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Abstract-In the present paper the pressure variation of the porosity is expressed in terms of the elastic properties 
of the porous solid which consists of a one-phase solid framework and the pore space that is assumed to be empty. 
The equation which describes the pressure variation of the conductance of a porous ionic material is modified to 
include the porosity modification upon pressure. The change of the porosity induced by the pressure contributes to 
the value of the activation volume which is inferred from conductance under pressure experiments. Additionally, 
we predict that the porosity change significantly accounts for the second order pressure derivative of the 
conductance and consequently contributes to the estimation of the compressibility of the activation volume. 
0 1997 Elsevier Science Ltd. All rights reserved 
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1. INTRODUCTION 

The measurement of the ionic conductivity at various 
pressure values is a powerful tool for evaluating the 
volume point defect parameters in ionic crystals, such 
as the formation, migration and activation volume. The 
defect volume is respectively defined as the isothermal 
pressure derivative of the Gibbs energy for the formation, 
migration or activation process. During the last three 
decades, significant and pioneering pressure work on 
different types of ionic crystals has been carried out 
[l-21]. Recently, emphasis has also been given to trans- 
port experiments under pressure in polymers [22-281. 
Natural ionic compounds with more complex crystal 
structures than those studied to date, usually exist in 
polycrystalline aggregates, while some ionic crystals 
may not even develop to dimensions necessary for 
electrical measurements, urging us to prepare pressurized 
pellets from the material’s powder [8]. 

The changes in the electrical properties of rocks under 
pressure have attracted the interest of many research 
groups [29-401. The potential difference between the 
work carried out for ionic crystals and polymers and the 
rock type solids is that the latter are fully or partially 
saturated with water or electrolyte solution. The pore 
space in the rock accommodates the solution and subse- 
quently the system under consideration consists of the 
matrix material and the pore framework filled with 
conductive fluid. The conductivity of the fluid is some 
orders of magnitude higher than that of the matrix [30]. 
Thus, the effect of the conductivity on the confined 
pressure actually records the changes of the pore and 

crack space and topology induced by the pressure varia- 
tion. To the best of our knowledge there is a lack of 
information about the influence of pressure on the proper- 
ties of the framework itself. 

In the present work: (i) we develop a simple model 
which estimates the pressure variation of the porosity of 

an homogeneous porous solid in terms of easily measur- 
able elastic constants; (ii) we derive a complete equation 
for the pressure variation of the conductance of a poly- 

crystalline ionic material. It should be stressed that we do 
not deal with polycrystalline materials filled with con- 
ductive fluid, as mentioned in the previous paragraph. On 

the contrary, in our model, the pores are considered to be 
empty and completely insulating, while the transport 
processes operate through the bulk host ionic matrix. 
The latter visualization is related to the more realistic 
problem of studying either pressurized pellets [8] or 
naturally developed polycrystalline aggregates. 

2. SIMPLIFIED ESTIMATION OF THE POROSITY 
CHANGE EFFECT UPON PRESSURE 

A porous material consists of a matrix framework with a 
void space. In this paper we consider a homogeneous 
porous solid: The solid phase consists of a unique type of 
material (a one-phase solid). The pore space is empty, 
free of solution and non-conductive. If VToT. VMAT and 
Vpo~ denote the total volume of the specimen, the matrix 
grains’ volume and the volume of the pore space, respec- 
tively, then [41]: 
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The porosity cP(P) is defined as the ratio of the pore space 
to the total volume: 

*(P) = vPOR(p)~vTOT(p) (2) 

The isothermal compressibilities Ki are defined as the 
percentage variation of the volume with respect to pres- 
sure, for a given pressure value: 

1 
“i(P)= By= - (3) 

where i = TOT, MAT or POR and Bi denotes the iso- 
thermal bulk modulus. 

Differentiation of eqn (2) with the help of eqn (1) and 
eqn (3), gives: 

aln[ 1 - *(P)] 

ap > 
= KTOT(P) - KMAT(P) (4) 

T 

The measurement of the compressibilities KMAT and 
KIT of the single crystal and a polycrystalhne material, 
respectively, can readily be done at the desired pressure 
value. Unfortunately it is often impossible to grow single 
crystals. To overcome this obstacle, we propose a method 
which has appeared in the literature [42]: The bulk 
modulus B vs pressure P diagram of a polycrystalline 
solid consists of two distinct parts: the low pressure rapid 
increase and the slow linear increase at high pressure. The 
first region corresponds to the drastic pore closure, while 
the latter is dominated by the elastic properties of the 
matrix material. The linear extrapolation from the high 
pressure data, leads to the zero pressure value of the 
matrix bulk modulus BMUIAT(0). Thus, a B(P) diagram 
provides both the total and the matrix bulk modulus 
values. Eqn (4) connects the pressure variation of the 
porosity with the elastic properties of the material, over- 
coming the problem of knowing the microstructural 
features of the solid. 

3. CORRECTION OF THE POROSITY CHANGE USING 
THE PRESSURE VARIATION OF THE IONIC 

CONDUCTANCE 

Let us assume that two electrodes are attached to the two 
parallel surfaces (surface area ST&P)) of the rectangular 
sample of thickness L&P). If the pore space is vacant, 
i.e., the porosity network is completely insulating, 
then the conduction develops through the matrix 
material. Consider a random cross section parallel to 
the sample surfaces which are in contact with the 
electrodes. Then, the total area of the section S&P) is 
the sum of the matrix area SMAT(P) and the pore space 

&‘OR(f?: 

sTOT(p) = SMATtP) +&OR(P) (5) 

In any (two dimensional) cross section, the pore surface 
area spot to the total section area S&P) is 

approximately equal to the porosity O(P) [43]: 

(6) 

Although the last approximation is well known in the 
literature, it is important to clarify the limits of its valid- 

ity: The equation that defines the porosity (eqn (2)) can be 
rewritten as an integral over the sample’s length, for a 
constant pressure value: 

1 

‘(‘) = sTOT(p)hOT(p) 

where z is the axis along the sample’s thickness (i.e., 
perpendicular to the electrodes) and SmR,i(P*Z) is the sur- 
face area of the i-th void measured by sectioning the 
sample vertical to the z axis, (0 5 z I Lror). Assuming 
that the voids are homogeneously distributed all over the 
solid and that the surface of the section is larger than the 
grain size (and fortunately the latter does occur), we can 
write: 

~&OR,i(P,Z) G &OR(P) (8) 

for any value of the variable z. Eqn (7) from eqn (8) 
becomes: 

@(P)= hOR(p) 
horn = sToT~p~ 

(9) 

The latter actually demonstrates that the approximation 
defined by eqn (6) is correct. 

From eqn (6) and through eqn (5) we get: 

SMAT(P) = i1 - *(p)I~TOT(p) (10) 

Recalling that the cross section is parallel to the electro- 
des, multiplying by L&P), taking the logarithm and 
differentiating with respect to pressure, we obtain: 

The last equation, due to eqn (4) can be rewritten in the 
following form: 

(12) 

We proceed with the calculation of the last term: 
Taking the logarithm of the basic relation V-&P) = 
STOT(P)&OT(P) and differentiating with respect to pres- 
sure, we get: 

(a’~~(p))T~ 
-KTOT(P)- (a’ns;;‘p’)T (13) 
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Recalling that the polycrystalline material was assumed 

to be isotropic, we may write: 

(aln&o$P)) T = 2( ah&;(P)) T (14) 

The combination of eqn (13) eqn (14) yields: 

( aln;y))T= - ;KToT(P) (15) 

With the help of the last relation, eqn (12) can be 

rewritten as: 

(awn) T = 
- KMAT(P) + $ToT(P) (16) 

Eqn (16) transformed the effective surface variation to 

volume change. Let us denote a(P) using the conductivity 

of the matrix and G(P) the conductance of the porous 

sample. Assuming that the contribution of the grain 

boundary diffusion is low, we may write: 

(17) 

Differentiating the logarithm of the last relation, it lead 

to 

(t!!E$9)T= (aly;p))T+ (aWf7)T 

_ ( alnhf))T (‘8) 

The first term of the right hand side is equal to 

- (““‘/kT) + (y+ 1/3)K&P) [17], where uact is the 

activation volume, k is Boltzmann’s constant and y is 

the Griineisen parameter of the matrix material. The 

second and third terms are given by eqns (16) and 

eqn (15), respectively. So, eqn (18) is rewritten in the 

following form: 

- = KMAT(P)+ $ToT(P) 

(1% 

The pressure derivative of the conductance is governed 

by two competitive constituents: The quantity - uaCt/kT 

characterizes the transport mechanism, while the latter 

(7 - 2/3)K&,T(P) + 213 KToT(P) involves the effects of 

lattice dynamics change (expressed through 7) and 

volume elastic changes on the pressure (expressed by 

the compressibilities). The question that arises is whether 

the conductance measurements upon pressure in porous 

materials leads to reliable values of the activation volume. 

In a recent paper [21], we studied the pressure varia- 

tion of the conductivity in polycrystalline dolomite 

(CaMg(CO,)z). In Table 1, the zero (ambient) pressure 

derivative (alnG(O)IaP)r is depicted in comparison to 

the compressibility terms participating in eqn (19). Both 

terms contribute at about 0.7% to the value of the 

pressure variation of the conductivity. The percentage 

contribution is significantly smaller (approximately one 

order of magnitude) than the error in the u”’ estimation 

from the slope of the lnG(P) diagram, thus we can 

definitely assert that (alnG(O)/aP)r leads to the reliable 

evaluation of the activation volume. 

Supposing that a unique non electronic conduction 

mechanism operates, the deviation of the lnG(P) plots 

from linearity can be attributed to the pressure depen- 

dence of the activation volume [44]. The compressibility 

K act of the activation volume is defined as: 

-x3 = 
1 at?’ 

K -- - 

( > P aP T 

describes the pressure variation of v”‘. Using eqn (20). 

the second order derivative of the conductance with 

pressure is: 

eqn (21) predicts that the curvature observed in a single 

mechanism lnG(P) plot is not only due to the probable 

pressure variation of u”’ (alternatively, to the fact that ~~~~ 

is not null) but to the pressure modification of the porosity 

of the sample. In the limiting case that the activation 

volume is constant (I(~‘~ = 0) (and therefore the lnG(P) 

plot of a unique mechanism would decrease linearly), the 

lnG(P) plot for a porous solid is expected to be curved 

because of the compressibility terms appearing in eqn 

(21). In Table 2 we present the values of the zero pressure 

terms participating in eqn (21) for polycrystalline dolo- 

mite. We note that the term (y - 213) (aKMAT(P)/a& is 

Table 1. Room temperature and zero pressure data of polycrystalline dolomite. The first column corresponds to the pressure variation 
of the electrical conductivity, previously reported by us [21]. The second and third terms contribute to the first value according to eqn 
(19). y is assumed to take the value 1.7 which is typical of ionic solids [44]. Due to the absence of isothermal compressibility data, we 

used the adiabatic ones [45] which, for the majority of geomaterials, differ from 0.5 to 1.3% at room temperature 

( > ‘-f - ; KMAT(O) 

2 
j “TOT(O) 

(GPa-‘) (GPa-‘) 
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Table 2. Tbe second order pressure derivative of tbe conductance obtained by second order polynomial fit to the lnG(P) data [21]. Tbe 
second and third terms are those appearing in eqn (21). y was assumed to be equal to 1.7 [44]. The compressibility data come are from 

Ref. [45] 

(GPa-*) (GPa-*) (GPae2) 

14.88 % - 1o-4 - 2.36 

practically insignificant in comparison to the second order 

derivative of the conductance, while U3(aKTm(P)/aP)T 
contributes at approximately 16% to the left hand side of 
eqn (21). The experimental conductance data for dolo- 
mite showed that the lnG(P) data are best fitted to a 
second order polynomial curve and consequently, the 
second order pressure derivative of the conductance 
holds a constant value throughout the pressure range 
where the experiments were performed. As stated 
above, the compressibility terms of eqn (21) account to 
approximately 16% for (a*lnG(P)/a$),, indicating that 
the curvature is caused by a probable pressure depen- 
dence of urt. Concerning the qualitative analysis, ~~~~ has 
to be evaluated using the compressibility correction, 
which proves to be higher than the error induced by the 
conductance measurement. We emphasized the zero 
pressure values for two reasons: (i) the zero pressure 
limit is not sensitive to the probable phenomenon of 
overlapping conduction mechanisms; (ii) the material 
becomes considerably less compressible as the pressure 
augments and therefore the zero pressure limit represents 
the extreme of the porosity contribution. 

4. CONCLUSIONS 

In the present work we considered a porous material 
consisting of a one-phase sold matrix and the framework 
of the porous space. The latter is assumed to be empty and 
free of conductive fluids, thus the electrical phenomena 
operate through the bulk solid. An estimate of the 
pressure variation of the porosity was obtained. Further, 
we presume that the decrease in porosity is not accom- 
panied by the formation of new conductive bonds 
between the grains: the system is approximated by a 
continuous solid containing empty spheroid voids. The 
evaluation of the activation volume which characterizes 
the transport mechanism and the compressibility of the 
activation volume, which are extracted by performing 
conductivity measurements under pressure, can be made 
by deriving equations that accommodate the correction 
resulting from the variation of the porosity with the 
pressure. 

Our results are useful for predicting the behaviour of 
naturally or artificially developed polycrystalline 

aggregates. The basic advantage of our model is that 
the phenomenon is viewed through the easily measurable 
material’s elastic constants. The first and second order 
derivatives of the conductance with pressure are 
explicitly presented providing the background for 
quantitative analyses of the data coming from experiments 
in porous materials. 
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