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The compressibility and the thermal expansivity of gold-nickel alloys can be estimated in the com- 
plete concentration range through the Varotsos and Alexopoulos model, provided that density data 
are available and the compressibility (or the expansivity) is experimentally known for a single con- 
centration. The results are discussed in relation to the defect compressibility obtained from the 
elastic properties of each of the end components. 

1. Introduction 

The determination of the compressibility or thermal expansivity of an alloy for a given 
concentration is usually attained by fitting a reasonable equation to the available experi- 
mental data. A large amount of experimental points are needed in order to achieve high 
accuracy. During the last decade Varotsos and Alexopoulos developed a thermodynamical 
model [l] (hereafter called V-A model) which explains the elastic properties of mixed ionic 
crystals [l to 41 and metal alloys [5 to 121 and nonelectronic transport phenomena as a func- 
tion of the composition in mixed ionic crystals [13 to 151. The starting point of the V-A 
model is the variation of the volume of a host crystal when one impurity atom is added. 
Subsequently the compressibility and thermal expansivity of the “defect volume” wd can be 
defined using fundamental thermodynamical relations. Simple equations can determine 
the compressibility (or expansivity) of the alloy for any concentration by using density 
data and compressibility data for at least a single concentration and for the host material. 

From another viewpoint the formation of a defect (i.e. a vacancy) in a solid will 
change the volume of the bulk material by wf where wf is the formation volume. The 
compressibility xf of the formation volume is defined. The same authors (Varotsos and 
Alexopoulos) have also established [l] the so-called cBQ model that interconnects the 
point defect parameters of a material with its bulk properties. Within this frame, the 
compressibility of the aforementioned defect volume wd is determined from the elastic 
properties of the host crystal. This aspect is limited to lightly doped materials. 

The system under examination consists of two metals with elastic properties close 
together and therefore, whichever we label as “host” material, the defect compressibility 
for the limiting case of a dilute alloy (cBQ model) will be almost the same. A compar- 
ison with the value of the defect compressibility obtained from the whole (available) 
concentration range (V-A model) is desirable. 
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2. Theory 

We briefly present the V-A model: Assume [l] that an impurity atom is introduced into 
a pure material with atomic volume no. Then the initial volume will increase by 
Szo + vd where vd is the variation of the host volume (Vo = NQO) when one impurity 
atom replaces one host atom. So, when n foreign atoms get into a host material contain- 
ing N atoms ( N  can be set equal to Avogadro’s number), then an alloy is formed con- 
taining n + N atoms and its volume will be 

V n + ~  = NQo + n(Qo + wd) . 
This can be written as 

For reasons of simplicity we identify V n + ~  with V .  We stress that no assumption is 
made about the value of ud. It might be equal to  the difference between the mean atom- 
ic volumes of the two constituents or not. In general, it is experimentally derived as 
follows: The volume V of the alloy is readily extracted from density measurements recall- 
ing that 

(2) 
n 

( N  
v = mo + - m,) @-1, 

where mo, ml are the g-atoms of the host and impurity material, respectively, while e is 
the density of the alloy. In a V versus n / N  diagram, the slope of the curve permits the 
direct evaluation of ud by means of (1). We notice that the molar fraction x is connected 
with the ratio n / N  by 

n x 
N 1 - x  

- (3) 

Differentiating (1) with respect to the pressure we get 

(4) 
n 
N 

x v  = xo& + - ( X ” d  + X O V , )  , 

where xo is the compressibility of the host material, x the compressibility of the mixed 
system, and xd is the defect compressibility defined as follows: 

We note that (4) holds either for isothermal or adiabatic compressibility [l]. 
Differentiating (1) with respect to temperature we get a formula similar to that given 

by (41, 

where Po is the host material expansivity and pd the expansivity of the defect volume 
defined as follows: 
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If V = V ( n / N )  is a straight line we conclude that the defect volume vd is constant 
and independent of the concentration. In this case (vd = const), if additionally xd is also 
constant, the relation xV = x V ( n / N )  is linear. Similarly, if ad and pd are constant then 
PV = PV(n /N)  is a straight line. 

The above model proves to be a simple and useful tool: if the available experimental 
density data indicate that the defect volume vd is constant and provided that xd is also 
constant then xV versus n / N  is expected to be a straight line. This straight line can be 
easily drawn provided that x is known for a single concentration and for the host mate- 
rial or, equivalently, for two different compositions. Then by means of (4) the alloy 
compressibility can be predicted at any concentration. The same method can be applied 
in order to predict the thermal expansivity p at any composition. 

For lightly doped materials, and within the frame of the cBQ model (also formulated 
by Varotsos and Alexopoulos) which interconnects the point defect parameters with the 
bulk elastic properties of the host crystal, the compressibility xd of the defect volume is 
given by the following equation [l, 161: 

where Bo = l/xo is the bulk modulus of the pure material. We point out that xd is 
determined only from the properties of the bulk crystal and, consequently, must be con- 
stant throughout the composition range. A similar equation holds for the thermal expan- 
sion coefficient pd of the defect volume [l, 161, 

The defect thermal expansivity is a function of the host crystal properties and therefore 
independent of the concentration. 

3. Application to the Au-Ni Alloys 

Golding et al. [17] have reported density, adiabatic compressibility, and linear expansion 
data of Au single crystals and for various concentrations of Au-Ni alloys (from 0 to 
42.42% Ni) at 296.5 K, which we are going to use in the following paragraphs. 

By introducing the density data into (2) we plot the V versus n / N  diagram (Fig. 1). 
A least squares fit indicates that it is a straight line with correlation factor cf = 1.000. 
We conclude that vd is constant. From the slope of the line we find that 
Nud = -3.32 cm3. Its negative value suggests the inward relaxation of the Au lattice 
around Ni. Additionally, the intercept is found to be equal to 10.22 cm3/mol and close 
to the molar volume of pure gold V A ~  = 10.21 cm3/mol. Notice that the value of Nvd 
differs from the value N(J2p~i - Q A ~ )  = -3.62 cm3/mol. 

In Fig. 2 we have drawn the compressibility x versus n / N  which is obviously non- 
linear. On the contrary, the x V =  x V ( n / N )  plot is linear with correlation factor 
cf = 1.000. According to (4) we can evaluate the defect compressibility from its slope. 
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Fig. 1. The volume V vs. the ratio 
n / N .  The linearity indicates that 
the defect volume is independent 
of concentration 

8 

We find xd = 5.331 x lop8 cm2/N and xd/xo = 0.92, i.e., the defect compressibility 
(which was experimentally determined) is almost equal to the bulk compressibility. 

Golding et al. [17] provided a list of the linear expansion coefficients a for different 
compositions. In Fig. 3 we plot the thermal expansivity /3 = 3a versus n / N  which is 
nonlinear. A PV = /?V(n/N) plot reveals its linearity with correlation factor cf = 0.999. 
As (6) indicates, the thermal expansivity of the defect volume is readily evaluated from 
its slope: Bd = 0.612 x K-l.  The thermal expansivity of the defect volume is about 
50% larger than the bulk one, since pd/& = 1.45. 
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Fig. 2. The compressibility x vs. n / N  (circles) and the product xV as a function of n / N  (squares). 
It is worthwhile to notice that XV depends linearly upon n / N  while x does not 
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Fig. 3. The thermal expansivity /3 vs. n / N  (circles) and the product PV for varying n / N  (squares) 
which is a straight line in contrast to the /3 vs. n/N plot 

4. Comment on the Defect Compressibility Value 

We have repeated the above procedure taking nickel as the host material. The V versus 
n / N  and XV versus n / N  plots are straight lines with excellent correlation factors. We 
found Nwd = 3.28 cm3 and xd = 4.891 x lo-' cm2/N. A deviation of about 1% in the 
defect volume and about 10% in the defect compressibility exists in comparison to the 
values obtained when we started from Au. This result was expected because different 
sets of data points participate in the fit: the selection of the one end member as "host", 
excludes the other end member from the fitting prcedure. We speculate that the afore- 
mentioned deviations would be minimal if data from the complete concentration range 
(1 > x > 0) were available. 

We shall compare the defect compressibility experimentally determined above (V-A 
model) with the value that can be evaluated from (8) for the low concentration limits 
(cBQ model): Golding et al. [17] have measured at 296.5 K the adiabatic compressibility 
of Au single crystals xo = 5.7870 x lo-' cm2/N and the pressure derivative of the adia- 
batic bulk modulus dBo/dP = 6.15, which practically coincides with the isothermal one 
[l]. The following equation is valid for metals and provides the second pressure deriva- 
tive of the bulk modulus [6, 11: 

d2Bo dBo Bo-=--. 
dP2 d P  

From (8) and (10) we get 

Xd X o  (' (dBo/dP) dBo/dP - 1 1 
From (11) we get the value xd = 12.698 x lo-' cm2/N or xd/xo = 2.19. 
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The experimental adiabatic compressibility of Ni at 300 K reported in [18] is 
xo = 5.45553 x lops cm2/N. Recalling that the pressure derivative of the adiabatic bulk 
modulus does not significantly change with temperature [l] we may use the value 
dBo/dP=6.07 at 298K reported in [19]. By using (11) we find 
xd = 12.002 x lo-* cm2/N and xd/xo = 2.20. 

We notice that the defect compressibility determined either from the elastic properties 
of Au or from the elastic properties of Ni is more than two times larger than the defect 
compressibility obtained from the experimental data of the alloy. 

5. Conclusion 

We have verified that the Au-Ni alloy is a system for which the V-A model applies 
well. Therefore, prediction of the compressibility and the thermal expansivity is attain- 
able. 

The defect compressibility obtained from the complete concentration range, being the 
same considering either Au or Ni as the host material, does not coincide with that eval- 
uated from the end member elastic data. This was expected since as the alloy becomes 
richer in impurity atoms, the environment that surrounds the defect changes drastically. 
The dilute approximation limit governed by the end member properties can therefore 
hardly be expanded to the whole concentration range. One cannot ignore the fact that 
the defect compressibility in a wide composition range (i.e., for concentrations that well 
characterise the alloy as being heavily doped) is constant for a large number of mixed 
systems, and might reveal a systematic property. 
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