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A model based on the aspect of the distribution of the length of conduction paths accessible for
electric charge flow reproduces the universal power-law dispersive ac conductivity observed in
polymer networks and, generally, in disordered matter. Power exponents larger than unity observed
in some cases are physically acceptable within this model. A saturation high frequency region is also
predicted, in agreement with experimental results. There exists not a “universal fractional power
law” (and it is useless searching for a unique common critical exponent) but a qualitative universal
behavior of the ac conductivity in disordered media. © 2007 American Institute of Physics.

[DOLI: 10.1063/1.2779255]

The measured ac conductivity o(w) of conducting and
semi-conducting polymers is characterized by the transition
above a critical (angular) frequency w, from a low-frequency
dc plateau to a dispersive high frequency region. As an ex-
ample, the real part of the electrical conductivity o’ plotted
as a function of w for some conducting polymers and
blends'™ is depicted in Fig. 1. The empirical Jonscher’s uni-
versal law,*’ o, * ", where n is a fractional exponent
roughly treated as constant less than 1, is often used to de-
scribe the ac component contributing to the dispersive re-
gion. Such behavior is observed in entirely different types of
materials, such as disordered semiconductors, polymers, con-
ducting polymer compound ceramics, ion conducting
glasses, heavily doped ionic crystals, ete.,.0® indicating that
the qualitative characteristics of the universal response is ir-
relevant to the constituting atomic units. It merely has to do
with the morphology of the conduction network. Although
many different theoretical approachesgf14 tried to conclude in
a unique fractional exponent value (around 0.7) and justify
the empirical universal law of Jonscher, there are serious
inefficiencies about the validity of the universal power law:

(a) n can hold values larger than unity (and there is no
physical argument to restrict the value of n below 1),
e.g., in glassy 0.3[xLi,O-(1-x)Li,O] 0.7B,05," in
mixed compounds of (NH,);H(SOy); 4,(SeOy), sg (Ref.
16) and K3H(SeO,), single crystals,'’

(b) n is frequency dependent, and

(c) what is the upper frequency limit of the “universal”
power law which applies. For example, in Fig. 1 there
is evidence at room temperature of a saturation high-
frequency region in polypyrrole, which is more clear at
low temperature (82 K).

In this letter, stimulated by the topology of polymer chain
morphology, we work on an ideal network of conduction
paths of various lengths, which are accessible to electric
charge carriers. Such picture may be representative in any
disordered material. The simulation not only reproduces the
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dispersive ac conductivity region but also explains the above
critical points, which still remain obscure.

The problem is focused on modeling the flow of the
electric charge within a frame of accessible conduction paths
under the influence of an external ac field. The length of the
conduction paths is determined by the spatial and energy
distributions of the potential energy profile. For example, in
a polymer network, different lengths of conduction paths are
available due to possible distribution of the length of poly-
meric chains, cross-linking, mechanical bonding between
different chains, etc. In glasses or amorphous semiconduc-
tors, the distribution of accessible conduction paths stems
from the absence of periodicity in space and the presence of
defects. Regardless of the identity of the structural units and
the way that they build up the solid and the type of electric
charge entities that respond to the external field, we can
adopt a unified manner to visualize how electric charge en-
tities move in a network consisting of conduction paths of
variable lengths. As we are going to see, a distribution in the
path length reproduces the low-frequency plateau and the
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FIG. 1. Real part of the electrical conductivity ¢’ vs (angular) frequency
measured at room temperature. (a) conducting polyaniline (Ref. 1); (b)
10 wt % zeolite-90 wt % conducting polypyrrole blend (Ref. 2), (c) 20 wt %
conducting polypyrrole-80 wt % polyaniline blend (Ref. 1); [(d), (e), and
(f)] conducting polypyrrole with various degree of doping (Ref. 3). The
conductivity values corresponding to curves (a) and (b) were multiplied by
10.
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power law increases with frequency-dependent fractional ex-
ponent and, the most important, predicts the high frequency
saturation.

A qualitative description of a polymer network structure
is that it consists of a group of polymer chains of various
lengths, with conformational disorder, and random orienta-
tion. The density of charge carriers (per unit length) is treated
as constant. An electric charge carrier (such as a polaron or
bipolaron) can hop along each chain (intrachain transfer) and
over cross-linked chain clusters. Interchain conduction is
controlled by the degree of chain coupling. Quantitative dif-
ferences arise from the different sample preparation condi-
tions and doping procedures. Electric charge flows along a
network formed from conductive paths of different lengths L,
which follow some distribution. A path does not necessarily
coincide with an individual chain, but can probably be a
cluster of coupled chains. Depending on its length, confor-
mational disorder, and orientation, a path can be long enough
to connect the opposite sides of the specimen. Some shorter
(in comparison with the specimen’s dimensions) paths have
dead ends. Moreover, we assume that the spatial distribution
of the potential energy is the same regardless of the length of
the path.

It is an experimental fact that the ac conductivity of con-
ducting polymers (more generally, of many disordered sol-
ids) as a function of frequency consists of a frequency inde-
pendent low-frequency region and, above a critical frequency
value w,., a high-frequency one, which is dispersive. For a
given angular frequency w< w,, the measured conductivity
o(w) results from the macroscopic conductivity (along paths
connecting the opposite surfaces of the specimen, where
electrodes are attached) and from the charge flow along
paths, which are larger than v/, where v is some typical
value for the mean velocity of the transferring charge carri-
ers. In the dispersive region (0> w,), the measured ac con-
ductivity is the sum of the macroscopic conductivity and the
conductivity along paths with lengths equal or larger than
v/ w (i.e., the lengths corresponding to frequencies from w,
to w).

The measured conductance G(w), which is a quantity
measured directly in dielectric experiments, consists of two
components: Paths extending along the volume of the speci-
men, which contribute to the macroscopic (dc) conductance
G4 and paths of length L; equal or longer than a critical
length L.=v/w,., which contribute to conductance GkOCLZI.

G(0)=Geet+ 2 GlLy). (1)
Li=L,

Assuming that the length follows a logarithmic distribution
function f(log L), Eq. (1) is modified to

L
L 'f(log L)dL = Gy,

‘min

G(w) =Gy + af
L

log L
+ af log f(log L)d(log L), (2)
log Lyyin

where L;, is the minimum path length, which is of the order
of interatomic spacing and « is a constant. To a first approxi-
mation, path lengths _are assumed to obey the normal distri-
bution f(log L)=1/\2mo exp(—(log L—log L)*/(20?)) char-
acterized by a mean value log L, (L, corresponding to the
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FIG. 2. Logarithm of the measured conductance G(w) as a function of the
(angular) frequency o, for a normal log-distribution of paths around
log Ly=-5 and broadening parameter o=1. The derivative of the theoretical
curve is depicted in the inset diagram.

length of the most abundant paths) and broadening parameter
o. By applying the relation v=Lw, we get

RO (log w —log wo)2>
Glw) =Gy +A ex (—— do,
) d o \"ETO’ p 202

(3)

where wy=v/L,, and A is a constant related to the conduc-
tivity of an individual path, its effective cross-section area
when regarded as a nanowire, and the velocity a charge car-
rier moves along each path.

Paths shorter than L, (i.e., L, <L,) contribute to capaci-
tive effects, giving rise to polarization phenomena expressed
by the real part of the complex permittivity &’(w) = C(w),
where C(w) denotes the capacitance. The capacitance of an
individual of these paths is inversely proportional to its
length. So, the formulation of C(w) resembles that of Egs.
(2) and (3), by integrating from w to infinite,

( (log w — log w,)?
- 202

where C is a constant, related to the saturation polarization
of the dead-end paths achieved in the dc limit.

The total conductance versus frequency plot produced
by employing Eq. (3) is depicted in a log-log representation
in Fig. 2, for log Ly=-5 and o=1. We observe that the low-
frequency plateau, where dc conduction dominates, is repro-
duced. The integration over the angular frequency yields an
increase of G(w) and more paths gradually contribute to the
total conductance on increasing . In the high frequency
limit, where the shorter length paths (comparable to the in-
teratomic separation) significantly participate with the mea-
sured conductance, saturation is observed. The inset of Fig. 2
shows that the slope dlog G/dlog w is a function of fre-
quency, with maximum of 0.75. The simulation reproduces
qualitatively the dependence of G(w) in a polymer chain
network. The structural properties of the polymer chains, the
distribution of the path lengths, the conductivity of an indi-
vidual path (which can be regarded as a nanowire the density
of states, and the mobility of the electric charge carriers are
the specific characteristics of an individual polymer, which

)dw, (4)
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|
C(w)=COJ o exp
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FIG. 3. Dielectric loss representation of the data appearing in Fig. 2. G/ w is
proportional to the imaginary part of the complex permittivity &” (left ver-
tical axis). A well-defined dielectric absorption is obtained when the dc
component Gy is subtracted from the total conductance G(w) (right vertical
axis). The capacitance C (which is proportional to the real part of the per-
mittivity €’) is plotted in the inset.

determine the quantitative behavior of G(w). The interplay
between the above mentioned parameters yields different
values of the critical transition frequency w,, variable satu-
ration region, and frequency-dependent slopes
dlog G(w)/d log w, which can be even larger than unity, ex-
plaining the ‘“unusual” behavior that some materials
exhibit,” 7 and is physically acceptable within the present
model.

The imaginary part of the complex permittivity &”
o« G(w)/ w, when plotted against log w (Fig. 3), consists of a
decreasing dc component (with slope equal to —1 and dielec-
tric relaxation component appearing as a ‘“knee.” By simply
subtracting the dc component from the measured conduc-
tance, we get a well-defined dielectric dispersion (G(w)
—Gy.)/ w. What is hidden behind this relaxation is the maxi-
mum absorption of the energy of the external harmonic elec-
tric field by the charge carriers flowing along the paths with
length characterized by the distribution function f(log L).
The inset of Fig. 3 shows the drop of C(w) (which is propor-
tional to €” on increasing frequency, according to Eq. (4).

The advantage of the model presented in this letter is the
unified description of the ac response of polymer networks,
by generalizing the idea of conducting paths, to any noncrys-
talline material. The advantages in relation to the long-
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standinﬁ power-law models that have been published until
now’'* are the following:

(1) The slope of the ac conductivity d log G(w)/d log w is a
function of frequency. The maximum slope given by dif-
ferentiating Eq. (3) approaches a typical value for the
exponent n, when the rough universal power law is em-
ployed to analyze the data.

(2) The power exponent n is neither limited to values below
1, nor is accumulating to some critical value (around
0.6-0.7). Depending on the interplay between the pa-
rameters, n>1 is predicted from Eq. (3). The experi-
mental results reporting n>1 (Refs. 15-17) find their
theoretical justification now.

(3) There is an upper frequency limit for the dispersive con-
ductivity. In the high-frequency limit, the measured con-
ductivity practically saturates. Thus, the simulation pre-
sented in this letter explains the appearance of
saturation region observed in some cases such as in con-
ducting polypyrrole (Fig. 1) and polyaniline'® (the capa-
bility of detecting the saturation high frequency region is
a matter of whether instrumentation is broadband.).
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