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A theoretical study of the influence of pressure on the dielectric relaxation related with polaron
tunneling and phonon-assisted hopping in disordered solids is developed. The sign and absolute
value of the migration volume, which is obtained by employing the present formulation, evidence
the nature of the relaxation. As a paradigm, positive and negative values of migration volume are
evaluated by analyzing recently published dielectric loss measurements under pressure in
semiconducting polypyrrole. A straightforward relation between the value of the migration volume
and the nature of short-range polaron flow and the size of polaron distortion is revealed. © 2007
American Institute of Physics. �DOI: 10.1063/1.2812538�

Polaron hopping in disordered matter under the action of
a harmonic electric field results in dielectric relaxation. ac
conductivity versus frequency is dispersive and a dielectric
loss peak is detected within the complex impedance
representation.1–6 The relaxation time �, which governs the
relaxation process and determines the position of the maxi-
mum of the loss peak in the frequency domain through the
resonance condition �m�=1 ��m is the angular frequency
where the loss peak exhibits a maximum�, was revisited by
Mott and Davis1 by combining quantum mechanical tunnel-
ing and phonon-assisted hopping. The temperature evolution
of the relaxation time has been used to obtain the value of
the “activation energy” from dielectric measurements at vari-
ous temperatures.2–5 On the contrary, a detailed theoretical
interpretation of the pressure evolution of the relaxation time
is missing. The theoretical interpretation of dielectric mea-
surements under pressure in ionic crystals and organic solids,
where nonelectronic relaxation occurs, was actually estab-
lished in the past7–14 In the present work, we develop ana-
lytical formulas that permit the quantitative interpretation of
polaron �dielectric� relaxation under pressure in disordered
media. As a paradigm, dielectric measurements versus pres-
sure in conducting polypyrrole6 are analyzed. The value of
the migration volume for relaxation is obtained. Conducting
polymer networks are regarded as disordered solids, where
the variable range hopping model applies2,3,15 and is em-
ployed to analyze the ac conductivity dispersion and the di-
electric loss peaks.

An electric dipole of a dielectric relaxes classically by
successive motion of its constituting electric charges along
neighboring equilibrium sites by overcoming the potential
barrier separating them. The relaxation time � is16

� = �−1 exp�gm

kT
� , �1�

where � is the attempt frequency of the electric charge entity
toward the potential barrier, gm is the migration Gibbs en-
ergy, k is Boltzmann’s constant, and T is the absolute tem-
perature. A constant related with the degrees of freedom of
the dipole can be included at the right hand side of Eq. �1�.

All thermodynamic quantities appearing in this paper are
related with relaxation or, alternatively, with the localized
motion of the electric charge entities that form the relaxing
“dipoles.”

Relaxation in disordered media occurs as polarons �or
electrons� hop between localized sites at a distance R from
each other, separated by a potential barrier. The relaxation
time incorporates both tunneling and phonon-assisted
hopping:1

� = �−1 exp�2�R�exp�E/kT� , �2�

where � is the inverse localization length of the wave func-
tion and E is the activation energy required to surmount the
barrier separating the neighboring sites. �−1 exp�E /kT� is
identical to the right hand side of Eq. �1�, implying that the
activation energy coincides with gm=hm−Tsm, where hm and
sm denote the migration enthalpy and entropy, respectively.
By setting �0��−1 exp�−sm /k�exp�2�R�, which is slightly
dependent on temperature, Eq. �2� takes the well-known
Arrhenius form �=�0 exp�hm /kT�. The Mott and Davis relax-
ation time �Eq. �2�� can be rewritten as follows:

� = �−1 exp�2�R�exp�gm/kT� . �3�

Differentiating the �natural� logarithm of the last equation
with respect to pressure at constant temperature, we get

� � ln �

�P
�

T
= �−

� ln �

�P
�

T
+ 2R� ��

�P
�

T
+ 2�� �R

�P
�

T

+
1

kT
� �gm

�P
�

T
. �4�

The first term of the right-hand side is −�� ln � /�P�T=
−�� ln � /� ln V�T�� ln V /�P�T=−��T, where ��−�� ln � /
� ln V�T is the Grüneisen constant �V is the volume� and �T

�−�� ln V /�P�T is the isothermal compressibility. The modi-
fication of R with pressure is ��R /�P�T= �R� ln R /�P�T

= �R�1/3�� ln R3 /�P�T= �R�1/3�� ln V /�P�T=−�1/3�R�T.
The latter formula is based on the assumption that the me-
dium is isotropic. The last term of Eq. �4� is related with the
migration volume related to polaron relaxation �m

���gm /�P�T,8–12 which is defined as �m=Ve−Vg, where Ve

and Vg are the volumes of the specimen when the relaxing
charge is in its excited and ground states, respectively.8,13
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Lundin et al.17 suggested that the wave function inverse
localization length increases linearly upon pressure �−1

=�−1�P=0��1+�TP�. Here, we use the more general form
�−1=�−1�P=0�exp��TP�, which reduces to the aforemen-
tioned linear relation, since e�TP�1+�TP, for �TP�1
�which is valid in the pressure range dielectric measurements
are usually performed� and assuming that �T changes negli-
gibly in a narrow pressure range. We therefore have

� ��

�P
�

T
= − �2� ��−1

�P
�

T
= − ��T. �5�

Thus, Eq. �4� reduces to

�m = kT� � ln �

�P
�

T
+ �� −

4

3
�R��T, �6�

provided that the inverse localization length increases lin-
early with pressure.

On the other hand, Maddison and Tansley18 asserted that
� is substantially independent of pressure in conducting
polypyrrole, because it describes a bound-state-like wave
function, an eigenstate of the rigid monomer benzole ring,
and is therefore unlikely to be modified significantly by pres-
sure. Taking ��� /�P�T=0, Eq. �4� reduces to

�m = kT� � ln �

�P
�

T
+ �� +

2

3
�R��T. �7�

We stress that the latter is valid under the restriction that the
wave function inverse localization length is insensitive to
pressure modification.

In conducting polypyrrole, which is a disordered organic
semiconductor, a broad dielectric loss peak recorded at zero
pressure splits into a couple of distinct components on
pressurizing6 �Fig. 1�. One constituent �mechanism I� is
insensitive to the increase of pressure, while another �mecha-
nism II� shifts gradually towards higher frequency on in-
creasing the pressure. Relaxation I is attributed to intrachain
�intracluster� charge flow and relaxation II to interchain �in-
tercluster� hopping through the void space separating neigh-
boring chains or grains.6 An increase of hydrostatic pressure
affects mainly the interchain �or, most likely, the intergrain�
space and, subsequently, the interchain �or intercluster� hop-
ping. Intrachain �or intragrain� conductivity effects are much
weaker since they are more energetically favorable to
achieve conformational rearrangement as the sample volume
is suppressed than reducing the length of individual chain
�and the intrachain length, respectively�.6

The �natural� logarithm of � versus pressure is best de-
scribed by a linear law rather than a second order polynomial
one7 �Fig. 1�. The values of �m for relaxation in conducting
polypyrrole obtained from the pressure variation of the re-
laxation time at room temperature, through Eqs. �6� and �7�,
respectively, are shown in Table I. A Grüneisen parameter
��4.0±0.1,19 typical for polymeric solids, was employed
�more recent progress can be found in Refs. 20 and 21�. This
value is larger than the values 1.5–1.7 of metals, which ionic
and covalent solids share. 2�R was set equal to unity.1 A
couple of zero pressure isothermal compressibility values17,22

were used.
�m is positive for relaxation mechanism I and negative

for mechanism II, respectively �Table I�. The physical con-
tent of the activation volume for protonic motion was given
initially by Fontanella et al.13 as the volume change of the
material induced when the transferring charge undergoes a
transition from a “ground” state to an “excited” one. The
positive value of �m implies that relaxation I induces an out-
ward relaxation of the solid for intrachain transport �mecha-
nism I�. Interchain hopping occurs by the passage of the
polaron through the interseparating void space �excited
state�. At this instance, the volume distortion is less than

FIG. 1. The natural logarithm of the relaxation time of dielectric loss
mechanisms I �squares� and II �circles�, respectively, in conducting poly-
pyrrole. Straight lines best fit the data points. Inset: the imaginary part of
the dielectric permittivity 	� �after subtraction of the dc component� as a
function of frequency at room temperature for two different pressures: �a�
ambient pressure and �b� 0.30 GPa.

TABLE I. Evaluation of �m for two relaxation mechanisms in conducting polypyrrole from the pressure varia-
tion of � at room temperature �292 K�, taking into account the correction terms appearing in Eqs. �6� and �7�,
respectively. Zero pressure isothermal compressibility values are from two sources. Details are given in the text.

Dielectric
loss

mechanism

�� ln �

�P �
T

�GPa−1�

Eq. �6�
�pressure dependent ��

Eq. �7�
�constant ��

��− 4
3�R��T�P=0�
�GPa−1�

�m /kT
�GPa−1�

�m

�Å3�
��+ 2

3�R��T�P=0�
�GPa−1�

�m /kT
�GPa−1�

�m

�Å3�

I �0.0±0.1 0.264a 0.264 1.1 0.203a 0.203 0.8
0.346b 0.346 1.4 0.266b 0.266 1.1

II −2.5±0.2 0.264a −2.236 −9.0 0.203a −2.297 −9.3
0.346b −2.154 −8.7 0.266b −2.234 −9.0

a�T�P=0�=0.061 GPa−1 from Ref. 17.
b�T�P=0�=0.08 GPa−1 from Ref. 22.
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that of the induced when the polaron is located at the
chain �ground state�, and the resulting �act is negative �relax-
ation II�, indicating an inward relaxation of the polymer
network on the excited state of interchain hopping.6 The
polaron radius in polypyrrole is rP�1.2 Å,23 which yields a
volume 4/3
rp

3 �7.2 Å3 The value of the �m for relaxation II
�Table I� evidences for a volume contraction comparable
with the polaron volume: e.g., the absolute value of
�m=−8.7 Å3±10% is practically equal to the polaron vol-
ume. At the instance when the polaron crosses the void space
�excited state�, the macroscopic distortion is nearly null. So,
the difference between the macroscopic volume when the
charge crosses the void space �excited state� and the one
when the polaron settles at a polymer chain should be nega-
tive and nearly equal to the polaron volume. As we saw, this
picture is quantitatively justified by comparing the �m for
relaxation II with the polaron volume.

In summary, the pressure derivative of the dielectric re-
laxation time in disordered media �where tunneling and
phonon-assisted hopping occur� was expressed in terms of
the Grüneisen parameter, the isothermal compressibility, and
the migration volume. The migration volume for relaxation
can be obtained from dielectric measurements under pres-
sure. As a paradigm, the present methodology was applied to
analyze recently published results in conducting polypyrrole,
where two different relaxation modes with entirely converg-
ing behavior are traced. Positive and negative values of the
migration volume are evaluated, corresponding to intra- and
interchain charge flows, respectively. A correlation with the
polaron radius seems to justify the microscopic description
of conduction modes.

The authors are grateful to Professor P. A. Varotsos for
his potential comments and helpful recommendations.
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