous liquids is relatively a recent speculation �34�.
At present, apart from numerical simulations, experimental
work on density and temperature scaling is available for the
structural relaxation time and the viscosity, but missing for
the diffusivity. At present only numerical results are avail-
able from important groups which make predictions on the

scaling of diffusivity �6,8�. Concerning the diffusivity, it
seems that we are at a stage that simulations and theory are
temporarily advancing in relation with the experimental
work. The results of the present theoretical work can there-
fore compare with the available simulated experiments in
Lennard-Jones liquids. The currently published simulations
and the present theoretical work exhibit the emerging neces-
sity of investigating experimentally the density and tempera-
ture scaling of diffusion coefficient in viscous liquids.

The extraction of Eq. �7�, which was based on thermody-
namic definitions and the cB� elastic solid-state point defect
model, confirms the statement of Dyre �3� that viscous flow
events can be correlated with defect motion in crystals: free
energies from activation for self-diffusion are proportional to
the isothermal bulk modulus �cB� model� and, if shear and
bulk moduli are proportional to their temperature and pres-
sure variation, then the cB� model becomes equivalent to
the shoving model �3�, which is based on the fact that acti-
vation energy is dominated by the work done to shove aside
the surroundings �2,35�.

The author is grateful to Daniele Coslovich �Universita di
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