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Preface

This book is intended for those people, perhaps final-year undergraduates and research
students, who are already familiar with the terminology of stellar astrophysics (spectral
types, magnitudes, etc.) and would like to explore the fascinating world of binary stars.
I hope it will also be useful to those whose main astrophysical interests are in planets,
galaxies or cosmology, but who wish to inform themselves about some of the basic blocks
on which much astronomical knowledge is built. I have endeavoured to put into one
book a number of concepts and derivations that are to be found scattered widely in the
literature; I have also included a chapter on the internal evolution of single stars.

In the interest of keeping this volume down in size, I have been brief, some might say
cursory, in surveying the enormous literature on observed binary stars. It is almost a
truism that theoretical ideas stand or fall by comparison with observation. My intention
is to produce a second volume, with my colleagues Dr Ludmila Kiseleva-Eggleton and
Dr Zhanwen Han, in which individual binary and triple stars that rate less than a line in
this volume will be discussed in the paragraph or two each, at least, that they deserve. In
addition, the synthesis of large theoretical populations of binary stars will be discussed.
Some individual binaries can be seen as flying entirely in the face of the theoretical ideas
outlined here — see OW Gem, Chapter 2.3.5. If I took at face value the notion that one
well-measured counter-example is all that is needed to demolish a theory, then I would
have given up long ago. Rather, I think, it is necessary to persevere: not be paralysed
by disagreement with observation, but also not to sweep disagreement under the carpet.

A number of problems that have to be considered may well be capable of being
answered only by detailed numerical modeling, constructing three-dimensional models of
a whole star, or pair of stars in a binary. Massive computer resources will be needed for
such investigations; for that reason I moved from Cambridge University to the Lawrence
Livermore National Laboratory, California, where such resources are being developed.
This Laboratory has started the ‘Djehuty Project’ — named after the Egyptian god of
astronomy — to pursue this long-term goal. We hope that this project will supplement,
though it cannot entirely replace, the simple ideas which this book discusses.

I am very grateful to many colleagues who have been generous of their time in dis-
cussing the issues of binary-star evolution. Drs Zhanwen Han, Onno Pols, Klaus-Peter
Schroder and Chris Tout have kindly supplied some Figures, as well as much insight.
I wish to thank particularly Prof. Piet Hut for his careful and critical reading of the
manuscript, and suggestions for improvement, and Drs Kem Cook and Dave Dearborn
for their patience in allowing me to pursue this topic.

This work was performed under the auspices of the U.S. Department of Energy, Na-
tional Nuclear Security Administration by the University of California, Lawrence Liver-
more National Laboratory under contract No. W-7405-Eng-48; and much use was made
of the archive at the Centre des Données astronomique de Strasbourg.
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Introduction

1.1 BACKGROUND

Because gravity is a long-range force, it is difficult to define precisely the concept
of an ‘isolated star’ — and consequently also the concept of a binary or triple star.
Nevertheless, many stars are found whose closest neighbouring star is a hundred, a
thousand, or even a million times closer than the average separation among stars in the
general neighbourhood. Such pairings of stars are expected to be very long-lived. There
also exist occasional local clusterings of perhaps a thousand to a million stars, occupying
a volume of space which would much more typically contain only a handful of stars. These
clusters can also be expected to be long-lived - although not as long-lived as an ‘isolated’
binary, since the combined motion of stars in a large cluster causes a slow evaporation of
the less massive members of the cluster, which gain kinetic energy on average from close
gravitational encounters with the more massive members. Intermediate between binaries
and clusters are to be found small multiple systems containing three to six members,
and loose associations containing somewhat larger numbers. Starting from the other
end, some clusters may contain sub-clusters, and perhaps sub-sub-clusters, down to the
scale of binaries and triples.

Even with the naked eye, a handful of the 5000 stars visible can be seen to be double;
and in the northern hemisphere two clusters of stars, the Hyades and the Pleiades,
are quite recognisable. But some 2000 naked-eye stars are known to be binary (or
triple, quadruple, ...) by more detailed measurement — astrometric, spectroscopic or
photometric. Observation in other wavelength ranges, such as radio, infrared, ultraviolet
and X-rays, reveal further and more exotic binary companions, not so many in number,
but of unusual interest. The naked-eye stars are only a tiny fraction of all the stars in
our Galaxy (~10'1), but are reasonably representative as far as the incidence of binarity
is concerned.

Sometimes the two components are so close together as to be virtually touching; some-
times they are so far apart as to be virtually independent. Measured orbital periods range
from hours (or even minutes) up to centuries. Many must have longer periods still, not
yet determined but up to millions of years. The evolution of the two components of such
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pairs has attracted increasing interest over the last fifty years. The presence of a binary
companion, if the orbital period is a few years or less, may make the evolution of a star
very different from what it would have been if the star were effectively isolated. A num-
ber of these differences are now fairly well understood, but although some evolutionary
problems which used to trouble astrophysicists, such as the ‘Algol paradox’, have been
largely resolved, several still remain. New observations add new problems considerably
faster than they confirm the resolution of older problems. It should be kept in mind that
even single stars present many evolutionary problems, and so it is not surprising that
many binary stars do.

Questions about binary stars can be divided very loosely into two categories, ‘struc-
tural’ and ‘evolutionary’. For a particular type of binary star one can ask what physical
processes are currently going on, that give this type of star its particular characteristics.
In cataclysmic variables such as novae, for instance, there is little doubt that a fairly
normal main sequence star of rather low mass is being slowly torn apart by the gravita-
tional field of a very close white dwarf companion. But one can also ask how such binaries
started, and subsequently evolved, so that these processes can currently take place. This
evolutionary question can be harder to answer, because most evolutionary processes are
very slow. An obvious further evolutionary question is: what will the future evolution
of such systems be, up to some long-lived final state? This book attempts to summarise
progress in understanding the kind of long-term evolutionary processes involved. In the
interest of brevity it will be necessary to quote, and to take for granted rather than to
discuss, most of the much more substantial literature on structural problems. However
one aspect of binary stars that might be labelled ‘structural’, but which is certainly of
vital importance for evolutionary discussions, is the determination of such fundamental
parameters as masses, radii etc.

1.2 DETERMINATION OF BINARY PARAMETERS

If we are interested in determining the masses and radii of stars, then we have to
turn almost right away to binary stars, since it is only by measuring orbital motion
under gravity, and by measuring the shape and depth of eclipses, that we are able to
determine these quantities to a good accuracy — one or two per cent in favourable cases;
see Hilditch (2001). Analysis of the spectrum of an isolated star can determine such
useful quantities as the star’s surface temperature, gravity and composition. This is
done by comparing the observed spectrum, preferably not just in the visible region of
wavelengths but also in the ultraviolet (UV) and infrared (IR), with a grid of computed
spectra for a range of temperatures, gravities and compositions. However we do not get a
mass from this process, or a radius, only the combination that gives the gravity — except
in the special case of white dwarfs, where there is expected to be a tight radius-mass
relation (Chapter 2.3.2) so that both mass and radius are functions only of gravity.

If we have an accurate parallax, as from the Hipparcos satellite, we can get closer to
determining the mass of an isolated star, because the distance, the temperature (from
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spectral analysis), and the apparent brightness give us the radius; and hence the gravity
(also from spectral fitting) gives us the mass. However even if the parallax is good
to ~1%, the gravity is much less accurate, because spectra are usually nothing like
so sensitive to gravity as they are to temperature. Perhaps an accuracy of ~25% is
achievable.

The parameters of binary systems are generally obtained from astrometric, or spectro-
scopic, or photometric observations, and in favorable cases by a combination of two, or
even all three, of these methods. Note that terms such as ‘astrometric’ and ‘photomet-
ric’, coined originally to refer to observations in the visible portion of the electromagnetic
spectrum, are now generally used to cover all parts of the spectrum, for instance radio
and X-rays. If the two components of a binary are so far apart in the sky as to be resolv-
able from each other, which means at visual wavelengths more than ~0.1" (0.5 urad)
apart, then the system is a ‘visual binary’ or ‘VB’, and careful astrometry, sometimes
over a century or more, can reveal the orbit. VBs tend to have long periods because
short-period orbits are generally not resolvable. Only for systems within ~5pc of the
Sun (about 50 in number) could a separation of 0.2"” correspond to a period of <1yr.
The upper limit of well-determined visual orbital periods is about 100 yr, because good
accuracy is only achievable if the VB has consistently been followed for at least two full
orbits. There are many orbits in the literature with periods up to 1000 yr, or even longer,
but these must be considered tentative — extremely tentative if the period is greater than
200 yr.

Visual orbits are usually relative orbits, the position of one component being mea-
sured relative to the other (Fig 1.1a). Visual orbits have been catalogued by Worley &
Douglas (1984), and speckle measurements by McAlister & Hartkopf (1988). These and
many other relevant catalogues can be found on the web-site of the Centre des Données
astronomique de Strasbourg (http://cdsweb.u-strasbg.fr). From visual orbits one
can determine the period (P), the eccentricity (e), the inclination () of the orbit to the
line of sight, and the angular semimajor axis, i.e. the ratio of the semimajor axis a to the
distance D. One can then determine M/D?3, where M is the total mass, from Kepler’s

law: ) )
GM 21 GM 2 a\3
e (7) S0 Ty < (7) () - a2y

If the VB is near enough, D may be obtainable from the parallax. For Earth-based
measurements, parallaxes of less than 0.1 are not reliable, but this has been improved
by more than an order of magnitude with space-based measurements from the Hipparcos
satellite. If the orbits of both the components of a visual binary can be measured
absolutely, i.e. each orbit relative to a background of distant and presumably ‘fixed’
stars, then the mass ratio of the two components can further be determined. We still do
not obtain the individual masses, however, unless D is separately determinable.

Even if only one component of a binary is visible at all, an astrometric orbit may in
favourable cases be found by observing that the position of a star has a cyclic oscillation
superimposed on the combination of its parallactic motion and its linear proper motion
relative to the ‘fixed’ stars, i.e. faint stars most of which do not move measurably and so
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Fig 1.1 (a) — The orbit of HR 3579 (F5V+G5V) from visual (dots) and speckle (square) measurements of
relative position. The scatter of speckle points about the best-fit curve (P = 21.8yr, e = 0.15, a/D = 0.66"’,
7 = 130°) is much less than for the visual points. From Hartkopf et al. (1989). (b) — The UV spectrum of the
GS8III star e Vir (bottom panel) and ¢! Cet (top panel, with e Vir repeated). For 0.18—0.7um (not all shown
here) the spectra are very similar. The UV excess evident in {1 Cet for 0.13—0.17um is attributable to a white

dwarf companion. From Bohm-Vitense & Johnson (1985).

can be assumed distant. Such astrometric binaries can yield P, e and ¢, but information
on masses is convolved with the unknown mass ratio, and also with the parallax which
may or may not be measurable even if the astrometric orbit is measurable.

Some VBs can be recognised even when neither component shows measurable orbital
motion. If two stars, not necessarily wvery close together on the sky, show the same
substantial linear proper motion relative to the ‘fixed’ background, it is likely that (a)
they are physically related, and (b) fairly nearby, with measurable parallaxes. Usually
these parallaxes agree, confirming the reality of the pair. Such pairs are called ‘common
proper motion’ (CPM) pairs. The two nearest stars to the Sun, V645 Cen (Proxima Cen)
and « Cen, are over 2° apart, but have the same rapid proper motion and large parallax.
To be pedantic, (i) they are so near the Sun, and so far apart on the sky, that actually
their proper motions and parallaxes are measurably different at the 1% level, and (ii)
a Cen is itself a VB of two solar-type stars, with semimajor axis 17.5"" and period 80 yr,
so that the proper motion of V645 Cen has to be compared with the proper motion of
the centre of gravity (CG) of the o Cen pair. The period of the orbit of V645 Cen about
the CG of the triple system can be expected to be about 1 Myr (Megayear).

CPM pairs are usually sufficiently wide that they might appear to be of little relevance
to this book, which deals with pairs sufficiently close together that one component can



influence the other’s evolution. However the presence of a CPM companion can often
reveal information on both components that would not be available if they were not
paired. Several close pairs have a distant CPM companion; and if for example this
companion has a character that suggests that it is fairly old, then one can reasonably
conclude that the close binary is also fairly old. This may not be evident from the close
binary alone, since the components in it may have interacted in ways that disguise the
age of the system.

Modern techniques such as speckle interferometry (Labeyrie 1970, McAlister 1985),
can resolve components with substantially smaller angular separations than conventional
astrometry, and thus determine visual orbits of shorter period. The major limitation on
resolving close components astrometrically is atmospheric ‘seeing’, the blurring effect
of turbulence in the Earth’s atmosphere. This distorts the image on a timescale of
~0.05s. In the speckle technique the image is recorded many times a second, and so
the time-variation of the point-spread function can be followed and allowed for in a
Fourier deconvolution. The technique of adaptive optics (Babcock 1953, Beckers 1993)
is an alternative way of eliminating seeing, by continuously adapting the shape of the
mirror in response to the deformation of the image of a reference point source, either a
nearby single star or the back-scattered light of a laser beam pointing along the telescope.
Both techniques can give resolution down to the limit of diffraction, ~0.01” at visual
wavelengths on a modern 8 m-class telescope. By combining the light from two or more
separate telescopes, the technique of ‘aperture-synthesis’, long used in radio astronomy,
can nowadays be applied to optical wavelengths (Burns et al. 1997), and should be
capable of sub-milliarcsecond resolution, so that one might hope to see directly both
components of nearby short-period binaries.

Systems may be recognisable as spectroscopic binaries (‘SB’s) either because the spec-
trum is composite (Fig 1.1b), or because it shows radial velocity variations (Fig 1.2a),
or both. In a composite spectrum, one might see for instance a combination of the rela-
tively broad lines of H and He characteristic of a B dwarf with the narrow lines of Fe and
other metals characteristic of a G or K giant. Alternatively, a star whose spectrum at
visual wavelengths may seem like a K giant may be found, at UV wavelengths, to have
an excess flux that can be attributed to a hot companion, sometimes even a white dwarf
(Fig 1.1b). It is not easy to disentangle composite spectra reliably, since things other
than a stellar companion (for example a corona, a circumstellar disc, or a dust shell)
may contribute to an excess either in the UV or the IR. Even if the spectrum seems
definitely a composite of two stellar spectra, we learn only that the star is a binary; we
do not obtain information about the orbit unless one spectrum at least shows a variable
radial velocity, consistent with Doppler shift due to motion in a Keplerian orbit.

Orbits of 1469 SBs have been catalogued in the important compilation of Batten,
Fletcher & McCarthy (1989). The number of orbits is increasing rapidly, perhaps already
at a rate of one or two hundred a year, and no doubt with greater rapidity in the future,
partly because of cross-correlation techniques and partly because of the much-increased
sensitivity of detectors. Commonly SBs are single-lined (‘SB1’), but the radial velocity
variation of the single spectrum seen (as in Fig 1.2a) allows P and e to be obtained and
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also the amplitude K of the radial velocity variation, or equivalently (as is usual for radio
pulsars) the projected semimajor axis (asini K Pv/1 — e2?). Information on masses is
contained in a single function, the mass-function f, convolving both of the masses with
the unknown orbital inclination ¢:

M3 sin® i K3P(1—¢2)3/2

= on e = 20 G = 1.0385 x 10 K P(1 — ¢*)*?

(ap sini)3
P2 ’
where x1 (pronounced ‘star 1’) is the observed star and *2 the unseen component. Units
are: K in km/s, P in days, a;sini in light-seconds, and masses in solar units. The
inclination is not measurable, for spectroscopic orbits, because we have information on

=1.0737 x 103 (1.2.2)

the motion in only one dimension, the line of sight, whereas in visual binaries we have
information in two dimensions, both perpendicular to the line of sight. In fact the red
giant in ¢! Cet (Fig 1.1b) does show orbital motion (P = 1642d, e = 0, f = 0.035 Mg,
Griffin & Herbig 1981) in addition to being a composite-spectrum binary.

-0.2
20
-0.1
kms-t_ del (V)
10 0
0 0.1
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* 1984

[ T R SR S P B T SR TR B
. 0. 0.75 1
OPhaseozs >

-0 -2
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Fig 1.2 (a) — The radial velocity curve of the K giant star HD20214. The r.m.s. scatter about the mean
curve is only ~ 0.2km/s. Orbital parameters are P = 407d, e = 0.41, f = 0.040 M. From Griffin (1988).
(b) — The light curve of a contact binary TV Mus (P = 0.446d, e = 0, i = 78.9°, R1/a = 0.59, Ro/a = 0.27,
My /My = 7.2, Th/T> = 0.98). A slight variation in brightness over two years, and a small distortion in the

secondary eclipse, may be due to starspots. From Hilditch et al. (1989).

The mass function represents the minimum possible mass for the unseen star, which
would be achieved in the somewhat improbable case M; = 0,7 = 90°. Slightly more
realistically, we might replace sin®i by its average value 3w/16 ~ 0.59 if i is distributed
uniformly over solid angle. However the value 0.59 is likely to be an underestimate,
because the mere fact that a variation in radial velocity is seen implies that the lowest
inclinations can be rejected. For a large ensemble of binaries we might make statisti-
cal estimates using a maximum-likelihood procedure. However, for an isolated system,
with little else to guide us, we will commonly assume that a reasonable estimate of the
reciprocal of sin®i is 1.25. We then take

My ~ 1.25¢(1+ q)*f1, My ~ 1.25(1+q)*f1 , (1.2.3a,b)



10

where ¢ = M; /M, is the mass ratio. Sometimes we can estimate M; directly from the
spectrum of the star, which may be similar to stars whose masses are already known
from more favourable binaries (see below); then from Equn (1.2.3a) ¢ can be estimated
and hence M,. Alternatively one can often infer that ¢ > 1 simply from the probability
that the unseen star is less massive than the visible one. In either case both masses could
be considerably greater than the mass function.

If the system is ‘double-lined’ (‘SB2’), and both components have measurable radial
velocity variations (Fig 1.3), we can further obtain the mass ratio, and hence the two
quantities M sin® i and M, sin® i; but we still have no information on i. However, some
SBs with P 2 1yr are also VBs, and in favourable cases all four of My, M3, i and D can
be separately measured, D in such cases being independent of parallax (which may be

too small to be measurable).
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Fig 1.3 — Radial velocity curves of both components of the massive X-ray binary Vela X-1 (GP Vel). (a)
Doppler shift of the pulses of the X-ray pulsar: note the accurate fit to the Keplerian curve (P = 8.964d,
e = 0.126 f; = 18.5 M). Small dots near the axis are the residuals times 2. (b) — Doppler shift of absorption
lines in the visible spectrum: note the larger scatter, due to irregular pulsations. From these lines fo ~ 0.013.
The ratio fa/f1 is the cube of the mass ratio ¢ ( ~ 0.09). (a) is from Rappaport et al. (1976), (b) from van
Kerkwijk et al. (1995b).

Among SBs we can include both radio and X-ray pulsars, because the rapid pulsations
of these objects, due to rapid rotation of an obliquely-magnetised neutron star, are often
very stable and so can reveal a variable Doppler shift due to Keplerian orbital motion.
Commonly, pulsar orbits are much more accurate than SB orbits based on spectral lines,
so that even companions of terrestrial planetary mass can be detected (Wolszczan &
Frail 1992). The much greater accuracy of radio pulsar orbits means that a number of
relativistic corrections to Keplerian orbits can be measured (Taylor & Weisberg 1989,
Backer & Hellings 1986). Two of these are (a) the rate Zgr of advance of periastron in
an eccentric orbit due to general relativity — Appendix C(a):

3G(M1 + Mg) 21

Zal ) P (1.2.4)

Zgr =



DETERMINATION OF BINARY PARAMETERS 11

and (b) a combination v of gravitational redshift and transverse Doppler shift:
G(Ml + 2M2)6 5
62 (M1 + Mg) 271'

Along with the mass-function (1.2.2), these two quantities allow one to determine all

v = (1.2.5)

three of M7, M> and i, even although the orbit is ‘single-lined’.

X-ray pulsar orbits, though commonly more accurate than radial-velocity orbits from
spectral lines (Fig 1.3), are also commonly less accurate than radio pulsar orbits, because
the X-rays come from accretion of gas lost by the companion. The gas flow is normally
not steady, and so the neutron star’s spin rate is erratically variable by a small amount.

Photometric binaries are stars whose light output varies periodically, and in a manner
consistent with orbital motion. Usually they show eclipses, but in some cases where the
inclination does not permit an eclipse one may nevertheless recognise ‘ellipsoidal varia-
tion’ or the ‘reflection effect’ (see below). A light curve (Figs 1.2b, 1.4b) can yield, in
favourable circumstances, P, e and i, the ratios R;/a, Ra/a of stellar radii to orbital
semimajor axis, and the temperature 75 provided that T} is known already, from a spec-
troscopic analysis of the brighter component. The radius ratios and ¢ come primarily
from the duration and shape of the total and partial segments of the eclipse, and the
temperature from the relative depths of the deeper and shallower eclipse in each cy-
cle. Although some light curves can be analysed crudely by assuming that both stars
are spheres, the majority of eclipsers need more sophisticated modeling, usually assum-
ing that both components fill equipotential surfaces of the combined gravitational and
centrifugal field of two orbiting point masses (the Roche potential, Chapter 3). Such
light curve analysis was pioneered by Lucy (1968), Rucinski (1969, 1973), and Wilson &
Devinney (1971). Information on 3546 eclipsing binary stars is given in the catalogue of
Wood et al. (1980). A catalogue by Budding (1984) gives light curve solutions for 414
eclipsers.

rrrirrrrr1irrrr 111 17 1T 1T T 17T
200
0.6 4
100 F i
v 0.8¢ 1
[] L
km/s Amy | J
-100 + 1.0+ 1
2000 L . TR R N N O SR SR S N
60 0z 04 0608 10 0.0 02 04 0.6 08 1.0
Phase

Phase

Fig 1.4 — (a) The radial velocity curves, and (b) the light curve of the eclipsing SB2 system V760 Sco
(P = 1.73d). The two components are nearly but not quite identical: in (a), *2 has a slightly greater velocity
amplitude, and in (b) the second eclipse is slightly shallower than the first. An ‘ellipsoidal variation’ is seen

in the nearly flat portions between eclipses. From Andersen et al. (1985).
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An eclipsing binary is also usually a spectroscopic binary, but not conversely. This
is because eclipses are only probable in systems where one star’s radius is 2 10% of the
separation, whereas there is no such limit on radial-velocity variations. In the best cases,
where the system has eclipses and is also double-lined (‘ESB2’, as in Fig 1.4), we can hope
to obtain all of the following fundamental data: P, e, i, a, My, Ms, Ry, Rs, T1, T3,
and D (independent of parallax). The last three of these quantities depend not only on
good orbital data but also on reliable modeling of stellar atmospheres, so that the effec-
tive temperature of at least one component (presumably the brighter) can be determined
directly from its spectrum. This is probably reasonable for the majority of stars, but
for extremes of effective temperature and luminosity (O and M stars; supergiants and
subdwarfs), spectra may be affected by such difficulties as mass loss, instability, convec-
tion and metallicity, all of which are not yet well understood. A comprehensive review
of data for ESB2 binary stars in the main-sequence band has been given by Andersen
(1991); an earlier review by Popper (1980) also gave data for some post-main-sequence
binaries. Accuracies of $2% for all quantities are achievable in favourable cases.

Binaries involving evolved stars (giants, supergiants, hot subdwarfs, white dwarfs,
etc.) are relatively rare, especially ESB2 systems. Although the photometric and spec-
troscopic data may be of the same quality, or even better, it is difficult to achieve the
same accuracy in the estimation of radii. This is because the two radii are of course
very different in giant/dwarf binaries. The information on relative radii, as well as on
inclination, is contained in the shape of the ingress/egress portions of eclipses. If one
star is so much larger than the other that its occulting edge is virtually a straight line,
then the inclination is indeterminate and hence also the ratio of radii. Nevertheless
supplementary information from model atmospheres, and from spectrophotometry, the
measurement of intensity in several wavebands that may extend from UV to IR, can
reduce the indeterminacy. Recent work on such ‘¢ Aur’ systems (Schréder et al. 1997)
gives parameters with sufficient accuracy that theoretical models of stellar evolution are
seriously tested.

The fact that ESB2 binaries can in principle give a distance measurement which
is independent of parallax implies that they could be good yardsticks for measuring
distances to external galaxies. Current and developing technology means that at least
OB-type binaries may be accessible in fairly nearby galaxies. Of course one does need an
estimate of the metallicity in order to relate measured colours to the effective temperature
of at least the hotter component.

Because stars in close binaries can be distorted from a spherical shape by the combined
gravitational and centrifugal effect of an orbiting close companion, they may show a
measurable light variation even when they do not eclipse. This is called ‘ellipsoidal
variation’ — although the stars are only approximately ellipsoidal. Fig 1.4b shows this
variation. The system illustrated is in fact at an inclination which also allows eclipses:
the ellipsoidal variation is the slight curvature visible between the eclipses. Such variation
even in the absence of eclipses may allow at least P to be determined. Further, if *1 (say)
is much hotter than %2, the hemisphere of %2 facing *1 may be substantially brighter
than the other hemisphere, leading to an orbital variation (Fig 1.5a) that also does not
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necessarily involve an eclipse. This is called the ‘reflection effect’ — although the light (or
X-radiation, in some cases) is absorbed, thermalised and reemitted, rather than reflected.
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Fig 1.5 (a) — The light curve of UU Sge (P = 0.465d), the central star of the planetary nebula Abell 63.
The hump centred on the secondary eclipse is due to ‘reflection effect’. The fainter, cooler companion shines
partly by reprocessed UV light from the very hot companion; thus it is brightest just before and after it is
eclipsed, and is rather faint for half the orbit. From Bond etal. (1978). (b) — The light curve of Z Cha,
an ultra-short-period binary containing a white dwarf and a red dwarf (P = 0.0745d). The hump before the
eclipse, the double-stepped nature of the eclipse, and the erratic variation are all due to streams of gas flowing

from the red dwarf towards, and round, the white dwarf. From Wood et al. (1986).

However, not all eclipse light curves, even with high signal-to-noise and with modern
light-curve synthesis techniques, lend themselves to accurate measurement of funda-
mental data (masses, radii, etc.). Neither do all radial velocity curves, even when a
non-uniform temperature distribution over the stellar surfaces due for example to the
reflection effect is allowed for. This is because stars which are close enough together to
have a reasonable probability of eclipse (typically, Ry + Rs 2 0.2a) are also quite likely
to interact hydrodynamically and hydromagnetically, introducing the complications of
gas streams, and of starspots, which are hard to model in any but an ad hoc manner.
Fig 1.2b shows a light-curve of a contact binary that changed appreciably over time. The
changes, and slight asymmetry, can be attributed to transient starspots. Fig 1.5b shows
the light curve of a dwarf nova: an eclipse of sorts is clearly recognisable, but the light
variation outside eclipse is due to gas which streams from one component into a ring
or disc about the other. Modern methods of analysis such as eclipse mapping (Horne
1985, Wood et al. 1986) and Doppler tomography (Marsh & Horne 1988, Richards et al.
1995) use image-processing techniques based on maximum-entropy algorithms (Skilling
& Bryan 1984). The object of eclipse mapping is to reconstruct the distribution of light
intensity over (in the case of Z Cha, Fig 1.5b) a hypothesised flat, rotating disc of gas
around one star that is fed by a stream that comes from the other star. The eclipsing edge
of one star as it moves across the disc and stream helps to locate the hotter and cooler
parts of the flow. In Doppler tomography, high wavelength resolution across a spectral
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line, combined with high time resolution, gives a map of intensity on a two-dimensional
space of wavelength and orbital phase. This can in principle be Fourier-inverted to map
intensity on to a two-dimensional velocity space, and from there one can go via some
hypothesised model to a distribution in two-dimensional coordinate space. This might
be either a disc-like structure, as in Z Cha, or a distribution of spots over a spherical
surface, or even of spots over the joint surface of two stars that are so close as to be in
contact (Bradstreet 1985). In this way one can hope to remove the distorting effect of
spots and streams from the observational data, and thus be left with accurate funda-
mental data. But the hypothetical models of spots and streams are not in practice very
strongly constrained — for example some systems may contain hot spots as well as cool
spots — and so there remains considerable uncertainty in the fundamental data for many,
indeed most, interacting systems.

Much information on the statistics of eclipsing binaries (and other types of variable
star) comes, as a by-product, from gravitational microlensing experiments (Paczyniski
1986). If a relatively nearby star happens to pass very close to the line of sight of
a distant star, the apparent brightness of the distant star is temporarily increased by
gravitational focusing in the field of the nearby lensing star. Such events are rare, but
have been detected by several astronomical groups who monitor photometrically a large
number of stars (~10°) in a small area of sky at frequent intervals (e.g. nightly) over
several years. The light-curve of a lensing event is recognisably different from the light-
curves of pulsators, eclipsers, novae etc.; but a large number of normal eclipsers shows
up as well, and this gives a valuable database from which the statistics of orbital periods
can be improved (Udalski et al. 1995, Alcock et al. 1997, Rucinski 1998). A very few
lensing events also exhibit binarity directly: if the lensing object is binary it can produce
a marked characteristic distortion on the light curve of a lensing event (Rhie et al. 1999).

Some binaries, particularly eclipsing binaries, show a measurable change of period over
substantial intervals of time. Period changes are usually demonstrated by ‘O-C diagrams’
(Fig 1.6). The difference between the observed time of eclipse, and the computed time
based on the assumption of constant period, is plotted as a function of time (or of Epoch,
i.e. cycle number). One can hope by this means to determine the rates of evolution due
to mass transfer or angular momentum loss.

Sometimes the change is periodic. Two possible causes of periodicity (apsidal motion,
and a third body) are discussed briefly below. After subtracting such periodic motion if
necessary, remaining changes might be an important indication of long-term evolution in
the system. But often the long-term behaviour is contaminated by, or even completely
obscured by, short-term irregular changes. Fig 1.6a shows the O-C curve for U Cep over
the period 1880 — 1972. If the period were constant we would expect a straight line, and if
the period were changing at a constant rate we would expect a parabola as shown. It can
be seen that the overall behaviour is roughly parabolic, but with fluctuations of ~1—2%
of the period (~0.05d) that are not attributable solely to measuring uncertainty. From
the parabolic trend we infer tp = P/ P ~1.3Myr. The fluctuations are probably due to
changes in the distribution of hot luminous gas in this unusually active Algol-like system
(Olson 1985). Fig 1.6b shows the same diagram for Algol (3 Per) itself over the last 200
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years. Unlike U Cep, there is no clear underlying trend: only fluctuations, with possibly
the same origin as for U Cep, superimposed on what appears to be a rather sudden
period decrease (AP/P~ — 2.107°) around 1845, and a subsequent rather smaller and
less sudden period increase around 1920.

O-C curves ought to be an important tool for the investigation of the slow changes
expected as a result of evolution. One does not have to wait a million years in order
to measure a tp of say 10° yr quite accurately. If the trend is clearly parabolic, and if
individual eclipse timings are accurate to +dt, then we only need observations over a
time interval At where
|tp|dt

At ~ 10
X )

(1.2.6)

to determine tp to ~X%. If the eclipses can be timed to one-minute accuracy, then
in a century we can hope to determine an evolutionary timescale of ~ 10® yr reasonably
accurately. Unfortunately, rather few binaries show anything like a consistent parabolic
trend; we are not helped by the fact that a portion of a parabola can also look like a
portion of a periodic third-body effect. If we had observed it only over the last century,
[ Per might have seemed to show a reasonable parabolic trend. However, the previous
century showed quite different behaviour.

0.5 19100, ‘19‘30 .19§U‘AD 1800 1850 1900 1950 AD
0.4} /] T
0.2 KA
003 / 1 (0-C) i 3
0.2 - //\/ 0.1 ol
" /2NN B
N 4 0.0
-0.1

‘4000 8,600 12,000 E 2375000 2400000 2425000 JD

Fig 1.6 — Observed times of eclipse, minus computed times obtained by assuming a constant period, plotted
against cycle number (Epoch) along the bottom and date along the top. (a) U Cep (GS8III + B7V; 2.5d), from
Batten (1976). (b) B8 Per (G8III + B8V; 2.9d), from Séderhjelm (1980). U Cep shows small erratic variations
superimposed on a long term trend of increasing period; 8 Per also shows erratic fluctuations, but with no

clear long-term trend.

Some O-C curves show a clear periodic behaviour that can be attributed to the pres-
ence of a distant third body. AS Cam, Fig 1.7a, is an example, although in this case
somewhat marginal. The variable light-travel time due to motion round the third body
causes a periodic advance/delay in the eclipse, much as the pulsar orbit in GP Vel
(Fig 1.3a) causes a periodic advance/delay in the arrival time of X-ray pulses. However
orbits of third bodies found by O-C curves are usually very long: an amplitude of 0.1
days translates into an orbital size of about 0.1 light-days or 20 AU, and so a period
of ~100yr. Such orbits should not be considered reliable unless at least two full orbits
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have been followed; of course the same qualification applies to any radial-velocity orbit,
except for some radio-pulsar orbits where timing can be extraordinarily accurate. In fact
Algol itself has a third body in a 1.86 yr orbit, but this would not show up in the noise
of Fig 1.6b, even if plotted on a finer scale.
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Fig 1.7 (a) O-C curves for the eclipsing binary AS Cam, as a function of date (upper panel) and
of phase (lower panel). It shows a roughly periodic variation which may be due to the presence of
a third body, in an orbit with P =805d, e~ 0.5, f ~ 0.03 M. The inner orbit has P; = 3.43d,
e1 = 0.17, (M11, M12) = (3.3,2.5) M. After Kozyreva & Khalliulin (1999).

(b) The radial velocity curves for the inner and outer orbits of HD109648. Parameters are P;=
5.48d, e;=0.01, (Mi1, M12)sin®4;=(0.67,0.60) M for the inner orbit (upper panel) and P = 120.5d,
e = 0.24, (M1 = My1+Mi2, M>)sin® i = (1.09, 0.54) M, for the outer (lower panel). From Jha et al. (2000).

The timing of eclipses is also affected by ‘apsidal motion’. The gravitational force
between the stars may not be a pure inverse-square law, because (a) General Relativity
gives a slightly different force, and (b) stars can be distorted from spherical, partly
through rotation and partly through the gravitational field of the companion. The line
of apses (i.e. major axis) of a Keplerian orbit is only fixed in space if the force is ezactly
inverse-square. Departures make it rotate, and if the orbit is eccentric this means that
the eclipses will vary periodically, particularly in the orbital phase of one eclipse relative
to the other. The rate of rotation of the line of apses can be measured, and used to check
models of internal structure. The rate has also been perceived as a test of GR, but since
GR has been verified (see below) to very great accuracy any explanation of discrepancies
has to be sought elsewhere.

For example, AS Cam (Fig 1.7a) shows apsidal motion at a rate inconsistent with
GR. Probably this is due to the third body, which affects the apsidal motion as well as
introducing a periodic delay (Kozyreva & Khalliulin 1999). Apsidal motion shows up as
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a slight difference in the period, depending on whether one follows the primary (deeper)
eclipse or the secondary. This is because as the major axis rotates slowly the interval
between the primary and secondary eclipse changes. Ultimately, the behaviour should
be cyclic, with an estimated period (for AS Cam) of ~2400yr. The difference in period
has however already been allowed for in Fig 1.7a, where primary eclipses are denoted by
heavy dots and secondary eclipses by circles. What remains is not quite constant, but
shows (marginally) a periodic fluctuation with an amplitude of ~0.002d and a period of
~2yr. This is arguably the ‘light-time effect’ of a third body, which like a radial-velocity
curve (also a Doppler effect) gives a mass-function as well as period and eccentricity as
listed in the Figure caption.

The inconsistency noted above between the measured and theoretically estimated
apsidal motion may be due to this third body. Such a body can inject additional apsidal
motion (of either sign) into the system, which — somewhat coincidentally — could be of
the same order of magnitude (Appendix C).

Fig 1.7b illustrates the radial velocity curves that can be obtained in favourable cir-
cumstances from a triple system, HD109648. The spectrum is composed of three separate
F stars, two of which show rapid cyclic variations and the third a slower cyclic variation.
Not just three but four radial velocity curves can be determined: one is the motion
of the centre of gravity of the short-period pair, and mirrors the motion of the third,
slowly-moving, spectrum. This gives four mass functions, but unfortunately there are
five unknowns: three masses and two inclinations.

Radio pulsars allow enormously greater accuracy to be achieved (Taylor & Weisberg
1989). Some with P < 0.4d demonstrate the very slow period decrease expected from
GR, on a timescale of 210%yr (Chapter 4.1). For PSR 1913+16, the theoretical rate
agrees with the observed rate to within one per cent, which is the observational uncer-
tainty. Pulsars near the centre of a globular cluster even show acceleration due to the
cluster’s gravitational field, and not just a binary companion. What a pity that most
stars do not have a pulsar companion!

1.3 STELLAR MULTIPLICITY

Although only a few thousand stars are well established as binary, with known orbital
periods, the incidence of binarity among the most thoroughly observed stars (generally
the brightest, but also the nearest) is very high. Conceivably all stars are binary, or
of even higher multiplicity. We normally think of the Sun at least as being single, but
if there is a continuum of objects from small planets like the Earth (~3 x 107¢ M),
through massive planets like Jupiter (.001 Mg,), to small stars, then perhaps the distinc-
tion between single and binary is artificial. Recently detection sensitivity and strategy
have improved to the point that three Earth-mass companions to a pulsar (PSR 1257+12;
Wolszczan & Frail 1992) have been found, and Jupiter-mass companions to about 100
nearby stars, mostly of solar spectral type (Mayor & Queloz 1995, Marcy & Butler 1998).
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A common definition of the term ‘star’ is that it is an object with mass greater than
~0.08 My, because this is the minimum mass for a self-gravitating hydrostatic spherical
gaseous body that can support its radiant energy loss by hydrogen fusion. However, this
is a somewhat artificial boundary, because stars in the process of forming will not ‘know’
that they may come up against this distinction. Low-mass dwarfs are known whose
masses are only just above the limit, for example UV Cet (Gl 65AB), a VB where both
components are late M dwarfs of ~0.11 M (Popper 1980). Objects below the critical
mass but well above Jupiter’s mass are referred to as ‘brown dwarfs’. Some are known
to exist, but they are hard to detect. An example of a binary containing a star so cool
and faint that it is almost certainly below the critical mass is Gl 229AB (Nakajima et al.
1995). Some recent low-amplitude orbits of solar type stars (e.g. HD140913, Mazeh et al.
1996) point to companions of $0.05 Mg, though of course with the ambiguity that the
inclination can only be guessed, i.e. assumed not to be improbably small. Observations
in the IR (Rebolo et al. 1995) have recently been turning up a wealth of probable brown
dwarfs in, for instance, the Pleiades cluster.

Recent SB1 detections of companions down to about a Jupiter mass suggest a bimodal
distribution, with a fairly rapid drop in numbers to lower mass in the range 0.3—0.07 Mg,
a low plateau in the brown-dwarf region 0.07 — 0.01 Mg, and then a peak for major
planetary masses below ~0.01 Mg (Marcy & Butler 1998). This is consistent with the
likely hypothesis that the formation mechanism of binary stars is very different from
that of planetary systems. The two processes are not exclusive, however. Some systems
are known to have both a planetary companion and a stellar companion: 7 Boo (Butler
et al. 1997, Hale 1994), 16 Cyg (Cochran et al. 1997) and v And (Lowrance et al. 2002).
The last has three massive planets and a distant M-dwarf companion.

Most stars are members of binaries. Petrie (1960) showed that 52% of a sample
of 1752 stars, independent of spectral type, have variable radial velocities. Since not
all short-period binaries can be detected due to finite measuring accuracy, it follows
that substantially more than 50% of stars are in relatively short-period binaries. After
considering unseen companions, Poveda et al. (1982) concluded that nearly 100% of stars
are in binaries, including long as well as short periods.

For the sake of terminology, we assume here that there are such things as single stars,
distinct from binary stars. In other words, we accept the presently-known multiplicity
of a particular system, not withstanding the possibility, even probability, that more
detailed measurement will mean that small and/or distant companions will be detected.
Thus if a star is not presently known to have a companion, we will speak of it as single.
Furthermore, if there is a binary companion but it is too far away ever to have an effect
on the evolution of the target star, we shall often use the term ‘effectively single’.

Many systems once thought to be binary turn out to contain three or more stars.
According to Batten (1973), double-star systems are roughly twice as common as single-
star systems, but for 2<n <6 the number of systems containing n stars falls off very
roughly as 4=™. This means that ~25% of all systems, and ~15% of all stars, are
single, while ~20% of all systems (~30% of stars) are in triples or higher multiples; the
average system contains about two stars. Duquennoy & Mayor (1991) found a slightly
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lower incidence of multiplicity in a sample of 161 F/G-type systems: 92 single, 61 binary,
6 triple and 2 quadruple, but with a proviso that 18 components in this sample showed
significant radial velocity variations that might indicate further multiplicity. Tokovinin
(1997) has catalogued 612 triple and higher-multiple systems. In this book we will make
the assumption, when illustrative numbers are necessary, that ~30% of systems are
single to present levels of accuracy, ~60% are binary, and ~10% are at least triple.

The incidence of multiplicity is probably not independent of the kind of star being
sampled. The 42 nearest stellar systems (within ~5 pc; excluding the Sun itself) are
mostly M dwarfs, with less than half the mass of the Sun. They contain at least 14
multiples — 10 binary and 4 triple. They also contain at least one massive planet, around
an M dwarf star. On the other hand, the 48 brightest systems (V' < 2.0; from Hoffleit &
Jaschek 1983, and Batten et al. 1989) are mostly B and A stars, typically more than
twice the mass of the Sun. They contain at least 22 multiples — 14 binary, 3 triple, 4
quadruple and 1 sextuple. The statistics are not compelling, of course, but seem to imply
that more massive systems are more highly multiple. For both these samples, small as
they are, the data is far from complete, and the actual multiplicity could well be higher.

It is always difficult to compare distance-limited samples of stars with magnitude-
limited samples, because binaries are inherently brighter than single stars, although not
by much unless the masses are fairly closely equal. Obviously the first kind of sample is to
be preferred where possible, but distances are much harder to measure than magnitudes.
In the above two samples the effect is probably quite small.

Multiple (n > 2) systems tend to be ‘hierarchical’ (Evans 1968, 1977), i.e. they consist
for example of two close ‘binaries’ whose centres of gravity rotate around each other
in a wide ‘binary’. Such a configuration is expected to be stable on a long timescale,
provided that the period of the wide ‘binary’ is several times greater than the period
of either close ‘binary’. Just how much greater the longer period must be for stability
depends strongly on the eccentricities, and also the inclination of the outer orbit to the
inner orbit, but for orbits which are nearly circular and coplanar it is typically in the
range 3 — 6, assuming that all the masses are comparable. Observed systems usually
have a much greater period ratio than this (10> — 10%, and even more), and are therefore
likely to be extremely stable even allowing for orbital eccentricity and non-coplanarity.
Fig 1.7b shows the inner and outer orbits of the triple system HD 109648 (Jha et al.
2000). This system of three rather similar F dwarfs has an unusually small period ratio
of about 22. One of the two velocity curves in the lower panel of Fig 1.7b is the velocity
of the centre of gravity (CG) of the inner pair.

The well-known sextuple system o Gem is a microcosm which contains within itself
two VBs, two SBls, and an ESB2. Its components are organised as follows, using a
notation of nested parentheses to emphasise the hierarchical nature:

(((A1V+7;9.2d, e=0.5) + (A2:m + 7; 2.9d); 500:yr, e=0.36:, 7'")
+(M1Ve+M1Ve; 0.8d); 70”).

The outermost orbit of the o Gem system is too slow to be measurable, but there is no
doubt that the M dwarf pair is related to the other four components, by virtue of the fact
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that they have a common proper motion — more precisely, the M dwarf pair has almost
the same proper motion as the centre of gravity of the pair of A stars. The outermost
orbital period can be expected to be of the order of 10* yr. Each A star is an SB1, one
of which has a fairly eccentric orbit. The unseen companion in each SB1 is likely to be
a red dwarf, although in principle it could be some other faint object such as a white
dwarf. The mass functions are known (.0013 and .01 M, respectively), but do not rule
out a substantial range of masses and inclinations. The M dwarf pair is an ESB2 — with
a separate variable-star name, YY Gem — and is one of the very few systems from which
M dwarf masses and radii can be determined directly.

A few multiple systems are ‘non-hierarchical’: three or more stars are seen which are
all at comparable distances from each other. This could be simply a projection effect,
but the probability is not large. If it is not due to projection, then such systems cannot
be stable in the long run, and indeed the few that are known are groups of young stars,
such as the Trapezium cluster in Orion, that have simply not yet had time to break up.
If N stars of total mass M are fairly uniformly distributed in a volume of radius R, we
expect the system to break up in a time comparable to the ‘crossing time’ 1/ R3/GM.
The final product will typically be a series of ejected single stars, and a remaining close
binary; but we might have one or more binaries ejected, and/or a hierarchical triple left
over. Usually the stars ejected will be the less massive members, and the remaining
binary is likely to contain the two most massive stars.

Although most of this book is concerned with systems of only two components, there
are many triple systems and a few quadruple systems known where all the components
are close enough to interact at some stage. For the most part, when we mention a binary
we are thinking of only those binaries at the bottom of the hierarchical pyramid: three
binaries in the case of a Gem.

1.4 NOMENCLATURE

In discussions of binary and (necessarily) more highly multiple stars, we should probably
be careful to use the word ‘system’ rather than ‘star’, since the latter term is often
ambiguous — commonly used to mean either the individual components, or alternatively
the whole ensemble of components. We should also be cautious about using the words
‘primary’ and ‘secondary’: some authors use ‘primary’ to mean the more luminous star
(at least in a particular wavelength range), others to mean the hotter star, and others
still to mean the component that has the lowest Right Ascension.

When discussing the behaviour of a binary, it will often be convenienient to refer to
the components as *1 and *2 — to be pronounced ‘star 1’ and ‘star 2’. We will use
two somewhat contradictory conventions throughout this book, depending on context.
Sometimes, for example when discussing an SB1 binary, *1 will mean the star we see
and 2 the star we do not see, as in Equn (1.2.2). At other times, for instance when
discussing an SB2 binary, we will take 1 to be the component which we infer to have been
initially the more massive, and *2 to have been initially the less massive. For example,
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in Fig 1.1a *x1 would be the F5V star and *2 would be the G5V star; in Fig 1.1b x1
would be the white dwarf and %2 the G8III star. When we are discussing the theoretical
behaviour of one component of a binary, in Chapter 3 and later, we will usually call
that component *1, often considering, for illustrative purposes, that %2 is just a point
mass with no structure. But when we are discussing the long-term evolution of both
components of a binary, we will adhere again to the principle that %1 is the initially
more massive component. We do this because any discussion of the evolution demands
that we identify the same component as *1 throughout several substantial changes in
mass ratio, luminosity ratio etc. We do not apologise for possible confusion because we
consider that there is no convention which (a) we could adhere to rigorously, and (b)
would not cause confusion at some point.

It may appear that we are bound to have even less information on initial masses than
on current (measurable) masses. However this is really not so, given the rather clear
theoretical understanding (Chapter 2) that the rate of evolution of a star is principally
determined by its initial mass, rather than its current mass, provided only that mass
loss/gain did not begin at a very early stage in the life of the star. If we see a combination
of white dwarf and red giant we can be reasonably sure that the white dwarf is %1 in
the second sense defined above, even though we may have little or no information on
the current masses. Only a modest fraction of binaries poses any real challenge to this
assumption.

A further convention that we will impose throughout most of this book is that the
mass-ratio g is My /Ma, rather than its reciprocal. Thus, in the second convention above,
g>1 at zero age — but at a later stage of evolution ¢ may drop below unity because
of evolutionary changes of mass in one or other (or both) components. However, in
this Chapter alone, we will use @ defined as 1/g. In this preliminary discussion we
concentrate mainly on unevolved binaries, where the brighter and hotter component can
be reasonably assumed to be *1. In such systems the mass ratio Ms/Mj is usually what
is discussed in the literature, and this is @, not ¢. In Chapter 3 and later, however, @ is
a dimensionless quadrupole moment of a distorted star.

In a hierarchical triple system logic demands that we refer to the outermost pair as
*1, %2, and the inner pair (if it is x1 which is binary) as %11, x12. The periods would be
P for the outer pair and P; for the inner pair. By extension, in @ Gem above the unseen
close companion to the A2:m star is 122, for example, and P = 2.9d. However logic
does not quite dictate which of the two A-type SB1s is *11 and which is x12:

(i) the more massive pair?

(ii) the pair that has the most massive component?

(iii) the more highly multiple (supposing that the multiplicities were different)?

We shall duck this issue in its fullest generality. For triples, we shall

(a) attempt to identify the originally most massive of the three components, as argued
above for binaries, and

(b) name the subsystem that contains it as *1, which might be either single or binary.

We have used this convention in the caption of Fig 1.7, regarding the two triple systems
AS Cam and HD109648. The data given there for the second system shows that the two
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orbits within it are not parallel to each other: sini; = 1.06sin¢. Unfortunately even if
sini; ~ sini we cannot assume that the orbits are parallel. In the system 8 Per referred
to previously both the inner (eclipsing) orbit and the outer (visual) orbit are inclined
at nearly 90° to the line of sight. But radio interferometry with a very long baseline
(VLBI) shows that the orbits are actually inclined to each other at ~100° (Lestrade et
al. 1993). Nature appears to be playing a rather cruel joke on us, since the probability
that the two orbital axes and the line-of-sight axis are all (nearly) mutually orthogonal
must be rather small.

Although Nature is probably logical most of the time, the human perception of it is
often influenced by customs that are historical and cultural rather than logical. Conse-
quently, we shall in practice refer quite often to ‘*3’ and even ‘x4’, as distant companions
to some binary of interest, or as recently-discovered close companions to components
of a wide binary. It is unfortunate but unavoidable that whenever a new component is
discovered the names of some at least of the previous components will have to change.

1.5 STATISTICS OF BINARY PARAMETERS

The statistical distributions of masses, orbital periods, mass ratios and eccentricities
are not well-known: see for example discussions by Heintz (1969), Griffin (1983, 1985),
Zinnecker (1984), Trimble (1987), Halbwachs (1983, 1986), Hogeveen (1990), Duquennoy
& Mayor (1991) and Halbwachs et al. (2003). That many systems (perhaps 2 10%) are
at least triple makes it even harder to arrive at a firmly-based distribution of these
parameters. We concentrate in this book primarily on systems whose periods are short
enough to allow for some kind of binary interaction.

1.5.1 Binary Interaction

Although most stars are as small as the Sun, or smaller, they are capable of growing
in radius by a factor of ~1000 during their evolution (Chapter 2; Table 3.2). The Sun
may well fill the orbit of Mars or even Jupiter before collapsing to a white dwarf. A
substantially more massive star than the Sun could grow to an even larger radius, before
exploding as a supernova. Only if the period is longer than ~10*d (~30yr) is there a
reasonable probability that the two components go through their entire evolution almost
independently (Plavec 1968, Paczyniski 1971). However, some interaction (in addition,
of course, to the basic gravitational one) can take place in even wider systems. The
prototype Mira variable o Cet has a white-dwarf component (VZ Cet, x1) in a roughly
400yr orbit about the M supergiant pulsating variable (x2). The white dwarf flickers
rapidly, unlike normal single white dwarfs, and this is probably because it is interacting
with the copious wind that is being ejected by the Mira. It may be accreting only a
small fraction of this wind, but that could be enough to effect the white dwarf’s future
evolution.
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Although stars in systems with orbital periods substantially in excess of 100yr are
not likely to undergo very much mutual interaction, this is not to say that their orbits
remain uninterestingly constant for all time. A supernova explosion, or the ejection of
large amounts of gas by a blue or red supergiant, may change or even disrupt the orbit.
So also can the random perturbations imposed by interaction with nearby systems. This
last effect imposes a loose upper bound on the orbital separation of individual systems.
The orbital separation can hardly be larger than the mean distance between independent
systems, ~1pc in the solar neighbourhood, and this translates by Kepler’s law into an
upper limit on orbital period of ~10'°d for a system of mass ~1 Mg. In practice the
upper limit is likely to be at least an order of magnitude less, since many near-collisions
of such a system with adjacent systems can be expected in the course of the Galaxy’s
lifetime.

Within a dense cluster of stars, such as a globular cluster, and also near the Galactic
centre, it is possible for binaries of shorter period to be disrupted by near collisions. It is
even possible in such an environment for binary stars to be formed, for example by tidal
capture. This can happen if, in a close approach of two single stars, large tides are raised
on at least one. Such tides can dissipate energy, and so allow the stars to move from a
hyperbolic to an elliptical orbit (Fabian et al. 1975). Thus some interesting binaries in
globular clusters need not be the products of long-term evolution of a primordial binary.
In a dense stellar environment binaries can also, and in fact more easily, be modified
by ‘exchange’ interactions, where one star in a near collision with a pre-existing binary
may eject one component and replace it, perhaps in a much closer orbit. In the bulk of
our Galaxy, however, such interactions are not likely because of the low stellar density,
and so it is reasonable to suppose that a star which is presently binary has always been
binary.

Several mechanisms are identified in Chapters 3 — 5 that can result in ‘mergers’, two
components of a binary becoming merged into one. Thus the mere fact that an observed
star presently appears to be single does not exclude the possibility that formerly it was
binary. By extension, a system which is now a binary (but presumably a fairly wide one)
may be a former triple. Mergers can be the result either of slow evolution or of some
rapid dynamical event.

Returning briefly to the issue of nomenclature, it is unfortunate that the terms ‘close
binary’ and ‘wide binary’ can have very different meanings depending on context. To
someone say using speckle techniques to resolve binaries in a star-forming region at a
distance of 500 pc, a binary with a separation of 0.05” is close, if not very close. But
the linear separation is ~ 25 AU, which for present purposes makes it a rather wide, if
not very wide, binary — probably too wide to interact. In this book we will generally use
‘close’ to mean a period of a few days, and ‘wide’ to mean a few years; ‘very wide’ will
mean too wide to interact seriously, i.e. a period in excess of ~30 — 300 yr.

Recently it has become clear that the evolution of a binary can be seriously modified
by the presence of a third body, even if that body is in a wide orbit — perhaps 10* yr
— and even if the third body is of quite low mass so that it is hard or impossible (at
present) to observe. The main requirement for important interaction (‘Kozai cycles’;
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Kozai 1962; Chapter 4.8) is only that the outer orbit be substantially inclined to the
inner (>39°). In a Kozai cycle the inner orbit’s eccentricity fluctuates cyclically between
a small and a large value, while the period remains roughly constant. The cycle time
is ~ P2 .../ Piner, multiplied by a factor (total mass)/(third-body mass). If the periods
were 102 and 10* yrs, and the masses all comparable, the Kozai time would be ~ 10° yrs;
and if the mutual inclination were 70° then the inner eccentricity would peak at 0.9, if it
were zero to start with. Thus the periastron separation at this peak would be equivalent
to a circular binary with a period of only ~3yr. If the inner and outer orbits have
a random inclination, a reasonable but by no means certain hypothesis for fairly wide
orbits, the average inclination would be 60°, and 70° would be by no means unusual
(cf. B Per, 100°, in Section 1.4). This increases substantially the scope for ‘binary’
interaction.

1.5.2 Masses

Stellar masses show a distribution which (per unit volume of the galaxy) favours low
masses; although, because massive stars are very much brighter than low-mass stars, the
distribution down to a given apparent brightness favours higher masses. The Salpeter
IMF (i.e. initial mass function) is the following approximation to the distribution N (M)
of zero-age masses as a function of mass (Salpeter 1955):

NdM < M™% dM (M >M,~0.1My)

=0 (M<DM,) . (1.5.1)

This distribution has to be truncated at a low mass (say ~0.1 Mg), to keep the number
finite. More recent IMFs (Miller & Scalo 1979, Scalo 1986, Basu & Rana 1992) show a
turnover at a mass of about 0.3 Mg, as shown in Fig 1.8a. Whether, for binary stars,
a Salpeter-like IMF is thought of as applying to primary mass or total mass is not
very important, given the steepness of the IMF over most of its range. However a careful
determination of the IMF from observation ought to take into account the fact that many
stars are actually at least binary (Kroupa et al. 1991). For the present, we suppose that
so far as binaries are concerned the IMF is equivalent to the distribution of M, the
more massive component. The main uncertainty in the IMF comes from transforming
stellar apparent magnitudes and colours to absolute luminosities, and thence to masses,
particularly at low mass where there is only sparse observational data from binaries
on the mass-luminosity relation. But in any event an IMF contains a fair amount of
theoretical input, to allow for the lifetimes of stars as a function of their masses. O stars,
say 20 —50 Mg, are much less abundant relative to G dwarfs (~1 M) than Equn (1.5.1)
seems to suggest, because they have lifetimes a thousand times shorter.

It is often helpful to be able to generate a distribution of some parameter by a Monte
Carlo process, i.e. by use of a random-number generator. Consider, for example, the
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Salpeter distribution of masses, Equn (1.5.1). Let X be a random number chosen from
a uniform distribution in the range [0,1]. Then if we determine the mass M; by

My

M, = (1-Xx)07

(1.5.2)
we generate the Salpeter distribution. We require My = 0.1 if the distribution is to be
truncated at 0.1 M, as suggested for distribution (1.5.1).

The physical significance of the inverse function X (M) is that it is the fraction of all
stars that have mass less than M, i.e. it is the cumulative distribution function. It may

be helpful to spell out this relationship. Let us integrate and normalise the distribution
(1.5.1):

R N(Myds Mo\ " N
X(My) = NGOG~ 1- <M> . My>M, . (1.5.3)

This X (M) relation is just the inverse of the My (X) relation (1.5.2), to the extent that
0.75 is approximately the reciprocal of 1.35. The mass spectrum N (M;) (normalised) is
therefore just N(My) = dX/dM; = 1/(dM;/dX). A small but important point, often
overlooked, is that it is better, in order to approximate an observed distribution, to start
by approximating the cumulative distribution X (Mj), or equivalently the inverse func-
tion M;(X), than by approximating the differential distribution N(M;). Coincidentally,
it is also much more convenient numerically: it is usually easier to differentiate a function
than to integrate it.

Believing that the Scalo (1986) distribution of Fig 1.8a is a more accurate distribution
than Salpeter’s (1955), we attempt to approximate it with

X 0.55

This mass distribution is Salpeter-like at M; > 0.3 Mg, but with exponent 2.82 rather
than 2.35. The distribution of masses generated by this formula is shown in Fig 1.8a.
It is somewhat coincidental that the slope of the mass distribution below the peak is
much the same, but with opposite sign, as the slope above the peak. This allows us to
use a single exponent (0.55) in the distribution (1.5.4). If the two slopes were markedly
different one might choose xo

M- I
loc(le)ﬁ )

(1.5.5)
but for the observational distribution illustrated this refinement seems unnecessary.

Recent work on very low-mass stars (Jameson et al. 2002), including spectral types
L and T beyond M, suggests, although not yet with complete conviction, that the IMF
continues to rise, but more slowly, below the peak of Equn (1.5.4) at M; = 0.3 M.
Values of a~1.5, §~0.55 in Equn (1.5.5) might be somewhat better. This value of «
implies that N (M)~ Ml_o'33 at low My, i.e. at low X.
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1.5.3 Orbital Periods

For spectroscopic binaries, mainly of spectral type G or K, giant or dwarf, Griffin (1985)
found an increasing distribution of number N versus log P; so that, very crudely,

NdP « P7%7dP « P*3dlog P, (P s30yr) (1.5.5)

over a range of periods P from days to decades, the only upper limit to period being
set by the patience of spectroscopic observers (i.e. about 30 yrs; but one hopes this
will increase). Heintz (1969) and Duquennoy & Mayor (1991) found something similar,
and also found that for still longer periods, in visual rather than spectroscopic binaries,
the number per decade of log P falls off again (Fig 1.8b); the peak in the distribution
occurs at roughly 200 yr. For systems whose orbital periods are too long to have been
measured directly, an order-of-magnitude estimate of the period can be obtained from
the observed angular separation «, the distance D based on either a directly-measured
parallax or on spectral type and apparent magnitude (a ‘spectroscopic parallax’), and
Kepler’s law, Equn (1.2.1). Assuming that the sum of the masses is roughly solar (because
the observed masses range over only about two orders of magnitude while periods range
over about ten), we can translate crudely but directly from separation and distance to
period. The falling-off in number at longer P found by Heintz (1969) and Duquennoy &
Mayor (1991) can be represented roughly by

NdP «< P~"3dP o« P~%3dlogP . (P z300yr) (1.5.6)

Fig 1.8b also shows the period distribution found by Duquennoy & Mayor (1991) for 79
binary periods from 161 systems that are within 22 pc of the Sun, that have an F4-G9
IV-V primary, and are north of —15°; the median period is at about 180 yr.

Both the Heintz and the Duquennoy/Mayor distributions in Fig 1.8b are fitted well,
in the same spirit as Equn (1.5.4), by

P(days) = 5.10" <%)3_3 . (F/G dwarfs) (1.5.7)

where X is a second, independent, random variable distributed uniformly over the range
[0,1]. This distribution is also shown in Fig 1.8b. As with the mass distribution in the
previous subsection, a single exponent (3.3) seems in practice to be adequate, since the
slopes at short and long period appear to be much the same but of opposite sign.

We should not assume, however, that the same distribution would be found for binaries
with say OB, or M dwarf, primaries as for those with F/G dwarf primaries. In fact, the
balance of short to long period systems depends markedly on primary mass. Among the
42 nearest systems, mostly M dwarfs, two have P <100d (excluding a massive planet
in a 61d orbit). On the other hand, among the 48 brightest systems (by apparent
magnitude), mostly A/B dwarfs or G/K giants substantially more massive than the Sun,
10 have P <100d — although 3 of these are within the same sextuple system a Gem!
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Fig 1.8 (a) — The distribution of initial mass from Scalo (1986), and (dotted) the approximation of
Equn (1.5.4). The latter is displaced slightly upwards for clarity. (b) — Histograms of the period distri-
bution, from Heintz (1969), solid line, Duquennoy & Mayor (1991), dashed line, and the approximation of

Equn (1.5.7), dotted line, all normalised to the same total area.

Somewhat greater bias still towards shorter periods is shown by the 227 O-type stars
with V' <8.0 (Mason et al. 1998). These contain 52 SB orbits (23%) with P <0.1yr. This
is hardly consistent with the solar-dwarf sample of Duquennoy & Mayor (1991), where
only 13 out of 161, or 8%, of systems have periods <100d.

However, the O-star sample of Mason et al. (1998) shows a strongly bimodal distribu-
tion with a second, even larger, accumulation (80, or 36%) of visual binaries at estimated
P ~10* —10° yr. This is also many more than in the G-dwarf sample. Correspondingly,
there is a marked shortage of systems (37, or 16%) in the considerable intermediate
range 0.1 — 10* yr. It can be argued that this is the most difficult range for detection of
binarity: firstly, O stars are much more distant than G stars, so they have to be further
apart to be recognisable as VBs; and secondly, O stars tend to show erratically variable
radial velocities at the level of ~20km/s, which can obscure the lower radial-velocity
amplitudes in the longer-period spectroscopic orbits. Recent advances in interferometry
have already increased the numbers in the ‘gap’, to the percentage quoted above. About
100 systems would have to be found if the gap is to be leveled off, and about 250 if it is
to be turned into a modest peak as in the G-dwarf sample. These numbers are not quite
as ridiculous as they sound because the high multiplicity typical of massive systems may
well mean that ‘200% of stars are binaries’.

Nevertheless, we adopt here a relatively cautious position. Spectroscopic orbits with
periods of 0.1 — 1 yr should not be much harder to detect than those in the range 0.01 —
0.1yr. Their velocity amplitudes will be down by a factor of about 2.2, but still well
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above the noise level: yet only 5 are known against 33 in the shorter-period bin. The
apparent shortfall might also be related to the distribution of mass ratios, which we
discuss shortly. Perhaps low-mass companions are relatively more likely at longer than
shorter periods, but a rather drastic change in the distribution of mass ratios at about
0.1yr would be required. We shall content ourselves with a distribution that peaks at
about 15 days, and drops off fairly rapidly on both sides; say

P(days) = 15 <%> - (O stars). (1.5.8)

We do not suggest that this distribution can be used to include the visual binaries at very
long period, but it roughly represents the presently-known binarity among potentially
interactive binaries, i.e. those with periods up to 10%yr, giving some allowance for
possible new discoveries in the period range 0.1 — 10% yr. Specifically, it predicts that
50% of systems have periods over 15d, whereas at present only 30% (of SBs) do. Our
prescription also predicts that 10% of O star binaries would have periods less than 1d,
which is hardly possible given the estimated sizes of O stars; but several O stars are found
with periods in the range 1.4 — 2.5d. Somewhat simplistically, we will treat binaries of
improbably short period from such distributions as ‘merged binaries’, or in other words
single stars.

At the other end of the mass spectrum, for ~200 G9 — M3 dwarfs Tokovinin (1992)
found an even smaller proportion (3%) of short periods than among the G/K dwarfs,
let alone the O stars. It appears to be reasonable to suppose that the median period of
the distribution shifts fairly continuously from short to long periods as mass decreases,
and that the distribution also becomes wider and shallower. In our tentative model of
Section 1.6, we suggest a distribution like (1.5.7) or (1.5.8) but with a coefficient, and
also an exponent, that is a function of mass.

The distribution of pairs of periods within triple systems is of course much more
uncertain. We have already suggested that as a first approximation we assume that
~10% of systems are at least triple. In most of these, the outer orbit will be much too
wide for serious interaction as described in Section 1.5.1; but we estimate even more
provisionally that ~20% of triples, and thus ~2% of systems, may have both periods
shorter than ~30yr, and thus be potentially capable of two distinct interactions.

1.5.4 Mass Ratios

The distribution of mass-ratios is less well-known than either of the distributions over
period or mass. This is because substantially more orbital data is required for a mass
ratio than for a mass or a period (Section 1.2). We need an SB2, rather than an SB1, for
a mass ratio, and in many systems *2 is too faint relative to *1 to be measured reliably.

A common ad hoc model is made by assuming that both of the component masses are
given by the same distribution, for example distribution (1.5.4). This is equivalent to
saying that the two components have uncorrelated masses. Duquennoy & Mayor (1991)
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found this to be an adequate approximation for their sample of binaries whose primaries
were all F/G dwarfs like the Sun. However, it cannot be an adequate approximation
for massive stars, since these are intrinsically rare and yet are frequently paired with a
comparably massive star. Furthermore, Lucy & Ricco (1979) found that among short-
period binaries (P $25d) there is a much higher proportion of systems with nearly equal
masses than can be accounted for by selection effects, strong as these are. Almost
certainly the degree of correlation of the two masses is a function of both orbital period
and mass, and it appears that there is more correlation at short periods and/or high
masses.

Specifically, Lucy & Ricco (1979) found that among F2 - M1 dwarfs with P<7.5d
the number in the range @ = 0.94 — 1 was 50% of the number in the range 0.6 — 1. The
Monte Carlo distribution generated by

Q=1-X" , ~y~3 (1.5.9)

with X yet another random number uniformly distributed in [0,1], has approximately
this property. On the other hand, they found for OB stars the smaller fraction 21%,
which corresponds to v~ 1.2 instead of 3.

Mazeh et al. (1992) analysed more closely the @Q-distribution for the 23 short-period
(P <3000d) SB2 and SB1 members of the Duquennoy/Mayor sample, using a maximum-
likelihood algorithm. They found a mild concentration to equal masses, with about 60%
of systems having 0.5 <@ <1, which corresponds to y~1.4 in the distribution (1.5.9).
They also suggested that this is significantly different from the distribution in wider
orbits still, which favours more extreme mass-ratios.

Tokovinin (1992) looked at spectroscopic orbital data for ~ 200 G9 — M3 dwarfs, out of
which 13 were SB2 and 9 SB1 with P <3000d. Using a maximum-likelihood method, he
found a bimodal distribution of secondary masses: 10% of his systems have secondaries
in the range 0.32 — 0.64 M, 3% in the range 0.08 — 0.16 M, and the remainder have
no (spectroscopic) secondaries. The first peak more-or-less corresponds to @ ~0.5 — 1,
suggesting that there is still a preference for near-equal masses at moderately short
periods. However the numbers are too few to say if there is a significant departure from
distribution (1.5.9).

The O-star sample of Mason et al. (1998) gave a rather different picture from the
(much smaller) OB sample of Lucy & Ricco (1979), with about as many systems in the
range @ = 0.4 — 0.6 as in the range 0.6 — 1. In the distribution (1.5.9) this corresponds
to y~0.8.

We should emphasise that distributions like (1.5.9), with just one free parameter
(the exponent), can be easily made to fit any statement of the character that a certain
percentage of SB2s has @ > 01, and the remainder have @ < Q. However it then implies
an extrapolation to the smallest mass ratios which may not be warranted, but is very
hard to check.

A study of B-type binaries by van Rensbergen (2001), using the catalogue by Batten
et al. (1989), found distributions slightly biased towards low @, as in the more complete
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sample of O stars from Mason et al. (1998). His distributions are roughly equivalent to
v~0.8 and 0.7 for late B and early B systems respectively.

The distinction between distance-limited and magnitude-limited samples is particu-
larly important for mass ratios, since two equal-mass stars can be expected to be twice
as bright, and therefore visible over 2.83 times the volume, as systems with a small mass
ratio. But for O stars, distances are so great as to be very uncertain. We probably
do best to establish the distribution iteratively, using a magnitude-limited sample and
then making due allowance for the over-representation of equal-masses down to a given
magnitude limit.
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Fig 1.9 — The distribution of (a) mass-function and (b) eccentricity against period for 268 G/K giants. In
(a), SB1s are shown as circles and SB2s as asterisks. Five triples, the companion being itself a close binary,
are shown as squares. Unrecognised triple companions may cause some of the other large values. The sloping
line corresponds to a radial velocity amplitude of K1 ~ 2km/s, roughly the limit of observational detection;
the vertical line at P=10%*d represents an empirical upper limit to period, since longer periods are hard to
determine. In (b), all systems are represented by asterisks. The sloping upper boundary and the modest

concentration at e=0 probably reflect evolutionary effects rather than primordial properties.

Even with data only (or mainly) on single-lined binaries, i.e. a determination only of
the mass function and not of the mass ratio, some information can be gleaned about the
distribution of mass ratios. Fig 1.9a shows the distribution of measured mass-functions
— Equn (1.2.1) — from a compilation of published data for 268 red giant SBs (G/K, II —
IV). SB1s are shown by circles and SB2s by asterisks, but in SB2s only the mass-function
of the giant is plotted (or the more massive giant, in a few cases where both components
are giants). By SB2 in this context we mean stars in which two spectra are seen, even
though in many cases only the G/K giant has had its radial velocity curve measured.
The fact that %2 is seen at all suggests that it is only moderately less massive than 1.
It is probably reasonable to assume that most G/K giants of luminosity class IT — IV are
in the fairly limited mass range 1.2 — 4 M.

We believe that a slight trend can be seen in Fig 1.9a: most systems with P <1025
are above f~0.05 Mg, and most with P 210%° are below it. In spite of the fact that
f depends on both M; and M, as well as the inclination, a reasonable interpretation
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of the trend is that at longer period there is a greater spread of secondary masses than
at shorter period. The relative shortage of small f at short P is not entirely due to the
difficulty of measuring small velocity amplitudes, as is shown by the expected cutoff of
observations near the sloping line K3 = 2km/s. This line slopes in the opposite direction
to the observed (but rather marginal) trend. The ‘missing’ systems of low f and short
P should be quite measurable, although no doubt somewhat under-represented.

Several G/K giants with known or suspected white dwarf companions, in particular
barium-rich stars, have been excluded, because the mass of at least one component, and
perhaps also the period, will have been modified by evolution. Other binaries, such as
Algols, have also been excluded on the basis that their masses are likely to have been
much modified by evolutionary interaction.

Fig 1.9a contains five systems (squares) which are known to be triple, the companion
to the giant being itself a close pair of stars. Such systems can be expected to have large
mass-functions, and they do indeed give four of the eleven largest values in the Figure.
It is quite likely that more SBs, particularly at the upper margin of f, are in fact triple,
but have not been recognised as such.
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Fig 1.10. A Sample of 500 hypothetical binaries from the distributions (1.6.1) — (1.6.4), for M; = 1.2—4 M.
Log mass function (M) is plotted against log period (days). SB2s are indicated by a star, SBls by a circle.
Rough observational limits are indicated by straight lines, as in Figl.9a. Those of too long a period or too
small a velocity amplitude to be readily measurable are indicated by a cross. The stars might be late B/A/F

dwarfs, or, if evolved, G/K giants as in Fig 1.9a. Unlike in Fig 1.9a, no triples were included.

Fig 1.10 is a similar plot to Fig 1.9a, but based on a theoretical model — Section 1.6 —
sampled in a way somewhat similar to the way in which real stars are sampled. Random
inclinations were also included. We believe that the best way to assess the reliability of
a model of the distribution of ), which can be expected to depend on P and M, is to
compare a theoretical figure like 1.10 with an observational figure like 1.9a, for various
ranges of P and M;. But we still have the problem of what to do about systems where
the period is too long or the velocity too small to be measured.

The O star sample of Mason et al. (1998), referred to previously, gave information
on mass ratios for 49 SBs, with P $10yr, and a similar number of VBs with P 2 10% yr.
The two distributions are at first sight very different: 90% of the SBs have @Q 2 0.4, while
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85% of the second group have @ <0.4. However, a lot hinges on whether the SB sample
is very deficient in small-@) systems, as may be suspected on the grounds that they are
harder to observe. More importantly, the VB sample excluded all where one component
was also an SB, and this eliminates many VBs with near-equal masses. But even 50 or
100 small-@ SBs, combined with 20 or 30 O(SB) + O VBs, would hardly bring the two
distributions into agreement. It seems likely that here as elsewhere there is a trend to
a greater range of mass ratios at long period than at short. In a distribution such as
(1.5.9) the exponent v may have to range from about 2 — 3 at short period and low mass
to about 0.7 — 1 at long period and/or high mass.

A recent analysis (Halbwachs et al. 2003) of a substantially larger sample of F7 —
K7 dwarfs than that of Duquennoy & Mayor (1991) suggests modest changes to the
discussion here of the distributions in period and mass ratio. Halbwachs et al. (2003)
analysed 456 stars, 61 of which have orbits with P <10yr. If these are binned as in
Fig 1.8b, they show little change in the upward slope; but in detail, they suggest a
slight deficit at P~200d and a slight excess at P ~500d. There is substantially more
information regarding mass ratios, both from SB2 orbits and from SB1 combined with
astrometric (VB) orbits. 45 mass ratios were obtained. These display a rather flat
distribution in @ over the range 0.2 < @ < 0.7, but with an unexpected deficit at 0.7—0.8.
This is followed by an excess at 0.8 — 1.0, which is due mainly to short-period systems
(P <50d). Both the deficit and the excess are by about a factor of 2.

1.5.5 Eccentricities

The distribution of orbital eccentricities appears to be roughly uniform in the range
from zero to unity, at least for those binaries whose components are sufficiently well
separated that they can have had little chance yet to interact with each other, even at
periastron. Fig 1.9b shows a plot of e against P for the same collection of spectroscopic
binaries as Fig 1.9a. The absence of eccentric orbits (e 2 0.05) at periods shorter than
~10d probably reflects the fact that the components in these systems are close enough
to interact by tidal friction (Chapter 4.2), a process which should tend to make orbits
more circular. Binary interaction may also account for (a) the sloping upper envelope,
since eccentric binaries of fairly short period will have small separations at periastron,
and so should suffer particularly from tidal friction, and (b) a concentration of systems
at e = 0, some or all of which may well be the result of considerable binary interaction.
Known barium-rich red giants fall into this category, and were excluded, but the systems
in Fig 1.9a with P210%°d and e = 0 may, like barium stars, contain a white dwarf,
although unlike them they show little or no barium enrichment.

If binary orbits were randomly distributed in phase space we would expect that e?
rather than e would have uniform probability. Possibly this is the case at periods sub-
stantially greater than 30 yr, since very few of these have measured eccentricities. But
although the sample in Fig 1.9b is not large, and is far from being a complete distance-
limited sample, it does not show the marked concentration to e~1 that this argument
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would imply. It may be that some aspect of the formation process for binaries tends to
weigh against high eccentricities.

1.6 A MONTE CARLO MODEL

Our preferred model, for the time being, of a population of unevolved binary systems
has a mass distribution (for *1)

M; = 0.3 (1i(1)(1)0.55 : (1.6.1)
a period distribution
P = % (1 f})a . a= 73‘5111;0‘/ . d=01MM ) (1.6.2)
a mass-ratio distribution
3 =Q =1-x/ , 8= 25%(?3'75/ . B =01P%(M;+05) , (1.6.3)
and an eccentricity distribution
e=X, , (1.6.4)

where X ... X, are independent random variables uniformly distributed in [0,1]. The
mass dependence in the period distribution, and the mass/period dependence in the
mass-ratio distribution, are crude attempts to quantify the discussion of the previous
subsections. We noted in Section 1.5.3 that the distribution of periods among O stars is
strongly bimodal, and we emphasise that the peak at long periods (~10* — 106 yr) has
been ignored.

Table 1.1 shows a distribution obtained by generating 10° binaries using Equns (1.6.1)
— (1.6.3); eccentricity was ignored. We have not truncated at low mass, so that quite a
high proportion of primaries, and an even higher proportion of secondaries, are presum-
ably brown dwarfs. Binaries with P >10%d are treated as two single stars, and binaries
of such short period that the stars would overlap are treated as one single star with the
combined mass; and all ‘singles’ are listed as if ¢>9.99. No doubt coincidentally, the
proportion of singles to binaries that we generate is not in practice very different from
what observation suggests.

Fig 1.10 is, like Fig 1.9a, a plot of mass function against period, containing 500
theoretical systems with My = 1.2 —4 M, a range probably comparable (when evolved)
to the observed G/K-giant sample of Fig 1.9. The distribution was convolved with a
random distribution of inclinations, to simulate the observational selection criterion for
SBs that the velocity amplitude should be above some threshold (K7 2 2km/s, for G/K
giants, which have relatively narrow lines and correspondingly high accuracy). Systems
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Table 1.1 - An estimate of the frequency of binary parameters among 10® systems

M, q P<1 1-3.2 3.2—10 10—10% 102—10% 10®—10* 10*—10° ‘single’
<0.5 1.00 —1.41 1441 2999 4817 15450 21884 25402 106627 0
1.41 —3.00 624 1403 2215 8554 17722 31600 219339 0

3.00 - 9.99 348 627 1097 4147 9860 19971 163776 0

>999 134 252 422 1634 3962 8382 75797 274648

0.5-1 1.00 —1.41 63 386 688 2038 2659 2694 6903 0
1.41 — 3.00 47 182 349 1437 2820 4158 14487 0

3.00 — 9.99 23 104 184 795 1742 2826 11039 0

>9.99 17 42 74 316 713 1320 5097 9914

1-2 1.00-1.41 9 96 246 749 895 923 1792 0
1.41 — 3.00 5 53 127 606 1227 1591 3761 0

3.00 — 9.99 6 35 58 340 745 1126 3030 0

>9.99 1 11 29 150 346 558 1301 3451

2-4 1.00-1.41 0 20 68 226 315 295 358 0
1.41 — 3.00 0 19 53 293 515 630 762 0

3.00 — 9.99 0 8 34 180 394 451 611 0

>9.99 0 5 12 62 158 189 284 1228

4-8 1.00-1.41 0 5 25 89 116 64 52 0
1.41 — 3.00 0 5 24 103 193 173 97 0

3.00 — 9.99 0 2 11 67 135 123 74 0

>9.99 0 0 4 43 79 64 46 355

8 —16 1.00 —1.41 0 0 4 39 35 16 7 0
1.41 — 3.00 0 1 7 43 59 29 7 0

3.00 — 9.99 0 1 8 33 64 27 12 0

> 9.99 0 1 1 19 16 9 3 176

16 — 32 1.00 — 1.41 0 0 2 7 3 0 0 0
1.41 — 3.00 0 0 1 16 15 6 2 0

3.00 — 9.99 0 0 3 18 15 4 1 0

>9.99 0 0 1 4 7 2 0 84

>32 1.00 — 1.41 0 0 0 1 0 0 0 0
1.41 — 3.00 0 0 0 5 1 1 1 0

3.00 — 9.99 0 0 2 5 0 1 0 0

>9.99 0 0 1 0 0 0 0 74

Period is in days, primary mass in solar units

below that threshold, or whose period is longer than the loose practical limit of ~30yr
(10*d), are shown with a cross; asterisks are ‘theoretical SB2s’, defined by 0.7<Q <1,
and circles are ‘theoretical SB1ls’, with Q <0.7. Theoretical SB2s seem to be under-
represented, particularly at shorter periods, but this may well be a selection effect in the
observed sample since systems that are seen in the first instance to be double-lined are
more likely to be investigated further.

The density of stars in the solar neighbourhood, projected on to the plane of the
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Galaxy, is ~50 /pc?, and the effective area of the Galaxy is ~ 10° pc?, so that the number
of stars in the Galaxy is ~5 x 10'°. The lifetime of the Galaxy is about 10 Gyr, and
so we should generate stars from the distribution (1.6.1) — (1.6.4) at a rate of about
5 /pc?/Gyr. We might also generate some single stars, from Equn (1.6.1) alone, except
that the ‘singles’ in Table 1.1 (arising from either merged very close binaries or disrupted
very wide binaries) may be sufficient in number already. In fact we should also add a
population of triples and quadruples, at least, at about a tenth of the rate or more;
but the statistical distribution of triples over three masses and two periods is completely
uncertain. We think of the distribution of binaries in Table 1.1 as representing only those
binaries which are furthest down the hierarchical pyramid. Several of the shorter-period
systems, say with P <10%*d, will be resident in wider triples.

The surface density of massive stars is of course to be modified according to their
short lifetimes (Chapter 2). Stars above a mass ~5 Mg only live for <100 Myr, so that
their abundance is reduced to ~1% of what is predicted above. The remaining 99%
will now be white dwarfs, neutron stars or black holes, but they may nevertheless have
companions of initially lower mass that are still normal stars.

We should not suppose that all parts of the Galaxy, including its collection of satellite
globular clusters, would conform to a single distribution. In particular, the distribution
in globular clusters is likely to be truncated at periods of ~10*d. A simple criterion is
that ‘soft’ binaries, whose orbital velocities are less than the velocity dispersion in the
cluster, are likely to be destroyed.

Although the mean rate of star formation suggested above may be a reasonable average
over a long time, evidence mainly from other galaxies suggests that there are short periods
of rapid star formation (‘starbursts’) presumably separated by long periods of relative
quiescence. For present purposes however it is probably good enough to assume a fairly
steady rate.

1.7 CONCLUSION

A substantial proportion of stellar systems have periods short enough (P <10*d) for
future interaction. Low-mass systems (M; $ M) might be supposed incapable of serious
interaction, because their evolutionary lifetimes are longer than the age of the Universe.
But this is illusory since, at least at periods of a few days, they can interact by magnetic
braking and tidal friction (Chapter 4) to produce contact binaries and (probably) merged
single stars. Given that low-mass stars are much more common than high-mass stars,
there is arguably more interaction of this sort than of any other.

In an ideal world, we would have at least half-a-dozen distance-limited samples each
containing about 2000 unevolved systems — including single stars as ‘systems’ — covering
perhaps the following ranges of spectral type: O, early B, late B, A, F/G, K/M. They
should be unbiased towards binarity, i.e. they should not be selected on the basis of
known radial-velocity variation or other potential binarity indicators. In addition, some
evolved samples of similar size, e.g. G/K giants, F/G/K supergiants and M giants would
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be added, but we should be wary that some members of these will have already undergone
evolutionary interactions and so have parameters differing from their values at age zero.
In fact we must be wary even for the ‘unevolved’ sample, since a proportion of unevolved
primaries will be coupled with white dwarfs, neutron stars and black holes that are not
always easy to identify. These samples would have to be examined spectroscopically,
photometrically and astrometrically for at least thirty years, and preferably sixty years,
to determine the appropriate distributions. Many will turn out to have multiplicity
higher than two, but we might hope with samples of this size to get some significant
statistics on multiplicity as well as on binary orbits.

We would attempt to model these samples in an iterative manner. Having an a priori
estimate from these samples of the distributions discussed above, we would construct
an ensemble of at least 10° (and preferably 10'!) theoretical systems. We might need
somewhat more sophisticated distributions than the ones used here with only one or
two parameters, but the size of the samples would still not justify more than three
parameters. We would attempt to model the evolution of M, P, ¢ in individual systems
according to our present understanding, as outlined in Chapters 3 — 6. We can ‘observe’
the theoretical samples at a variety of ages, allowing theoretically for such selection
effects as we think we can quantify.

In the course of evolving such a theoretical ensemble we should find ourselves populat-
ing a zoo of exotic binaries - and indeed of possibly exotic single stars which come from
binaries that are either disrupted or merged according to some of the processes modeled.
We need further observational sets of these exotic stars — cataclysmic binaries, X-ray
binaries, contact binaries, symbiotic stars, barium stars, double-white-dwarf binaries,
B-subdwarf stars, neutron stars, double-black-hole binaries etc. — for comparison with
the theory. We would hope that after one or two iterations we might get some degree of
convergence. Even 10° theoretical systems would not be enough to produce samples of
some of these species of a size adequate for statistical analysis.

In the real world, we will certainly not get complete convergence. Already some well-
determined binaries, of by no means exotic character, exist which cannot possibly be
explained on the basis of our present understanding of binary stars — see Chapter 2.3.5.
This might be seen to mean that we should throw the present understanding out of the
window. But there also exist some, in fact many, that seem to accord very well with
present understanding; what is one to make of that? Some difficult binaries may be
explicable as triple or formerly triple systems; others may require exotic processes not
yet determined. Do we need a major paradigm shift, as from Ptolemaic to Copernican
orbits, or can we cope by tinkering about the edges? Do we have to invoke magnetic
fields, as the last refuge of the charlatan? At any rate further iterations will be required.

But an important preliminary is to attempt to model evolution in systems on a one-
by-one basis, since this will test at least some of the evolutionary processes that we
expect. After discussing evolution of effectively single stars in Chapter 2, we describe
what we believe to be the main binary-interactive processes in Chapter 3 and later.
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2

Evolution of Single Stars

2.1 BACKGROUND

The evolution of single stars, and of those stars which are in binaries sufficiently wide
that the effect of a companion can be ignored, has been much studied, especially with
the aid of increasingly powerful computers over the last 50 years. This is not to say,
however, that every problem has been solved: in the final section of this Chapter we
emphasise some of the outstanding problems.

Fig 2.1 shows a comparison between recently computed models, and data obtained by
observation. They are shown in a Hertzsprung-Russell diagram (HRD) where luminosity,
i.e. the total energy output of the star, is plotted against surface temperature; the
latter is plotted backwards, for traditional reasons. Our theoretical understanding of the
internal structure and evolution of single stars is based on the concepts of hydrostatic
equilibrium, thermodynamic equilibrium, and the consumption of nuclear fuel, mainly
hydrogen. In hydrostatic equilibrium, the inward force of gravity is balanced by the
outward push of a pressure gradient. In thermodynamic equilibrium, the heating or
cooling of a spherical layer of material is determined by the balance of heat production
in nuclear reactions, at temperatures of about 10MK (MegaKelvin) and upwards in the
deep interior, against heat loss as heat flows down the considerable temperature gradient
until it can be radiated into space from the photosphere at temperatures observed to be
about 2 — 100kK. The heat flux is carried either wholly by radiation, or by a combination
of convection and radiation, depending on whether the temperature gradient that would
be required to be carry the heat entirely by radiation is less than or greater than the
critical (i.e. adiabatic) temperature gradient at which convective instability sets in. Most
stars contain some region or regions which are predominantly convective, and some which
are wholly radiative.

The nuclear reactions which provide the heat also change the nuclear composition of
the star on a slow time scale, Megayears (Myr) at least; although in stars substantially
less massive than the Sun the time scale can be longer than the Hubble time (~ 15 Gyr),
which is presumed to be about the age of the Universe, so that little nuclear evolution
is to be expected in such stars. The nuclear reactions principally burn hydrogen to



38

helium, with subsidiary reactions which modify the abundances of carbon, nitrogen and
oxygen, and also of deuterium, 3He, lithium and beryllium, for instance. In later stages
much of the helium is itself burnt, to a mixture of carbon and oxygen. In very late
stages a large number of nuclear reactions can take place, involving all the elements
from carbon upwards. Provided the products of these reactions can be returned to the
interstellar medium via stellar winds, for instance, or via the outbursts of novae and
supernovae, stars appear to be able in principle to produce all known nuclear species,
apart from hydrogen and most helium which is thought to be ‘primordial’. It is by
no means yet clear, however, what are the detailed stellar evolutionary mechanisms by
which nuclear species are produced in the abundances observed. Certainly it is necessary
to have an equally detailed understanding of Galactic evolution before the problems of
nucleosynthesis can be considered solved.

Important as Galactic evolution is, it is outside the scope of this book. For present
purposes it will we hope be sufficient to suppose that all stars have an initial ‘Zero-Age’
composition which is described by just two parameters X and Z. X is the fraction by
mass of hydrogen, and Z the fraction by mass of all elements together (‘metals’) apart
from hydrogen and helium: the abundance of helium is then Y =1 — X — Z. X varies
little from star to star and is about 0.7 — 0.75. Z ranges from about 0.0001 in old stars
(‘Population IT’; found in globular clusters, in the Galactic halo, and in nearby high-
velocity stars) to about 0.02 in stars like the Sun and younger (‘Population I’, found in
the thin Galactic disc). Within the metallicity parameter Z it is possible for the balance
of, say, heavy metals to light metals or of oxygen to carbon to vary with age, but for the
time being we ignore this possibility. Probably X correlates with Z to some extent, older
stars having somewhat more hydrogen and substantially less metals: say, X ~0.76 —3Z.
It is commonly hypothesised that the earliest-formed stars (‘Population III’) should have
had virtually zero metals, but there is no observational evidence at present for such a
population.

Before a star can settle into the state of hydrostatic and thermal equilibrium described
above, it first has to condense out of a pre-stellar gas cloud. The star-formation process
is much less well understood than the later evolution — partly because of the absence
of equilibrium in condensing protostars (the more absent the earlier the phase), and
partly also because formation takes place, hardly surprisingly, in relatively dense gas
clouds whose very density obscures our direct view of what is going on. One of the most
dramatic advances of instrumental astronomy in the last quarter of the 20th century has
been in the infrared region of the spectrum, about 0.7 — 100um, where radiation is much
better able than visible light to penetrate through these gas clouds. This has already
enormously improved the quality and quantity of information on star formation. But it
has still not given us an understanding of the formation process as compelling as our
understanding of later processes, even though these later processes are themselves not
definitively understood. In Section 2.2.7, we return briefly to star formation.

A set of partial differential equations, outlined in Appendix A, can be written down
to model the physical processes that occur within stars that have settled into near-
equilibrium. These equations are not as definitive as one might reasonably suppose; for
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Fig 2.1 — Observed stars (symbols) and theoretical models (lines) in the HRD. Bolometric luminosity is
plotted against surface temperature; equivalent spectral types for the MS (Popper 1980) are shown along the
top. Different symbols represent stars with observed masses in the ranges 0.125—0.25, 0.25—0.5, ... , 16—32 Mg
different tracks are 1,2, ... ,128 M. The observational data are from ESB2 systems (Andersen 1991, Pols et al.
1997, Schroder et al. 1997) and low-mass VBs (Popper 1980). Theoretical models, with indicated masses, are
by Drs. O. R. Pols, K.-P. Schroder, C. A. Tout, and the authors. The Zero-Age Main Sequence, Terminal
Main Sequence, Hertzsprung Gap and Beginning of the Giant Branch (see text) are indicated as ZAMS, TMS,
HG and BGB. For the higher masses, large circles indicate where He ignited. For the lower-mass stars, large
open squares indicate where the evolution is likely to terminate due to mass loss, which was not included in
these calculations. Kinks in the tracks near these squares are due to the coarseness of the opacity grid at low

temperature.

example, in circumstances where the heat content of material is changing simultaneously
with the composition (as a result either of nuclear reactions or of convective mixing) one
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Fig 2.2 — Plot of log T (K) versus p (kg/m®, showing dominant effects in the Equation of State: RP —
radiation pressure; PG — perfect gas; HI — hydrogen and helium partial ionisation; MH — molecular hydrogen;
PD — pressure dissociation; ND — non-relativistic electron degeneracy; RD — relativistic electron degeneracy;
IB - inverse 3-decay (neutronisation); PN — photo-dissociation of nuclei; PP — pair production. Dotted lines
are a 2 M star on the main sequence (M), a 4 M star in a highly evolved late supergiant state (S), and a
0.6 M white dwarf (W).

is liable to find different formulations in different computer codes, and even in different
published accounts. The least definitive part of the stellar evolution equations is probably
the treatment of convection (Section 2.2.3), and the next least definitive is mass loss by
stellar wind (Sections 2.3, 2.4). The problem of turbulent compressible convection is both
extremely important and extremely difficult; it includes the problems of semiconvection,
and of convective overshooting. We would not expect it to be solved on a time scale
of less than decades. But even if one sets aside this difficulty, by using a very simple
treatment of convection such as the mixing-length theory of Bohm-Vitense (1958), and
of semiconvection with a simplistic diffusion approach (Eggleton 1972, 1983b), solving
the equations computationally remains a substantial problem.

Fig 2.2 illustrates, in the temperature/density plane, regions where different physical
processes dominate the Equation of State (EoS) of stellar material. Although a consid-
erable variety of processes have to be included in a definitive EoS, it is fortunate that
in most stars, at most stages of evolution, the main contributions to pressure come just
from radiation pressure, the perfect gas law, and degenerate electron pressure. On most
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of the Main Sequence (Section 2.2) even the third of these can usually be ignored. A
very efficient EoS was used here, based on the model of Eggleton, Faulkner & Flannery
(1973) but updated (Pols et al. 1995) to include electron screening and an improved
treatment of pressure dissociation. A brief description is given in Appendix A.

For the computed models used here (Fig 2.1; see also Table 3.2), the opacity coefficient
was taken from the work of Rogers & Iglesias (1992) and (for low temperatures at which
molecules contribute importantly) from Alexander & Ferguson (1994). Nuclear reaction
rates were taken from Caughlan et al. (1985) and Caughlan & Fowler (1988), and neutrino
energy-loss rates from Itoh et al. (1989, 1992). A degree of convective overshooting
(Section 2.2.4) was used as suggested by the analysis of Schroder et al. (1997) and Pols
et al. (1997).

An ‘implicit, adaptive’ distribution of meshpoints (Eggleton 1971) was used in the
numerical scheme, since this gives great numerical stability and allows the models to
be computed with only 200 meshpoints between the centre and the photosphere. This
procedure for distributing meshpoints works as follows. Instead of deciding in advance
where the meshpoints should go in the next timestep, which is difficult to do since the
regions that need the most meshpoints will move with time at a rate that is not easy to
predict, we require that the meshpoints in the next timestep satisfy the condition that
the root-mean-square change in the variables is the same from one space-like interval
to the next. This means that an extra implicit second-order equation has to be solved,
along with the four first-order equations of structure.

In fact the number becomes larger still, because it is important to treat the compo-
sition variables in the same implicit manner as the structure and mesh variables; the
optimal position of meshpoints depends as much or more on the composition distribu-
tion as on the distribution of structure variables (density, temperature, luminosity and
radius). Fortunately only a handful of composition variables are really important in
determining the structure (hydrogen, helium, carbon, oxygen and neon). The equations
for the abundances include convective mixing, which is treated as a diffusion process
(Eggleton 1983a) with a rather simple estimate of the convective diffusion rate that is
based on the mixing-length approximation to convection; consequently the composition
equations are all second-order. Thus we end up with four first-order and six second-order
equations to be solved implicitly and simultaneously. The code used has a powerful and
general difference-equation solution package, which can handle a general mixture of first
and second order equations. All the difference equations are differentiated numerically
in order to set up a Newton-Raphson iteration.

The resulting code can evolve a star from the zero-age main sequence to the onset of
carbon-burning in less than a thousand timesteps, although modern computation is so
fast that we can comfortably allow three or four thousand timesteps, which probably gives
slightly greater accuracy. However the accuracy of evolved stellar models is much more
affected by approximations for convective heat transport, convective and semiconvective
mixing, and mass loss than by discretisation.

A further advantage of an implicit adaptive mesh is that it becomes easy, even trivial,
to include both mass loss by stellar wind in single stars (Section 2.4), and mass transfer
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between components in a close binary (Chapter 3). Unfortunately our knowledge of what
these rates (especially of stellar wind) should be is not commensurate with the ease of
including them. In the models of Fig 2.1 no winds were included, but they are included
in some later discussions, and in Fig 2.17 which is otherwise similar.

2.2 MAIN SEQUENCE EVOLUTION

Theory, that is to say computed models, and observation (e.g. Popper 1980, Andersen
1991) agree that many stars should be in a hydrogen-burning Main Sequence (MS) band
that crosses the HRD from top left to bottom right (Fig 2.1). Within the band, such
bulk parameters as the radius and the luminosity are determined mainly by the mass
of the star, but also partly by its age and initial composition. As the star depletes
its hydrogen fuel in and near the centre, it crosses the MS band, from the Zero-Age
Main Sequence (ZAMS, Fig 2.1) to the Terminal Main Sequence (TMS), increasing its
radius and luminosity by about a factor of about 2.5 — 3 on a slow nuclear-burning time
scale. Once the fuel runs out at the centre, and also in a central core containing about
10% of the star’s mass, evolution usually becomes rapid until the star has increased its
radius by a larger factor. We can define the MS band loosely as terminating when this
rapid phase of evolution begins. However, for stars of initial mass about 1 — 2 Mg, the
evolution slows again significantly before accelerating again, and as a consequence the
TMS becomes hard to define except in a somewhat arbitrary way. We return to this
point in Section 2.2.8.

2.2.1 Approximate Formulae for Main-Sequence (MS) Stars

There is reasonable agreement with observed masses (M), radii (R), surface tempera-
tures (7') and luminosities (L) for MS stars, as seen in the HRD of Fig 2.1. Approximate
formulae relating these quantities, for stars on the theoretical ZAMS with a near-solar
composition of 70% hydrogen by mass, 28% helium and 2% ‘metals’ (everything else)
are (Tout et al. 1996)

0.397M°> + 8.53M !

L= 2.2.1.1
255 10 11 M3 + 5.43M5 + 55607 + 0.7800° 1 5.87 x 10 38005 )
~ L715M%5 + 6.60M 6% + 10.09M ! + 1.0125M 0 + 0.0749 /192 (2.2.12)
~0.01077 + 3.082M2 + 17.85M3:5 + M185 + 2,26 x 10-4M195 ~ o
and
T =577LR "5 | (2.2.1.3)

The range of validity of the first two equations is 0.1 < M <100 M. Here, and through-
out, L, R and M are in solar units, with Ls = 3.84 x 102 W, Ry = 6.96 x 108 m, and
Mg = 1.99 x 10%° kg, to sufficient accuracy for present purposes. The temperature 7T is
in units of kiloKelvins or kK (i.e. 10° K). Equn (2.2.1.3) is simply the Stefan-Boltzmann
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law, which can be used as a definition of the ‘surface temperature’ of a star. Stellar sur-
faces radiate to a fair degree of accuracy like black bodies, so that although the photons
that we see were emitted by several different layers of stellar material with a modest
range of local temperatures, the surface temperature defined as above represents the
best mean of this range. Tout et al. (1996) give generalisations of Equns (2.2.1.1) and
(2.2.1.2) for a range of metallicities from Z = 0.0001 to 0.03.

The luminosity L is dictated mainly by the opacity in the outer layers, and itself
dictates the rate of consumption of nuclear fuel: see Section 2.2.2. The available reservoir
of fuel is roughly proportional to mass M. Hence the life time (in Myr) of a star within
the main sequence band is roughly proportional to M/L, and can be approximated in
the same spirit as Equns (2.2.1.1), (2.2.1.2) by

1532+ 2740M* + 146 M°° + M”
Ms = 0.0397M2 + 0.3432M7 ’

0.255M <50 . (2.2.1.4)

Formulae (2.2.1.1) to (2.2.1.3) fit the results of computed models to better than 1.2%
over the mass range 0.1 to 100 Mg; Equn (2.2.1.4) fits to better than 3.3% over the mass
range 0.25 to 50 M (J. Hurley, private communication). The computations assume
that the composition of a ZAMS star is uniform, and is approximately the same as the
present day solar surface, except that certain light elements (D, Li, Be, C) which burn
rather easily at the prevailing core temperatures are assumed to have already burnt
to exhaustion or to equilibrium in the core. Equns (2.2.1.1) and (2.2.1.2) do not give
L =1,R =1 for M = 1, because the sun is not a ZAMS star: it is about halfway
through its main sequence life.

Equn (2.2.1.1) gives the bolometric luminosity of the star, i.e. the energy output
integrated over all wavelengths. Since, even today, most investigations are carried out
in the visual waveband (~0.5 — 0.6um), it is often desirable to correct for the fraction
of energy released in the visual waveband. This fraction depends mainly on surface
temperature T, although there is also a weak dependence on gravity and on composition,
because stellar surfaces are not perfect black bodies. But Equn (2.2.1.2) shows that
gravity (o< M/R?) varies little on the main sequence anyway. Consequently we can start
by using an approximation depending only on T, viz.

Ly 145 x 1078710

= . 2.2.1.5
L 4 x 104T-7 + 4 x 10475 + 3 x 10—10712:3 ( )

T is in kK as before. Equn (2.2.1.5) reproduces, to about 10%, the tabulation of Popper
(1980), over the temperature range 3 - 40 kK. A similar formula for the more limited
range 4 - 40 kK corrects for fractional luminosity in the ‘blue’ waveband (~ 0.4 —0.5um):

Lp 1+3x1057T°
L 6x107T-12 4125725 4+ 0.8 +3 x 107771

(2.2.1.6)

Beyond the MS band these formulae are less reliable, and equivalent formulae for at-
mospheres at lower gravity are not yet well determined. These formulae also assume a
metallicity Z comparable to the Sun, which is commonly true but not universally.
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Observations are generally plotted as log Ly against log(Lp /Ly ), except that a factor
of 2.5 multiplies each of these, for traditional reasons. The latter is a function of temper-
ature only, in the above approximation, but in reality depends (moderately) on gravity
and metallicity. It is also affected by distance, since the interstellar medium imposes dif-
ferential absorption and scattering which is stronger at shorter than longer wavelengths.
The former (log Ly ) is of course strongly affected by distance, which is often not well
known, but a great deal of information comes from compact clusters of stars, where it
is generally reasonable to assume that all members are at the same distance. Two ob-
servational cluster HRDs are shown in Fig 2.10. For stars in the solar neighbourhood
distances are now relatively well known thanks to the Hipparcos astrometric satellite.
Their HRD is shown in Fig 2.11.

Computed models of MS stars show that stars with M 2 1.25 M have convective
cores and predominantly radiative envelopes, while stars with 1.1 Mg 2 M 2 0.3 Mg have
radiative cores and convective envelopes. Less massive stars still are wholly convective.
In the narrow range of masses about 1.1—1.25 M, the core starts in radiative equilibrium
and becomes convective as the star evolves across the MS band. Convection is discussed
in Section 2.2.3 and convective mixing in Section 2.2.4. The presence or absence of central
convection, and the fraction of the star’s mass that is convective when the hydrogen fuel
is exhausted at the centre, affects the way in which one can sensibly define the TMS: see
Section 2.2.8.

2.2.2 Polytropic Approximations

Although the stellar structure equations of Appendix A do not look amenable to
elementary solutions, stars in the main sequence band are in fact remarkably well ap-
proximated by polytropes, i.e. by gas spheres in which the pressure is proportional to a
power of density. This relation can be written parametrically as p = p.6" , p = p.6"*H1,
or equivalently p o< p'T1/" with n constant, and p.,p. being central values. Combining
this with hydrostatic equilibrium and self-gravity gives the Lane-Emden equation

1d df_

=-g" 2.2.2.1
2 dr dr ’ ( )

provided that we scale the radius 7 by a factor {(n+1)p./47Gp2}'/2. Equn (2.2.2.1) has
‘Emden solutions’ which start from § = 1 at the centre and reach = 0 at a dimensionless
radius and mass which can readily be computed, provided n <5; for larger n the radius
and mass are unbounded. For a general discussion of polytropes see Chandrasekhar
(1939).

The polytropic index n is not in practice dictated by the equation of state of the
gas (although, exceptionally, it is in the case of a white dwarf; see Section 2.3.1), but
rather by the temperature distribution and hence by the heat transport process — in
particular, by the way in which the radiative opacity of the material depends on density
and temperature. Radiative equilibrium dictates that a value of n~ 3 is not far wrong,
in practice, over the whole of the main sequence above M ~ 0.5 Mg,.
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This is illustrated by the fact that Equn (2.2.1.1) agrees quite closely with a result
that can be obtained analytically, subject to certain approximations which may seem
drastic but which must clearly be reasonable in practice. Let us assume the following:
(a) Pressure is a combination of perfect gas and radiation pressure only, i.e.

p = ReT + Lops = BT (1+¢) , say. (2.2.2.2)
Jz 3 Iz
Eddington (1926) took the gas pressure to be a fraction 3, and radiation pressure the
remaining fraction 1 — 3, of the total pressure, but we prefer to use the closely related
ratio ¢ of radiation pressure to gas pressure: § = 1/(1 + ().
(b) The opacity «(p, T, composition) has the form

3R KKr
K = HTh+HKr—p = IiTh-f-MTK

oI5 (2.2.2.3)
Here kT is the Thomson-scattering opacity, a constant. The second term (with ki,
constant) is a rough replacement for Kramers’ opacity law x o« p/T%%, which crudely
approximates the absorption of photons by bound-free electronic transitions in highly
ionised gas. For material with composition similar to the Sun’s, ki ~ 0.034 m? /kg and
KKkr =~ .015KTH.
(c) The nuclear energy generation rate is uniform throughout the entire stellar interior,
rather than concentrated towards the centre as in a realistic model.

Under these assumptions, the equations of hydrostatic and of radiative thermal equi-
librium lead to the following consequences:
(d) the star is eractly an n = 3 polytrope, with p oc T%, p oc T® throughout.
(e) Eddington’s quartic equation applies, which in terms of ¢ above is

4p72
uw*M
CA+¢° =53 (2.2.2.4)
Edd
where ¢ by (d) and (a) is a constant throughout the star, and where p is the mean
molecular weight (1 ~0.62 for solar material). The Eddington mass Mg4q is a mass
whose value is determined solely by fundamental constants, including the dimensionless

mass (2.01824) of the n = 3 polytrope:

B R2 [ 48 \'/? 12,/5 Gm2\
Mgaq = 2.01824 7 (E) = 201824 57 mU( - ) ~ 18.3 M, |
(2.2.2.5)

where my is the atomic mass unit (for most purposes the mass of a baryon). The
Eddington mass is closely related to the Chandrasekhar mass, Section 2.3.2: they differ
by a factor of 32\/ﬁ/w2.

(f) The star’s luminosity is given by

dracGMT* 4rcGM(?
L = = . 2.2.2.6
3kp (Chrn + phk:e) (1 + () ( )
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Equns (2.2.2.4 — 6) imply a unique L(M) relation, which can easily be compared numer-
ically with the ‘empirical’ relation (2.2.1.1), and will be found to be within a factor of
two for all masses in the range 0.5 to 400 M; over this range log L ranges from —1.5
to 7. The maximum error in this range is at about 10 M, where Equn (2.2.2.6) is too
large by a factor of 2.

For the highest masses, with M > Mgqq/u?, Equn (2.2.2.4) gives (21 and then
Equn (2.2.2.6) gives L o M. For lower masses the relation becomes steeper: L oc M3
provided 12 (2 pkk./kTh. It is steeper still, L oc M?®, at even lower masses where
¢ S pkke/kTh. Only for M £0.5 Mg does Equn (2.2.1.1), giving L oc M?®, begin to
deviate significantly from the analytic result, giving L oc M°. This departure is due to
the fact that convective rather than radiative equilibrium is dominant at low masses,
and the analytic approach based on the dominance of radiative transport breaks down.
We discuss the reasons for convection in Section 2.2.3.

Fig 2.3 shows how the effective local polytropic index n, defined in terms of the slope
of the curve followed by the star in the log p, log p plane, varies in zero-age stars of 1 M,
and 0.25 M. This slope, which we define as the ‘softness index’ s, relates to n by
n/n+1 = s. In the 1 Mg star, although n is hardly constant it varies in a fairly limited
range with a minimum of about 1.5 (apart from a very narrow region near the surface)
and a maximum of about 4; eqivalently 0.6 <s<0.8. A value of about n~3,s~0.75 is a
surprisingly good approximation to the overall structure.
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Fig 2.3 — The variation of the local polytropic index n (in the form of the softness index s =n/n+1, plusses),
and of L(r)/m(r) (asterisks) in arbitrary units, as functions of pressure (N/m?), in ZAMS stars of 1 M, (left)
and 0.25 Mg (right). The LH star is convective from the surface down to logp~ 13; the RH star is fully
convective. Departures from s~ 0.6 in the convective regions are due to ionisation, molecular dissociation, or

inefficient convection very near the surface. The dotted line in each panel is n=>5; cf. Fig 2.8.

Note that in the regime where the radiative postulate approximately works the mass-
luminosity law (2.2.2.4) to (2.2.2.6) is independent of any nuclear physical input, al-
though for a more realistic opacity formula than Equn (2.2.2.3) a slight dependence on
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nuclear physics would intrude. It is mainly the opacity which determines the luminosity,
and that in turn determines the rate of nuclear burning, and hence the central temper-
ature and density. The following three equations determine the radius R and the values
T., pc of central temperature and density in the n = 3 polytropic model above, for a
given M from which {, L are determined by Equns (2.2.2.4) to (2.2.2.6):

uGM

RT. = 0.8543-7—_ 2.2.2.7
R(1+¢) ( )
ap T3
= He 2.2.2.
p 3R ¢ ( 8)
and M AMp T
L = e __ = Pele (2.2.2.9)

2+n/3)*%  (2+n/3)*"

The first two equations are exact (for n = 3 polytropes). In the third, there are two
approximations. Firstly, the factor Ap.T."” is an estimate, of a type commonly used in
back-of-the-envelope analyses of stellar structure, for the rate e of generation of energy
by nuclear reactions at the stellar centre. For a given nuclear reaction, n is taken to
be constant, although more realistically the effective 7 is a function of temperature that
diminishes slowly as the temperature increases. The physics of nuclear reactions in
the context of astrophysics is developed in detail by Clayton (1968); tables of reaction
rates can be found in Caughlan & Fowler (1988). On the upper MS, i.e. M 2 Mg,
hydrogen burning by the CNO cycle dominates, and we can take for illustration 7~ 16.5,
A~3.6x107X Z (T. in MK); for the lower main sequence the p-p chain dominates, and
we can take 7~ 3.85, A~9.6x107°X2. Secondly, the factor (2+7/3)%/2 in Equn (2.2.2.9)
is an approximation to allow for the fact that the energy generation rate is not uniform
through the star, as was assumed in (c) above, but is peaked more sharply at the centre
the larger n is. To justify the n-dependent factor in Equn (2.2.2.9), let us model the
temperature distribution, and consequential p and € distribution, by a Gaussian:

T « e/ , P X e=3r*/a® , € X e~ (B+mr?/a® (2.2.2.10)

Then by integrating p and pe over the star, we find that the ratio of the central value of
L/m to its surface value is just (2+7/3)%/2. We would get a similar result if we assumed
alternatively that 7' oc (1 +r%/a?)"1. Equns (2.2.2.6), (2.2.2.9) require that the centre
of an MS star should lie approximately on the following curve in the (p,T) plane:

3pke

— = dmacG(2+1/3)%* . (2.2.2.11)

Fig 2.4 is a plot of contours of constant px/T* in the p,T plane. Opacities k have
not been determined for a substantial portion of this plane in the lower right, where
the physics of cool dense gas is very difficult. At the upper left both x and p/T* are
constant, the former because of Thomson scattering and the latter because of radiation
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log T

log p

Fig 2.4 — Contours of constant prx/T* in the temperature (K)/density (kg/m®) plane. Contours are in
decades, with high values towards the lower middle. Radiative portions of a star follow these curves fairly
closely; convective portions follow adiabats which are usually steeper, but may be shallower in ionisation zones
near the surface. ZAMS stars of 1 and 6 M are plotted as circles (lower and upper, respectively), and a
highly-evolved 4 M model as plusses. The last two stars have much the same value of L/m outside their
main energy-producing regions. The solid line is Equn (2.2.2.11), an approximate locus on which the centres

of ZAMS stars should lie.

pressure. Our very simplistic model above would make these contours straight lines, and
would put a (main-sequence) stellar interior on one of these contours. In fact for the
6 M model illustrated in Fig 2.4 this is quite closely the case: the contour is not quite
straight, but the stellar model keeps quite close to it all the same, and the centre of the
model falls almost exactly on the plotted curve (2.2.2.11).

We show in the next Section that we should have pk/T* ~ const. in any part of the
star that is in radiative equilibrium. In Fig 2.4 each of the three stars plotted does follow
such a contour in at least a part of the star; where it departs from such a contour is
either in a surface convection zone, a central convective core, or below the main energy-
producing region, as we discuss shortly.

Mathematically, a polytrope has a surface at p = T = p = 0, but physically the
surface is at finite p, T and p, determined by the condition that the mean free path A of
a photon should be comparable to the pressure scale height H}, at the surface:

1 dr p
A= — ~ H, where H, = — = — , hence pk ~ g . 2.2.2.12
Kp ? P dlogp — gp ( )

A slightly better estimate, based on a Milne-Eddington radiative atmosphere with con-

stant opacity, is pkx = %g. Along with the boundary condition L = macR?*T* —
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effectively Equn (2.2.1.3) — this gives surface p and T typically smaller than central val-
ues by at least about 10'? and about 10® respectively, so that a complete polytrope (out
to T = 0) is in fact a very good approximation.

Fully convective stars, although not covered by the above analysis, can nevertheless
also be represented approximately as polytropes, this time of index n~3/2. This value
of n comes from thermodynamics of gas, rather than from radiative heat transport, since
convective stellar interiors tend to be completely adiabatic (p oc T%/2, p o T3/2) except
perhaps for a small region near the photosphere. An analytic model can be set up which
is similar in plausibility to the above radiative approximation, but somewhat more messy
because here it is the surface opacity which is important. It determinines which adiabat
the star lies on. The opacity coeflicient near the surface is less convincingly expressible as
a power-law approximation than in the interior; it is dominated by the degree of ionisation
of hydrogen, which drops dramatically with temperature below ~ 10K, and which itself
determines the (small) abundance of the negative hydrogen ion (H™; binding energy
0.75€V). This loosely bound ion is the major contributor to opacity in the temperature
range 5 — 9kK, as the number of free electrons, and their contribution by Thomson
scattering, drops off. A further complication is that the equilibrium between molecular
hydrogen and atomic hydrogen is progressively more important as the mass goes below
about 0.5 M. This has only a minor effect on the mean polytropic index, but a major
effect on the adiabatic constant in the relation p = const. T°/2 that prevails throughout
most of the interior. The right-hand panel of Fig 2.3 shows how n varies in practice in a
fully convective star (0.25 Mg). There are two major bumps that are due to molecular
dissociation near the surface, and partial ionisation further in. A dip and bump at
logp~11 — 13 is due to pressure dissociation, a highly non-perfect-gas effect at high
density and low temperature. The physics in this region is particularly hard to model
accurately.

A useful model of lower main sequence stars can be made by constructing an n = 3/2
polytropic envelope around an n = 3 core (Rappaport, Verbunt & Joss 1983). Such
models can be scaled to agree with results of detailed computations. The latter show
that below M ~ Mg, the convective n ~ 3/2 envelope grows strongly at the expense of the
n ~ 3 radiative core, until the whole star becomes convective below about 0.3 M. This
critical value may be rather dependent on the opacity coefficient, both at the surface and
near the centre. It is not, however, very accurate to think of lower MS stars as n = 3/2
polytropes, since n is quite considerably increased, over quite a substantial region, by
ionisation and by the dissociation of molecular hydrogen (Fig 2.3, right).

The main sequence as usually defined terminates at about 0.08 Mg. In fact there is a
bifurcation, with two sequences at higher masses, the second sequence being thermally
unstable and having degenerate cores along with nuclear burning. Although there are
no solutions below ~0.08 M, that are in thermal equilibrium, objects that form below
this mass can be in hydrostatic equilibrium while cooling indefinitely, as ‘brown dwarfs’,
towards a third equilibrium series at zero temperature which is essentially the white
dwarf sequence continued to low mass (Section 2.2.6).
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2.2.3 Convection

There are very few stellar models which do not contain a convective region somewhere.
In fact this is something of a coincidence: upper MS stars have convective cores, and
lower MS stars have convective envelopes, and although the physics dictating these two
facts is quite different, the latter begins at almost exactly the same point on the MS
where the former ends. The result is a very small region (about 1.1 — 1.25 M) where
there is significant surface convection as well as core convection.

Classically, three important temperature gradients are definable at any layer within a

star:
_dlogT" _ 9logT/or

~ dlogp ~ dlogp/dr ’
which is the actual gradient of log 7" with respect to log p as one travels through the star;

(2.2.3.1)

3kpL
vV, = P

= 2.2.3.2
16macGmT?% ’ ( )

which is the gradient which would be necessary to carry all the local heat flux by radiative
transport alone; and
v. = < OlogT

9 IOg p > S,composition

the adiabatic gradient. If V, <V, in a certain layer, then that layer is stable against
convection, and so V = V,; all the heat is carried by radiation. If V, >V, in another
layer, then that layer is unstable to convection, and to a reasonable level of approximation
V = V., because convective heat transport is so efficient (see below) that a very small
excess of temperature gradient over adiabatic will allow convection to carry many times
as much heat as the radiative flux. In the lowest level of approximation we can therefore

(2.2.3.3)

)

say that
V ~ min(V,,V,) . (2.2.3.4)

In a radiative region, since V = V, we can differentiate Equn (2.2.3.2) logarithmically
w.r.t. log p, to obtain

dlogV
dlogp = (4 - HT)(VO - V) + VL/m, 9 (2235)
with the definitions
1+k dlog(L/m)
Vo = —2 Viim = —/——— . 2.2.3.6
0 4—pp @ VU dlogp ( )
and
o = Odlogk o = Odlog k (2.2.3.7)
P= \ologp/, ’ T = \ologT . o

The opacity derivatives xp, k7 have, for example, the values 1, —4.5, if the opacity is
Kramers’ (k oc p/T3®) and the pressure is perfect gas (p o pT'); and they are both zero
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for Thomson scattering (x = const.). To a reasonable approximation therefore, all of
kp, k7 and Vo can be thought of as given constants. The quantity Vp /,, is gratifyingly
small throughout MS stars. Whereas pressure decreases by a factor of at least 10'? from
its central value to its surface value, L/m decreases by a factor of only about 5 — 100:
this factor is approximated as (2 +7/3)%/2 in Equn (2.2.2.9). Only in the innermost two
decades of pressure (in a main sequence star) does L/m begin to depart at all from its
surface value: Fig 2.3. Thus Vp/,, can be neglected everywhere except within four or
five pressure scale heights of the centre, where it is positive and of order unity.

If Vi/m is neglected in Equn (2.2.3.5), if k7, Vo are taken as constant, and if xkp <4
(which it usually is by a wide margin), then the equation is readily solved to show that
V — Vy as p increases. The value that V starts from at the surface is almost irrelevant,
since convergence is quite rapid. But the fact that the photosphere has to be radiative
means that V must start with a small value: a simple plane-parallel radiative atmosphere
with negligible radiation pressure has V. = 0 at p = 0. Even if there is convection in a
surface envelope (for reasons indicated below), the radiative zone below this envelope will
tend rapidly to V = V. We have Vy = 0.235 or 0.25 in the above two cases of Kramers’
opacity and Thomson scattering. For a perfect-gas EoS, these imply polytropic indices
of 3.25 and 3 respectively. Then returning to Equn (2.2.3.2), we see that in a radiative
portion of a star kp/T* = const., except within four or five pressure scale heights of the
centre where L/m can increase. It is this increase in L/m (going inwards) which can
push V above V, and so drive central convection, in stars where 7 is moderately large.

We can estimate analytically a minimum value for 5 that is necessary (but not suf-
ficient) for the star to have an infinitesimal convective core (Tayler 1952, Naur & Os-
terbrock 1952). In such a star Equn (2.2.3.5) must hold just outside the core (but
effectively at the centre, since the core is infinitesimal). Furthermore the RHS of the
equation must be positive there, since V. = V, < V, just outside, and must increase
to V =V, just inside. But V,,, can be calculated at the centre by expanding quan-
tities there (7', p, L,m) to first order in r2, and using the fact that (for a perfect gas)
dlogp/dr = (V= —1)dlogT/Or there:

3 3
VL/m = g(v—i-’f]—nv) = %(2—’-3’0) lf VZVa = . (2238)

Then the RHS of Equn (2.2.3.5) is positive if

5 29
n>1-— 9 (5kp + 267) = n (Kramers opacity) . (2.2.3.9)

This, as we said, is necessary but not sufficient; numerical modeling shows that 25 is
sufficient.

Fig 2.4 shows ‘radiative’ contours of constant xkp/T* in the p,T plane. These are
intersected by adiabats (not shown) which are usually steeper (p oc T1-%), although in
the surface layers with 7'~ 10* — 10*7 the ionisation of hydrogen and helium make them
less steep. Travelling inwards from the surface, the interior must follow whichever of the
two curves is shallower in slope (negative slope counting as steep). A major feature of
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Fig 2.4 is a ‘knee’ in the radiative curves, at T~ 10%K; it is caused by the fact that xp
is strongly positive in the region where hydrogen is partially ionised. If the photosphere
is below this knee, then the structure curve must start off along an adiabat, and will
only reach the radiative curve again (the same curve as passes through the photospheric
point) some distance above the knee. But if the photosphere is itself above the knee,
then the entire envelope can follow the radiative curve, at least until near the centre
where convection tends to be driven by the Vp,/,,, term, if 25 (but depending slightly
on the opacity law). A small departure from this simple picture is caused by the fact
that in the very outermost layers convection is not fully efficient at carrying heat, and
so V may exceed V, by a modest amount within one or two pressure scale heights of the
photosphere.

The 6 Mg, star in Fig 2.4, starting from a photosphere which is above the knee, follows
a contour of px/T* almost exactly, until very near the centre where the increase in L/m
drives the gradient up to the convective value. On the other hand the 1 M model starts
below the knee, and so cannot follow the contour. Instead it follows an adiabat, but
finally when the adiabat recrosses the same contour the interior becomes radiative again
and follows the contour until L/m increases close to the centre. The centre does not in
fact reach the convective slope of another adiabat, but almost does.

In a convective region we can estimate the excess of V over V, a little more seriously,
using the ‘mixing-length theory’ (MLT; B6hm-Vitense 1958), which we describe here in
a rather simplified version. This estimates the mean velocity of convective eddies, w,
from the difference between the total luminosity (obtained by integrating the nuclear
energy generation over the interior) and the luminosity that can be carried by radiation
within the convective layer, supposing that convection is so efficient that the temperature
gradient V can be approximated (Appendix A) as the adiabatic gradient V,:

16macGmT*V, 3
L = Lsa+ Loon , Lyaa ~ —— Yoo pon~dnr?2 ) (2.2.3.10)
3K «
and so, using Equn (2.2.3.2)
4acT*
W~ a; ga(Vr—Va) ) (2.2.3.11)
Kpp

The constant « is the ‘mixing-length ratio’, a fudge parameter which carries all the
uncertainty in the physics, and is assumed to be of order unity. It is normally taken to
be the ratio of the supposed typical mean free path [ of an eddy to the local pressure scale
height H, = p/gp, Equn (2.2.2.12). However, since this definition of Hp is infinite at
the centre, which is inconvenient and probably also unphysical, we use here a definition

| = amin<g£p, 1/GLM) . (2.2.3.12)

The convective heat flux comes from the proposition that the heat energy carried in an
eddy is comparable to its kinetic energy. This in turn comes from the proposition that
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the kinetic energy acquired by the eddy is equal to the work done by buoyancy over the
mean free path. Assuming that the velocity of the eddy is strongly subsonic, it should
be in pressure equilibrium with the ambient material, so that an upward-rising eddy is
both hotter and less dense than its surrroundings. It carries thermal energy because it is
hotter, and gains mechanical energy because it is less dense. Thermodynamics ensures
that the relative temperature excess and density deficit are comparable.

The excess of actual over adiabatic gradient, which relates to the entropy gradient, is

estimated from \
p O0S w
— = — N —— 2.2.3.13
gp Cp 87‘ v va /USQO'Llnd(X2 ’ ( )

where v2 . ~p/p is roughly the sound speed squared and C,, is the specific heat at
constant pressure. This assumes that buoyancy accelerates the eddy until, after a mean
free path, it dissolves back into the ambient fluid. Normally the Mach number w/vsound
is indeed much less than unity, as it ought to be for the validity of the model. However
it can approach unity in the photospheric layers.

By convention, standard MLT has certain specific coefficients of order unity within
it, leaving « as the only free parameter. Appendix A includes the standard prescription,
which leads to a slightly more elaborate cubic equation for w and hence V — V,. Stars
earlier than F are not much affected by «, because they have little convection in their
envelopes, and in their cores the Mach number is barely different from zero. For a whole
range of cooler stars with convective envelopes, from G/K/M dwarfs through the Sun to
G/K/M giants, a value for a of 2.0, used in the models of Fig 2.1, gives adequately good
agreement with observation. This does not mean that MLT is right, but it does help to
make it at least very useful. It is much the simplest recipe available, being entirely ‘local’:
the actual temperature gradient at a point is determined only by values of quantities at
that point, such as L,r,m,T, p.

The quantity [/w defines a local convective timescale, and leads to an estimate of
the convective envelope turnover time tgr. This timescale is important in investigations
of tidal friction (Chapter 4.2) and magnetic dynamo activity (Chapter 4.4). In the
latter, the Rossby number, or ratio of rotation period to convective turnover time, is
considered important. Several different estimates of g can be made, depending on how
one averages [ or w. A fairly unbiased estimate is [ dr/w, taking the integral over the
whole convective zone. This is the time it would take fluid to rise from bottom to top; it
is ~35d for the Sun. Although the integrand diverges at both ends, the integral is finite
since, from Equn (2.2.3.11), w ~ |r — ro|*/® near a boundary at ry. However the integral
is probably an overestimate, since it is likely to be the larger eddies near the base which
contribute most to dynamo action. A more conventional estimate is the value of [/w at
a height one half of a mixing length (I/2) above the base of the convection zone. In the
case of the Sun, this gives a value of ~15d (Rucinski & Vandenberg 1986), i.e. 3/7 of
the integrated value. We take this ratio as ‘canonical’, and so define

d
tET~0.43/ A (2.2.3.14)
cz W
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At a cruder level, it is convenient to define a global turbulent velocity wg and global
convective time scale tg thus:

3MR2\ '/
L b
(2.2.3.15)
L,R and M being surface values in SI, not solar, units. This gives wg~36m/s and
tqg ~250d for the Sun. The envelope turnover time tgr is less than tg for the Sun
because w is somewhat larger at the lower-than-mean density in the envelope and the
scale height is substantially less than the overall radius. For fully convective stars,
at the bottom of the MS, we expect tgr ~tg. For less-than-fully convective stars, an
empirical estimate can be made in terms of the actual radius R and the ‘Hayashi Track’
radius Ry, discussed in more detail below (Section 2.3.1). Rpr is the largest radius
that a star of given luminosity and mass can have (in hydrostatic equilibrium, but not
necessarily in thermal equilibrium), and is reached if the star is fully, or at least very
largely, convective. R/Ryr is also a function — Equn (2.3.1.8) — of only global quantities
L,R and M. R< Ry if the star is partly radiative: R~ 0.55 Ryt for the Sun. A rough
empirical fit to both low-mass ZAMS stars and to red giants, as well as to the Sun, is

4
L = 4nR%puwc® , M = Rp , tg=-— = (
3 wa

R

2.7
T

2.2.4 Convective Mixing, Entrainment, Semiconvection and Overshooting

The convective motion not only transports heat but also mixes the composition of
the star. In a first approximation, convective mixing is assumed to be confined to those
regions of a star where the temperature gradient is steep enough to cause convective
instability. But it seems likely that turbulent motion starting within an unstable region
may continue under its momentum into at least the edges of an adjacent stable region,
so that convective mixing of composition takes place over a larger region than we at
first expect. Before discussing this ‘convective overshooting’, however, it is helpful to
consider briefly the classical model of convective mixing, which necessarily involves also
the concepts of ‘convective entrainment’ and of ‘semiconvection’.

Classical convective mixing, along with entrainment and semiconvective mixing, can
be modeled by a diffusive transport equation. We imagine convective eddies which move
with typical speed w for a typical mean free path [ (which we take for illustration to be
the pressure scale height, i.e. a~1) before losing their identity by merging with other
eddies. Then the appropriate diffusion coefficient is approximately wl, which can be
estimated from (2.2.3.11, 12) as

wl = U(Vr—Va)l/?’ , o0 =

4 T4 1/3
ap < ac g) . (2.2.4.1)

gp \ 3kpp
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We can now write the composition equation, for a nuclear species with abundance X, as

p—}a % r?po (Vy — V) '/ %—)T( = % + R, (2.2.4.2)
where D /Dt represents a Lagrangian time derivative and R(X, p, T) is the rate of nuclear
burning. Of course, in regions stable to convection (V,<V,), we must put 0 = w =
0. It is important to note that V, is itself a function of the abundance X, via k in
Equn (2.2.3.2). Thus Equn (2.2.4.2) for X is much more non-linear than it appears to
be. The nuclear evolution of a star is actually governed by a whole set of equations like
Equn (2.2.4.2), one for each nuclear species; but in practice there are only a few species
sufficiently important that their abundances can themselves modify the structure to a
significant extent.

Normally o/I?, an estimate of the convective mixing rate — comparable to t(_;l,
Equn (2.2.3.15) — is so large in comparison with R, the nuclear burning rate (or, more
significantly, R averaged over the stellar interior), that we can take 9X/0r ~ 0 as a
good approximation to the solution of Equn (2.2.4.2). This is the usual assumption of
convective-mixing algorithms, that the composition is uniform within an unstable region.
Then the rate of change in time of this uniform composition is obtained by integrating
Equn (2.2.4.2) over an entire unstable region. However, making the composition gradient
nearly vanish is not the only way in which Equn (2.2.4.2) can be balanced for very large
o/I?: an alternative possibility is that V, — V, may be very small, but still positive
and not zero, in which case 0X/0r need not be small. This latter kind of solution is
‘semiconvective’. There is not actually an ambiguity in Equn (2.2.4.2) as to which kind
of solution is achieved. A typical evolutionary calculation in which the set of composition
Equns (2.2.4.2) is solved simultaneously with the structure and mesh-spacing equations
that determine such other variables as p,T,r, L,m will automatically ensure (i) that
0X/0r ~ 0 in some part of an unstable region, (i) that V, — V, =~ 0 in the remaining
part of the unstable region, and (iii) that o = 0, and hence DX/Dt + R = 0, in stable
regions. Figs 2.5 and 2.6 illustrate the way in which convection and/or semiconvection
zones can grow or disappear in the course of evolution of a 16 M, and a 4 Mg, star.

At any boundary between a convective region and a stable region there will be at least
a thin layer where the turbulent velocity is very small. If the composition is different
between the stable and unstable regions there will necessarily be a transition layer where
there is a composition gradient. Whether this layer is very thin, or on the other hand
quite substantial, depends on how the opacity varies with the composition. Only if the
layer turns out to be substantial would we bother to call it ‘semiconvective’, although in
principle thin as well as thick layers are semiconvective. This is illustrated in the upper
panels of Fig 2.6, discussed shortly. For purposes of illustration, any zone which has
0<V,—V,<0.01 is treated as semiconvective, so that a normal convective zone appears
to be bounded by a ‘semiconvective’ region.

When solving the structure along with the composition equations, it is naturally
found that the boundary between an unstable and a stable region moves in time with
respect to the mass coordinate. If the movement is such that the boundary encroaches
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Fig 2.5 — The movement of boundaries of radiative, convective (shaded; V,—V, > 0.01) and semiconvective
or weakly convective (dotted; 0 <V,—V, <0.01) regions, with mass coordinate plotted vertically against
age as a fraction of the total life of the star. Also shown are lines where hydrogen (plusses) and helium
(heavy dots) have been depleted by burning to 10% by mass. (a) 16 M star; (b) 4 M star. In (a), a
large semiconvection zone develops during the MS evolution: its apparently ragged edge reflects mainly the
coarseness of the mesh used. In addition, hidden in the spike at somewhat less than 90% of the lifetime, there is
a convection/semiconvection zone shown in more detail in Fig 2.6. In (b), there is a substantial semiconvection
zone outside the convective helium-burning core, also shown in more detail in Fig 2.6. During the last 1% of
the star’s lifetime, the two burning shells and the base of the convective zone are indistinguishable on this

scale, although they are separated by several pressure scaleheights.

on the stable region, we have the phenomenon which we refer to here as ‘convective
entrainment’. Whether the convective region shrinks, or grows by entrainment, in the
course of evolution, and whether some part of the unstable region is semiconvective
or not, is not easy to predict a priori. Experience shows that most MS models have
convective cores which shrink, and which avoid semiconvection. An exception is the
range of models of about 1—1.5 Mg, where the convective core grows during the first half
of the MS evolution because the dominant hydrogen-burning reaction gradually switches
from the pp chain to the CNO cycle. In the lower part of this mass range the core is
radiative to start with, developing convection as the CNO cycle grows in importance. In
massive stars, 2 15 Mg, a semiconvection zone may appear somewhat beyond the outer
edge of the convective core, at an intermediate stage in the star’s evolution across the
MS band, as illustrated in Fig 2.5a.

Fig 2.6 illustrates two of the more common situations in which semiconvection is
found to occur. The first is the situation referred to above in massive stars towards
the end of main sequence evolution. The second is the situation found in a helium-
burning core. Whereas hydrogen-burning convective cores on the MS tend to shrink as
the star evolves, mainly because the opacity decreases as the helium abundance rises,
helium-burning convective cores tend to grow, mainly because the opacity increases as
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the carbon abundance rises. The increase may become so great at the outer boundary
of the convective core that a semiconvection zone is forced to develop beyond it.
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Fig 2.6 — The growth of a semiconvective region at the edge of a convective region, in (upper panels) a
TMS star of 16 M, and (lower panels) a helium-burning core of 0.4 M. In each case both the composition
(plusses) and the convective parameter V,.—V, (continuous curve) are plotted against mass coordinate, at an
early stage (left) and a late stage (right) in the development of the semiconvective region. All of the action
in the upper panels takes place inside the vertical spike in Fig 2.5a located at just before the 90% fractional

lifetime, i.e. in the rapid transition between core hydrogen burning and core helium burning.

In the top panels of Fig 2.6 are two profiles of hydrogen abundance X against mass
coordinate m, for two models during evolution of a 16 M star. They occur during the
rapid (thermal timescale) evolution at the end of the main sequence — both models are
hidden in the spike in Fig 2.5a located at just before 90% fractional age. In the earlier
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model (left) X rises steadily from zero in a central core to 0.7 in the surface layers. The
corresponding run of the parameter V, — V, is also shown. It is negative, implying no
convective mixing, everywhere except (by a very slight margin) at four points near 6 M,
which have just become unstable. They have barely begun to affect the composition
profile. In the later model (right), the convection has spread over a much greater region,
from about 3.4 — 8.5 M. The inner part of this region is fully convective, with V, —V,
well above zero and the composition profile almost flat, except for one point at the inner
boundary which is still moving inwards. Entrainment is going on at this lower boundary.
The outer part has V. —V, very small, so that mixing is slow and the composition profile
rises smoothly; this is a semiconvective region.

The lower panels of Fig 2.6 similarly show the growth, by a combination of convective
entrainment and semiconvection, of the helium-burning core of a 0.4 Mg helium star.
Between the models the outer boundary of the convective carbon-enriched core has moved
outwards by roughly 0.09 Mg; this growth is driven mainly by the fact that carbon
opacity is higher than helium opacity at the same pressure and temperature, so that a
temperature gradient that would be stable if helium alone were present becomes unstable
once carbon is mixed in. However in this case the growth of the core in effect dilutes
the carbon as the boundary moves out, so that part of the entrained region becomes
semiconvective rather than fully convective. Most of the extra core is semiconvective, as
seen by the fact that there is a considerable gradient of composition along with a very
small but positive value of V, — V,.

Standard linear analyses of stability against convection are done on the assumption
that there is no composition gradient. The situation where there s a composition gradi-
ent requires a more detailed analysis, but its results are quite straightforward (Kato 1966,
Eggleton 1983b, Spruit 1992). They tell us, firstly, that if V, < V,, the ‘Schwarzschild
criterion’; then the situation is stable; secondly, if V, lies in an intermediate regime

810gT> du
ou /), ,dlogp’

Va < Ve < Va4 < (2.2.4.3)
then the situation is ‘overstable’, by which is meant that the motion is oscillatory on a
short (dynamical) time scale, but with an amplitude that grows on a longer (thermal)
time scale. However, the linear overstability in this regime is not in fact the predominant
instability, since in the same regime a non-linear mode, involving the successive over-
turning of a large number of thin layers, is more favoured energetically. The consequence
of the instability is that mixing (possibly very slow mixing) will take place as long as
V. exceeds V,. This mixing need not proceed to completion, :.e. until the composition
gradient has been reduced to zero, but only until V, has been reduced to fractionally
above V,, since the mixing then becomes slow. Thirdly, if V, is larger still, outside the
range indicated on the right in expression (2.2.4.3), the situation is dynamically unstable
to much the same degree that it would be without the composition gradient. This is the
‘Ledoux criterion’ for dynamical instability. However, one does not expect this criterion
to be interesting in practice, because before the gradient has grown large enough for
dynamical instability it would have already been large enough for the non-linear mode of
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successive overturning to have taken place, and so would be prevented from rising much
further. The upshot is that we should use use equations like (2.2.4.1), (2.2.4.2) whether
there is or is not a gradient of compositon. An exact value for the coefficient o in wl is
not necessary, provided that wl contains a factor with the property that it goes to zero
with V; — V,; but see Equn (2.2.4.4) below.

All the above behaviour takes place within the classical model of convective mixing,
where it is an axiom that mixing does not take place in regions where V, <V,. But it
is unlikely that the motion of convective eddies will actually fall exactly to zero at the
boundary V, = V,. Eddies which move on the unstable side of the boundary will be
accelerated by the buoyancy force right up to the boundary. Of course, they will also
be subject to the decelerative force of turbulent viscosity. But although the forces may
(somewhat naively) vanish at the boundary, the velocity presumably does not, and so
the eddies may be expected to overshoot somewhat into the stable region.

In addition to such a process, called ‘convective overshooting’, there are other possible
reasons why uniformly-mixed cores might be larger than the ones determined by current
models with the ‘standard’ assumptions. For example, stellar rotation can cause circu-
lation currents (Chapter 3.2.1), and these can be expected to be particularly strong at a
boundary between a convective and a radiative region. They may therefore cause mixing
across the classical boundary, and thus contribute to overshooting. Waves perturbed in
the stable region by motions in the unstable region can lead to mixing. Dynamo gener-
ation of magnetic field in the convective core might lead to buoyant toroidal flux loops
which float up through the stable envelope and cause mixing. ‘Convective overshooting’
will be used here in a very general sense, to mean any process that produces mixing
beyond the classical boundaries of convective and semiconvective mixing. Possibly the
term ‘enhanced mixing’ would be better, because less specific, but convective overshoot-
ing is the process most commonly discussed. Unfortunately, in some literature the term
‘convective overshooting’ is also used, confusingly, to describe the process by which a
classical convective region may grow in the course of stellar evolution; this is the process
which in this book is referred to as ‘convective entrainment’.

We would not, of course, be discussing possible mechanisms for convective overshoot-
ing if there were not rather clear reasons, coming from the comparison of observed with
computed stars (Andersen 1991), for believing that stars have larger mixed cores than
the standard models produce. The observational evidence suggests that the MS band
is broader than is indicated by models without overshooting, at least for masses above
~1.8 M; and also that core-helium-burning giants are more luminous at a given mass
than the standard models. Fig 2.1 shows a small group of stars that are quite far
above the ZAMS, at about spectral type A. Standard models would evolve very rapidly
through this area, so that such stars should be rare. But the assumption of convective
overshooting broadens the MS band, and allows the observed area to be more heavily
populated.

The effect of overshooting is to prolong MS evolution (because a greater amount of
nuclear fuel is accessible to the central nuclear furnace), to broaden the MS band, and to
make later evolutionary stages more luminous because their He cores are more massive.
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We model convective overshooting here by using a modified formula (¢f. Equn 2.2.4.1)
for the diffusion coefficient of turbulent mixing:

wl = Co(V,—Va+Ve)? Vs = s , (2.2.4.4)

2.5 4+ 20¢ + 16¢2

where (, as in Equn (2.2.2.2), is the ratio of radiation pressure to gas pressure. We find
(Schréder et al. 1997, Pols et al. 1997) that a value o5 = 0.12 £0.04 for the overshooting
parameter is necessary, by comparison of computed models with certain highly-evolved
binaries which have well-determined masses, luminosities, temperatures and radii.

The (-dependence of (2.2.4.4) is an ad hoc modification to ensure that very mas-
sive stars, where V,~0.25 because Thomson scattering dominates, and where also
Va ~0.25 because radiation pressure dominates, do not become wholly convective. The
(-dependent factor is equivalent to saying that mixing takes place in a band where the
entropy drops by a fixed amount from its constant value in the adiabatic core.

Equn (2.2.4.4) differs in two other ways from Equn (2.2.4.1). Both changes are for
numerical convenience, and have no physical basis. The exponent 2 replaces 1/3, be-
cause differentiation — necessary in the iterative solution of the equations — would give a
singularity at the boundary V, = V, — V,s. The constant C', which should be unity, is
weakened to 1072 or 10~* because even in double precision the composition gradient is so
slight that it is poorly defined numerically. We would hope to be able to report that the
changes make little difference in practice, since it matters little whether the composition
changes by one part in 10% or in 10'° within a convective region. However in the 8 M
star of Fig 2.1, the ‘blue loop’ (see later), where the star after having reached the giant
branch retreats temporarily into the Hertzsprung gap, is quite significantly shortened in
length as one goes from C = 1072 to C' = 10~*. Apparently minor changes in the helium
composition profile can change blue loops rather significantly.

It appears to be necessary for overshooting to disappear rather abruptly when the
convective core is itself small below about 1.8 My, since some old Galactic star clus-
ters such as M67 appear to contain a turn-off region which is better modeled without
overshooting (Morgan & Eggleton 1979, Pols et al. 1997, 1998). By contrast, younger
clusters such as IC 4651 are in better agreement with models containing overshooting. It
seems possible that a model of overshooting adequate to describe both older and younger
clusters will need two fitting-parameters in it, which is an unfortunate complexity. An
ad hoc prescription which does this is

Bos U Gm?

U= —— (2.2.4.5)

vOS = I I
2.5420¢ +16¢%2 Uy +U 4mrip

U being a homology invariant (i.e. a dimensionless quantity) which vanishes at the centre
but increases strongly outwards in the core. Along with d,5 = 0.12, the constant Uy is
taken as 0.1, which crudely ensures that the overshoot disappears when the core is
suitably small.

Theoretical estimates of the amount of overshooting are very uncertain, for the
present. We may have to wait until three-dimensional hydrodynamical codes have enough
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spatial resolution, as well as numerical reliability, to solve this problem convincingly — but
even then we should probably include rotation and magnetic fields, as a minimum. It is
also possible that yet more detailed calculations of the opacity coefficient will change the
size of the ‘standard’ convective core, and hence the size of the overshoot region needed
to give agreement with observation. It is not so much the magnitude of the opacity as
the rate of change of opacity with temperature and pressure — the quantities kK1, &, of
Equn (2.2.3.7) — which determines the size of a core. These could change significantly
even if the mean opacity level is about right.
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Fig 2.7 — (a) The difference between measured and computed sound speed (squared), as a function of
radius, for a solar model. Errors are largest (~ 0.4%) near the base of the convection zone at ~ 0.7 Rg. From
Christensen-Dalsgaard & Déappen (1996). (b) Contour plot of the rate of rotation as a function of latitude
and depth in the Sun. The base of the convection zone is shown as a dashed line. Rotation is rapid near the

equator, and slower towards the poles. It is indeterminate in the blank region to the left. From Schou et al.

(1999).

Probably the most stringent test at present of models of stellar evolution, but so far
only for the Sun, comes from helioseismology, the study of the very rich spectrum of
low-amplitude oscillations at ~1 — 5 mHz that are observed on the Sun (Claverie et
al. 1979, Isaak 1986, Schou et al. 1998). These oscillations are driven by the random
perturbing motion of convective eddies near the surface, but like earthquakes the waves
can penetrate quite deeply (more deeply, the longer the period), be refracted back to the
surface, and thus yield information about the deeper layers. Fig 2.7a shows the close
but not perfect agreement of the observed spectrum with a theoretical model (model S
of Christensen-Dalsgaard & Dappen, 1996). Agreement is best when it is assumed that
there is a slight diffusion (Proffitt & Michaud 1991) of helium towards the centre within
the radiative core (~70% of the Sun by radius).
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Selective diffusion (Chapman & Cowling 1958) takes place in stars, in those regions
which are not mixed to uniformity by convection or other processes, because the usual
structure equations (Appendix A) do not include the fact that different nuclear species
(and even different atomic states of the same species) are acted on by different forces.
Hydrostatic equilibrium (Equn A1) is an accurate average over all species, but a partic-
ular species of particle experiences a particular extra force relative to the mean force.
This extra force is (loosely) a linear combination of the pressure gradients of all species
(including photons), with different linear combinations for each species. Some species
experience a net outward force, some a net inward force. The selective force translates
to a selective velocity, via atomic collisions — much as in conduction by electrons in a
wire. The fact that photons diffuse outwards relative to the mean fluid can be seen as an
example of selective diffusion, and is due to their extremely low (i.e. zero) mass relative
to the other species, mainly H. He atoms are heavier than H, and so diffuse inwards;
except that the problem is actually much more complicated, as all the partial pressures,
including that of radiation, are involved, for all species. If a massive species has an
unusually high cross-section to photons, it may be dragged outwards by the photon flux
even though otherwise it would tend to settle inwards.

In a non-rotating star there would be considerable degeneracy among the normal
modes of oscillation, but this is lifted by rotation. The observed spectrum of the Sun is
so rich that the internal rotation can be determined as a function of position over most of
the interior except for a small central core which is not significantly penetrated by those
modes measured so far. Fig 2.7b shows the angular velocity determined. There is a strong
variation on the surface, that was already known from the rotation rates of sunspots;
but the helioseismological analysis shows that the surface variation persists with depth
down to the base of the convection zone, and then rather abruptly disappears to give a
rather uniformly rotating radiative core, at least to the depth which is measurable. The
peak angular velocity is ~8% greater than the mean interior value.

Another test of models of the Sun is from measurements of its neutrino output (Bahcall
1964, Kuzmin 1966, Davis et al. 1968, Haxton 1995). Neutrinos are side-products of the
chain of nuclear reactions that converts hydrogen to helium. Some come from the basic pp
reaction (or rather its pep variant), others from 8-decays of "Be and ®B. Although always
two neutrinos are produced for each He nucleus generated by the fusion of four H nuclei,
the energy spectrum of the neutrinos is a strong function of temperature as different
parts of the nuclear-reaction network contribute at different temperatures. There is a
marked disagreement here with theory. The shortfall is of about 40% in detectors based
on "'Ga and about 70% for the detector based on 37Cl (Haxton 1995; Bahcall 1998); the
shortfall depends on the parameters chosen for the theoretical model as well on the nature
of the detector. Before we throw out stellar models, however, we have to ask whether
the theory of the neutrino is more complex than at first supposed: ‘flavour oscillations’,
where the neutrinos (supposing their rest-mass is not exactly zero) oscillate between e, y
and 7 states as they travel through matter, or magnetic field, may possibly be the cause
of the discrepancy (Wolfenstein 1978, Mikheyev & Smirnov 1985, Hata & Langacker
1995). We shall adopt the point of view that helioseismology largely vindicates stellar
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modeling, and that therefore the neutrino problem requires better neutrino physics.

2.2.5 Anomalous Main Sequence Stars

If the standard equations of stellar structure, involving strict hydrostatic equilibrium of
spherical objects with solar composition at age zero, were literally true, there would be no
MS stars showing (a) emission lines, (b) peculiar (i.e. strongly non-solar) composition, (c)
short-term variability e.g. pulsation, flares, rotational asymmetry, (d) excess radiation,
relative to the visual, in XR, UV, IR, radio or other wavebands, or (e) magnetic fields.
In fact many MS stars show one or more of these properties. Some of these anomalies
may well be related to binarity. But it will be convenient to summarise here, very briefly,
some of the main types of anomaly that require explanation. In approximate order of
decreasing luminosity down the MS, we find the following;:

(i) Of stars. These are O stars which show emission lines, both in the visual and the UV.
The lines have a ‘P Cygni’ shape (red-shifted emission bordering a broad blue-shifted
absorption line) which is indicative of a roughly spherical wind flowing outward with
high terminal velocity and substantial mass-flux (Section 2.4).

(i) WR (Wolf-Rayet) stars. These show very strong emission lines, especially of ionised
He, N, C; as for Of stars the lines have a P Cygni shape, but are so much stronger
that they actually dominate the visual spectrum. WR atmospheres are so affected by
wind that it is difficult to locate the stars with certainty in the HR diagram, but they
appear to be in the top left corner, with L 210° Ly. Their masses, determined with
some reliability from spectroscopic orbits, are about 30 — 70% of what is expected from
their luminosities (2 30 — 50 Mg, Fig 2.1). The enhancement of nitrogen seen in the WN
subset of WR stars is roughly consistent with mass loss, if the star has been stripped down
to a core where nuclear burning formerly took place (Gamow 1943). The WC subset
(carbon-enriched) presumably represent a later phase where products of helium burning
are revealed, and it may be that WC stars, and perhaps the hotter (‘earlier’) WNs, are
actually post-MS objects. Possibly all stars of high enough luminosity are subject to
such winds, perhaps as a result of some major instability triggered by high radiation
pressure at the Humphreys-Davidson limit (HDL; Section 2.3.4), but the physics of the
mass-loss process is not yet well understood.

(iii) OBN stars. Some late O and early B stars show anomalously strong nitrogen. This
could be due to mass loss, as in WN stars, but the winds observed are by no means as
strong. It could more probably be due to unusually strong mixing of the outer layers with
the nuclearly-processed interior, perhaps driven by rotation (Paczyniski 1973). There is
evidence that binarity is involved (Walborn 1976).

(iv) B8 Cep, 53 Per and SPB stars. These show pulsation in radial and/or non-radial
modes. Most or all stars in a limited range of spectral type (B0.5 — B2 II — IV are radial
B Cep pulsators. The pulsations appear to be driven by a mechanism which derives
from an enhancement of opacity in a limited region of the density-temperature plane
near the surface, due to partially ionised Fe and other heavy elements (Cox et al. 1992,
Dziembowski et al. 1993a,b). They relate to the bump seen in Fig 2.4 at about 10° K
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and low density. 53 Per stars (Smith 1977) occupy a larger region of the HR diagram
roughly centred on the 8 Cep region, extending to mid-B, and perhaps are a less extreme
form of the same mechanism. They exhibit periodic changes in line shape, attributable
to non-radial pulsation. Slowly Pulsating B (SPB) stars (Waelkens 1991), in the range
B3 — B8, have low-amplitude multi-periodic pulsations of period ~ 1.5 —4d, which may
be high-order non-radial gravity modes, driven by some destabilising mechanism in the
energy-producing core. The 8 Cep pulsators are not to be confused with § Cep pulsators;
the latter are not main-sequence stars and so are not discussed here, except tangentially
in (viii) below.

(v) Be (B-emission), A Eri, ¢ Oph stars. Although Be stars range from late O to late
B they are most common (about 20%) at early B. The emission, unlike in WR stars, is
usually double-peaked and roughly centred at rest. It appears to be due to a rotating
equatorial ring or disc of gas. The emission is often episodic, on a timescale of about
a decade, as if occasionally shells of gas are thrown off at or near the equator. Infall is
sometimes seen, as well as outflow, but circulatory motion dominates. Be stars are all
in very rapid rotation, so that equatorial gravity is strongly reduced though not to zero.
An excitation in the outer layers near the equator, perhaps due to magnetic activity
or pulsational instability (or both), may be intermittently overcoming the rather weak
gravity there. Some Be stars are A Eri variables (Balona 1990), whose variability appears
to be due to the rotation of a starspotted surface, as in the cooler « CVn and much cooler
BY Dra stars (below). ¢ Oph stars appear to show non-radial pulsation (as do 53 Per
stars) as well as Be characteristics (Kambe et al. 1993).

(vi) Bp (B-peculiar), a CVn, roAp stars. These chemically peculiar stars are quite
common (~10%) at late B, but range from early B to A and even early F. Different
elements show marked overabundances (by about 10® — 10°), roughly correlating with
mean surface temperature. Helium, and sometimes specifically >He, can be anomalous at
early B, and a range of metals (Sr, Eu, Cr, Ho) at later types. The overabundances are
usually concentrated at strong magnetic poles, and since the magnetic field is normally
oblique to the rotation axis the peculiar abundances as well as the magnetic field appear
to vary periodically as the star rotates. The poles may also be so large and cool that the
light output is rotationally modulated, in & CVn variables. The overabundances are also
presumably concentrated very much to the outermost layers; they are not thought to
represent an overall overabundance of the element. Selective diffusion of elements in the
local temperature and pressure gradients of the photosphere (Section 2.2.4), particularly
as modified by very large magnetic fields in starspots, is thought to be the cause (Michaud
1970). Bp stars are often called Ap stars, because the excess of metals gives a first
impression that the spectrum is later, and the surface cooler, than is actually the case —
but there is a minority of such stars to be found genuinely at spectral type A. Some of
the cooler Bp/Ap stars show rapid oscillations (‘roAp stars’ — Kurtz 1990), with periods
of about 10 — 20 min. They may be ‘oblique pulsators’, with the pulsation and magnetic
axes aligned. The roAp stars are in the § Sct instability region (see below) and so the
pulsations are presumably driven by helium ionisation, but in a surface whose behaviour
is dominated by strong starspots.
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(vii) Hg/Mn, Am (A-metallic) stars. From late B to early F there is a high proportion of
stars (~20%) showing overabundances (by about 10 — 10?) of elements like Y, Ga, Hg,
Mn, and also underabundances of He, Ca. Unlike the Bp stars, there is no evidence of
magnetic fields, and the abundance anomalies appear to be distributed isotropically, not
patchily. Selective diffusion is probably also the cause here, but without the extra effect
of starspots. Selective diffusion might be suppressed by rotationally driven mixing, but
presumably in these stars this mixing is ineffective because these stars have slower-than-
average rotation — see (viii). Am stars are usually in binaries with 2.5d < P $100d (Abt
1983), which suggests that tidal friction (Chapter 4.2) is involved.

(viii) & Sct, AI Vel, § Del, v Dor stars. Most A stars that are not Am stars are ¢
Sct pulsators. The pulsations are akin to the & Cep pulsations of evolved stars, and
are driven by the zone some way below the photosphere where helium is undergoing
second ionisation (T ~50kK). The pulsation is presumably absent in Am stars because
selective diffusion has largely drained the helium from this zone. The § Sct stars probably
counter this selective diffusion with rotationally-driven mixing, being faster-than-average
rotators. AI Vel variables appear to be § Sct stars that are at the upper edge of the
MS band. A few stars (6 Del stars) show both Am and § Sct characteristics. Balona
et al. (1994) have identified a v Dor class of variable at or just beyond the cool edge of
the § Sct instability strip. They are early F stars apparently pulsating non-radially, but
probably related to & Sct stars.

(ix) B Pic stars. These show a considerable excess IR flux, which can be interpreted as
a cool disc some hundreds of AU across (Aumann 1985). Such discs are presumably left
over from the formation process, and indicate a fairly young star. They may be sites for
the formation of planetary systems.

(x) Blue stragglers. These stars are not especially anomalous in themselves, but are
anomalous in relation to those star clusters in which they are found. In principle they
can be any spectral type earlier than about solar, but most are of types late-B to F. They
lie on a cluster MS above the turn-off point, where normal stars should have evolved
into giants or white dwarfs (Fig 2.10b). Apart from binary mechanisms, two suggested
explanations are (a) recently-born stars, younger than the bulk of stars in the cluster,
and (b) anomalously mixed stars, whose MS lives have been extended through large-
scale mixing of the envelope with the core. Neither single-star mechanism is especially
satisfactory.

(xi) A Boo stars. These are mildly anomalous stars of spectral type A, which are fairly
normal in C, N, O and S, but depleted in many other metals. They may be related to
B Pic stars (above) in having cool discs around them, and the abundance anomalies may
be due to depletion of metals in the disc by selective condensation into grains. These
grains are driven out of the system by radiation pressure, and accretion of the remaining
disc material on to the photosphere gives the anomaly. They may represent <1% of
main-sequence A stars.

(xii) Strong AO77 stars. These are mildly anomalous F (and some A) stars showing
overabundances of Zr, Ba and other elements possibly related to the s-process of nucle-
osynthesis (Section 2.3.2). They may be MS analogues of the classical red-giant barium
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stars, for which a binary-star mass-transfer mechanism is strongly indicated. If the
same mechanism applies to AM4077 stars, we would expect them all to be binaries with a
white-dwarf companion.

(xiii) FGKM ‘subdwarfs’. These are Population IT main-sequence stars, and ‘anomalous’
in our definition only because, being old, they formed with substantially lower metallicity
than the Sun. They are hotter and smaller than ‘normal’, i.e. solar-composition, main-
sequence dwarfs, and so on a Hertzsprung-Russell diagram appear below the normal
main sequence, but by no means as far below as white dwarfs.

(xiv) BY Dra, AB Dor stars. Some K dwarfs, but also F — M, show a quasi-periodic
variation due to the rotation of one or two large starspots or starspot clusters into and
out of the line of sight. Individual spots persist for months. Such stars tend to rotate
rapidly (~0.5 — 5d), and also to show flaring activity. Rapid rotation is probably the
cause of dynamo activity, in turn causing the flares and spots. Binarity is sometimes the
cause of the rapid rotation, as for evolved RS CVn red subgiants, but rapid rotation may
also be simply an indication of youth. We use BY Dra as a prototype of such behaviour
as produced by binarity, and AB Dor as a prototype of such behaviour in single stars
(or at least stars with no close companion).

(xv) Flare stars. A proportion, increasing to about 50% at latest types, of K/M dwarfs
have 3 — 5 magnitude outbursts of a few seconds duration, at intervals of weeks or
months. These outbursts are typically more energetic than solar flares, and seen against
the background of a star that may be about 1000 times fainter. The flares are due to
magnetic activity, which is probably related to more rapid rotation than average; but
not all flare stars show the rotational modulation characteristic of BY Dra stars (above).
Mass loss due to flaring, combined with the magnetic field, will lead to ‘magnetic braking’
of the rotation; so the rotation and all the activity consequent on it should diminish with
age. This suggests that flare stars are simply younger-than-average M dwarfs.

Almost all of the above types of anomalous behaviour have been attributed at some time
to the influence of a binary companion, but the case has not always been sustainable.
The best cases for the importance of binarity can probably be made for classes (iii), (vii),
(viii), (x), (xii) and (xiv), and will be discussed later; while for classes (iv), (vi), (xiii)
and (xv) there is little or no case to be made.

2.2.6 Brown and Black Dwarfs

Towards the lower end of the MS, where stellar interior conditions involve substantially
lower temperatures and higher densities than in the Sun, the equation of state (EoS)
becomes rather complicated. It is high density rather than high temperature which
causes material near the centre to be ionised (‘pressure ionisation’), and the electron
gas may be substantially degenerate. The effect of degeneracy can be to allow the star
to support itself in hydrostatic equilibrium without the help, necessary in more massive
stars, of a temperature gradient due to nuclear reactions. Thus models are possible
in which the heat flux derives only from cooling of the interior. Such stars are called
‘brown dwarfs’; they are expected at M <0.08 Mg, the exact value depending on what
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approximation is used for the EoS. In principle such a star can continue cooling to
zero temperature, since either degenerate electron pressure, or else the pressure of the
liquid or solid state (as in planets), can support the star against gravity at arbitrarily
low temperature. If the temperature is so low as to contribute negligibly to pressure
support the object is sometimes called a ‘black dwarf’. The radius of a black dwarf
will be determined purely by its mass and chemical composition; a brown dwarf can be
somewhat larger, since the internal temperature also contributes to the pressure support.

Zapolsky & Salpeter (1969) constructed black dwarf models using a relatively simple
EoS. They obtained a radius-mass relation which can be approximated, for M 2 10~° M,

thus:
M\ 22 7 \2/3 1/2
M Mch

The characteristic radius R, and masses M, and My, are given in terms of the compo-
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where Z, A are the atomic number and atomic weight of the chemical constituents,
and angular brackets mean that the quantities are averaged over the different con-
stituents, by weight. Thus material consisting of 70% hydrogen and 30% helium by
weight has < Z/A> = 0.85, <Z?/A> = 1.0. Equn (2.2.6.1) gives R oc M'/? for low
(planetary) masses (M < M), where the EoS gives virtually an incompressible liquid.
For higher masses, approaching stellar, where electron degeneracy pressure dominates,
Equn (2.2.6.1) gives R M~1/3; except that the radius goes to zero as M — M, the
Chandrasekhar limit (see Section 2.3.2). A maximum radius of about 0.1 R is attained
at about the mass of Jupiter (~0.001 My). Brown dwarfs, being hot enough for the
internal temperature to increase the pressure, will have somewhat larger radii than is
given by Equn (2.2.6.1) for black dwarfs.

Although brown dwarfs have been postulated for a considerable time, it is only rel-
atively recently that, thanks to better detectors in the IR, they have been found in
substantial numbers. An early clear candidate was Gl 229B (Nakajima et al. 1995), but
recent advances in IR detection show them to be common (Rebolo et al. 1995, Jameson
et al. 2002). Objects of brown-dwarf mass are sometimes to be found as companions of
white dwarfs in some cataclysmic or related binaries of very short period (Table 5.1).
Some of these may be remnants of initially more massive MS stars which have lost
substantial mass by binary interaction, but others may be primordial.

Objects of major planetary mass (~1 — 50 M), or equivalently of low brown-dwarf
mass, have been detected around a number of nearby solar-type stars (Mayor & Queloz
1995, Butler et al. 1997) by very accurate measurement of radial velocities; and objects of
terrestrial planetary mass by the even more accurate process of pulsar timing (Wolszczan
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& Frail 1992). In practice, Equn (2.2.6.1) extrapolates reasonably well to terrestrial
planetary masses.

2.2.7 Star Formation

One blessing of stellar astrophysics is that, although it is very difficult to arrive at a
clear understanding of how stars form, remarkably little of the later evolution of stars
depends on the details of their formation process. Throughout most of this book we
shall assume that stars ‘start’ on the ZAMS. Although purists might feel that we should
start with a star-forming gas cloud, they should acknowledge that such clouds show
many signs of having been processed by earlier generations of stars, so that we have a
chicken/egg situation. We choose to start with the chicken, but in this subsection briefly
refer to the egg.

The formation of stars (Lada 1985, Shu et al. 1987, Pringle 1989, Matthieu 1994)
is probably less well understood than any other portion of stellar evolution. This is
partly because the expected lifetimes of pre-main-sequence stars are short — <0.001 tys,
Equn (2.2.1.4) — so that such stars should be, and are, relatively uncommon; partly
because many pre-main-sequence stars tend to show complicated spectra, and erratic
variability,e.g. Herbig Ae/Be stars and T Tau stars (Herbig 1960), which makes them
harder to quantify than main sequence stars; and also partly because star formation takes
place predominantly, even almost exclusively, in gaseous and dusty ‘star-forming regions’
(SFRs) where the protostellar gas cloud itself blocks most of the radiation from the stars,
at least at visual and shorter wavelengths. The 1980s and 1990s have however produced
a vast improvement in the quality and quantity of information on star formation, mainly
thanks to observational work in the infrared and millimetre wavelength ranges.

Many SFRs are very massive collections of gas and stars called Giant Molecular Clouds
(GMGs), of which the Orion SFR, at a distance of ~500pc, is an example. This SFR
fills much of the constellation of Orion, but with a concentration to the central part of
Orion’s sword, where the visible star is in fact a collection of about a dozen massive
newly-formed stars. On a more modest scale is the SFR in Taurus-Auriga, at ~ 140 pc.
This consists largely of low-mass T Tau stars.

Perhaps the most basic problem for theorists of star formation is the absence of any
sensible ‘initial conditions’. There is no particular moment in the life of an SFR at
which one can, for example, assume that it is spherical with a given density/temperature
distribution, and thus investigate its stability to fragmentation on various lengthscales.
In contrast, there are reasonably good ‘final conditions’, i.e. stars on the ZAMS, so that
theories of star formation will have to be tested primarily by their ability to produce the
right distributions of masses, and of binary (and triple, etc.) parameters. Unfortunately
this is not likely to be a powerful restriction. Different SFRs, or different regions in the
same SFR, may produce different IMFs and different period distributions, which merge
ultimately to give some more global properties as in the solar neighbourhood.

Within an SFR there are many ‘cores’, which appear to be the actual sites of star for-
mation. If there were rough spherical symmetry near a core, the centre of the core should
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collapse first to a low-mass protostar, with infall of material further out subsequently in-
creasing the mass, often by a substantial factor. But typically there will be considerable
rotation, which requires stars to solve the ‘angular momentum problem’ (Bodenheimer
1978, 1991; Boss 1991, 1993). A cloud of gas should spin up, on contraction, because of
conservation of angular momentum, and the ratio of centrifugal to gravitational force at
the equator (loosely defined) should increase roughly as 1/r, where r is the equatorial
radius of the cloud. The apparently trivial amount of rotation in an initial cloud that
would be due to galactic rotation should make it impossible for the cloud to contract to
stellar radii by the necessary factor of 107 —108. Even contraction to fairly close binaries,
those with periods of ~1 — 10*d, would be difficult, and yet these constitute ~10% of
low-mass stars, and 2 30% of massive stars. We appear to need a dissipative process,
i.e. viscosity, to allow some regions to transfer their angular momentum outwards, and
thus contract further inwards. The viscosity presumably has a magnetohydrodynamic
(MHD) and/or turbulent basis, since molecular viscosity is too weak to have much effect.

The transition from a gas cloud of say 10% Mg, a few parsecs across, to a group of
newly-formed stars and systems, and from there to a broad distribution of stars and
systems as seen in the solar neighbourhood, along with some remaining older clusters,
probably involves a considerable number of processes, some acting at an early stage and
some at later stages. We identify something like six steps, overlapping in time:

(i) contraction of the gas cloud, and fragmentation into several (say ~100) smaller,
denser accumulations — proto-sub-clusters

(ii) viscous (primarily MHD-driven) interaction within the fragments, allowing substan-
tial contraction within proto-sub-clusters which further fragment into proto-sub-sub-
clusters, and so on iteratively to individual multiple systems with ~2 — 10 protostellar
components

(iii) slowing down of contraction locally when central material becomes opaque enough
to establish a temperature gradient sufficient for hydrostatic equilibrium

(iv) gravitational interaction, leading to the concentration of the more massive fragments
towards the centre, to mergers (collisions) of some close pairs of proto-sub-clusters etc.
and to ejection of some of the lighter members, at each hierarchical level

(v) ejection of the remaining ambient gas

(vi) dissipative-tidal and evolutionary interaction of close pairs and triples.

Process (i) might divide the initial gas into a non-hierarchical assembly of fragments
which would not yet be on a stellar scale but rather on a sub-cluster scale of say 103 —
10* M, each. Presumably the regions which are particularly poor in angular momentum
would be prone to contract furthest. They would not be able to contract very far, in the
first instance, before reaching the centrifugal barrier.

However process (ii) allows further angular momentum to be extracted from some
already denser regions, permitting further contraction, of a more hierarchical character,
down to the scale of sub-sub-clusters of perhaps 10 — 102 My, and by iteration on a
smaller scale still to fairly hierarchical multiple systems of perhaps 2 — 10 protostars. It
is necessary that we have some kind of unstable process that depletes angular momentum
in regions that are already somewhat low in it, and transfers it to ambient regions. This
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allows regions which are capable of more substantial contraction to continue contracting
further. It is also necessary that this take place on a considerably smaller length-scale
than the entire cloud, so that what we get is 10% condensations rather than one large
condensation.

We believe that MHD ‘viscosity’, i.e. process (ii), is likely to be the most effective
means of the necessary redistribution of angular momentum. Gravitation has the prop-
erty that low angular momentum goes along with high angular velocity: a close binary
has less angular momentum but more angular velocity than a wide binary. Gravitational
contraction and spin-up therefore encourages differential rotation, which will rapidly
amplify locally any pre-existing magnetic field. Then MHD interaction can lead to an
effective viscosity (Shakura & Sunyaev 1973; see Appendix F) and a further loss of an-
gular momentum from regions already short of it, and so lead to further contraction. At
a fairly late stage in the formation process the angular momentum loss may take place
primarily in disc-like structures (see below), but in the earlier stages the process is likely
to be more unstructured, yet general enough to cause local instabilities where angular
momentum is siphoned out of regions that are already somewhat low in it, and so where
greater contraction is possible.

Provided that angular momentum can be extracted fairly efficiently from local con-
densations, the process of hierarchical fragmentation will stop, or at any rate slow down,
only as protostars reach hydrostatic equilibrium — process (iii). At early stages this
does not happen because the gas is fairly transparent to the low-temperature radiation
released by gravitational contraction (although it is highly opaque to visible radiation).
Isothermal spheres cannot reach hydrostatic equilibrium; but as the opacity goes up,
more heat is retained and a temperature gradient grows which can allow hydrostatic
equilibrium to develop.

Although the angular momentum problem means that it is difficult for a local blob
of gas to contract radially by a large factor, the blob is not inhibited in principle from
contracting by a large factor parallel to the local angular momentum vector, to form
a disc. We then need viscosity within the disc to allow material to spiral inwards,
on to the hydrostatically supported central protostar, while the angular momentum
is transported outwards. As discussed in Chapter 6.2, the main agent for producing
viscosity in a disc is likely to be MHD. However we are not thinking of MHD viscosity as
taking place exclusively in thin discs around protostars that are already in hydrostatic
equilibrium: it will probably already be contributing to the solution of the angular
momentum problem as soon as there is any marked local differential rotation, and it
contributes by unstably taking angular momentum out of those regions which are already
low in angular momentum, but high in angular velocity and differential rotation.

Infrared observations have shown that some stars are surrounded by cool equatorial
discs of ~100AU in radius. The disc absorbs part of the radiation of the star and
reradiates it at longer wavelengths. Such discs are particularly in evidence around pre-
main-sequence stars, although they can persist to the main-sequence stage (e.g. 8 Pic,
Aumann 1985). A typical ‘core’ in an SFR probably consists of (a) several protostellar
nuclei (perhaps ~10% — 10 AU apart) that are already of roughly stellar density, and
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supported in hydrostatic equilibrium, (b) accretion discs around each nucleus (~10 —
10? AU in radius), and (c) a roughly spherical envelope of 2 10* AU around the whole
system. Material is accreted from the envelope on to the disc or discs, and viscosity
within these discs allows material to spiral in and be accreted by the nuclei. At a fairly
late stage in this process, it is possible that the remaining disc is capable of condensing
into planets.

We anticipate that something analogous to common-envelope evolution in evolved
binaries (Chapter 5.2) may be at work, to produce the closest young binaries. Common-
envelope evolution is invoked to explain how in a highly evolved binary, containing an
AGB star in an orbit of a few years, there can be interaction with a companion to
produce the very close white dwarf / M dwarf pairs with period less than a day that are
quite often found in planetary nebulae and elsewhere. The interaction can be perceived
as two small objects spiralling in towards each other within an envelope that is ~10 AU
across and contains ~ 1 Mg of gas. Dynamical friction may be sufficient, but there must
be some dissipative agent, which could also involve MHD-driven turbulence, to achieve
the transport of angular momentum from the stellar pair to the envelope. A somewhat
similar situation may arise if two protostars have a near-collision (at ~1—10AU), while
their surrounding discs interact to provide the common envelope. This might similarly
lead to spiraling-in, and the formation of a close pair with a period of a day or so. The
analogy cannot be wvery close, since common-envelope evolution in evolved stars appears
always to lead to a cicular orbit whereas close pairs of young stars are often eccentric.
But the situation with protostars may be more chaotic than with evolved stars, and
inhomogeneities may allow eccentricity to survive, or even be amplified.

Purely gravitational interactions — process (iv) — between clumps of protostars (and
their surrounding gas), at the sub-cluster and deeper levels, is probably not effective
at encouraging highly hierarchical contraction, but may neverthess cause substantial
evolutionary progress. More massive concentrations will tend to settle towards the centre,
and less massive ones to be ejected. This will happen at all levels of hierarchy, such as sub-
sub-clusters. Of course there is not in practice a sharp distinction between sub-clusters
and sub-sub-clusters; rather there will simply be a range of scales, perhaps of a fractal
character, which we divide artificially into quantised sizes for the sake of exposition.
At the deepest levels, actual collisions of stars, or at least protostars, might occur: not
so much direct collisions of previously independent stars, but rather situations where a
binary has an interaction with another star or binary, and the binary orbit is perturbed
to a high eccentricity, that could lead to a collision at periastron (Chapter 5.4). In places
where the protostellar density is unusually high, we might even have runaway mergers
(Portegies Zwart & McMillan 2002). Stars that have just collided will probably puff up
temporarily to rather large radii, and may therefore be more likely to have a further
collision.

At some stage the remaining ambient gas is likely to be driven out as a result of
stellar activity and evolution — process (v). Massive stars create strong winds, and also
lead to supernovae within 3 — 4 Myr of formation; less massive stars may contribute to
gas ejection through such energetic phenomena as bipolar jets from Herbig-Haro objects
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(Schwartz 1983). The overall efficiency of star formation — whether say 10% or 90%
of the gas condenses into stars before the remaining gas is expelled — is not clear, and
may vary from region to region. But on the whole we expect that more than half of
the original gas is expelled, since this will help to unbind the overall cluster, and help
to ensure that the population of stars is mostly spread through the Galactic disc rather
than left in the clusters where they originated.

Process (v) will obviously terminate process (ii) but not process (iv). Strongly hier-
archical systems will be harder to form once the gas is expelled — but see the discussion
of process (vi) below. However those formed already will interact gravitationally with
others, the more massive concentrations on any scale tending to drift to the centre and
the less massive ones tending to be ejected into the general Galactic field. In some clus-
ters and sub-clusters this process may mean that the entire cluster has dissolved in a
few Myr, but evidently some clusters survive for a few Gyr, and globular clusters for
many Gyr. This may be mainly a function of the initial mass, but may also depend on
the orbit of the cluster relative to the Galaxy. Some clusters are tidally stripped of their
outer layers (by what can be seen as a version of Roche-lobe overflow — Chapter 3 — on
a Galactic scale), and others will lose some further members by gravitational interaction
with the stars of the Galactic plane on occasional passages through it.

There do however remain processes, under (vi), which can increase the hierarchical
depth of some multiples. We note in Chapter 4.8 that within triple systems the combina-
tion of Kozai cycles and tidal friction can cause the inner binary to shrink, transferring
much of its orbital angular momentum to the outer orbit. This requires, as we now
expect, a dissipative agency, but it is no longer necessary at this level that MHD play a
major role. Ordinary tidal friction — Chapter 4.2 — may be enough. For Kozai cycles to
work, we require only that the inner binary be quite highly inclined to the outer binary.

Since SFRs are themselves gravitationally bound clouds of gas, it may seem at first
glance that they would only produce gravitationally bound clusters of stars such as galac-
tic or globular clusters, but not field stars as in the solar neighbourhood. However the
disintegration of a cluster as it condenses out of an SFR can be understood as the result
of much of the gas being expelled from the cloud by processes involving newly-formed
stars: for example massive stars with strong winds, or supernova explosions. Low-mass
stars can also have strong winds at an early stage in their lives, producing such energetic
phenomena as Herbig/Haro objects (Schwartz 1983). Provided such processes occur
while still only a fraction (say 10 — 20%) of the SFR’s mass has been condensed into
stars, they may be able to put in enough energy to eject a considerable fraction of the
remaining gas in the SFR. If a cluster (gas plus stars) is in roughly virial equilibrium,
i.e. its gravitational energy is twice its kinetic energy (with opposite sign, so that the
total energy is negative), and if subsequently the cluster has half its mass, presumably
gas rather than stars, expelled on a short timescale, with the energy for this coming
from internal stellar processes rather than from the kinetic or gravitational energy of the
cluster, then the cluster will become gravitationally unbound. This is because gravita-
tional energy goes roughly as the square of the mass, while kinetic energy goes linearly
with the mass. This is much the same as the reason (Chapter 5.3) why a binary is
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disrupted if more than half of the mass is expelled in a supernova explosion. Expanding
OB associations such as III Cen, I Ori and Sco-Cen (Blaauw 1964) probably represent
intermediate stages in the unbinding process.

Another process which might help to unbind small clusters (N < 100 stars) is two-body
gravitational relaxation, i.e. the gravitational scattering of less massive members into
escape orbits by simple 2-body encounters with more massive members. However the
persistence of some large clusters, such as globular clusters, shows that this process is
less effective for large clusters.

2.2.8 The Terminal Main Sequence (TMS)

The point at which the main sequence life of a star terminates is not as easy to define
as might be supposed. For most stars with M 2 1.1 My evolution abruptly becomes rapid
once hydrogen is exhausted more-or-less instantaneously throughout the convective core.
However, for M <2 Mg the evolution slows again temporarily while hydrogen burns in a
thick shell around the helium core. During this phase the star is only moderately larger
and more luminous than in the first slow phase. But when the core reaches about 11% of
the star’s mass (see Equn 2.3.1.1 below, and Table 3.2) the evolution accelerates again.
Unfortunately this acceleration is not very abrupt, and thus it is difficult to assign its
position on the HRD unambiguously. This second acceleration continues, as discussed
in more detail in the next Section, until either (a) the envelope becomes substantially
convective, at a point which is fairly clearly identified by a local minimum of luminosity on
the cool side of the HRD (Fig 2.1), or (b) helium ignites at the centre as its temperature
reaches about 120MK. Option (b) may happen either before or after (a), but either way
it is also relatively easy to locate unambiguously.

In this book we adopt, for the sake of argument, the following definition of the TMS.
Let t be the time, measured from the ZAMS, at which either (a) or (b) above, whichever
is first, occurs. Then the TMS is taken to be at age tys = 0.99¢ (Equn 2.2.1.4). Although
there is of course an element of arbitrariness in this, the definition can be applied uni-
formly to all masses down to about 1 Mg, despite the fact that the degree to which central
convection is important or not changes markedly, particularly in the range 1 — 2 M.
Unfortunately, when the influence of a binary companion is included (Chapter 3) it is
once again difficult to formulate a sensible definition of the TMS.

2.2.9 Rotation and Magnetic Fields

Rotation in stars is inferred both from the broadening of lines by Doppler shift, and
(in a subset of stars) by periodic variation of light output, or spectral line shape, that
can be attributed to some anisotropy that rotates into and out of the line of sight. Such
anisotropy can in fact be due to magnetic fields, which may also show up as Zeeman
splitting of certain lines.

For a star in wuniform rotation — just an assumption, for the moment — there is an
upper limit to rotation, such that centrifugal acceleration at the equator balances gravity
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(Fig 3.1d). Roughly, for zero-age main-sequence stars, the shortest possible period of
rotation varies over ~0.1 —2d from the lowest to the highest masses. By the end of the
main sequence the range is roughly 0.6 — 30d also depending on mass. Few if any stars
are known to be rotating at very close to break-up, but some, particularly Be stars, are
rotating at up to 70% of break-up. However, many stars, such as the Sun, are rotating
much more slowly, at only ~1%.

Surface magnetic fields on main sequence stars are found as large as ~1—3 T, which is
probably an upper limit dictated by the balance of gas pressure with magnetic pressure.
The distribution of magnetic field within the interior is hard to guess at: some stars may
have a roughly dipolar magnetic field, but many have higher-order fields. On the Sun,
there is both a weak dipolar field, roughly parallel to the rotation axis and reversing
every ~11lyr, but also many small transient spots coming and going on a timescale of
days to weeks, where the field may reach its pressure-equilibrium limit, more or less.

Rotation and magnetic fields are almost certainly related, but the relationship is
very complicated. We discuss some aspects of this in a little more detail in Chapter 4.
The reason for deferring this discussion is that probably, though not certainly, these
processes are more significant for the long-term evolution of binaries than for single
stars. It is not yet clear how important these processes are for single stars, but a great
deal of stellar modeling ignores both processes, and seems to reach reasonable agreement
with observation. For example, Fig 2.1 ignores them, and yet seems to get reasonable
agreement between observed and computed masses, temperatures and luminosities.

It is probably futile to attempt to deal with either process in isolation from the other:
they must couple very strongly, particularly since the hot ionised gas of a star is a very
good conductor, and therefore magnetic field can be expected to be ‘frozen in’ to the gas
it threads. But what makes the joint problem particularly difficult is that both processes
appear to be much influenced by turbulent convection, which is itself very difficult to
model.

Perhaps the best reasons for ignoring them in the first instance are the following:

(i) magnetic field tends to be buoyant, and thus to float to the surface. It might reach
pressure equilibrium at the surface, but it is difficult to imagine that flux tubes could
stay deep in the interior with the much stronger fields that would be necessary for
equilibrium at the much higher pressures there. A strong flux tube in the interior would
expand or contract on a dynamical timescale towards pressure equilibrium, and since
heat conduction will tend (more slowly) to keep the internal temperature near to the
ambient temperature the density, according to the perfect gas law, would be less and so
the tube would rise.

(ii) stability analysis of differentially rotating stars suggests that there is stabilty on a
thermal timescale only if the rotation is constant on cylinders, and the angular momen-
tum per unit mass increases outwards.

(iii) internal magnetic fields, even of trivial strength initially, would be rapidly amplified
by differential rotation, to the extent where magnetic torque would inhibit the differential
rotation.

None of these reasons is entirely convincing on its own, but they all seem to argue against
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the nightmare scenario of a star which seems normal on the surface but whose interior is
a seething mass of huge magnetic and velocity fields for which the simple non-magnetic
non-rotating models are completely invalid.

Spruit (1998) has argued that point (iii) above may be the reason why the Sun
(Fig 2.7b) shows little sign of differential rotation in the core, despite the fact that
evolution should have caused the inner part of the core to contract and the envelope to
expand. He argues cogently for what might seem a rather extreme position, that mag-
netic torque may enforce uniform rotation even in the much later evolutionary stages
(discussed later in this Chapter) when the core may have contracted in radius by two or
more orders of magnitude, and the envelope expanded by a similar amount.

But although magnetic stress may suppress differential rotation within the radiative
core of the Sun, it patently does not suppress it within the convective envelope (Fig 2.7b).
One of the odder features of convection is that it apparently generates differential rotation
(at the level of ~10% in the Sun) — whereas one might expect that turbulence, acting
like viscosity, would suppress it.

Since we discuss this, and develop a very tentative model of convective dynamo ac-
tivity, in Chapter 4.5, we will not pursue it further here. We accept provisionally the
view of Spruit (1998) that stars will evolve in a state of near-uniform rotation for much
of their lives, and as a result rotation is likely to have little effect on their overall evolu-
tion. Uniform rotation can in fact, somewhat surprisingly, be incorporated into a code
for spherical models — Appendix B and Chapter 3.2.1 — and can be shown to be rather
unimportant. Further, from point (i) above, it is likely that magnetic field plays an
important role only in the surface layers, which are themselves not very important for
the nuclear evolution going on deep in the interior. We therefore continue our discussion
on the assumption that the evolution of stars can be reasonably well understood in the
non-rotating, non-magnetic approximation.

2.2.10 Examples from Observed Binaries

Table 2.1 gives a small selection of binary and multiple systems which are on or still
approaching the main sequence. T Tau, the prototypical pre-main-sequence star, is itself
in a multiple system, which appears recently to have been in the process of breaking
up. There is a cool infrared companion (T Tau S), probably dominated by an accretion
disc rather than a star, 0.7" to the south of the main KOV component. T Tau S is at
least two components, one of which (T Tau Sb) appears to have been in an eccentric
‘visual’ (actually, radio VLBI) orbit of period ~20yr around the other, but to have
been ejected in ~ 1996 into a hyperbolic orbit with velocity ~20km/s towards the east.
This suggests that T Tau Sa is itself a closer binary, with estimated period ~2yr, and
that an interaction at the periastron of the eccentric outer orbit between Sb and the
binary Sa led to an ejection, as is commonly seen in N-body gravitational simulations of
non-hierarchical systems (Anosova 1986). It is likely that the entire solar neighbourhood
has been populated by stars or systems ejected in a somewhat similar manner from
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Table 2.1. Some Binaries before and on the Main Sequence

Name Spectra P e M Mo Ry Ro Reference
T Tau KOVe+ (IR+..) 0.72" Ghez etal. 1991
T Tau S (IR +IR?)+M1 20:yr? .8: Loinard etal. 2003
T Tau Sa IR +IR? 2:yr ”
TY CrA® B9Ve + KOIV: 2.89 3.16 1.64 1.80 2.08 Casey etal. 1998
TY CrA®  (B+K)+? 270:  .5: 4.8 1.3: Beust et al. 1997
BM Ori B3V + ATIV 6.47 5.9 1.8 2.9 4,7¢ Popper & Plavec 1976
EK Cep Al1.5V+G: 4.43 11 2.02 1.12 1.58 1.32 Popper 1987
XY UMa GOV + K5Ve 048 0 1.0 0.6 1.15 0.65 Hilditch & Bell 1994
V624 Her ATm + A8m 3.90 O 2.28 1.88 3.0 2.2 Andersen 1991
RR Lyn ATm + F0 9.95 .08 2.00 1.55 2,50 1.93 Popper 1980
6 Cap F2m + G/K: 1.02 .01 .038“ Lloyd & Wonnacott 1994
EN Lac B2IV + F6-7 12.1 .04 10 1.3 5.3 1.3 Garrido et al. 1983
DI Her B4+ B5 10.6 .49 5.18 4.53 2.7 2.5 Guinan etal. 1994
SZ Cen AT+ AT 4.11 0 2.32 2.28 4.55 3.62 Grgnbech et al. 1977
GG Lup B7V + B9V 1.85 .15 4.12 2.51 2.38 1.73 Andersen et al. 1993
SS Lac® A2V + A2V 14.4 .14 293 2.85 3.4 3.2 Torres & Stefanik 2000
SS Lac® (A+A)+7? 679 .16 5.78 0.80 h
n Ori® B1 + B2e 799 0 11 10.6 6.3 5.2 De May et al. 1996
n Ori® (B1+B2e)+B 3500: .4: 1.4:° Waelkens & Lampens 1988

A period may be replaced by a separation (') in visual systems
“mass function

bclose triple system

“polar, equatorial radii

drecently destroyed; see text.

star-forming regions. We are very fortunate to see, before our very eyes, an instance of
dynamical breakup during star formation.

TY CrA is an eclipsing double-lined system, and so gives rather precise fundamental
data. Qualitatively, there is agreement with evolution of pre-MS stars, but there is a
problem: x1 is significantly cooler and less luminous (by ~10% and 40% respectively)
than expected for its mass, whether on the ZAMS or still approaching it (Casey et al.
1998). This may perhaps be broadly accounted for with a higher metallicity than solar;
but it is difficult to match both stars with the same isochrone, and we may need to
entertain the possibility that while %2 is as young as 3 Myr, *1 is as old as 10 Myr or
even older. This need not be surprising if the current binary was created by a dynam-
ical encounter among more primordial binaries. The system is triple, with a low-mass
companion in an orbit (but a very tentative orbit, so far) of less than a year. Although
the outer orbit is tentative — Beust et al. (1997) suggest four possible periods, ranging
from 126 to 270d — it is double-lined in the sense that the CG of the close pair, and Li
lines in the third body, give complementary orbits.

BM Ori is a somewhat enigmatic system in which the fainter, less massive, but larger
component can be interpreted (Popper & Plavec 1976) as a flattened differential rotator
which has not yet reached the main sequence. Its apparent ratio of equatorial to polar
radius, as determined from its eclipse light curve, seems more extreme than is permissible
for a star in uniform rotation, and may imply that the core is rotating substantially
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more rapidly than the envelope. This ought to be unstable on a thermal timescale
(Chapter 3.2.1). On this picture, the age of the system should be $1 Myr, and so it is
not surprising that thermal instability and/or tidal friction has had little effect on the
less massive component. What does seem surprising is that the more massive component
is not rotating about equally rapidly.

BM Ori (6! Ori B) is a member of the Trapezium Cluster (M42), the central concen-
tration of young stars in the Orion Nebula cluster, at ~470 pc distance. The Trapezium
can be viewed as a multiple system, but of a non-hierachical character, i.e. several stars
are at comparable distances from each other. Such systems are gravitationally unstable.
Almost all components will be ejected and will ultimately escape, leaving one system
behind that is likely to be a hierarchical multiple; but several of the escapers may them-
selves be binaries or hierarchical multiples. Such breakup is a process of which T Tau
above seems to be an actual example. The timescale for the cluster to break up is roughly
the dynamical crossing time of the system, i.e. ~2mwy/a®/GM where a is the linear size
of the cluster and M the total mass. The timescale is typically <1Myr, even for quite
wide multiples.

The Trapezium Cluster is about a dozen OB stars, and several hundred lesser mem-
bers. Specifically (Preibisch et al. 2001), there are 13 OB stars, which between them
have at least 14 companions closer than ~1”. Four of them have spectroscopic orbits,
with periods in the range 6.5 — 65d. The principal members are ~ 10 — 100" apart. BM
Ori is in fact in a non-hierarchical submultiple of the Trapezium: five components are
grouped in two binaries and a single, and these three sub-subsystems are all ~0.5 — 1"
apart. Probably most of the star formation in the Trapezium has taken place in the last
~1Myr (Herbig & Terndrup 1986), but we shall argue (Chapter 5.4) that some distant,
high-velocity stars escaped from it 2.5 Myr ago, and of these one is about 10 Myr old.

EK Cep is a rather less surprising system than BM Ori. Here, the main evidence that
*2 at least is pre-main-sequence comes from the fact that it is significantly larger than a
ZAMS star of its mass.

The remaining systems in the Table appear to be on the MS and in some cases signif-
icantly evolved across the MS band. XY UMa is a low-mass, very close, system in which
the stars are very active presumably because of their rapid rotation — Section 2.2.5 (xiv).
V624 Her and RR Lyn contain Am stars — Section 2.2.5 (vii) — and § Cap is an inter-
esting combination of activity in the cooler component and metallic lines in the hotter
component. EN Lac is a combination of a 8 Cep pulsator — Section 2.2.5 (iv) — and a
much less massive companion. Among close binaries with components that have not yet
interacted, EN Lac appears to have the largest mass ratio known so far.

In the range 1—4 M, the TMS, or equivalently the blue edge of the Hertzsprung gap, is
not clearly defined. The evolutionary tracks make a ‘hook’ at the TMS in the HR diagram
(Fig 2.1), during which evolution is rather rapid as central hydrogen is exhausted; but
stars can spend a significant fraction of their main sequence life in a shell-burning phase
which is somewhat beyond the ‘hook’ , while not far advanced into the Hertzsprung gap.
Whether such stars are to be considered as late main sequence stars or early Hertzsprung
gap stars is a semantic question. We prefer to include them as main sequence stars,
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particularly since in the range ~2 — 1 M the hook progressively disappears, and the
distinction between stars before it and stars after it becomes progressively less relevant.
However the issue is further complicated by the fact that in the same mass range the
Hertzsprung gap itself progressively disappears. By ~1 M), a star evolves on something
like a nuclear timescale from a dwarf to a subgiant to a giant, with only a mild temporary
acceleration in the subgiant region. As indicated in Section 2.2.7, we take the term ‘Main
Sequence’ to include any star in a long-lived hydrogen-burning state, but excluding those
with deep convective envelopes, i.e. stars on the first giant branch. The triangular region
between the main sequence thus defined and the GB is then to be defined as the HG. But
it is still inevitable that the MS/HG/GB boundaries are rather indeterminate, especially
around ~1 — 1.5 M (and still more especially if *1 has lost a considerable amount of
mass through Roche-lobe overflow, Chapter 3.3).

Andersen (1991) has drawn attention to a handful of eclipsing binaries at spectral type
~ A which appear to be well above the main sequence (Fig 2.1). SZ Cen is an example,
where %1 is ~3 times as large as a ZAMS star; %2, of almost the same mass, is ~2.5
times as large. The mere fact that there are ~4 such systems, out of 45 well-determined
systems tabulated by Andersen (1991), suggests that they are in a relatively slow stage
of evolution, rather than in the Hertzsprung gap. If classical stellar models are to be
believed, then it is difficult to account for these stars even as post-hook, but still slowly
evolving, objects, let alone as pre-hook stars. Andersen has therefore suggested that they
support the existence of convective overshooting (Maeder 1975, 1976; Section 2.2.4). The
theoretical models shown in Fig 2.1 contain a degree of convective overshooting.

Pols et al. (1997) compared theoretical models with 49 ESB2 systems having relatively
well-determined data, and found better agreement with models incorporating overshoot-
ing than with ‘classical’ models. Twelve systems out of 49 were in rather poor (X2 >5)
or very poor (X% >8) agreement, with either kind of model; V624 Her is an example of
very poor agreement, with 2 too large by about 8%. On the other hand 30 systems gave
X2 <2, for the overshooting models. The six systems of lowest mass (M; < 1.24 M) were
all problematic in some regard, usually because %2 was larger than the models allowed.
Possibly this is because they have not fully contracted to the main sequence; several
are active BY Dra-like objects such as XY UMa. Three examples of good agreement,
DI Her, SZ Cen and GG Lup are in Table 2.1. The last two are relatively stringent tests
of models, because either the components are quite evolved (SZ Cen) or the mass ratio
is quite severe (GG Lup, ¢~ 1.6). For the many systems in which both components are
quite closely equal in radius and temperature as well as mass, the constraint on modeling
is not severe: one can usually adjust the two unknowns, metallicity and age, to give the
two data, radius and temperature, at a given mass. But if the masses are very different
one has to fit four data values with the same two unknowns. A high degree of evolution
can mean that even a small difference in mass can make a substantial difference in radius
and temperature, and thus we again have to fit four data with two unknowns.

It is not quite clear what conclusion to draw from the balance of agreement and
disagreement; perhaps other parameters than age, mass and metallicity can influence
the structure of some stars, but not all, at the ~5 — 10% level. It is encouraging for a
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theorist to note that over the last 30 years agreement has become substantially better,
without the theoretical models changing by as much as the observational data.

SS Lac is an interesting system which used to eclipse until about 1950, but then
stopped. This is well explained by the recent discovery of a third body, which must be
in an inclined orbit and thus causes the close pair’s orbital axis to precess (Chapter 4.2).

1 Ori is an interesting multiple system with at least five and possibly six components:

n Ori : ((((B1+B2e;8d) +B; 0.05”, 9.5yr,e = 0.4:) + B; 1.65") + faint; 115")

The innermost pair (*111 in the notation of Chapter 1.4) is an ESB2 system with rather
good data leading to the masses and radii in the Table; %11 has been resolved by speckle
interferometry, and is also an SB1 by virtue of the motion of the CG of x111. The
very similar luminosities for all three components of *11 suggest similar masses. The
fourth B star (x12), similar to the previous three, can be expected to orbit in ~ 1000 yr.
One of the four B stars, but not one of the eclipsing pair (Waelkens & Lampens 1988),
varies photometrically with an amplitude of 0.3 mag and a period of 0.43 or 0.86d: this
may mean that x12 or %112 is a close binary, probably with an inclination a good deal
less than 90°; but several other interpretations (pulsation, rotational modulation) are
possible.

%1112 (B2e) is a rapid rotator, from its rotationally-broadened lines, with period
~2d; hence it is super-synchronous by a factor of 4. It is also a non-radial pulsator —
Section 2.2.5 (iv) — with line-profile variations on a period of 0.133d. By contrast, *1111
is sub-synchronous by a factor of two, and shows no detectable pulsation. It is puzzling
that two such similar stars have such different rotational and pulsational properties.
This may may be linked to the existence of the relatively close third body (x112). A
somewhat similar phenomenon — very different rotation rates within the same close pair
— is in fact also seen in TY CrA.

2.3 BEYOND THE MAIN SEQUENCE

Once a star of mass M 2 0.8 M reaches the TMS (Fig 2.1, Table 3.2), the mass M,
of the hydrogen-exhausted helium core is roughly

0.11M%2 +0.0022M2 + 9.6 x 10~°M*

M, ~
1+0.0018M2 +1.75 x 10~4 M3

(M $100 M) (2.3.1.1)

in models with convective overshooting as given by Equn (2.2.4.5). Some details of
evolved stars, including M. at various evolutionary stages, are given in the next Chapter
(Table 3.2), in the context of the influence of a binary companion.

2.3.1 The Hertzsprung Gap and Hayashi Track

Beyond the TMS, computed models show a progressive contraction of the helium core,
along with an expansion of the envelope. The contraction of the core once it has burnt up
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all its hydrogen is fairly easy to explain qualitatively. Nuclear burning in the deep interior
demands a substantial temperature gradient over the whole star, in order that the heat
released can flow outwards, and this temperature gradient contributes strongly to the
pressure gradient which supports the star against its own gravity. Removing the energy
source therefore weakens the pressure gradient and allows gravitational contraction to
gain the upper hand — though only by a narrow margin, since the contraction of the
core will itself release (gravitational) energy, which largely but temporarily compensates
for the loss of nuclear energy. The contraction is liable to be rapid at first, taking
place on the thermal or Kelvin-Helmholtz time scale of the core, which is related to the
main-sequence life time tyg of Equn (2.2.1.4) by

tiu GMc/Re 103 Poucle 10 3tums - (2.3.1.2)
L L

The factor 10~2 is roughly the ratio of thermal or gravitational energy to nuclear energy.

Thermal and gravitational energy per unit mass are usually comparable, thanks to hy-

drostatic equilibrium, and have values RT./u ~ GM./R. ~ 2 x 10! J/kg. The nuclear

energy Fpyu. from hydrogen as it burns to helium is Epy. ~ 0.007Xc? ~ 4.5 x 10** J /kg.

The rapid contraction of the core can be either slowed down, if the core density
increases sufficiently for electron degeneracy to become important (low-mass stars, Sec-
tion 2.3.2), or even reversed temporarily, though only by a small amount, if the core
temperature rises sufficiently to ignite helium before the core density has increased to
degeneracy (intermediate and high mass stars, Sections 2.3.3, 2.3.4). Fig 2.9a illustrates
the way in which density and temperature at the centre vary with evolution, for a range
of stellar masses.

The considerable expansion of the outer envelope, which takes place at the same time
as the contraction of the core, is much less easy to account for in back-of-the-envelope
terms, despite the fact that it is a near-universal feature of computed stellar evolution.
It is easier, in fact, to say what it is not due to (Eggleton & Faulkner 1981): for example,
it is not due to
(1) the onset of degeneracy in the core
(ii) the onset of convection in the envelope
(iii) the release of gravitational energy by the contracting core
(iv) a thermal instability of the envelope
(v) the fact that the polytropic index n tends to have the value n~3 in the radiative
part of the envelope.

Nor is large expansion an inevitable concominant of core contraction: in helium ‘MS’
stars (Section 2.5) of 0.7 Mg the core also contracts, but the envelope only expands
by a factor of 2 or 3.

In essence, there are two main reasons for the envelope’s considerable expansion.
Firstly, a gradient in mean molecular weight p develops as the hydrogen burns: p rises
by about a factor of two in a zone between the wholly unburnt outer envelope and the
burnt-out core. Secondly the nuclear burning zone, previously at the centre of the star,

shifts outwards to the base of the envelope where the fuel is not exhausted, allowing a
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nearly isothermal and (in some circumstances) non-degenerate layer to develop at the
outer edge of the core. Neither reason is an obvious reason, however, but some insight
can be gained by the following argument.

What mainly distinguishes an evolved giant structure from a dwarf-like MS structure
is the degree of ‘central condensation’ C, defined as

pe _ 4TR3p,
<p> 3M

c (2.3.1.3)

where p. is the central density, and <p> is the mean density derived from the surface
radius and mass. Typically C' ~50 for ZAMS dwarfs, whereas C'~10% — 10% for red
giants and supergiants. For simple polytropes C is listed along with other polytropic
constants in Table 3.4. Eggleton & Cannon (1991) have proved the following result (see
Appendix A):

(i) Define n(r), the local polytropic index, and s(r) the local ‘softness’ index, as before
(Section 2.2.2) by

n _ Ologp/or

n+1 — dlogp/or

(2.3.1.4)

»
Il

Although the polytropic index n is more familiar, the softness index s turns out to be
more significant. Further define Cpoy(s) as the readily calculable central condensation
of a complete polytrope of softness index s: a complete polytrope is an entity where n
and s are constant throughout the star. A reasonable approximation to numerical values

is
0.025 0.86

Croty(s) ~ (5/6—s)° | 5/6—s

, for 0<s5<5/6. (2.3.1.5)

Onuly the first term, which dominates as s — 5/6, is important for the present discussion.
The singularity at s = 5/6 (n = 5) is due to the fact that the n = 5 polytrope or ‘Plummer
sphere’ has a finite mass but infinte radius.

(ii) Then if smax is the largest value of s within a star, and if syax <5/6, we can prove
that the star must be less centrally condensed than a polytrope of constant softness spax:

Cls(r)] £ Cpoly (Smax) » I 0<8(r) < Smax <5/6 for all r. (2.3.1.6)

The proof is given in Appendix A.

For ZAMS stars, with n~3 (s~0.75), this is consistent with C' ~50. But for a struc-
ture with (say) C'~7 x 10™, we must have s 0.83333 (n 2 4.99988) somewhere in the
interior. Such a high value can usually only be obtained, and then only in a fairly narrow
region, as a result of either (a) a p-gradient, or (b) a nearly isothermal, non-degenerate
(n~o00, s~1) zone immediately below the nuclear-burning shell (Fig 2.8), as indicated
above. Only processes which contribute to a ‘softening’ of the effective equation of state,
i.e. to increasing n or s beyond the typical n~3, s~0.75 of a ZAMS star, push a star
towards a very centrally condensed structure, and then only if they push n very close to
or preferably beyond the value n = 5, over a sufficiently significant part of the star.
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The fact that a p-gradient ‘softens’ the star is not obvious at first, but comes from the
specific definition (2.3.1.4) of softness. ‘Softness’ does not have the intuitive meaning that
material is ‘soft’ if pressure is only weakly dependent on density at constant temperature,
or at constant entropy. It means that as the density increases going inwards, the pressure
increases slowly rather than rapidly. To illustrate this, suppose that the molecular weight
increases inwards at exactly the same rate (logarithmically) as the temperature, over a
region where the temperature increases by say a factor of two. Then p/T is independent
of r locally, and so, in a perfect gas where P o pT'/u, we have just P « p. From this s
is unity (and n infinite). Softness in our context is not an inherent property of material,
but is a quantity that is only known a posteriori in a model that has been constructed in
hydrostatic equilibrium. Nevertheless we can make some predictions about its behaviour
without actually solving a model: the statement that a molecular weight gradient in
some region softens that region is such a prediction: see Equn (2.3.1.7) below.
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Fig 2.8 — The behaviour of L(r)/m(r) in arbitrary units (asterisks) and the softness index s=n/n+1
(plusses) in a star of 1 M, at the beginning of the giant branch (left) where the degree of central condensation
C 105, and the top of the giant branch, ie. at degenerate helium ignition (right) where C ~ 10'3. The fact
that both models have condensed cores and extended envelopes is partly explained by the fact that s 2 5/6 in
regions near the burning shell, where L/m drops abruptly. The value s=5/6 (n=5) is shown by the dotted
line. Compare with Fig 2.3 for two ZAMS stars.

We prefer to talk in terms of s rather than n because it is quite possible to have a region
where s> 1, a very soft region, but this actually implies a negative n. A discontinuity
in molecular weight (decreasing outwards) counts as ‘infinitely soft’, but corresponds to
n = —1. Although loosely the statements n>5 and s>5/6 appear to be equivalent,
actually they are not.

Figs 2.3 and 2.8 show the very different behaviour of s = n/n + 1 in a main sequence
star and in red giant. In the former, s never gets substantially above the value 5/6,
shown by a dotted line; but in the latter there is a region well above this value at the
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hydrogen/helium boundary (logp~16 — 17). The sharpest part of this spike is due to
the molecular weight gradient, but there is a substantial shoulder to the right which is in
the isothermal but non-degenerate outer layers of the helium core. This shoulder is due
to the fact that L/m has become small, so that the region is nearly isothermal while also
non-degenerate (s~1). But deeper still the core, though still nearly isothermal, becomes
degenerate (s = 3/5).

In Section 2.2.3 we saw how Equn (2.2.3.5) can be used to infer that (a) going inwards
from the surface, V tends rapidly to a constant, Vy, that depends only on the tempera-
ture and pressure dependence of the opacity, and (b) as we approach the central burning
core V rises further, possibly to the convective value V,, because of an increase in L/m
there. Approaching a burning shell, on the other hand, (a) remains true, but at the shell
L/m decreases, very sharply and indeed more-or-less like a step-function. Thus Vp/,, is
like a negative delta-function, and the effect on V is to decrease it, rather than increase
it.

For a perfect gas, but allowing the molecular weight to be a function of position,

n
n+1

»
Il

= 1-V+V, |, (2.3.1.7)

where V,, is the logarithmic gradient of molecular weight relative to pressure. In the
shell, V drops and at the same time V, rises, so that both effects increase the ‘softness’,
quite possibly to well above unity (Fig 2.8).

Generally, in order to understand why a particular model is very centrally condensed,
we need only locate the region or regions where n (or more precisely s) is largest. This
largest value of s must be close to or above 5, or the model could not in fact be very
centrally condensed; and then whatever causes that large s can reasonably be said to be
the ‘cause’ of the giant-like structure.

A piece of pedantry that we reluctantly bring forward is that we must not assume
that all red giants are very centrally condensed. A pre-main-sequence Hayashi-track star
can be a red giant, but although its mean density is low so is its central density. It is
in fact mostly an n = 3/2 polytrope. We often use the terms ‘giant-like’ and ‘centrally
condensed’ as if they are equivalent, but actually they are not.

Although we can prove that if n is never greater than say 4 the star cannot be more
centrally condensed than a polytrope of index n = 4, unfortunately we cannot make
a converse claim that, for instance, if n >5 somewhere the star must be very centrally
condensed. A small region in which n >5 by a small amount will not necessarily produce
a large degree of central condensation. For a star with C'~7 x 10'* the condition that s
exceeds 0.83333 somewhere is necessary, but not sufficient. It is not difficult to construct
stellar models which have sz 1 somewhere but are not especially centrally condensed
(though they are usually more centrally condensed than main-sequence stars). These
do not violate the theorem, but they limit its usefulness. For example, the two cases in
Fig 2.8, though both strongly centrally condensed compared to MS stars, have widely
different degrees of central condensation despite apparently similar distributions of s at
least so far as the regions with s>5/6 are concerned. Empirically, it seems as though
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a peak has less effect when near either the centre or the surface than when somewhere
near the middle (in terms of mass): perhaps there is a futher theorem to be developed
here.

As the star crosses the Hertzsprung gap (Fig 2.1), the surface temperature drops. Once
it drops significantly below about 10kK, the corresponding drop in opacity (Fig 2.4) as
the free electrons recombine causes the surface to become convective, just as for MS stars.
According to the analysis of Hayashi et al. (1962), the convective envelope deepens until
the atmospheric structure converges to a nearly unique radius for a given luminosity and
mass (whereas if the envelope remained radiative there might be a wide range of possible
radii). For different luminosities and a given mass, the star must lie on a locus in the
HRD, the Hayashi Track, and this is found to agree very well with the observation that
cool giants lie on a well-defined track, the Giant Branch (GB, Figs 2.1, 2.10). Although
the theoretical location of the GB is uncertain because it depends on the convection
theory, and on poorly-known low-temperature opacities and bolometric corrections, the
existence, observationally, of a well-defined GB confirms the general concept of deep
convective envelopes.

For massive stars the expansion from the TMS to the Hayashi Track is by a factor
of 2100 in the radius, but for low-mass stars it may only be a factor of less than two.
The Hayashi Track is the locus for stars which are cool enough to have deep convective
envelopes; properly, they should be fully convective, to the centre, but in practice the
track is little different provided the envelope is deep. The radius on the Hayashi track
can be approximated, in the same spirit as Equns (2.2.1.1) - (2.2.1.5), by

Rur = (1.65L°*7 +0.170°8)M—031 | (2.3.1.8)

with Ryr, L and M still in solar units. This formula is a reasonably good empirical fit to
computed giants, but agrees reasonably well also with low-mass dwarfs — Equns (2.2.1.1)
and (2.2.1.2) — for M 0.5 Mg; these are also largely or wholly convective. The luminos-
ity L of a star when it first reaches the Hayashi limit is only perhaps a factor of about
1 — 3 above what it was on the ZAMS (Equn 2.2.1.1), although in subsequent evolution
it may increase very considerably. The surface temperature may still be estimated from
Equn (2.2.1.3). In Fig 2.1 the locus where stars of various initial masses first develop
substantial convective envelopes is marked BGB (Beginning of Giant Branch). The po-
sition of this locus depends on the detailed approximation to turbulent convection that
is used, but mixing-length theory with o~ 2 seems adequate at present.

2.3.2 Low-Mass Stars (M <2 M)

For stars with M <2 M, electron degeneracy becomes important in the helium core
at an early stage, soon after the hydrogen is exhausted (Fig 2.9a). It stabilises the core,
preventing any rapid further contraction. This happens, somewhat fortuitously, at about
the same time that the Hayashi limit starts to prevent substantial further expansion of
the envelope. But the star still evolves by slow core contraction, and envelope expansion,
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on a nuclear rather than a thermal time scale. Since the Hayashi limit approaches close
to the main sequence at about 1 M, the ‘Hertzsprung gap’ between the terminal main
sequence and the Hayashi limit is much less marked than at high masses. It is almost
non-existent at and below about 1.2 M.

Once degeneracy sets in, the star’s core is virtually a white dwarf, with an ‘initial’
mass at the base of the giant branch of 0.12 — 0.2 My, Equn (2.3.1.1). It is fed by
hydrogen burning which continues at the core’s surface. As the core mass M, grows, the
burning shell gets thinner but also hotter, allowing the nuclear luminosity to increase
quite strongly, though on a slow (nuclear) time scale. Conditions in the burning shell
are dictated almost entirely by M.. The total mass M is barely relevant to the shell,
although it does of course affect the outer radius of the star: see Equn (2.3.1.8). The
luminosity L of the burning shell, and the time scale tgg of red giant evolution, defined
by trg = MC/MC are roughly (Fig 2.9b)

Mo _ Me o 22M0 7
dt tRG 1+6.7M3

(2.3.2.1)

with L, M in solar units and ¢ in Myr as usual. This formula is crudely justified below.
The core radius R, is not very different from the radius of a cold white dwarf (Chan-
drasekhar 1931), which is well approximated (Nauenberg 1972) by

M\ 2/ A\ 23 1/2
R.=R m——— - -
¢ . ( M. > <Mch> ’
2 2\’
R, = 0.0114 <—> Ry, Mg, = 1.457 <—> Mg (2.3.2.2)
He He
also in solar units; u ! = <Z/A> is the mean molecular weight per free electron.

Equn (2.3.2.2) is the same as Equns (2.2.6.1), (2.2.6.2) for black dwarfs, with M > M.
Clearly as M — M, (the Chandrasekhar limit) the radius goes to zero; hence the
core’s mass cannot grow without limit. The Chandrasekhar mass, like the Eddington
mass (Equn 2.2.2.5), depends only on fundamental constants. Because both masses are
determined by special-relativistic effects, related to photons and to electrons respectively,
both involve n = 3 polytropes, and so their ratio is just 32/15/72. That this factor is not
unity reflects the fact that photons are bosons, while electrons are fermions. Most white
dwarfs are expected to be made of He, C, O, Ne, Mg or Si, for which u. = 2, but cores of
56Fe, which can be expected to develop in a late evolutionary stage in massive stars (see
below), will have p. larger and so a significantly smaller limiting mass (1.256 Mg). In
practice the Chandrasekhar limit is about 4% smaller than the value above because of a
number of physical effects such as inverse S-decay and general relativity. The physics of
white dwarfs has been thoroughly reviewed by Koester & Chanmugan (1990).

The relation (2.3.2.2) is a good empirical approximation to detailed models; but it is
also obtainable by a surprisingly elementary argument. The Fermi-Dirac integrals which
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Fig 2.9 — (a) The density-temperature plane, showing the evolution of central conditions in stars of various
masses, with steps of 0.1 in log M. Stars of mass 0.5—2 Mg converge to a locus for He white-dwarf cores:
evolution was terminated at the He flash. In the mass range 2.5—6.3 M, they converge to a C/O white-dwarf
locus: evolution was terminated at degenerate C ignition. More massive stars ultimately ignite C in (nearly)
non-degenerate conditions. (b) — (d) Luminosity as a function of mass M. at the boundary of the helium core
(continuous line) and of the C/O core (dotted line), for (b) low-mass, (c) intermediate mass, and (d) high-mass
stars. In (b), the steeply sloping asymptote to which the cores converge for M. < 0.45 M), if joined smoothly
to the shallower asymptote for M. = 0.7 M), is well approximated by Equn (2.3.2.1). In (c) and (d), for some
masses the He core may shrink temporarily, because surface convection eats into it. No mass loss was included

in any of these models.

give the relation between pressure and density for a degenerate gas (Chandrasekhar 1939)
can be approximated as

x 4 5
3 Yy €T
= , = ——dy ~ —_ 2.3.2.3
p pO'/L. p pO/O 1 + y2 y pO (25 + 16w2)1/2 ( )
with )
0o = 8T pemuy 8T mec A = MeC (2.3.2.4)

3 N 0 PO=T3oa o h
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The constants pg, pp are determined by atomic physics: pg is the density at which the
exclusion principle for electrons demands relativistic momenta (about 3 x 10° kg/m?).
The quantity . is the Compton wavelength. Let us approximate hydrostatic equilibrium
crudely by

GMp Gmp dp

~ - —— ~

b
R2 r2 dr R’

(2.3.2.5)

and estimate the mass by
4T

M ~ ?R?’p . (2.3.2.6)
Eliminating p, p and = between Equns (2.3.2.3) - (2.3.2.6), we get an R(M) relation of
exactly the same functional form as Equn (2.3.2.2), although the numerical constants
are not, quite correct.

We can set up a simple model of the evolution of a red giant interior comparable in
plausibility to the MS model of Section 2.2.2. As for the MS model, the justification is
not that it can be demonstrated from first principles to be correct, but rather that it can
be shown to agree reasonably well with computed models. The latter are found to contain
5 different zones: (1) a degenerate, possibly partly relativistic, nearly isothermal helium
core; (2) a non-degenerate nearly isothermal helium shell; (3) a hydrogen-burning shell;
(4) a radiative zone covering several pressure scale heights; and (5) a convective zone
reaching to the surface, and containing most of the mass that is not in the degenerate
core. Zones (2) to (4) all contain rather little mass. Apart from the burning zone
(3), the zones are all closely polytropic, with respectively n ~ %, 00, 3, and % Our
analytic model is obtained by fitting an exactly n = 3 radiative zone (with pressure and
opacity given by Equns (2.2.2.2) and (2.2.2.3), and therefore with ¢, s constant as for
the MS model) directly on to a degenerate core, Equn (2.3.2.2). All the nuclear energy is
approximated as coming from the base of the radiative region, within about one pressure
scale height of the core boundary. Further out, the luminosity and mass are almost
constant for several pressure scale heights. The luminosity in this n = 3 zone is therefore
given — ¢f. Equn (2.2.2.6) for MS stars — by

4 2
I dracGM.T* dmeGM.C _ (2.3.2.7)
3Kp (Crrn + prke)(1+ Q)

Hydrostatic equilibrium in this zone, where m ~ M, = const. and p < T, p oc T°, gives
to a similar level of approximation

,U'GMC Tsth ap'Ta pshRg)

T = ARr(1+ Q) -y 0 P= 3RC T3 ’ (2:3.28)

throughout the radiative zone, ps, and Ty, being values at the shell, i.e. where r = R,.
We can now crudely integrate the nuclear energy generation rate ¢ = ApT™ over the

radiative zone to get

Arnp RS . Apy T
L = ”phn°+ 3’”‘ sh (2.3.2.9)
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Equns (2.3.2.2), (2.3.2.7) and (2.3.2.9), along with Equns (2.3.2.8) evaluated at r =
R.,, T = Ty, for Ty, and pg,, are now 5 equations from which the 5 unknowns
R¢, Tsp, psh, ¢ and L can be determined as functions of the independent variable M..
The L(M,) relation in particular can be compared with the ‘empirical’ relation (2.3.2.1).
Realistic cores of red giants have somewhat larger radii than Equn (2.3.2.2) gives,
because of zone (2) above. This zone grows significantly as the degenerate core shrinks,

keeping R. nearly constant at
R.~0.03Rg . (2.3.2.10)

Using this value instead of Equn (2.3.2.2) improves the agreement between the analyt-
ical and numerical values of L(M.). Adopting n~13, a somewhat lower value than is
appropriate for the MS because shell-burning tends to take place at higher temperatures,
we find that for successively lower regimes of M, (below the Chandrasekhar limit) we
get L oc M., L oc M% and L oc M&5. In practice M, is never small enough for the last
approximation to be valid. The ‘empirical’ Equn (2.3.2.1) agrees with the first two of
these three power-laws.

Equns (2.3.2.7) to (2.3.2.10) tell us that a burning shell should be located approxi-
mately on the following curve in the (p,T) plane:

Kple 4ac

= W(n+3) ~ const. (2.3.2.11)

So the fact that R, empirically is nearly constant means that burning shells should lie on
a unique locus — ¢f. Equn (2.2.2.11) for ZAMS stars where burning occurs at the centre.

Equn (2.3.2.1) shows that the star’s luminosity should increase strongly with M.,
and hence with time. Since the envelope remains close to the Hayashi limit, the star
ascends the ‘Giant Branch’ (GB) of the HR diagram (Figs 2.1, 2.9b). Early in the
star’s climb up the GB, the convective envelope deepens to the point where it begins to
entrain material that was partly burnt during MS evolution (Fig 2.5a). This is the ‘first
dredge-up’ phase, the first opportunity for material processed by nuclear reactions near
the centre to be observed at the surface. In particular, '*C and *N are enhanced, the
latter at the expense of 12C and '60. Once the burning shell moves out close to the base
of the convective envelope, however, the deepening of the envelope is reversed. There is
always a radiative buffer between the burning shell and the convective envelope, which
may contain very little mass but covers several pressure scale heights. Consequently
no further dredge up should occur. There is however observational evidence to suggest
that 14N is progressively enhanced beyond this point (Sneden et al. 1991). This appears
to mean that some slow or perhaps intermittent mixing can occur in the convectively
stable zone, as is also suggested by the existence of OBN stars (Section 2.2.5). Possibly
such mixing is driven by the interaction of rotation, especially differential rotation, and
magnetic field. We would expect the core to spin up as it shrinks, and the envelope to spin
down as it expands, but on the other hand we also expect even a rather weak internal
magnetic field to preserve uniform rotation. The resulting redistribution of angular
momentum perhaps can mean a certain degree of mixing across the stable radiative
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mantle separating the burning shell from the convective envelope. An alternative might
be that thin H-burning shells could be subject to a mild form (Bolton & Eggleton 1973)
of the shell-flashes which occur in thin He-burning shells at a later stage of evolution —
see below.

Although rotationally driven mixing seems an attractive possibility, we should note
the argument of Spruit (1998) that it would take very little magnetic field to enforce
uniform rotation. Evolution in the Sun, with the core contracting and the envelope
expanding, has long been supposed to produce non-uniform rotation in the solar core,
and yet helioseismology (Fig 2.7b), while showing non-uniform rotation in the convective
envelope, shows remarkably little in the radiative core. This is plausibly due to magnetic
field. Differential rotation in the core at the level of one part in a million would roughly
double the magnetic field every million rotations, or in ~10%yr. This is very short
compared with the age of the Sun. Taking this concept to its logical conclusion, even
red giants would fail to generate differential rotation by core contraction and envelope
expansion.

Well before the helium white dwarf core can reach the Chandrasekhar limit, however,
it reaches temperatures of about 100M K (when M, ~0.47 M, and L ~ 2500 L) at which
helium can ignite. This ignition, in contrast to the more massive stars (M 22 Mg, see
below), is explosive (Mestel 1952), because the degeneracy of the electrons means that
the pressure in the core is insensitive to temperature and therefore the temperature can
run away. However once the temperature has risen in the explosion by a factor of about 3,
the degeneracy begins to lift and the core ‘flash’ is brought under control; the core begins
to expand because the pressure increases, and the nuclear energy release is channelled
into expansion against gravity rather than further heating. The core then settles down in
a steady helium-burning configuration which is non-degenerate by a narrow margin. This
configuration is rather independent of the star’s initial mass (in the range M $2 Mg)
because of the convergence, illustrated by Equn (2.3.2.1) and Fig 2.9a,b, of degenerate
cores to a unique evolutionary track. During core helium burning, the star’s luminosity
is about 50 Lg, with about 20% coming from helium burning in the core and the rest
from hydrogen burning in a shell surrounding the core. Helium burning in its initial
phases produces mainly carbon, through the triple-a reaction, but at a late stage, when
the abundance of helium is reduced to $15% by mass, the reaction 12C(a, )9O comes
to dominate, and the abundance of 0 can eventually exceed 12C.

Provided that the star has not lost substantial amounts of mass during its first journey
up the giant branch, the star remains close to the Hayashi limit after the He flash,
with radius given by Equn (2.3.1.8), or perhaps about 10 — 20% smaller. It will be
little different in outward appearance from a star ascending the GB in the previous
evolutionary phase, although there may be some subtle changes in surface composition.
Some HR diagrams of Galactic clusters and the solar neighbourhood show a ‘clump’ of
stars at about the right level on the giant branch (Fig 2.11), which can reasonably be
identified with the core He-burning phase. The He fuel in the core lasts about 102 Myr,
after which the core lapses back into degeneracy as a C/O white dwarf of about 0.3 M,.
He burning continues in a shell whose luminosity rises rapidly while the shell moves out,



90

but then decreases again when it has nearly caught up with the H-burning shell; by this
time both have moved out to about 0.55 M.
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Fig 2.10 — Hertzsprung-Russell Diagrams. (a) Main sequence of the Hyades, a Galactic cluster: open
triangles are known spectroscopic binaries, which can be up to twice as luminous at the same colour as single
stars; filled circles are single stars, or at least SBs below the detection threshold; from Griffin et al. (1988) (b)
The globular cluster 47 Tuc; from Hesser et al. (1987). The Main Sequence (MS), Turn-Off (TO) from the MS,
First Giant Branch (FGB), Horizontal Branch (HB) and Asymptotic Giant Branch (AGB) are indicated.

Many globular clusters contain a Horizontal Branch (HB) at a luminosity of about
50 Ly (Fig 2.10b). This must be the region occupied by core He-burning stars, but
whereas theoretical models ought to be close to the GB — even for the lower-than-solar
metallicities that are typical of globular clusters — observation shows that the HB can
extend a long way to the blue side of the GB. The best explanation of this is mass
loss, as a result of stellar wind, most probably on the GB prior to the helium flash
(Faulkner 1966). The mass of envelope above the shell at this point, expected to be
about 0.35— 0.5 Mg, (depending mainly on initial metallicity) if there were no mass loss,
has to be reduced to about 0.05 — 0.2 Mg, to explain the blue extent of some observed
HBs. This is not unreasonable with empirical estimates of mass loss rates from red giants,
as given in Section 2.4. Those HB stars which achieve the lowest masses of envelope and
so populate the Extreme Horizantal Branch (EHB stars) are probably little different



BEYOND THE MAIN SEQUENCE 91

from helium stars (Section 2.5), and will evolve fairly directly to white dwarfs without
a further transition back to red giants. It is even possible for a star to lose its entire
envelope on the FGB and yet manage to ignite He as an EHB star, provided that it is
quite near to the He flash when all the envelope is lost (d’Cruz et al. 1996). But probably
the great majority of HB stars, and certainly their ‘clump giant’ analogues in Galactic
clusters and in the solar neighbourhood (Fig 2.11), should return to and re-ascend the
GB once central He has been exhausted.

There are several sub-dwarf B (SDB) stars in the solar neighbourhood rather than in
clusters. These are small hot stars that are probably much the same as EHB stars. It has
been shown recently (Maxted et al. 2001) that they are commonly, and arguably always,
in binaries: and so it may be that the action of a binary companion, rather than just
greater-than-average stellar wind, is responsible for removing almost the entire envelope.

On the HB is a fairly narrow range of colour or temperature in which the atmosphere
is unstable to radial pulsations. The RR Lyr pulsating variables are found there, with
pulsation periods of ~ 0.25—0.75d. The pulsation is a relaxation cycle driven primarily
by the second ionisation of He. The zone in the interior where this occurs is at about
10% K. In hot stars, this zone is too near the surface to contain sufficient mass to drive the
pulsation. In cool stars, the atmosphere may already be convective down to this depth,
and the convective instability appears to overwhelm the radial pulsational instability.
Thus the instability strip has a rather well-defined blue edge and red edge. Stars may
cross this strip once (blue to red), or twice (red to blue, and later blue to red) during
their evolution on the HB. One might hope to observe this evolution by determining rates
of period change; as noted in Chapter 1.2 one does not need to wait for a substantial
change before the rate of change is measurable. However rates of change are found to
be one or two orders of magnitude larger than expected, and of either sign, and may be
due to some chaotic influence on the relaxation cycle rather than to underlying nuclear
evolution.

At a late stage during the He depletion of a convective He-burning core in stars below
about 4 Mg, there sometimes occurs an instability in which the convective core abruptly
grows larger, mixing in fresh He from further out. The convective core may almost
double its mass briefly, before shrinking again, and may (in a 1 or 2 My star) repeat
this process (called ‘breathing’) two or three times. This is in marked contrast to the
depletion of H in an H-burning core, which appears to proceed very steadily. However,
whether ‘breathing’ occurs or not appears to depend on the details of the opacity and
nuclear-reaction data used; the models used in this book did not usually display such
behaviour, in contrast to models with the same code but using previous data. However
some ‘breathing’ behaviour can be seen in the low-mass HeMS models of Fig 2.15.

The usual outcome of core H burning, central H exhaustion, core He burning and
central He exhaustion in low-mass stars is a degenerate C/O core with a mass of about
0.55 Mg, surrounded by a shell of much less mass containing mainly He and no H, and
then an envelope of giant proportions (about 30 — 50 Rg)) consisting of material that has
been largely though not entirely unprocessed by nuclear reactions. The star contains
two burning shells which after some transient adjustment begin to march outwards to-
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Fig 2.11 — Hertzsprung-Russell Diagrams. (a) The nearby stars (within 50 pc of the Sun), from Hipparcos

data. Only stars not known to be binary have been plotted. (b) A theoretical model of the nearby stars,
which uses an IMF with N « Mfz's, uniform space density, and a birth-rate that decreases exponentially on
a timescale of 6.3 Gyr. In several regions demarcated by dashed lines in (a), including the Hertzsprung Gap,
Lower Giant Branch, GK Giant Clump (core He burning) and Cool Wind (AGB) stars, the numbers can be
compared with (b) and are found to agree to ~ 10% or better. The greater spread on the observed LGB is

probably due to a range of metallicity in the oldest stars. From Schroder et al. (2000).

gether through the star, increasing the core mass until it can in principle approach the
Chandrasekhar mass (Fig 2.8b). The evolution of the luminosity as a function of core
mass returns fairly closely to Equn (2.3.2.1), and the surface and core radii are again
given by Equns (2.3.1.8), (2.3.2.2). The star re-ascends the Hayashi track, to greater
luminosities than it reached on the first ascent (the FGB). This continuation is called
the ‘Asymptotic Giant Branch’ or AGB.

When the helium-burning shell has almost caught up with the hydrogen-burning shell,
at M. ~0.6 Mg (or perhaps earlier, see below), the inner of the two shells becomes
thermally unstable (Schwarzschild & Harm 1965), and drives a series of ‘He shell flashes’,
not to be confused with the He core flash above. A complex mixture of minor nuclear
reactions can be set in train by the episodic mixing of material between the comparatively
cool (~70MK) base of the hydrogen envelope and the hot ( ~ 250 MK) outer edge of the
C/O core, which can produce neutrons and so convert some of the normally inert Fe
nuclei into traces of Zr, Tc, Ba and other heavy metals (the s-process). The main
reactions are probably 12C(p,v31)!3C in the H-burning region, and 3C(a, n)1%0 in the
He burning region. The details are not yet well understood, but it is difficult to avoid
the conclusion that some such process must take place.

The He shell flash instability is driven mainly by the steep dependence of the He-
burning reaction on temperature (¢ ~ p?7°°), which allows the temperature, and hence
the nuclear luminosity, to run away temporarily. This initiates convection, which mixes
outwards material with a high concentration of 12C, the primary product of He burning.
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It is only at a late stage of He burning, or equivalently only at the bottom of the He-
burning shell, when the He is already reduced to <15% by mass, that the production of
160 becomes dominant. In order to produce an enhancment of carbon and s-processed
material as is observed (see below) the '2C-rich layers have to mix with the base of the
H-burning shell, where the H-abundance is low. This combination of high 2C and low
'H allows burning which ensures that the major product is '3C — less '2C and more 'H
would favour the production of *N, which not only reduces the amount of '3C available
for producing neutrons, but also introduces a ‘neutron poison’ since *N is particularly
good at absorbing neutrons and so preventing them from interacting with Fe, etc. Thus
rather delicate circumstances have to prevail, but apparently they do. Once the the 2C
material has been enriched by the H reaction to be 3C-rich, the convection due to the
flash must carry the material back down for the further '3C(«, n) reaction, liberating one
neutron for each H atom absorbed further up. Although Fe is not the most abundant
species of potential neutron absorber, it has the highest value of cross-section times
abundance, and so it, and the successively heavier elements it produces, tend to absorb
most of the neutron flux. Provided there are more than about 80 neutrons produced
per Fe atom, the Fe can be transformed to Ba and beyond, but with abundance peaks
at Zr and Ba because these elements have ‘magic’ numbers of neutrons and hence local
minima of neutron capture cross-section.

The convection in the outer envelope extends intermittently down into the region
which is occupied by C-rich and s-processed material from a slightly earlier episode of
shell flash and deeper mixing, and so can bring the heavy elements, and accompanying
carbon, to the surface. Such elements are observed to be enhanced in a proportion of
red supergiants (MS stars, S stars, C stars). Although C stars as a fraction of all giants
amount to only about 1% in our own Galaxy, they are common in the Large Magellanic
Cloud (~60%) and very common in the Small Magellanic Cloud (96%, Blanco and
McCarthy 1981). Since the LMC is deficient in metals, relative to our own Galaxy, by
about a factor of 2, and the SMC by about a factor of 4, it is clear that the late stages
of evolution of stars are very sensitive to the metallicity.

The difference between the various spectral classes M, MS, S and C is primarily due
to the ratio of C to O (which is about 1/3 in normal, i.e. solar surface, material). This is
because the CO molecule is especially tightly bound. If C/O <1, all the C is locked up in
CO and only O is left to form molecules, such as TiO which is the characteristic molecule
producing bands in the spectrum of M stars. However if C/O>1, it is the O which is
all locked up, and C is left to show such molecules as Cq, SiC, which are characteristic
of C stars. MS and S stars are intermediate, but presumably still have C/O <1.

Enhancement of C and of s-process elements (notably Ba) is also seen in a class of
G/K giants, the ‘Ba stars’. However Ba stars are usually of too low luminosity to be
AGB stars, and hence cannot have produced their s-process enrichment themselves; they
appear to be the product of binary interaction (Chapter 6.4), having accreted s-processed
material from a companion which was once an AGB star and is now a nearly invisible
WD.

If a star on the AGB evolves without mass loss, then either (a) when the core mass
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approaches the Chandrasekhar mass, we would expect the core to ignite C in a degenerate
thermonuclear explosion, similar to but much more dramatic than the He core flash — a
thermonuclear supernova explosion (SNEX) — or (b) for lower mass the star would end
up as a C/O WD once the last of its envelope was burnt. However it is very likely that
in fact the star loses substantial mass, which means that possibility (a) is excluded (for
initial masses <2 Mg, as considered in this Section).

At some point on the AGB, stars become unstable to radial pulsations — they become
Mira variables. These pulsations appear to be driven mainly by hydrogen ionisation;
unlike in RR Lyr pulsations, the fact that the envelope is already unstable to convection
is apparently not a barrier to pulsational instability. Such stars are capable of driving
low-velocity, copious winds which can manifest themselves as cool dust shells in the
infrared. At a late stage the star may be obscured by the shell to such an extent that it
is only visible in the IR. In this stage the object may be conspicuous as an OH/H,0/SiO
maser source. In the next major stage the star is stripped down to an extremely hot
UV-bright core, illuminating and heating the remnant shell so that the shell appears as a
planetary nebula (PN). Such PNe often have a bipolar morphology, which suggests that
the material ejected in the slow but copious AGB wind is concentrated to an equatorial
ring or disc (perhaps as a result of having a binary companion), and then a very fast but
relatively meagre wind from the very hot post-AGB remnant punches out more readily
in the polar directions. In addition, many PNe show a series of rings, suggestive of
episodic AGB mass loss. Finally, the core cools down to become a white dwarf, while
the envelope dissipates itself.

In at least two stages during the final cooling-down process the star may be pulsation-
ally unstable again, this time at short periods (~10min) that allow for the possibility
of asteroseismology. Early in the cooling (T'~100kK, L ~10 Lg) there are the GW Vir
variables. For example, BB Psc (Vauclair et al. 1995, O’Brien et al. 1998) shows 9 modes
(I =1 g-modes) with P ~336 — 612s. These are consistent with a fairly uniform spacing
of AP ~21s (not all such modes are seen), leading to an estimate M ~0.7 Mg, L ~5 Lg.
The driving mechanism of these modes is not yet understood. Much later in the cool-
ing (T~13kK, L~10"2 Lg), WDs cross the high-gravity extension of the § Cep/§ Sct
instability strip and become ZZ Cet pulsators. ZZ Psc (G29-38; Kleinman et al. 1998)
shows 20 [ = 1 g-modes with P~ 110 — 1240s. These are consistent with a spacing of
AP ~47s, which may imply M ~0.5 — 0.7 M. In both types of pulsators the modes
depend fairly sensitively on the structure of the outer shell or shells of hydrogen and/or
helium, but one can hope to determine this structure by sufficient asteroseismological
data. Long-term monitoring of both types may also determine rates of period change
that should strongly constrain models of cooling in WDs.

The loss of mass which terminates a star’s AGB evolution is probably a compound of
two processes: (a) a fairly steady stellar wind, increasing in strength as the star grows in
luminosity and radius (Section 2.4), both on the first GB and on the AGB; and (b) a more
drastic ‘superwind’, in which the remaining envelope is driven away very rapidly, possibly
quite early on the AGB. Weidemann & Koester (1983) plotted a semi-empirical relation
between initial (ZAMS) mass M; and final (WD) mass Mg, based largely on observations
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of WDs in a number of galactic clusters of reasonably well-known age. Weidemann &
Koester’s graphical relation (Fig 2.12a) can be rendered approximately as

My ~ 0.4+ 0.05M; +0.00015M , 15M;s8 . (2.3.2.12)

The masses are in solar units. There is considerable scatter in the semi-empirical data
however, and an uncertainty of £0.2 Mg in M at given M; would be fairly conservative.
It is not impossible that some scatter is quite real: perhaps there is something chaotic
about the mass-loss process, which makes initially similar stars lose their envelopes at
significantly different points on the AGB.

One white dwarf (40 Eri B) appears to have well-determined parameters of 0.50 +
0.011 Mg and 0.0136 &+ 0.00024 R, (Shipman et al. 1997), using the Hipparcos parallax
and an orbit by Heintz (1974). These values fit well with Equn (2.3.2.2), which applies
equally for He and for C/O WDs. They also agree reasonably well with the gravitational
redshift. Nevetheless, the mass is uncomfortable: evolutionary models suggest that there
should be a gap in white-dwarf masses between about ~0.46 and about ~0.55 Mg,
because stars leave the first GB at the former core mass, and return to much the same
point in the HR diagram only when the core mass has increased to the latter value.
However, the uncertainties quoted above for the parameters of 40 Eri B seem optimistic
in view of the fact that the orbit of ~ 250 yr has only been observed for slightly more than
a half of one orbit. A more cautious view is that any orbit, spectroscopic or astrometric,
should be seen round twice before accuracies of <1% can be claimed (with an exception
only for pulsar orbits, where the accuracies can be enormously greater). The mass of 40
Eri B has crept up from 0.43 £0.02 in 1974 to 0.50 £ 0.01 in 1997, and may not yet have
settled down.

White dwarf masses of $0.4 My are known, and are demonstrated to be products
of binary evolution (Marsh et al. 1995). However binary interaction fails to explain a
mass in the gap, and the mass of 40 Eri B remains something of a problem. If we take
it at face value we would say that the progenitor must have reduced its mass by stellar
wind to about 0.5 M, on the FGB, ignited helium and settled as an EHB star, and then
evolved to a white dwarf without returning to the AGB. This is probably at the extreme
of single-star mass-loss rates (Section 2.4), but might happen occasionally.

Paczyniski & Zidtkowski (1968) suggested that a star’s progress up the AGB might
terminate at the point where the binding energy Fp of the envelope (i.e. the integral
of the sum of gravitational and thermal energy, the latter including ionisation) becomes
negative. This happens because as the envelope expands the gravitational contribution
becomes smaller, but the ionisation energy, with the opposite sign, remains substantial.
We shall see (next Section) that intermediate mass stars converge to much the same
evolution from this point on, and so for the remainder of this section we consider stars
in the wider mass range 1 — 8 M. The prescription of Paczynski & Ziétkowski gives an
M, M; relation in an implicit form as

M;
By = / (G—m—U> dm = 0 , (2.3.2.13)

M r
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Fig 2.12 — (a) Relations between initial (ZAMS) and final (WD) mass, from Equn (2.3.2.13): diamonds
— Pop I, filled squares — Pop II; dashed lines — upper and lower limits to the observational distribution of
Weidemann & Koester (1983). (b) Convolving the results in Fig 2.12a with the IMF of Equn (1.6.1) gives a
distribution of masses for planetary-nebula nuclei (thick curve) similar to the observed distribution of Zhang

& Kwok (1993)

where we identify My with M., the mass of the degenerate core. This algorithm gives
(Han et al. 1994) a slightly more linear relationship than Equn (2.3.2.12), which can be
approximated as follows:

M; ~ max(0.51 4 0.049M;, min(0.35 + 0.11M;,0.60 + 0.06M13))

0.8SM;$7.5 Mg . (2.3.2.14)

Equn (2.3.2.13) also gives, for M; $1 Mg, a solution on the first GB, with M ~0.47 M.
When convolved with a reasonable IMF (e.g. Equn 1.6.1), Equn (2.3.2.14) gives a distri-
bution of PNN masses which is strongly peaked at about 0.60 Mg, roughly in accordance
with the observational data of Zhang & Kwok (1993) — see Fig 2.12b. Note that the mod-
els used by Han et al. (1994) did not include convective overshooting, and so differ from
the models used here; but the tendency of giants to converge to a unique evolutionary
locus — Fig 2.9a,b — as the core evolves means that the difference should not be large.

There is no guarantee that mass loss is suffiently deterministic that any narrow Ms/M;
relationship is to be expected. Especially if magnetic fields are involved for G/K/M
giants, as they certainly are for the Sun, the process may well be chaotic, and one can
imagine that chaotically different mass-loss rates might lead to both He and C/O WDs,
and to a substantial range of masses, from initially very similar stars.

A substantial difficulty in using the recipe (2.3.2.13) is deciding where in a supergiant
star is the boundary between ‘core’ and ‘envelope’, because the integral, viewed as a
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function of Mg, is quite sensitive to My once it approaches close to the degenerate core
mass. Because the issue of envelope binding energy is perceived as being particularly
important in the evolution of binaries containing red supergiants, we discuss this in some
detail in Chapter 5.2; we also return to mass loss in Section 2.4. Provisionally, we define
the base of the envelope, i.e. Myin Equn (2.3.2.13), as the place where the hydrogen
abundance is 0.15.

From the point of view of binary-star evolution, it is particularly important to be able
to estimate the maximum radius R..x that a star can achieve, which is the radius on
the AGB just before the envelope is lost. For a given initial mass M;, Equn (2.3.2.14)
gives Mg, then Equn (2.3.2.1) gives the corresponding Lax(using M.=Ms), and finally
Equn (2.3.1.8) gives the radius. We ought to make allowance for the fact that the
maximum radius occurs shortly before the stellar mass is reduced to Ms, but in practice
using Equn (2.3.1.8) with M =M; appears to be good enough. We obtain the results in
Table 2.2.

Table 2.2 - Final Mass and maximum Luminosity and Radius, in Solar Units

M; 1 2 3 4 5 6 7

Mg 0.56 0.61 0.68 0.79 0.90 0.96 1.02
Lmax 4915 7139 11020 17500 23600 26650 29500
Rmax 290 365 476 628 747 799 843

It is however something of a problem that, in stars with initial mass 1 — 2.5 Mg, the
He-shell instability referred to earlier is only just beginning when the core mass reaches
the value of about 0.6 Mg at which envelope ejection apparently occurs. This means
that it is difficult to see how the nuclear enrichment brought about by shell-flashing is
as common as it is. This may be an indication that shell-flashing in reality starts at
a somewhat earlier stage than current numerical modeling implies, so that a star can
already have quite an enriched envelope when the C/O core mass exceeds say 0.5 M.

We have already referred (Section 2.2.9) to Spruit’s (1998) suggestion that interior
magnetic field, even if quite weak, is liable to keep stars in nearly uniform rotation, even
red supergiants where the core has contracted by a factor of nearly 100 in radius while
the envelope has expanded by an even larger factor. This has the apparent difficulty
that it should lead exclusively to very slowly rotating white dwarfs; yet many isolated
white dwarfs are rotating with periods of ~1d. This can be explained (Spruit 1998)
as a result of the fact that the ejection of the envelope is not a perfectly spherically-
symmetric process. The tiny moment of inertia of a white dwarf means that small
random anisotropies in the superwind phase can generate a net rotation rate of the right
order.

2.3.3 Intermediate-Mass Stars (M ~2 — 8 Mg)

The expansion of a star as it crosses the Hertzsprung gap between the main sequence
and the Hayashi limit is confined to the outer layers. The core contracts, in response
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to the partial loss of pressure gradient that was formerly provided, in the form of a
temperature gradient, by central H burning. Contraction stops when either degeneracy
removes the need for a temperature gradient, as in the previous subsection (M <2 M),
or else (M 22 Mg) when the hydrogen-exhausted helium core contracts and heats up
from hydrogen-burning temperatures of 15 — 50 MK (depending on stellar mass) to tem-
peratures of about 150 MK at which helium can itself burn. This initiates a period of
steady core helium burning, which is not unlike the core helium-burning phase of the less
massive stars except that the core can be smaller in mass, at least in the range 2 —3 M,
since the core did not have to grow slowly on the FGB to attain a critical mass for the
helium flash. Usually the envelope has reached the Hayashi track shortly before the core
ignites helium, and so the star starts its core helium-burning as a red giant; but at some
higher masses the helium may ignite while the star is still in the Hertzsprung gap.

For stars with masses in the range 5 — 15 M helium burning may temporarily drive
the star back to substantially smaller radii than at the Hayashi limit, though still much
larger than main sequence radii. This excursion or ‘blue loop’ towards the blue side of
the Hertzsprung-Russell diagram, seen particularly in the 8 My star of Fig 2.1, takes the
star on a fairly slow (i.e. nuclear) time scale through a narrow range of temperatures,
the Cepheid strip (roughly 6.5 — 7.5kK), in which the surface layers are unstable to
pulsation of the § Cep type. The basic destabilising mechanism here is, as for § Sct
stars (Section 2.2.4) and RR Lyr stars (Section 2.3.2), the second ionisation of helium,
which can lower the adiabatic exponent considerably in the outer envelope. The strip is
terminated on the hot side by the fact that the second ionisation of helium occurs too
near the surface to affect a sufficiently substantial mass of envelope material; and the
cooler side is bounded presumably by the fact that turbulent convection becomes much
more important than radiative heat transfer in the surface layers.

Once a significant amount of central helium is burnt the star returns from its blue loop
in the Hertzsprung gap to the Hayashi limit. The duration of the blue-loop phase might
be expected to be about 10% of tys (Equn 2.2.1.4), because the nuclear binding energy
of helium is about 10% of hydrogen, while the star maintains about the same luminosity
as on the MS and burns most of the helium that was produced there. However, in a
range of masses (~2 — 6 M) the fraction can be as large as 25 — 40%, because in these
stars the He luminosity is actually quite small compared with the luminosity from the
H-burning shell, and remains so for most of the core-He-burning phase. For ~2 —5 Mg,
there is hardly a blue loop, but central He-burning is presumably responsible for the
more luminous members of the K-giant clump (Fig 2.11), the less luminous members
having arrived there after the He flash (previous Section).

The core contracts slowly during, and rapidly after, core helium burning. If the initial
mass of the star is $7 Mg the C/O core has less than the Chandrasekhar mass, and will
reach densities at which electrons become degenerate (Fig 2.9a). Further evolution, with
a growing degenerate core surrounded by two burning shells, and mass loss from the
envelope, should be similar to the AGB stars of the previous Section, leading also to a
shrouded red supergiant, a PN, and then a white dwarf. If the C/O core does not become
degenerate before it ignites (i.e. if the core has more than the Chandrasekhar mass at
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the time that it forms) then we consider the star to be ‘massive’: see next Section.

Fig 2.9c shows the relations between luminosity and both the C/O and the He core
masses. The former is much the same as for the low-mass regime, assuming as in Fig 2.9b
that the low-mass stars do not lose mass. The latter is rather more complicated, because
the He core mass can decrease temporarily, as the surface convection zone eats into it
(‘second dredge-up’).

The most likely agent for terminating the double-shell-source evolution of
intermediate-mass stars is thought to be mass loss, as for low mass stars, so that the
outcome is a C/O white dwarf rather than a thermonuclear supernova explosion. The
analysis of Weidemann & Koester (1983), on which the approximation of Equn (2.3.2.12)
is based, extended to young clusters (such as the Pleiades, and NGC 2516) with turn-off
masses 25 Mg, in which white dwarfs have been found with masses approaching 1 M.
The uncertainties are very large, however. It is commonly assumed that stars near the
upper limit of ‘intermediate mass’, i.e. about 7 Mg, will produce white dwarfs near the
Chandrasekhar limit, although this is not well supported either by observation or theory.

If mass loss does not terminate the evolution of intermediate-mass stars, by reducing
the stellar mass below the Chandrasekhar mass, then the degenerate C/O core can in
principle undergo a ‘carbon flash’ similar at least at its inception to the helium core flash
of stars with initial mass below about 2 Mg, once the temperature or density gets high
enough (T, ~1GK, or p.~ 10 kg/m?). This requires that the C/O core mass approach
fairly close to the Chandrasekhar limit. Possibly some stars less massive than about
7 Mg undergo degenerate carbon ignition because they are unable to lose enough mass
to prevent it. This ignition will certainly be much more violent than the helium core
flash, since the core is much more degenerate: if it takes place, it is expected to be a
supernova explosion (Héflich et al. 1998).

Supernovae within our own Galaxy are rare (6 in the last 1000 years, Hill 1993), but
several tens per year are observed altogether in external galaxies. Broadly, they fall into
two spectroscopic classes: Type I, which do not show hydrogen in their spectra, and
Type II, which do. Both types are further subdivided, mainly on the shapes of their
light curves. Type la supernovae are considered good candidates for explosions driven
by carbon detonation. However there are strong reasons for thinking that Type Ia SNe
are products of binary evolution rather than single stars, and might for example be due
to accretion of mass by a C/O white dwarf from a companion in a novalike binary, or to
the merger at a late stage of binary evolution of two C/O white dwarfs of about 0.7 M,
each. The reasons for rejecting a single-star origin are that (a) Type Ia SNe contain no
hydrogen in their spectra, by definition of Type I, but a single star of intermediate mass
which retained its envelope long enough for the core to reach the Chandrasekhar limit
would presumably still have some of its envelope left; and (b) Type Ia SNe are found in
elliptical galaxies and other environments where the stellar population is seen to consist
predominantly of old low-mass stars rather than young stars of upper intermediate mass.
Some binary scenarios can in principle lead to carbon detonation at great age, but not
single-star scenarios.

The detonation of a C/O white dwarf, whatever its origin, should lead to the produc-
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tion of large amounts of Ni/Fe — perhaps X 50% of the original mass. Relatively little
energy would be released as neutrinos, and the whole white dwarf would be dispersed,
leaving no compact (neutron star or black hole) remnant. These features are all in con-
trast to SNe driven by core collapse (next Section). Although early theoretical work on
SN explosions assumed spherical symmetry for simplicity, much recent work emphasises
the role of instabilities, in particular the Rayleigh-Taylor instability due to an inverted
molecular weight gradient, which can lead to complicated 2-D or 3-D behaviour (Falk &
Arnett 1973, Nagataki et al. 1998).

2.3.4 High-mass stars (M 28 M)

For stars more massive than about 8 M an explosive fate is more certain, but is
delayed by the fact that the C/O core does not become degenerate before carbon igni-
tion. Thus the carbon can ignite reasonably quietly and then burn hydrostatically at
a temperature of about 1GK. Most of the energy from nuclear reactions at such high
temperatures gets converted almost directly into neutrinos, via the weak interactions

Y+ v < et +e — v+ v (pair production) (2.3.4.1)
and
p+e —-n+v , n—=>p+e + 7 (Urca process). (2.3.4.2)

The protons and neutrons participating in reaction (2.3.4.2) are in practice embedded
in heavy nuclei, rather than free particles. Neutrino losses accelerate the evolution in
a vicious spiral, so that in a few hundred years at most the C/O mixture burns to a
mixture of O, Ne and Mg. In a narrow range of initial masses, perhaps about 6 — 8 My,
it is possible that the core’s evolution will terminate here, provided that stellar wind or
a binary companion removes the remaining envelope in this short time. Such a core can
in principle cool down and become an O/Ne/Mg white dwarf with a mass quite close
to but below the Chandrasekhar limit (Nomoto 1984). There is observational evidence
that some white dwarfs in classical nova eruptions are of such a character.

For greater initial masses it is difficult for the core to avoid going on to a further stage
of nuclear burning (the a-process) in which (v, @) and («, ) reactions come nearly into
equilibrium, turning the lighter a-nuclei (O, Ne, Mg) into heavier and more tightly-bound
a-nuclei (Si, S), and these in turn to ‘iron peak’ elements, principally Fe, Ni. These last
elements, being more tightly bound than either lighter or heavier nuclei, cannot continue
the chain of energy production. Core collapse must happen at this stage. However it
is not clear whether, and in what circumstances, we should expect a black hole or a
neutron star remnant, and an ejected supernova envelope. We do expect some compact
remnant since, unlike in the case of degenerate carbon ignition (Section 2.3.3), there is
not enough available nuclear energy in the core material to blow the core out of its much
deeper gravitational potential well. The approach to a supernova explosion (SNEX) is
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reviewed, from theoretical and observational directions, by Mazurek & Wheeler (1980),
and Woosley & Weaver (1995).

For some purposes later it will be convenient to restrict the term ‘high mass’ to
those stars with 8 < M <35 Mg, and introduce a further category of ‘very high mass’ for
still higher masses. Partly this is intended to distinguish between stars which produce
neutron-star remnants and those which produce black-hole remnants; and partly to dis-
tinguish between those for which mass loss by stellar wind is not very important until
a late stage of evolution, and those where mass loss may be important earlier, even on
the main sequence. Obviously these two boundaries need not coincide, but since both
are very uncertain we will ignore this. For the present, however, we will not make this
distinction.

Fig 2.9d shows that there is a somewhat tighter correlation between L and M. than
for the intermediate-mass stars. However this is mainly because neither the core mass
nor the luminosity changes very much during evolution, and both are largely determined
by the Eddington limit.

A major problem with our theoretical understanding of supernova explosions is to
determine the mechanism whereby the outer envelope is ejected, while the core collapses.
It is not difficult to see why the core should collapse once it has exhausted all its available
nuclear energy. But it has been difficult, indeed impossible so far, to determine clearly
the mechanism which will prevent much or all of the outer envelope from following the
core into collapse. A large amount of energy is available, the gravitational energy released
by the collapsing core. But this energy comes out almost entirely in neutrinos, which
interact rather weakly with matter further out. It is not clear whether they can deposit
enough energy sufficiently rapidly to turn the inflow round into an outflow. Nevertheless,
observation makes clear that considerable amounts of matter are ejected at very high
speed (~0.lc) in supernova remnants. It may be that instabilities and asymmetries in
the explosion are the key, and that fully 3D modeling of the process is necessary.

Timmes et al. (1996) estimated the remnant masses to be expected from ZAMS stars
in the mass range 8 — 40 M. They evolved stars up to the point of core collapse, and
then, by imposing a piston-like outward impulse to material just outside the iron core,
the envelopes were exploded outwards. Not all of the envelope escaped, however: a
proportion was slowed hydrodynamically, failed to reach escape velocity, and fell back
into the core. With a ZAMS mass of 35 Mg the amount falling back on to the ~2 Mg
iron core ranged from almost zero to over 5 Mg as the piston energy ranged over 1.2 —
2.2 x 10*J. But for models at ZAMS masses 11 — 28 M, the lowest piston energy
in this range was enough to eject most of the material except for part of the silicon
shell immediately outside the iron core. Baryonic masses of the remnants ranged over
1.3 — 2Mg. In the small but important range 8 — 11 Mg, cores although they ignite
carbon non-degenerately are degenerate for later burning stages, and tend to produce
remnants fairly close to the Chandrasekhar limit, at baryonic masses of ~1.39 Mg.

A baryonic mass has to be translated into a final gravitational mass, i.e. the mass
that would be determined by observation of a body in orbit around it. The gravitational
mass is smaller because the mass-equivalent of the (negative) gravitational energy of the
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collapsed core has to be added. This gives approximately a quadratic relationship

GM; )
My ~ My =555 ~ My—=0075M; (2.3.4.2b)

in solar units (Lattimer & Yahil 1989), assuming a reasonable average for R. The remnant
baryonic mass was a very non-monotonic function of ZAMS mass because convective
zones in the carbon-burning core, and later in the carbon-burning shell, would appear
and disappear somewhat chaotically, and influence the remnant mass significantly. ZAMS
masses above 19 M, were little influenced by carbon burning, and tended to be higher.

By convolving the ZAMS masses with a Salpeter IMF — Equn (1.5.2), Timmes et
al. (1996) estimated that the distribution of gravitational masses would be bimodal,
with peaks at 1.27 and 1.76 M. The latter peak comes from ZAMS masses 219 M.
Arguably the remnants in the higher peak may be black holes rather than neutron stars;
certainly they would be if the equation of state of neutron-rich material sets an upper
limit to neutron-star masses at say 1.7 M.

It is not yet clear whether it is simply the initial mass of the progenitor star, or
some more complicated criterion, that determines whether the remnant of a supernova
explosion is a neutron star or a black hole. Nor should one assume that the process is
monotonic, with all black-hole progenitors initially more massive than all neutron-star
progenitors. Both kinds of remnant are observed. Many neutron stars are known: about
100 which are members of close binaries with normal stars show up as X-ray pulsars,
but many more (~1000) show up as radio pulsars, of which only a small proportion are
in binaries. A few radio pulsars are in binaries where the companion is another neutron
star, though presumably too old to be still pulsing, and have extremely well-determined
orbits from which both masses can be determined (Chapter 1.2). All such yield masses in
the range 1.39 + .06 My (Brown, Weingartner & Wijers 1996). This is somewhat above
the lower peak of Timmes et al. (1996).

The best way to distinguish observationally between a neutron star and a black hole
is to determine its mass, as can sometimes be done from a binary orbit; although a mass
function gives only a lower limit, several lower limits are already clearly in excess of
plausible neutron-star masses. No radio pulsar has yet been found with a black-hole-
mass companion, but several faint and presumably compact objects with low-mass stellar
companions have very large orbital velocities that at least give a mass function. Bailyn
et al. (1998) show that six out of seven black-hole candidates in low-mass X-ray binaries
have mass functions which, with plausible inclinations and mass ratios, are consistent
with a narrow range about 7 My; the seventh requires ~11 M. Isolated black holes
must surely exist, but will be very hard to detect.

Evidence coming from the consideration of X-ray binaries can be expected to cast
light on the propositions that (a) neutron stars can be obtained from massive stars,
say 235 Mg, and (b) black holes can be obtained from lower-mass stars, say <20 Mg
(Ergma & van den Heuvel 1998). If these are true they appear to imply that some
property other than total mass is important: for example, magnetic field or rotation.
However, we feel that the evidence is unclear, and for the present we will stick to the
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simple view that there is a unique critical mass, probably in the range 35 —40 Mg, below
which neutron stars are formed and above which black holes are formed.

Not only is the nature of the ultimate type of remnant uncertain, but so is the prior
evolutionary track taken in the HRD. This is because, although it is clear that mass loss
by stellar wind (next Section) is an important process, it is not by any means clear how
this affects the evolutionary track. Empirically, there is evidence that stars of %30 M,
initially do not evolve into red supergiants, as would be expected if they evolved without
mass loss. Evolutionary tracks of the most massive stars tend to be almost horizontal in
the HRD (Fig 2.1). Helium burning may begin not long after the TMS, but (for Pop I
theoretical models, if there is no mass loss) most of the core helium-burning phase is spent
as a red supergiant. Observationally, however, there is an almost complete absence of red
supergiants with bolometric luminosities 23 x 10% Ly, (Humphreys & Davidson 1979),
for which appropriate masses are 230 Mg — see Fig 2.13a. There is no corresponding
shortage of blue supergiants at luminosities up to about 3 x 10° L, whose masses must
range up to about 100 M. The sloping line in Fig 2.13a above which there are no stars
is called the Humphreys-Davidson limit (HDL).

Mass loss may be capable of explaining the HDL, since there is a tendency for stars
which lose a good deal of mass on or shortly after the MS to remain relatively blue during
core helium burning, rather than to make a complete excursion to the red supergiant
domain. Indeed, a star which contrives to blow off all of its hydrogen-rich outer layers at
the end of its MS life will evolve in effect as a helium star (Section 2.5 below), which is
always hot and small if its mass is 2 2.7 M. Some O stars, the Of sub-type, show strong
winds. However, the empirical mass-loss rate for O stars in the next Section, Fig 2.15
and Equn (2.4.1), is not large enough to achieve a stripping-down to the core, except
perhaps at 2100 M. What is needed is something like the much higher rate attributed
to P Cyg stars, and to the related class of luminous blue variables (LBVs), which are
indeed found near the HDL.

We can hypothesise that as a very massive star evolves horizontally across the
Hertzsprung gap its envelope becomes unstable when it reaches the HDL. This may
be because the luminosity in the interior becomes very close to the Eddington limit —
the limit given by Equn (2.2.2.6) as ( — oo, i.e.

Lpgq = ——— (2.3.4.3)

which is the maximum luminosity that a star can transmit while still in radiative equi-
librium. This may trigger mass loss at a rate in excess of 102 My /Myr, which continues
(erratically on a timescale of decades to centuries, as in n Car, S Dor in the LMC, and
P Cyg itself) until the mass is so reduced that the instability is largely removed. This
apparently happens when the star is stripped down to its helium core. Some Wolf-Rayet
(WR) stars appear to be such stripped-down stars. Many, though not all, appear to have
little or no hydrogen in their spectra. Several are in binaries from which masses can be
determined, and their masses are low for a main-sequence star of their luminosity, but
not for a stripped-down remnant of a star formerly two or three times more massive.
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WR stars are normally divided into two main classes, the WNs, which show nitrogen
apparently enhanced relative to carbon and oxygen, and the WCs, which show carbon
enhanced (and there is also a very small class of WOs, showing oxygen enhanced). WCs
normally show no hydrogen, which at least is consistent with the view that mass loss has
stripped them down right to the carbon-enriched helium burning core. The WN subclass
can be further subdivided, somewhat loosely, into ‘late’ (WNL) and ‘early’ (WNE), i.e.
cooler and hotter, with the former showing some hydrogen in the spectrum and not the
latter. Naively, therefore, they may represent two earlier steps on the road to WC stars.

The evolution of the interior of a WR star is probably not much different qualitatively
from what it would be if it remained as the core of a more massive star. He-burning,
lasting about 10° years, will be followed by C-burning and later nuclear stages on a much
shorter timescale (~ 103 yr), the evolution being accelerated because neutrino losses take
away 99% of the nuclear energy. Mass loss does not cease, but arguably slows down by
about a factor of 10, which may mean that in the limited time available they only lose a
modest fraction of their remaining mass. A supernova explosion still seems inevitable.

WR stars are famous for their strong stellar winds, which completely dominate the
visible spectrum and make it very difficult to determine stellar surface parameters: the
photosphere is somewhere in the wind itself, perhaps at several times the radius of the
underlying star. But the above scenario requires that mass loss be substantially stronger
during the preceding P Cyg/LBV phase, while the star is located fairly centrally in
the Hertzsprung gap, than in the later WR phase when the underlying star is a more
compact, hotter object masked by an expanding envelope. We hypothesise that the most
massive stars follow a route that can be abbreviated as

Of - WNL — PCyg, LBV -+ WNL -+ WNE — WC — SNEX . (2.3.4.4)

The star gets to its furthest right-hand position in the HRD during the LBV/P Cyg
phase, on the HDL. However for masses of <30 Mg the mass loss is not so important at
any stage, and the star evolves from the TMS across the Hertzsprung gap to the Hayashi
track. The supernova explosion is expected when the star is a red supergiant.

Single stars with initial masses of about 7 — 30 M, are expected to be red supergiants
when their cores collapse, and to have substantial hydrogen-rich envelopes even if they
have lost some mass by stellar wind. They should therefore produce Type II supernovae.
But a star might lose all of its H-rich envelope if either it was very massive initially
and passed through a substantial P Cyg stage as above, or if it lost its envelope to a
binary companion. In this case it can be Type I. However Type Ia is found in elliptical
galaxies, and so may represent a specific kind of binary interaction peculiar to low-mass
stars (such as the merger of two white dwarfs in a very close binary). By contrast,
Types Ib, Ic are mainly found in spiral arms, as are Type II, where there are young
massive stars, and so may be the result of envelope stripping either by P Cyg wind or by
binary interaction. However, Hill (1993) warns that five of the six Galactic supernovae,
for whose remnants we have more detail than most extragalactic supernovae, do not
fit particularly comfortably into the usual classification scheme. In addition, SN 1987A
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Fig 2.13 (a) — HRD of the brightest supergiants of the LMC. The Humphreys-Davidson Limit (HDL) is
the upper envelope of the observed stars (dots); the lower envelope is simply an observational cut-off. Some
evolutionary tracks from Fig 2.1 are reproduced; these tracks do not include mass loss. Several hundred
M supergiants are subsumed in the shaded region. The theoretical tracks need a larger mixing-length ratio
(e~ 2.5) to get there. The gap between log Tegr ~ 3.7 and 3.55 appears to be real. From Fitzpatrick & Garmany
(1990). (b) Magnetic field, estimated by Equn (2.3.4.6), plotted against pulsar rotation period, for ~ 550 radio
pulsars in the Galaxy and the Magellanic Clouds. Single pulsars are dots, binary pulsars are circles or ellipses.

Heavily-circled pulsars at the top centre are in SN remnants. From Phinney & Kulkarni (1994).

in the LMC, although spectacularly confirming the importance of neutrinos (Bratton
et al. 1988, Hirata et al. 1988, Arnett et al. 1989), was a very atypical supernova in
most respects. At spectral type B3Il before the supernova explosion, it was also at an
unexpected place in the HRD, neither a red supergiant, LBV, nor WR-like object. This
could be the result of binary interaction.

Once again, we note Spruit’s (1998) hypothesis that internal magnetic field enforces
slow uniform rotation even within stars whose cores have contracted by large factors
while their envelopes expanded by comparably large factors. It may therefore seem
difficult to explain why neutron stars at birth are rotating rapidly (Fig 2.13b). However
there is evidence, principally from the rapid space motions of pulsars, that supernova
explosions are asymmetric, and result in a ‘kick’ of typically 300km/s in a random
direction. Such asymmetry will presumably give an impulsive couple in addition to an
impulsive force, and the tiny moment of inertia of a neutron star means that it could
easily acquire its angular velocity in this way. Of course, once the core starts to implode
on a hydrodynamic timescale it will no longer be prevented by magnetic coupling from
spinning up.

Pfahl et al. (2002) have suggested a modification of the above picture. Possibly when
the core is contracting on a thermal timescale immediately prior to the supernova it is
able to spin up substantially, and the explosion may be more symmetric as a result.
There is evidence from binaries that some neutron stars receive a substantial kick and
others do not. Possibly the difference is due to the amount of rotation in the core at the



106

onset of the supernova explosion.

A qualitative picture of the evolution of single massive stars as a function of their
initial mass, but without a definitive basis either in observation or theory, may run
something like this:

(a) Stars with initial mass 250 M may lose substantial mass (say 10 — 30%) while
crossing the MS band, which will be broader as a result, and then lose considerably more
mass (perhaps a further 40 — 60%) much more rapidly as a P Cyg star at the HDL, so
that at some point in the left-hand Hertzsprung gap the evolutionary direction reverses
towards a smaller, hotter WR, configuration. After core helium burning there is rapid
evolution towards supernova explosion (Type I); at no stage is the star a red, or even a
yellow, supergiant. The remnant may be a black hole rather than a neutron star.

(b) Stars with initial mass in a range about 30 — 50 Mg lose mass more slowly (relative
to their nuclear time scale, which anyway is slower), so that the star is able to evolve
some way across the HRD, perhaps to type Al — KI, before rapid mass loss as a P Cyg
star pushes it back to the blue. The star becomes a WR object, and then experiences a
supernova explosion, perhaps also Type I as in (a) although more probably Type II, but
having lost a rather smaller proportion of initial mass. The remnant may be a neutron
star or a black hole.

(c) Stars with initial mass in a range about 15 — 30 M, are able, with relatively slower
mass loss still, to evolve to the red supergiant region and spend significant time there.
Probably the mass loss does not move the star back to the blue before the supernova
explosion (Type II); the total amount of mass lost might only be about 10 — 20%. A
neutron-star remnant is expected.

(d) Stars with initial mass in a range of about 7 — 15 My may perform a ‘blue loop’
during core helium burning, bringing the star back from spectral type about MI at He
ignition to BI/AI, before returning to type MI at supernova explosion. Alternatively,
they may either ignite helium, and burn it, entirely as red supergiants; or at some
masses they may ignite helium and burn some of it while still blue, and then complete
the burning while red. The behaviour can be quite sensitive to input physics, and
perhaps also to the computational procedure. This may be due to the importance of
radiation pressure, which means that much of the star is rather close to convective or
semiconvective instablity. In any event, the amount of mass lost might be no more than
about 10% altogether (apart from the final supernova explosion, Type II), and may not
have a significant effect on the star’s location in the HRD. The remnant should be a
neutron star.

Although in many contexts a neutron star can be seen as a stationary (i.e. non-
evolving) end-point of evolution, neutron stars that are observed as pulsars do in fact
evolve at least to the extent that their rotation rates, and arguably magnetic fields,
evolve. Direct observation reveals spin-down timescales that are typically ~ 1 Myr. These
rates can be used to estimate the magnetic field, assuming that the loss of rotational
energy is due principally to the radiation rate of a rotating magnetic dipole in vacuo:

d1 4
SO = - EompP ) = 92m . m o= SBR®, (2.345)
dt 2 6mc Ho
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where R, I,  are the radius, moment of inertia and rotation rate of the neutron star, m
is the magnetic dipole moment, and B is the magnetic field on the surface at the magnetic
equator. It is assumed here that the dipole axis is through the centre of the star and
perpendicular to the rotation axis. Using reference values R = 10km, I = 10%®kg
m?, and putting Q@ = 27/P, this gives

B? ~ 10t PP | (2.3.4.6)

with B in Tesla (10* Gauss) and time in seconds.

Fig 2.13b shows the ‘pulsar HR diagram’ of B plotted against P, for radio pulsars.
The great majority of pulsars are in the top right quarter, and are almost all isolated,
i.e. not in binaries. About 5% lie in the bottom left-hand corner and are almost all in
binaries. Both groups lie to the left of a sloping ‘death line’, where the combination of
period and magnetic field is too weak to support the radio emission that makes them
detectable. This radiation comes from electron-positron pairs generated by the rotating
magnetic field above but fairly near the pulsar surface. Although this is the radiation
that is detected, it is presumably a small fraction of the energy flux emitted directly by
the rotating dipole — Equn (2.3.4.5).

Two things are reasonably clear: (a) since a high proportion of massive stars are
in binaries, and since few radio pulsars are, binaries must typically be disrupted by a
supernova explosion (Chapter 5.3); and (b) many of those that do remain in binaries are
spun up to short periods, presumably by accretion from the companion.

Two important aspects are not so clear: (c) the equation of state (EoS), and (d) the
evolution (if any) of the magnetic field. Although the EoS is much simplified by the fact
that temperature is almost irrelevant, and hence p = p(p), the strong interaction is not
yet sufficiently well-known to determine an R(M) relation analogous to the relatively
simple one for white dwarfs (Equn 2.3.2.2). EoSs range from ‘hard’, where p depends
strongly on p, to ‘soft’, where the dependence is relatively weak. The latter will, at a
given mass, produce a neutron star which is smaller and more centrally condensed than
the former, but both will have an upper limit to the possible mass, analogous to the
Chandrasekhar limit. The softest hypothetical EoSs can be ruled out on the basis that
the upper mass limit is less than some well-determined NS masses (1.33—1.45 Mg). Too
hard an EoS would give relatively large radii at such masses, and could be rotationally
unstable at the shortest rotational period observed (1.6 ms); this constraint is weaker,
however, because the fastest pulsars do not (yet) have well-determined masses, and might
in principle be 2 — 3 M.

Whether the magnetic field evolves or not is a matter of considerable debate. One
might suppose a priori that the field could change (i) its strength, (ii) its orientation,
relative to the rotation axis, and (iii) its topology, e.g. a dipole component decaying slower
or faster than a quadrupole component. Any or all of these might happen in isolated
pulsars, and they might also happen for different physical reasons during accretion in a
binary.

Several neutron stars and black holes are detectable as X-ray sources rather than as
radio pulsars, their X-radiation coming from accretion of gas donated by a close com-
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panion. Some (neutron stars, but not black holes) show pulsed radiation, the accretion
being funneled by the magnetic field on to the magnetic poles. Rates of rotation are
often much slower than in isolated pulsars, at any rate in the wider binaries, and there
is indirect evidence to suggest that rotation is much faster in short-period low-mass bi-
naries. It can be seen in Fig 2.13b that the small proportion of pulsar binaries with very
short (~ millisecond) periods are almost all in binaries. These are also the pulsars with
the weakest fields, and so it is plausible that the same mechanism that speeds them up
encourages their fields to decay.

Pulsar physics is beyond the competence of the author, and therefore outside the
scope of this book. But some relatively simple aspects important to an understanding
of the evolution of binaries are mentioned briefly later.

2.3.5 Some Observed Binaries with Evolved Components

Table 2.3 lists eighteen binaries containing substantially evolved stars (red giants and
supergiants), with rather well-determined parameters; they are ordered by increasing
mass ratio. They provide a potentially quite stringent test of stellar evolution models,
and it cannot be said that the results are satisfactory. R. E. M. Griffin (p.c. 2002) has
noted that in many of these systems the secondary is significantly oversized.

Table 2.3 Some Binaries with Red Giant Components

Name Spectra P e M, Mo Ry Ro q Y?* Reference
RZ Eri K2III+ F5m 39.3 35 1.62 1.68 7.0 2.8 0.96 1.9 Popper 1988b
HR2030 KOIIb+ B8IV 66.5 .02 4.0 4.0 41 5.9 1.00 2.5 Griffin & Griffin 2000
RS CVn KOIV +F4IV-V 4.80 144 141 4.0 2.0 1.02 1.45 Popper 1988a
TZ For G8III + F7III 75.7 2.05 195 8.3 4.0 1.05 2.5 Andersen etal. 1991
a Aur GS8III+ GOIII 104 2.61 249 114 8.8 1.05 4.9 Barlow etal. 1993
n And GS8II-III + do. 116 .006 2.39 2.26 10.5 8.5 1.06 5.0 Hummel etal. 1993,
Schroder et al. 1997
93 Leo GTIII+ ATIV 71.7 2.2 2.0 8.7 2.7 1.09 1.68 Griffin & Griffin 2004
a Equ  GT7III+ A4Vm 98.8 2.3 2.0 9.2 2.6 1.15 1.67 Griffin & Griffin 2002

6 Sge M2Ib-II + B9V 3720 .40 3.4 2.7 157 3.3 1.26 1.77 Schroder et al. 1997
¢ Aur Kd4lab + B6.5IV-V 972 .41 6.6 5.2 151 5.1 1.27 1.89 7

V2291 Oph G9II + B8-9V 385 .31 3.86 295 329 3.0 1.31 1.53 7
V695 Cyg K4lb + B4V 3784 .22 7.2 5.5 170 4.0 1.31 1.44 7
v Per GS8III+ A3V 5350 .79 2.5 1.86 21: 4: 1.34 2.6 Pourbaix 1999
7 Per G8IIla+ A2V 1516 .73 2.8 2.0 15.8 2.2 1.40 1.37 Griffin et al. 1992
OW Gem F2Ib-II + G8IIb 1259 .52 5.8 3.9 30 32 1.49 14  Terrell etal. 2003
V415 Car G6I1+ A1V 195 3.1 2.0 31 1.9 1.55 1.16 Brown etal. 2001
QS Vul G5Ib-II+ B8V 249 5.4 3.4 7 3.3 1.59 1.56 Griffin etal. 1993
V1488 Cyg Kbslab +B7V 1145 .30 7.2 4.1 170 3.1 1.76 1.32 Schréder et al. 1997

?Ratio of Ry to ZAMS radius for same mass Ms

The lifetime of a star as a red giant is substantially shorter than its lifetime as a main
sequence star; less than, and at high mass much less than, ~40%. Since evolutionary
lifetime is a strong function of mass, in a binary where a red giant has say 1.5 times
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(a)

Fig 2.14 — Left: Binaries with at least one red giant component, plotted with radius (relative to ZAMS
radius) upwards and mass ratio horizontally. Circles — M; >4 M; asterisks — M1 <4 M. Also plotted are
the theoretical minimum and maximum Y. The minimum is when %1 is at the beginning of its giant life, and
the maximum when it is at the end. These curves are plotted for two values of M;: 2.8 and 6.3 M. The
two minimum curves are almost the same, but the maximum curve is usually lower for the more massive *1.
Right: the lifetime of the post-main-sequence phase has been artificially increased by a factor of 2.5 relative

to the main sequence life, raising the maximum Y but leaving the minimum unchanged.

the mass of its main sequence companion the latter should be very little evolved from
the ZAMS. In fact for a given mass ratio g the ratio, Y say, of Ry to the ZAMS radius
corresponding to Ms should be constrained between two values: the lower value applies
if 1 is just beginning its red-giant evolution, and the higher value if it is at the end
of its evolution. In Fig 2.14a, two solid lines give the two limits if M; = 2.8, and two
broken lines apply to M; = 6.3. The lower solid and broken lines almost coincide, but
the upper lines differ fairly substantially.

The systems in Table 2.3 are all plotted in the (¢,Y) plane in Fig 2.14a, except for
OW Gem which is far off the scale. Asterisks correspond to M; ~2 — 4 Mg, and should
lie roughly in the area between the two solid lines and the vertical at ¢ = 1; circles
correspond to M; ~4 — 8 M and should lie roughly between the two broken lines and
the vertical. It can be seen that only ten of the eighteen systems lie in the expected
regions; two lie below and six above. Four of the last six (including OW Gem) lie far
further than can be plausibly attributed to measuring uncertainty, which might possibly
be as large as 10%.

At least the two systems below the expected region can be reasonably accounted for.
The two giants have probably lost mass as a result of stellar wind, this wind being
enhanced substantially over that expected for single giants by the fact that the binary
giants are being forced to rotate perhaps ten times more rapidly than would be expected
in single giants. We discuss this ‘enhanced wind’ in Chapter 4.6. This must surely be
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the case in RZ Eri, where the giant is slightly the less massive component; and it is
quite reasonable for RS CVn, even though the giant is fractionally the more massive.
The other binaries (except HR 2030) are generally considerably wider. If there were
significant enhanced wind in these systems, it would make the disagreement worse.

HR 2030 is interesting in that it is probably the only giant that is (a) still not at
helium ignition, and (b) evolving redwards on a thermal timescale. A giant of this mass
would not ignite central helium until substantially larger than the binary system allows.
Although it may also be suffering from ‘enhanced wind’, on something like the nuclear
timescale as in RZ Eri and RS CVn, its rapid evolution may mean that its integrated
mass loss is not yet significant.

In Chapter 4.6 we argue that OW Gem is a former triple. The F2 component, we
suggest, is the merged remnant of a former close binary. While direct evidence for this is
not strong, there do exist many known triples with something like the right parameters.
In Chapter 3.5 we show that many close binaries, in particular those with an initial
mass ratio gg 2 2, are likely to merge as a result of evolutionary processes. If OW Gem
started with parameters ((4+1.8 My;2d) +3.9 My;1250d), it might reasonably end up
as presently observed.

A possibility to be considered for the remaining five discrepant systems is that the life-
time of a giant in the core helium-burning phase is substantially larger than present mod-
eling suggests. Perhaps the core’s helium-burning luminosity, relative to the hydrogen-
burning shell, should be less, and this might in turn be due to greater opacity in the core.
Alternatively, perhaps core overshooting is much more substantial in helium-burning
cores than in hydrogen burning cores. In Fig 2.14b we explore this crudely: the lifetime
of the giant stage has been artificially assumed to be 2.5 times larger than the models
implied. But even this very substantial change only brings two of the defaulters, § Sge
and ¢ Aur, within the compass of the theory; v Per, QS Vul, V1488 Cyg and OW Gem

remain well outside.

Another possibility that we might consider is that the components are no-coeval.
Within a dense star-forming region, or a somewhat less dense expanding OB association,
dynamical encounters can take place (Chapter 5.4) in which, for example, an older single
star might eject and replace one component of a younger binary. But such encounters are
probably limited to perhaps the first 10 — 20 Myr of a star’s life, when the stellar density
is still high, and so should result in no larger age discrepancies than this. Only ¢ Aur
looks like a reasonable candidate: the ages of the two components considered separately
may be ~65 and 80 Myr.

We do not have a persuasive answer to this problem. We emphasise that such a
problem is only recognisable because of (a) the high quality of the observational data
for these systems, and (b) the likelihood that the components have evolved without
interaction so far. Most binaries (apart from ESB2 binaries that have well-detached main
sequence components) have data of substantially lower quality, or else have undergone
major interaction which has altered the masses or period, and so problems such as
‘oversized secondaries’ can be overlooked.
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2.4 STELLAR WINDS AND MASS LOSS

Many stars show some evidence of loss of mass from the surface by way of a wind. For
most stars, such as the Sun, this wind is rather meagre in evolutionary terms. The Sun
is losing mass at a rate of about 10~7-¢ M, /Myr, and so is expected to lose <10~ of its
mass in the remainder of its MS life (about 5 Gyr). But some stars show evidence of much
more copious winds, especially stars of high luminosity. Winds from cool supergiants
can affect evolution strongly, as described in Section 2.3, by allowing white dwarfs to be
remnants of stars whose initial masses may have been up to five times the Chandrasekhar
limit. Winds can also be important in hot, blue, massive stars. Most stars with surface
temperatures above about 25kK and/or luminosities above 10° L have spectroscopic
indications (P Cyg line profiles) of a roughly radial outflowing wind of sufficient density
and speed in some cases to be significant on evolutionary time scales.
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Fig 2.15 — Rates of mass loss (MO/Myr) by stellar wind, from (a) OB and Wolf-Rayet stars (after
Conti 1982), and (b) red giants and supergiants (after Judge & Stencel 1991). The mean lines are given
by Equns (2.4.1) and (2.4.5).

Mass loss rates for OB stars, which are probably best derived from radio or infrared
measurements of the expanding gas cloud, have been estimated by many workers, for
instance Olson & Castor (1981), Garmany et al. (1981), Abbott et al. (1981), Lamers
(1981) and Chlebowski & Garmany (1991). They are roughly consistent (Fig 2.15a) with

M~ —2x1071LY | (4x10* § L 5 5x10°% (2.4.1)
with time in Myrs and M, L in solar units. There appears to be a real spread about this

rate, on top of any systematic and measuring errors: stars with quite similar photospheres
may differ in M by more than an order of magnitude. Comparing Equn (2.4.1) with
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Equns (2.2.1.1) and (2.2.1.4), and allowing for the considerable spread seen in Fig 2.15a,
it is possible that the most mass-lossy stars of over about 60 Mg can have their masses
halved in their MS life times. Unfortunately theoretical evolutionary tracks of massive
MS and post-MS stars depend quite sensitively on the assumed relation between M and
variables such as L in Equn (2.4.1), or R as well in other mass loss rates that have
been proposed. A convincing theoretical model of winds, capable of predicting M as a
function of surface quantities (which probably should include rotation rate and magnetic
field, for instance), does not yet exist. But great strides have been made in modeling hot
atmospheres with spherically-symmetric steady winds (Lucy & Solomon 1970, Pauldrach
et al. 2001). These have to include the driving effect of radiation pressure on a multitude
of spectral lines, and the fact that abundances of ionised species are not necessarily in
local thermodynamic equilibrium. Such models can predict the rate of mass loss (and
also the terminal velocity of the wind), and agree to within an order of magnitude with
Equn (2.4.1).

An interpolation formula, based on observed mass-loss rates from the literature,
was given by de Jager et al. (1988). They found that in the upper part of the HRD
(log L > 2.5) log |M| is mainly a function of L and T only, given in terms of Chebyshev

polynomials
Ti(z) = cos(icos tz), —1<z<l | (2.4.2)
by
5 5—1t
. logT — 4.05 logL — 4.6
—log |M| ~ oG | ———— | T [ = : 2.4.3
oulitl = 303 ot (M550 ) 1 (5 (243)

with L in solar units, 7" in Kelvins and log |M | in solar masses per Myr. The coefficients
a;j are given in Table 2.4; de Jager et al (1988) do not list a value for ags, but the
value zero appears to be adequate. The scatter between observed and computed values
is about +0.5. Much of this scatter is no doubt real. A contour plot of this mass-loss
rate is given in Fig 2.16.

Table 2.4 - Coefficients for the Mass-Loss Rate of de Jager et al. (1988)

j=0 1 2 3 4 5
0 6.34916 -5.04240 -0.83426 -1.13925 -0.12202 0.0
3.41678 0.15629 2.96244 0.33659 0.57576
-1.08683 0.41952 -1.37272 -1.07493
0.13095 -0.09825 0.13025
0.22427 0.46591
0.11968

Uk N e

For luminous stars which are cool, i.e. red giants and supergiants ranging in luminosity
from 102 —10% L, and radii from 10— 100 R, mass loss rates were estimated by Reimers
(1975) and are roughly consistent with

M ~ 1076.4 77LR

o7 (2.4.4)
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Fig 2.16 — Contours of constant mass-loss rate, according to de Jager et al. (1988). Contours are in decades,

with heavy lines for 107% Mg /Myr (lower left) and 1 Mg /Myr (centre and right).

in Myrs and solar units as before. The parameter 7 is a fudge factor which we choose
in order to reach reasonable final core masses. Judge & Stencel (1991) give a slightly
different formula, also based on observational data (Fig 2.15b):

M ~ —10776 L 1'43 (2.4.5)
i : 4.

In practice, this differs little from the previous formula, since L relates to R, M on the
RG branch via Equn (2.3.1.8). Curiously, Equn (2.4.5) extrapolates successfully to the
Sun. Just as for massive hot stars, there is considerable spread, some of which is probably
intrinsic.

In Chapter 4.5 we develop a model for mass loss as a result of dynamo activity in cool
rotating stars. We obtain a result — Equn (3.4.5.15) — which is very like Equn (2.4.4),
but contains two extra factors. One is a factor (R/Rpr)?, which is unity on the Hayashi
Track — Equn (2.3.1.8) — and decreases rather rapidly as we go into the Hertzsprung
gap. The other depends on the Rossby number, the ratio of the rotational period to the
convective envelope turnover time — Equn (2.2.3.16).

There is something of a dichotomy in cool stars between those which have hot chromo-
spheres, coronae not unlike the Sun, and hot, fast (300 — 500 km/s), low-density winds,
and those where high-temperature gas is absent, and which have cool, slow (20—30km/s),
high-density winds (Linsky & Haisch 1979). At least for stars with atmospheres like the
Sun’s, it is probable that dynamo activity in the surface convection zone, and the dissi-
pation of this magnetic energy in flaring activity above the photosphere, is a major cause
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of mass loss; although the mass loss itself is a relatively minor influence on evolution at
that stage.

For the more luminous red giants, radiation pressure acting on the grains which are
able to form at low temperatures may be the dominant mechanism for driving the wind,
although some deposition of mechanical or magnetic energy in the super-photospheric
layers would seem to be necessary to start the wind. Extreme red supergiants, many
of which are Mira variables, may enter a phase of ‘superwind’, with winds of order
10 — 100 M /Myr which rapidly strip the envelope down to the hot core (Section 2.3.2).

We argued in Section 2.3.2 that AGB stars terminate their evolution roughly at the
point where the integrated binding energy — Equn (2.3.2.13) — of the envelope changes
sign. Naively one might well suppose that as soon as the binding energy becomes negative
the envelope will be lost. The physics however must be more complex than that; it is not
clear how efficiently the available (un)binding energy can be converted into outflowing
motion. It seems more plausible that it may start to drive some relaxation cycle, during
part of which the energy is converted to heat and radiated away. This may be at least a
contribution to the onset of Mira oscillations. But the oscillations become strong enough
to drive an increasing cool wind, with grains forming and with radiation pressure on
grains contributing to the strength of the wind.

The form of Reimers’ law — Equn (2.4.4) — suggests that a constant fraction of the stel-
lar luminosity is used to provide the gravitational energy necessary for escape (~ GM/R,
per unit mass). This fraction is 1.3 x 1075, if we convert Equn (2.4.4) into SI units. Let
us generalise by using the binding energy rather than just the gravitational energy; then
we might try
nML

S, (G~ U) dm

-M = 13x107°

(2.4.6)

in ST units. We find that 7~ 0.2—0.5 gives reasonable remnant core masses. Equn (2.4.6)
will clearly lead to rapid mass loss as the denominator approaches zero on the AGB, but
the denominator will never actually reach zero (at least until M is reduced to M..) because
the binding energy per unit mass increases again as the envelope is stripped down to a
small hot core. Equn (2.4.6) can be seen as combining the concept of slowly increasing
wind on the giant branch with rapidly increasing ‘superwind’ at a late stage on the AGB.

An issue left unclear, however, is what value of M. to use as the lower limit in the
integral. The integral in Equn (2.4.6) only represents a physically meaningful binding
energy if the region interior to M, is completely unaffected, in its distribution of r(m)
and U(m), by the progressive loss of the layers above M.. There is no value apart from
M, = 0 for which this is literally true. However, we suggest that it is reasonable to take
as M, the mass coordinate where say the hydrogen abundance has been reduced to 15%
by mass, since the core inside this is compact and largely degenerate, at least in the
highly evolved red giants we consider here. Some crude experimentation suggests that
the fraction 15% is not very critical. We return to this point, in some detail, in Chapter
5.2.

Similar rates of mass loss are seen in WR stars, but the underlying physical regime
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is quite different since temperatures are at least ten times higher. Perhaps more signif-
icantly, the velocity with which the material is ejected is ~ 100 times greater. This
WR mass loss presents a considerable challenge to theorists. With a mass flux of
230 Mg /Myr (Willis 1982), and ejection velocity ~2000km/s, the kinetic energy flux
in the wind may be as much as 5% of the total energy flux of the star. The momentum
flux is relatively even larger, at several times the momentum flux of the radiation field,
which makes it difficult to understand how radiation pressure alone drives the wind. It is
not yet clear how even binary interaction, let alone a single-star process, can cause such
winds. Pulsational instability and/or strong turbulent motion in the outer layers, per-
haps combined with dissipation of magnetic energy produced by dynamo activity, might
help, but these would have to tap the nuclear energy of the star rather than just, say,
the rotational energy, since the latter is too feeble. de Jager et al. (1988) note that WR
stars have mass-loss rates enhanced over their formula — Equn (2.4.3) — by an average of
102.2‘

The momentum problem referred to above may in fact be solved by ‘multiple scatter-
ing’: photons trying to escape may be scattered several times before actually escaping,
and so contribute more to the momentum flux. Lucy & Abbott (1993) show that such
multiple scattering can take place if there is a sufficient stratification of different degrees
of ionisation; de Koter et al. (1997) argue that mass-loss rates of some very massive stars
in the LMC can be modeled in this way. They conclude that mass-loss rates normally
thought of as characteristic of WR stars can be maintained in the earliest MS stars,
whose spectra may be characterised as O3f/WN.

Here we adhere to the view (Conti et al. 1983) that WRs are evolved stars, most of
which have lost a great deal of mass. Underhill (1983, 1984) has argued that (a) the
underabundance of hydrogen, and overabundances of nitrogen and carbon (assumed to
be evidence of late hydrogen burning, or helium burning) are not real, but are artefacts of
the very crude abundance analyses; (b) the very high mass-loss rates inferred, especially
from radio and infrared observations, are also not real; and (c) WRs are analogous to the
Herbig Be/Ae objects (Herbig 1960), which appear to be young or pre-main-sequence
stars. However, the crucial evidence is that WRss are much too luminous, relative to their
masses, and much too common, relative to O stars, to be either fairly normal (though
young) main sequence stars, or pre-main sequence stars. In many binaries the WR
luminosity is comparable to, or greater than, that of the O-star companion, while the
mass is often a half to a quarter of the companion’s mass. And since pre-main-sequence
contraction must be ~ 1000 times more rapid than main sequence evolution (at the same
luminosity), the proportion of WRs to O stars (~10%, Conti et al. 1983) is too high
for a pre-main-sequence picture to be sustained. However, we must acknowledge that
analyses of WR atmospheres to date may well be misleadingly oversimplified. They tend
to assume a steady, spherically symmetrical gas outflow, driven primarily by radiation
pressure, where the reality may well be a fairly turbulent, non-steady flow, driven at
least in part by hydromagnetic stresses and energy release. If dynamo activity does play
a part, producing magnetic field that perhaps influences the flow out to several stellar
radii, and that may initiate the flow even if radiation pressure is important in accelerating
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Fig 2.17 — A theoretical Hertzsprung-Russell diagram for stars including mass loss according to the larger
of Equns (2.4.3) and (2.4.6). The masses are, from the bottom, 1, 2,4, 8,16,32, and 64 M. Alternate masses
are thin or thick lines. The tracks were terminated when the timestep dropped below 0.1yr. Although the
most massive star evolved well to the cool side of the Humphreys-Davidson limit — Fig 2.13a — its visit there

was very rapid and short-lived.

it, it would not be surprising if binarity is also significant, as it is for example in RS CVn
stars.

Fig 2.17 shows an HRD which includes mass loss according to the combination of
Equn (2.4.3) for luminous stars and Equn (2.4.6) for cool stars; for stars which are both
luminous and cool we used the larger of these two rates. For the three lowest masses the
cores at the tip of the AGB were 0.58,0.67 and 1.01 M. For the two highest masses the
remnants at the end of the plotted tracks (where the timestep became uncomfortably
short) were 14 and 29 M. The two intermediate masses (8,16 Mg) were changed by
only a modest amount. Some details at various stages are given in Table 3.2. The 64 M,
star was found to evolve briefly into the red supergiant region, but spent only 1% of its
life redder than 10kK. The 32 Mg star oscillated several times, rapidly, across the top
of the diagram.
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We find that the evolution of massive stars is very sensitive to the assumed mass
loss rate. It is probably also very sensitive to (a) metallicity, and (b) the numerical
procedure, particularly for convective and semiconvective mixing. The latter may be
important because in massive stars both V, and V, are very close to 0.25, so that
convective and semiconvective zones can appear, move or disappear in an apparently
capricious way. In our models this is probably exacerbated by the fact that we discretise
the star with only 200 meshpoints, at all stages of evolution. We cannot take the detailed
behaviour of the most massive models very seriously, but it seems clear that the mass
loss rate (2.4.3) can account reasonably well for the observed shortage of stars in the
uppermost right-hand corner of the HRD.

Over the whole of the HR diagram we can recognise something like nine types of mass
loss, where we distinguish in particular whether the wind is ‘copious’ or ‘meagre’:

(i) a fast, hot, meagre, solar-like wind in cool (GKM) dwarfs, and in some GK giants
(ii) a slow, cool, meagre wind in M giants, and some GK giants

(iii) a slow, cool, copious wind (superwind) in late M giant (AGB) stars

(iv) a very fast, hot, meagre wind in PN nuclei (post-AGB, pre-WD)

(v) an episodic, meagre, rotating wind in Be stars

(vi) a fast, meagre wind in Of stars

(vii) a fast, copious, episodic wind in LBVs (P Cygs)

(viii) a very fast, somewhat less copious wind in WRs

(ix) an almost instantaneous, copious wind in a supernova explosion.

Probably (iii), (vii) and (ix) are the most important for overall evolution; they can
change the mass significantly in less, even much less, than the nuclear lifetime of the
star. Process (ii) is probably very important in old clusters where it may determine the
distribution of stars on the HB subsequent to the helium flash. Processes (vi) and (viii)
may be marginal, affecting the evolution to some extent, but perhaps not crucially, except
for very massive Of stars. Processes (i), (iv) and (v) probably have little effect on the
evolution, though they can be conspicuous observationally. Processes (iv) and (viii) may
in practice be much the same in physical origin, but WR stars are typically several times
more massive and several times more luminous than PN nuclei. We emphasise, however,
as in Chapter 4.5 and subsequently, that the presence of a close binary companion may
enhance some of these winds, and make them copious where they would be meagre in a
single star.

A comprehensive theory of mass loss would have to link together such properties of
a star as its stability, rotation, magnetic field generation and dissipation, differential
rotation (which is especially effective at assisting dynamo activity), turbulent convection
and radiative driving. These processes cannot properly be modeled in isolation from
each other, since each influences the others. Furthermore the wind produced will itself
influence the other processes; wind interacting with magnetic field will carry off angular
momentum (‘magnetic braking’) which will influence both the rotation and the differen-
tial rotation of the star. Binarity is almost certainly an extra factor, affecting (by way
of ‘tidal friction’) both rotation and differential rotation, and so presumably activity
and mass loss. Consequently a solution to the overall problem appears to be still a long
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way off, and so we have to content ourselves for the time being with very empirical and
approximate formulae like (2.4.1) to (2.4.6), possibly modified — presumably enhanced —
by a binary companion.

The situation may be rather better, paradoxically, for the more drastic mass loss
episodes: (iii), (vii) and (ix). It should only be necessary to know (a) the stage in
evolution where the episode occurs, and (b) the amount of mass to be lost; the details
of the mechanism by which it is lost might to some extent be secondary. For example,
with AGB stars one might postulate that the envelope becomes unstable when the core
reaches a certain mass that depends only on the initial mass, perhaps using an empirical
relation, or else a theoretical relation like Equn (2.3.2.13). The amount of mass lost
will be (almost) all the difference between the core mass and the initial mass. With
LBVs, one might postulate that the envelope becomes unstable when the star crosses
or attempts to cross a line (the HD limit) in the HRD; very rapid mass loss continues
until it retreats back across that line. For a supernova explosion, one might postulate
an initial/final mass relationship, as for AGB stars, and so proceed in a similar manner.

2.5 HELIUM STARS

There appear to be stars whose surface layers show a complete, or almost complete,
absence of hydrogen. Such stars would be hard to understand in terms of ‘normal’
stellar evolution, but they can be understood, at least qualitatively, in terms of mass
loss, whether by means of stellar winds as in the previous Section, or of mass transfer
between components of a binary as in the remaining Chapters. WR stars, at least of the
WNE and WC types, show little or no hydrogen in their spectra.

There is a rather different kind of star, the ‘hydrogen-deficient carbon star’ or HAC
star, which also appears to consist principally of helium, but often with an excess of C
(relative to N, O) as well. An important group of these are R CrB variables, stars which
at intervals of a few years show an abrupt decrease in luminosity, followed by a more
gradual return to normal luminosity. Such stars are typically yellow supergiants when
they are in quiescence. The variability appears to be due to erratic episodes of mass
ejection, during which the ejected mass, rich in carbon, expands and cools until carbon-
based dust forms which temporarily obscures the star, at least at visual wavelengths. The
HdC stars are not associated with young, massive stars, unlike WRs; they appear rather
to be associated with the older, low-to-intermediate mass, population of the Galaxy. This
makes them harder to understand, since significant mass loss in such stars is thought
to take place only at such a late (AGB) stage that the remaining core should evolve
directly to the white dwarf region, with little time spent in the region where HdC stars
are actually found. For this reason, a binary-star mechanism for forming them — the
merger of a C/O white dwarf and a He white dwarf — is attractive.

A kind of He star is expected, and indeed found, in some binary stars where one
star has had its hydrogen-rich envelope stripped off by its companion. This does not
appear to be a general explanation of either WR or HdC stars, however, since some
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of the former and most of the latter are not known to have binary companions. Such
companions ought to be fairly easily visible.

Ideally, we might construct models of helium stars by starting with normal hydrogen-
rich stars, and following their evolution subject to mass loss. Since, however, we do
not have an a priori understanding of the mass-loss history of such stars, it is helpful
to consider instead the evolution of stars starting from a hypothetical zero-age helium
main sequence. The simple approximations (Equns 2.2.2.10 — 11) of Section 2.2.2 apply
equally to such stars, the only differences being that (a) w is larger, and x smaller,
by about a factor of 2 from their values in solar-mixture stars, and (b) the nuclear
reaction rate formula in Equn (2.2.2.9) involves a factor A which is a great deal smaller
for helium burning than for hydrogen burning, and an 7 which is substantially larger
(n~50). Equns (2.2.2.4), (2.2.2.6) say that we will have the same ¢, and therefore about
half the luminosity, for a He star one quarter of the mass of a hydrogen MS star. Since
luminosity depends steeply on mass, ZAHeMS stars are much more luminous than ZAMS
stars of the same mass. The fact that the nuclear constant A in Equn (2.2.2.9) is very
much smaller, while L/M is larger, makes the central temperature hotter by about 3 —5,
and the radius smaller by a comparable factor from Equn (2.2.2.7).

Although the central temperature is higher, the central density is higher still (from
Equn 2.2.2.8): cores are nearer to electron degeneracy, because this depends on the
ratio p/TB/ 2, The helium MS, like the hydrogen MS, terminates at low masses because
electron degeneracy becomes important. Consequently the HeMS terminates at about
0.3 M, instead of about 0.08 M, for solar composition.

Empirical fits, accurate to a few percent, for the luminosity, radius and ‘MS’ life time
of helium stars (¢f. Equns 2.2.1.1 - 2.2.1.4) over the range 0.32 < M <20 are

MlO
L = 2.5.1
1.2 x 1076 4+ 1.08 x 10=3M5 +2.63 x 10=3M7 4+ 1.42 x 10—4M8-5 » (25.1)
M? +01M3
R = i , (2.5.2)

0.36 + 3.24M + 1.75M?

and

2,985+ 51.88M + 43.95M 75 + M° 253,
- 0.3597M* + 6.217M9- ’ 5.

with L, R, M in solar units and ¢ in Myr, as usual.
We can evolve helium stars with the same numerical procedure as hydrogen stars.

tHeMS

Their evolution is very similar in principle to the evolution of the helium core of an
originally hydrogen-rich star, except that in the latter case the core is likely to increase
its mass by 20 — 50% as a result of the H shell-burning which takes place at the same
time as the He core-burning (Fig 2.5b). There is also similarity between the evolution of
He stars and of H stars, at least for an intermediate range of masses of the former, about
0.9—2.7 M. These stars evolve from the HeMS to a red supergiant region which is hotter,
but not by much, than the AGB of ordinary H-rich stars (Figs 2.1, 2.17). In the lowest
part of this mass range stars can evolve to C/O white dwarfs, even without mass loss.
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Fig 2.18 — The theoretical HR diagram for He stars. Low-mass stars (M < 0.63 M) evolve to white dwarfs
without going to the red-giant region. Those of intermediate mass (0.8—2.0 M) evolve to red giants, and

those of M = 2.5 M, reach a supernova explosion while still very blue.

Stars in the highest part of this range (2.4 M) ignite carbon non-degenerately, and
go on presumably to a supernova explosion; while those in between develop degenerate
C/0O white dwarf cores which will be forced to C detonation if there is no mass loss, but
which may settle down as white dwarfs if there is in fact sufficient mass loss from the
cool supergiant envelope.

In an interesting contrast with H-rich stars, however, He stars outside the range about
0.9 — 2.7 M do not expand to red giant dimensions. They remain always small and hot.
Low-mass He stars expand by a modest factor up to central He exhaustion, but then as
the He-burning shell eats its way outwards the star evolves steadily towards the white
dwarf region. The reason for this, so far as the low-mass ($0.9 Mg) helium stars are
concerned, is probably a combination of two things: firstly, the increase in molecular
weight from He to C/O is more modest than from solar mixture to He; and secondly,
the C/O core is degenerate all the way to the He-burning shell (which is usually on
the borderline of degeneracy in these low-mass stars), so that the degenerate core is
not separated from the burning shell by an isothermal non-degenerate zone as in H-rich
stars on the first GB. There is therefore no ‘soft’ region in the star, i.e. one with sz 5/6
(crudely n 2 5); such a soft region is necessary, though not sufficient, for an evolved star
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to become very centrally condensed, as outlined in Section 2.3.1.

He stars above about 2.7 M, also avoid expanding to the red supergiant region. They
evolve from the ZAHeMS to dimensions which are comparable (by coincidence) to the
H-rich MS, but not larger (Fig 2.18). The lack of drastic expansion may be due to
the fact that the C-burning core produces a luminosity comparable to the He-burning
shell, so that the shell does not dominate the overall structure as it tends to in the
intermediate-mass He stars, and in H-rich stars of all masses. A shell which is weak,
either because of too slight a change in molecular weight, or too small a contribution
to the total luminosity, or both, will not lead to a substantial soft region, such as could
cause a star to become giant-like in structure.

2.6 UNSOLVED PROBLEMS

An ideal stellar evolution code would (a) implement a believable set of mathematical-
physical propositions, and (b) give good agreement with observed stars. We are some
way from this at present, but apparently not a very long way. To accommodate (b),
several ad hoc recipes have to be incorporated that may violate (a). They are
(i) a model of convective heat transport — the mixing-length theory with only one pa-
rameter does surprisingly well, but cannot be given much theoretical weight
(ii) a model of convective overshooting — although we would suppose that a reliable
model of convective heat transport would automatically include the right amount of
overshooting
(iii) a model of semiconvective mixing — although this may not be separate from the first
two. If one had a mathematical physical model of convection with no free parameters,
and satisfying (b), a model for semiconvection would probably be implicit within it
(iv) a model for the diffusive separation of elements, starting with the gravitational
settling of helium but ultimately including all species; such a model exists (Richer,
Michaud & Turcotte 2000), but we have not incorporated it here
(iv) a model for mass loss, including the very different regimes of hot and cool, luminous
and faint, in the HRD
(v) a model for rotation, and its redistribution within a star in response to evolutionary
changes
(vi) a model for dynamo activity
(vii) a model for photospheres, including wind effects.

Most or all of these processes are interdependent, although we may have of necessity to
treat them separately for the time being.

Two aspects of stars that we have barely touched are their rotation and their magnetic
fields. It is not clear to what extent these may actually influence the long-term evolution.
It seems reasonable to suppose in the first instance that their long-term importance is
small, at least in the context of (effectively) single stars. One or other or both are
implicated in most of the ‘meagre’ types of mass loss described in Section 2.4. But they
may be substantially more important in the context of binaries. We therefore discuss
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them in Chapter 4.4. In single stars, one possible long-term effect of a magnetic field
(coupled with rotation, as it usually is) might arise in supernovae. Whether the entire
envelope gets ejected, leaving a neuron-star remnant, or whether alternatively much of
the envelope follows the core’s implosion into a black hole, may be dictated by the field
strength and the rapidity of the core’s rotation as it collapses. Thus it could be the
case that two stars of similar initial mass, say 30 M), could leave very different compact
remnants, even if their evolution before core collapse was rather similar (Ergma & van
den Heuvel 1998). The same reservation applies to AGB stars that become white dwarfs:
it is possible that the rotational/magnetic history of the star plays a role in deciding at
what core mass the envelope is finally stripped off.

The significance of photospheres — point (vii) — is that although the usual model of a
plane-parallel Milne-Eddington atmosphere is probably good for most stars it becomes
very unreliable for really distended stars, such as red supergiants. The region above
optical depth unity may be more than 20% of the stellar radius in simplistic models,
and may contain half the envelope mass. It is not clear that any spherically symmetric,
let alone plane-parallel, model will do: the atmosphere of a red supergiant may more
closely resemble the flames from a log fire than the surface of an electric hot-plate. Any
conclusions that we draw from stellar models are particularly uncertain in this area.

We draw particular attention to the problem described in Section 2.3.5, which con-
trasts surprisingly with the results quoted in Section 2.2.10. Although non-interacting
binaries with high-quality data accord reasonably well with theoretical models when both
components are on the main sequence (provided that ‘convective overshooting’ of a ju-
dicious amount is included), the substantially fewer non-interactive binaries with data
of almost equally high quality that contain evolved components (red giants and super-
giants) give rather poor agreement, at least in five out of eighteen systems. We invoke
a merger in a former triple system to explain a sixth defaulter, but it is hard to believe
that this can be the explanation of five more. We emphasise here the importance of
high-quality data. Any theory can cope with the observations if the uncertainties are
of order 50%, which is quite common. But when data has an accuracy of order 5% or
better it is not so easy to wriggle out of discrepancies.

One line of investigation that needs to be carried out in the future is direct 3-
dimensional numerical simulation of stellar interiors and envelopes. It should include
magnetohydrodynamic effects. This is beginning to be within the range of modern hard-
ware, but the software is a very challenging problem. Even with say 10'°© meshpoints,
which is about the minimum necessary to resolve a relatively simple star like the Sun, it
will be necessary to have algorithms that efficiently move meshpoints to the regions where
they are necessary. It is not always easy to to say a priori where these are. Of course 3-D
simulations would be a supplement to, rather than a replacement of, 1-D simulations. In
principle we might learn from 3-D modeling how to approximate a mixing-length param-
eter, a mass-loss parameter, a magnetic activity parameter or a rotational parameter in
a simple 1-D formulation.
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3

Binary Interaction: Conservative Processes

3.1 THE ROCHE POTENTIAL

Interactions in close binaries are generally discussed in terms of the ‘Roche potential’
(Roche 1873, Kopal 1959, Kruszewski 1966). Suppose that two point masses M7 and Mo,
or equivalently two spherically symmetric masses, orbit their centre of gravity (CG) in
circles, their constant separation being the semimajor axis a. Then the angular velocity
of the system is w, and the orbital period is P, where

GM 21\ °

2

w = —=(—=) , M= M+M,. 3.1.1
a’ ( p > LA ( )
In a frame which rotates with the same angular velocity w as the binary, a stationary
free particle feels an effective force per unit mass (i.e. acceleration) f which is given by

GM, GM,
= +
‘S—d1| |S—d2|

1
f = -Vor — ¢r + 3 lw x s|?. (3.1.2)

Here, d; and d; are the positions of the centres of the two stars, with
d.l/M2 = —dz/Ml = d./M ; wd =0 ; (313)

d being the vectorial separation of the two stellar CGs (d = d; — d3), which is constant
in the rotating frame. A non-stationary particle in the same frame will in addition
experience a Coriolis acceleration —2w X 8.

Note that
(i) the gradient operator differentiates with respect to s. We use the symbol s rather
than r because we use r later to represent the position vector within a star, relative to
the centre of the star. The origin of s is at the CG of the binary.
(ii) |d| = a. We use this notation because in non-circular orbits (see later) d, i.e. |d],
varies with time while a, the semimajor axis, is constant.
In the same vein, but in contrast, we always use w to mean 27/ P, even though in eccentric
orbits (again, later) w and |w| are time-varying. The excuse, apart from the shortage of
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Fig 3.1 — Some equipotential surfaces of the Roche potential — Equn (3.1.2). For each of four different
mass ratios (¢g=1, 2, 4, co, *1 being to the right) the critical equipotential passing through the inner and outer
neutral points are indicated; some other equipotentials are also sketched. The case g =oco (d) has a neutral
point all round the equator. A star can be in hydrostatic equilibrium only if it fills a closed equipotential
surface, as in (a), (b) and (d). The left-hand star in (c) is unstable, and material flows towards the companion,
being deflected by Coriolis force. In (d), the rotation axis is in the plane of the paper, but in (a) — (c) it is

perpendicular to the plane of the paper, in an anticlockwise sense.

appropriate letters, is that d x d/ d? is equal to and more useful than w, in an eccentric
orbit: see for example Equn (3.4.2.1) below.

If the fluid of which either star is made is in hydrostatic equilibrium, then it must fill
up a volume which is bounded by a closed equipotential surface of ¢r. It is easy to see
that the nature of this system of equipotentials depends only on the mass ratio, since by
virtue of Equns (3.1.1),

on = “Nfslag) . a = MM, (31.4)

Some examples are sketched in Fig 3.1. For all finite ¢ > 0, there exists a critical equipo-
tential which is figure-of-eight shaped. The neutral point where this equipotential crosses
itself (a saddle point) is called the ‘inner Lagrangian point’ L1, and the two lobes of the
surface it encloses are the ‘Roche lobes’. If both stars are sufficiently small, relative to a,
that they can fit into closed equipotentials wholly within their respective lobes (Fig 3.1a)
we have a situation which can be expected to be stable. There are however two more
neutral saddle points (L2, L3) collinear with L1 and the stellar centres, and a family
of closed equipotentials exists which surrounds both centres and also L1. Thus we can
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expect a kind of star that is shaped like a peanut, as illustrated in Fig 3.1b, where L2 is
to the left. L3, which is of little physical significance, is beyond the surface through L2,
and to the right (not shown).

If one star is too large to fit inside its Roche lobe, but the other is substantially
smaller, as would happen in Fig 3.1a if the left-hand star tried to evolve to substantially
larger radius, then the envelope of the oversized star cannot be dynamically stable, and
is liable to lose mass. This mass will fall through or near L1 into the potential well of
the companion (Fig 3.1c), being deflected by Coriolis force as it gains velocity.

These three situations are apparently all found among observed binaries. They are
called ‘detached’, ‘contact’ and ‘semidetached’ configurations respectively (Kopal 1959),
or D, C and S.

Strictly speaking, we might distinguish ‘contact’ and ‘overcontact’ systems (Wilson
2001): in the former, the stars exactly fill their lobes, and in the latter they overfill them,
up to the same potential surface if they are indeed in hydrostatic equilibrium. However
the former is likely to be very rare, and so we follow common practice in using the term
‘contact’ to cover both possibilities.

To start with, we assume that although material may be transferred from one compo-
nent to the other in the semidetached and contact cases, there is no net loss of material
from the system; and also that no angular momentum is lost either. This is called the
‘conservative’ model. We discuss a number of non-conservative processes later.

A single star which is rotating uniformly (i.e. all parts having the same angular ve-
locity) can also be described by the Roche potential, using the limit ¢ = oo (or 0), as
in Fig 3.1d. In this limit, all of L1, L2, L3 degenerate into a single equatorial ring.
Effectively this means that there is an upper limit to the possible rotation rate of a
single, uniformly rotating star of given volume: with a greater rate of rotation the star
would begin to shed matter at its equator. This matter would not necessarily flow away,
despite the downhill slope of the Roche potential outside the critical surface; for the
Roche potential assumes that all the material corotates, and there is no reason why the
‘loose’ matter shed at the equator should continue to corotate, even if it is pushed slightly
further out on to the apparent downward slope.

For completeness, we note briefly that there are two other neutral points, L4 and
L5, which — somewhat remarkably — for all finite ¢ make equilateral triangles with the
stellar centres in the equatorial plane. These neutral points are minima, and so might be
expected to be stable. However linear stability analysis in the rotating frame demands a
Coriolis term in addition to the potential force, and a detailed analysis shows that L4, L5
can be stable only if the mass ratio is fairly extreme: ¢ + 1/¢ >25. This is probably not
commonly satisfied in stellar systems, but can be easily satisfied in star-planet systems.
In the solar system, the Trojan asteroids are located near the L4, L5 points of the
Sun-Jupiter binary.

The discussion of Chapter 2 was based on spherical (i.e. single, non-rotating) stars,
but it can be applied fairly accurately to the distorted models required by Roche ge-
ometry. For each closed equipotential up to and including the Roche lobe we define an
effective radius which is the radius of a sphere of the same volume as the interior of the
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equipotential. We then suppose as a first approximation that the structure of the star
is the same at a given effective radius as if it were spherical, and that in particular the

effective surface radius is the same — see Section 3.2.1 for a second approximation. For

the critical equipotential, i.e. the Roche lobe, the effective radius Ry, is given (Eggleton

1983a) by

Ry,

— = z1(q)

a

. 0.44¢"%

~ (1+q)02

The first approximation is accurate to better than 1% for all g. The second approximation
is rather less accurate, but more convenient. It gives the ratio of the two lobe radii as

Ryi/Rya

0.49¢%/3

0.46

~ g

0.6¢2/ + In(1 + ¢/3)

0.1 ¢ 510

?

, 015qs510

At the limit ¢ = oo the volume can be integrated analytically:

27, (00)

3

=V3—-—-In

2++/3

3

z1,(00) = 0.8148857

0 <gqg<oo,

(3.1.5)

(3.1.6)

(3.1.7)

(3.1.8)

The values of Ry, /a given in Table 3.1 were all computed by direct integration; they can
readily be compared with the approximations (3.1.5) and (3.1.6).

Over the whole range of ¢, the sum of the two radii, z1.(q) + z.(1/q), is within 5%

of 0.78. This number illustrates the fact that while Roche lobes are not very spherical —

which would give a value unity — they are also not very aspherical.

50.0
20.0
10.0
8.00
6.25
5.00
4.00
2.50
2.00
1.60
1.25
1.00

RL/a

0.8149
0.6857
0.6308
0.5803
0.5626
0.5423
0.5233
0.5039
0.4621
0.4420
0.4218
0.3997
0.3799

Table 3.1 - Roche Lobe radii and related functions

Pe:/P
0.157
0.202
0.226
0.250
0.259
0.269
0.279
0.290
0.312
0.322
0.332
0.342
0.350

B,
oo
102.
40.3
19.5
15.3
11.6
8.99
6.87
3.68
2.61
1.75
.996
457

0.020
0.050
0.100
0.125
0.160
0.200
0.250
0.400
0.500
0.625
0.800
1.000

RL/a
0

0.1259
0.1670
0.2054
0.2192
0.2353
0.2506
0.2667
0.3036
0.3207
0.3392
0.3604
0.3799

Pe:\/P
0.336
0.363
0.370
0.375
0.376
0.377
0.377
0.376
0.372
0.368
0.364
0.357
0.350

B,
-1.67
-1.64
-1.58
-1.48
-1.43
-1.35
-1.27
-1.16
-.839
-.623
-.353
+.025
+.457

a/amin
%)
169.
30.4
9.15
6.41
4.42
3.24
2.44
1.50
1.27
1.12
1.03
1.00

P/Ppyin

2200
168.
29.7
16.2
9.29
5.83
3.81
1.84
1.42
1.18
1.04
1.00

Ry /a from numerical integration, and critical period P, in days; mean density p in solar units. Per+/p is
from Equn (3.1.10); a/@min and P/Pp;, from Equns (3.1.13), (3.1.14); R}, i.e. dlog Ry, /dlog M1, from Equns
(3.1.5), (3.1.13) and (3.1.16). The first 4 columns refer to ¢ > 1, the next 4 to ¢ <1, and the last two to either.
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In several semidetached binaries, it may be the case that ¢ cannot be determined
directly from the radial velocity curves of both stars, because *2, the ‘gainer’ (of mass
from the lobe-filling *1), may be surrounded by gas streams that distort or obscure its
spectrum. Sometimes an estimate for ¢ can nevertheless be made on the basis that the
‘loser’ (*1) not only fills its Roche lobe but also corotates with the binary. It may be
possible to measure the rotational broadening of the relatively uncontaminated lines of
x1, i.e. Vo sini, ¢ being the inclination of the rotation axis to the line of sight. The
ratio of V. sini to the orbital velocity amplitude K — which also contains a factor sin g,
and which also may be relatively uncontaminated — is a direct function of g¢:

Viot Sin ¢ wRy,
K waq

= (1+¢) zL(g) , (3.1.9)

a; being the radius of the orbit of the loser about the CG. From Table 3.1 it can be seen
that the RHS is a fairly rapidly varying function of ¢, ranging from 0.23 at ¢ = 0.1 to
0.76 at ¢ = 1. Thus ¢ may be estimated in the absence of clearly measurable motion of
*2.

Either of formulae (3.1.5) or (3.1.6), with the aid of (3.1.1), gives a useful relation
between the mean density p of a star which just fills its Roche lobe (so that M; =
47rRL3ﬁ/3), and a critical orbital period P:

1/2 1/2 3 0.2
3w q —3/2 R 2
P, = (== 4 ~ 0354 [ ——) . 3.1.10
<Gﬁ> <1+q> L \ 3, \1+4¢ (8.1-10)

The quantities Ry, /a and P./p are tabulated as functions of ¢ in Table 3.1. P is in
days if 7 is in solar units (i.e. p = M;/R?, M; and R being in solar units). P, is the
shortest period possible for a binary of given mass ratio into which a star of given mean
density p can be fitted without overflowing its Roche lobe. In the approximate version
of Equn (3.1.10) we will usually take g~ 1, since the g-dependence is very weak.

Throughout this Chapter we write the radius and luminosity of %1 for brevity as R, L
rather than Ry, Ly, because we shall consider only %1 to have any internal structure; 2
can for most analytical purposes be treated as a point mass. Anything we derive for *1
can of course be generalised to %2 if *2 does have structure. However, we still have to
distinguish M7, M5, and we use M for the total mass.

The fact that P, (for a particular star of mean density p) varies by less than a factor of
2.4 over the entire range of g, and by no more than a factor of 1.5 over the more restricted
but realistic range 0.1 <¢ <8, makes Equn (3.1.10) very useful. For example, the Sun
(at its present radius) cannot fit into a binary with P <0.157 d without overflowing its
Roche lobe, and it cannot overflow its Roche lobe in a binary with P >0.377d; a value
of 0.35d, appropriate to g = 1, is wrong by less than 10% over the range 0 < g < 2.

In Chapter 2 we noted that the radius normally increases, and so the mean density
decreases, with age, and rather drastically in the Hertzsprung Gap and red giant stage.
Thus we gain a little information on the evolutionary status of a star simply by knowing
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that it is in a binary of a particular period. For a binary of period P containing a star
of radius R, the ratio P/P,, is related directly to R/Ry:

<R£;>3 _ (?)2, (3.1.11)

Table 3.2 gives data regarding (theoretical) stars at up to seven significant points
in their evolution. These are the stars whose Hertzsprung-Russell diagram is shown in
Fig 2.17. Core masses, ages (in Myr), radii, luminosities, temperatures, and spectral
types are indicated, and also the period P., in days: this is the orbital period such
that the star would just fill its Roche lobe at the corresponding stage in evolution. The
stages are the beginning (ZAMS) and end (TMS) of the main sequence, the beginning
(BGB) of the giant branch, where the atmosphere switches from mainly radiative to
mainly convective, and central helium ignition (HeIgn). The stellar radius usually then
shrinks to a temporary minimum during core helium burning (CHeB), increases again
but passes through another temporary minimum on the early asymptotic giant branch
(EAGB), and then increases to a final maximum (RMAX) before the star collapses to a
white dwarf (1 — 4 M), or explodes as a supernova ( >8 M,)). These models include an

estimate of mass-loss rate, as described in Section 2.4. The stellar mass at the last stage
tabulated is shown at the foot of the Table; it will decrease further in the post-AGB
evolution of masses 1 — 4 Mg, and presumably also in the WR and post-WR. stages of
masses 32 — 128 Mg, but perhaps not much further for the 8,16 Mg stars.

Fig 3.1b shows that stars can be larger than their Roche lobes, and still in hydrostatic
equilibrium, provided that both components fill the same equipotential. But there is
an ‘outer critical lobe’ which cannot be exceeded even in this case, as shown by the
outermost of the three curves in Fig 3.1b. If this outer surface is divided (somewhat
crudely) into two by a plane through the inner Lagrangian point perpendicular to the
line of centres, the effective radius of each of its two portions can also be defined and
computed, as a function of ¢. It is, to better than 2%,

Ror 0.49¢%/% +0.27q — 0.12¢*/3
- 'TOL(q) ~ 2/3 1/3 9
a 0.6¢%/3 4+ In(1 + ¢1/3)
0.49¢%/% 4+ 0.15
0.6¢%/3 +1In(1 + ¢'/3) ~

(3.1.12)

qg>1.

The discontinuity of gradient at ¢ = 1 is real, not an artefact of the approximation.
However the outer lobe is of much less practical significance than the inner lobe, i.e. the
Roche lobe, even for contact binaries (Chapter 5.4).

Mass transfer from one component to the other by ‘Roche Lobe Overflow’, or RLOF,
is going to be an inevitable consequence of the evolutionary expansion of a star, for
orbital period P $1000d (Table 3.2). For massive stars the limit is substantially larger.
When the more massive star, which evolves faster, reaches its Roche lobe it will begin
to shed its surface layers. As a first approximation, which we will have to reconsider
subsequently, we suppose this mass transfer is slow, steady and ‘conservative’, i.e. that
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Table 3.2 - Critical binary periods for stars of various masses and evolutionary stages.

mass
ZAMS: M conv
log R
log L
log T
spect.
log Per
TMS: M He
age
log R
log L
log T
spect.
log Per
BGB: M e
age
log R
log L
log T
spect.
log Per
Helgn: M. ne
age
log R
log L
log T
spect.
log Per
CHeB: M. He
age
log R
log L
log T
spect.
log Pex
EAGB: M¢ He
M.,co
age
log R
log L
log T
spect.
log Per
RMAX: M He
M.,co
age
log R
log L
log T
spect.
log Pex
M

0.25
-0.571
-2.023
3.542
M3V
-1.012

0.50
-0.340
-1.411
3.579
Mo0.5V
-0.815

1.00
-0.051
-0.148
3.750
G6V
-0.532
0.117
11000
0.231
0.351
3.734
G8IV
-0.110
0.124
11110
0.251
0.351
3.724
GIIvV
-0.079
0.469
11990
2.266
3.425
3.485
Ma3.5I11
3.003
0.519
12080
1.056
1.772
3.677
GS5III
1.189
0.536
0.296
12140
1.469
2.354
3.616
K2.5111
1.811
0.575
0.551
12250
2.317
3.591
3.501
M3III
3.119
0.629

2.00
0.293
0.210
1.258
3.971
A0V
-0.296
0.254
1128
0.683
1.544
3.806
F5III
0.418
0.260
1140
0.736
1.308
3.721
G2III
0.498
0.390
1177
1.788
2.908
3.595
K3III
2.078
0.411
1190
1.037
1.785
3.690
G3III
0.953
0.544
0.311
1365
1.447
2.421
3.644
GOIII
1.571
0.669
0.660
1372
2.624
3.978
3.444
M611
3.497
0.928

4.00
0.906
0.376
2.378
4.168
B5.5V
-0.192
0.634
172.3
0.782
2.732
4.054
B8III
0.417
0.638
174.2
1.409
2.541
3.693
G2II
1.355
0.639
174.8
1.845
3.139
3.624
K2II
2.010
0.800
190.5
1.493
2.685
3.687
G2II
1.483
0.885
0.515
209.9
1.843
3.145
3.626
KOII
2.010
1.010
1.009
211.3
2.865
4.488
3.451
M611
3.749
1.77

8.00
2.360
0.555
3.440
4.344
B1.5V
-0.075
1.640
35.44
0.962
3.859
4.246
B2.511
0.535
1.645
35.79
2.081
3.678
3.641
KO0Ib
2.214
1.644
35.86
2.424
4.126
3.581
K4Ib
2.729
2.053
38.05
1.738
3.038
3.902
A8Iab
1.703
2.249
1.347
40.40
2.424
4.132
3.583
Kb5Iab
2.736
2.235
1.445
40.48
2.674
4.486
3.546
Mllab
3.111
7.74

16.0
6.48
0.726
4.372
4.492
09.5V
0.030
4.70
11.27
1.182
4.774
4.364
BO0.5Iab
0.720
4.06
11.39
2.720
4.761
3.592
K4lab
3.028
4.06
11.38
2.014
4.856
3.969
A2la
1.969
4.79
11.95
2.853
4.904
3.562
MoOIab
3.237

5.58
3.91
12.75
3.019
5.126
3.534
Mlla
3.508
13.5

32.0
18.2
0.894
5.146
4.602
05.5V
0.132
12.9
5.432
1.505
5.467
4.377
BO0.5Ia
1.067
10.24
5.487
3.045
5.448
3.601
K3la
3.378
10.3
5.486
2.956
5.482
3.654
G8la
3.245
12.7
5.792
1.765
5.559
4.269
Bo0Ia
1.612

13.7¢

Masses, radii, luminosities in solar units; critical orbital period in days; age in Myr.

“Mass at last evolutionary state tabulated.

64.0
a7
1.07
5.77
4.67
03V
0.24
31.3
3.442
2.335
5.989
4.091
B6la"
2.201
33.2
3.474
3.236
5.979
3.639
K2la©
3.562
32.8
3.477
3.402
6.059
3.575
K7la©
3.818
16.9
3.512
2.334
6.047
4.104
B6la’
2.323

28.5%

129

128
109
1.27
6.28
4.70
03V
0.40
59.5
2.727
1.714
6.332
4.488
BOla"
1.22
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no mass or angular momentum leaves the system altogether. The mass lost by *1 (the
loser) is assumed to be accreted by %2 (the gainer). Note that in this Chapter we take
*1 to be the star which is nearer to filling, or perhaps already fills, its Roche lobe, rather
than to be the initially more massive star, although quite often they are the same. We
also assume for the time being that the orbit remains circular; this in fact follows from
the other assumptions since the eccentricity is an adiabatic invariant. Then using the
basic Keplerian Equn (3.1.1), the separation a and the period P are given in terms of
the constant orbital angular momentum H,,, the constant total mass M = M; + M,, and
the varying mass ratio g by

H2M (1+q)* M2 \?
= —_— = min——— &5 — — min s — ) 3.1.].3
R E) V3 R R TP min \ 40N M, (3-1.13)
3 6 2 \3
p o _ HM o, (tar o, (M (3.1.14)
w  GEMPM2 64q° AM, M,

The variation of a and P with g, relative to their minimum values @uyin, Pnin at ¢ = 1,
is also shown in Table 3.1. We normally define g as greater than unity initially, so that
as q decreases through unity the separation at first decreases and subseqently increases.
Thus for conservative RLOF, the separation and period reach their minima as the two
masses pass through equality.

For a few semidetached binaries, a rate of period change can be measured. If this is
roughly constant over decades or, better, centuries then it may allow us to estimate the
rate of mass transfer during RLOF:

My _ M,
M M

q
3(¢* - 1)

P
5 (3.1.15)
Unfortunately, there are rather few systems in which the period changes at a steady
rate for a long time (Fig 1.6); and even when it does, there may be non-conservative
processes at work (stellar winds, magnetic braking, gravitational radiation; Chapter 4)
on something like the same timescale.

We should note in addition that the Keplerian relation (3.1.1), and consequential
relations (3.1.13, 14), are not correct, for stars which are distorted from spherical. A cor-
rection is necessary — Equn (3.2.2.8) below — which depends on the quadrupole moment
of each star, to lowest order. Thus a small variation of P with time might be due to
varying quadrupole moment rather than varying mass. This might result from variation
of the internal magnetic field during a solar-like cycle (Applegate & Patterson 1987).
Such cycles can be decades long, and possibly centuries long. A further effect is that
the spin of the stars affects the orbital angular momentum. If the moments of inertia
fluctuate, perhaps for the same reason, then the period could fluctuate slightly.

An important quantity is the rate Rj at which the Roche-lobe radius responds to the
mass My (x g/1+ gq) of the star within the lobe, at constant H, and M. We define
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R}, as the logarithmic derivative, a convenient dimensionless expression obtainable from
Equns (3.1.13) and either (3.1.5) or (3.1.6):

dlog Ry, dlog Ri,/a dloga
R, = ———— = (1 : 3.1.16
L dlog M, (1+9) ( dlogq dlogq ) ’ ( )
~ 213¢—1.67 , 0<qgs50 ; (3.1.17)

1, is also given in Table 3.1. Note that Rj, = 0, i.e. the Roche-lobe radius is a minimum,
at ¢ ~ 0.788, using the more accurate expression (3.1.5).

The significance of Rj, is that it can be compared with R', the equivalent (logarith-
mic) response of a star’s radius to its mass as determined by its internal structure. For
example, Equns (2.2.1.2) and (2.3.2.2) give R(M) for a ZAMS star and for a WD respec-
tively, and when differentiated logarithmically yield corresponding values for R’. As we
shall see in Section 3.3, the rate, and the stability, of the mass-transfer process depends
importantly on a comparison of R with R'.

We shall see later that the simple picture of Roche geometry outlined above is hardly
adequate in some cases, though it may well be adequate in most cases. We therefore
emphasise the assumptions on which it is based:

(i) The stars are treated as spherically symmetric masses, so far as their gravity in
Equn (3.1.2) is concerned, despite the fact that they may fill, or even overfill, their
Roche lobes. However, this is probably the least worrying assumption. Between 70%
(on the lower main sequence) and 90% (on the upper main sequence) of a star’s mass is
within the inner 50% of its radius, and the equipotentials (3.1.2) become rapidly nearly
spherical as one goes inwards from the Roche lobe. In fact a rather simple correction,
based on hydrostatic and thermal equilibrium in a non-spherical potential field, can
be applied (Section 3.2.1), and can be shown to be rather small in relation to other
uncertainties.

(ii) The stars are assumed to rotate uniformly, and with the same angular velocity
as the system, i.e. all the material of the system is assumed at rest in the corotating
frame. Tidal friction, which we discuss briefly below (Chapter 4.2), is likely to enforce
this, at least for the outer layers, but only in relatively close binaries. However tidal
friction, especially in fluid as distinct from solid bodies, is by no means well understood
yet. Internal magnetic fields might also play an important role in enforcing solid-body
rotation, since even a slight amount of differential rotation will lead to rapid amplification
of any internal magnetic field.

(iii) The orbit is taken to be circular, although it might be a Keplerian ellipse. Tidal
friction can also be expected to circularise orbits; for tidal friction is a dissipative process,
and two bodies in Keplerian orbits about their CG have the least energy, for a given
angular momentum, if their orbits are circular. Most observed systems where one star
is near to filling its Roche lobe are found to have circular orbits within the limits of
observational accuracy (which may be rather wide, however).

(iv) In Equns (3.1.13), (3.1.14) the intrinsic angular momentum of the stars is ignored
compared with the orbital angular momentum. Once again, the fact that stellar mass is
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concentrated towards the centre makes this reasonable. We noted in Chapter 2.2.2 that
main sequence stars are well approximated by polytropic gas spheres with n~3. The
radius of gyration k of x1 is

R? = MyR® ~ 3MR? 5

k> I 2 My nA\L734 ~ ) .
= w2dm ~ 0.4 (1_ ) ¢—0.0133n-0.0182n +0.0041n
0

~ 0.076 for n~3, (3.1.18)

if we use a polytropic approximation (requiring n < 5); see Table 3.4. Comparing the value
for n = 3 with the value 0.4 for a uniform sphere (n = 0), we see that an n = 3 polytrope
is quite centrally condensed. It is only when (a) the mass ratio is rather extreme, and
(b) the more massive component is close to its Roche lobe, that spin angular momentum
can become comparable to orbital angular momentum. This is further discussed in
Chapters 4.2, 5.1.

(v) Equns (3.1.13), (3.1.14) are true even if H, and M are not constant, provided the
eccentricity remains zero. Nevertheless the entries of Table 3.1 assume constancy. How-
ever several processes, outlined below (Chapter 4), may work to remove mass or angular
momentum (or both) from the binary. Some of these processes are likely to reduce H,
relatively faster than M, causing the orbit to shrink and speed up; but some may expand
the orbit, or even disrupt it entirely.

3.2 MODIFICATIONS TO STRUCTURE AND ORBIT

3.2.1 Effect on Structure of a Non-Spherical Potential

There is a convenient semi-analytic model for a star which is distorted from spherical
by (a) rotation, supposed uniform, and (b) a binary companion. The model suffers from
a number of disadvantages, outlined below, and cannot be considered as anything more
than a recipe that yields a plausible but by no means definitive estimate of the first
order consequences of such distorting effects. Nevertheless, the model has the advantage
of surprising simplicity that may even outweigh its disadvantages, and so we present its
basis and its conclusions here, with the analysis relegated to Appendix B.

We suppose here that one of the two stellar components, *2 say, is a point mass,
while only %1, whose internal structure is being considered, is an extended body. We
work in a frame which rotates with x1, noting that this is not necessarily the same as a
frame which rotates with the binary (although corotation was assumed in the previous
section). We take (2, the rotation of %1, to be a constant, or at any rate to vary slowly
compared with the orbital timescale (unlike the instantaneous orbital angular velocity,
if the orbit is eccentric). We also assume, rather less convincingly, that we can in the
first instance neglect the velocity of material relative to the rotating frame, so that we
take *1 to be in hydrostatic equilibrium. If the orbit is in fact eccentric, or if x1 is
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not corotating with the binary, the velocity cannot be strictly zero since there will be a
time-dependent tidal distortion; its velocity field is determined in Appendix B, and given
below — Equn (3.2.1.18). However the degree of distortion is really quite small even in
the extreme when a star is close to filling its Roche lobe, and so it is not unreasonable
to neglect it and assume that the star is always in hydrostatic equilibrium, even with a
time-dependent potential due to the change of relative position of *2.

To maintain thermal equilibrium in a distorted star which is in hydrostatic equilib-
rium, it is necessary to introduce a meridional velocity field v, say — Equn (3.2.1.21)
below — in addition to the tidal velocity field. Fortunately v can be estimated to be very
small over the bulk of the star, and so we can reasonaly assume that the star is still in
hydrostatic equilibrium:

Vp = —pVo¢ (3.2.1.1)

Vi = 4AnGp—20% . (3.2.1.2)

Here ¢ is a combined gravitational-centrifugal potential, which includes the potential
of the companion star (a point mass outside the object star), the centrifugal potential
%|Q x r|%, as well as the self-gravity of the object star. This ¢ is not the same as ¢r in
Equn (3.1.2): firstly, *1 (say) is no longer being treated as a point mass; secondly, the
origin is now at the CG of %1 rather than of the binary; thirdly, we are working in a
frame which rotates with 1, and not necessarily with the orbit.

Equn (3.2.1.1) has the rather powerful consequence that both p and p must be con-
stant on surfaces of constant ¢. If to start with we think only about stars of uniform
composition (e.g. ZAMS stars), then the molecular weight p is constant and hence T, s
are also constant on equipotential surfaces. In a radiative (i.e. non-convective) zone this
means that the heat flux F is given by

4acT? dT
F = XwadVé , Xrad(¢) = - , (3.2.1.3)

3kp do
X being constant on equipotentials as are p, T, dT'/d¢, and also k since we assume uniform
composition.

In a convective zone the heat flux vector is not so straightforward. However by
compounding the simple but unjustifiable mixing-length theory (Chapter 2.2.3) with an
equally simple and unjustifiable generalisation to distorted stars (Appendix B), we can
approximate the heat flux by

F = (Xrad(®) + Xcon(®))Ve = x(¢)Vo . (3.2.1.4)

The details of y do not matter, as shown in Appendix B, but what does matter — from
the point of view of being able to get simple results — is that x, as with other variables,
should be constant on equipotentials.

The equation of heat production and transport in a steady state is then

ds
VXVT = pe—pTv.VS = pe— pT£|V¢|vL , (3.2.1.5)
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where € is the nuclear reaction rate and v the meridional velocity field. The LHS is not
constant on equipotentials, whereas pe is, and so Equn (3.2.1.5) gives the component
v, of v normal to the equipotential which is necessary to balance the two sides; the
tangential component is then given by continuity:

Vv =0 . (3.2.1.6)

An explicit expression for v, is given below — Equn (3.2.1.22).
Let us define the ‘volume-radius’ r,(¢) of an equipotential surface by
4dr 4
3T = V(e) , (3.2.1.7)
where V(¢) is the volume contained within the equipotential. Then following the analysis
of Appendix B our simple model gives the structure of a distorted star by

jﬁ ~ —pﬁ—T (1— 2;5:3) ; (3.2.1.8)

j:: = dnrip | (3.2.1.9)

ji = dmripe (3.2.1.10)

szlféggi Cmin(V, V) V= e (1 2;202;5)—1 . (32.L11)

L, m are the nuclear luminosity and the mass contained within an equipotential. Equns
(3.2.1.8) — (3.2.1.11) are seen to be virtually independent of the fact that the star is
distorted. Only one factor, omitted in Equn (3.2.1.8) but included in Equn (B8) of
Appendix B, depends on a detailed knowledge of ¢(r); and it is clear that the factor
differs from unity in second order if ¢ differs from spherical in first order. Taking this
factor to be unity, therefore, the only effect of binarity on internal structure turns out
to be a weakening of gravity by way of the rotation of the star: the factor 4mrG'm needs
only to be replaced by 47Gm — 292V in the two places where it occurs. This is very
easily incorporated into a stellar evolution code making the conventional assumption
of spherical symmetry. Note that although Equn (3.2.1.11) is written with only the
lowest-order approximation to the temperature gradient dlogT/dlogp, the usual more
elaborate mixing-length approximation can be used instead (Appendix A), provided V,
is modified as above to include rotation. Note also that the distorting effect of the
gravitational field of *2 does not enter into Equns (3.2.1.8) — (3.2.1.11) at all: this is
because V2¢ for that effect is zero within *1, whereas for the centrifugal part of the
potential V2¢ = — 202

Table 3.3 shows that the effect on the star of including the rotational modification
is not large, even if the star exactly fills its Roche lobe. The table lists some ZAMS
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Table 3.3 - Critical period on the ZAMS modified by including rotation: equal masses

M 0.125 0.25 0.5 1 2 4 8 16 32
log P, -1.1998 -1.0118 -0.8158 -0.5314 -0.3039 -0.2183 -0.1139 -0.0099 0.0902
log P!, -1.2052 -1.0153 -0.8225 -0.5236 -0.2838 -0.1997 -0.0959 0.0078 0.1091

P, is the critical period for RLOF on the ZAMS as obtained when the effect of rotation on the structure is
ignored — Table 3.2; P,

cr

is the value when rotation is included according to Equns (3.2.1.8),(3.2.1.11). Periods

are in days and masses in solar units.

models — cf. Table 3.2. Equal masses are assumed. The critical period is increased by
nearly ~4% for most masses, but for the lowest-mass stars, which are largely or wholly
convective, it is decreased by ~1.5%. The effect would be larger at higher mass ratio,
and also for single stars rotating at break-up (equivalent to infinite mass ratio).

The degree to which an internal equipotential of mean radius » — dropping the asterisk
— departs from spherical can be represented by a function «(r), such that the radius in
direction @ from the symmetry axis is a factor 1 — a(r)P2(cos ) times the mean radius.
As shown in Appendix B, « satisfies Clairault’s equation

d’a  6a  8mrip <1d_a a> _ 0

dr? r2 m

e (3.2.1.12)
Thus a depends only on the zero-order (spherical) distribution of mass, apart from a
constant multiplicative factor which is determined by the strength of the perturbation:
see Equn (3.2.1.15) below. For polytropes, «(r) is easily computed, and it can also be
computed from tabulated stellar models. Two cases are shown in Fig 3.2. The first-
order aspherical mass distribution can then be allowed for, and generates a quadrupole
moment which is best expressed in tensor form, since it consists of two contributions
with different axes of symmetry: rotation (), and the companion (d). The quadrupole
tensor is

com ro A
g = a5 tap™t gyt = - o5 (B, - 0%y)
m MyA R5Q
g = S Bdid—dy) A = 0 (3.2.1.13)

where R is the mean surface radius of *1 and @ is a structure constant determined from
o:

1 M da, 4
= —— —)rd . 2.1.14
Q 5M1R2a(R)/0 (5a+rdr)r m (3 )

This @ is clearly independent of a constant factor in «, so that Equn (3.2.1.12) for «

need only be integrated with the initial conditions o = 1 (say) and o' = 0 at # = 0. Then

a can be scaled so that its surface value is dictated by the strength of the perturbing

effect, either rotation or the companion or both:

O2RS 1  atome(r) — - MyR® 1
Md31-Q

(3.2.1.15)
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For a polytrope of index n, 0 <n <4.95,

3 2.215
Q~ : (1 - E) ¢0-0245n-0.006n"~0.0084n" 4 § 5o7 1y o (3.2.1.16)

5
Q@ ~0.028 for an n = 3 polytrope, and 0.223 for n = 3/2. @ relates to the conventional
‘apsidal motion constant’ kay by

kam = (3.2.1.17)

@
1-Q

N | =

In much of the literature kayg is called ko, but here we reserve suffix 2 for the other star
(even if it has rather little structure).

In the frame that rotates with %1, the rotational contribution to the tidal distortion
is constant (like the Earth’s equatorial bulge) and the companion’s contribution is time-
varying (like the Earth’s lunar tidal bulge). The time-varying part contributes a tidal
velocity field u say, which, like the meridional field v of Equn (3.2.1.5), has to be as-
sumed small to justify hydrostatic equilibrium. It is shown in Appendix B to have the
quadrupolar form

3 MyR®
R P LG (3.2.1.18)
where 1 0d |/ od;  ad
o tod . o 1 ( 0d; - 0di
S = oy (5did; — by) — 3 <dl L+ dg 6t> , (3.2.1.19)
and ) ; J
_ 1t @ ap
g= <p(R)+/R b dr> . (3.2.1.20)

Fig 3.2 also shows §(r) for a polytropic model and a ZAMS model. Contrary to its
superficial appearance, Equn (3.2.1.20) satisfies its necessary boundary condition 8 =1
at the surface, even if the surface is approximated as polytropic with p(R) = 0. Table 3.4
gives a number of constants computed for polytropic models.

Table 3.4 - Various constants for polytropes

n 0 1 1.5 3 3.5 4

c 1.00 3.29 5.99 53.6 146.9 543
k?/R? .400 .261 .205 .0759 .0468 .0247
Q .600 .342 .223 .0285 .01041 .00300
Be 1.00 763 .560 .1008 .0402 .01170
5 1.00 .610 .339 .0122 .0020 .00018
Darwin gp 2.78 4.01 4.98 11.82 18.05 32.6

C is the central condensation, or central density over mean density — Equn (2.3.1.3); k is the radius of gyration
—Equn (3.1.18); @ is the dimensionless quadrupole moment — Equn (3.2.1.14); . is the tidal velocity coefficient
at the centre, relative to unity at the surface — Equn (3.2.1.18, 20); ¥ is the average dimensionless dissipation
amplitude in the inner 25% of mass — Equn (3.4.2.25); gp is the critical mass ratio for the Darwin instability

— Equn (3.5.1.3).
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log p, &, B, v, n/n+1
log p, &, B, ¥, n/n+1

Fig 3.2 — The variation of 0.1 log(p/pc)+1 (plusses), and a(r)/a; (asterisks), which Igleasures the degree of
distortion of equipotential surfaces. Also shown are n/n+1 (line), where n is the local polytropic index, B(r)
(circles), which determines the amplitude of the tidal velocity field — Equn (3.2.1.18) — and 0.1log~(r)+0.5
(crosses), which determines the tidal dissipation rate — Equn (3.4.2.25). The models are (a) n=3 polytrope,
(b) 1 My ZAMS star.

If a star were a perfect (dissipationless) oscillator, its first-order tidal motion would
consist of (a) a particular integral, the ‘equilibrium tide’ of Equn (3.2.1.18), and (b)
a collection of normal modes, determined by some initial conditions. Dissipation, i.e.
viscosity, even if slight, will tend to remove the normal modes, leaving the equilibrium
tide as the dominant motion. But even the equilibrium tide will be subject to dissipation.
In most cases (see Chapter 4.2) this will lead ultimately to uniform corotation of the
star with a circular orbit: tidal friction will stop dissipating mechanical energy only if
and when the orbit is circular and the star rotates with the orbit. In Section 3.4.2 we
compute the rate of dissipation of the tidal velocity field (3.2.1.18).

Returning now to the meridional velocity field v of Equn (3.2.1.5), the normal com-
ponent v, is given — Equns (B21), (B52) — by

ds 1 dy d L

8t R3Q? r? d(ra) d L

~ T Py(cost) — — 2.1.22
3G (-0) a® a 2w gm0 @ )

where dY is an element of area on the equipotential surface. The distortion due to the
companion leads to an additional velocity field of similar mathematical form, but with the
first Q2 in Equn (3.2.1.22) replaced by —3GM>/d® and with the polar angle § measured
from the line of centres rather than the rotation axis. The tangential component v of
the velocity field comes from Equn (3.2.1.6), i.e. continuity.
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In the bulk of the star, outside the core, L is constant, and so the V-derivative
which is the final term of Equn (3.2.1.22) has a factor 47Gp — 2Q%. This will usually
vanish somewhere inside the star, unless the rotation is very slow, and so will divide the
circulation into two distinct parts (Fig 3.3). The factor 2rGM — 2Q2?V does not vanish
within or on the Roche lobe — Equn (3.2.1.26).

A close look at v; shows some of the weaknesses of the model, however. Firstly,
the model predicts that v, tends to infinity at the surface, and not to zero, as p — 0.
Presumably an infinite ‘surface current sheet’ must flow there, to close off the streamlines.
If we are determined to try and believe the essence of the model, we can argue that (i)
the photospheric density is not really zero, but small and given by the surface boundary
condition (2.2.2.11); and (ii) there is a turbulent surface layer of finite speed and thickness
(perhaps as thick as the photosphere), the turbulence being driven by the shear that
must be relatively large in the surface layers. Secondly, and more importantly, we also
see that v; — oo at any boundary between a radiative and a convective zone, since
dS/d¢ = 0 there. Thus there must also be a surface current sheet at such layers to
close the streamlines. Once again, we might imagine that in reality there is a turbulent
boundary layer of finite thickness and speed rather than a surface current sheet.

2mGp=0~ _2mGp=0~

Fig 3.3 — Patterns of circulation to be expected in a rotating star, on the basis of Equns (3.2.1.22) and
(3.2.1.25): (a) massive, with convective core and radiative envelope; (b) low-mass, with radiative core and
convective envelope. Heavy lines with double arrows are surface current sheets. The rotation axis is the RH

edge of each panel.

Fig 3.3 gives an artist’s impression of the circulation patterns that might be expected
for a massive star (convective core, radiative envelope) and a low-mass star (radiative
core, convective envelope) in uniform rotation. Note that the factor in parentheses in
Equn (3.2.1.21) is positive near the equator and negative near the poles, while the factor
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to the right of the parentheses is negative near the centre, positive near the surface, and
vanishes on the surface 47Gp = 202, provided that this is sufficiently far from the centre
that L~ const. there.

From Equn (3.2.1.22) we can estimate the order of magnitude of v . In the central

regions we obtain
2
or ~ (T} B L (3.2.1.23)
Ver ) V3 |V =V,

where wg (~0.035km/s for the Sun) is the global convective velocity of the star as
defined by Equn (2.2.3.10), vyt = QR (~2km/s for the Sun) is the surface equatorial

rotation velocity, and v2 = GM;/R (~450km/s for the Sun) is the surface circular
velocity. In the outer layers the corresponding estimate is

P ( Urot * wé 1
~ A=) e, 3.2.1.24
o P <vcr> vg |V = Va ( )

where p is the mean density of the star. The maximum value of vyo/ve, is ~ 1, when the
star is rotating at breakup. For massive MS stars wg could be an order of magnitude
larger than for the Sun, but v, will only be larger by <2. Thus v, is very small in the
interior. However p/p~107 at the surface. Near the surface of a very rapidly rotating G
dwarf we might have v ~0.03km/s. Somewhat larger values could prevail on the upper
MS. But for a slow rotator like the Sun the value is less by ten orders of magnitude.

If either the core or the surface is convective (and usually at least one is), then from
Equn (2.2.3.10) |V — V| ~ wE /vsouna®. In the interior, wg < vsouna and vsound ~ Ver, and
so the predicted v, is of the order of the global convective velocity wg if the star is
rotating near break-up. Throughout most of a surface convection zone we also have a
small value of |V — V,|, and so the predicted circulation speed is also larger there.

Since v, is approximately radial and v is approximately tangential, the former eas-
ily gives a stream function from which the latter can then be determined: if, from
Equn (3.2.1.22), we write v, = f(r)Pz(cosf), then we obtain

1 d(r*pf)

e 2pr  dr

sinfcosf (3.2.1.25)
so that v) ~v_ in the interior, but in the surface layers ’U”/’UJ_ ~r/Hp.

Apart from the somewhat awkward fact that the predicted circulation pattern is
singular at the boundaries of convective regions, and at the surface, there are potentially
two other problems with the model described here (and in Appendix B). Firstly, the
rotation is assumed to be uniform. But the circulation current must itself redistribute
angular velocity, even if it was uniform to start with. At least in a binary component,
tidal friction can be perceived as an agency that would lead to uniformity from a previous
non-uniform state, but it does not necessarily dissipate non-uniform rotation so rapidly
that we can always rely on it. Instability on a thermal timescale should occur for any
rotation distribution if © is not constant on cylinders, or if Qr?sin? @ increases inwards
(Goldreich & Schubert 1967, Fricke 1968), but it is not clear that this instability will tend
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to redistribute angular velocity towards uniformity. Evolution, leading to contraction of
the core and expansion of the envelope, could produce differential rotation; it is often
suggested that the evolved cores of massive red-supergiant stars must be rotating much
more rapidly than their surfaces, since neutron stars are typically rotating very rapidly
at ‘birth’. Furthermore, the Sun and the gaseous massive planets are all seen to have
non-uniform rotation on their surfaces. However, even if stars are typically rotating
non-uniformly, the degree of non-uniformity need not be so drastic that the model is
completely irrelevant. Since it is the surface layers which are most distorted by rotation,
it is only necessary for the model’s approximate validity that in the outer say 30% of the
star’s radius the rotation be uniform to say 20%.

Spruit (1998) has suggested that even a very weak magnetic field that permeates the
entire star might be sufficient to enforce corotation, including the core. A very small
poloidal magnetic field threading the interior would generate toroidal field quite rapidly
if wound up by even a very modest differential rotation. These toroidal loops should
become buoyant and float to the surface, where they might rest if the surface is largely
radiative or dissipate if it is largely convective. This process could erode the energy of
differential rotation on a fairly short timescale. In that case the above problem might be
insignificant. Of course, some other mechanism (Spruit 1998) is then needed to explain
the rapid rotation of ‘young’ neutron stars, and some white dwarfs — see Chapters 2.3.2,
2.3.4.

Secondly, the model assumes uniform composition. Obviously this is violated by
nuclear evolution. We can argue that, if we assume that p as well as p, p is constant on
equipotentials, then so is T" from the equation of state, and hence also the nuclear burning
rate; therefore the composition change is also, thus justifying in a circular manner the
assumption about p. However this supposes that the circulation currents do nothing
to redistribute the composition, which can only be a crude approximation — especially
since the circulation is technically singular at the boundary of a convection zone. Perhaps
convective overshooting, combined with rotationally-driven mixing, does in practice keep
the composition more-or-less constant on equipotentials, but this does not seem to be
guaranteed. However, as above, we might argue that it is only the outer layers where
the distortion is significant, and these outer layers are not normally much affected by
mixing; if they are, perhaps they are mixed more-or-less to uniformity.

Almost certainly for a slow rotator like the Sun the model above of rotationally-
driven circulation is a complete irrelevance. There does exist an apparently meridional
circulation, as shown by the fact that sunspot pairs tend to drift towards the poles
(while rotating, and decaying) at a rate of ~15m/s (Wang 1998). This is several orders
of magnitude larger than expected from Equn (3.2.1.25). Presumably this circulation
has its origin in the hydrodynamics of turbulent convection subject to rotation. There is
nothing in the standard model of rotationally driven circulation to explain the marked
variation of angular velocity with latitude and depth that is observed in sunspot motions,
and by helioseismolgy (Fig 2.6b); this variation is presumably also a consequence of the
combination of turbulence and rotation, particularly the Coriolis term. This term has
been neglected, although it is more important than the included centrifugal term at least
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in regions which are convective. However for rapid rotators, which are usually upper MS
stars with predominantly radiative envelopes, we believe that the standard model, in
particular the two Q-dependent modifications in Equns (3.2.1.8) and (3.2.1.11), may be
reasonable for determining the overall structure, and may even give a reasonable estimate
of meridional circulation in the outer layers. It is unlikely to give useful insight into the
effect of rotation on the central convective core.

The parameter a™'(R) of Equn (3.2.1.15) is a convenient measure of the departure
of the simple rotating model from a standard non-rotating single-star configuration. If
Q = w (i.e. corotation), the value of oo (R) for a Roche-lobe-filling component is

0V 1+¢

cf ~ 1mQa™(R) = 3 23(q) ~ 0.028(1+9)°*  (g520) , (3.2.1.26)

from Equns (3.1.1) and (3.1.6). We see that a'*(R) <0.05, for ¢ between 0 and 2 and
@ <0.2. For larger ¢ it rises, reaching 0.2 at ¢ = oo (Table 3.1). From Fig 3.2 we see
that a(r) decreases inwards, and so a(R) is the maximum value for a(r). The factor
a(0)/a(R) ranges from 0.45 in an n = 1.5 polytrope to 0.07 in an n = 3 polytrope. It is
much smaller still in the cores of highly evolved stars. Thus for all ¢, ;o is rather small
at the centre. Only for quite large g, and then only near the surface, is a not very small.
Even then, it is hardly ever as large as ~0.1. The effect of %2 can similarly be estimated
to be never more than moderate: according to Equn (3.2.1.16), the perturbation differs
by a factor 3/(1 + q) if corotation is assumed. It is therefore more significant, but still
not large, if ¢ is small (M; < M3), and substantially less significant when ¢ is large.

The convenient simplicity of the model with uniform rotation (with or without a
binary companion) should not blind us to the possibility that some stars are in non-
uniform rotation. There is indirect evidence that for example the cool component of
BM Ori (Popper & Plavec 1976), and the more massive but largely invisible component
of 8 Lyr (Wilson 1974) are in non-uniform rotation. We have mentioned above analyses
which suggest that such rotation is unstable on a thermal timescale, but some stars,
including these two, may be evolving on a thermal timescale.

It may be possible to extend the analysis sketched here to include the case that Q(r) is
constant on cylinders, since in that case the centrifugal term Q x (2 x r) is still derivable
from a potential; but € constant on spheres, or on other surfaces such as ellipsoids, is
more difficult. However it is not clear that this would be a significant advance on the
relatively simple case of uniform rotation.

3.2.2 Perturbations to Keplerian Orbits

A number of processes can modify a binary orbit slightly from the Keplerian model.
Examples are:
(i) A distorted star has a quadrupole moment, so that its gravity is not quite that of a
point mass. This leads to apsidal motion, i.e. rotation of the semimajor axis about the
orbital axis. Distortion can be due both to the mutual gravity of the stars and to their
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rotation. If the rotation is oblique to the orbital axis, it can also cause precession, both
of the spin axes and of the orbital axis.

(ii) General relativity modifies the Newtonian gravitation, also leading to apsidal motion
— Equn (1.2.4)

(iii) General relativity also leads to gravitational radiation, which progressively shrinks
and circularises the orbit (Chapter 4.1)

(iv) Tidal friction usually leads to circularisation of the orbit (Chapter 4.2), and also to
parallelisation and synchronism of the spins with the orbit; but it can in some circum-
stances decircularise the orbit (Section 3.5.1)

(v) Mass loss, in the form of winds presumed to be spherically symmetric, from either
or both stars, and mass transfer between the stars, whether through RLOF or through
accretion by one star of part of the wind from the other, can expand or contract the
orbit (Chapter 4.3, 4.6), and might change the eccentricity if the rate of mass loss or
transfer depends on orbital phase (Chapter 6.5)

(vi) A third body orbiting the binary, even at some considerable distance, can cause
precession, apsidal motion, and also periodic or aperiodic fluctuations in the eccentricity
and inclination (Chapter 4.8).

Most of these phenomena can be modeled fairly simply using a procedure outlined in
Appendix C. Provided the perturbation is sufficiently weak that it makes only a small
change to the orbit in the course of one orbit, its effect can be estimated by averaging
the perturbative force over one exactly Keplerian orbit.

A Keplerian orbit can be described compactly by a scalar, the energy £ = %dd —
GM/d, and by two vectors, the angular momentum h = d x d, and the Laplace-Runge-
Lenz (LRL) vector e which is given by GMe = d x h — GMd/d. Both € and h are
per unit reduced mass pu. The LRL vector is a vector parallel to the semimajor axis
and of length e, the eccentricity. There is some redundancy: the seven components of
&, h, e satisfy two identities, Equns (C5). Appendix C shows how to calculate the rates
of change of £, h and e, averaged over an orbit, for a given force f(d, d) in addition to the
usual Newtonian gravitational force. In the case of problem (vi) above, it is necessary
to average over both the inner and then the outer orbit.

The LRL vector deserves to be better known than it appears to be, at least in the
context of binary orbits. Its rate of change due to a perturbative force is quite readily
calculated, and leads very directly to the rate of apsidal motion, of precession, and of
circularisation (or decircularisation) of the Keplerian orbit. The vector triad e, q, h,
including a third vector q = h X e, forms a very useful right-handed orthogonal triad
fixed in the orbital frame but (possibly) rotating in an inertial frame; we refer to it as
the ‘orbital frame’. We write the unit vectors of the orbital frame as €, q, h.

When we allow for the quadrupole distortion of *1 — Equn (3.2.1.13) — due to its
rotation and to the tidal effect of %2, the force F on *1 is derivable — Appendix B(x) —
from a new potential ®(d):

GM M, GMsdid; (¢3°(R) + 5¢;;7"(d))
- —

F = —Vaq®(d) , ®(d) = , (3.2.2.1)
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where ¢;; is the quadrupole tesor of Equn (3.2.1.13). Note that @ is different from both
¢r of Equn (3.1.2) and ¢ of Equn (3.2.1.2), partly because ® is in an inertial frame
whereas the others are in a frame that rotates with the binary, or with %1, and partly
because ¢gr only includes the monopole gravitational term for *1.

The perturbation F leads to a couple which has the effect — Appendix C(b)— of making
the e, q, h frame rotate with an angular velocity U:

é=Uxe , q=Uxq , h=7Uxh |, (3.2.2.2)

M>A

U= Xe+Yq+2h = — =22
e+¥a+ 2uwa®(1 — e?)?2

15GMy 1+ 5e® + et
ad (1 —e2)3

O x (B x Q) + {02 — %(Qﬁ 02 h+

(3.2.2.4)
Qe,Qy, Qp, are the components of Q in the orbital frame, and A oc R® is given by
Equn (3.2.1.13).

The effect on e of Z alone — the component of U in the h direction, i.e. the last
two of the three terms in brackets in Equn (3.2.2.3) — is to produce what is usually
called ‘apsidal motion’. The line of apses, in other words the major axis, parallel to e,
turns about the h vector at rate Z (rad/s), provided terms in U perpendicular to h are
ignored:

é = Zhxe
MzA

3
7 = ———— 107 - (2.2 + Q.2
2uwad (1 — e2)? 2( 20+

15GMy 1+ 3e® + et
a? (1 —e2)3
(3.2.2.5)
In a close binary, normally € ~w as a result of tidal friction. Then €2, Q,~0; and if
My ~ M5 the third term (due to the distortion by the companion) dominates the first
(due to rotation) by a modest factor. But in binaries with P 2 5d (and shorter periods for
very young binaries), non-corotation is possible, and the first two terms may dominate if

the star rotates rapidly. The second term gives a negative contribution to apsidal motion,
unless the spin is parallel to the orbit. If in fact the spin is oriented randomly relative
to the orbit, as arguably it might be at age zero, the expectation value of the first two
terms together is zero.

If both stars are extended objects, Z will be the sum of two similar terms, one for
each star (as will also X and Y). We must also add in the apsidal motion due to GR,
Appendix C(a),

Zor = % . (3.2.2.6)
This is by no means negligible, even for orbital periods of a few days, and since it drops
much more slowly with separation than any term of Equn (3.2.2.5) it dominates for
periods over ~10d, provided that both components are still on the MS.

The term in U which is perpendicular to h, i.e. the first term in the brackets in
Equn (3.2.2.3), or equivalently the combination of X and Y terms in Equn (3.2.2.4),
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produces precession. The total angular momentum H = ph + I is conserved, and so
H is a vector fixed in an inertial frame. Hence we can write
MyAHQy, —

h=|——=|Hxh
2uwla®(1 — e?)? X ’

(3.2.2.7)
which shows that h precesses about the fixed direction H at a rate given by the expression
in brackets.

There appears to be a common mistake in the literature regarding apsidal motion,
in circumstances where there is or may be also precession. The rate of turning of the
line of apses is often directly measurable, and is generally compared to the quantity Z
which is the sum of Equns (3.2.2.5) and (3.2.2.6). However, as we show in Chapter 4.8,
the observed rate of apsidal motion depends on X and Y, as well as Z. There are not
many known binaries where there is clear evidence of non-parallel rotation as well as
measurable apsidal motion, but we briefly discuss one example in Chapter 4.2.

Processes (iii) to (v) above are non-conservative, and so we leave the details to Chap-
ter 4 and Appendices B, C — we also leave process (vi) to there, although it is conservative.
It is sufficient for the present to note that process (iv), the frictional dissipation of tidal
motion, will tend to (a) make the intrinsic spin align itself parallel to the orbit, (b)
bring the spin into ‘pseudo-synchronisation’ with the initially eccentric orbit, and (c)
on a slower timescale, reduce the eccentricity of the orbit to zero. Consequently it is
reasonable to start by assuming that close binaries have circular orbits and corotating
components, as is commonly (though not universally) observed.

The force (3.2.2.1) leads to a revision of the basic Keplerian relation (3.1.1) between
period and separation. If we assume that stellar spin is parallel to orbital spin, and if in
addition we add in GR (Appendix C), we obtain for circular orbits

GM AQ? 3AM, 3GM
2 _ 1 2 ) 3.2.2.8
@ a3 + 2G M a? + M;ab + c2a ( )

The present accuracy of most orbital determinations does not make this correction worth-
while — except for radio pulsars where in fact several more corrections are necessary —
but it will no doubt be more important in the future.

3.3 CONSERVATIVE ROCHE LOBE OVERFLOW (RLOF)

When a star in a circular orbit expands to fill, and then overfill, its Roche lobe —
Fig 3.1c — it will start to lose mass to its companion. For the time being we make the
‘conservative’ assumption that total mass and orbital angular momentum are constant.
Whether or not the mass transfer can proceed in a steady stable manner depends largely
on the relative rates of change of stellar radius, and of Roche-lobe radius, with respect
to changes of the loser’s mass.
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3.3.1 Effect of RLOF on the Loser

Let us consider first a simple hypothetical case where %2, the ‘gainer’, is just a point
mass, and where the internal structure and evolution of *1 imposes a radius-mass-age
relation

log R = log Ry + Ripg log My + t . (3.3.1.1)

My INg

Here Ry and My are the initial mass and radius of 1, and tyg is a constant nuclear-
evolution timescale, on which the star’s radius increases with age t. The ZAMS expression
for R is a power-law with constant slope R’ = R (using a prime to denote a logarithmic
derivative); the suffix TE stands for ‘thermal equilibrium’. If the star’s mass is changed
at any non-zero age the log R — log M relation has the same slope (for simplicity) as at
zero age. Fig 3.4a shows, in the log M; — log R plane, a (very unrealistic) case where
i = 4. The star starts at ¢ = 0 from point A with a radius equal to half its Roche-
lobe radius, so that when ¢ = txglog?2 it just fills its Roche lobe at point B. Curve (i)
is the ZAMS, curve (ii) is the Roche-lobe radius relation, and curve (iii) is the stellar

radius-mass relation at ¢t = tng log 2.

Fig 3.4 — Schematic behaviour of Roche-lobe radius and stellar radius as functions of primary mass during
evolution governed by the simplistic relation (3.3.1.1). Units are arbitrary, except that the total mass is 2
units. The curves are (i) the ZAMS radius, (ii) the Roche-lobe radius, (iii) the radius at time t=txg log 2. The
star starts on curve (i), at point A or A’, and evolves vertically until it reaches curve (ii) at B or B’. From
B in either panel, it can proceed to evolve along curve (ii) to C, losing mass while still evolving on a nuclear

timescale. In (b) it cannot do this from point B’, since curve (ii) is steeper than curve (iii) there.

Table 3.1 shows that R}, = 2.61 at ¢ = 2. The fact that R} < Rl.p = 4 at B in Fig 3.4a
means that it is possible for *1 to evolve along (but actually very slightly above) the
curve R = Ry, from B to C, decreasing M, i.e. transferring mass, on roughly the nuclear
timescale ¢tng. The mass-loss rate at time ¢ >tylog?2 is found by solving the implicit
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equation
log Rp,(M;) = log R(Mj,t), (3.3.1.2)

obtained by equating the lobe radius — Equns (3.1.5, 3.1.11) — to the stellar radius as
approximated by Equn (3.3.1.1). Differentiating this equation w.r.t. time, we obtain

dlogM; 1 1

- . 3.3.1.3
dt txg  Rop— R ( )

This has a physically acceptable solution, i.e. one with M, < 0, provided that Ry > Ry,
which is just the condition that curve (ii) has shallower slope than curve (iii).

Fig 3.4b shows two (more realistic) cases with R, = 1. In each case the star starts
(A or A’) with half its Roche-lobe radius, but with ¢~0.8 at A or ¢g~1.5 at A’. In
the first case we have R <0< Rl at B, and so evolution can proceed A - B — C
entirely on a nuclear timescale. However, in the second case the star reaches point B’
where Rj ~2.61, which is steeper than curve (iii) with R’ = R, = 1, and so there is no
solution in which the star subsequently evolves along curve (ii) on a nuclear timescale.
Equivalently, Equn (3.3.1.3) implies that M >0, which is unphysical.

For Ri.r = 1 the condition R}, < Ry will be satisfied for any ¢ $1.25 (see Table 3.1).
But for Ry $0.46 the condition cannot be satisfied for any ¢z 1. In fact, on a re-
alistic ZAMS — Equn ( 2.2.1.2) — Ry ~0.5 for M 2 Mg, and increases to ~1 for
0.1MgysMS Mg. Thus there is only a rather restricted range of initial masses and
mass ratios in which Roche-lobe overflow (RLOF) starts, and continues, on a nuclear
timescale. However, it does not follow that in all other cases something catastrophic
must happen; it only follows that mass transfer must accelerate beyond the nuclear
timescale.

Such a simplistic approximation as Equn (3.3.1.1) does not allow for the fact that
once the timescale of mass loss approaches the thermal timescale, which is ~ 1000 times
shorter than the nuclear timescale — Equn (2.3.1.2) — the luminosity and radius of the
star can be significantly altered (Crawford 1955, Morton 1960). Equn (3.3.1.1) can be
seen as giving the ‘thermal equilibrium’ radius of a star; but this must be modified if a
star is out of thermal equilibrium.

The material of the star expands and cools off as it rises to the surface from deep
within the gravitational potential well of the star, and this process will absorb or release
heat that would otherwise diffuse down the internal temperature gradient. Since most
of the temperature and pressure gradient is concentrated to near the surface of the star,
it is reasonable to use a ‘steady, thin-shell’ approximation (Paczyrski 1967) for the rate
of energy release €. If the star changes its mass M at the rate M, there is an effective

r(2) () 1310

~ T — M, (3.3.1.5)
m

thermal-energy source of strength

oS
e (%),

= - (V-V.M , (3.3.1.6)
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from Equn (2.2.3.10), to be added on top of other energy sources, i.e. nuclear reactions.
Equn (3.3.1.6) assumes a uniform composition, which is usually the case in the outer
layers where most of the thermal energy release takes place (Fig 3.5).

F(a) . -t o) s

0 50 100 150 200
k k

Fig 3.5 — Dots: the luminosity L in a star losing mass at a slow, steady rate. Plusses: €, the thermal energy
generation rate from Equn (3.3.1.4). Circles: the thermal luminosity L¢n. The abscissa is k, the number
of the mesh zone in the discretised model — k=0 at the centre, k=200 at the photosphere. Only alternate
meshpoints are plotted. (a) 4 Mg, with radiative envelope and convective core; the negative contribution
from the radiative envelope (k= 100) ultimately dominates. (b) 0.4 M, with radiative core and convective
envelope; the thermal term is positive throughout, the convective boundary being at k~ 108. The vertical
scales are quasi-logarithmic (actually, arcsinh), and allow positive and negative values to be distinguished;
L,L¢y, are not on the same scale. In (a), some erratic behaviour near the surface is due to the presence of two

narrow convection zones.

The quantity m in Equn (3.3.1.4) is a Lagrangian mass coordinate, specifically the
mass contained within an equipotential surface of the family (3.1.2). Clearly if we think
of mass as flowing steadily through an (almost) constant entropy profile which is very
steep in the outer layers of the star, then we can expect that (Om/0t)g ~M;. As
a first approximation it is helpful to think of T'(M; — m) and S(M; — m) as given,
having the values of the undisturbed, or mass-constant, star, provided that the ratio of
the rate of energy release, Equn (3.3.1.4) integrated over the star, to the unperturbed
nuclear luminosity L, is not large. This ratio can be estimated with the approximation
(3.3.1.6), particularly if, for illustrative purposes, we assume that V — V, and CpTp/p
are constants in the outer layers (where most of the contribution comes from):

Lin M, CpTp Gm 5 GM, M,
—_— " - V-V, — ~ —=(V=-V)—— . 3.1,
LN LN p ( ) /*1 7‘2 dT’ 2( ) RLN (3 3 7)

The last term on the right is the ratio of gravitational to nuclear luminosity, but it is
also the ratio of the Kelvin-Helmholtz timescale,
G M2

t = 3.3.1.8
KH RLN ) ( )
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to the mass-loss timescale |M;/ M 1|. For main-sequence stars we can, from hydrostatic
equilibrium, say that GM;/R ~ RT/u — ¢f. Equn (2.2.12) — i.e. that the thermal and
gravitational energies are comparable, and we refer to both timescales as the Kelvin-
Helmholtz timescale txy ~ RTM;y/pLy.

The sign of Ly, is important. Stars with outer layers which are stable to convection
necessarily have V <V,, and so the outer layers absorb energy as the star loses mass;
the star’s luminosity is decreased. Stars with convective outer layers have V >V,, and
so in such stars mass loss will increase the luminosity (Paczyniski 1967). The importance
of the sign of Ly, is that it is found in practice that the star’s radius tends usually
to vary in the same way as its luminosity, so that a star with a substantial radiative
envelope shrinks when subjected to mass loss while one with a substantial convective
envelope expands. This effect will then interact with the expansion or contraction of
the Roche lobe radius, which also varies because of mass transfer but in an independent
way dictated by Equns (3.1.5) and (3.1.13). For the purpose of deciding whether a
star expands or contracts on thermal-timescale mass transfer, the transition between
substantially radiative and substantially convective envelopes is found empirically to be
roughly when 50% of the star’s radius is in the convective envelope, which generally
occurs at surface temperatures of ~5kK. On the ZAMS, stars below ~0.75 Mg have
such deep convective envelopes.

Fig 3.5 shows the distribution of thermal energy liberation in two stars subjected to
mass loss, one a star of 4 M with a deep radiative envelope and a convective core,
the other of 0.4 Mg with a deep convective envelope and a radiative core. Because the
quantities plotted can vary by large factors, and also change sign, they are shown on a
quasi-logarithmic scale which neverthess preserves sign; the units are arbitrary. In the
4 M, star there is energy release in the convective core (out to k ~ 100), and indeed some
way beyond it (to £~ 125), but the energy absorption in layers further out (k ~125—170)
makes for a negative total contribution to the star’s luminosity. Beyond k£~ 170 there
is so little mass that although the energy generation rate is large, and fluctuating in
sign because of two small convection zones, it contributes little to the luminosity. That
the rate is positive in the radiative core, when one might expect it to be negative from
Equn (3.3.1.6), is because the steady thin-shell approximation only works in the surface
layers.

In the other star (Fig 3.5b) the energy generation rate is positive throughout. Al-
though the rate is largest near the surface there is little mass there, and most of the
thermal luminosity comes from & ~ 80 — 130, straddling the radiative/convective bound-
ary at k~ 108.

We can now generalise the simplistic example of Equn (3.3.1.1) to include a term with
a coefficient Ry which allows for thermal disequilibrium:

M, ¢ dlog M
log R ~ log Ry + Rlyg log—; + o+ it o8 1 (3.3.1.9)

M, tN dt ’

where Rl is a coefficient of order unity which is positive for largely radiative stars and
negative for largely convective stars. The apparent problem in Fig 3.4b, that 1 wants to
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increase its radius as a result of nuclear evolution, but also wants to decrease it if it is to
keep to its Roche lobe radius, is solved, at least provisionally, by the introduction of the
R!pp term in Equn (3.3.1.9), provided that Rfp, > 0. For as | M| increases, the extra term
is negative and so can allow the star to have a radius less than its thermal-equilibrium
radius. This shrinkage gives a degree of negative feedback, allowing the star to remain
close to, but just above, its lobe radius, i.e. with 0 < AR < Ry,. In Section 3.3.2 we
analyse the stability a little more closely, and find a rather more general condition than
the provisional one here, R > 0.

We can estimate the degree of overfill necessary by considering the hydrodynamics of
the compressible flow near the L1 neutral point (Fig 3.1c). The flow must pass through
a transition, and this allows us to estimate the mass-loss rate from Bernoulli’s equation
(Jedrzejec, quoted by Paczyniski & Sienkiewicz, 1972). As usual in such analyses we have
to make a geometrical approximation, taking the flow to be nearly parallel to an axis
(the z axis in cylindrical polars, Fig 3.6a). This is somewhat in conflict with the reality
that the critical Roche equipotential through the L1 point crosses itself at an angle in
excess of 60°. Nevertheless the kind of estimate that emerges is usually wrong only by
factors of order unity.

We assume that the potential near the L1 point can be approximated, apart from an
additive constant, by

¢ ~ w(R* €227 (3.3.1.10)

where w is comparable to the orbital frequency, and e is small (but actually €2 >2). We
then assume that v is approximately in the z direction and a function only of z, i.e.
v &~ (0, 0, v(z)), so that the motion is irrotational (V x v = 0). We further assume
that the fluid is isentropic and adiabatic, so that the pressure is directly related to the

density:
C 1
P — 2 i+ln VP = CVp'/r . 3.3.1.11
o : pV Vp ( )

Bernoulli’s equation then says that throughout the flow
1/n 1 2
Cp*'™ + 3V +¢ = const. = ¢, say, (3.3.1.12)

where ¢ is the potential on the free surface far upstream (v~0, p = 0); @5 is a measure
of the extent to which the star overfills its lobe. Then at a general z, both within the
fluid and on the free surface R = R,(z),

Cpl/" + %UQ(z) +w{R* - 2%} = ¢, = %vQ(z) +w{R*(2) — 2%} . (3.3.1.13)

Hence

w2n

p = E{Ri(z)—}#}”. (3.3.1.14)

The mass flux F, independent of z by continuity, is

Rs(z) Rs(z) 2n
F = / v(z)p2rRdR = v(z)/ ‘é—n{Rﬁ(z)fRQ}%erR (3.3.1.15)
0 0
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Flow near L1 Bernoulli
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Fig 3.6 (a) Roche-lobe overflow approximated as a cylindrical stream of slowly varying cross section. Equipoten-
tials are shown by plusses, flow lines are solid. The radius of the outermost streamline is R;(z). To justify the
approximation that the velocity is mainly in the z-direction we have enlarged the z-scale by a factor of 10, i.e.
we have taken €=0.1 in Equn (3.3.1.10). (b) Solutions of Equn (3.3.1.17), in units where F=K=w=1, for vari-
ous values of the upstream potential ¢,. We take n=3/2. The only solution which has large R, at the left and
small R, at the right is one which passes through the singular point, and has ¢.=1.2(2.5)*/%, R,(0)=(2.5)%/6.

T w2n

= o7 o VBT = KoRTT say. (3.3.1.16)

Eliminating v from Bernoulli’s equation on the free surface, we obtain

1 F? 1

B(Rs,2) = 5 33 maavt +w?(R2—¢%2%) = ¢, . (3.3.1.17)

This relation gives R, as a function of z for any ¢s. Some curves of constant ¢, are
plotted in Fig 3.6b, in dimensionless form (F = K = w =1).

As usual in such problems, all the solution curves except two are symmetrical about
z = 0, i.e. they give the same solution downstream as upstream, which is not what we

require. We are therefore restricted to a solution which passes through the singular point
where 0B/0R; = 0 = 0B/0z, from which we obtain

2n + 2
1)2*(0) = w?R%(0 . 3.3.1.18
(n+1)0*(0) = WPRE0) = 29 (3:3.1.18)
Thus the relation between flux, or mass-loss rate, and the upstream potential excess ¢
is
. : 7r m+2  \"T? s p [(AR\®
-My, = My = F = s ~ (GM)*——— | —
! 2 (n + 1)3/20.)20" 2n + 3 ¢ ( ) UsoundS RL
M, (AR\®
= (== say, (AR>0) , (3.3.1.19)
tap \ RL
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We have taken n = 3/2, used ¢, ~GMAR/Ry?, w?~GM/a®, and eliminated C' in terms
of p and vgoung- AR is the excess of stellar radius over lobe radius. Several factors of
order unity, including Ry /a, are ignored.

This approximation can easily be used as a boundary condition in stellar evolution
computations, if the model is discretised using an implicit adaptive non-Lagrangian mesh
as set out in Appendix A. Equn (3.3.1.19) can be expected to be better for convective
envelopes, which may be fairly closely isentropic (although n may be increased consider-
ably above 3/2 by hydrogen ionisation), than for radiative envelopes, which have a steep
entropy gradient. However, for radiative stars we expect only a slight degree of overfill,
because of the negative feedback described earlier, and so the variation of entropy with
depth may not be very significant.

The hydrodynamical timescale tgp defined in Equn (3.3.1.19) is quite short, of much
the same order as the usual dynamical or pulsational timescale (R*/GM;)'/?; although
if we take seriously several dimensionless factors that we have ignored above the result
might be two orders of magnitude longer. In circumstances where M is on a thermal
timescale, say 1 Myr, we can estimate from Equn (3.3.1.19) that AR/R;, $0.01. However
if mass loss is on the nuclear timescale, ~ 10® slower, the corresponding degree of overfill
would be <0.001.

A convective star, on the other hand, will suffer from positive feedback in similar
circumstances, and we can expect the overfill to grow until AR/Ry, ~ 1 ultimately, giving
mass transfer on the timescale tgp; although most of our assumptions will have broken
down before such rates are reached. It is important to note, however, that these high
rates are not demanded, even if the loser’s atmosphere is convective, unless the mass
ratio is such as to require the Roche lobe either to shrink, or to expand less rapidly than
the star, as the mass transfer proceeds.

A fully convective star responds to rapid mass loss almost adiabatically. This means
that it is approximately an n = 3/2 polytrope, with an effective equation of state p =
Kp®/3, K being a constant that is given by the constant entropy in the star. Homology
shows that such a star has R oc M~'/3. So we see that Ripp is —0.33 in the limit of
a fully convective star subject to very rapid mass loss. Note that whereas WDs have

e = Rpp = —0.33 (in the low-mass, non-relativistic regime), low-mass largely
convective MS stars have Ry ~1, Ry = —0.33. WDs all have the same entropy (zero,
apart from the modest contribution of the non-degenerate ions), whereas the entropy of
a red dwarf is a function of its mass unless it is gaining or losing mass so rapidly that
the process is approximately adiabatic.

3.3.2 Modes 1, 2 and 3; Cases A, B, C and D

We find it convenient to define three ‘Modes’ of mass transfer during RLOF, according
to the three timescales expected so far: nuclear — Mode 1; thermal — Mode 2; and
hydrodynamic — Mode 3. In fact there is at least a fourth timescale that can be important,
namely the timescale of angular momentum loss. Since this is of course non-conservative,
we defer a discussion till Chapter 4.3. But it is usually a slow process, and so we will



152

include it under Mode 1. Which Mode will operate is determined principally by (a) the
mass ratio, (b) the response of thermal-equilibrium models to loss of mass, and (c) the
response of thermal-disequilibrium models to loss of mass. The last two are summed up,
in our simplistic model (3.3.1.9), by the coefficients R and Rpy. In Section (3.3.3) we
present a simple linearised model which may help to clarify the nature of the onset of
RLOF, but for the present we continue with a more qualitative analysis.

By the ‘thermal-equilibrium’ models for a potentially mass-losing star, at an arbitrary
stage of evolution, we mean the sequence of models that would be obtained if the rate
of mass loss is fast compared with the nuclear timescale, but slow compared with the
thermal timescale. For a ZAMS star, the thermal-equilibrium model sequence is simply
the ZAMS itself, and so the quantity R, used above is simply the slope of the ZAMS
in the log M — log R plane. We have already argued that since 0.55 Ri $1 on the
ZAMS, there is only a rather limited range of mass and mass ratio where Mode 1 can
prevail at the onset of RLOF. So for most systems the mass loss has to speed up, and
we might anticipate in the first instance that it would speed up on the short timescale
tgp — Equn (3.3.1.19). But in Mode 2, where the back-reaction of the mass-loss rate
on the star’s structure can no longer be neglected, the situation is mitigated provided
that the star has a predominantly radiative envelope (Rfp >0; but see Section 3.3.3).
The timescale for growth becomes txy rather than tgp. This will continue until and
unless the Roche-lobe radius, after decreasing and then increasing with continued mass
transfer, gets back to the thermal-equilibrium radius at a smaller value of the mass ratio.
Thus in Fig 3.4b, the true evolution of a radiative star which first fills its Roche lobe
at point B’ is along but slightly above curve (ii) between B’ and B, losing mass on a
thermal timescale, and then from B to C and beyond on a nuclear timescale. But if the
loser at point B’ were predominantly convective (R/rp < 0), the star would expand faster,
up to the hydrodynamic timescale, beyond B'.

The amount of mass transfer that must proceed in Mode 2, before x1 can stabilise in
thermal equilibrium, clearly depends on the initial mass ratio gg. In Fig 3.4b, the initial
detached evolution A’'B’ will be further to the right for larger gg, and so the point B
where the thermal-equilibrium curve (iii) intersects the Roche-lobe radius curve (ii) again
will be further to the left. There is a very approximate symmetry about g ~ 1, suggesting
that at B ¢~1/qo, i.e. the mass ratio is approximately reversed; further decrease of ¢
takes place in Mode 1 rather than Mode 2. A slightly more precise condition for this
transition is given below — Equn (3.3.2.12).

For red giants, it is clear that changes rapid compared with nuclear evolution leave
the core mass M, constant, and hence from Equn (2.3.2.1) the nuclear luminosity is
also constant since this is almost entirely dictated by the core mass. So Equn (2.3.1.6),
describing the location of the Hayashi track as a function of total mass, simply tells us
that R,y = —0.31. This only breaks down at a late evolutionary phase when the star
turns a corner at the top right of the HRD and starts to shrink rapidly towards a WD, and

T becomes positive. The adiabatic response rate R, for red giants was estimated by
Hjellming & Webbink (1987), using semi-analytic models with an n = 3/2,y = 5/3
envelope and a point-mass core. An interpolation formula which fits their tabular values



CONSERVATIVE ROCHE LOBE OVERFLOW (RLOF) 153

reasonably well is

1 14M; M,
'y = — = ¢ . 3.2.1
Frp 5t 8M; + 13M, M, — M, (3.3.2.1)

This starts at —0.33 for a negligible core, but becomes positive once the core mass grows
above ~0.2Mj.

The situation for red giants is rather like Fig 3.4b, except that line (iii), the thermal-
equilibrium line, will actually slope up to the left. Curve (ii) has slope —0.31 at ¢ ~0.66
(Table 3.1), so that Mode 1 evolution is still possible in a situation that starts at a point
like A with ¢<0.66. But if the star starts at a point like A’, Mode 3 is expected. In
Mode 3 the mass transfer is so rapid that probably our conservative assumptions break
down. We consider this further in Chapter 5.2.

A relatively easy situation to analyse, though one which may at first sight seem
academic, is the case of a white dwarf filling its Roche lobe. For this to be feasible,
the companion must be an even smaller entity, such as a more massive white dwarf, or
a neutron star or black hole. The orbital period must be very short, ~1 min. Since
white dwarfs are basically inert, there is no nuclear evolution to drive the white dwarf
towards its Roche lobe; but instead, angular momentum loss by gravitational radiation
(Chapter 4.1) will drive the Roche lobe towards the white dwarf. The radius-mass
relation, Equn (2.3.2.2), of a white dwarf is almost entirely determined by the degenerate
equation of state, and depends very little on the thermal structure. Hence, for low-mass
white dwarfs with Rpp ~ — 0.33, if ¢20.63 the situation is unstable, requiring mass
transfer on a hydrodynamical timescale. This is the value of ¢ at which Rj ~Rip
(Table 3.1, Equn 3.1.16). For more massive white dwarfs R/ is more negative, and the
situation is unstable at still lower ¢q. But if the ‘initial’ ¢ is low enough, Mode 3 can be
avoided, and the evolution can in principle continue on the same timescale as the angular
momentum loss (which however is likely to be very rapid at the short periods required).

Evolution driven by angular momentum loss (AML), either GR or a combination of
magnetic braking and tidal friction (MB), as in Chapter 4, is probably important in many
other types of binary — novae, low-mass X-ray binaries, and W UMa binaries for example.
We can still determine the rate of mass transfer from Equn (3.3.1.2), bearing in mind that
Ry, will also have an explicit time-dependence via the orbital angular momentum H, —
Equns (3.1.6, 3.1.11). For semidetached systems this gives, analogously to Equn (3.3.1.3),

(3.3.2.2)

dlog M; (1 2 > 1 1 _|Ho 1 1
a - " ter | tmB
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The GR timescale, and an estimate of the MB timescale, are given by Equns (3.4.1.1)
and (3.4.4.11) below. Although sy is not related to ¢ng it is usually much longer than
tku, and so it is reasonable (in the case R > R}) to consider this as an extension of
Mode 1.

Modes 1 — 3 are different from the more traditional Cases A, B, C of Kippenhahn &
Weigert (1967). The definition of the latter relates to the state of evolution of the interior:
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in Case A, the loser is still in the main sequence band, in Case B it is beyond the main
sequence but before helium ignition, and in Case C it is beyond helium ignition. But
the behaviour of the mass-losing primary is more closely related to whether the envelope
is radiative or convective than to whether helium has ignited (Case C) or not (Case B).
The refinements ‘Early Case B’ and ‘Early Case C’ make this distinction: they are much
the same as Mode 2 followed by Mode 1, and the alternatives ‘Late Case B’ and ‘Late
Case C’ are much the same as Mode 3. Case A should probably also be divided into
‘early’ and ‘late’, since low-mass MS stars ($0.75 M) are likely to give Mode 3 RLOF
as a result of angular momentum loss rather than nuclear evolution (Chapter 4.5). We
see in Section 3.5 that when we consider not just the onset but also the continuation of
RLOF, there are at least seven subtypes just within conservative early Case A.

To emphasise the significance of radiative or convective envelopes, we will in effect
redefine the cases: Case B and Case C. Case B is the situation where the loser is in
the Hertzsprung gap, and therefore has a mainly radiative envelope, at the onset of
RLOF, and Case C is the situation where the loser is on the giant branch, and therefore
has a mainly convective envelope. Furthermore, because massive stars increase their
radii by a large factor while crossing the Hertzsprung gap, and because we perceive in
later discussion some potentially significant differences depending on whether a star is
in the left-hand or right-hand portion of the Hertzsprung gap at the onset of RLOF, in
Case B we will sometimes wish to distinguish Case 57 and Case B2. Anticipating later
discussion, we place the boundary provisionally at a period of ~100d. Stars less massive
than ~8 Mg will not encounter Case By (Table 3.2).

We also find it convenient to define Case D, the situation where the binary is too
wide for RLOF to occur at all. In the conservative approximation here, this is of little
interest; except that the conservative approximation obviously cannot hold, since most
stars lose considerable mass at a late stage in evolution, and some very massive ones at
a relatively early stage. We return to this in Chapter 4.

3.3.3 A simple linearised model for the onset of RLOF

It is possible to write down a simple linearised model for the onset of RLOF, that
is surprisingly helpful in explaining why RLOF develops at different speeds in different
circumstances. This model is a generalisation of Equns (3.3.1.1) - (3.3.1.3), and (3.3.1.9),
(3.3.2.2). It consists of four parts:

(a) The thermal equilibrium radius Rtg and luminosity Ltg of 1 are approximated as
functions of the current mass M; and the mass M, of burnt fuel. We write
dlog Rrg  Olog Rtg dlog M; L Olog Rty dM, , dlog M, 1

— = — Ll = (3.33.1
dt dlog M,  dt oM.  dt TEdt +tNE’( )

where R, and ¢txg are generalisations of the corresponding quantities in Equn (3.3.1.1).
(b) The radius of a perturbed star relaxes on a timescale txy to the thermal-equilibrium
radius, but departs from that radius as a result of mass loss. We write
dlog R dlog M,

at

logR + tkn = logRrg + R'II‘DtKH (3.3.3.2)
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This is an improvement on Equn (3.3.1.9), because it says that if, for example, mass
transfer abruptly ceases R does not abruptly return to Rrtg, but approaches it on a
timescale which we in effect define as the Kelvin-Helmholtz timescale. It says as before
that mass loss affects R significantly only if it happens on a timescale comparable to,
or faster than, this timescale. The coeflicient R%y, is positive for radiative stars and
negative for convective. Fully convective stars, and also white dwarfs, respond to rapid
mass loss as n = 3/2 polytropes, and so R, ~ — 0.33 in these cases.
(c) A star whose radius exceeds its Roche-lobe radius Ry, by some fraction f, where we
take

f =log(R/RyL) , (3.3.3.3)

loses mass at a rate proportional to f. We write

dlog M, f
—_— = —— >0 3.3.34

where tpp is the dynamical timescale estimated in Equn (3.3.1.19). Note that, for
simplicity, we take a linear dependence on f rather than a cubic dependence as implied
by Equn (3.3.1.19).
(d) The radius of the Roche lobe changes in response to mass transfer, or to angular
momentum loss, at a rate

dlog Ry, Olog Ry, dlog My  0Olog Ry, dlog H dlog M, 2

— = R - 3.3.3.5
dt dlog My  dt +810gH dt Lodt tAML’( )

where Rj is the coefficient of Equn (3.1.16) and Table 3.1, and ¢amr, is the timescale on
which angular momentum is lost from the system.
Equns (3.3.3.2 - 4) combine to give a first-order differential equation for f:

Rrg
Ry,

+ (R, —Rhp) X0 (3.3.3.6)

f + tKHf = log
tup

Differentiating this w.r.t time, on the assumption that the dimensionless parameters
Rl.p, Ri and the timescales typ, tku are all constants, and using Equns (3.3.3.1),
(3.3.3.5), we derive a second-order inhomogeneous linear differential equation for f:

f'+(M+L)Jé+Mf: L (1 b2 > (3.3.3.7)

tup tkH tkutup tku \INE = tAML

Bearing in mind that the hierarchy of timescales is normally tgp < txy < iNE, tAML, We
can solve the corresponding characteristic equation to obtain, for the complementary
function:

/ ! / /
RTD — Ry or TE — RL 1

At
x e AR - — — .
! ’ tup Ripp — Ry, tku

(3.3.3.8)

We see that
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(i) if Ry, < R and Ry, < Rp both roots are negative

(i) if Ry < Ry, < R'yp the only positive root is on the Kelvin-Helmholtz timescale
(iii) if R < Rj, the larger root is positive and on the hydrodynamic timescale.
So we obtain the following conditions:

Mode 1: Ry <Rp, R, <Rg; Mode 2: Rip <R[ <Rip;

Mode 3: Rpp <R[, . (3.3.3.9)

In the case that the solution is stable (Mode 1), it tends to the particular integral

;- tmp <1 L2 > (3.3.3.10)

Rhp— R, \txg  taums

which is just Equn (3.3.2.2), combined with (3.3.3.4). Thus the star overfills its Roche
lobe by a very small amount; this would actually be somewhat larger if we kept in the
more realistic cubic dependence of Equn (3.3.1.19), but not so large as to be measurable.

The condition for Mode 2 is normally satisfied for a star with a radiative envelope,
and with mass larger but not considerably larger than the companion. The condition
for Mode 3 is normally satisfied if the star has a convective envelope (R’ <0). But it
should be noted firstly that Mode 3 can also apply to mainly radiative stars if ¢ is large
enough initially, and secondly that Mode 1 can still apply to convective stars if R} is
sufficiently negative, i.e. if the loser is substantially less massive than the gainer. Firstly,
even if R ~4, which is not untypical of radiative envelopes, we can have Rj 2 Ry
when ¢z 2.5 (Table 3.1, Equn 3.1.16). Secondly, even if Rpg~ — 0.31, as is typical for
red giant losers, Rj is less than this if ¢ <0.65 (Table 3.1).

Although we suggested provisionally, in Section 3.3.1, that for mass transfer to be
stabilised on the thermal timescale it was desirable to have R, positive, closer exami-
nation shows that the condition is rather more complex: R/ can be negative if Ry is
more negative, and R, positive is not enough if Rj is more positive.

We can summarise our discussion of Modes 1 — 3 as follows. During various long-lived
stages of a star’s life (e.g. MS, RG, WD) there is a parameter R which measures the
(logarithmic) sensitivity of the radius to the mass when the mass is thought of as varying
slowly compared with the thermal timescale but rapidly compared with the evolutionary
timescale. There is also a parameter R/.;, which measures the sensitivity of radius to
mass when mass is added (or subtracted) rapidly, on or about the thermal timescale.
From Ry we get a critical mass ratio ¢, (Rg) by solving for ¢ the Roche-lobe radius
relations (3.1.5), (3.1.13) and (3.1.17):

e = Ri(ger) &~ 2.13ge — 1.67. (3.3.3.11)
Similarly we get a g (R’py) from R/.p. Then the mass ratio g, at the beginning of RLOF

determines the initial Mode of mass transfer thus:
Mode 1 — if g < ger (R&‘E) s qu(R{I‘D)
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Mode 2 — if ger (R’,I‘E) < @b <{gcr (R’II‘D)

Mode 3 - if g > g (Ripp)-
If Mode 2 is what is indicated, it continues until a transition mass ratio g, say, is reached,
and then settles into Mode 1. A rough estimate of ¢;, based on the approximate symmetry
of the Roche-lobe-radius curve and the thermal-equilibrium-radius curve about the point
¢ = qur(RTg) where they have the same gradient, is

G~ o/ - (3.3.3.12)

For the upper ZAMS, where R/ip ~0.5 and so g.r ~ 1, this means that the mass ratio is
approximately reversed (¢; ~1/gp), but for terminal-MS and post-MS stars we usually
find Ry ~0 to -0.33, so that g ~0.8 to 0.65. The mass ratio therefore is substantially
more-than-reversed before Mode 2 gives way to Mode 1.

However, these conditions are based on the assumption that RLOF, at least at its onset
(i.e. before it becomes rapid, if that is what is indicated), is approximately conservative of
both mass and angular momentum. In fact some angular momentum can be transferred
from orbit to stellar spin, and so in effect ‘lost’: the Roche lobe will shrink faster for a
given amount of mass transferred, making the process more unstable. This is a modest
correction if g is not large. At a rather extreme mass ratio (gp 2 12), however, it is
possible for the loser’s spin angular momentum to be comparable to that of the orbit.
We must expect the Darwin instability (Chapter 5.1), in which the orbit may rapidly
shrink and #2 crashes into 1.

It might be supposed that g, will always be greater than unity, since the more massive
star initially is always the one to fill its Roche lobe first. However mass loss by stellar
wind, accelerated by rotation, may cause x1 to lose significant mass, i.e. on a nuclear
timescale, before x1 fills its lobe (Chapter 4.4 — 6), so that it is not impossible that a
convective loser will experience relatively mild Mode 1 RLOF. We will argue in later
chapters that some observed systems support this possibility.

3.3.4 Effect of RLOF on the Gainer

Fig 3.4 did not include the behaviour of the gainer, which we now discuss. As a first
approximation, we can expect that the response of a star to the gain of mass is the inverse
of its response to loss: a star with a predominantly radiative envelope expands, while
one with a predominantly convective envelope contracts. However, the situation is not
quite symmetrical. Material leaving the surface of the loser can reasonably be assumed
to have little velocity, and the same temperature and density as the photosphere, but
material added to the gainer will will have different kinetic and thermal energy from the
gainer’s surface, so that some extra energy (positive or negative) may have to be allowed
for.

The main point to note at present is that the gainer may well swell up in response
to accretion, and in fairly close binaries this can easily lead it to fill its own Roche
lobe (Yungelson 1973, Webbink 1976). This is all the more likely because the thermal
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timescale of the gainer, which is normally the less massive and luminous component at
the beginning of RLOF, will be substantially longer than for the loser. Thus supposing
that both components have radiative envelopes, the gainer’s increase in radius in response
to a given |M | will be proportionately larger than the loser’s decrease. The situation is
illustrated in Fig 3.7, where the left-hand panel shows a situation in which contact was
avoided and the right-hand panel shows contact being reached.

Fig 3.7 — Schematic behaviour of radius and mass for both loser and gainer, in situations (a) where the gainer
does not expand to fill its own lobe, and (b) where it does. Curve (i) — ZAMS; curve (ii) — Roche-lobe radius;
curve (iii) — thermal-equilibrium radius. Primed letters indicated x2’s position corresponding to the unprimed
letter for x1. In (a), after Pennington (1986), the transition from Mode 2 to Mode 1 was interrupted at point
C by a brief detached phase (see text). In (b), after Robertson & Eggleton (1977), evolution beyond contact

was followed using a prescription like Equns (3.3.5.1), (3.3.5.2).

Contact can be avoided with some choices of initial mass ratios and periods (Chap-
ter 5.3). In Fig 3.7a, x1 starts at A and evolves with no loss of mass to point B, at
which it fills its Roche lobe. Curve (iii) is the path along which %1 would evolve if it
lost mass but somehow remained in thermal equilibrium. This line is no longer parallel
to the ZAMS, curve (i), but instead, if continued indefinitely to higher masses, would
approach (i) asymptotically. In effect, *1 has a core of given mass, developed during
the phase AB. The effect of this core diminishes if the envelope becomes more and more
massive, but makes the structure rather red-giant-like as the envelope decreases so that
the radius increases relative to the ZAMS radius. If the core is substantial enough the
radius might even increase absolutely as the envelope loses mass, although the situation
in Fig 3.7a is not envisaged as quite that extreme.

However, as indicated in the previous Section, the star does not in fact follow curve
(iii), because this requires a large degree of overfill and therefore rapid mass loss. When
mass loss reaches the thermal timescale the envelope shrinks below curve (iii), and instead
follows curve (ii), the Roche lobe curve. Strictly speaking, the path lies very slightly
above curve (ii). This continues until curves (ii) and (iii) intersect again, at which point
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it is possible for the star to return to thermal equilibrium. Ignoring for the moment
the small spur at C, *1 can now continue to lose mass on a nuclear timescale. It grows
absolutely because of nuclear evolution, trying to become a red giant as it would if it
were single; but it continues to lose mass because it is trying to get above curve (ii).

As the core grows and the envelope decreases in mass, but still increases in radius, we
reach a point where there is hardly any envelope left (point D), and then the envelope
shrinks abruptly — much as a single star climbs the giant branch but then abruptly turns
towards the white-dwarf region as it runs out of envelope. Then *1 follows the path DE.
Realistically, this may be terminated by the ignition of helium at point E, and the star
may settle as a small He main-sequence star (Chapter 2.5). There will in fact be further
evolution beyond this, but we ignore it for the time being.

During the AB phase, %2 also evolves, but more slowly and therefore by a smaller
amount from A’ to B’. Curve (iii)’ is analogous to curve (iii), approaching (i) asymptot-
ically if continued to high enough mass. But now %2 is swollen by accretion on a thermal
timescale, and follows the dotted curve B’C’. This can approach curve (ii) very closely
(and in Fig 3.7b actually reaches it). But as x1 returns towards thermal equilbrium so
does *2. Ignoring once again the spur at C and C’, x2’s further evolution is on a nuclear
timescale, but is now quite rapid since *2 is substantially more massive than *1 was
originally. It therefore traces C'D’ while *1 traces CD. Once *1 shrinks away from its
Roche lobe at D, %2 evolves upwards rather rapidly (D'E’).

The spur at C during which the binary returns to being detached sometimes occurs,
for one or other of two reasons. Firstly, x1 may exhaust hydrogen in its core. If single,
it could shrink temporarily as is normal at the end of the main sequence (Fig 2.1),
leading to a short detached phase. Secondly, it may happen as the star approaches
thermal equilibrium, because the centre of the star and its envelope respond not only at
different rates but also in different directions. The core, being convective, may actually
expand while the envelope shrinks, and when the mass loss slows down first the envelope
expands rapidly back to thermal equilibrium and then the core contracts less rapidly
back to thermal equilibrium. This last phase may cause temporary detachment from the
lobe, as at C, with a small corresponding spur in #2’s evolution at C’.

There are two places in the evolution of Fig 3.7a where, with slightly different param-
eters, contact might be reached. One is on the stretch B'C’, and the other on the stretch
C'D’. The first possibility is shown in Fig 3.7b. We do not illustrate the second, but it
is easy to see that if C'D’ in Fig 3.7a slopes up more steeply, and extends further, it may
reach curve (ii) before x1 becomes detached at D..

In Fig 3.7b, contact occurs at points C, C'. For the present, it is not at all clear
what the outcome should be, although in the calculation on which Fig 3.7b is based
a particular model for mass and energy transport was used which predicted that the
contact would become deeper, temporarily, but that the direction of mass transfer would
reverse. We discuss various evolutionary possibilities in Chapters 5 and 6. But there
certainly exist binaries with ‘contact’ geometry (Fig 3.1b), and in sufficient numbers that
it is unlikely that they are all evolving on a thermal timescale (unless the evolution is
somehow cyclic). Thus some consideration of how stars evolve once contact is established
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has to be undertaken (Section 3.3.5).

In binaries which are not particularly close, where x1 has to expand to well beyond
its MS radius before filling its Roche lobe, *2 will usually be much smaller than its own
Roche lobe. Then material falling into *2’s lobe can be sufficiently deflected by Coriolis
force that, instead of impacting nearly directly on to *2 (as implied in Fig 3.1c), it
settles into a ring around *2. In the absence of a dissipative agency such as viscosity,
this ring would simply accumulate all the transferred mass. But dissipation can, at least
in principle, lead to something like a steady state, with gas flowing from L1 to the outer
edge of a disc around *2, working its way through the disc, and finally flowing from the
inner edge of the disc through some boundary layer on to the surface of *2. Provided
that x1 loses mass in Modes 1 or 2 (but not the very rapid Mode 3), and that all or at
least most of the mass lost by 1 is gained by *2, the behaviour of the gainer may still
be more-or-less the inverse of the behaviour of the loser. But it becomes more likely,
of course, that contact will be avoided, the larger is the lobe around %2 relative to the
unperturbed radius of *2.

In some observed systems the gainer is a strongly magnetic star, and in that case
the accretion flow may be dominated by magnetic forces, rather than by viscosity.
Magnetically-dominated accretion appears to be in the form of a stream of gas down
the magnetic field lines on to a magnetic polar cap. This may still, however, have the
net result that most or all of the material lost by *1 is accreted by *2. In Chapter 6 we
discuss further the viscous and magnetic accretion processes.

We discuss later some computational results obtained by converting the single-star
evolution code of Appendix A into a ‘conservative’ binary-star code. At a first level
of approximation this is very easily done. Firstly, %1 is evolved with the boundary
condition (3.3.1.19) instead of the usual condition M; = const. The only information
about %2 that is needed during this calculation is its mass, and that is known from the
conservative hypothesis. This evolution gives the mass-loss history M; (t), among other
things. Subsequently, %2 is evolved with the boundary condition that its mass at time ¢
is M — M;(t), M being the constant total mass. This procedure generally works well,
until either (a) %2 evolves to fill its own Roche lobe, or (b) *1 or *2 goes supernova.
In principle, if (a) happens, we might follow the reverse RLOF by reversing the above
procedure, but in practice, either (al) 1 is still filling its lobe, so that we have a contact
system, with the possibility of luminosity transfer — see next Section — or (a2) the mass
ratio is very extreme at this point because of previous mass transfer, and so dynamical-
timescale reverse mass transfer is expected. A simple hydrostatic code will not do: see
Chapter 5.2.

The above procedure can in fact be generalised to include some non-conservative
processes, at least at a simplistic level. However, throughout much of this book we seek
to learn about non-conservative processes by comparing observed stars with conservative
expectations. Unfortunately there are sufficiently many unknown factors in most non-
conservative models that it is difficult to constrain them by computer models. Common
sense is probably more helpful at present.

Three effects of accretion on the gainer which we have not discussed at any length are
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(i) the fact that material about to be accreted has a different temperature and density
from the material on the surface of the gainer

(ii) it may also have a different composition, if the gainer has been stripped down as far
as its core

(iii) it may also have a different angular momentum, especially if it has passed through
an accretion disc instead of travelling by a fairly direct trajectory from the L1 point.

It is somewhat difficult to come up with an unequivocal model of the first process, but
one could add some ad hoc term to the energy equation of the gainer in the photospheric
layer. The second process is likely to lead to mixing in the surface layers, because the
newly added material will usually have a higher molecular weight than the average in the
outer layers. This will lead to Rayleigh-Taylor instability; but mixing with the deeper
layers will rapidly dilute the adverse molecular weight gradient so that it is unlikely to
have a major effect. The third process can probably be modeled fairly easily, provided
that one’s stellar models incorporate a model for the rate of rotation of the star. One
would of course have to incorporate several other processes that should influence the
distribution of angular momentum in a star: tidal friction, for example, and magnetic
fields. The last is likely to be the most problematic. We adhere in this book to the
argument by Spruit (1998) that even a very weak magnetic field is likely to enforce a
fairly uniform angular velocity, at least in layers stable to convection.

3.4 EVOLUTION IN CONTACT

Fig 3.7b illustrated a situation where x2 expanded to fill its own Roche lobe (at point
(') shortly after *1 had begun RLOF at point B. This is a rather common situation,
particularly for short-period binaries with markedly unequal initial masses. The result
will be a ‘contact binary’. We have also mentioned that alternatively contact may be
reached on the stretch C'D’ in Fig 3.7a, supposing the parameters are slightly different.
In either case we expect a contact binary to be formed, but in the first case it is likely
that contact is reached at a quite early stage of evolution, with little prior exchange of
mass, while in the second case it happens quite late in evolution (though still usually
within the main-sequence band) and after considerable exchange of mass.

When both stars overfill their Roche lobes simultaneously, i.e. are in contact, it is
evident that not only can mass flow in either direction (in principle, at least) between
them, but also that energy can flow between the components, even without a net flow of
mass. Furthermore, although we leave most of our discussion of observational material
till later (Chapter 5.3), observation appears to be telling us quite unequivocally that heat
is somehow being transported between the components, leading to surface temperatures
that are equal to within two or three percent even when the masses, in some cases, are
different by as much as a factor of ten.

Briefly, the salient observational facts that a theoretical model has to explain are:

(i) Contact systems are quite common, and rather stable in the sense that the orbital
periods do not change significantly on timescales less than ~1Myr. Recall (Chapter
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1.2) that we do not have to wait a Myr in order to determine a rate of period change on
this timescale. Thus mass transfer has to be slow: possibly on a thermal timescale but
certainly not on a dynamical timescale.

(ii) Periods, and the masses, radii and luminosities of the more massive component, are
roughly consistent with a main-sequence structure.

(iii) Mass ratios are typically 22, and can be as extreme as 10 or more. This is very
different from short-period detached binaries (Chapter 1.5.4), where even after allowing
for selection effects, which favour near-equal masses, mass ratios <2 preponderate.

(iv) The temperatures of the two components differ typically by <2 — 3%, so that the
lower-mass component is considerably over-luminous for its mass. This suggests that a
substantial fraction of the luminosity of the more massive component is being transferred,
presumably within the contact envelope, and radiated from the surface of the less massive
component.

A mathematical prescription for the rates of mass and heat flow is required in order
to have a closed set of equations capable of solution. No such prescription has been
widely accepted, but most attempts rely on the concept that mass and energy flow will
be related to (a) the difference in surface Roche potential, and (b) the difference in
temperature or entropy or enthalpy between the surface layers of the two components.
Guided mainly by dimensional arguments, and an attempt to generalise Equn (3.3.1.19),
we might try to approximate both M and AL as functions of the mass coordinate m as
it varies through the outer (contact envelope) layers:

aM v
o = + . v ~ 2|psa — ds1| (3.3.5.1)
dAL

with an inner boundary condition that both are zero on (as well as below) the L1 surface.
The ¢,’s are the surface potentials of the two stars, the h’s are the enthalpies. The
relative thickness of the contact envelope appears to be typically ~2% in radius, or
~107% in mass. Both M and AL will have opposite signs in *2 and x1. The velocity
v is from analogy with Equn (3.3.1.18) for Bernoulli flow, but with a sign determined
presumably by which surface potential is the higher; r is some mean radius, the same for
both components. The coefficient v/r, dimensions (time)~!, must be quite small, since
the orbital period, and so the stellar masses, do not change appreciably on timescales of
less than ~1Myr. This suggests that v/r <1076 /sec. In the heat-transfer equation we
suggest that the heat flux is proportional to the difference in enthalpies h; the factor ),
also with dimensions (time)~!, might also be of order v/r, but we believe that a model
which gives as much heat transfer as observation suggests, combined with the rather
small difference in temperatures observed, would need a considerably larger value of ),
say 10~%/sec.

One way to achieve a higher value of A than of v/r is to postulate a closed circulation
pattern in the outer layers, so that A has one sign deep in the contact envelope and the
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opposite sign further up. But attempts to achieve this tend to fall short of the amount
of heat transfer that seems to be required by observation.

One possible model that has not yet been considered in detail is that the main agency
for transferring heat is differential rotation, of the same character that is observed in
the equatorial region of the Sun’s convective envelope (Chapter 2.2.4). We have already
noted that the origin of this differential rotation is by no means clear, although it is
difficult to see what else it can be than the interaction of Coriolis force with turbulent
convection. But it is clear that the equatorial region of the Sun is travelling round
about 10% faster than the main body. If such a flow with the same relative difference
were travelling round the entire envelope of a contact binary, with an orbital period 100
times shorter than the Sun’s rotation period, it might just be capable of transferring the
amount of energy required. The parameter A in this case would be ~AQ. It is to be
hoped that three-dimensional simulations, such as are just becoming feasible, might cast
light on this or other possibilities.

It seems likely that Equns (3.3.5.1), (3.3.5.2), whatever values within reason are as-
signed to v/r, A, usually provide some degree of negative feedback, as does Equn (3.3.1.19)
for a semidetached system, so that ¢s; ~ ¢so and hy ~ hs. However, although
Equn (3.3.1.19) will clearly give negative feedback in the semidetached evolution of,
for instance, Mode 2 of Fig 3.4 (and positive feedback in Mode 3), it is by no means
clear what circumstances if any would do the same in contact evolution. Consequently
we will throughout the later chapters confine ourselves to two very basic types of binary
evolution in contact, viz:

(a) - mass flows from *1 to #2: Forward mass transfer in contact (Mode CF)

(b) - mass flows from %2 to x1: Reverse mass transfer in contact (Mode CR).

The letter C in CF distinguishes contact mass transfer from semidetached RLOF, which
can also be forward or reverse: Modes SF and SR. We return here to our more general
definition of 1 as the component that was initially more massive (Chapter 1.4). In the
present Chapter, prior to here, x1 means the star which is under discussion, usually the
star which is filling, or about to fill, its Roche lobe.

We can further qualify the Mode of mass transfer, in contact as well as semidetached
geometry, by the numbers 1 — 3, representing successively faster timescales. However for
the contact Modes the rate as well as the direction is more a matter of speculation than
of calculation. We hope that in the not too distant future it will be possible to model
binary stars in a fully three-dimensional way, including both the thermodynamics and
the hydrodynamics, and this should lead to a clarification of the direction and rate of
mass transfer in contact geometry. Whatever the mass flow, we assume here that the
heat flow will be whatever is required to almost equalise the two surface temperatures.

We believe it is likely that, as in Fig 3.7b, if a system evolves rapidly to contact its
direction of mass transfer will reverse. However if it does then the binary will widen,
which should lead quickly to the breaking of contact. We can expect a cyclic behaviour,
‘thermal relaxation oscillations’ or TROs: a limit cycle about an unstable equilibrium
in which the system is slightly in contact and transferring less luminosity than would be
enough to equalise the temperatures as observed. This unstable equilibrium will itself
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evolve slowly, in response to nuclear evolution or (more probably) magnetic braking —
Chapter 4.5 — moving presumably towards more unequal masses since very few contact
systems are known with nearly equal masses and very many are known with strongly
unequal masses.

In some circumstances there is the possibility that after two stars come into contact
they will merge into a single star. If after contact is reached rapidly, as in Fig 3.7b, the
direction of mass transfer reverses while the rate decreases to a low value (Mode SF2
— Mode CR1), we would have a possible explanation for the facts (i) and (iii) above.
Continuation of this evolution will obviously lead to an end-point where %2 is entirely
entirely eaten up by *1.

Many binaries of short period can be expected to evolve into contact; in fact if RLOF
begins while =1 is still in the main sequence band (Case A) there is only a small region
in the space of initial period and initial mass ratio where it does not happen. It is very
unfortunate that evolution during this important phase is poorly understood. Those
systems which do avoid contact will normally evolve through a semidetached forward
phase (Mode SF2 — Mode SF1) until at a late stage *2 expands to fill its Roche lobe
and initiate reverse mass transfer, which is probably Mode SR3 because the mass ratio
is typically quite extreme at this stage.

How contact binaries evolve is one of the most important unsolved problems of stellar
astrophysics. That it is not yet solved may be a consequence largely of the numerical
difficulty of implementing physical models in computer codes, but is also due to the
difficulty in understanding what physical processes are most important.

3.5 EVOLUTIONARY ROUTES

We summarise this Chapter using a compact notation defined in Tables 3.5 — 3.7.
We define eleven broad evolutionary states for each component, and four geometrical
states for a pair of components. Thus »MD means a basic binary where each component
is on the main sequence and the system is detached; Gms means an Algol-like system
where *1 is a red giant, *2 is still on the main sequence, and the system is semidetached.
Evolution of a system can be written as something resembling a Markov chain:

MMD — MMS —- HMS —- GMS — SMS — EMD — EHD — EGD — EGSR — ... .

The extra R in the last step emphasises reverse RLOF; we might have said mmsF at
an earlier step, to emphasise forward RLOF, but we take that as the default option.
The above route may be roughly appropriate to initial parameters (4 + 3 Mg, 2.5d). The
route is still far from complete, but what follows from the EGsRr state probably involves
non-conservative evolution, as discussed in the next Chapter.

Table 3.7 lists a number of Modes of evolution, of which only the first three are
actually conservative; the others will be discussed in more detail later. In our notation
we sometimes append these to states such as gms. For example, GMS;NE,MB is an
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Table 3.5 Abbreviations for evolutionary states.

Evolutionary state subtype
P - Pre-main-sequence TT T Tau
Be/Ae Herbig emission-line stars
BD Brown dwarf ~0.03—0.1 M,
JMP Jupiter-Mass Planet < 0.03 M,
M - Main sequence UMS Upper Main Sequence =8 Mg
IMS Intermediate Main Sequence ~2—8 M,
LMS Lower Main Sequence ~0.1-2 M,
H - Hertzsprung gap HG He not yet ignited; star expanding on thermal timescale
CHeB Core He-Burning
HB Horizontal Branch
BL Blue Loop
6C Cepheid
GKGC G/K-Giant Clump: core He-burning, shallow convective envelope

post—AGB post-Asymptotic-Giant-Branch

G - red Giant FGB First Giant Branch: non-burning He core, deep convective envelope
S - red Supergiant GKGC G/K-Giant Clump: core He-burning, deep convective envelope
AGB Asymptotic Giant Branch
TP—AGB Thermally-Pulsating AGB
TZO Thorne-Zytkow Object, red supergiant with NS/BH core
R - hot Remnant WR Wolf-Rayet (WN, WC, WO)
UHeMS Upper He Main Sequence (M = 1.4 M)
C - hot Core SDB pre-He-WD
SDO pre-C/O-WD
PNN Planetary Nebula Nucleus
E - He burning star LHeMS Lower He Main Sequence (M S 1.4 Mg)
EHB Extreme Horizontal Branch
SDOB SubDwarf OB
SDB Possibly the same as EHB or SDOB
W - White dwarf HeW D He white dwarf
COWD C/O white dwarf
NeW D Ne white dwarf
N - Neutron star NS normally-rotating Neutron Star
XRP X-Ray pulsar
MSP MilliSecond Pulsar; rapidly-rotating neutron star
B - Black hole BH Black Hole

Algol in which it is claimed that magnetic braking (Mode MB) is about as significant in
modifying the binary as nuclear evolution (Mode NE).

For Case A, experience (Nelson & Eggleton 2001) suggests at least eight fairly distinct
routes, depending on starting parameters. We call them subCases AD, AR, AS, AN,
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Table 3.6 Abbreviations for geometrical states.

Type Subtype Geometrical State
D Detached; circular orbit; at least one star not much smaller than Roche Lobe
S SF, SR Semidetached; mass transfer in Forward (x1 — %2) or Reverse (¥2 — x1) direction
C CF, CR Contact, both stars exceed Roche radii; Forward or Reverse; includes Common Envelope
E

detached in Eccentric orbit; typically wider than D, but we do not always discriminate

Table 3.7 Some major Modes of Evolution

0 - NE - Nuclear evolution
1 - F1, R1 - RLOF: mass transfer, Forward (F) or Reverse (R), slow (Nuclear or MB) timescale; Chapter 3.3
2 - F2, R2 - RLOF: do., fast (thermal) timescale; Chapter 3.3
3 - F3, R3 - RLOF: do., very fast (dynamical) timescale; Chapter 3.3
All six modes above appply to semidetached evolution (SF, SR), and also to evolution in contact (CF, CR).
The following Modes are non-conservative: see later
4 - GR - Gravitational Radiation ; Chapter 4.1
5 - TF - Tidal Friction; Chapter 4.2
6 - NW, PC, SW - Normal (single-star) Wind; Chapters 2.4, 4.3: copious subtypes P Cyg, SuperWind
7 - MB - orbital angular momentum loss by stellar wind, Magnetic Braking and tidal friction; Chapter 4.5
9 - PA - Partial Accretion from stellar wind; Chapter 4.3, 6.4
8 - EW - companion-Enhanced stellar Wind; Chapter 4.6
10 - BP - Bi-Polar re-emission; Chapter 4.7
11 - TB - influence of a Third Body; Chapter 4.8
12 - DI - tidal friction with Darwin Instability; Chapter 5.1
13 - CE - Common Envelope evolution with spiral-in; Chapter 5.2
14 - EJ - rapid Envelope eJection, common envelope without spiral-in; Chapter 5.2
15 - SN - SuperNova explosion; Chapter 5.3
16 - DE - Dynamical Encounters in dense clusters; Chapter 5.4
17 - IR - IRradiation of the loser by accretion luminosity from the gainer; Chapter 6.2
We sometimes use 1, 2, 3 to qualify Modes GR — DE, indicating roughly the timescale, e.g. TF1, PC2, CE3.

AB, AG, AE and AL. We shall have to add some non-conservative subCases later. Their
definitions are as follows, where X is the ratio of the initial orbital period to the period
such that *1 would exactly fill its Roche lobe while on the ZAMS:

(AD) ‘Dynamic RLOF’: when *1 is low on the main sequence and so possesses a largely
convective envelope, or when the mass ratio is fairly extreme, we can expect *1 to
virtually explode very shortly after it overfills its Roche lobe, and engulf %2 — route
(3.5.1)

(AR) ‘Rapid to contact’: the stars come into contact very rapidly, before much mass is
exchanged. This happens for gy roughly in excess of 1.5 to 2 but not large enough for
Case AD. It also depends on X and can happen at low qg, go~1 — 1.5, if X $1.2. We
anticipate thermal relaxation oscillations, Section 3.4 — route (3.5.2)
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(AS) ‘Slow to contact’: the stars come into contact slowly, on a nuclear timescale, after
a considerable exchange of mass. This happens for gy between 1 and ~1.5, and for
X ~1.2 -2 —route (3.5.3)

(AN) ‘Normal’: *2 never fills its Roche lobe, at least until 1 has reached a long-lived
compact remnant, white dwarf, neutron star or black hole. This can happen for gy $1.5—
2, and X ~2 — 4 — route (3.5.4)

(AB) : In a limited range of My, ~5 — 12 Mg, *1 has two distinct episodes of RLOF.
The first leaves a helium-burning core of 0.8 — 2 Mg, but this is able to expand back to
supergiant size (Fig 2.18) and lose further mass, ending as either a C/O white dwarf or
a supernova and neutron star — route (3.5.5)

Note that in AR and AS ‘rapid’ and ‘slow’ refer to the evolution before contact, and not
necessarily to evolution during contact. It is not clear how fast is evolution in contact,
but it can hardly be a great deal faster than Mode NE or we would not see many such
systems.

Sandwiched between Cases AS and AN are three further alternatives:

(AG) ‘(sub)Giant contact’: for low-mass stars, it is possible for one or both components
to develop a deep convective envelope before coming into contact; *1 and/or *2 may still
be an MS star in terms of central hydrogen — route (3.5.6)

(AE) ‘Early overtaking’: #2 gains so much mass that its evolution is accelerated beyond
*x1’s. It may reach the Hertzsprung gap first, and evolve into contact fairly soon after-
wards, perhaps after ‘reverse’ mass transfer, with 1 shrunk temporarily inside its lobe
and #2 filling its lobe — route (3.5.7)

(AL) ‘Late overtaking’: %2 gains enough mass to catch up with and overtake x1, before %1
becomes a compact remnant, but after it has detached from its Roche lobe; for example,
when it is a helium-burning star. For massive stars, it may be %2 that supernovas first
(Pols 1992), in a rather limited range of initial conditions, because the helium core in *2
is much more massive than the helium-star remnant of %1, and so evolves much faster —
route (3.5.8).

These three options, along with subCase AS, are consequences of the fact that if 1 loses
mass while it is still on the main sequence its evolution can be substantially slowed down,
while the evolution of %2 subject to mass gain can be substantially speeded up. But the
nearer 1 is to the TMS when it begins RLOF, i.e. the larger X is, the harder it is for
*2 to overtake, let alone catch up.

Within the framework of conservative RLOF, the number of Case B options is probably
smaller than for Case A. This is because the evolution of *1 speeds up considerably after
the TMS, and so even if *2 gains considerable mass it is less likely to catch up with,
let alone overtake, *1. We can however identify the following subCases: BN, BL, BB,
BR and BD. These are analogous to subCases AN, AL, AB, AR and AD. For Case C,
there are in principle no conservative options at all, since in the conservative paradigm
x1 would expand, not contract, on the onset of RLOF, and the rate of mass transfer
would rapidly become catastrophic.
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In our concise notation, the Case A options are

AD: MMD — MMS;F3 - MMC — (MMC;CE - M — H — G — ... & W) (3.5.1)
AR: MMD — MMS;F2 - MMC — (MMC;R2 < MMS;F2 — HMS;F2

< HMC;R2 — HMC;DI — HMC;CE — H — G — ... —» W) (3.5.2)
AS: MMD - MMS;F2 -+ MMS;F1 -+ MMC — (MMC;F1 — MHC;F2 —

— MHC;F1 — MHC;DI — MHC,CE — H — G — ... = W) (3.5.3)

AN: MMD - MMS;F2 - MMS;F1 - MMD — HMD — HMS;F2 — HMD —

— RMD — RMD;SN — (NME — NHE;TF — NHD —

— NHD;DI - NHC;CE — NRD — NRD;SN — NNE) (3.5.4)
AB: MMD — MMS;F2 - MMS;F1 - MMD — HMD — HMS;F2 — HMD —

— EMD — HMD — SMS;F1 — HMD — CMD — WMD —

- WHD( — WHS;R3 — WHC;CE — WRD — WRD;SN — WNE) (3.5.5)
AG: MMD - MMS;F1 - GMS;F1 — GGS;F1 — GGC — (G — ... = W) (3.5.6)
AE: MMD — MMS;F2 - MMS;F1 — MHS;F1 — MHC — (3.5.7)

— (MHC;F2 - H — ... =& N)
AL: MMD — MMS;F2 - MMD — MMS;F1 - MMD — HMD — HMS;F2 —

— HMD — RMD — RHD — RHS;R3 — (RHC;CE — RHD —

— RRD — RRD;SN — RNE — RNE;SN — NNE) (3.5.8)

Portions of these routes in parentheses are speculative concluding stages, often involving
non-conservative Modes to be discussed later (but briefly defined in Table 3.7). The
earlier portions are drawn from computed conservative models. These models were
computed until either (a) *2 reached (reverse) RLOF — which often happened while %1
still filled its own Roche lobe, so that the two stars came into contact — or (b) *1 reached
an immediately pre-supernova state — defined as carbon burning reaching 100 Lg,).

There is a presumption in routes AN, AL as described above that x1 is massive enough
to explode and leave a neutron star (and not to disrupt the binary — see Chapter 5.3).
Lower mass systems would tend to have evolutionary states E,w instead of r,~N, but
are otherwise fairly similar. In fact there are ranges of My and gy where the the final
products might be two white dwarfs, two neutron stars, or one of each (with the neutron
star descended from either x1 or *2). We continue to use Cases AN and AL to describe
these lower-mass variants. We also do not discriminate between neutron stars and black
holes, for the moment.

In addition to such variants, there are also minor variations to be found if we compute
a large number of conservative models. Occasionally there is a detached portion of
evolution interrupting a semidetached stage: MMSs;F1 - MMD — MMS;Fi. Among about
50 computed pairs with a range of masses and periods, we found at least 25 tracks that
could be distinguished in minor ways, but only the above eight seemed importantly
different. Of these eight, only three seem reliably to avoid ending up as a merged
single star (AN, AB, AL), although it must be borne in mind that the progress within
parentheses above is very tentative.

The reason for these several possibilities AD — AL is partly the acceleration of *2’s
evolution by its accretion from x1, along with the deceleration of *1’s evolution, and
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Fig 3.8 — (a) Schematic division of the X versus qo plane, for fixed initial Mo (16 M). X is the ratio of the
period to the period Pzams at which *x1 would fill its Roche lobe on the ZAMS, and qo is the initial mass
ratio. X ~1—4 for Case A RLOF. Regions are shown in which the sub-cases AD — AN, routes (3.5.1) — (3.5.7),
can be expected to take place; see text. The location of these boundaries is only qualitative. They depend
quite strongly on Myo. Contact is likely to be avoided only in the regions AL, AN. Adapted from Pols (1994).
(b) Schematic division of the X versus Mg plane, for fixed go (1.33). AD - dynamic RLOF; AR - rapid to
contact; AS — slow to contact; AE and AG — early catch-up; AL — late catch-up; AN — normal, no catch-up.

Panels (a) and (b) intersect roughly along the dotted line; but both figures are only qualitative.

partly the possibility of a wide range of initial mass ratios. If gg is larger than ~ 2,
not only is the evolution rapid (thermal) because of the initially decreasing Roche lobe
around *1, but there is also the possibility that as *2 becomes less luminous and cooler
because of thermal RLOF its surface develops a deep convection zone which can then
result in even faster (dynamic) RLOF.

Fig 3.8 shows, on the basis of several computed evolutionary runs, the expected sub-
Case as a function of initial parameters. The initial period is implied by X: X = 3, for
instance, means that the initial period was three times longer than the period at which
the system would have experienced RLOF at zero age. Conservative evolution implies
some constraints on the current mass ratio as a function of X. For example, systems
which evolve by Case AS usually reach contact before ¢ is reduced below ~0.35; and
thus a system with a current ¢ <0.3 say cannot be Case AS, even though its X might lie
in the right range in Fig 3.8. If a system is found that appears to violate this, we would
look for some non-conservative process that might explain it.

Of course Fig 3.8 ought really to be 3-dimensional, since all three initial parameters
Mg, qo and X influence the outcome. We illustrate the entire space with only two

2-dimensional cuts through it.
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Table 3.8 Some close Detached, Semidetached and Contact Binaries Related to Case A

Name Spectra State P M, M Ry Ry X¢ Y° CaseReference
Y Cyg 09.8+09.8 MME 3.00° 17.517.3 6.0 5.7 2.91 1.04 AN Hill & Holmgren 1995
VV Ori® Bl1+B5 MMD 149 10.84.5 5.0 2.5 1.68 1.01 AD Popper 1993
XZ Cep BIIII+09.5V mMS 5.10 6.4 15.810.57 3.2 1.35 AL Harries etal. 1998
LY Aur BOIII+ 09.5II1 MMs® 4.00 13 24 13 16 2.94 2.38 Stickland et al. 1994
V Pup B2+ B1V MMS 145 9 17 5.3 6.3 1.17 1.16 AS Popper 1980
TT Aur B6+ B3 MMS 133 54 81 4.2 3.9 1.59 1.12 AS Popper & Hill 1991

SV Cen B3-4+B1V MMs® 1.66 11 9.3 7.2 6.9 1.91 1.83 AE Wilson & Starr 1976

u Her B8-9+B2V-III MMS 2.05 29 7.6 4.4 58 1.53 1.73 AS Hilditch 1984

Z Vul A2II1+ B3V MMS 245 23 54 4.5 4.7 2.34 1.71 AE Popper 1980

X Tau? ASIIL+ B3V MMS 395 19 7.2 53 6.4 1.74 1.97 Fekel & Tomkin 1982
DM Per? A6III+ B5 MMS 2.73 1.835.824.593.961.71 1.38 Hilditch et al. 1986
AT Peg GIIV + A4V mMS 1.15 1.052.22 2.151.861.74 1.10 AS Maxted et al. 1994b
TV Cas G5IV +B9V mMS 1.81 1.53 3.78 3.293.151.85 1.40 AS Khalasseh & Hill 1992

AF Gem GOIV+B9.5V mMS 1.24 1.16 3.37 2.322.611.09 1.24 Maxted & Hilditch 1995
5 Lib? G0-5+B9.5 mMS 233 1.7 49 4.4 4.1 1.78 1.57 Tomkin 1978, Worek 2001
U CrB GOIII+B5.5V mMS 3.45 1.46 4.98 4.942.732.05 1.04 AE Heintze & van Gent 1988
TX UMa GI1III+ B8V mMS 3.06 1.18 4.76 4.242.831.40 1.10 Maxted et al. 1995a
HU Tau G2IV + B8V mMS 2.06 1.14 4.43 3.212.571.03 1.04 Maxted et al. 1995b

TU Mus O7.5V+09.5V MMC 1.39 23.513.37.5 6.2 1.06 1.33 AR Terrell etal. 2004

LZ Cep 0O9Vn+09Vn MMC 3.07 7 18 8 11 1.77 1.96 AS Howarth etal. 1991

RZ Pyx B4+B4 MMd® 0.66 5.8 4.7 2.7 2.5 0.93 0.98 AR Hilditch & Bell 1987
V499 Sco B6+ B5 MMD 233 22 7.1 4 6 1.33 1.86 AL Wilson & Rafert 1981

V640 Mon O7.51f+O61f MMD 14.4 43 51 22 18: 4.7 1.65 AU Bagnuolo etal. 1992
RT And F8V +KO0V MMD 0.63 1.24 0.91 1.260.902.01 1.42 AA Popper 1994
V361 Lyr F8-GO+ K4 MMS 0.31 1.26 0.87 1.020.720.84 0.92 AA Hilditch etal. 1997

e CrA A8+FO0 MMC 0.59 1.5 0.152.2 0.7 0.08 3.75 AA Tapia & Whelan 1975
W UMa F8+F8 MMC 0.33 1.350.7 1.2 0.850.75 1.30 AA Hilditch etal. 1988
AH Vir G8IV+GS8IV  ggC 0.41 0.45:1.4: 0.8: 1.3: 0.55 0.95 AA Hilditch 1981

AS Eri KO+ A3 GMS 266 0.2 1.9 22 1.8 0.33 1.14 AA Popper 1980
R CMa GS8IV +F1 GMS 1.14 0.17 1.07 1.151.5 0.59 1.53 AA Sarma etal. 1996

?e=0.15; all other systems have zero eccentricity.
®The reference cited suggests this is a contact systems. Nevertheless, in this book we interpret it otherwise

“Parameters relating to hypothetical evolution: see text
4dMember of a close triple system: outer period ~0.1-3yr

Under ‘State’, a letter in lower case indicates a substantial degree of uncertainty. Note that for contact
binaries, and some semidetached and even detached binaries, the identification of the originally more massive

component (z.e. *1) is arguable — see text.

We have occasion later to introduce four non-conservative subCases: AA, AM, AW,
AU. The first involves substantial angular momentum loss and the second substantial
mass loss, as a result of rotation-enhaced dynamo activity on the lower main sequence.
The last two involve substantial mass loss in massive OB stars. We also will have to
introduce some non-conservative analogues in Case B (BA, BW, BU) and in Case C (CW,
CU).

In Table 3.8 we collect data for a number of systems that might be supposed a priori
to fit within Case A. The two quantities X and Y (cols 9 and 10) are intended to help
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with classification. For interacting, or by hypothesis formerly interacting, binaries X is
the ratio of the present period of the system to the period that the system would have
had initially, if (a) it has evolved conservatively, (b) the initial mass ratio was g = 4/3,
and (c) #1 just filled its Roche lobe on the ZAMS. The reference value g is an arbitrary
choice, but in fact X is not very sensitive to go provided 1<gg<1.5. For detached
binaries X is just the ratio of present period to the period where %1 would fill its Roche
lobe at the ZAMS. Y is the ratio of the radius of *2 to the radius of a ZAMS star of the
same mass. Both X and Y ought to be greater than unity, and for Case A evolution X
ought to be less than ~4.

Among the more massive systems in the upper part of the Table, it is possible to assign
plausible subCases to the majority (col 11). Table 3.9 shows the result of a least-squares
fit for five of these ‘hot Algols’ to the grid of theoretical models by Nelson & Eggleton
(2001). For those systems without an assignment in Table 3.8, we have the following
comments:

LY Aur: X is too large for Case AS, and yet x2 is so large that it is almost in contact
(or perhaps has already reached it). As a long shot, we suggest that the components
are non-coeval, and ended up in the same binary because of dynamical interaction in a
young, dense cluster. Such a model is fairly convincing for ¢ Ori, Chapter 5.4.

A Tau, DM Per: q is too small for Case AS, and more appropriate to Cases AL, AN; yet
X is too small for Cases AL, AN, and more appropriate to Case AS. We suspect that in
both examples the influence of an unusually close third body is significant; the periods
are 33d and 100d. The close third body may have removed a modest amount of angular
momentum from the inner orbit (Chapter 4.8), so that the initial X was large enough
for Case AL.

AF Gem — HU Tau: the same problem as with A Tau and DM Per. But here it might be
magnetic braking, in cool systems with G-type components and relatively deep convec-
tive envelopes, that has removed a modest fraction of the original angular momentum
(Chapter 4.5).

Note that X oc P o< H?, i.e. a 10% loss of angular momentum allows X at age zero to
have been 30% larger.

Among the systems in the bottom lines of Table 3.8, evidence of mass loss and/or
angular momentum loss is overwhelming. V640 Mon (Plaskett’s star) is arguably the
most massive binary known. It is too wide for RLOF, and yet the larger, presumably
more evolved, component is significantly the less massive. We attribute this to stellar
wind (Chapter 4.3), probably enhanced above what it would have been if 1 were sin-
gle. Among the remaining low-mass systems, ¢ CrA has X ~0.08, which requires that
the angular momentum has more than halved since age zero. W UMa, the prototype
contact binary, is not quite so extreme. V361 Lyr is a semidetached system arguably in
subCase AR, but it also has too little angular momentum. AS Eri has much too little an-
gular momentum to have evolved through the state of equal masses that obviously ought
to be passed through by any semidetached system; it would have overflowed its outer
Roche lobe by a substantial factor at that stage, if it evolved conservatively. R CMa is
not quite so extreme in regard to angular momentum, but its total mass is so low that
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Table 3.9 Best-fit Conservative Models for five Hot Algols

Name/age/x2 log P log My loggq log Ty log T log Ry log R2 log L1 log R2

V Pup 0.163 0.954 -0.277 4.360 4.420 0.724 0.799 3.850 4.200
10 Myr 0.185 0.927 -0.223 4.345 4.451 0.724 0.793 3.784 4.344
1.311 0.117 1.100 0.100 4.444 4.395 0.668 0.610 4.065 3.755

TT Aur 0.124 0.732 -0.175 4.255 4.395 0.623 0.591 3.210 3.710
16 Myr 0.149 0.769 -0.201 4.242 2.384 0.650 0.615 3.220 3.720
1.775 0.119 0.950 0.150 4.369 4.287 0.581 0.493 3.593 3.088

u Her 0.312 0.462 -0.409 4.064 4.300 0.643 0.763 2.490 3.680
64 Myr 0.330 0.497 -0.386 4.054 4.286 0.673 0.757 2.516 3.612
0.949 0.120 0.800 0.150 4.287 4.200 0.493 0.402 3.088 2.554

Z Vul 0.391 0.362 -0.367 3.955 4.255 0.653 0.672 2.070 3.300
107 Myr 0.387 0.375 -0.417 3.949 4.245 0.670 0.668 2.088 3.268
0.776 0.137 0.700 0.150 4.229 4.138 0.432 0.341 2.735 2.185

U CrB 0.538 0.164 -0.420 3.767 4.170 0.694 0.436 1.430 2.510
218 Myr 0.547 0.158 -0.481 3.761 4.187 0.703 0.433 1.403 2.567
1.604 0.235 0.550 0.200 4.137 4.003 0.341 0.227 2.185 1.417

For each star the first line gives observational data, the second gives the best-fit conservative model from the
grid of Nelson & Eggleton (2001), and the third gives the corresponding zero-age parameters. Age and X2are

in the LH column.

it cannot have started evolution except with a rather extreme mass ratio in the opposite
sense. Then we would expect Case AD, and dramatic evolution into a rapid merger.

Although there exist low-mass detached systems like RT And with X >1, there is
no point in assuming that they have not lost angular momentum and mass when many
similarly cool systems clearly have. We discuss magnetic braking and binary-enhanced
stellar wind at some length in the next Chapter.

Table 3.10 gives observed parameters for a small selection of systems arguably related
to Case B. The subCases of Case B that are analogous to AD, AR, AN, AB and AL start
with MMD — BMD — HMS — ... . V356 Sgr is reasonably well modeled with starting
parameters (9.4 + 7.4 Mg;5d). However RZ Sct is much more difficult. The large size of
its gainer, 3.7 times its ZAMS radius, argues for something like Case AS, but the long
period, characterised by X ~ 3.9, argues for Case AN or its analogue Case BN, in which
*x2 does not grow to anything like its Roche lobe size until well after %1 has detached
itself. We do not have a good model for this system; nor is it obvious how some of
the non-conservative processes of the next two Chapters would help. Perhaps the least
implausible suggestion is that the gainer has been so much spun up in the accretion
process that it is largely centrifugally supported (Chapter 6.2).

On the other hand RZ Oph and ¢ Per agree reasonably with conservative Case B.
The FI spectrum seen in RZ Oph is interpreted as the accretion cloud around *2. There
is not much scope for mass loss in either system. The minimum initial mass for %1 is
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Table 3.10 Possible Case B Systems

Name  Spectra State P M, M- Ri Ro X 'Y Case Reference
V356 Sgr A2Il+ B4V HMS 890 4.7 12.1 14 6 5.8 1.36 BN Popper 1980
RZ Sct F5+ B3II HhS 15.2 2.5 11.7 159 15.8 3.9 3.7 Olson & Etzel 1994
RZ Oph MIII+ B7:+F5le GMs 262 0.7: 5.7: 60: 3: 27: 1.1: BN Knee etal. 1986,
Zota 1991
¢ Per Hel em +Bllllpe EMD 127 1.15 9.3 1.3: 5.5-8 11 BB Gies et al. 1998
3 Pup 7+ A2labe eHD 161 .006% BL  Plets etal. 1995
HD51956 B2-3e + F8Ib: eHD 107 .0016“ BL  Burki & Mayor 1983,
Ake & Parsons 1990
v Sgr AI+7 HMs 138 2.5 4.0 BU Dudley & Jeffery 1990
V379 Cep B2III+ B2III hhD 99.7 1.9 2.9 5.2 74 3.8 AL® Gordon etal. 1998
§ Ori A BO0.5III+09.511 hhD 5.73 5.6 11.2 5 13 Harvin et al. 2002
V505 Mon B5Ib +7 hmd 53.8 4.55% BU Chochol & Mayer 2002
V2174 Cyg BN2.5Ibe+ 7 hme 225 5.9¢ BU Bolton & Rogers 1978

“mass function
bpolar—equatorial radii of rapid rotator
“followed by reverse Case BU: see text

All eccentricities are low or zero

Uncertain or guessed evolutionary states are in lower case.

half the present total mass, and a maximum is given by requiring that the current mass
of %1 is greater than (or equal to, in the case of ¢ Per) the core mass at the terminal
main sequence. These estimates do not conflict, and in fact agree rather well. We can
model RZ Oph with starting parameters (3.4 + 3.0 My; 16.5d; Case BN), and ¢ Per with
(5.9+4.6 M;8d; Case BB). The latter system is part way between its first episode of
RLOF and its second, when %1 will re-expand back to its Roche lobe as a helium red
giant.

3 Pup and HD51956 are A/F supergiants in single-lined orbits, with very small mass
functions. In one of them a hot companion, sub-luminous for a main sequence star of
its early type, is detected. They are probably similar to ¢ Per except that (a) *1 was
less massive originally, and so its remaining core is less luminous, and (b) %2 has evolved
further, and is approaching reverse RLOF.

It is very unlikely that the reverse RLOF will be conservative, given the extreme mass
ratios to be expected, and seen in both ¢ Per and RZ Oph. There do however exist a few
binaries which are arguably in the next stage: we look at v Sgr and V379 Cep. In both of
these x1 can be interpreted as either a helium star or a star with a substantial helium core
and hydrogen-rich envelope. In both, *2 is severely undermassive compared with what
we would expect as a result of conservative RLOF. We suggest (Chapter 5.2) that #2 in
V379 Cep and *1 in v Sgr have lost substantial envelopes (perhaps 10 M), but without
any substantial orbital shrinkage and without any substantial transfer to the companion.
We identify this process later as Mode EJ, leading (in Case B) to subCase BU. The ESB2
system § Ori A is somewhat similar to V379 Cyg. Each component is undermassive by
a factor of ~2 — 3 relative to what would be expected.

Chochol & Mayer (2002) suggest that something similar may happen rather generally
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if the initial period is several tens of days. They point to V505 Mon and V2174 Cyg (and
several others) as systems where, because the mass function is very large, the companion
should be of high mass, and yet in fact is not seen (except that in V505 Mon an envelope
around it gives eclipses). This suggests rather that M; is now rather small because of
mass loss, despite the BI spectrum, and that the unseen star did not accrete much of
this lost mass. We believe a case can be made that (a) if *1 is in the Hertzprung gap but
to the hot side of roughly BI when it fills its Roche lobe, then RLOF may be reasonably
conservative, but (b) if %1 is to the cool side of this boundary — without yet being at
the Hayashi track — then RLOF, if that is the right term, may be largely or wholly
non-conservative of mass, although the orbital period does not shrink by a large factor.
In the case of V379 Cep we are talking about reverse RLOF, and so (a) hardly applies
— to *2 — because an earlier conservative forward phase tends to lengthen the period so
that only (b) applies.

We have difficulty identifying any example of a binary which contains a fairly massive
component (210 Mg), has a period (~50 — 500d) corresponding to the onset of RLOF
in the right-hand half of the Hertzsprung gap, and which can be reasonably accounted
for by conservative RLOF. This is the reason why we feel that such systems need the
non-conservative model of Chapter 5.2.

Broadly, we conclude that conservative RLOF gives a reasonable model of Case A
binary evolution for systems both of whose components are (and always have been) in
the range late O to F. Cooler systems seem to be subject to significant magnetic braking,
and/or mass loss. Early, massive systems, often containing Wolf-Rayet components,
generally show clear evidence of mass loss, and are discussed in Chapter 4.3. Case B
presents a more complex picture, with possibly conservative behaviour for the shorter
periods and highly non-conservative behaviour for the longer periods. The transition may
occur near the middle of the Hertzsprung gap, roughly on a sloping line that corresponds
to initial periods of ~50 — 100d.
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4

Slow Non-Conservative Processes

We now consider a number of processes by which either angular momentum or mass,
or both, may be lost from the system. Such ‘non-conservative’ processes can modify
the orbit very substantially. Some operate on a long timescale, and some on a short —
indeed, very short — timescale. We deal with the latter in the next Chapter. Firstly we
consider some slow processes.

4.1 GRAVITATIONAL RADIATION: MODE GR

One slow but inevitable process is gravitational radiation, a general relativistic effect
which can become significant in binaries with P $0.6d. Formulae for this (Peters 1964,
Shapiro & Teukolsky 1983) are obtained — Appendix C(d) — by averaging the rates of
energy loss and angular momentum loss over the approximately Keplerian orbit:

ho_ 1 liger (4.11)
h - tGR (1—62)5/2 ’ o
P34 _ 36 3 ltgetge (4.1.2)
P 2 a 2& ter (1 —€2)7/2 ’ o
and . 19 121 2
e 1 Ttewe (4.1.3)
e tar (1—e2)5/2 o
where
5 cSat 5 M2 [c¢P\° P
tar(P) = o735 = a3 — ) —
32 G3M?p 32 MMy \ 27a 2
1 2
~ 3768 LED pass s (Gyr) . (4.1.4)
q

M as usual is the total mass (in solar units) and P the period in days. For a circular
orbit of initial period Py, the period decreases to zero in a time tgr(Pp)/8. At ¢ =1
and M = 2.8 M (two neutron stars), this time is less than ~10Gyr if P 50.63d. For



176

two white dwarfs of ~0.6 M, the period required is 0.37d, and for two black holes of
10 Mg it is 2.1d.

Gravitational radiation tends to circularise the orbit, on much the same timescale as
the orbital shrinkage. We can integrate the ratio of Equns (4.1.2) and (4.1.3) to obtain
period as a function of eccentricity:

18

1305, (19 121
log P =
o8 19 (

3
loge — ~log(l —€*) + ——log [ — + —¢? t. 4.1.5
oge 2og( e)+2299 og 6+96e)+c0ns , ( )
where the arbitrary constant is determined by the initial Py, eq. The time Tagr(Po, €o)
taken to shrink to zero can then be found by integrating Equn (4.1.3), with P in the factor
ter taken from Equn (4.1.5). The resulting function of e can be integrated numerically
from an initial ey to zero. We can approximate the result by the interpolation formula

1 - e— e?
Tor(Poeo) = 5tor(Po)X(eo), where X(e) m (1—e?)P 0807020300386 | (41 5

which is accurate to about 1% for € <0.99. Thus if the initial eccentricity is 0.7 the time
taken to shrink to zero is about 10% of the time required if the initial eccentricity were
zero, for the same initial period.

Pulsar J1915+ 1606 has parameters (1.387+1.441 My, 0.323d, e = 0.617; Thorsett
& Chakrabarty 1999). The present timescale of period change, from Equn (4.1.2), is
0.368 Gyr, which is in good agreement the measured value 0.364 Gyr (Taylor & Weisberg
1989). The time until the two components merge, from Equn (4.1.6), is 0.302 Gyr. Since
pulsars ‘die’, i.e. stop pulsing detectably, in perhaps 3 Myr, the system cannot have been
‘born’ (in its present form) with e in excess of about 0.62. A recently discovered pair of
pulsars (J0737-3039; Lyne et al. 2004) has P = 0.102d, e = 0.088. One of the pulsars
is of very short spin period, .022s, and is presumably the older pulsar, which has been
spun up by accretion during an earlier phase as a massive X-ray binary with an OB or
WR companion. The other pulsar has spin period 2.7s, and is presumably the remnant
of the companion which exploded within the last few Myr. Although the GR merger
timescale for this system is substantially shorter (70 Myr), this system also cannot have
been much different when it ‘started’ from what it is now. It would have taken about
12 Myr to reduce its eccentricity from 0.085 to 0.08. The precursor system could have
been like V1521 Cyg (Cyg X-3; Table 5.3), where a neutron star is accreting from a
Wolf-Rayet-like star in a 0.2d orbit (van Kerkwijk et al. 1996b). Although such an orbit
is small, it is quite large enough to contain a helium ZAMS star of 2.5 Mg or somewhat
more — Chapter 2.5 — which could evolve to a supernova without overflowing its Roche
lobe and totally engulfing the NS companion. The helium main sequence component is
presumably the remnant of an OB star from an earlier wider binary which may have
undergone Mode CE — Chapter 5.2.

The binary of shortest known period so far is RX J0806 + 15, with a period of 321.5s
(Hakala et al. 2003). It appears to consist of two white dwarfs. There is a measured
period decrease on a timescale P/P = —0.16 Myr. This may be due entirely to GR,
and suggests masses (if ¢ = 1) of 0.51 Mg, each.
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4.2 TIDAL FRICTION: MODE TF

Tidal friction is a process which operates in the Earth - Moon system, slowing down
the Earth’s rotation and (to conserve angular momentum) driving the Moon outwards;
most of this friction is due to the turbulent dissipation of tidal motion in shallow parts
of the oceans (Taylor 1919). Tidal friction is also what keeps Jupiter’s moon Io in
a permanently molten volcanic state, while Jupiter’s other moons are cold; although in
Jupiter’s satellite system the other moons near Io, and not just Jupiter itself, help provide
the time-dependent tidal distortion which generates the heat released. Tidal friction is
a dissipative process converting the kinetic energy of time-dependent distortions into
heat, while conserving angular momentum. We mentioned in Section 3.1 that it can be
expected to drive a binary towards a state of uniform rotation, implying both a circular
orbit, and corotation of both stars with the orbit.

When a body is solid, as is the Earth (approximately), it is reasonable to assume
that it is in uniform rotation that can be represented by an angular velocity Q. For
gaseous bodies, this seems a rather bold assumption, but we will make it nevertheless.
We consider the case where %2 is a point mass rather than an extended body, so that
its own angular velocity can be ignored. The effect of tidal friction on the orbit, and
on the rotation of x1, can be modeled by a dissipative force (Darwin 1880, Kopal 1959,
Jeffreys 1959, Alexander 1973, Hut 1981), in addition to the gravitational force (itself a
combination of point-mass gravity plus a quadrupole term). The dissipative force can
be determined — Appendices B and C(c); Eggleton et al. (1998) — by the assumption
that the rate of dissipation of energy is proportional to the square of the time rate of
change of the quadrupole tensor of *1, viewed in the frame which rotates with the star.
Evidently this is zero if and only if (a) the orbit is circular, (b) the stellar rotation is
parallel to the orbital rotation, and (c) the star corotates with the orbit. The model
leads to a perturbative acceleration

B 90 M3 A*

f =
2#(110

[3dd.c'1+(d><d—ﬂd2)><d} . (4.2.1)
As usual p is the reduced mass; A is the same as in Equn (3.2.1.13), and depends only
on the radius R and an internal structure constant ) — Section 3.2.1. The dissipation
coefficient o (dimensions m~1=2¢~!) can be related to the turbulent viscosity within *1

— Equns (B72), (B73), (C54) and (C55) — by

2 My 2

o = W A ’LUl’Y(’I’) dm = MR2—Q2tVlsc s say, (422)
where w,[ are estimates of the mean velocity and mean free path of turbulent eddies
and v(r), of order unity in the outer layers and dropping to ~0.002 — 0.01 in the core
of an MS star, is a dimensionless function of position in the star that depends only on
its zero-order structure — Appendix B(xi), Equns (B65), (B69). The quantity tyisc is a
dissipative timescale intrinsic to the star: see Equn (4.2.26) below. The behaviour of
7(r) in some models was shown in Fig 3.2.
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In order to conserve total angular momentum H=H, + IQ = ud x d+ IQ, there
must be a corresponding couple on the star, so that

d

—IQ = —udxf 4.2.3
dt pext s (4.23)
where I is the moment of inertia of *1.

Let us define a tidal-friction timescale tTg by

2ua8 tvisc /a\® Ml2 9
trp = ——0—— = = 1- : 4.2.4
T 9o M2A? 9 (R) AR (42.4)

Equn (4.2.1) leads, by averaging over the zero-order Keplerian orbit — Hut 1981, and
Appendix C(c) - to

b _ 3 _ 8
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where w is the mean orbital angular velocity, i.e. 27t/ P, rather than the variable instan-
taneous angular velocity, and §2 is the spin, assumed for the time being to be parallel to
the orbit, i.e. to h = d x d. We similarly obtain rates of change of eccentricity and of
orbital angular momentum (per unit reduced mass):

o = 7% 1+%62+%e4+%66 7@1—1—%62—%%64 (4.2.6)
trr (1 — e2)13/2 18w (1 —e2)® ’ -
i)/: _i 1+%62+%64+1‘5—666_Q1+362+%e4 (427)
trr (1 — e2)13/2 w  (1—e2)? -
For the intrinsic spin, we obtain
Q h

where o
I MEk= R*Q
A= — = —— —— . 4.2.9
uh M>R? a’w ( )
The factor A is the ratio of spin to orbital angular momentum, with k the radius of
gyration of x1, as in Equn (3.1.18).

Each of Equns (4.2.5) - (4.2.7) can be written in the form

; 1 Q
% =+ far(€) = —far(e)| (4.2.10)
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where x is w, e or h; plus applies to w, and minus to e, h. The functions f,i, fzo are
tabulated in Table 4.1. It can be seen that even for a modest e, for example 0.4, the
rates of variation of a, h and e are considerably larger than for a nearly circular orbit of
the same period (or equivalently of the same semimajor axis).

By subtracting &/w — Equn (4.2.5) — from Q/Q — Equn (4.2.8) — in the case that
Q || h, we obtain

T8 = S [fiale) = Mua(e) = S{fiale) - Maale)}| - (4211)

Since A is normally small, we see that even if €2 is initially several times greater or smaller
than w, #1 spins down or up rather rapidly at first towards ‘pseudosynchronism’ (Hut
1981), i.e. towards a value

2y 2 Ol | fule)

w ’ fra(e) = Muwz(e) — frz(e)
where f(e,A) is determined by the vanishing of the term in square brackets of
Equn (4.2.11). Subsequently e, Equn (4.2.6), and w, Equn (4.2.5), decrease on a
slower timescale, /w being in transient equilibrium with e (i.e. pseudo-synchronised)

it A<l (4.2.12)

until the orbit is circularised. Both timescales, synchronisation and circularisation,
depend strongly on the ratio of stellar radius to orbital semimajor axis. From
Equns (4.2.4), (4.2.8) and (4.2.9), the timescale of synchronisation (Mrr) depends on
the sixth power and of circularisation (¢tTr) on the eighth power of a/R.

Table 4.1 - Functions of Eccentricity involved in Tidal Friction

e fuil(e) fuwz(e) fer(e) fez(e) fri(e) Fra(e) Q/w Q/w A

PS e-stable D-stable
0.0 3.000 3.000 9.000 5.500 1.000 1.000 1.000 1.636 .333
0.1 3.747 3.427 9.970 5.870 1.148 1.083 1.060 1.698 .309
0.2 6.812 5.017 13.53 7.152 1.707 1.374 1.242 1.892 248
0.3 16.20 9.091 22.47 10.01 3.177 2.040 1.557 2.245 171
0.4 48.18 20.03 46.08 16.35 7.284 3.562 2.045 2.818 102
0.5 182.9 54.47 120.0 32.05 20.97 7.473 2.805 3.746 .052
0.6 959.8 194.0 425.1 79.71 80.83 19.82 4.077 5.333 .0210
0.7 8253 1034 2361 281.4 482.4 74.20 6.502 8.392 .0063
0.8 1.73x10% 11282 28862 1829 6268 508.3 12.33 15.78 .0011
0.9 3.14x107 6.97x10° 2.33x10° 51022 5.33x10° 14846 35.91 45.67 5x10°

Cols 2, 3 relate to dw/dt, Equn (4.2.5); cols 4, 5 to de/dt, Equn (4.2.6); cols 6, 7 to dh/dt, and also dQ/dt,
Equns (4.2.7), (4.2.8).

Of the last three columns two are 2/w ratios for pseudo-synchronism (PS) taking A <1, and for e-stability;
and finally A for D-stability, Equn (4.2.15).

From Table 4.1, we see how the pseudo-synchronous spin rate departs quite rapidly
from the synchronous rate: at e = 0.4, and small )\, the ratio is ~ 2.04. This of course
is because much the greatest part of the effect comes from near periastron.
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From Equation (4.2.6) for e-evolution, if the star is spinning faster than a certain
amount e increases, so that we have a kind of instability that we call the ‘e-instability’:
the condition, also given in Table 4.1, is that

Q S fel(e) S 18

w fea(e) — 11

However if A is not small another instability, the Darwin or ‘D-instability’ can come into
play. When e = 0, Equn (4.2.11) gives

dlog(Q2/w) 1-3X Q
= 1—— 4.2.14
dt )\tTF w ’ ( )

(4.2.13)

and for A >1/3, if Q/w departs slightly from unity the departure grows. When e >0 the
critical A is smaller: the condition for D-instability is

A dnele) (4.2.15)

fw2 (e)

also shown in Table 4.1. We discuss the D-instability, starting from a more elementary
viewpoint, in Chapter 5.1.
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Fig 4.1 — Orbital and spin evolution in a generic massive X-ray binary, with a B supergiant of 24 M, 30 R
and a neutron-star companion in an orbit with P=9d, e=0.1 initially. The initial stellar rotation rate is (a)
super-synchronous (x1.8), or (b) sub-synchronous (x0.6). Eccentricity (plusses), orbital frequency w relative
to its initial value (circles), the degree of asynchronism log(2/w) (asterisks), and the ratio of spin to orbital
angular momentum log(I€2/ph) (crosses) are plotted against time. In (a) the orbit starts both D-unstable and
e-unstable. It decircularises at first (e-instability). Once the orbit has widened slightly it becomes stable to
both processes, and settles down as a much wider binary (P~ 45d). However nuclear evolution (neglected)
would cause problems well before 10 Myr. In (b) the orbit is e-stable and slightly D-stable to start with. The
Darwin instability occurs after a small degree of spin-up. This causes the orbit to shrink catastrophically in

20 Kyr.
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It is not difficult to integrate Equns (4.2.4) - (4.2.9) numerically, to investigate the
variation of the orbit under tidal friction in more detail. We must of course remember that
A is itself a function of w and €2, and tTg of a, or equivalently of w. Some illustrations
of these processes are given in Fig 4.1. They are loosely based on the massive X-ray
binary GP Vel, and start with a neutron-star companion in a 9d, slightly eccentric,
orbit with a massive OB supergiant. Because the mass ratio is very different from unity,
the synchronisation timescale is not necessarily shorter than the circularisation timescale.
We therefore suppose that the rotation rate of the OB star is somewhat different from
pseudo-synchronous, and is either larger (Fig 4.1a) or smaller (Fig 4.1b). The orbital
evolution is interestingly different in the two cases.

We now consider the more general case, where both stars are extended objects that
may be rotating in independent directions non-parallel to h. The equations governing
the 4 vectors e, h, 24, €, are

e =Uxe—-Ve |, (4.2.16)
h=Uxh-Wh (4.2.17)
LR = —pU; xh+W;h | (4.2.18)
LQ = —pUyxh+Woh . (4.2.19)

U, as in Section 3.2.2, is the angular velocity of the e, q, h frame relative to an inertial
frame, but now thanks to tidal friction there are changes of e, h parallel to themselves as
well as perpendicular. We find that U = U;+ U, —i—ZGRH, with U; = X e+ Yiq+ Z:h
(see below) and a similar expression for Uy. V = V] + V3, and similarly for W. Zggr
is the contribution of GR to apsidal motion — Equn (3.2.2.7). It can be seen that
ph + I, + 1,95 is a constant, as expected.

The dissipative terms V;, Wi are virtually the same as in the parallel case above —
Equns (4.2.6, 7):

S 9 [LEBE et B 1y, 1+ de o fef (4:2:20)
Tt (1 e2)1s/2 1Bw  (1-¢?)® ’ B
W= L [LE P+ Pet+ fe 0y 1436 + gt (4.2.21)
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The contributions X7, Y7, Z; to the rotation of the axes due to rotational and tidal
distortion of x1 (including the small contribution of tidal friction), are given by

MyAr Qp Qe Qi 1+ 5e* + Ze
2uwad (1 —€2)2  2witrpr (1 —e2)® ’

X, = (4.2.22)
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MyA; 297, — Qf. —QF,  15GM, 1+ 3€ + i’
2pwad 2(1—e2)2 ad (1—e2)?

Zy = (4.2.24)
Va...Zy are the same, with suffices 1,2 interchanged. 2,2, are the components
of the appropriate € in the orbital frame (Section 3.2.2). X,Y, apart from the terms
due to tidal friction, give the same precession rate as in Section 3.2.2. Z is the same as
in Section 3.2.2: tidal friction does not contribute to apsidal motion. The tidal friction
terms in X, Y tend to parallelise the spins on much the same timescale as synchronisation.

In Appendices B and C(c) we derive the force law due to tidal friction — Equn (4.2.1)
— in two apparently different ways: in B, we determine the tidal velocity field and work
out its rate of dissipation if turbulent viscosity is the main dissipative agent; and in C,
we start from the more general principle that the rate of dissipation should be a positive
semidefinite function of the rate of change (as seen in the frame that rotates with the
star) of the quadrupole tensor. That the two approaches lead to the same dependence
on d,d is presumably confirmation that the tidal velocity field of Equns (B63) - (B65) is
correct, at least in its d-dependence. Identifying Equn (B71) with Equn (C53) gives the
otherwise indeterminate coefficient o of Appendix C in terms of the specific dissipative
model of Appendix B. The result is Equn (4.2.2); but this in turn has a coefficient ;s
which is a dissipative timescale intrinsic to the star — Equn (4.2.25) below. However
it is gratifying that the more general approach of Appendix C leads unequivocally to
a specific dependence on d of the frictional force, and we might hope that observation
might ultimately pin down the value of the coefficient o, or equivalently tyis., even if
theoretical models are discordant.

The rate of dissipation can be estimated from the tidal velocity field u of
Equn (3.2.1.18) by (i) calculating its shear, (ii) squaring it, and (ili) multiplying by
the viscosity and integrating over the star. This is done in Appendix B(xi). We assume
that the main viscosity is due to turbulent convection, with a coefficient of viscosity
~wl, where w and [ (Chapter 2.2.3) are the mean turbulent velocity and mixing length.
For the velocity field of Equn (3.2.1.18) the dissipation has a timescale t;s. where

11
tvisc B MIR%

" _ g 2iae . Toge
[ wtnydm , 26) = 6 s g (4229)
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The factor v(r), along with «, 3, is illustrated in Fig 3.2.

To estimate this rate of dissipation in a star, in Table 3.4 we list 7y, which is -y averaged
over the inner 25% of the mass of a polytrope. Typically this fraction is convective in
upper main sequence stars. Our core-averaged 7 is ~ .01 for near-main-sequence stars
(roughly, n~3 polytropes), but starts to drop rapidly as stars become more centrally
condensed. A first estimate for wl/R? is that it is roughly the reciprocal of the global
convective timescale tg of Equn (2.2.3.14), and so

1 5 B I 1/3
. ~ to = 7<73M1R2> . (4.2.26)

If M, R, L are in solar units, tg is approximately in years.
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In principle 7 can be computed by solving Clairault’s equation — Equn (3.2.1.12) —
for the factor a(r) which measures the departure from sphericity throughout a stellar
interior, and then summing up two integrals, Equns (3.2.1.20) and (4.2.25). However,
weighing the computational effort against the uncertainty, particularly in the rate of
turbulent dissipation, we settle here for a rough interpolation formula. On the main
sequence and in the Hertzsprung gap, this relates the quantity 7 of Table 3.4 to k?/R?,
the dimensionless gyration radius (squared) for simple polytropes with different degrees
of central condensation; while on the Hayashi track with its fully convective envelopes
(R~ Ryr) it gives y~1:

7 2 (B i (4.2.27)
7" 9R2/5k2 + (2R2/5k2)32 ' \ Rur ' -

This only requires in our stellar evolution code that the moment of inertia (I = Mk?)
be integrated along with the structure equations; I is also needed in other equations for
orbital change.

We believe that in the past the factor which we call ¥ has been substantially un-
derestimated. Early estimates were based on the assumption that the velocity field of
time-dependent tidal motion was either incompressible or irrotational, and appeared to
lead to v~ (r/R)". For a convective core with 7~ 0.3R, this implies v~ 107%-%. However
the tidal velocity field that we determine in Appendix B, the ezact solution of the con-
servation equation to first order, is neither incompressible nor irrotational, and leads to
a finite value of v/r even at the centre (Fig 3.2) which is at least an order of magnitude
greater. The value of tyisc arrived at will be found, at several points in later discussion,
to be reasonably in accord with the rather weak constraints that observation imposes.

In the SMC there is a radio pulsar, 0045-7319, which has a very eccentric orbit (e =
0.808) and period 51.2d (Kaspi et al. 1994). The companion is an early B star. Unusually,
there appears to be negligible stellar wind from the B star (which is presumably not in
rapid rotation), and consequently the pulsar rotates unusually steadily, without erratic
spin-up or spin-down due to accretion from a stellar wind. As a result, the measured
slow spin-up of the orbit, on a timescale of 0.45 Myr, can reasonably be attributed to
the influence of tidal friction alone. Fig 4.2a shows the expected long-term behaviour
of the orbit if we start, somewhat arbitrarily, with the B star’s rotation axis inclined at
135° to the pulsar orbit. The rotation is parallelised and synchronised in about 1 Myr,
and the orbital eccentricity is reduced from 0.8 to 0.4 in about 3 Myr. Fig 4.2b shows
the two components of the B star’s rotation perpendicular to the orbit, plotted against
each other. There is counter-clockwise precession until the inclination is reduced from
135° to 90°, and then clockwise precession until parallelism is reached. In Fig 4.2b (but
not in 4.2a) viscosity was increased artificially by 220, so that the spiral is less tightly
wound than it would normally be.

There are several different and sometimes strongly conflicting estimates of, in effect,
the parameter tyisc: Alexander (1973), Campbell & Papaloizou (1983), Savonije & Pa-
paloizou (1984), Scharlemann (1982), Tassoul & Tassoul (1992), Zahn (1977), Zahn &
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Fig 4.2 — A model of tidal friction in 0045-7319. An obliquely counter-rotating B star has an NS companion
in a wide eccentric orbit. (a) Circles — orbital period relative to initial value (51d); plusses — eccentricity;
asterisks — cosine of the angle between spin and orbit. The rotation was assumed retrograde initially w.r.t.
the orbit, perhaps as a result of a supernova kick. The rotation becomes aligned in about 1Myr. (b) The
component of stellar spin in the direction of the orbital major axis (horizontal) plotted against the component
in the direction of the latus rectum (vertical). Starting near the upper left, the spin axis precessed counter-
clockwise around the orbital axis, until the third component of spin (not shown) passed through zero. Then
the precession reversed, the spin axis rotating clockwise about the orbital axis while both components plotted
here gradually decrease to zero. The coefficient of viscosity used in (b) was artificially large relative to (a), so

that the spiral pattern is less tightly wound by about a factor of 220 than it would really be.

Bouchet (1989). This no doubt partly reflects the inherent difficulty of dealing with
fluid (as compared with solid but elastic or slightly inelastic) bodies, where the interior
motions may in principle be very complex. In the Sun, for example, one might imagine
that the ‘turbulent viscosity’ in the surface convection zone (the outer ~30% by radius)
would enforce rigid-body rotation there, and yet there is a 2 25% increase in rotational
angular velocity between the poles and the equator (Fig 2.7b). It is unlikely that the
fluid-dynamical and MHD problems inherent in modeling the interior motion in general
and tidal friction in particular will be solved soon. They will presumably require fully
3-D modeling.

Witte & Savonije (1999) have modeled ‘dynamic tides’, and their effect on the orbit of
a non-corotating star of 10 Mg in an eccentric orbit. For a perturbing *2 in a Keplerian
orbit, the perturbing potential within %1 can be decomposed, by classical procedures,
into a sum of products of Legendre polynomials in polar angle, Fourier terms in az-
imuthal angle, and functions of radial distance from the stellar centre. For moderate to
large eccentricity there is a considerable number of terms that contribute comparably
strongly. For each term in the decomposition, Witte & Savonije (1999) calculate the
rate of dissipation within the star, using an implicit 2-D (r, ) numerical hydrodynam-
ics code which includes the Coriolis term. There is a rich spectrum of normal modes,
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Fig 4.3 — Timescale for orbital period change, as a function of time, for a 10 Mg star in a binary orbit with a
neutron star: initial period 55d, initial eccentricity 0.81. There are changes in either direction, but the overall

trend is decay, and the orbit spins up. After Witte & Savonije (1999).

whose frequencies gradually change as the star evolves; the lines of the spectrum have
widths determined by the rate of dissipation. Some of these lines, as they move, will
pass through resonances with the tidal forcing terms, so that the rate of dissipation can
fluctuate considerably. Fig 4.3 shows how the period-change timescale |P/P| varies with
evolution in a particular case: a rapidly counter-rotating B star within an NS compan-
ion, an initial orbital period of 55d, and an initial eccentricity of 0.81. It is therefore a
candidate to evolve into the the pulsar 0045-7319 discussed above. The decay timescale
of the orbital period fluctuates by over two orders of magnitude, but averages, over an in-
terval of ~0.25Myr, to ~0.6 Myr. For the same star (R~7 R, L~10* L), and much
the same binary (P = 51d, e = 0.8, P,ot = —3.1d), Equn (4.2.26) gives tyisc ~ 17 yr,
Equn (4.2.4) gives tpp ~ 160 Gyr and Equn (4.2.5) gives |P/P|~0.45 Myr.

Clearly an approximation as bland as the equilibrium-tide model cannot be relied on
for highly eccentric orbits. Equn (4.2.1) is based on the concept that the bodies are
continually adapting their shapes to be in near-equilibrium, while they rotate relative to
this equilibrium tide (if not already synchronised). This is fairly close to what happens
on Earth, as a result of the Moon’s tidal influence: but the Earth is small compared to
its Roche lobe, and the Moon’s orbit is only slightly eccentric. In the much more extreme
situation modeled by Witte & Savonije (1999) there is a very strong, and strongly time-
dependent, perturbation which stimulates a range of normal modes of differing periods:
after a brief intense periastron passage the stars would be very far from equilibrium.
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Mardling (1995) has found that the oscillations, rather than dissipating quickly, may
persist till the next periastron passage, when they are just as likely to increase as decrease
the eccentricity and asynchronicity. The result may be chaotic in some circumstances.
A purely dissipative model like Equn (4.2.1) is unlikely to apply to markedly eccentric
orbits with close encounters at periastron, but it still seems to be a reasonable first-order
dissipative correction to the conservative zero-order purely gravitational problem.

4.3 WIND PROCESSES: MODES NW, MB, EW, PA, BP

We now consider a simple model for the effect on orbital period and separation of the

following processes:

(a) Normal single-star Winds (NW)

(b) Magnetic Braking with tidal friction (MB)

(c) binary-Enhanced stellar Wind (EW)

(d) Partial Accretion of stellar wind (PA)

(e) BiPolar re-emission (BP).

All of these have to do with stellar winds, which can remove mass and angular momentum
from the system, as well as transfer mass from one component to the other. In this
Section we ignore GR, but it is not difficult in principle to add it as well.

Single stars can lose mass by stellar wind. In a binary, some of this wind may be
accreted by a companion and some may be lost to infinity. The latter portion can be
expected to carry angular momentum from the system. The general problem may be
quite complicated, and require a detailed treatment of the flow of gas between and around
the stars. For example, in detached as well as semidetached binaries, the portion of the
wind recently captured by the gainer may accumulate in a disc around the gainer before
being accreted by the star itself; and some of the material in the disc may be expelled in
jets rather than accreted at all. Some aspects of this are discussed further in Chapters
5 and 6.

In Appendix C(e), a formulation is given for the effect on the orbit of the combination
of (i) isotropic wind from either or both components and (ii) the transfer of mass, by
either accretion from the wind or RLOF, from one star to the other. This formulation
treats the loss and the transfer of momentum and angular momentum in a consistent
way, and can be applied to situations where either the loss and transfer rates are steady,
i.e. do not change significantly in the course of one orbit, or where they depend on
orbital phase, perhaps quite strongly. To start with, we content ourselves with a more
intuitive approach. If the wind is isotropic, and fast compared with the orbital speed, a
preliminary expectation is that it carries off the same angular momentum per unit mass
as resides in the orbital motion of the mass-losing star, i.e. HoMy/M M, where H, is
the orbital angular momentum. If all the wind from 1 goes to infinity, we can model
the effect on the orbit by

1 dH, Mo dM dM; dM,

7H0dt:MM1C’ W T @ - ¢ dt

=0 . (431)
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The mass-loss rate ¢ might be given by Equn (2.4.3) for a massive OB component, and
by Equn (2.4.4), or the theoretical estimate of Equn (4.5.15) below, for a red giant. We
do not (yet) include the additional loss of angular momentum due to magnetic braking
in Section 4.4. The above system of equations is easily solved analytically, at least if we
are only interested in the way that the period changes with the masses. In that case, we
can cancel (; we only need a numerical value for ¢ if we want to know period or masses as
a function of time. The solutions of Equn (4.3.1) for H,, a and P, using Equns (3.1.13)
and (3.1.14) for the last two, are easily found to be

Hocx%, aoc%, Poc%. (4.3.2)
Thus the period increases as the mass and mass ratio decrease, in contrast to RLOF
where the period first decreases and only increases again once the mass ratio has passed
through unity. Our assumptions about wind ensure that it does not change the velocities
of the stars (instantaneously), but it weakens the gravity of the remaining mass, thus
causing the stars to spiral out.

We now consider a more general model for the influence on orbital period of stellar
winds, which might originate from either component and which might be magnetically
linked to that component (magnetic braking, Mode MB). The winds might be either
‘normal’ (Mode NW), i.e. what the component would experience even if single, or ‘en-
hanced’, i.e. larger than normal by virtue of the tidal disturbance due to the other
component (enhanced wind, Mode EW): the present model does not distinguish these
possibilities. We also include the possibility that a fraction of the wind lost by %1 may
be accreted by the companion (partial accretion, Mode PA).

We further include the possibility that a portion of the material from *1, temporarily
accreted by %2, is expelled from the neighbourhood of *2; so that in effect some of
the wind escaping from x1 and leaving the system carries with it the specific angular
momentum of the orbit of %2 rather than of 1 (bipolar re-emission, Mode BP). Such a
process may be particularly important in those semidetached systems where the gainer
is a compact star (white dwarf, neutron star or black hole). There is clear evidence in
some such systems of outflowing bipolar jets that originate near the compact gainer, and
that are presumably fuelled by the energy released in the accretion process.

Suppose that
(a) *1 loses mass isotropically to infinity at a rate (;

(b) %2 does the same at rate (»

(c) #1 also loses mass to 2, either by RLOF, or by accretion of a portion of the wind
from x1, or both, at a rate &

(d) the wind to infinity from =1 carries specific angular momentum K times the specific
orbital angular momentum of *1; we expect Ky ~ 1 if there is no magnetic linkage of the
wind to the star, but otherwise we might have K; >1

(e) a similar factor K5 applies for the wind escaping from 2.

To be pedantic, it is difficult to see how a star can loses mass isotropically while simulta-
neously accreting from a companion. However, we can think of accretion as confined to a
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plane, and perhaps even to a point, with the mass loss nearly isotropic in the remaining
solid angle, or in a cone with axis perpendicular to the orbital plane (‘bipolar’).
Then we can write

Ml :—f—C1, M2 = £_C27 M = _CI_CQ ’ (433)

and the model for angular momentum loss has

1 dH, M M;
— = —-K - K.
H, dt 1 1C1 2

G - (4.3.4)
2

Equn (4.3.1) is just the special case of this which has ¢ = (; = K3 =0, K; = 1. Note that
Equn (4.3.4) with K1 = K2 = 1 is also what is obtained from a slightly more rigorous
treatment in Appendix C(e), where h = H,/p is the orbital angular momentum per unit
reduced mass. That treatment also shows that the eccentricity remains constant, even
if non-zero, provided that the wind — including the fraction £/(£ + (1) accreted by *2 —
is independent of orbital phase.

We consider later some more detailed expressions for Ky, K5. For the present, we
take the K’s to be constants, and also the ratios £ : (; : (3. There are therefore four
independent constant parameters in the model; in Table 4.2 we normalise £ and the (’s
by taking the largest to be unity. Then integration of Equns (4.3.3, 4) gives

1Ky C2Ko G K1+ Ky
log M + log My — >—— 22 =
Gre BT e BT T o1

This determines how a and P will vary as the masses vary, using Equns (3.1.13) and
(3.1.14) respectively. The assumption that the four parameters are constant is not in
fact a very good one, but is made simply because it allows the elementary integral (4.3.5)
to be extracted.

In Chapter 3.3 we saw that the nature of RLOF at its onset (nuclear, thermal or
dynamic timescale) depends largely on a comparison of Rj, the logarithmic rate of
change of lobe radius against mass of loser, with various coefficients intrinsic to the star

log H, = const. + logM . (4.3.5)

itself. We can also calculate R} in our simplistic non-conservative model here. Using
Equn (3.1.13) for the orbital radius a as a function of H, and the masses, and Equn (3.1.6)
for the lobe radius as a function of @ and mass ratio ¢, we obtain after some manipulation

o= dog Ry (0.33+0.13¢){€(1+q) + G} +26(g” — 1) + G{2K, — 2 — g}
Y7 dlog M, (E+0)1+q)

(4.3.6)

Equn (3.3.3.9) shows that large positive values of R] contribute to instability, and nega-

tive values to stability. Of course the above result neglects the usually small contribution

of spin to the total angular momentum; also we have ignored (> for simplicity, but it can
be included with a little extra difficulty.

Table 4.2 shows the variation of P, M and Rj (including (3 # 0) with mass-ratio

q, for various values of &, (1, (3, K1 and K. The solutions are normalised so that
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Table 4.2 - Period, total mass, and stability factor R, as functions of mass-ratio in some non-conservative models

q=4 2 1.33 0.5 0.25 0.125
row 13 C1 C2 K K>
1 1 .001 .001 1 1 3.81 1.42 1.06 1.43 3.82 16.2
RLOF 2.00 2.00 2.00 2.00 2.00 2.00
6.84 2.59 1.17 -.61 -1.14 -1.40
2 1 1 .001 3 1 3.83 1.46 1.08 1.26 2.62 7.66
RLOF, 2.06 2.03 2.01 1.97 1.94 1.93
EW, MB 6.24 2.43 1.19 -.31 -.74 -.94
3 .001 1 .001 1 1 161 .445 .735 1.78 2.56 3.17
NwW 5.00 3.00 2.33 1.50 1.25 1.13
-.624 -.468 -.355 -.071 .089 195
4 .001 1 .001 1.5 1 .325 .685 .898 969 .650 331
NW,MB 5.00 3.00 2.33 1.50 1.25 1.13
-.424 -.135 .073 595 .888 1.08
5 .2 1 .001 2 1 1.39 1.17 1.09 676 .332 125
NW,PA, 3.50 2.63 2.23 1.61 1.40 1.28
MB .949 .595 612 .952 1.22 1.41
6 .05 1 .001 2 1 .865 1.09 1.09 .569 .203 .051
NW,PA, 4.41 2.87 2.30 1.53 1.29 1.17
MB .106 .310 .533 1.17 1.56 1.81
7 1 1 .001 1 1 1.81 1.02 .946 1.54 3.16 7.61
NW,PA 2.51 2.25 2.10 1.80 1.66 1.58
3.10 1.05 .402 -.340 -.525 -.604
8 1 1 .001 15 1 6.90 2.22 1.34 .559 .328 .183
RLOF, 2.06 2.03 2.01 1.97 1.94 1.93
EW ,MB 6.68 3.16 2.12 1.14 1.01 1.00
9 1 1 1 15 1 79.0 3.09 1.39 .644 .435 278
RLOF, 5.00 3.00 2.33 1.50 1.25 1.13
BP,MB 5.33 2.20 1.34 .718 .763 .869
10 0.5 1 .001 1 1 1.15 .848 .891 1.60 2.95 5.75
RLOF, 2.86 2.40 2.15 1.71 1.54 1.44
NW,PA 1.86 .550 .153 -.25 -.32 -.34
11 1 .001 0.5 1 1 5.11 1.31 .988 1.91 6.91 36.4
RLOF, 2.50 2.25 2.10 1.80 1.67 1.59
BP 6.10 2.06 .739 -.834 -1.27 -1.48

For each combination of parameters, periods are on the first row, total mass on the second, and RL,
Equn (4.3.6), on the third; periods are normalised to 1 and total mass to 2, for g=1. The principal Modes

involved are indicated at the left; Modes NW and EW are not distinguished in these models.

P =1,M =2 at ¢ = 1. Note that although Equn (4.3.5) is formally undefined when
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any of the linear combinations of £, (1, (2, that appear in the denominators vanish, the
singularities are removable: we need only vary some of the parameters by tiny amounts
from their singular values to obtain sufficiently accurate answers, as was done for certain
rows in Table 4.2. Equn (4.3.6) does not depend on the constancy of these parameters,
since it comes directly from the differential form of Equns (4.3.3) and (4.3.4), rather than
the integrated form Equn (4.3.5). We should also note that the spin angular momenta
of the components have been ignored in comparison with the orbit; but they can be
included by using a more complicated K7, Ks, as indicated below. It can be seen that
there are choices for the parameters which can keep the period constant to within a
factor of 3 as ¢ varies all the way from 4 to 0.125 (e.g. row 4), as well as choices that
allow P either to increase or to decrease by substantial factors.

The above model is essentially the same as that of Soberman et al. (1997), with the
proviso that they reversed the roles of x1, 2, i.e. their model has £ <0. This does not af-
fect the mathematics, but it slightly complicates the comparison. Subject to this proviso,
our ¢1/(€ + ¢1),¢2/(€ + ¢1), K1 are equivalent to their parameters «, 3, A respectively,
and they adopt Ko = 1.

The estimate K ~1 assumes that x1 is small compared with the binary separation,
and also that magnetic linkage of the wind to the star is negligible. We can estimate
K, a little better by allowing for *1’s finite radius, while still assuming that *1 is locked
into corotation with the orbit as a result of tidal friction; and we can also allow for the
possibility that the wind is forced magnetically to corotate out to an Alfvén radius Rp —
Equns (4.4.4), (4.5.16) below. Simplifying to the case where £ = (> = 0, we can write

M,
M M,

i(Ho-i-Iw) =—Q [

2, 259
o7 H0+<RA +3R w|

CGMPME HM
Y= HSM — M;Msa? ’

(4.3.7)

using Equn (3.1.14) for w as a function of H,. After some manipulation, this can be
written in the form of Equn (4.3.4) — still with {3 = 0 — provided that

M k2
(1 -3, x= L @ (4.3.8)

M? Rpa®+ %R? \(2M
M,

K, ~ |1 — —+1
1 [+M§ P> +

A being the usual ratio IQ2/H, of spin to orbital angular momentum. The denominator
of K is usually not much different from unity; nevertheless, it will approach zero at
fairly large mass ratios for nearly lobe-filling components as we approach the Darwin
instability (Sectiond.2; Chapter 5.1). Take ¢~ 1, Ra ~0, R~ Ry, ~0.38a, and k? ~0.075
from Equn (3.1.18). Then we have K; ~1.4. If ¢ is moderately large, say 2, and if Ry
is still zero while R~ Ry, then K; ~2; thus we should not assume that only magnetic
braking will increase K significantly above unity. However as g drops below unity, the
effect becomes fairly insignificant. A minor term, involving the change of moment of
inertia of the star as the mass changes, has been ignored.
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Returning to the case where both stars may have winds, but assuming that A, and
hence Iw, can be neglected, we can see from Equn (4.3.7) that the rate of change of
period (27/w) is

: 2 2p2 2 2p2
P 2((1'*‘(2)_,_% <l_ > sM (ClRAIESRl +42RA2+3R2> - (4.3.9)

P M M \q " M, M, a a?

In Sections 4.4 and 4.5 we outline a procedure for estimating R, which can be
incorporated into Equns (4.3.7) and (4.3.8). Magnetic linkage of *1 to its wind, possibly
enforcing corotation of the wind out to an Alfvén radius several times the stellar radius,
may amplify K very considerably (Table 4.4 below), and allow, for example, a significant
value of K1(7 even when (3 <&, as expected in semidetached binaries. In Chapter 6 we
consider a simple model for £/(¢1 + &), the fraction of wind from =1 that is accreted by
%2, in detached binaries.

If mass transfer is by accretion of a part of the wind from one star by the other, rather
than by RLOF, there is no reason to suppose that the orbit will be circular, and in that
case £ may well depend on the phase in the orbit. Appendix C(e) and Chapter 6 show
how nevertheless the effect of such a variable £ on the parameters of the orbit can be
determined by averaging over a Keplerian orbit.

In some circumstances, the gainer may use part of the accretion energy to blow off a
fraction of the transferred mass. If the nuclear energy of the transferred gas can be so
used, as in classical novae, then possibly all, or even more than all, of the transferred
mass may be ejected (episodically). This process of ‘bipolar reemission’ or Mode BP can
also be modeled crudely by the above formulation, taking £ > (s, along with ¢; &~ 0 and
K> = 1. We assume that the material leaves %2 isotropically, or at any rate with bipolar
symmetry, and with the specific angular momentum of the orbit of *2. Rows 9 and 11 of
Table 4.2 give such models, with row 9 also having some magnetic braking from its wind.
Possibly the bipolar flow from *2 might be linked magnetically to %2, or its accretion
disc, and this might increase K> above unity.

Equn (4.3.6) can be read in an alternative way, as giving the rate of mass transfer ¢

when the wind parameters (;, K; are known. Suppose that
(i) #1 fills its Roche lobe, transferring mass, while also losing mass to infinity by stellar
wind
(ii) its radius R relates to M in some definite way, as on the ZAMS — Equn (2.2.1.2) —
so that R’ is known
(iii) ¢2 = 0, and so K is irrelevant.
Then by equating Rj, to the known R’, Equn (4.3.6) at a given ¢ determines the ratio £/,
i.e. the ratio of mass transfer to mass loss by wind. In row 8 of Table 4.2, for example,
we see that Rj ~1 for ¢~0.5 — 0.125. On the lower MS, R «x M; is a reasonable
approximation to the ZAMS relation, and so for the assumed K; = 15, we see that
&~10¢;. This particular case has a small non-zero (3, allowing a moderate amount of
bipolar reemission.

Clearly for serious study of long-term evolution of systems subject to a combination
of winds, RLOF, MB, etc. it would be necessary to formulate credible expressions for
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€1,C2, &, Ky and Ko, rather than treat them (or their ratios) as constants. The equations
for H,, M, and M5 can then be integrated specifically. In such a calculation we could also
include GR. With a little further elaboration we could also include the synchronisation
and circularisation of Section 4.2. But the values in Table 4.2 give an impression of how
the evolution might go in a reasonably representative variety of cases, and are easily
calculated.

Massive binaries seem particularly prone to stellar wind; not surprisingly, since mas-
sive single stars are (Chapter 2.4). Table 4.3 gives parameters for a few massive binaries.
We have as usual attempted to nominate as *x1 the component which we believe was ini-
tially the more massive. For V640 Mon this is not the currently more massive; it seems
more likely to be the larger component. Although the components are large, neither is
close to its Roche lobe. V729 Cyg is much more extreme, but there it seems reasonable
to suppose that RLOF is going on, in addition to wind from both components. Several
of these systems seem to be in the awkward situation that both winds and RLOF have
shaped their history.

Table 4.3 Some Massive Binaries

Name Spectra State P M, Ms R Ry X*® 'Y Reference
V640 Mon O7.5If + O61f MMD 14.4 43 51 22 18: 4.7 1.65 Bagnuolo et al. 1992
V429 Car WN7+06.5-8.5 MME 80.3 55 21 27 Schweikhardt et al. 1999
0534-69 O3If+ 06:V MMC 1.40 41 27 10 8 1.03 1.1 Ostrov 2001
V729 Cyg O6f+ OTf mMs 6.60 11: 39: 17: 33: 1.2 3.6 Leung & Schneider 1978
CQ Cep WNT7+06 RMd 1.64 30 24 8.8 7.9 1.4 1.18 Harries & Hilditch 1997
CV Ser WC8+ O8-9III- IV RMD 29.7 11 22 10 Massey & Niemeld 1981
V398 Car WN4 + 04-6 RMD 826 13 25 4 Niemeld & Moffat 1982
V444 Cyg WN5 + 06 RMd 4.21 9.3 28 2.9,15:1) 8.5 1.5 1.15 St-Louis etal. 1993
V348 Car BO+ Bl MMd 5.56 35 35 20.5 20.5 4.3 2.4 Hilditch & Bell 1987
V448 Cyg BI1II-Ib+09.5V MMS 6.52 14 25 16.3 6.7 5.0 1.0 Harries etal. 1998
V382 Cyg O7.7+07.3 MMC 1.89 19.326 8.4 96 16 14

% includes some assumptions about winds: see Table 4.4
radii of star, envelope

All eccentricities are small or zero, except V429 Car (e=0.6)
Under ‘State’, a letter in lower case indicates a more-than-usual degree of uncertainty. For many of these

systems, it is uncertain which component is actually *1, the originally more massive component; see text.

If components lose enough mass by stellar wind they may avoid RLOF altogether,
partly because the orbit gets wider as the total mass drops, and partly because one
or more components may be stripped down to their helium cores, which are normally
quite small. Alternatively, if they do not avoid RLOF altogether, the effect of RLOF
may nevertheless be substantially modified from the conservative picture described in
Chapter 3.5. To supplement our evolutionary notation (Cases AR, ..., AN) there, we
add two more cases, AW and AU. In Case AW we suppose that the normal single-star
stellar wind is enough to prevent RLOF. It is not clear that there is any system in the
Galaxy that qualifies, but two components of ~100 Mg, in a 20d orbit, might do. In
Case AU we suppose that the normal wind is not enough, but the wind is enhanced
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by binarity so that there is enough wind from one or both components to modify the
outcome severely. We can expect analogues of Cases AR, AS, AN, but with a somewhat
different outcome. We refer to these analogues as Cases AUR, AUS and AUN, and
attempt to describe their expected evolutionary progress in an extension of the notation
of Chapter 3.5:

AW: MME,TFI,NW — MMD;NW1 — MMD;PC2 — RMD;NW1 — RMD;SN — ... (4.3.10)
AU: MME,TF1 - MMD — MMD;EW1 — MMD;EJ2 - RMD;NW1 — ... (4.3.11)
AUN: .. . . — MMS;F1,EW1 - MMS;EJ2 - RMD;NW1 — ... (4.3.12)
AUS: .. . . — MMS;F1,EW1 - MMC;EJ2 - RMD;NW1 — ... (4.3.13)
AUR: .. . .. — MMS;F2,EW < MMC;R2,EW — M — ... (4.3.14)

BW: MME -+ HME — HME;PC2 — RME;NW1 — RME;SN — ... (4.3.15)
BU: MME - HME;TF2 - HMD;EW?2 — HMD;EJ2 — RMD;NW1 — ... (4.3.16)
BUN: . . .. — HMS;F1,EW2 — HMS;EJ2 — ... (4.3.17)
BUR: .. .. .. = HMS;F2 — HMC;EJ2 — ... (4.3.18)

We might note that if mass loss does prevent a binary from reaching RLOF, then the
distinction between Case A and Case B becomes meaningless; but rather than labour
this point we will continue to think of Case A as fairly short initial periods and Case BB
as longer initial periods.

Table 4.4 Possible starting conditions for 11 massive binaries

no. name case initial params current params 3 ¢ (2
mases; period masses; period

1 V640 Mon AU 72 + 66; 6.7d to 43 + 51; 14d 0 2

2 V429 Car BW 84 + 21; 42d to 55 + 21; 80d 0 1

3 0534-69 AUR 41 + 27; 1.4d

4 V729 Cyg AUS 43 + 39; 1.4d to 11 + 39; 6.6d 1 2 1
5 CQ Cep AUN 58 + 15; 2.1d  to 30 + 24; 1.6d 1 2 0
8 CV Ser BU 33 + 22; 11d to 11 + 22; 30d 0 1 0
6 V398 Car AUN 29 + 17; 5.4d to 13 + 25; 8.3d 1 1 0
7 V444 Cyg AUN 33 + 16; 1.9d to 9 + 28; 4.2d 1 1 0
9 V348 Car AUN 35 + 35; 5.6d

10 V448 Cyg AN 24 + 16; 5.7d to 14 + 25; 6.5d 1 0 0
11 V382 Cyg AS 25 +21;1.8d  to 19 + 26; 1.9d 1 0 0

In Table 4.4, we make very tentative estimates of starting parameters, and of the
non-conservative coefficients ¢; and (2 (noting that only their ratios, to each other or to
the conservative coefficient £, matter). Two systems have probably not evolved enough
to have lost or transferred much mass. One is a very massive contact binary in the
LMC. The other, V348 Car, is a system of surprisingly high total mass yet with rather
little evidence of either current or former mass loss. Presumably this is because (a) the
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Fig 4.4 — The Py, M1¢ plane, with schematic boundaries between different routes; gop is assumed to be in the
range ~ 1—1.5. Dashed lines indicate approximately (a) the ZAMS lower boundary, (b) the TMS boundary
between Case A and Case B, (c) the beginning of the giant branch, i.e. the boundary between Cases B and
C, and (d) the lower boundary of Case D (no RLOF, and no mass loss). Dash-dotted lines are some of the
boundaries within Case A (Fig 3.8); a number of Cases (AD, AG, AE, AB, BB) have been ignored. Estimated
initial models (asterisks) for 11 massive systems are taken from Table 4.4: some have gp outside the range
hypothesised for this diagram. Dotted boundaries are particularly uncertain. Several features of this diagram

are not discussed till later.

mass is very evenly split between two almost equal components, and (b) 35 Mg may
be more-or-less the upper limit below which winds are unimportant, at least within the
main-sequence band, and at least until some outer layers have already been removed by
RLOF. Guided partly by this very tentative insight, partly also by the probability that
the initial period should not have been uncomfortably small, and further that a Wolf-
Rayet remnant of known mass implies a precursor massive enough to have contained it
within its He rich core, we attempt to determine plausible initial parameters.

In Fig 4.4 we attempt to locate some provisional boundaries in the plane of initial
period and initial mass of x1. Of course initial mass ratio must also play a part, but
we assume here that initial mass ratios are not large, or do not matter in the case that
RLOF is avoided.

The term ‘partial accretion’ might be used to describe two rather different physical
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processes: (a) while 1 loses mass by stellar wind *2 is able to accrete a portion of it, or
(b) during RLOF only some of the matter lost by *1 ends up on %2, while the remainder is
somehow driven from the system. However here we distinguish between these, calling the
second ‘bipolar re-emission’ (Mode BP) and only the first ‘partial accretion’ (Mode PA).
They have in common that both may involve non-zero £ and (;, but they are likely
to differ mainly in the amount of angular momentum that is carried to infinity by the
escaping gas. We assume as a starting point that mass lost to the system in Mode BP
first changes its specific angular momentum from the orbital value of 1 to the orbital
value of 2, while in Mode PA it does not. These can lead to very different behaviours
of the orbit, since if the mass ratio is well away from unity the specific angular momenta
of the two stars are fairly different. This difference is seen in rows 7 and 11 of Table 4.2,
where in both cases half the gas lost by *1 is accreted by *2.

Although something like Mode BP is seen in several mass-transferring binaries, it is
hard to judge what fraction is expelled and what retained. Equally, there is no doubt
observationally that something like Mode PA takes place, but with great uncertainty
about the fraction of wind that is accreted.

Suppose that *1 is subject to a wind of strength (], and at the same time to RLOF of
strength ¢'. Say that %2 accretes (temporarily) the stream £’ as well as a fraction oy of
(1; but then re-emits, from the near neighbourhood of %2, a fraction B of all the matter
temporarily accreted. We can continue to model the effect on the masses, and on the
orbit, by Equns (4.3.3, 4), provided that we write

G =10-a)¢ , G =PB0E+al) , (=EC4a( . (4319

We return to these processes in Chapter 6.3 and 6.4. Note that in Equn (4.3.19) we have
ignored any intrinsic wind ¢} from 2, but this in fact can easily be added into (5.

If we attempt to follow the evolution of a binary in some detail, with a non-conservative
model for orbital evolution, and using a stellar evolution code for the interiors, it is
difficult to avoid the necessity for solving for both components simultaneously. This is
because the behaviour of *1 may be influenced not just by M, as in the conservative
case, but also by such parameters as as and 33, which themselves will at the least depend
on Ry, Lo as well as Ma. Of course, at a very crude level of approximation, we might start
by assuming a3, 82 to be given constants, in which case we can still evolve *1 without
direct knowledge of the structure of *2.

A process of envelope loss that we do not consider here in detail is seen in some massive
binaries, say containing a Wolf-Rayet component and an O star. Both stars have winds,
and a region where they collide is sometimes observed, particularly in X-rays. Even if
the region is not directly evident, it is obvious that winds from both components must
have some collision front. However in default of a detailed model, we assume here that
what goes on in the collision region does not react back on the orbit, and that the effect
on the orbit of two independent winds is given by the same simple mathematical model,
Equn (4.3.5).
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4.4 MAGNETIC BRAKING AND TIDAL FRICTION: MODE MB

Rotating single stars which lose mass by winds may be subject to magnetic braking,
with magnetic fields possibly linking the star to the outflowing wind (Schatzman 1962)
and forcing the wind to corotate out to an Alfvén radius of several stellar radii. This
applies particularly to relatively late stars, ~F2 or later. The fact that such stars are
generally slow rotators, whereas earlier stars are rapid rotators, suggests that magnetic
braking can operate effectively only in stars with convective envelopes. This is not
conclusive evidence that the radiative/convective transition in the envelope is the major
cause, since if all stars were subject to magnetic braking on a timescale of say 3 Gyr,
stars earlier than ~ F2 would be little affected and most of those later would be strongly
affected. However, it seems a plausible starting point.

Even without magnetic linkage, we expect some spin-down as a consequence of stellar
wind. If the star rotates roughly uniformly, the mass leaving the surface has more specific
angular momentum than the average in the star, by a factor of about %RZ /k*. R,k are
the radius and radius of gyration of the star. The factor % assumes that the mass-loss is
uniform over the surface. We will however continue to use the term ‘magnetic braking’
(MB) to describe the combined effect. For the Sun the Alfvén radius is ~12 Rg, and
the gyration radius ~0.26 Rg.

If a star is in a close binary, close enough that tidal friction keeps it locked in corotation
with system, then MB drains angular momentum not just from the stellar spin, but from
the orbit. Hence this mechanism can alter the fundamental orbital separation, and for
example make RLOF occur earlier than might otherwise be the case. Although the
process is normally slow, it can in some cases be more rapid than nuclear evolution
and/or gravitational radiation. We refer to the combined effect on a binary as MB;
we rely on the context to determine whether we are talking about magnetic braking
of single stars, of stars in widish binaries which might spin down without exchanging
angular momentum with the orbit, or of closish binaries where tidal friction leads to
exchange of spin and orbital angular momentum.

A rather detailed theoretical model of axisymmetric, stationary winds with ‘frozen-in’
fields (i.e. the limit of infinite conductivity) can be developed (Mestel 1968, Mestel &
Spruit 1987). The mathematics of this model is outlined in Appendix D. The stationary,
axisymmetric assumptions mean that there are five functions to be solved for: the density,
the toroidal components of both the velocity and the magnetic fields, and the stream-
functions of the poloidal components of both fields. The five equations determining them
are the two independent components of the steady dynamo equation

Vx(vxB) =0 |, (4.4.1)

and the three of the steady momentum equation

1
pv.Vv = —Vp—pVd + N—(V xB)xB . (4.4.2)
0
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Three first integrals can be extracted rather generally, and also a fourth if the wind
is assumed to be adiabatic or isothermal; one of these integrals tells us that field-lines
and stream-lines in a plane through the rotation axis coincide. The remaining equation,
which can be viewed as determing the poloidal part of the magnetic field, is unfortunately
rather complicated. The model is sketched in Fig 4.5. If it is assumed that the magnetic
field of the star, in the absence of wind, is roughly dipolar, then the model shows that
field-lines originating on polar caps will be stretched by escaping wind to reach infinity
roughly radially (the ‘wind zone’), while fieldlines originating in an equatorial belt will
cross the equatorial plane normally, and trap a region of hot gas (the ‘dead zone’) in
which the gas flow is purely toroidal. On field-lines within the wind zone there will be an
‘Alfvénic point’ at a distance Ra say, such that at smaller distances the wind is obliged
by magnetic stress to corotate with the star, while at larger distances the wind expands
freely conserving its specific angular momentum. If the Alfvénic point is at several times
the radius of the star, the escaping gas will remove a much larger amount of angular
momentum per unit mass than is contained in the body of the star, and thus the rotation
will be braked.

dead zone—

7[Z

Fig 4.5 — An artist’s impression of the field-lines and stream-lines (which coincide) in an expanding magnetic
stellar wind, assuming axial symmetry. The magnetic field (arrows) is outwards on the northern hemisphere
and inwards on the southern hemishere. The gas flow is outwards on both hemispheres, but is zero in the
‘dead zone’, a toroidal belt separating the flows. There is a cusp in the critical field-line which separates the
wind zone from the dead zone. In the simplest model, a current sheet is required in the equatorial plane, to

support discontinuities in tangential magnetic field.

In general, we expect the torque to depend on both the mass loss rate |M;| and
the surface dipolar magnetic field Bp. Using the analysis of Mestel & Spruit (1987),
outlined in Appendix D, but simplifying to a very considerable extent as summarised in
Equns (D27) — (D34), we can estimate the dependence as follows. The wind is presumed
to be corotating with the star from the stellar surface to an Alfvén radius Ra at which
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it attains escape velocity. We can then write

: B3 2GM; B R\?
|My| ~ 4rRA’pavs , pavs ~ —2 | 0% ~ ! ZA L (22 , (4.4.3)
Ho Ra

Ry’ Bp
where suffix A refers to the Alfvén radius. The magnetic field is to be identified very
loosely with the poloidal field Bp of Appendix D. Its assumed decrease as B o r~2 is
based on a ‘split monopole’ model of the field. The field lines are assumed to be dragged
out almost radially by wind, with a northern monopole in one hemisphere, a southern
monopole in the other, and a toroidal current sheet in the equatorial plane separating
them (Fig 4.5).
From estimates (4.4.3) we easily obtain

3/2 5 1/2 2
., 4rB
(ﬂ> _ C’1< R ) 1YY fppiieed (4.4.4)

R 2G' M, Ho

and corresponding dependences for wva,pa,Ba. C7 is a fudge-factor which we cal-
ibrate from Solar data. For the Sun, Bp~1.25 x 107*Tesla (~1.25Gauss) and
|M1]|~10~7% Mg /Myr. Then the observed value Ry ~ 12 Ry means that we should
take C7 ~0.6. The braking rate should be

Py _ L (a0
P IO\ dt Jyp
4/3

' 2/3 2
|M1|RA® 43 R? R® . —1/3 (4w Bp
~—F ~C YTV M S . (445

I UoMyk? \2GM, M 140 (445)

It can be seen that the spindown timescale depends rather weakly on M, and rather
strongly on Bp. We can imagine that spindown becomes very rapid if Bp is large and
|M 1| is small, but at least in stars with active surface dynamos it is likely that they
correlate positively (see Section 4.5).

For notational purposes, we call the rotational period P, to distinguish it from the
orbital period P — although for the moment we are only talking about single stars. But
we use () rather than ; because (a) we use w rather than Q) for the mean orbital angular
velocity, and (b) we assume throughout most of this Chapter, just for clarity, that only *1
is active. This latter assumption also allows us to drop the suffix unity on R and L; yet
we keep a suffix on M7y, because in a binary M5 and the combined mass M = M; + M,
are still relevant, even if %2 is inert.

Unfortunately the above model does not by itself predict either the magnitude of the
wind or the strength at the stellar surface of the magnetic field; these have to be fed
in as boundary conditions. Presumably they are determined by processes inside and
at the surface of the star. We attempt to model these in the next Section. Nor can
the magnetic-braking model readily incorporate the fact that most magnetically active
stars show non-axisymmetric and non-stationary behaviour. So, although we rely on the
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concept of corotation out to an Alfvénic radius, and free expansion beyond, we discuss
here first some more empirical determinations of the braking rate.

Observations of the rotation rates of single, roughly solar, stars (Kraft 1967), in
clusters of different ages, suggest that these stars slow down on a timescale of about 103 —
10* Myr, which is much less than their mass-loss timescales of 10" Myr — Equn (2.4.3).
This is roughly consistent with the fact that the solar wind is observed to corotate out to
~12 Ry (Pizzo et al. 1983). Skumanich (1972) estimated a formula for rotation period
as a function of age: his result can be written

P~ 04t7 | (4.4.6)

with P; in days, t in Myrs. This was based on rotation velocities of stars in three clusters
of known ages. Equn (4.4.6) is consistent with a magnetic braking rate for solar-type
stars given by

Py 1[4\’

— ~ — | = to ~200M 4.4.7

P1 tO <P1> ) 0 yr, ( )
in the same units. However for the Sun (P, = 26d) this gives a braking timescale too

short by a factor of ~2.5: it should be ~20Gyr (Pizzo et al. 1983).

Stepieni (1995) proposed a braking law for solar-type stars, based partly on observation
and partly on theory, which roughly agrees with Equn (4.4.7) at P; ~4—8d, but gives a
smaller torque at both larger and smaller period. We adopt here the essence of Stepien’s
result, but use a different mathematical form for his expression, a form which integrates
analytically but which agrees to within about 50% for the period range 0< Py <£27d:

I2ANE
1 -1
“(3)
Stepien’s formula has e %21 instead of the expression to the right of tal. Equn (4.4.8)
gives a value of spindown timescale for the Sun of ~ 18 Gyr, in better agreement than
Equn (4.4.7) with the fairly direct observational determination of Pizzo et al. (1983).

We can integrate the resulting formula to give an estimate of the time taken for a single
star to spin down from P, to P,:

,  to ~200Myr . (4.4.8)

b

2 AR
lni + i _}_1 ﬁ
9 9 4\ 9 »

a

t

—~ 4.4.
- (14.9)

For the Sun, this means that ~5.4 Gyr would be required for spindown from an initial
value of a few days to the present, only ~20% longer than it should be.

Stepien (1995) suggested that Equn (4.4.8) can perhaps be generalised to stars other
than solar-like if
(a) the ratio P;/9 is replaced by a multiple of the Rossby number o = P;/tgr. This is
the ratio of rotation period to the convective envelope turnover time tgr, which is ~15d
for the Sun, Equn (2.2.3.15).
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(b) a multiplicative factor f(M;,R,L) say is introduced which is unity for
My~ Mg,R~ R, L~ Lg. Then we might hope that a more general expression could
be something like

& f(Mla Ra L)

1 Py
~ = — . 4.4.10
P to (14 2.802)2 ’ 7 teT ( )

In the next Section, we attempt a simplistic model which gives a functional form for f.

In a wide binary, angular momentum loss by winds would simply slow down one or
other star (or both) independently of the orbital motion, but in a close binary tidal
friction may keep the stars corotating so that the magnetically coupled winds may drain
the orbital angular momentum (Huang 1966, Mestel 1968, Eggleton 1976, Verbunt &
Zwaan 1981, Mestel & Spruit 1987). Because the orbital moment of inertia is much
greater than a single star’s, this might seem like a small effect, but it is balanced by the
fact that the star could be rotating much more rapidly than if it were single. Indeed, as
the orbit loses angular momentum the star spins up, not down, because of tidal coupling.
As a consequence binaries with P <1.5d, or thereabouts, may (if they contain a solar-
type star) be forced appreciably closer, even to RLOF, in the course of the Hubble time
(van’t Veer 1976, Vilhu 1981, Rucinski 1983). If tidal friction is strong enough to ensure
corotation, so that the angular momentum lost in the wind is drained ultimately from
the orbit, Equn (4.4.10) along with Equn (3.1.14) tells us that the rate of orbital period
change, in the absence of significant mass loss, is

tmb  Ho \ dt ) 3P " H, \ dt /g
A A f(M17R7L)
=~ - 4.4.11
tMBs to (]. + 2.80‘2)2 ’ ( )

where A as in Equn (4.2.9) is the ratio of spin to orbital angular momentum. The letters
b and s in the subscripts refer to binary and single-star timescales. The factor A\ as well
as o contains a P-dependence. From Equns (4.2.9), (3.1.5), (3.1.11) and (3.1.18),

4/3 2 1.2
A= Ao (P“) . X = M RE (4.4.12)

P M2 a2 R2

If we take g~1, and polytropic index ~3, we get a representative value of Ag~0.023.
P, is the period at which the star fills its lobe (Table 3.2). Hence

P o % Pcr s f(MlvRaL)
P (1 + 2.802)2

If initially P <tgr (e.g. P $2d), then ¢ ~ 0 — although the P-dependence implicit in ¢
can be integrated easily enough. Then a binary containing a dynamo-active star spins

(%)4/3 _ 1] , (4.4.14)

Pt

(4.4.13)

up from period Py to P, in a time

1
to  4\of(My,R,L)
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With ¢g ~ 200 Myr — Equn (4.4.8) — and Ag ~0.023 — Equn (4.4.12) — and assuming solar
parameters, the period could decrease from a few days to the point where contact is
reached (P~ P, ~0.3d) in something like the Hubble time.

It is regrettable that in using either of Equns (4.4.8), as here, or (4.4.7) to estimate
magnetic braking in short-period binaries we are extrapolating well outside the range of
validity of either. The two estimates differ by a very large factor at say 0.1 —0.3 d, which
is the kind of period relevant to contact binaries and cataclysmic binaries.

Mass loss will cause a single star to spin down, even in the absence of magnetic field,
because the specific angular momentum at the surface is greater than the mean. We
replace Equn (4.4.5) by

1 dIQ . 2R2 4 R,Z 1
LNV + A _
I tMBs

(4.4.15)

Although ty1gs defined in this equation is not wholly magnetic in origin, we refer here to
the combination as Mode MB.

In a binary which is sufficiently close for tidal friction to enforce corotation, we have
yet another term for angular momentum loss, because even if R = Ry = 0, mass leaving
x1 will carry off orbital angular momentum. Following Equn (4.3.1), we write

1 (H)\ MM, 1+§R2+RA2%2
H,\dt) ~— MM, a? M}

|My|My 1
MM; — tusb

where H,, is the orbital angular momentum, « is the orbital radius, and M = M; + Ms.

K is a factor giving the excess of actual angular momentum loss to its minimal value. For

=K

(4.4.16)

binaries, we use the term MB to cover all three terms, for brevity: usually it is obvious
by context whether we are referring to single stars or binaries, and where it is not we
use MBs and MBb. We define a third timescale, for binary mass loss, by
Myt (4.4.17)
My + Myt
Presumably a complete theory of winds, determining M 1, and of dynamo activity,
determining Bp, would provide values for these quantities which when substituted into
Equn (4.4.5) give something close to the semi-empirical Equn (4.4.10), for solar-type
stars. These two theories are probably not independent, since we can see in the Sun
that it is largely or wholly magnetic energy dissipation that drives the wind. In the next
Section we attempt to quantify this in a very crude way.

4.5 STELLAR DYNAMOS

Much excellent data on stellar rotation and stellar activity exists, but it is not easy to
translate this into a usable mathematical formulation of magnetic braking. Mainly, this
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is because what are usually measured are parameters such as the strength of the emission
cores in the HK lines of calcium, or the X-ray or radio flux. These themselves need a
comprehensive theoretical model to be translated into such quantities as magnetic field
and mass-loss rate. Equivalently, although much excellent theoretical work has been
done on stellar dynamos, this work usually shows chaotic behaviour; and it normally
starts by assuming a given law of differential rotation. Massive 3-D computational effort
will be required to build a self-consistent MHD model of a rotating convection zone,
that one hopes would generate for itself the necessary differential rotation as well as the
magnetic field and the mass loss.

We present here an elemetary recipe for dynamo activity, which is necessarily ad hoc
in the absence of a detailed theory. Such a theory would no doubt be very complicated.
The recipe’s purpose is to fill in the two missing links of the previous analysis, i.e. to
determine as far as possible from first principles the two parameters |M 1| and Bp which
themselves determine the braking rate. The present analysis is largely dimensional, but
also makes use of some observational relationships such as Stepieri’s (1995) correlation
as approximated in Equn (4.4.8). It is based on the following assumptions:

(i) The velocity field in the star is determined by its overall rotation, by the extent and
strength of its turbulent convection, and by their interaction. In particular, we suppose
that there is differential rotation which is driven solely by the combination of these two
influences. Then if A{ is some measure of the differential rotation (mainly concentrated
to the base of the convection zone, in the Sun), we expect that

AQ = i E(U) , g = ﬁ , tET = i , (451)

teT teT w

where w,l are the velocity and mean free path of turbulent convective eddies at some
reference point, say half way in radius between the top and the bottom of the zone
— this is one way that ¢ty was estimated in Chapter 2.2.3. E is some dimensionless
function to be determined or guessed at, and o, as in Equn (4.4.10), is the Rossby
number, also dimensionless. On the solar surface, rotation is seen to vary with latitude
as o< 1—0.08 Py(cosf). Consequently we take AQ = 0.0812, which gives £ ~0.3 for
the Sun. We also have o ~ 1.7 for the Sun.
(ii) The magnetic field, driven by an af2 dynamo, can be represented by two values: Bp,
an overall poloidal field, and By, a toroidal field. This type of dynamo, which might
better be called the o, 2, AQ dynamo, relies on differential rotation AQ to wind up the
internal poloidal field and produce toroidal field. In a purely axisymmetric situation it
would not be possible for this toroidal field to be converted back into poloidal field, thus
completing a feedback loop, and so the poloidal field would ultimately decay by ohmic
dissipation. But small-scale non-axisymmetric perturbations due to turbulent convection
can be allowed for at least crudely. Using a Fourier transform analysis (Appendix E), they
lead to a small complex coefficient o which allows poloidal field to be regenerated. When
the equations of the a2 dynamo are reduced to their barest essentials — Equns (E19) —

they emerge as
. AQ ; B
By ~ =-RBy , By~ % . (4.5.2)
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The (complex) coefficient « relates to the ‘helicity’ of the turbulent motion, i.e. the mean
value of v.V X v. In a non-rotating situation this can be expected to average to zero, but
Coriolis force leads to cyclonic turbulence with a non-zero mean helicity. The process
can be observed fairly directly on the face of the Sun. The toroidal flux loops deep in the
convection zone rise to the surface because of magnetic buoyancy. They become ‘kinked’
by the turbulent convection, so that they emerge at the surface as pairs, rather than all at
once. With no helicity, these pairs would on average be aligned East-West, but cyclonic
turbulence gives them on average a slight North-South tilt. The pairs drift polewards
in a large-scale meridional circulation current, which presumably, like the differential
rotation, is a consequence of the interaction of convection with rotation. As they drift
and decay (not so much by ohmic diffusion, but by the highly non-linear process of field-
line reconnection above the photosphere), the tilt increases, giving a small contribution
to the large-scale poloidal field.

Equns (4.5.2), with complex «, give exponential growth as well as cyclic behaviour,
both on a timescale of 1/l/|aAQ|. However we can expect that the neglected non-
linear dissipation terms will prevent growth beyond some amplitude, and so lead to a
limit-cycle, whose frequency €. is likely to be comparable to the growth rate and cycle
frequency of the linear regime. We identify this with the Solar cycle frequency, which
allows us to estimate «, at least for the Sun and a number of solar-type stars for which
cyclic activity is observed. Although 2. might depend on field-strength, for example,
we assume for simplicity that, like AQ, Q. is some Rossby-number-dependent function
(dimensions time~!) of the turbulent velocity field:

1
Q. ~ —F(o) . (4.5.3)
leT
Then, from Equns (4.5.2), o and the ratio Bp/By are clearly given by
|a| AQ 1 F%*o) RAQ R E

- 5 By ~ 22 g, ~ 22 g, 45.4
[l ter E(0) * ¢ 10, P OUFY (4.5.4)

We assume that both Bp and By scale like w,/ugp, where w is the mean velocity of
convection, since this has the appropriate dimensions. Consequently we write
R EH
Bp = wypopH(o) By = whor 4

taking the density p, like w,l, to be to be a mean value somewhere in the convection

0.2

(4.5.5a,b)

zone.
(iii) The toroidal field By is produced near the base of the convection zone, where
AQ is concentrated, but levitates to the surface, being shredded in the process by the
turbulent convection. It emerges chaotically at the surface, and largely dissipates above
the photosphere, driving a wind which carries away part of the field not dissipated.
Arguably the wind is driven by the rate of dissipation of magnetic energy in the course
of a magnetic cycle:

2G'M;
R

. B2
M| ~ Cs 47TR2DQCﬁ ., taking By>Bp (4.5.6)
0
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where D is the depth of the convection zone (so that 4w R?D is approximately its volume).
C5 is another fudge factor which represents the fraction of magnetic energy going into
escape. Other fractions might be radiated away, or used to drive the wind to higher than
escape velocity. Numerical estimates suggest that C ~0.16 for the Sun, and since there
seems no obvious reason why this should depend on ¢ we take it to be constant. Table 4.5
gives Solar quantities estimated by a combination of direct observation, stellar-structure
modeling, and the dynamo model proposed here.

Table 4.5 - Solar Parameters connected with Dynamo Activity

observed stellar model dynamo model
M, 2.0x103° Rut 1.27x10° o 1.7
R 7.0x108 D 2.0x108 1 0.029
L 3.8x10%¢ l 6.6x107 By 0.030
Q 2.8x1076 w 51 E 0.29
AQ 2.2x1077 teT 1.30x 108 F 0.0129
Qe 1078 p 11.7 H 6.4x107%
Bp 1.25x10~% wy/mop  0.58 C 0.58
| M| 1.7x10° k2 3.4x10'¢ C» 0.155
I 1.4x10°
wa 36

All quantities are in SI units

For a given My, R, L, the extent of the convection zone can be estimated reasonably
well as a function of the ratio of the stellar radius R to the radius Ryt that the star would
have if it were on the Hayashi track. Ryt is a function of L, M7, given by Equn (2.3.1.6).

In S.I. units
L\ 047 I\ 08 M\ %!
1. — A7 — — . 4.5.
65<L®> 0 7<L®> <M1> (45.7)

For the Sun, R/Rpt ~0.55, and this ratio drops rapidly further up the MS. We rein-
troduce the two global quantities wg, p, ¢.e. the mean convective velocity and the mean
density — Equns (2.2.3.11) —

LR\Y? 3M,
fd D = . 4. .
we <3M1> L= (45.8)

RHT - R@

The velocity wg is a convenient dimensional quantity even when the star, or a part of
it, is not actually convecting. Then an appropriate D,l, w, p in the surface convection
zone can be approximated by empirical power-law depences on R/Ryr:

R 2.1 R —0.6 R 8.0
D~R[—— ~30, w~wg [ —— L p~p—) . (459
<RHT> ¢ (RHT> P p<RHT> ( )

The powers were estimated from ZAMS models of 0.8 and 1.2 M. We see for instance
that tgr of Equn (4.5.1) and the magnetic field Bp of Equn (4.5.5a) are

M 2\ 1/3 2.7
tor — 0.33 (3 11 > <i>
L Rur
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1/2 2 1/6 3.4
30 L* M, R
Bp = (— —_— H . 4.5.10a,b
g (47r> < IRT > <RHT> ( @)

All quantities here are in SI units, not solar units. These relations give By from
Equn (4.5.5b); substituting into Equn (4.5.6) we obtain |M;| and the binary mass-loss
timescale tyr,:

My + M, . RL (D\*/ R \*° E2H?
LT My = Oy — () (2 . 4.5.11
ML M1 2 4GM, <l> <RHT> F ( )

Then we can use Bp and |M1| in Equn (4.4.4) to obtain the Alfvén radius,

ﬂ 3/2_2_01 i 3 2G M, 1/2 3M, 3 /R 4'8£ (4.5.12)
rR) ~ ¢ \D R LR Ryr) E? -

and use this in Equn (4.4.5) to obtain the braking rate for single and also binary stars:

1 1 30/ R 1 ( R®\'? L \( R \* F3H?
AtMBb - tMBs - 021/3 ﬁ B <2GM1> (3M1R2> (RHT> E2/3

(4.5.13)
Comparing with the semi-empirical Equn (4.4.10), we can identify the factor f(M;, R, L)
with the first few factors of this expression, and the o-dependent factor (1 + 2.802) 2
with the last factor, F1/3H? / E?/3_ apart from constant factors in each case which can be
put together and identified with the empirical timescale ty. The approximation signs in
these equations allow for the fact that we have not yet applied the corrections suggested
in Equns (4.4.15, 16).

Although we have identified one combination of E (o), F(c) and H(o) with an empir-
ical function of o, we need two more. Unfortunately for few stars other than the Sun
do we have a direct measure of A2 or Bp. However in a few cases a magnetic activity
cycle can be seen and the frequency (2. estimated. Brandenburg et al. (1998) found
Qe x Q135 (F o« 0~1%), for 6 active stars with rotation periods of ~10 —20d and
0~0.5 —1.4. They also found that for 15 less active stars with rotational periods of
about 25 —50d and o ~1.2 — 1.8 there was a similar slope but with €2 larger by a factor
of ~5; at 0 ~1.2—1.4 there were one or two stars on both branches. They interpret this
behaviour as suggesting a mode change in the dynamo at an intermediate o.

If then we put together two approximate pieces of observational information with one
theoretical postulate, we can estimate each of E, F, H as functions of o. They are
(a) FY3H?/E*® « (1+2.80%)~2, by comparing Equns (4.5.13) and (4.4.7).

(b) F x o~ as in the paragraph above, except that on the supposition that there
should be saturation at small o rather than a divergence we replace this by F o< (1 +
2.80’2)_0'75

(c) E/F? « o, on the basis that a in Equn (4.5.3) should be proportional to Q o
1/o (Appendix E); but we also assume here that there is saturation at small ¢ (rapid
rotation), so that E/F? o (1 + 2.802)%5.



206

Then our model requires

2.7 0.0096
E~ —— . H ~ — .
1+ 2.802 ' (14 2.802)1-21 ’
0.014 0.07

(4.5.14)

The jump in F at o ~ 1.3 takes account of the suggestion by Brandenburg et al. (1998)
that there are two distinct modes on either side of o ~ 1.3.

Note that Equn (4.5.13) did not include the extra spin-down terms, shown in
Equn (4.4.16), which occur even when Ry = 0. However it is easy to add in these
extra terms, since we know both |M;| and Ry separately.

T 1+ 2802)075

Numerically, our final results for the mass-loss rate and the Alfvén radius as functions
of My,L,R and P, are, in SI units,

. RL R \*° 1
M| ~ 0.050 < > ( , (4.5.15)

GM; Ryt 1+ 2.80'2)3'67
and
Ra 3/2 2G M, 1/2 30, 1/3 R\ %8 b L s
— =0. 1+ 2. : 4.5.1
< 7 ) 0.0039 7 IR R (1+2.80%) , (4.5.16)
with )
P 3MiR2\"? [ R \*7
= — t = 0.33 — 4.5.17
g tET 3 ET ( L > RHT ’ ( )

and with Ry given in terms of M;, L by Equn (4.5.7). The above are valid for o $1.3;
if 0 2 1.3, | M| should be multiplied by 5, and (R /R)3/? divided by 5.

For a red giant R~ Ryr, and in that case Equn (4.5.15) bears close comparison with
Reimers’ (1975) empirical formula (2.4.4), which, also in SI units, is

M| ~ 1.3x 10"
M| % GIM,

(4.5.18)

These agree provided that o ~ 1.2 —1.8 is reasonably typical for red giants; but clearly we
should expect a substantial spread. It is no doubt a coincidence, but a rather interesting
one, that although stars slow down as they become red giants the convective turnover
time goes up to the extent that the Rossby number does not change as much as one might
expect. For those red giants rotating sufficiently rapidly that o <0.3 (which will usually
only be those which are in relatively close binaries where they are forced by tidal friction
to corotate) we can expect mass-loss rates larger than Reimers’ formula by 2 10%. Note
that if the enhacement of Equn (4.5.18) is by only a factor of 10? it puts the mass loss
on a nuclear timescale. We return to this in Section 4.6.
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The above formulation represents a ‘complete’ theory of magnetic braking, to the
extent that it predicts the braking rate of a single star, and hence of a binary assum-
ing tidally-induced synchronism, as a function of mass, radius, luminosity and rotation
period only. As by-products, the model predicts also such quantities as 1., A2, Bp, By.
For example, the relative differential rotation is

AQ cE(o) 0.430

_ ~ 4.5.19
Q 2 1+2.802 ’ ( )

which has a maximum value of 13% at o ~ 0.6, but which is very small both for rapidly
rotating K dwarfs (o ~0.01) and slowly rotating red giants (o ~ 10). Of course, the model
is extremely tentative, but we shall use it as a reference point for discussion.

To clarify a point that might seem confusing, we should emphasise that the By of
dynamo theory (above, and Appendix E) is different from and independent of the By
of magnetic-braking theory (Appendix D); but on the other hand Bp is taken to be the
same. Both By’s can be seen to be consequence of differential rotation, but in the very
different environments of the stellar interior (specifically, the base of the convection zone)
and of the stellar wind. It is not yet clear what drives the interior differential rotation,
although it can be measured in some detail by helioseismology. It is probably due to a
combination of Coriolis force with turbulent convection. What drives differential rotation
in the wind is more simply the fact that the poloidal field cannnot be strong enough to
enforce corotation indefinitely, but only as far as the Alfvén radius. In our analysis of
the wind — Equns (4.4.3) to (4.4.5) — we make no reference to the external By because
we have already eliminated it (crudely) using the precepts of Appendix D.

Some timescales expected in a few cases are shown in Table 4.6: Nuclear Evolution,
thermal (Kelvin-Helmholtz) evolution, Magnetic Braking (for a single star, i.e. for x1 as-
sumed single but rotating with the period listed), Gravitational Radiation — Equn (4.1.4),
circularisation by Tidal Friction — Equns (4.2.4, 4.2.25), Synchronisation by tidal friction
— Equn (4.2.9), Mass Loss — Equn (4.5.11), and Magnetic Braking with tidal friction (for
a binary star). The last two are based on Equn (4.5.16), but ¢yps includes the addi-
tional non-Alfvénic term of Equn (4.4.15) and typp, also includes the further term in
Equn (4.4.16). Note that the circularisation, GR and MBb timecales are for e-folding of
eccentricity and period, not angular momentum. The timescales involving tidal friction
assume e~ 0, w~ Q.

Table 4.6 also gives the parameter K; of Equns (4.3.4), (4.3.8). This is an estimate
of the ratio of actual to orbital specific angular momentum carried off in the wind. The
stellar activity produces both mass loss and angular momentum loss, and whether it is
the mass loss, which tends to increase the separation, or the angular momentum loss,
which tends to decrease it, that dominates is approximately decided by K7 and the mass
ratio: angular momentum loss wins if K721+ gq.

In Table 4.6 only *1 is considered active, *2 being supposed inert, although in some
cases (rows 3a, 3b, etc.) we interchange them to see which is the more active. For
example, rows 4a and 4b imply that the timescale for period change by Mode MB in a
binary with parameters (0.840.6 Mg, 3d) is 2.7 Gyr, the harmonic sum of the two values
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Table 4.6 - Some Timescales: Nuclear Evolution, Kelvin-Helmholtz, Magnetic Braking (single),
Gravitational Radiation, circularisation by Tidal Friction, Synchronisation,
Mass Loss, and Magnetic Braking (binary)

type M1 R L M, PPy txg tkH tuBs 3tGR ZtTF tsyn tmML  5tmeb K1
1 MMD 1.00 1.00 1.00 1.00 12.0 7400 31 1110 - 8200 5.1 - - 1.09
2 MMD 1.00 1.00 1.00 1.00 4.0 7400 31 290 - 230 . - 11600 1.12
3a MMD 1.00 1.00 1.00 0.75 1.5 7400 31 210 - .13 . 19400 5600 1.53
3b MMD 0.75 0.70 0.20 1.0 1.5 - 126 22 - 1.2 . - 3400 3.5
4a MMD 0.80 0.73 0.24 0.60 3.0 - 114 27 - 44 14 - 5600 2.8
4b MMD 0.60 0.57 0.09 0.80 3.0 - 220 10.8 - 145 .21 - 5200 3.2
5 MMD 0.5 0.46 0.0380.5 0.8 - 450 4.2 - .48 . - 540 53
6a MMC 135 1.2 1.5 0.7 0.33 6600 32 120 7500 . . 13400 710 12.1
6b MMC 0.7 0.87 0.75 1.35 0.33 - 23 340 7500 . . - 2900 1.60
7 GMD 1.3 3.85 8.0 1.6 4.0 1200 1.72 4.5 - . . 630 82 2.1
8 GMD 4.0 35.0 400 3.0 110 74 .036 .24 - . . 28 6.1 2.0
9 GMD 1.4 10.0 50.0 1.6 12.0 210 123 1.73 - . . 67 13.0 1.50
10 GMS 0.80 3.60 6.00 3.70 2.87 980 93 5.2 - . . 970 56 1.26
11 GMS 0.50 2.00 1.00 2.00 1.50 3700 3.9 23 - . . 2400 71 2.8
12 HMS 1.10 3.20 10.0 4.50 2.00 810 1.18 32 - . . 2200 161 1.12
13 MWD 1.00 0.89 0.70 0.60 0.56 10500 50 153 - . . 23000 2700 4.8
14 MWD 0.50 0.46 0.038 0.60 0.35 - 450 4.2 - . . - 210 123
15 MWD 0.25 0.27 0.009 0.60 0.21 - 800 7.8 - . . - 620 66
16 MWS 1.00 0.89 0.70 0.60 0.28 10500 50 152 7000 . . 23000 1200 10.5
17 MWS 0.50 0.46 0.038 0.60 0.175 - 450 4.2 3600 . . - 84 310
18 MWS 0.25 0.27 0.009 0.60 0.103 - 800 7.8 1590 . . - 240 168
19 MND 0.50 0.46 0.038 1.40 0.30 - 450 4.2 11600 . . - 400 48

M,R,L in solar units, P in days, all timescales in Myr. Timescales over 20 Gyr (-) and under 0.1 Myr (.) are
omitted. Timescales are for period, mass or eccentricity decrease. K is as defined in Equns (4.3.4), (4.3.8)
with £=0.

Letters M, H, G, W, N under ‘type’ refer to Main sequence, Hertzsprung gap, red Giant, White dwarf and

Neutron star; D, S, C refer to Detached, Semidetached and Contact

of timescale. Various evolutionary states (M, H, G, W, N; Table 3.5) are hypothesised
for each component. Some systems are assumed detached, some semidetached, and one
system is in contact. These data show that:

(i) a 12d orbit containing two solar-type stars can circularise in substantially less than
a Hubble time; half the time listed, since the components contribute equally. A 4d orbit
can shrink its period significantly by Mode MB in a similar time

(ii) two M dwarfs in an 0.8d binary (row 5) can shrink their orbit by Mode MB in much
less than a Hubble time

(iii) in a contact binary of roughly solar temperature (row 6) the magnetic-braking
timescale may be substantially shorter than the evolutionary timescale, due mainly (at
least in the case tabulated) to the more massive component

(iv) red giants in close binaries (rows 7 — 12) can lose both mass and angular momentum
on roughly the nuclear timescale

(v) short-period binaries containing a late MS dwarf can shorten their periods (rows 13
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— 19) on much less than a Hubble timescale, with Mode MB dominating Mode GR by
an order of magnitude or more

(vi) binaries with nearly lobe-filling components have very short tidal-friction timescales,
and so can generally be assumed to be circular and corotating,

(vii) for short-period binaries containing a solar-type star, Mode MB may be moe effective
(row 13) than Mode NE in bringing the system towards RLOF.

The model presented here for magnetic braking is similar to that of Tout & Pringle
(1992), who however restricted their discussion to fully convective pre-main-sequence
stars. They also used somewhat different approximations regarding conditions at the
Alfvén radius. Even if one accepts the general concept that simple equations may be
sufficient to model the dynamo and it consequences, there remains a fair amount of
choice about the nature of the formulae to be used.

Although the estimates (4.5.15, 16) above may apply at some level of approximation
to single stars, it is by no means obvious that they can be applied directly to components
of binaries. For example, it would not be surprising if tidal friction in a binary, as one
potentially active component evolves towards filling its Roche lobe, brings the surface
into corotation more quickly than the interior, thus possibly enhancing the differential
rotation causing the dynamo. But equally, once near-uniform rotation is achieved, tidal
friction might diminish the differential rotation of the sort observed on the solar surface.
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Fig 4.6 — Orbital and spin evolution of a model for BY Dra. Left panel: the short term, starting 200 Myr ago and
ending 150 Myr ago. The initial period and eccentricity were chosen to give the present period and eccentricity
after 200 Myr. Right panel: the long term, starting from present conditions. Eccentricity, plusses; orbital
period (log days), asterisks; rotational periods (log days) of *1 and *2, circles and crosses. For the left panel
only: pseudosynchronous period (log days), squares; cosine(inclination), for %1 only, triangles. ‘Inclination’

means the angle between the stellar spin and the orbital spin.

We have incorporated the above detailed yet speculative model into codes which follow
either the orbital evolution alone (taking the interior evolution to be negligible) or the
combination of stellar and orbital evolution. Fig 4.6 shows results for the active K/M
dwarf binary BY Dra (Boden & Lane 2001). This is a double-lined binary, which does
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not eclipse but which has a remarkably small interferometric orbit (4.4 mas). Although
the inclination is in principle measured, it is somewhat uncertain (151.8 + 3.5°) and
allows a substantial range of masses. We assume initial parameters (0.73+0.64 M, 9d,
e = 0.54). After ~200Myr it reaches its present parameters (6d, e = 0.3). We choose
this age because the system has a cpm companion, M5V at 17" (Zuckerman et al. 1997),
which is presumably at least this old. Because we cannot be clear how the binary formed
in the first place, we cannot be sure that evolution ‘started’ with synchronous, parallel
rotation in both components, and so we assume arbitrarily that the initial spin periods
were both 2d, and that the two axes were at 60° to the orbital axis, and 120° to each other
in the same plane. In Fig 4.6a, we see that pseudosynchronisation and parallelisation
take ~6 Myr. Our model gives the spin period of %1 as 4d, not very different from the
observed value of 3.83d. In Fig 4.6b we follow the evolution much further, and find
that the orbit shrinks to RLOF at ~3.4Gyr, by which time the masses have dropped
15% and 10% respectively. They might form a contact binary (Case AR, Chapter 3.5),
but also might merge quickly in a hydrodynamic burst of RLOF (Case AD). However,
conservative evolution would not lead to any interaction at all (within a Hubble time),
and so we define a new subCase: Case AA. Yet another subCase occurs if mass loss is
relatively stronger than angular momentum loss. In that case the binary widens and can
avoid interaction. We call this Case AM. These are discussed further in the next Section.

Unfortunately we cannot draw as strong conclusions as we would like from BY Dra,
because (a) the inclination and therefore masses are rather uncertain, and the dynamo
model depends rather sensitively on mass on the lower MS; and (b) the third body
might influence the close pair’s eccentricity through Kozai cycles (Section 4.8). These
were included in Fig 4.6 and had little effect, but it would be possible to start with quite
different conditions and end up with much the same system as is seen, thanks to Kozai
cycles.

Magnetic braking, and therefore dynamo activity, is a crucial process in the evolution
of certain types of binary (Algols, contact binaries, CVs, LMXBs), and at some stage a
model has to be included in attempts to understand the course of their evolution. But
it should not be forgotten that winds carry off mass as well as angular momentum, and
whether the orbit shrinks or expands in response to stellar wind depends mainly on the
ratio of Alfvén radius to orbital radius, not stellar radius — Equn (4.4.16).

It is often asserted that dynamo activity should vanish if a star becomes fully con-
vective, as on the lowest portion of the MS. We can see no justification for that, either
in theory or in observation. Many very late M dwarfs are flare stars with evidently ac-
tive dynamos, and yet fully convective. Active low-mass young red/brown dwarfs have
been seen in the Pleiades, with rotational periods of 2 — 3hrs. The details of the dy-
namo process may well be very different from those in more slowly-rotating and more
massive solar-type stars, but it is clear that considerable dynamo activity takes place in
rapidly-rotating stars at the bottom of the main sequence and beyond.
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4.6 BINARY-ENHANCED STELLAR WINDS: MODES EW, MB

Isolated stars that evolve to large radii will rotate very slowly, partly because the
moment of inertia increases and partly because even a modest stellar wind, and without
the extra effect of magnetic braking, tends to remove a disproportionate amount of
angular momentum. For example the 4 M, star of Table 3.2 increases its radius by ~ 30
between the ZAMS and helium ignition, and if it started with a rotational period of 1d
would have slowed to more than 1000d. However at its temporary maximum radius of
over 70 R it could still (just) fit within a binary of period 110d. Thus tidal friction
might spin such a star to 10 times the rotation rate that it would experience if single.
Since the convective turnover time of red giants is ~ 100 — 200 d, this can be expected to
have an effect on its mass-loss rate. Our specific model of the previous Section predicts
a specific increase, but even if the model is not correct some increase is to be expected.

Cool giants and supergiants usually show evidence of winds, but there may be a
dichotomy between those with relatively tenuous, hot fast winds and those with more
copious, cool and slow winds (Linsky & Haisch 1979). The former may be driven partly
at least by dynamo activity, while arguably in the latter it is the more direct effect of
high luminosity, with radiation pressure acting on grains that form in the cool super-
photospheric region. Possibly rotation plays a more minor role in the latter. But any star
which is close to filling its Roche lobe is also rotating within a factor of 3 of its breakup
velocity — Table 3.1 — and this seems very likely to be a cause of ‘enhanced wind’,
whatever the detailed mechanism of the ‘normal wind’. It is not easy to demonstrate
either observationally that such a process is taking place, or theoretically that such a
process must take place, but there are several pointers from individual systems, some of
which we discuss shortly.

For very massive stars, which also have winds, there is little direct evidence for mag-
netic braking. Indeed, because massive stars in general rotate rapidly, while also losing
mass at a much greater rate than lower-main-sequence stars, it seems likely that mag-
netic stresses cannot make the wind corotate to any great distance. But even a wind
not linked to the star magnetically should cause some braking: Equn (4.4.15) shows that
the single-star spin-down timescale is about a tenth of the mass-loss timescale. Thus a
massive star which rotates rapidly cannot have lost more than say 10% percent of its
mass so far, and less than that if Ra is significant. Equn (2.4.1) suggests that massive
stars can indeed be expected to lose a few percent. But it seems quite possible that
convective cores might be just as effective as envelopes in sponsoring dynamo activity.

Table 4.7 contains a number of systems, mostly ‘RS CVn binaries’, in which the
larger and cooler star shows evidence of considerable activity, much more than one sees
in isolated stars of the same spectral type. Among them Z Her shows clearly that the
more evolved star is substantially the less massive, and yet is well short of filling its
Roche lobe. Two or three other systems show a marginal mass deficit.

It is much more difficult to construct serious models of non-conservative binary evo-
lution to fit such systems, than it is to fit conservative models as in Table 3.9. In a
conservative model we know the total mass and angular momentum from the presently
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Table 4.7 Some RS CVn and Possibly Related Systems

Name Spectra State P e M, Ms Ry Ry X°® Y° Reference
RS CVn KOIV +F4IV-V GMD 4.80 1.44 1.41 4.0 2.0 12 1.45 Popper 1988a
Z Her KOIV +F4 GMD 3.99 1.31 1.6 2.7: 1.9: 11 1.25 7
RW UMa K4IV-V+F5V GMD 7.33 1.45 1.5 3.8: 2: 18 1.4 Popper 1980
RZ Eri K2III+ F5m GMD 39.3 .35 1.62 1.687.0 2.8 90 1.9 Popper 1988b
SZ Psc KI1IV +F8V GMD 3.97 1.6 1.3 5.1 15 9 1.2 ”

A And GS8III-IV +7? gmD 20.5 .04 .0006¢ Walker 1944
AR Lac KO0+ G2 GhD 1.98 1.3 1.3 3.1 1.8 5.33 1.42 Popper 1980
WW Dra GS8IV + G2IV GhD 4.63 1.34 1.36 3.9 2.1 12.2 1.57 Popper 1988b

a Aur GS8III+ GOIII SHD 104 2.61 249114 8.8 192 4.9 Barlow etal. 1993
V643 Ori  KT7III+ K2III ssD 524 .014 2.0 3.4 22 16 109 7.5 Imbert 1987
OW Gem GS8IIb+F2Ib-I1 HHE 1259 .52 3.9 5.8 32 30 10.4 Griffin &

Duquennoy 1993

%mass function, or if two values M sin® i

bX 24 implies Case B or C; Y is the ratio of Ry to its unevolved value; see Chapter 3.5

observed parameters, and only the initial mass ratio has to be varied in the hope of
getting a good fit. It is obvious that no conservative model will give Z Her, but it is
not obvious whether we should assume minimal mass loss, or whether perhaps both com-
ponents have lost mass, though presumably more from 1. In practice, our recipe in
Section 4.5 gives some mass loss even from *2. A further problem is that we would like
the same recipe to hold for RS CVn as for Z Her. These systems have rather similar
masses and period, and yet show rather different effects of mass loss: arguably slight
or even non-existent in RS CVn, while unarguably very substantial in Z Her. We may
be faced with the unattractive possibility that mass loss is far from deterministic, but
instead rather chaotic, so that it acts very differently in otherwise similar systems.
Two systems in Table 4.7 which show something of a similar contrast are o Aur and
V643 Ori. The former appears to be quite normal — although the fact that the orbit is
circular suggests that x1 came quite near to filling its Roche lobe at its peak radius during
He ignition, and we might have expected some enhanced activity then. By contrast, the
almost equally wide system V643 Ori appears to have suffered considerably, despite the
fact that the orbit is still very slightly eccentric. We suggest that the original masses in
V643 Ori were somewhat larger than those in @ Aur. Coupled with the probability that
the initial period was somewhat smaller, say ~30d, so that x1 would have been very
near its Roche lobe at helium ignition, this might have implied substantial Mode EW.
This could mean that when %2 in turn reached helium ignition the binary was wider and
so *2 suffered less Mode EW than 1. We expect both giants to be post-helium-ignition
because their masses, assuming one or both were more massive originally, would lead to
non-degenerate helium-core ignition very quickly after crossing the Hertzsprung gap.
Another system that shows surprising masses, to much the same extent as in V643 Ori,
is OW Gem. Here we can hardly appeal to mass loss, whether intrinsic, or enhanced
by binarity, since the orbit is much larger and also eccentric. The GS8II star is not
luminous enough to be the remains of a star that was initially the more massive. We
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suggest here a quite different explanation: that the FI-II star is the merged remnant of a
former close sub-binary, and that the initial triple system had parameters something like
(3.9 Mg +(3.9+1.9 Mg;2d); 1260d). It seems reasonable to assume that the mass ratio
in the sub-binary was sufficiently large (~2) to trigger a rapid merger (Case AD) rather
than normal RLOF. However it may be stretching credulity to suggest that V643 Ori had
a similar history, even though a few adequately close triples are known to exist (VV Ori,
A Tau, DM Per, Table 3.8; HD 109648, Fig 1.7b).

Systems such as those in Table 4.7 are probably a goldmine for researching the kind
of non-conservative processes described here. For example, RZ Eri shows a similar but
smaller mass deficit than Z Her, and also has substantial eccentricity remaining in its
orbit. One might expect pseudo-synchronism here, but the observed rotation period of
*1, determined from its spottedness, is 31.4d, in between the pseudo-synchronous rate
(23d) and the synchronous rate. This could mean that magnetic braking is keeping it
at a pseudo-equilibrium which is slower, or it could mean that tidal friction is not quite
strong enough to keep up with evolutionary expansion.

However the gold will be difficult to extract, because as noted above, in non-
conservative systems it is much harder to guess the initial parameters. Attempts that
we have pursued so far suggest that quite substantial amounts of mass and angular mo-
mentum can be lost, and so there is a considerable range of initial parameter space to
explore. In addition, since it is unlikely that the non-conservative model of Section 4.5
is exactly right, we would have to treat several ‘constants’ in it as unknown variables;
how many depends on taste.

o~
- /1
h b / ]
) e /
o~ /
i J
o ) 0| _ ]
N =
L V7 A [.__/—\/
. . ! s [
o =3 a _ | i
<} 9 or - >
o
oL 4
0l
b i
\ o+ - - — g
1 I I I I I I I I
5 4.5 4 0 0.5 1 1.5 2 1.65 1.7 1.75
log T M age (Gyr)

Fig 4.7 — Possible evolution of RZ Eri, taking account of enhanced wind, magnetic braking and tidal friction
in both components. The system was started with parameters (1.75+1.68 Mg ; e=0.5; 49d); both stars were
started with an initial rotation period of 2d. Left panel: the theoretical HRD, *1 being the thinner line. At
the end of the evolution *1 is starting to undergo a nova-like outburst, due to accretion from the wind of 2.
Centre panel: stellar radii (lower curves) and Roche-lobe radii (upper curves) for both components as functions
of their masses. Right panel: the evolution of eccentricity (lowest curve), orbital period (uppermost curve)

and rotational period of %1, during the time interval when they were varying most rapidly.
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Fig 4.7 is an attempt to model RZ Eri. We started somewhat arbitrarily with e = 0.5,
but this led to a satisfactory pair of present masses, as well as eccentricity and radii,
after *1’s mass was reduced by about 12% at age ~1.7 Gyr. However the rotation rate
of x1 was determined to be nearly pseudosynchronous, in contrast to what is observed.
It is not yet clear whether some other starting point in parameter space might do better,
or whether the ‘constants’ in the non-conservative model need fine tuning.

Note that M; was reduced in this calculation from 1.75 to 0.7 Mg before RLOF was
reached. This had the effect of removing the possibility of hydrodynamic RLOF, that
one would otherwise expect in conservative Case C. We call this kind of evolution sub-
Case CUN of Case CU, the U referring to ‘unusually’ strong wind — unusual in comparison
to the rather weak but detectable wind of a normal (single) red giant that is nowhere
near the top of the giant branch.

More precisely, and in analogy with Case B (Chapter 3.5, and Section 4.3), we will
define subCases of Case C where different amounts of envelope of *1 are blown away by
enhanced wind, thus:

CW: MME -+ HME — GME — SME — SME;NW — CME — WME — ... (4.6.1)
CU: MME — MME;TF2 - MMD — HMD — GMD;EW1,MBl — CMD — ... (4.6.2)
CUN: . . . .. — GMS;F1LEW1,MB1 — CMD — ... (4.6.3)
CUD: . . . .. — GMS;F3 - GMC;CE — CMD — ... (4.6.4)

In the first case, the normal wind (superwind) which terminates the evolution of an AGB
star prevents the star from ever filling its Roche lobe. In the second, the same effect may
be produced by enhanced wind, at an earlier stage of evolution. In the third, RLOF is
not entirely avoided, but the mass ratio is so reduced by Mode EW that the subsequent
RLOF is on a nuclear rather than dynamical timescale. In the fourth, either because
Mode EW was less severe or because the initial mass ratio was larger in the first place,
the RLOF is at a dynamical rate, and leads to common-envelope evolution (Mode CE,
Chapter 5.2). The final letters N and D imply some similarity with Cases AN and AD
of Chapter 3.5. RZ Eri is a system which, we suggest, belongs to Case CUN.

There are of course several possible variants of these Cases. Case CW might happen to
stars of ~1 Mg even on the FGB, rather than the AGB. The other cases might happen
in sufficiently wide binaries that %1 reaches the AGB before Modes TF and EW becomes
important. The initial mass ratio may be sufficiently close to unity that both components
are giants either before or after RLOF begins, as was presumably the case for RT Lac —
AR Mon in Table 4.8.

We might note that among low-mass stars, where the effects of dynamo activity are
more likely to be significant than at intermediate masses, there is rather little scope for
Case B, because at M $1.5 Mg the main sequence terminates very close to where the
giant branch, with substantial convective envelopes, begins. We have chosen to define
the B/C boundary as where the convective envelope is sufficiently deep that the star
expands (Case C) rather than contracts (Case B) in response to mass loss on a thermal
timescale. This will not coincide with the boundary between where dynamo activity is
negligible and where it is important, but we hope for simplicity that the two boundaries



BINARY-ENHANCED STELLAR WINDS: MODES EW, MB 215

Table 4.8 Some Low-Mass Binaries: before, during and after RLOF

Name Spectra

UV Leo
RT And
YY Gem
V388 Cyg
FT Lup
CN And
V361 Lyr
VZ Psc

e CrA
EQ Tau
W UMa
RW Dor
CC Com
AH Vir
RZ Cas
77 Cyg
V1010 Oph
W Crv

3 Per

B Per®

U Cep
TT Hya

DN Ori

S Cnc

AS Eri

R CMa
RX Cas
SX Cas
RT Lac
RZ Cnc
AR Mon
DL Vir
DL Vir®

6 Tuc
V1379 Aql
FF Aqr
AY Cet
V651 Mon
AA Dor

a

State
G2V+G2V  MMD
F8V + KoV MMD
M1Ve + M1Ve MMD
A3+ G2 MMS
F2V + K5 MMS
F5V + G5 MMS
F8-GO+K4 MMS
K3+ K7 MMS
A8+ F0 MMC
G2+ G2 MMC
F8 +F8 MMC
K3 + KO0 MMC
K7V+K7V  MMC
G8IV + G8IV ggC
KOIV+ A3V gMS
K5+F7 gMS
G6+ A5 gMs
K2+ G5 gMs
GB8III + B8 GMS
(...) +Flm (...ME
G8IV +B7-8 GMS
K1IV+B9.5V GM S
G5III+ A2 GMs
GS8III+ B9.5V GMs
KO0+ A3 GMS
G8IV +F1 GMS
KI1III+Ash  gMS
K3III+ A6sh gMS
GOIIV + G5IV: GGS
K4+ K1 GGS
K3+ KO0 GGS
K0-2+ A3V  GMS
(..)+G8IIL  (..)GE
F: + A7TIV HMD
SDB + KOIII CGE
SDOB + G8III CGD
WD + G5Ille WhD
SDO +A5V  CMD
SDO +4kK CMD

b Outer orbit of triple system

P
0.60
0.63
0.81
0.86
0.47
0.46
0.31
0.26
0.59
0.34
0.33
0.29
0.22
0.41
1.20
0.63
0.66
0.39
2.87
679
2.49
6.95

13.0
9.49
2.66
1.14
32.3
36.6
5.07
21.6
21.2
1.32

2260:

7.10
20.7
9.2

56.8
16.1
0.26

mass function, or if two values M sin® i

.23

.44

.09

.09:
.07:

My
1.11
1.24
0.59
2.2
1.4
1.30
1.26
0.81
1.5
1.32
1.35
0.64
0.79
1.4:
0.73
0.6:
0.65
0.68
0.8
4.5
2.8
0.6

0.34
0.23
0.2
0.17
1.8
1.5
0.63
0.54
0.8
1.1:
3.3:

Mo
1.11
0.91
0.59
0.8
0.6
0.51
0.87
0.65
0.15
0.59
0.7
0.43
0.43
0.45:
2.21
1.2:
1.35
1.00
3.7
1.7
4.2
2.6

2.8
2.4
1.9
1.07
5.8
5.1
1.57
3.2
2.7
2.2:
1.9:

0.063%0.7¢

0.30
0.35:
0.55:

0.3:

2.27
1.4:
2.1:
0.007¢
0.05:

R1 R>

1.131.13
1.26 0.90
0.62 0.62
2.6 1.5

1.4 0.95
1.43 0.92
1.02 0.72
0.78 0.70
2.2 0.7

1.16 0.82
1.2 0.85
0.79 0.67
0.74 0.55
1.3: 0.8:
1.94 1.67
1.2: 1.3:
1.3 1.8

0.92 1.01
3.6 3.1

4.9 2.7
5.9 2.0

6.7 2.4
5.0 2.2
2.2 1.8
1.15 1.5
24: 2.5:
23.5 3.0
4.6 4.3
12.2 10.2
14.2 10.8
2.4: 1.8:
10:

.05 9.0
0.15:6:
.012 6.8

.16: 0.09:

XC

1.82
2.01
4.60
0.99
0.88
0.83
0.84
1.04
0.08
0.69
0.75
1.49
0.84
0.55
1.21
1.52
1.41
1.26
1.16

3.69
3.45

0.44
0.70
0.33
0.59
20
21.7
8.12
5.61
16.5
2.1

3.82
8.5
42

1.11
1.42
1.13
2.06
1.71
1.97
0.92
1.16
3.75
1.50
1.30
1.69
1.38
0.95
0.99
1.14
1.36
1.14
1.30

1.13
1.06

1.08
1.20
1.14
1.53
0.9:
1.13
2.9
5.0
8.8
1.1

5.2
4.4
4

Reference
Popper 1998
Popper 1994
Popper 1980
Milano & Russo 1983
Lipari & Sistero 1986
Van Hamme et al. 2001
Hilditch et al. 1997
Hrivnak etal. 1995
Tapia & Whelan 1975
Yang & Liu 2002
Hilditch et al. 1988
Hilditch et al. 1992
Hilditch et al. 1988
Hilditch 1981
Maxted et al. 1994a
Guinan & Koch 1977
Leung & Wilson 1977
Rucinski & Lu 2000
Richards et al. 1996
Fekel 1981
Tomkin 1981
Van Hamme

& Wilson 1993
Etzel & Olson 1995
Olson & Etzel 1993
Popper 1980
Sarma et al. 1996
Andersen et al. 1989
Andersen et al. 1988
Popper 1980

Schoffel 1977

De May et al. 1998
Jeffery & Simon 1997
Vaccaro & Wilson 2002
Simon et al. 1985
Méndez & Niemeld 1981
Wlodarczyk 1984

¢X ~1—4 implies Case A, in conservative evolution; X <1 implies non-conservative evolution; see Chapter
3.5. Y is the ratio of Ry to the ZAMS radius at the observed mass.

Under ‘State’, a lower-case letter denotes considerable uncertainty.

are not very far apart. On the main sequence they are quite far apart, perhaps early F

for dynamo activity and late K for mass-loss-driven expansion, but they may be closer

together, say early G and late G, for (sub)giants. In this Section some binaries that we

discuss may be technically Case B, but we largely ignore this. For the massive binaries
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discussed in Section 4.3, Case B covered a much wider range of initial parameters.

Table 4.8 contains a selection of binaries with one or more cool components, where we
can expect some binary-enhanced activity. Some are pre-RLOF, some are undergoing
semidetached RLOF, some are in contact, and some are arguably post-RLOF systems.
We might have evolution from a detached system like UV Leo through a semidetached
state like V361 Lyr to a contact state like W Uma. In this hypothetical sequence the total
mass decreases modestly from 2.22 to 2.05 My, and the angular momentum decreases
also modestly; but it could easily be the case that relatively more mass is lost and the
contact system might be more like EQ Tau, or even RW Dor.

We have argued in Chapter 3.4 that contact might not be a stable configuration,
but that instead the system pursues a relaxation cycle about an unstable equilibrium of
marginal contact with poor thermal contact and markedly unequal temperatures. We
anticipate that the unstable equilibrium itself gradually changes, because of progressive
loss of angular momentum. This means that the system cycles between contact and
semidetached states, with the mass ratio oscillating but growing slowly larger in the
mean. During an oscillation the contact phase lasts for something like the thermal
timescale of the less massive component, and during the semidetached phase of the more
massive. Thus we may expect the semidetached phase to be short compared with the
detached phase. Four systems in Table 4.8, FT Lup — VZ Psc, may arguably be in the
semidetached phase of the oscillation, but several hundred contact systems are known,
and so the ratio of timescales may indeed be quite small.

An alternative view might be that these semidetached systems are approaching contact
for the first time, and once in contact will remain in contact. However in that case we
expect only about one semidetached system per thousand contact systems, which does
not appear to be the case. Nevertheless, the nature of the evolution in contact binaries
remains one of the least understood processes in binary-star evolution.

It is likely that both nuclear evolution and magnetic braking contribute about equally
to the long-term evolution of some contact binaries. But the balance will no doubt itself
change in the course of evolution, and will also depend on the initial mass. Nuclear
evolution will only be significant if at least one component is 2 Mg, while magnetic
braking may only be significant if the system is of spectral type G/K/M, and perhaps (for
these very rapid rotators) type F as well. These ranges overlap in stars of ~1— 1.5 M.
In e CrA it may be nuclear evolution which dominates now: %1 appears to be significantly
evolved. But at an earlier stage M; was probably less, and it may have been mainly
magnetic braking that transformed it from a detached system like UV Leo to a contact
binary like EQ Tau, followed by incipient nuclear evolution that took it to something
like its present form.

We can anticipate that there may be a mild dichotomy between (a) systems of some-
what low total mass, where magnetic braking dominates nuclear evolution and the ulti-
mate merger produces a main-sequence star, and (b) more massive systems where nuclear
evolution dominates and the ultimate merger produces a red subgiant instead. Probably
€ CrA is already close to a merger that will leave it as a partially evolved main-sequence
star. On the other hand AH Vir seems part way to merging as a cool subgiant.
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We may have biased this discussion by representing in Table 4.8 that *1 of AH Vir
is the currently more massive component. This is just a hypothesis; there are also
some ultra-short-period systems like ZZ Cyg and W Crv which may have arisen by
fairly normal (Mode NE) RLOF, although we suspect that there has been considerable
magnetic braking as well. Even more magnetic braking in the future may bring such
systems into a contact configuration like AH Vir, but with 1 and *2 interchanged. All of
the systems above 8 Per in Table 4.8 look as though they may come from a rather small
volume of initial-parameter space, where nevertheless considerable diversity is achieved
because Modes NE, MB and EW are rather finely balanced there.

We attempt to categorise some scenarios where Mode MB and/or Mode EW play
a significant role. Because of the above expectation of diversity we restrict ourselves
to two main subCases of Case A, although each has several possible variants. We call
them Cases AA and AM, the second letter in each standing for ‘Angular momemtum
loss’ and ‘Mass loss’, respectively. Both processes happen in both cases, but the relative
importance is perceived as varying. Case AA is likely to lead to progressively shorter
periods, although if the mass ratio increases as the angular momentum decreases (as
is likely in contact binaries) it is possible for the period actually to increase modestly.
Case AM would lead to longer periods. In the former case, we expect contact binaries
as for conservative Case AR (route 3.5.2), except that the components merge while still
on the main sequence, instead of after %1 has evolved into the Hertzsprung gap. In the
latter case, it is possible that RLOF is entirely avoided, as the stars decrease in mass
to the point where there is no longer nuclear evolution in a Hubble time. This could be
quite common in old clusters. Binaries with initial masses that would put them near the
current turnoff may be pushed down the main sequence at much the same rate as the
turnoff itself moves downward, instead of evolving into the subgiant region.

AA : MMDTF,MB — MMS;F2 - MMC — MMC;R2,MB1 + MMS;F2,MB1 —
— MMC;DI - MMC;CE — M;MB — G — ... = W. (4.6.5)
AM : MME;TF,EW,NE — MMD;no NE. (4.6.6)

Table 4.8, as well as listing a number of short-period Algols like V361 Lyr that may be
related to Case AA, lists some more normal (i.e. longer-period) Algols, and a few possible
post-Algols. We have already argued (Chapter 3.5) that AS Eri and R CMa show signs
of substantial angular-momentum and mass loss, respectively. DN Ori and S Cnc are
similar to AS Eri, though not quite so extreme. We feel fairly sure that all of the Algols
(8 Per — DL Vir) are subject to all of Modes NE, MB and EW, but with Mode NE
probably the dominant one, by a modest margin, at least in the early evolution. This
is the opposite of our interpretation of contact binaries, where we have suggested that
Mode MB dominates earlier, and (possibly) Mode NE later. The Algol systems must
have started with substantially longer periods than those listed above 8 Per, and also
with substantially greater total masses, and both of these are likely to give Mode NE an
initial advantage; but it is clearly not a big advantage.

Some Algols (RT Lac to AR Mon) contain two giants or subgiants. This is to be
expected in conservative Case AL, but once again it is likely that the non-conservative
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Modes MB and EW have played a part here. In fact it is especially likely, since two cool
stars may be more effective than just one.

DL Vir is particularly interesting as a system where there is not only a third body, but
a substantially evolved third body. We can be reasonably confident that both cool stars
in this triple started with much the same mass (1.9 M), since they are both well evolved.
Thus here we have some handle on the initial parameters of the Algol, independent of
conservation or the lack of it. If we take the quoted numbers at face value, then we also
have an upper limit on the initial masses of the Algol pair (~1.9+1.9 M) and a lower
limit (~1.9+1.4 Mg). Thus the upper limit of the amount of mass lost is ~0.5 M.
This is only ~14% of the initial mass, but the Algol is also not very evolved (i.e. has
quite a large mass ratio) compared with the others. Unfortunately the masses are not
well-determined, though they would repay an analysis with modern instrumentation.

f Tuc is an excellent example of a probable post-Algol. It is not eclipsing, so that the
inclination can only be guessed, but likely current masses are (0.2 +1.8 M), not unlike
AS Eri which is at a slightly earlier stage of evolution (and slightly less wide). V1379 Aql
is at first glance an even later stage, and of a somewhat wider binary. However V1379 Aql
has two problems: (a) the hot subdwarf is more massive than we would expect at this
period (~0.23 — 0.25 M), and (b) the orbit is significantly eccentric (e = 0.09 & 0.01).
Possibly the answer to the first is that the system has less metallicity than solar (Jeffery,
p-c. 1998). We suspect that the eccentricity can only be due to the presence of a third
body, so far undetected (Section 4.8). Obviously we expect the orbit of a post-Algol
to be highly circular, if unperturbed. A third body like that in 8 Per or DL Vir, but
perhaps half the mass, and in a substantially inclined orbit, could easily have this effect.

The last four systems in Table 4.8 are also combinations of a hot subdwarf and a
main-sequence or giant star. They might be post-Algols, but either the estimated mass
of the hot subdwarf is a little too high, or that of the companion too low, for such a
scenario. We discuss them again in the context of common-envelope evolution (Mode CE,
Section 5.2).

4.7 EFFECTS OF A THIRD BODY: MODE TB

If the binary is part of a triple system, with a third body of mass M3 in a wider outer
orbit, there can be an appreciable effect on the inner orbit. This is more pronounced the
closer the third body, and also the more inclined is its orbit to the inner orbit; but in
the case that the inclination of the two orbits is greater than 39° (sin "' 1/2/5) the effect
(‘Kozai cycles’) can be surprisingly large even if the outer orbit is quite wide.

We give here a model — Appendix C(vi) — based on the quadrupole level of approxi-
mation. At this level there is an extra acceleration f in the inner binary given by

G M.
fi = Si;(D)d; , S = D—s?’ (3D;D; — D%;;) (4.7.1)
where d is, as before, the separation of the inner pair and D is the separation of the
outer pair, i.e. the vector from the CG of the inner pair to the third body. At the same
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level of approximation, there is (somewhat surprisingly) no extra acceleration within the
outer orbit. Since there is a couple on the inner orbit, and not on the outer, angular
momentum is not conserved. However, it is conserved approzimately, since it is implicit
in the approximation that the angular momentum of the inner orbit is small compared
to the outer.

If we average the effect of f over the inner orbit, according to the precepts of Appendix
C, we find that the energy of the inner orbit is unaffected — because a potential force does
no work around a closed curve. Thus a and P are constant, at this level of approximation.
But the vectors e, q, h defining the ‘orbital frame’ as in Chapters 3.2.2 and 3.4.2 can vary,
in direction as well as magnitude, and their variation is given once again by

¢ =Uxe—Ve , h=Uxh-—Wh (4.7.2a,b)

where U is the angular velocity of the orbital frame relative to an inertial frame. The
equation for q is easily obtained from these, since by definition q = h X e. Unlike the
V,W terms which we introduced in Equns (4.2.16, 17), V, W here are not dissipative:
they can be negative as well as positive. The orbital-averaging technique, which assumes,
of course, that the tensor S, and therefore D, does not vary significantly during one inner
orbit, gives U,V and W as

U= Xe+Yq+Zh

2

= ;_h [(1+4€*)S13€+ (1 — €%)Sa3q+ (1 — €%)(4S11 — Sz2) h] . (4.7.3)
and , .
5 5
V= % (1-€)8: W = - C;,f S12 . (4.7.4a,b)

As before, X,Y give precession and Z gives apsidal motion; but see the last paragraph
of this Section.

We now average the S;; over an outer orbit, which is in fact exactly Keplerian at this
level of approximation. We obtain

= = o GMs;
< Sij > = C((sz] - 3H1HJ) ) C = m 5 (475)

where A, E,H are for the outer orbit the equivalent of a,e, h for the inner orbit, i.e.
the semimajor axis, the eccentricity and the unit vector in the direction of the orbital
angular momentum. Surprisingly but conveniently, the tensor S is symmetric about the
H-axis even although the outer orbit, if eccentric, is not.

In the inner-orbital frame, with the 1,2,3-directions parallel to e, q, h respectively, S
means S;;€;q;, etc., and so

<Sll > = C{]. — g(ﬁé)Z} , <512> = — ?)Cﬁéﬁ(_l y etc. (476)
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Fig 4.8 — (a) Eclipse history of SS Lac, 1912 — 4900, subject to precession driven by a third body in an orbit
inclined at 29° to the inner orbit. Phase is plotted vertically, covering two complete inner orbits. Eclipses
occur within the isolated leaf-shaped patches. Eclipses typically last for just over a century, several centuries
apart. Also shown are the phases of inferior and superior conjunction. (b) Rotational history of 1 in SS Lac,
starting (arbitrarily) with corotation in 1912. The three components of the spin vector are plotted: circles are
the component of spin parallel to the orbit. The spin is partially retrograde for ~25% of the time. However
the spin history, unlike the eclipse history, depends quite sensitively on the dimensionless quadrupole moment

Q of Chapter 3.2.2.

These expressions allow us to replace the S;; in Equns (4.7.2) for é,h by their outer
orbital averages, which are now known functions of the constant H and the basis vectors
e,h (and q = hxe). Thus we have a closed set of equations, which can be integrated by
a stepwise procedure such as Runge-Kutta. In fact, two first integrals can be extracted
analytically — Appendix C(f) — leaving a first-order ordinary differential equation for say
e, whose solution is an elliptic integral.

Two effects of the third-body force are precession and apsidal motion, both of which
come from the rotation rate U of the orbital frame. These effects are both on a timescale

h M+ M; Poy”

- v _ 2 3/2
tts = 3g~ T r aep (1 ) : (4.7.7)

where P,y is the period of the outer orbit. Fig 4.8 illustrates the effect of precession
and apsidal motion on the inner orbit (14.4d) of SS Lac, a binary system which showed
eclipses up till about 1950, and not subsequently. A triple companion in a 679d orbit
was detected by Torres & Stefanik (2000). This third body can account for the eclipse
history provided its orbit is inclined at 29° to the 14.4d orbit (Eggleton & Kiseleva
2001).

However, a third effect is that h and e can also change, on the same timescale. Fluc-
tuations in these quantities are periodic, although if calculated with a more exact 3-body
code there tend to be modest departures from strict periodicity. In the case that the
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inclination of the two orbits is in the range 39 —141° (|H.h| < \/3/5) the fluctuations can
be very large, with a range that is independent of t1g, and hence of P,.;. Table 4.9 shows
the relation between inclination on the one hand and minimum and maximum eccentric-
ity on the other. It can be seen that an inclination of only 60°, about the average to be
expected if triple orbits are the result of random encounters, can lead to eccentricities
in excess of 0.75. However although the eccentricity and angular momentum fluctuate,
perhaps by quite a large amount, the period and semimajor axis are constant (in the
lowest approximation), because the the third body’s force is still a potential force, and so
does no work in total around an orbit of the inner pair. P and a are determined purely
by the energy of the orbit, and not by its angular momentum.

Table 4.9 - Limits of Kozai Cycles.

Na prob. €a ep €a ep €ea ep

0 .000 0 0 .3 .3 .5 .5

10 .015 0 0 .3 .309 .5 .510
20 .060 0 0 .3 .341 .5 .543
30 124 0 0 .3 .407 .5 .600
40 .224 0 .149 .3 .521 5 679
50 .357 0 .558 .3 .669 .5 772
60 .500 0 .764 .3 .808 .5 .863
70 .658 0 .897 .3 914 .5 937
80 .826 0 974 .3 978 .5 .984
90 1.00 0 1.00 .3 1.00 .5 1.00

The first column is the initial inclination, and the second the cumulative probability of this inclination. Re-

maining pairs of columns are the initial (minimum, subscript a) and maximum (subscript b) inner eccentricity.

Neither precession nor apsidal motion is expected to have much effect on the long-
term evolution of a binary. But the substantial cyclic variations in e possible at high
inclination (Kozai cycles; Kozai 1962), coupled with the approximate constancy of a,
means that tidal friction can become important (at periastron) during some part of the
cycle, even if it is unimportant during that part of the cycle when the eccentricity is
small. The effect means that over many Kozai cycles the inner orbit will shrink as well
as become circularised, the final period being roughly the period when the stars are close
enough for apsidal motion due to their distortion to dominate over apsidal motion due
to the third body. Of course, the possible importance of this process depends on (a)
the frequency of triples, relative to binaries, and (b) the frequency of high inclinations
relative to low. Neither frequency is well known at present.

We must not however let ourselves be carried away. Kozai cycles can be quenched
by perturbations, apart from the third-body perturbation, that cause apsidal motion at
much the same rate as the third body does. Rotation, mutual distortion and GR are all
capable of doing this, if strong enough; but they all drop off fairly rapidly with the inner
separation. Therefore, for a given inner binary, there will be a maximum size of outer
orbit that can generate Kozai cycles, but this may still be several thousand times larger
than the inner orbit.
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Fig 4.9 relates to one or even both sub-components of the remarkable quadruple sytem
ADS 11061 (Tokovinin et al. 2003). This consists of four rather similar late-F dwarfs,
marking out the turnoff region of a cluster of ~2.5Gyr. One orbit is long and thin
(1274d, e = 0.9754), the other smaller and rounder (10.5d, e = 0.374). The outer
orbit is not known, though it can reasonably be estimated to be ~10%yr. Its inclination
is almost certainly different from those of the two sub-binaries, which differ from each
other. Assuming a range of initial parameters for all three orbits we get a wide variety of
possible scenarios. In some, neither orbit is much affected by Kozai cycles, but in others
one or both orbits are affected, perhaps seriously. Fig 4.9 is a possible model of the
long, thin orbit. Starting with parameters as listed in the caption, the eccentricity cycles
powerfully with e fluctuating between ~0 and ~0.98, and the inclination between 70°
and 86°. But in the close periastra at the peaks of eccentricity, tidal friction after ~2 Gyr
reduces the range considerably (but not its upper limit), and by 2.7 Gyr the eccentricity
though still large starts to diminish rapidly. By 3 Gyr the orbit is much smaller and only
moderately eccentric, as is observed in the other sub-binary. The inclination (Fig 4.9b)
cycles intimately with the eccentricity, and the period (Fig 4.9¢) drops, though to 20d
rather than 10d as seen in the other system. Either or both sub-binaries may have
suffered, or be suffering, such evolution, for all one can tell at present.
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Fig 4.9 — Possible orbital evolution for 41 Dra, the more eccentric sub-binary of ADS 11061. Initial
conditions: P;=1500d, e;=0.01 (inner orbit), P=15000 yr, e=0.73 (outer orbit), mutual inclination 86°. Left
panel: eccentricity. Centre panel: inclination relative to outer orbit. Right panel: period. Individual Kozai

cycles are about 20 Myr long, and are severely undersampled by the plotting processs.

A further effect of a third body, which is smaller but can have longer-term importance,
comes from a combination of third-body perturbation and tidal friction even in the case
that the orbits are coplanar. In an unperturbed binary, tidal friction simply circularises
the orbit, which then remains circular so that the frictional dissipation goes to zero. But
in an orbit which is continually being perturbed by a third body, circularisation cannot
be completed because fresh eccentricity (though probably of small magnitude) is always
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being added. Tidal friction tries to remove eccentricity, because it tries to dissipate time-
dependent tides such as are raised by eccentric orbits. Thus the conversion of mechanical
energy into heat continues unabated, though no doubt rather slowly, leading to a secular
decrease in the orbital period. Since in the triple system as a whole angular momentum
should be conserved, loss of orbital energy, and consequential loss of angular momentum,
from the close pair will result in a widening of the wide pair, but on a still smaller scale
since the wide pair will have greater angular momentum to start with.

Unfortunately this process is not well modeled by the equations above; nor would
going to a higher order (say, octupole) approximation help. If, for example, we consider
an outer orbit exactly parallel to the inner orbit, the off-diagonal components of the
S-tensor are zero: hence V' = 0 — Equn (4.7.4a) — and so e is unchanged in magnitude
— Equn (4.7.2a). But in such a triple there will in fact be small fluctuations in e, on
the timescale of the inner orbit as well as on longer timescales. The basis of the above
approximation, and several others in this Chapter, is that we determine the effect of
a small perturbation by integrating around an ezactly Keplerian orbit, assuming the
orbit changes insignificantly on the orbital timescale. In order to model the process of
the previous paragraph we need a full 3-body code, rather than an orbitally-averaged
approximation; but we also need to include the quadrupolar gravity perturbation of
intrinsic spin and mutual distortion.

Using a 3-body code, we can investigate tentatively the root-mean-square eccentricity
fluctuation introduced into the inner orbit, on a timescale that is comparable to the inner
orbit. A preliminary estimate is

M; 1 Pout

~— X
M+ M3 X? ’ P

€TB (478)
The effect on the binary can then be modeled by adding to Equn (4.2.6), in the limit
e <1, a source term on the right:

7e2 1,

N o— = —¢? . 4.7.1
Sy + P(eTB e”) (4.7.10)

In the absence of tidal friction this means, as we require, that e — ey on an orbital
timescale. The equilibrium value will be little affected by tidal friction, in fact, because
typically trp > P. The effect of the small e? ~ 2 propagates through Equn (4.2.11),
in transient equilibrium, to give Q/w — Equn (4.2.12) — and hence to give h/h from
Equn (4.2.7) as

h  15)edg

— ~

h QtTF

where A is as usual the ratio of spin to orbital angular momentum. For semidetached or

(4.7.10)

contact binaries, where trr is about as small as possible, since a~2R in Equn (4.2.4),
this effect can be significant if P, < 100P.

Georgakarakos (2003) has determined a much more substantial estimate than (4.7.8).
For a general outer eccentricity his expression is some ten lines long, and so for illustration
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we specialise here to circular outer orbits. He gives

) M; \?/225 M2 43 1 122 1 20961 M2 365 1
ers”™ \ 37 v e x103 V7 x2a T 3 x5 T apos x16/3 T 9 x6 ,
M + M; 128 X10/3 4 X 3 X 4096 X16/ 9 X
(4.7.11)
where X is the period ratio, as above, and

My — M,

M, =
M?2/3 (M+M3)1/3

(4.7.12)

The angular momentum loss rate is still given by Equn (4.7.10).

We therefore have ‘third-body’ Modes of secular orbital change, which we label
Mode TB. There are at least two rather different modes, one involving Kozai cycles
with tidal friction operating only near their peaks in eccentricity, and one involving pos-
sibly coplanar (or nearly coplanar) systems where the third body is unusually close. We
believe that the Kozai mechanism might be quite common, and the other less common,
and we do not attempt for the present to distinguish them.

However precession and apsidal motion, although conservative, can be important in
relation to observed properties of binaries. A handful of binaries is known where eclipses
have been seen over some stretch of time and not seen over some other stretch of time
(Fig 4.8). This is presumably due to precession, and although precession can also be due
to oblique rotation of one or both components (Chapter 3.2.2) it is more likely to be due
to a third body, because spin angular momentum is normally small compared to orbital
whereas the third-body effect can be large. There is also a handful of close binaries
where apsidal motion can be measured and is found to be discrepant with estimates
based on Equn (3.2.2.5). Here also it may be the effect of a third body which is causing
the discrepancy.

The effect of U, the rotation rate of the orbital frame, on the inclination and apsidal
motion of the orbit can be seen as follows, and independently of whatever mechanism is
causing the frame to rotate. Let J be a unit vector pointing from the CG of the orbit to
the observer. This is a fixed vector in an inertial frame (apart from a small contribution
from the acceleration of the binary around the CG of the triple, which can however
also be allowed for), but it is a variable vector in the orbital frame &, q, h. If i is the
inclination of the orbit to the line of sight, and if w, is the longitude of periastron — we
use wyp rather than the more conventional w since the latter is used here for the mean
angular velocity of the orbit — then these are given generally by

S e.J
cosi = h.J and tanwy = i—j (4.7.13a,b)
Differentiating with respect to time in the inertial frame, we obtain, after some manip-
ulation,
di Uxh.J d U.h-JhJU
@ Txad o Wy T ATds (4.7.14a, b)
dt |h x J| dt |h x J|?
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We have used the fact that €, h satisfy the same equations (4.7.2) as e, h, except that
the V, W terms are absent; and q satisfies a similar equation.

In the event that the rotation rate U is purely in the h direction, i.e. that U = Zh,
Equn (4.7.14b) gives dwi,/dt = Z, in other words the rate of rotation of the line of
apses is just Z. However, it is instructive to note that if U has €, q components as well,
corresponding to precession, then dwi,/dt # Z. Thus the quantity Z, which is often
referred to as ‘apsidal motion’, is not in fact the only contributor to this effect. We
believe therefore that it is inappropriate to describe Z as ‘apsidal motion’, although this
is commonly done. Equns (4.7.13, 14), and this comment, apply irrespective of whether
U is due to a third body or to any other process, such as oblique rotation.

Table 4.10 Some Close Triple and Quadruple Systems

B Per ((K0-3IV+B8V; 0.8+3.7 Mg; SD, 2.87d)+F1V; 4.5+1.7 Mg; 1.86yr, e=0.23)
B Cap ((B8V+7?; 3.3+0.9 M; 8.68d)+KOII-III; 4.2+3.7 M ; 3.76yr, e=0.42)

A Tau ((A4IV+B3V; 1.9+7.2 M, SD, 3.97d)+7?; 9.1+0.7: M; 0.09yr=33d, e=0.15:)
n Ori ((B1V+B3V, 15+12 M; 7.98d)+B1V; 27+14 Mg ; 9.5yr, e=0.43)

DL Vir ((?+A3V, 1.1:4+2.2 Mg; SD, 1.32d)+G8IIL, 3.9+1.9: Mg; 6.2yr, e=0.44)

CQ Dra ((WD+7?; SD, 0.16d)+MS3III; 4.7yr, e=0.3, f=0.0076 M)

VV Ori ((B1V+B5V, 10.8+4.5 Mg; 1.49d)+A3:, 15.3+2.3: Mg; 0.33yr, e=0.3)

DM Per ((AGIII+B5; 1.8+5.8 M; SD, 2.73d)+BT7:; 7.6+3.6: M; 0.27yr)

SU Cyg  (F2-GOI-II, § Cep +(B7.5HgMn+A0:;3.2+2.6 M 4.675d); 6.2+5.8 Mg; 549d, e=0.34)

7 CMa (O9II+(B:+B:;1.28d); 0.42yr, e=0.29, f=6.1 M)
V907 Sco  ((B9.5V + B9.5V; P;=3.78d) + ?7; P=99.3d, f=.004 M)
p Ori ((ATm+7?; 1.8+1 M; 4.45d)+(F3V+F3V, 1.4+1.4 M; 4.78d); 2.8+2.8 M ; 18.8yr, e=0.76)

QZ Car ((09.7Ib+B2V:; 40:+9: M; 20.7d, e=0.34)+(09V+BO0Ib; 28+17 Mg ; 6.00d);
49:445 M; < 25.4yr, <0.012"")

References: DL Vir — Schoéffel (1977); CQ Dra — Reimers, Griffin & Brown 1988; DM Per — Hilditch et al. 1986;
SU Cyg — Evans & Bolton 1990; 7 CMa — Stickland et al. 1998, van Leeuwen & van Genderen 1997; V907 Sco
— Lacy etal. 1999; QZ Car — Morrison & Conti 1980; others from Fekel 1981.

Where the eccentricity is not given, it is zero to observational accuracy; SD stands for semidetached.

Table 4.10 shows some of the rich variety of triples that can be found; two are quadru-
ples. All have been selected from the minority of systems in which the outer period is
< 30yr, so that there is some probability that not only the inner pair but even the outer
pair may interact in the course of evolution. Six of the systems, those with Greek letters,
as well as three more similar triples (§¢ Tau, x Peg and p Vel), are among the brightest
500 stars, a set which may be reasonably representative of stars with masses 22 Mg.
Thus it seems possible that such compact multiple systems may represent ~ 2% of sys-
tems (including single stars as ‘systems’), although of course multiples may be somewhat
over-represented in a magnitude-limited sample. It would not be surprising if a further
few systems of these 500 are similarly multiple, given particularly the difficulty of recog-
nising small third bodies such as M dwarfs at separations of a few AU from binary B/A
companions.

We note that outer periods can be as small as 33d (A Tau), that 8 Cap and DL Vir
contain two red giants, that SU Cyg contains a Cepheid pulsator and that CQ Dra



226

contains a possible cataclysmic binary. SU Cyg and 7 CMa have a third body more
massive than the combined mass of the close pair, but it seems more normal that the
third body is the least massive of the three, or else that all three are of comparable
mass. The last may be a selection effect, since such systems are easiest to recognise.
From the point of view of dynamical interaction by Kozai cycles, what matters most is
the inclination between the outer orbit and the inner orbit(s). This is usually not well
known, although in 38 Per it is a well-determined 100°. However Kozai cycles can also
be important in the many more systems where the outer period is up to ~10% — 10* yr.

4.8 OLD UNCLE TOM COBBLEY AND ALL

We now put together most of the various slow orbital perturbations discussed in this
Chapter. We have seen that many of them have a somewhat similar mathematical form,
to the extent that they cause a rotation rate U = Xe+Yq+ Zh of the orbital (&, q, h)
frame, and also variations of the orbital triad e, q, h parallel to themselves. We include
specifically GR (both as a conservative and a non-conservative process), quadrupolar
distortion due to both rotation and a companion, tidal friction, mass loss (possibly with
magnetic braking), mass exchange and a third body. It is somewhat unlikely that all
these processes are operating significantly in the same binary at the same time, but it is
convenient to have to hand a computer code that can include any of them as necessary.

We can write the combination as

d
d—j = Uxe- Ve (4.8.1)
d B My | @M _
~H, = UxH, - WH, [MMI ting| B Ho=who, o (482)
d 2 2 2
% 1191 = — U1 X HO + W1H0 — Cl RAI + §R1 Ql y (483)
d 2 2 2
% 1292 = — U2 X HO + W2H0 — Cg RA2 + §R2 QQ . (484)

U = Xe+Yq+ Zh is the sum of Uy, U, in Section 4.2 (tidal friction and distortion),
and also of terms due to GR — Equn (3.2.2.7) — and to a third body — Equn (4.7.3).
V, W are similar sums, although the GR terms now come from Section 4.1. A term can
be added into V to give the additional third-body effect of Equn (4.7.10). The mass loss
rates (to infinity) (1, (2 can be obtained from Section 4.5, or from some other model.
The prescription of Section 4.5 includes a model for binary-enhanced wind (Mode EW),
because it makes the (’s depend on the rotation rates, which are often much faster for
components of binaries than for single stars if tidal friction is significant. The Alfvén
radii Ra1, Rae can also be obtained from Section 4.5, or from some other model. The
masses My, Ma, M, i are all now possibly variable, so that we have to add to the ensemble
Equns (4.3.3), which allow for mass transfer as well as mass loss to infinity. The moments
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of inertia are also possibly variable, not only because of varying masses but also because
of evolution. The entire ensemble of differential equations can be integrated by a Runge-
Kutta procedure, as was done for Figs 5.2, 6.3, although care should be taken because
in some circumstances (e.g. when tidal friction is so strong that it enforces very-near-
corotation) the equations can become quite ‘stiff’.

For some examples computed in this book we use two different codes. One consists
only of the above equations, supplemented by very simplistic approximations to stellar
evolution which give radius and luminosity explicitly as functions of mass and time; for
example Equns (2.3.1.8) and (2.3.2.1) for red giants. The other is a full stellar evolution
code, in which for example a differential equation for the moment of inertia is added to
the set for pressure balance, heat transport, etc. In this code Equns (4.8.1 — 4) are added
as boundary conditions; for the present they are only scalar, i.e. U is ignored and all
the vectors are assumed parallel.

In Equns (4.8.1 — 4) the term for angular momentum loss due to winds has been
split into two parts, one because winds, even without magnetic braking, carry off orbital
angular momentum (Equn 4.9.2), and the other because magnetic braking carries off
spin rather than orbital angular momentum (Equn 4.9.3). In the case that tidal friction
is strong, Equn (4.8.3) leads to a transient equilibrium between the tidal friction term
W1H,, and the magnetic-braking term (the rotational term U being usually unimportant
in such a case). Substituting this, and the equivalent from %2, into Equn (4.8.2), we see
that in effect the angular momentum is drained directly from the orbit. An example was
given in Fig 4.6.



228

5

Rapid Non-Conservative Processes

There are at least four processes which might change an orbit radically on a short
timescale. These are (a) the Darwin instability, in binaries with a rather extreme mass
ratio, (b) hydrodynamic mass transfer in a semidetached configuration, e.g. where the
loser is convective and more massive than the gainer (Modes SF3 or SR3 of RLOF), (c) a
supernova explosion in one component, and (d) a dynamical encounter with a previously
independent star or system, during a chance fly-by in a dense cluster of stars. In fact
we feel there is need for at least a fifth process, which we tentatively identify in the
Section that deals with (b).

5.1 TIDAL FRICTION AND THE DARWIN INSTABILITY: MODE DI

Although tidal friction attempts to dissipate relative motion and so lead to a state of
uniform rotation, with the components corotating with the binary in circular orbits, there
is no guarantee that such a state is actually attainable. Consider a detached binary with
a circular orbit, where %2 is sufficiently small that its moment of inertia can be neglected
but *1 is not. In the absence of winds, the total angular momentum H, if %1 corotates,
is given by

_ wk2 + (GM)2/3

2 ) SO— 5.1.1
M WAt q) O (5:.1.1)

where k is the radius of gyration of *1. The second term is the orbital contribution:
it comes from Equn (3.1.14). Through evolution, k¥ may grow with time. However
Equn (5.1.1) when differentiated w.r.t. w at constant H, M, M, shows that &, considered
as a function of w, has a maximum value, say kj, which occurs when

(GM)?/3

1
2= s o)
T N VET C W

(5.1.2)

i.e. when the ratio A — Equn (4.2.9) — of spin to orbital angular momentum is 1/3.
Hence if k grows beyond kg, corotation must break down (Darwin 1879, Counselman
1973, Pringle 1974). The star, by growing, takes angular momentum from the orbit,
which thereby shrinks and rotates faster, making it impossible, beyond some point, for
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the star to keep up. Of course if 1 fills its Roche lobe before k = kg, the conventional
picture of corotation until Roche lobe overflow can be sustained. Using Equn (3.1.18),
the critical condition for an n = 3 polytrope is

2
a 2

314q - k3 ~ 0.076 a*zi(q) . (5.1.3)

—_

With z1,(¢q) given by Equn (3.1.5), this reduces to ¢ = gp =~ 12 (Table 3.4). For ¢ > gp,
tidal friction cannot maintain corotation as the star expands all the way to its Roche
lobe. As shown in Section 4.2, we expect the system to move out of corotation in this
case, which means also that the eccentricity will depart from zero. The likely outcome
is that the smaller body will plunge into its companion, and experience a variant of
Common Envelope evolution (next Section): either the system will merge, *2 becoming
smeared out in the envelope of %1, or enough orbital energy may be released for the
envelope to be blown away leaving a much closer binary. For n = 1.5, as might be
more appropriate for red giants, gp ~ 5; for n ~ 3.5 — 4, more appropriate to substantially
evolved main-sequence stars, gp ~ 18 — 30.

If the orbit is already eccentric, then Equn (4.2.11) shows that the instability will set
in when the ratio A of spin to orbital angular momentum is a function of e. For e = 0.4
we obtain A = 0.18. In principle, we can integrate the system of Equns (4.2.5) - (4.2.8)
in order to follow the way in which the instability develops, as for the two examples
given in Fig 4.2. However the model presented here and in Section 4.2 assumes that the
star stays in uniform rotation, and it is not clear that the whole star will in fact spin
up uniformly as a result of tidal friction: another possibility is that the surface spins
up relatively rapidly while the interior spins up more slowly. Non-uniform rotation is
thought to be unstable on something like a thermal timescale, but the development of
the Darwin instability may be on a faster timescale.

5.2 COMMON ENVELOPE EVOLUTION AND ENVELOPE EJECTION:
MODES CE, EJ

We have already seen that rapid (hydrodynamic) mass loss, i.e. Mode 3, is expected
if the loser is a red giant with a convective envelope, and more than ~0.66 of the
gainer’s initial mass. It is very unlikely that the gainer could accrete at anything like
this rate, so that much or all of the envelope’s mass may end up in a halo round the
binary, and possibly, though not certainly, be expelled. It will be hard to make this
process more precise. Paczynski (1976) suggested a ‘Common Envelope’ process, in
which the material lost very rapidly by =1, too rapidly to settle easily on %2, will collect
in a differentially rotating envelope around both stars. Unlike the envelope of a normal
contact binary, which is expected to be in hydrostatic equilibrium and uniform corotation,
and therefore limited by the outer Roche lobe radius — Equn (3.1.12) — the common
envelope hypothesised following Mode 3 RLOF is differentially rotating, and therefore
not restricted by the outer Roche lobe radius. The formation of the envelope is envisaged
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as so rapid that tidal friction will be irrelevant. Ordinary dynamical friction will occur
between %2 and the common envelope through which it moves, and this will transfer
angular momentum from the orbit to the envelope, but not so efficiently as to bring
the envelope into corotation with the orbit. Thus the mutual orbit of *2 and the core
of the red giant or supergiant loser (1) can shrink, perhaps by a large factor, while
the common envelope remains at about the same size as the binary was at the onset of
RLOF. The timescale of this orbital shrinkage, though short compared with even the
thermal let alone the nuclear timescale of 1, will probably be long compared with the
orbital period, so that %2 will ‘spiral in’ towards the core of %1 in a fairly tight spiral.

An order-of-magnitude estimate is that when %2 has spiralled in to distance a from
the centre of x1, the drag force on %2 will be

Fiarag ~ pv*R1?, (5.2.1)

with v the orbital velocity, and p the ambient density, which we take to be the unper-
turbed density at radius r ~a within a red-giant envelope. Ry, is the Roche-lobe radius
(shrinking, along with the orbit), and Ry represents roughly the cross-sectional area,
since the fluid motion will be seriously affected by *2’s gravity out to distance Ry,. The
drag luminosity will be

Ldrag ~ UFdrag ) (5.2.2)

and we equate this roughly to the rate of loss of energy from the orbit:

GM?
atcg

Larag ~ pvR1? = (5.2.3)

where tcg is an estimate of the common-envelope timescale. Taking Ry, ~ a, v ~ GM/a,
and P ~2wa/v, we obtain
toE M
P 2mpad

(5.2.4)

Equn (2.3.13) shows that in the extensive radiative inner portion of a red-giant envelope,

prd ~ const. ~ Mgpen , (5.2.5)

where Mgpen is the mass in the nuclear-burning shell. This decreases as the red giant
evolves, being ~10~2M, near the base of the giant branch and ~10~%M, near the AGB
tip. Since we are assuming as the crudest approximation that r~a, i¢.e. that when
the companion has moved in to a separation a it encounters material with a density
comparable to that in the unperturbed red giant at radius r ~ a, we expect a tight spiral
in a highly evolved red giant, but a much less tight one lower down the giant branch. In
the convective outer portion of a red giant envelope, the spiral should also be less tight.

It is not clear a priori where this process will end. It is possible that %2 will spiral in
so close to x1’s core that it will simply be smeared out, adding to the envelope’s mass
but losing its separate identity; this process will be called a ‘merger’. This is likely to
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produce a single star that is very rapidly rotating, at least to start with. But there may
be several types of merger, since although one component is probably a red giant the
other might either a main-sequence star or a white dwarf or neutron star.

Alternatively, if the gravitational energy released by the orbit’s shrinkage is dumped
sufficiently rapidly into the common envelope, the envelope may be blown away. A
condition which is presumably necessary, though it can hardly be sufficient, is that the
energy released as the orbit shrinks is greater than the binding energy of the envelope.
We can write this roughly as

My (M. M My
aCEG 2 (—,——1> = Ep = / (G—m—U> dm, (5.2.6)

2 a a M, r

prime referring to the final state, when M; has been reduced to M., Eg being the
binding energy of the envelope — Equn ( 2.3.2.13) — and acg being a factor to allow
for the fact that some of the energy will be radiated away rather than channeled into
unbinding the envelope. If this condition is satisfied, then it seems possible that the
outcome of Mode CE is a binary of shorter, perhaps much shorter, period than the
original, surrounded temporarily by a planetary nebula which consists of the ejected
common envelope glowing in the UV radiation of the hot core of 1. However, it is quite
possible that not enough energy is liberated, and the outcome is a merger: *2 becomes
smeared out in the deeper regions of 1.

We have noted that if stars are evolved without mass loss the binding energy Ep may
become negative at some point on the AGB. We interpreted that in Chapters 2.3 and
2.4 as a crude indication that the envelope would be lost spontaneously at about that
stage in the evolution of a single star. Evidently it would also imply that at a somewhat
earlier stage the envelope could be rather easily blown away by the common-envelope
interaction, with very little contraction of the binary.

FEgy is often modeled as
GM: M,

Er =
B )\Rl ’

(5.2.7)
where the envelope mass is M, = My — M, and X is some coefficient of order 0.5 (de
Kool 1990). However this may be too simple: a precise definition of Eg is very unclear
(Chapter 2.4), partly because it is uncertain where to define the boundary between core
and envelope, and partly because it is unclear whether to include all, some, or none of
the thermal energy with the gravitational energy — Equn (5.2.6) assumes that all the
thermal energy (U) is to be included.

Dewi & Tauris (2001) list five possible definitions of the core. They are
(i) the point where the H-burning energy generation rate has a maxinum
(ii) the point where Xy = 0.1
(iii) the location of an inflection in the p(m) distribution
(iv) the place where Ep (viewed as a function of M,), after varying slowly with M, in
the outer layers starts to increase rapidly as M. decreases towards the He-burning shell
(v) the base of the convective envelope.
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The first of these usually gives the smallest, and the last the largest, core mass M.. We
can probably rule out (v) because for stars which have not yet reached the Hayashi track,
even if only by a very narrow margin, it gives hardly any envelope mass. But the others
can still give a range of about 10% in core mass.

To elaborate, consider an envelope (Fig 5.1) which can be approximated as two layers
with different p(r) power laws:

o @ B
R, R R,
P = po <7> , Re<r<Ru, and p = p0< ) ( b) , Ran<r<Rj.

Rab r
(5.2.8)
The gravitational part of the binding energy of this envelope, defined as positive, has
the form

GM,* GMo M.
Ec = Wi(Ran/Re, @) + ———— Wa(Rap/Re, @)
R, R
GMjz? GMg(M. + M,
+ Oy By R, )+ G T M) (R RB) (5:29)
Rab Rab
where
2F (2,5 — 2a) — 2> “F(z,3 — a) — F(z,2 — a)
= 21
Wl (I, a) F2 (CU, 3 _ O() ’ (5 0)
F(z,2 - a)
= —= .2.11
W@, ) F(z,3—a) (5 )
and
7 —1
F(z,v) = 5 (v#0), = lnz (y=0). (5.2.12)
The masses My, Mg in the two parts of the envelope (of total mass M) satisfy
M, R. >3‘“ F(Ra,/Re,3 — @)
Mo _ , M, = M,+M; . 5.2.13
Mg <Rab F(Rl/Rabagfﬁ) g ( )

It is not especially easy to see which terms dominate, since this depends rather critically
on the values of «, 3 relative to the (removable) singularities at 2, 5/2 and 3. But
probably in most circumstances we can assume that o> 3, 3 <2, and we can also usually
assume that R. < R,, < R;. This leads to M, < Mg~ M., i.e. to

B

 (Rup R~ (R R 222

M,
<1
3

M.

: (5.2.14)

and in addition the core is comparable in mass to the envelope so that M, < M.. Then
the leading terms in Eg are

GM.2 3—-3 GM.M.3—-2
Ri 5—-28 Rl 2-8"

GM,M.

Eg R,

(a—3)+

(5.2.15)
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Fig 5.1 — The distribution of logp (kg/m?®, plusses), m (solar units, asterisks) and 10Y (circles) in a red
supergiant of ~9 Mg, as a function of radius (solar units). The helium burning shell is fairly well-defined in
the region 0.06—0.15 R, but the hydrogen/helium interface, with no burning, is spread out over 0.6—5 Rg,.
Straight lines of slope -3.8 and -1.7 have been drawn by hand.

Although M, is normally small, so is R., and therefore it is not clear that the first term
in Equn (5.2.14) can be neglected relative to the second and third (the last two being
comparable to each other). In fact the crux of the matter is where one thinks the core
ends and the envelope begins.

In the star shown in Fig 5.1, an 8.6 Mg red supergiant on the verge of non-
degenerate carbon ignition, we can fairly clearly see that a~3.8,8~1.7 and that
R.,~5Rg, Ry ~400 R;. But we might see the boundary of the core as anywhere be-
tween the outer edge of the helium-burning shell (R, ~0.15 Ry) and the base of the con-
vective envelope (R.~5 Rg). There is no hydrogen-burning shell in this model because
the H/He transition is too cool, and there is not even a sharp boundary in composition
because the hydrogen shell, though covering a narrow range of mass, is spread out in
radius over 0.6 — 5 R,.

We can think of R,}, R, 3, as given, while altering the depth of the envelope by
varying R, and consequentially M,. As long as R, is not much less than R, ~0.01R;,
the last two terms in Equn (5.2.15) dominate, and are comparable. Together they can
be estimated to correspond to A ~0.6. Decreasing R;, which also increases M, will have
little effect until R. ~0.3R.p ~0.003R¢; but at this point M, ~0.001M, and so as R.
decreases further the first term rapidly becomes dominant. The place where the first
term starts to be important — definition (iv) above — was suggested by Han et al. (1994)
as a reasonable definition of the boundary, and is the one we prefer here; but obviously
it is not the only reasonable definition. By definition the resulting Eq (which for the
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moment we are equating with Eg, i.e. we are ignoring the thermal energy contribution
to Ep) is sensitive to using a smaller M., though not a larger.

Dewi & Tauris (2001) show that A can be several times larger than ~ 0.5 if the thermal
energy is included. In fact A — oo, obviously, if we include all of the thermal energy,
and allow the star to evolve to the point where the binding energy becomes zero. We
showed in Chapter 2.3 that if single stars lose their envelopes at about this point we get
a reasonable initial/final mass relation. Clearly if a single star can lose its envelope at
this point, a binary companion will have little difficulty in removing the envelope slightly
before this point. We can view A as a function not only of the uncertain M., but also of
an uncertain factor ain such that our definition of Ejy is revised to

My
Ep = / <G7m—athU> dm (5.2.16)

MC

with 0 <agp < 1.

Supposing for the moment that we ignore these uncertainties, and consider M, cign, A
and acg as known, we can rewrite Equn (5.2.6) and (5.2.7) to give the final value a’ of
the separation as

a' Mc M2 Rl

- = — M/ M3) = — . 2.1
a M1 M2+2Me/(QCE)\LL‘L) ’ wL( 1/ 2) a (5 7)

We are assuming that *1 just fills its Roche lobe at the start of this process: the function
zy, is given by Equn (3.1.5). At least in this formula the uncertainties are compounded
into a single parameter, the quantity Aacg () itself incorporating uncertainties in M,
and ayy). Until these uncertainties can be reduced by fully three-dimensional modeling
of the complicated gas dynamics (which may well be influenced by MHD), it is probably
necessary for the present to treat Aacg as a free parameter that can best be estimated
by seeing what values will give reasonable agreement, statistically, with the observed
distribution of post-common-envelope systems.

That the energetics of ejecting gas from a binary is over-simplified here is seen by
the stark contradiction between the result (5.2.17) in the case A — oo, i.e. when the
envelope is not in fact bound at all, and Equn (4.3.2) which estimates the final period
when one star loses all its envelope to infinity as a result of a spherically symmetric
wind. Equn (4.3.2) predicts that the separation increases, inversely proportional to the
decreased total mass, on the basis (ultimately) of an angular momentum consideration;
on the other hand Equn (5.2.17) predicts that it decreases on the basis of an energy
consideration, that the orbit conserves its energy (while remaining circular), since no
energy is required to remove the envelope in this case. In reality, we should consider
what happens to both angular momentum and energy, and should remember that a lot
of energy is available, in principle, from the nuclear supply of the star. It is absolutely
clear that the physics here is far from complete.

There have been several numerical attempts to model Mode CE: see Taam & Sandquist
(2000). Those that are three-dimensional appear to give acg ~ 0.3 —0.5. But our under-
standing at present can only be very tentative. Most attempts so far start somewhere in
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Table 5.1. Some detached evolved binaries possibly related to Common Envelope evolution

Name Spectra® State P e M- Mo Ry Ro Reference
KV Vel 77kK + CIllem CMD 0.357 0.63 0.23 0.16 0.40 Hilditch et al. 1996
UU Sge 87kK + 6.3kK CMD 0.465 0.63 0.29 0.33 0.54 Bell etal. 1994
V477 Lyr 60kK + 6.5kK CMD 0.472 0.51 0.15 0.17 0.46 Pollacco & Bell 1994
BE UMa 105kK + 5.8kK CMD 2.29 0.7: 0.36: 0.08: 0.7: Ferguson etal. 1999
V651 Mon  100kK + A5Vm: CMD 16.0 0.07: 0.0073° Smalley 1997
IN Com 200kK: + (G+G) C(...)D 41: 0.0016:° Jasniewicz et al. 1987
N G: + G5III ggc 1.99 0.004:°0.016:° "
HW Vir SDB + 4.5kK EMD 0.1167 0.48 0.14 0.18 0.18 Wood & Saffer 1999
AA Dor 40kK + 4kK CMD 0.262 0.3: 0.05: 0.16: 0.09: Wiodarczyk 1984
FF Aqr SDOB + G8III cGD 9.2 0.35 1.4 0.16 7.2 Vaccaro & Wison 2002
V1379 Aql SDB + KOIII-IV EGE 20.7 0.09 0.30 2.27 0.05 9.0 Jeffery & Simon 1997
HD 137569 BS5III + 7 hmE 530 0.11 0.21° Bolton & Thomson 1980
V652 Her B2IIIp + 7 hme 3000: 0.7: 0.015: 1.7: Kilkenny et al. 1996
HR Cam 19kK + M WMD 0.103 0.41 0.10 0.018 0.125 Maxted etal. 1998
13471-1258 14.2K +M3.5/4 WMd 0.151 0.78 0.43 0.011 0.42 O’Donoghue et al. 2003
NN Ser 55kK + M5-6 WMD 0.130 0.57 0.12 0.019 0.17 Catalan etal. 1994
LM Com 29kK + M4.5 WMD 0.259 0.45 0.28 Orosz etal. 1999
CC Cet ‘WDA2 + M4.5e WMD 0.284 0.39 0.18 0.21 Saffer etal. 1993
GK Vir WDAO + M3-5V. WMD 0.344 0.51 0.10 0.15 Fulbright et al. 1993
V471 Tau 35kK + K2V WMD 0.521 0.84 0.93 0.011 0.96 O’Brien etal. 2002
EG UMa 13kK + 7 WMD 0.668 0.38 0.26 h
Feige 24 55kK + M1.5V WMD 4.23 0.47 0.30 0.032 Vennes &
Thorstensen 1994
G203-47 ?7 + M3.5V wME 14.7  0.07 0.2° Delfosse et al. 1999
IK Peg 35kK + A8p WMD 21.7 1.1: 1.7: Landsman etal. 1993
AY Cet WD + Gb5Ille WhD 56.8 0.09: 0.55: 2.1: 0.012 15 Simon et al. 1985
HD121447 7 + K7Bab wGD 186 0.02 0.025° Jorissen et al. 1998
G77-61 ? + MVp wMD 246 0.173° Dearborn et al. 1986
AG Dra SDOe+ K3plIlIBa wgd 549 0.006° Smith et al. 1996
DR Dra WD + KOIII WGE 904 0.07 0.0035° Fekel et al. 1993
HD17817 ? + KA4IIIBab wGE 2866 0.43 0.0056° Jorissen et al. 1998
a CMi WDF + F5IV-V  wME 14910 0.41 0.60 1.50 0.0096 2.0 Girard et al. 2000
a CMa WDA2 + AOVm: wME 18300 0.59 1.00 2.0 0.0084 1.7 Provencal etal. 1998
0957-666 WDA + WDA WWD 0.061 0.32  0.37 Maxted et al. 2002
1101+364 WDA3 + WDA WWD 0.145 0.33 0.29 Marsh 1995
1704+481.2 WDA4 + WD WWD 0.145 0.39 0.54 Maxted et al. 2002
1704+481  (W+W) + WDA5 (... )WE 4.5” 0.93 0.55: Greenstein et al. 1983
1414-0848 8.9kK + 10.8kK WWD 0.518 0.55 0.71 0.012 0.01 Napiwotzki et al. 2002
IQ Cam ? + SDB wED 0.090 0.126° 0.01: 0.25 Koen etal. 1998
V2214 Cyg ? + SDB wED 0.095 0.42° 0.18: Maxted et al. 2000
HD 49798 XR + SDO6 weD 1.55 0.263° 1.5 Bisscheroux et al. 1997
UX CVn ? + BV whD 0.574 0.42: 0.39: 1.1: Schoénberner 1978
V379 Cep  B2III + B2III hhE 99.7 0.15 1.9 2.9 5.2 7.4 Gordon etal. 1998
EG52 DC9 + DC9 WWE 7500 0.18 0.65: 0.65: Borgman

& Lippincott 1983

“in several cases an effective temperature is listed

Ymass-function, or if two values M sin® i
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the middle of the spiral-in process, and it is not clear that an actual spiral-in will pass
through this state. We will need fully 3-D modeling of the entire process, starting from
just before RLOF and ending when the envelope clears away; we cannot expect such
modeling soon.

Table 5.1 is a collection of binaries which appear to be related to Mode CE. Not all have
short periods, because we wish to emphasise the fact that arguably rather similar initial
systems seem to produce wide as well as close binaries. Mode CE probably produces
mergers as well, but it is difficult to see how one would clearly recognise a single star
as the merged remnant of a binary. We concentrate here on detached binaries, thus
excluding CVs and LMXBs, on the grounds that if no mass transfer has yet taken place
(after the Mode CE interaction, of course) then we might hope for a clearer picture of
the Mode CE transition.

The first group of systems in the Table are located in planetary nebulae, which suggests
that they have only recently experienced Mode CE. One component in each system is
indeed very hot (SDO), and presumably powers the nebula. The next group is somewhat
heterogeneous, with one component being apparently hot and undermassive (relative to
the main sequence), and the other arguably a fairly normal unevolved or moderately
evolved star. The third group contains a white dwarf and a relatively normal star; and
the fourth group contains two highly evolved objects, and might be perceived as the
outcome of two successive Mode CE steps.

Because these systems have not (yet) begun to exchange mass in the course of post-CE
evolution, we can make an estimate, but only a very tentative one, of parameters in the
pre-CE state. Even this is ambiguous, however, since it is quite likely that pre-CE red
giant was losing mass by stellar wind. Our best attempts, for a subset of systems, are
given in Table 5.2; they are still very subjective.

For the cMp and wmD systems of shortest period in Table 5.1 it is perhaps a little
surprising how many have a very low value of M. The typical %2 appears to be a
late M dwarf of 0.1 — 0.2 M. One does see some more substantial stars (A5 in V651
Mon, G8III in FF Aqr), but they are found in longer-period systems. This leads us to
suggest that it is the mass ratio — well before Mode CE begins — which is most important
in determining the final period. A massive companion may manage to blow away the
envelope with rather little orbital shrinkage, while a low-mass companion has to spiral
in much further, and perhaps in many cases merge.

We illustrate this in Fig 5.2, where the estimates of Table 5.2 are plotted in a (P, go)
plane. In our estimates of precursor parameters we have gone for the possibility that has
the lowest reasonable Mjg, on the grounds that lower masses are more probable than
higher masses, but we still find that virtually all the systems which have shrunk their
orbits by large factors (marked by an asterisk in Fig 5.2) had precursor mass ratios of
24, while conversely most that have emerged with rather longer periods typically had
less extreme mass ratios. At the longest periods, those near the boundary where no
interaction occurs at all, even mass ratios of ~10 may not guarantee drastic shrinkage.

A system to take particular note of is AA Dor, which has a remarkably high initial
mass ratio, as well as an unusually low mass for the SDOB component. Although this
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Name

KV Vel
UU Sge
BE UMa
V651 Mon

HW Vir
AA Dor
FF Aqr
HD137569

HR Cam
NN Ser
LM Com
CC Cet
V471 Tau
EG UMa
Feige 24
G203-47
IK Peg
AY Cet
GT77-61
a CMi

a CMa

0957-666
0957-666
1101+364
11014364
1704+481
1704+481
IQ Cam
1IQ Cam
HD49798
HD49798
EG52
EG52

Mio

2.55
2.55
3.18
2.04

1.20
1.20
2.60
1.10

1.50
2.04
1.50
1.50
4.20
1.50
1.90
2.04
5.50
2.55
2.04
2.04
5.00

2.43
0.32
2.49
0.33
2.82
0.39
3.87
0.60
5.00
1.00
2.82
0.66

Table 5.2 Estimated Parameters well before Interaction

M2o

0.23
0.29
0.35
1.00

0.14
0.05
1.00
0.60

0.10
0.12
0.28
0.18
0.93
0.26
0.30
0.25
1.50
1.20
0.30
1.48
2.00

1.00
1.60
1.00
1.70
1.00
2.04
1.50
2.45
3.00
4.00
2.40
2.64

Py

146
166

185

274
12
2.0
393

63
126
181

64
415

68
159
242
819
301
252

2373
918

13
59
3.5
15
62
233
75
267
117
423
394
1166

q0

11.1
8.78
9.09
2.04

8.57
24.0
2.60
1.83

15.0
17.0
5.36
8.33
4.52
5.77
6.33
8.16
3.67
2.12
6.80
1.38
2.50

2.43
5.00
2.49
5.15
2.82
5.23
2.58
3.40
1.67
4.00
1.17
3.99

Mim

1.26
1.26
1.40
1.20

0.62
0.35

1.05

0.51
1.14
0.73
0.57
1.68
0.64
0.77
1.12
2.20
1.26
1.10

Mam,

0.23
0.29
0.35
1.80

0.14
0.05

0.60

0.10
0.12
0.28
0.18
0.93
0.26
0.30
0.28
1.70
2.10
0.33

0.69

0.62

1.12

1.24

1.60

P,

1518
1576
2161
1676

853
113

417
436
1235
562
322
3486
260
1451
4710

1986
1518

213

66

1525

1666

3267

le

0.63
0.63
0.70
0.60

0.48
0.30
0.35
0.45

0.41
0.57
0.45
0.39
0.84
0.38
0.47
0.56
1.10
0.63
0.55
0.60
1.00

0.32
0.32
0.33
0.33
0.39
0.39
0.60
0.60
1.00
1.00
0.66
0.66

sz

0.23
0.29
0.35
1.80

0.14
0.05
1.40
0.60

0.10
0.12
0.28
0.18
0.93
0.26
0.30
0.28
1.70
2.10
0.33
1.48
2.00

1.60
0.37
1.70
0.29
2.04
0.56
2.45
0.62
4.00
0.80
2.64
0.64

Py

0.36
0.47
2.29
16.0

0.12
0.26
9.2
530

0.10
0.13
0.26
0.28
0.52
0.67
4.23
14.7
21.7
56.8
245
6800
5000

59
0.06
15
0.14
230
0.14
270
0.09
423
1.55
1200
7500

Case

CUD
cUD
CUD
cUD

cUD
CUD
CUN
CU

CUD
cUD
CUD
cUD
CUD
cUD
CUD
CUD
CUD
CUD
CcU
D

D

BUN
rev. CUD
BUN
rev. CUD
CUN
rev. CUD
CUN
rev. CUD
CUN
rev. CUD
CUN
rev. D
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Suffix 0 refers to the hypothetical initial configuration; suffix m to the maximum period reached, just before

common-envelope evolution if it occurs; and suffix f to the final state, so far. For doubly-evolved systems the

second line begins where the first ends.

‘Case’ means the appropriate variant of Cases B, C or D.

system is only SBI, it is also doubly eclipsing, and so its low mass-function seems to

translate plausibly into the low masses quoted. It is hard to see how a companion of only

0.05 M can have driven off the companion’s envelope, which must have been of order

0.75 Mg, originally. We imagine a two-stage process here, with Mode EW playing an

important part by driving off most of the envelope; then when the envelope was down to

perhaps 0.1 Mg Mode CE drove off the remainder during a spiral-in episode. Mode EW
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Fig. 5.2 — Possible locations in the initial period — mass ratio plane of the late Case B/C precursor systems

from which some of the systems of Table 8.1 have formed. Each system is identified by some letters or

numbers in its name. Asterisks: drastic shrinkage, current P < 3d. Plusses: substantial shrinkage. Circles:

slight shrinkage. Regions where probably no shrinkage occured are labeled ‘Ba Stars’, ‘RS CVns’, ‘Algols’. A

region where we estimate that total shrinkage should occur is labeled ‘merger’.

could well be a prolonged and fairly efficient process, helped by the fact that as the total
mass of the system drops the orbit widens, leaving *1 close to but not quite filling its
Roche lobe during a substantial run up the first giant branch. Such a process may also
have happened in other systems such as HW Vir. It is possible that Mode DI played a
role in systems like AA Dor and HW Vir, intermediating between Modes EW and SF3,
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but it is not easy to be sure.

Mode 3 RLOF, and subsequent Mode CE, is probably not limited to stars with con-
vective envelopes. In a binary where the initial mass ratio is rather extreme (say g ~ 10),
it would be necessary under conservative assumptions for the orbit to shrink by a very
large factor (~9, Table 3.1) before expanding again. Even if the loser has a radiative
envelope, it seems difficult to imagine that thermal-timescale mass loss could succeed in
contracting the stellar radius by such a large factor. A more likely outcome would be
that x2 becomes swallowed by the envelope of %1, with the same kind of results as above.
A further way in which Mode CE evolution might be precipitated is by Mode DI, as in
the previous Section.

There is evidence, generally of a rather indirect character, that some binaries which
might be expected to have undergone a common-envelope phase have not in fact had
their orbits shrunk by any substantial amount. This could be a consequence of a number
of factors. But one possibility that we believe may be important, for moderately massive
stars (say 2 10— 30 Mg ), and moderately long periods (say 50 — 1000d), goes as follows.
The evolved x1, still in the Hertzsprung gap, approaches its Roche lobe. Because it is
quite massive and luminous, it is not very far below the Humphreys-Davidson limit, at
which rather more massive single stars apparently become unstable, probably because
they are also rather close to the Eddington limit. Massive single stars (M 2 30 Mg)
seem to eject almost their entire envelope at this stage, but the somewhat less massive
stars we discuss here presumably do not. Nevertheless, it may be that the presence
of a binary companion in a suitable orbit somehow lowers the threshold, so that the
evolved component ejects most of its envelope in a more-or-less spherical manner, as
if its envelope were unstable to much the same extent that the more massive stars’
envelopes are unstable. The loss of the envelope, if it happens in a roughly spherical
manner, may lengthen rather than shorten the separation, so that there may not be the
opportunity for the companion star to get caught up in it and spiral in to any significant
extent.

Although stars that have an active nuclear burning region within them are producing
energy at a rate which is capable in principle of driving off the star’s envelope on a thermal
timescale, it is clear that the conversion of radiant energy flux into outwardly directed
mass flow is not usually efficient — otherwise stars would hardly evolve beyond the ZAMS.
But single stars with a high L/M ratio, near the Eddington limit, do apparently achieve
efficient energy conversion of this sort. We suggest that, in circumstances where one
might expect a common envelope to be set up by rapid RLOF, the effect of a high L/M
ratio may be to drive the common envelope away to infinity. In classic Mode CE evolution
the energy to drive the envelope away is thought to come from the binary orbit, which
necessarily means that angular momentum is also extracted at much the same rate; but
if the energy comes from the radiation field, assumed to be near the Eddington limit,
then little or no angular momentum per unit reduced mass need be extracted from the
orbit, which therefore remains wide.

There may be at least two ways in which such evolution may come about. On the
one hand it may be that, shortly before RLOF would be attained, the envelope becomes
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unstable on account of the lowered gravitational potential in the outer layers, and blows
away; or on the other hand it might be that slightly after RLOF, the disturbance to the
outer layers is sufficiently strong that the envelope blows away. The first way might be
considered a variant of Mode EW; but we cannot say that the normal wind is enhanced
since normally (i.e. in a single star with M <30 M) there might be no wind at all at
this stage. The second way, which in practice may be little different, is what we call
‘Envelope Ejection’: Mode EJ.

We have already suggested — Chapter 3.5 — that V379 Cep in the fourth part of
Table 5.1 (and also in Table 3.10) is a product of such a process, but in the second
(reverse) stage of RLOF. V379 Cep is an ESB2, and so the masses, though not wvery
secure, are not small by virtue of low inclination, as one might expect. Each is only
perhaps one quarter of the mass to be expected for normal stars with their spectra. We
imagine that this system may have started in Case AL with parameters (7 + 6.3 Mg; 3d).
After a major episode of forward RLOF, this can be expected, on a conservative basis,
to become detached again at parameters (1.1+12.2 M;100d). In this state *1 burns
helium for some considerable time, but during this *2 evolves rapidly to reverse RLOF.
We hypothesise that either at the onset of this RLOF, or perhaps slightly earlier (at which
point %2 would just be entering the Cepheid strip), *2 blew off most of its envelope very
rapidly, and to infinity rather than to x1. Perhaps a few percent of the envelope was
accreted, in order (a) to raise the mass of *1 from 1.1 to 1.9 My, and (b) to turn *1
from a HeMS star to something that is morphologically like a horizontal-branch star.
The remains of *2 must also hold on to some portion of its envelope, so that it can also
resemble a horizontal branch star in structure, though not in mass.

The binary v Sgr (Table 3.10) is a possible second example of this behaviour. It is
a surprisingly bright member of the rather rare class of HAdC stars (Chapter 2.5), which
appear to have almost no hydrogen but high helium, and high carbon, a product of
helium burning, as well. It has long been known as an SB1, but Dudley & Jeffery (1990)
were able to detect a weak secondary spectrum in the UV. Although the system does
not eclipse, there are faint indications of variable Ha absorption round the orbit (Nariai
1967), suggestive of an accretion flow and therefore of a fairly high inclination. Thus
we may accept that the masses are not very different from the mass-functions listed in
Table 3.10. A helium star of the mass of *1 can be expected to come from a star of
~10 Mg, initially, but little or none of the envelope has evidently been accreted by *2.
We suggest that the envelope was largely blown to infinity, but with little change of orbit,
as x1 approached both RLOF and the Cepheid strip simultaneously. Thus we suspect
initial parameters of (~10+3 Mg;150d. The conditions that we feel might be conducive
to Mode EJ are (a) 1, or in some cases *2, more massive than ~ 10 Mg, (b) a period
which puts the star somewhere in the RH half of the Hertzsprung gap (and perhaps
rather close to the Cepheid strip) as it also approaches RLOF. Unlike in Mode CE,
we feel that the mass ratio may be something of an irrelevance; although some binary
companion is no doubt necessary since otherwise no star above ~ 10 Mg would reach the
giant branch.

We suggested at the beginning of this Section that Mode CE requires either a deep
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convective envelope, or a severe mass ratio (or both). The Mode EJ that we describe is
different at least to the extent that we require it to happen if the envelope is radiative,
though very extended as in a massive star near the middle or right-hand edge of the
Hertzsprung gap, and we appear also to require it if the mass ratio is not particularly
severe. Although we identify only a handful of binaries where we feel that Mode EJ
is called for, we feel that the need for it is sufficiently pressing that we define it as
another Mode, so that we have two common-envelope Modes: a somewhat less dramatic
Mode EJ, and the more dramatic classical Mode CE. In both Modes, much mass is lost,
but only in Mode CE is a large fraction of the angular momentum also lost.

Some other binaries that we tentatively identify with Mode EJ are: § Ori A, V505 Mon
and V2174 Cyg (Table 3.10) and PSR 0045-7319 (Table 5.3). In all of these at least
one component is severely undermassive for a credible conservative RLOF scenario. In
0 Ori A both are undermassive for their spectral types, rather as in V379 Cep, though
perhaps by factors of 2 — 3 rather than 4 — 5. This milder factor, and the substantially
shorter period, may relate to considerably greater original masses than in V379 Cyg,
~30 Mg each. The period boundary for Mode EJ perhaps slopes to periods as short as
~6d at these high masses (Fig 4.4).

It is clear that our Mode EJ, operating more-or-less at the boundary between
Mode EW (in detached systems) and Mode CE (in semidetached systems), is in just
the contradictory regime described earlier in this Section where the orbital separation a
might be expected to either increase (Mode EW) or decrease (Mode CE). It is therefore
particularly unlikely that we could predict what does in fact fact happen to the separa-
tion and period. We suggest a rather banal compromise: the period remains much the
same.

5.3 SUPERNOVA EXPLOSION: MODE SN

The effect on an orbit of a supernova explosion in one component of a binary can be
readily estimated under the following very simple assumptions (Blaauw 1961, Brosche
1962). Suppose that two stars are in an elliptic orbit (eccentricity e, semimajor axis a,
total mass M), and then one explodes instantaneously, sending to infinity a fraction 1—F
of the total binary mass. As a first approximation, which we improve on later, we assume
that the explosion is isotropic in the rest-frame of the supernova, and so the remaining
objects continue instantaneously with the same separation d and relative velocity d as
immediately before. But because the total mass was changed instantaneously from M
to M' = FM they will now pursue a new Keplerian orbit described by €’,a’. We can
calculate very simply the energy and angular momentum of the new orbit, and hence
a’, €/, from the initial conditions and F'.

The semimajor axes before and after the supernova are related to the corresponding
energies by

d GM oM 4 oM GM'
= (5.3.1)
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and so eliminating d we have

M’ M  2(M - M)

— = ———— . (5.3.2)

a a d
For Keplerian ellipses it is straightforward (Appendix C) to average the reciprocal sep-
aration 1/d over time, assuming constant probability of explosion per unit time. The
average is 1/a, so that the expectation value of 1/a’ after the SN is given by

1 2—-M/M' 1 1
s = = (2= . 5.3.3
< a’ ” a a < F> ( )

Since d, d are instantaneously unchanged, the angular momentum d x d per unit reduced
mass will be the same after as before the supernova, and so the new eccentricity can be
found from

GMa(1—€?) = |[dxd]?> = GM'd'(1—¢?) . (5.3.4)

Hence we arrive at the results

a 1 <e?>_¢ 1 2 P\%? 2F — 1
—_ :2__- _ = ——1 N -_— = =75 - .
<v” F’ 1—e2 (F ) ’(<(PJ >= g - (5:35)

We see that if F'< %, i.e. if less than half of the total mass of the binary is retained,
the new orbit is (on average) unbound, and the binary is disrupted. That the orbit in
this situation generally gets larger rather than smaller reflects the fact that most of the
orbital angular momentum is in the motion of the less massive star. In the particular
case that the orbit was circular before the SN, we see that the final eccentricity is given
simply by ¢/ =1/F — 1.

The above formulae suppose that the supernova explosion is isotropic in the rest frame
of the exploding star. Quite a modest degree of anisotropy can make a considerable
difference (Shklovskii 1970), since the material is ejected typically at something like a
tenth of the speed of light, or several hundred times the orbital speed. We can make a
somewhat more elaborate estimate of the effect of a ‘kick’ velocity u, assuming that this
velocity has a certain magnitude but random direction. We replace the second part of
Equns (5.3.1) and (5.3.4) by

GM' GM'

1
Sldtuf - =2 = == (5.3.6)

|d x (d+u)]*> = GM'd'(1—¢?) . (5.3.7)

Averaging over time (assuming that the SN is equally likely at any time in the orbit, as
before), and averaging also over solid angle for u, we obtain

1
<£>:2—Fﬂ+Kﬂ, (5.3.8)

al



SUPERNOVA EXPLOSION: MODE SN 243

K* 2+ 3e?
—2(2+e2)]+— 9 (5.3.9)

<e'2>—e2_ 1 K? 9 — 8e2 (
N 3F2 1—¢e2 '’

2
~ -1
1—e? F > T3F1-) | F

where K is a measure of the kick velocity in terms of the mean circular velocity before

the SN: 13
[u| = K\/GTM ~ 214K <%> , (5.3.10)

with M in solar units, P in days and u in km/s. For a kick of given magnitude, and (for
simplicity) an initially circular orbit, the probability p of escape is
2
p = max{0,min(e, 1)} , a = M ) (5.3.11)
4K
For K ~0 this is either zero (F >1/2) or unity (F <1/2), and for K >1++/2 it is always
unity, but for 0< K <1 + /2 the probability has an intermediate value, because the
orientation of the kick matters. An exceptionally well-placed kick can score a goal, the
neutron star or black hole remnant colliding with the companion star. If the kick is not
too strong the remnant may be trapped inside the companion, in a version of Mode CE
(Section 5.2). The outcome could then be a Thorne-Zytkow object (Thorne & Zytkow
1977), a red supergiant with a neutron star or black hole core (Leonard et al. 1994); or
it might be a short-period orbit of the newly-formed neutron star with the core of the
companion, the envelope being driven away.
Hansen & Phinney (1997) obtained a pulsar kick-velocity distribution

2 2
p(u) = /= % eV v =190 km/s (5.3.12)
™

based on proper motions and distances to 86 pulsars. Their mean velocity V is equivalent
to the circular velocity of a 20 M, binary in a 30d orbit. Lyne & Lorimer (1994) found
a substantially larger value, 450 km/s; evidently the result is still fairly uncertain.

Table 5.3 lists a number of massive X-ray binaries. Evidently these have not been
disrupted by a supernova, though it is likely that those that have been disrupted far
outnumber them. If kick velocities of ~450km/s are typical, then it is rather surprising
that any of them have survived, except perhaps the first three or four with the tightest
orbits. But in these short-period systems it can be argued that a kick is necessary,
although it must be a fairly well-placed one. The typical product of Case A or B RLOF
would normally be a much wider binary, with period ~40—150d (e.g. ¢ Per, Table 3.10,
although 1 there is of somewhat too low a mass to explode). In such an orbit, it would
be necessary for the kick to direct the neutron star towards the companion, generating an
elliptical orbit with a periastron sufficiently close that tidal friction can then moderate
the ellipse into a circle with the same angular momentum and semi-latus-rectum. It is
not improbable that in some cases the neutron star is kicked right into the companion.
Perhaps it could travel right through and emerge on the other side; but more probably
it will be trapped inside, settle to the centre, and convert the companion into a Thorne-
Zytkow object (TZO), as above.
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Table 5.3 Some High-Mass X-ray binaries

Name Alias Spectra® State P e M, Ms> R> Y Reference
LMC X-4 13.5s+OT7III NMd 1.41 1.5: 16 8 1.5 van Kerkwijk et al. 1995a
V779 Cen Cen X-3 4.83s+06.5I NMD 2.09 .0008 1.1: 19 11 1.9 van Kerkwijk et al. 1995a
QV Nor 1538-52 530s+B0labe NME 3.73 .08 1.3: 20 17 2.8 Reynolds etal. 1992
GP Vel 0900-40 283s+B0.5Ib NhE 8.96 .088 1.9: 24 30 4.5 van Kerkwijk et al. 1995b

BP Cru GX301-2 699s+Bllaa’ NhE 41.5 .47 32° 80: Kaper et al. 1995
0535-668 .069s+ B2Ille NME 16.7 .89 .7:° Skinner et al. 1982
V635 Cas 0115+63 3.61s+0-B3V NMD 24.3 .34 5° Kelley et al. 1981
V725 Tau 0535+ 26 103s+B0Ille NME 111 .49 3.4° Janot-Pacheco et al. 1987
X Per 0352+30 837s+09.51lle NMD 250 .11 1.6° Delgado-Marti et al. 2001
v Cas 0053 + 604 XR + B0IVe NMD 204 .26 .002:° Harmanec et al. 2000
0045-7319 0.93s° + B1 NMD 51.2 .808 1.4: 8.8: 6.4: Kaspi et al. 1994a
V1357 Cyg Cyg X-1 XR+09.7lab BMD 5.60 .25° Bolton 1975,
LaSala et al. 1998
V1343 Agql SS433 H,He em + A Bhs 13.1 11: 19: Margon 1984,
Gies etal. 2002
V1521 Cyg Cyg X-3 XR+WR: NRd .200 van Kerkwijk et al. 1996b
JO737+3039 .022s5°4.28s° NNE .102 .088 1.34 1.25 Lyne et al. 2004
J1915+1606 1913416 0.059s°+7? NNE .323 .617 1.441 1.387 Thorsett &

Chakrabarty 1999

“for a neutron-star component, spin period is given (sec) where known
®mass function

“radio, not XR, pulsar

Among the longer-period examples Pfahl et al. (2002) distinguish between a group
with very eccentric orbits (e.g. V635 Cas, V725 Tau) and those with only mildly eccentric
orbits (e.g. X Per, v Cas). It seems unlikely that a kick played any substantial role in
the latter group — they are much too wide for tidal friction to be important. Pfahl et al.
suggest that the degree of anisotropy in the explosion may depend on the rotation rate of
the pre-supernova core, and that this in turn depends on whether the preceding RLOF
was Case B or C. Although Spruit (1998) suggested that internal magnetic stress would
keep a core corotating with its envelope, this may be mitigated if the core is contracting
on a thermal timescale, so that %1 remnants of Case B might be rotating substantially
more rapidly than remnants of Case C. Possibly rapid rotation reduces the anisotropy
of the explosion when it occurs. Thus a bimodal distribution of kick velocities could
be generated. A mean kick of only ~20km/s is required in order to account for the
low-eccentricity systems.

The radio pulsar 0045-7319 in the SMC is one of the few ‘HMXBs’ which does not
radiate in X-rays. The B star is, untypically, not a Be star with substantial though
erratic wind. It probably rotates quite slowly. Consequently there appears to be nothing
for the pulsar to accrete. Its orbital shrinkage subject to Mode TF was discussed briefly
in Chapter 4.2. Its previous evolution presents the problem that we expect *2 to be
substantially more massive than it appears to be. We expect as a result of reasonably
conservative RLOF that %2 will become substantially more massive than 1 was origi-
nally, and 8.8 M (though tentative) seems too small. ¢ Per (Table 3.10) produced a
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slightly more massive %2, and yet its *1 is well short of becoming a supernova: we argued
for an initial mass of ~6 Mg. We suggest that 0045-7319 is a product of Mode EJ (Sec-
tion 5.2), by way of Case BU, as for some other binaries that we propose were fairly wide
and fairly massive originally. Initial parameters (10+8 Mg;50 — 100d) might produce
such a system.

A handful of HMXBs contain a black hole, V1357 Cyg being the prototype. Masses
of black holes are estimated to be in the range 7 — 12 My (Bailyn et al. 1998). We
assume here that all black holes come from stars more massive than those which produce
neutron stars; but this point deserves a much fuller discussion than we have room for
here. Accepting this hypothesis, it is likely that the boundary is around 40 M.

Evolution of %2 in HMXBs is likely to produce reverse RLOF. The reverse RLOF
should be very hydrodynamic, and seems likely to lead to Mode CE and either a merger
or a very close binary of state NrD. However we have already postulated Mode EJ as
a likely alternative to Mode CE, in (reverse) Case B systems that are moderately wide.

Consequently we anticipate three different outcomes, possibly depending primarily on
the period in the HMXB state:

(i) V779 Cen, for example, might merge to form a single star, presumably a red-
supergiant-like entity with a neutron-star core, i.e. a TZO. The TZO would probably be
subject to extremely copious wind, which might remove the envelope in ~ 10* yr leaving
a bare neutron star, or black hole in the case of LMC X-4.

(ii) GP Vel or V635 Cas, for example, where the binary is wide enough to allow reverse
Case BD rather than reverse Case AD RLOF, might evolve through Mode CE to become
a short-period NRD system like V1521 Cyg. If the WR-like component of this system is
2 2.5 Mg, which is likely since *2 in the precursor NHD state is likely to be 212 Mg,
then it can have a second supernova explosion. Even a fairly substantial supernova kick
might fail to disrupt such a compact binary, and the result could be an NNE binary like
PSR J1915+1606.

(iii) X Per, for example, seems likely to evolve by reverse Case BU to a comparably wide
NRD, which would almost certainly be disrupted by a later supernova explosion.

At present no BNE or NBE system is known, but both types seem likely to exist.
BP Cru has a sufficiently massive %2 that it might reasonably become a black hole (at
least if the mass of the precursor is the major determinant). The system may have
evolved to its present configuration by fairly conservative Case AN from an initial bi-
nary such as V348 Car (Table 4.3) with both masses ~35Mg. This makes %2 grow
to a mass substantially greater than the initial *1. V1357 Cyg may have evolved more
non-conservatively (Case BUN) from a *1 of initially much greater mass, but with %2
remaining arguably of low enough mass to leave a neutron star. We can also expect that
some BBE systems exist, but they will be very hard to recognise; unless by good fortune
they have a third body in a measurable orbit that yields a mass-function of 220 Mg,
and an invisible companion.
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5.4 DYNAMICAL ENCOUNTERS IN CLUSTERS: MODE DE

If the space density of stars is n, and their mean velocity is v, then a binary with
separation a will typically have a close encounter with another star after time ¢ where

ralnut~1 . (5.4.1)

In the solar neighbourhood n~0.1/pc® and v~10km/s. Thus we need a~ 1000 AU
~0.005 pc if the time required for a close encounter is to be ~10Gyr. This means
that near-collisions are unlikely for the kind of binary we mainly consider here, with
a <10 AU. However in a dense cluster, such as a globular cluster or a young dense star-
forming region, the space density can be a million times greater, and so systems with
a~1AU are vulnerable.

Since most of this book is concerned with the relatively low-density solar neighbour-
hood, say out to ~1kpc and occasionally further, we do not attempt to discuss clusters
and dynamical encounters in detail: see Heggie & Hut (2003). But when considering
the properties of binary stars in globular clusters it is important to note that several
interesting objects, such as low-mass X-ray binaries and radio pulsar binaries that are
found with surprising frequency there, may have been much influenced by dynamical en-
counters. In particular, one cannot assume that such binaries have always been binary,
to the same extent that one probably can assume it in the solar neighbourhood. Dense
young star-forming regions also allow the possibility of dynamical encounters.

When considering the evolution of binary stars in dense clusters, therefore, it is im-
portant to include the N-body gravitational dynamics as well as the effects of RLOF
etc. (Aarseth 1996, 2001). We cannot ignore the fact that stars may loop many times
into and out of the densest central core of the cluster. The number of stars in a cluster,
~10* — 108, is not large enough to allow simple statistical-mechanical arguments for
estimating the degree of ‘ionisation’ of binaries. However one aspect of thermodynam-
ics that holds at least qualitatively is the tendency of more massive particles to diffuse
towards the centre, as in selective diffusion in stars: we mentioned briefly the tendency
of helium to diffuse inwards relative to hydrogen in Chapter 2.2.4. Close binaries on the
one hand, and neutron stars on the other, tend to be more massive than the average
globular-cluster star (~0.5 M), so they are somewhat more likely to interact near the
centre. At the other end of the mass spectrum, light stars tend to be ejected to an outer
halo, and some to escape velocity. Evaporation of the cluster is assisted by the fact that
a cluster near to a galaxy is surrounded by a ‘Roche lobe’ whose radius can be estimated,
as with binary stars, by Equn (3.1.6). A crude estimate of the lobe radius is ~ 50 pc, for
a cluster of 10° stars at a distance of 10kpc from the Galactic centre.

It may seem a little odd that gravitational dynamics, which is a strictly time-reversible
process, can lead to long-term irreversible changes. It is true that (given a sufficiently
exact code), we could evolve a cluster forward until say half the stars have escaped, and
then reverse the evolution and watch the escaped stars being captured. But the (huge)
volume of phase space occupied by the evolved cluster and its escapers is still a tiny
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fraction of the the incomparably vaster total phase space involved, and a very special
fraction. In general, we would not expect similarity between a cloud of escaped stars
and a general cloud of stars, most of which would be non-capturable.

The internal distribution of stars in a globular cluster can be modeled in some respects
like the internal structure of stars themselves, with a potential gradient balanced by a
gradient of ‘pressure’ that is essentially the local velocity dispersion times the density.
There is an outward ‘heat’ flux, with energy from the centre being transported outwards
by gravitational interactions between stars; although unlike in the atomic case a star may
have to rotate many times around the cluster before undergoing a significant interaction.
In addition there can even be a central ‘nuclear’ energy source, i.e. a binary at the centre
which can grow more tightly bound while giving energy to neighbours. Lynden-Bell &
Eggleton (1980) found that such a cluster (without a central energy source), contracting
in a self-similar fashion, is rather like an n~ 11 polytrope, i.e. fairly nearly but not
quite isothermal. The slow self-similar contraction would in a long but finite time lead
to the core’s collapse to infinite density, the ‘gravothermal catastrophe’ (Antonov 1962,
Lynden-Bell 1968), except that this is prevented (Bettwieser & Sugimoto 1984, Inagaki
1984) by the formation of a close binary at the centre. This is analogous to the ignition
of nuclear fuel as in a star approaching the main sequence, or the tip of the giant branch.

Until relatively recently (McMillan et al. 1990, Heggie & Aarseth 1992) simulations
of N-body gravitational dynamics tended to start with a large number of single stars
— although, harking back to the first paragraph of this book, the long-range nature of
gravity is such that it is not always clear whether subsytems are bound or not. But
the introduction of a substantial fraction of ‘primordial’ binaries has been shown to be
very significant for the evolution of a cluster, both dynamically and in terms of stellar
evolution. The reason is that binaries are very difficult to form by 2-body encounters
among single stars. Energy and angular momentum conservation say that two bodies
approaching each other on a hyperbolic orbit will depart on the same hyperbolic orbit
— unless there happens to be a third star around close enough to interact at the same
time and absorb some of the energy. Normally one or two binaries do form nevertheless,
and they can dominate the later evolution: the binding energy of one fairly close binary
(say 1AU) is comparable to that of 105 stars within a sphere of ~1pc. But single-
binary, and a fortiori binary-binary, encounters are fairly rare in such a system, whereas
if binaries are as common primordially in clusters as in the field such encounters can be
very important. Furthermore, we suggest below that primordial ¢riples may be not just
a luxury but a necessity for understanding such objects as the blue stragglers of M67
and other clusters.

Whether a primordial binary in a cluster survives for a long time or gets disrupted by
encounters can be measured by its ‘hardness’. A binary is ‘hard’ if the orbital velocity
within the binary is large compared with the velocity dispersion of the cluster, and
otherwise ‘soft’. This leads rather easily to the condition that, in a cluster of NV stars
within radius R, hard binaries have a s R/N. With say 10* stars within 1pc, this gives
a 520 AU. Dynamical encounters tend to make hard binaries harder, and soft binaries
softer until they are disrupted (Heggie 1975).
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Fig 5.3 — Colour-magnitude diagram of the turnoff region of M67. The magnitudes are from Fan et al. (1996),
and are similar to but not the same as B,V. Central wavelengths (nm) are indicated. Membership is based
on the proper-motion study of Girard etal. (1989) and on the radial velocity study of Mathieu et al. (1990):
only candidates with a probability greater than 90% of being members by both criteria are plotted. We define
the 18 systems bluer than B—V =1.0 to be blue stragglers. Known SBls (plusses), SB2s (squares), eclipsing
systems (circles), and triples (asterisks) are marked: the blue-straggler triple (S1082) at V' ~ 11 also has shallow
eclipses. Stars that are moderately above the main sequence in the lower right are probably binary, and some

may be triple.

Two kinds of 3-body (or 4-body) dynamical encounter may be particularly interesting:
exchange reactions, and induced collisions. A neutron star encountering a binary of two
K dwarfs may expel one dwarf and form a binary with the other. If this is close enough
to have a period of only a few days, magnetic braking and tidal friction (Mode MB,
Table 3.8) may lead to interaction, to a low-mass X-ray binary and ultimately to a
millisecond pulsar binary. Alternatively the neutron star (or another main-sequence
star, or binary) may perturb the binary to such an extent that the two K dwarfs crash
into each other, and merge to form a single star. This single-star product could settle
down into an apparently normal main sequence star that could be substantially brighter
and hotter than most main sequence stars in these highly-evolved systems — a ‘blue
straggler’.

Fig 5.3 shows a colour-magnitude diagram for the old Galactic cluster M67 ( ~ 3.5 Gyr).
The region to the left of the turn-off at colour 1.0 is populated by 18 blue stragglers,
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some of which are known to be binary and one to be triple, as indicated. Even though
binary evolution into Algols can in principle produce a blue straggler, this does not seem
to be the case for most of the SB1s noted: five of them have orbits which are either wide
or eccentric or both, whereas Algols can be expected to have orbits which are compact
and circular. One blue straggler is a contact binary (EV Cnc), where presumably *1 is
gaining mass at the expense of %2 as we expect in Case AR. This is in fact the only blue
straggler in M67 that is relatively well explained by its binarity.

The triple-star blue straggler S1082 in Fig 5.3 is an extraordinary object (Sandquist et
al. 2003). It actually consists of two blue stragglers, one of which is in a ~1d orbit with
a component that is in the turnoff region, and the other of which is in a 1200 d eccentric
orbit round the close pair. We believe that it may have required the near-collision of
two primordial triples to produce such an outcome. Within each triple the close pair
was perturbed into a merger, and one third body was kept (but somehow scattered into
a very close orbit with one of the merged pairs) while the other was expelled.

Another blue straggler is so blue that it is difficult to account for as a merger of two
turn-off stars: it is very near the top left in Fig 5.3. Perhaps therefore it is a doubly-
merged triple star. The close pair in S1082 appears to have only just missed such a
fate.

Binary-binary encounters are quite likely in dense clusters with a substantial propor-
tion of primordial binaries. A typical outcome is that the two lightest components are
ejected and the two heaviest form an eccentric binary, although another outcome can
be a hierarchical triple with a single star ejected. Several ‘runaway’ OB stars are seen
with abnormally high space velocities. Some of these may be generated by supernova
disruption (Section 5.3), and some by 3 or 4-body encounters. Hoogerwerf et al. (2000)
have tracked the proper motions of OB runaways, and of neutron stars, backwards in
time. They find several cases of apparent common origin, both for OB + OB pairs and
OB + NS pairs, and they conclude that the two very different mechanisms occur about
equally frequently.

Hoogerwerf et al. (2000) point in particular to three stars, two single (AE Aur and
u Col) and one triple (¢ Ori A), which appear to have been scattered out of the Orion
Nebula cluster (ONC) 2.5Myr ago. This seems likely to have been a binary-binary
(or binary-triple) collision in which one incoming system was broken up into two. The
trajectories of AE Aur and g Col are almost exactly in opposite directions from the
ONC.

Bagnuolo et al. (2001) note that the two components of the spectroscopic sub-
binary within ¢ Ori A are rather remarkable. The stellar and orbital parameters are
(OO9III + BO.8III-IV; 29.1d; e = 0.76). Because the system does not eclipse the inclina-
tion is not known, but the mass ratio is ~1.75 (Marchenko et al. 2000). The B star
seems remarkably evolved, considering that it is much less massive, and it is difficult to
believe that this is due to RLOF, for instance, since the orbit is so eccentric. Gualandris
et al. (2004) suggest that the collision involved an exchange as well as a disruption, with
the present ¢ Ori containing components that came from original binaries of substan-
tially different ages — about 5 and 10 Myr are necessary. In fact ¢ Ori contains a speckle
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companion as well (Mason et al. 1998), in an orbit that might be ~40yr. It appears
that a very complicated dance has taken place here.

There are quite a few massive binaries where one can question whether the two com-
ponents are coeval; we mentioned LY Aur in Chapter 3.5. The quadruple star QZ Car
in Table 4.10 contains one component (BOIb; %22 as listed) which appears to be more
evoloved and yet less massive than its close companion (O9V; %21). If exchanges do
occur among the massive singles, binaries and multiples of a region of star formation,
it is probably only within the first ~ 10 Myr, while the region is still densely populated,
and would only have a significant effect in those massive stars whose ages are of this
order. Unfortunately early massive stars also tend to have the least certain parameters,
and so it is difficult to be sure that two components are non-coeval. Since massive stars,
and a fortiori binaries and triples, tend to congregate towards the centre of a cluster
by gravitational settling, it would not be surprising if massive binaries were especially
prone to show non-coeval components, or that primordial triples may play a major part
in producing the blue stragglers of old clusters.

If single stars are treated as extended bodies rather than as point masses, a dynamical
encounter of two single stars, leading to capture, may also occur (Fabian et al. 1975),
though probably not often. As two stars approach close to each other on a hyper-
bolic orbit they can raise substantial time-dependent tides, which convert orbital energy
into internal hydrodynamic energy. This may convert marginally hyperbolic orbits into
marginally elliptic orbits, at least temporarily. In the longer term viscosity may convert
the hydrodynamical energy into heat which is radiated away, thus sealing the capture.
In an extreme case the two stars may actually collide, and merge. In a less extreme case
the highly eccentric orbit may be circularised over many orbits by tidal friction. It is
a feature of circularisation by tidal friction that the apastron separation can decrease
considerably but the periastron separation can only increase modestly. Tidal friction
conserves angular momentum, and thus the semi-latus-rectum of the orbit: the ratio of
this to the periastron separation is 1 + e, which only decreases from 2 to 1 as the orbit
circularises.

Induced collisions near the centres of young rich clusters may possibly be the origin
of some stars at the high end of the mass spectrum. If two stars do merge, a great
deal of energy is available which may expand the merged star to red giant proportions
temporarily, making it all the more likely that it will merge with further stars. We might
have a runaway process that continues until the density of stars is significantly reduced
(Portegies Zwart & MacMillan 2002). It does not seem impossible that all massive stars
are produced in this way, rather than by an unusually large amount of accretion on to
an initially low-mass core.
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6

Accretion by the Companion

Matter that leaves the surface of one component of a binary can be partly or wholly
accreted by the companion. We have seen that the loser could be losing mass either
by RLOF or by stellar wind, perhaps binary-enhanced; the accretion process has even
more options, and these are modeled with even less confidence. A major reason why the
accretion process can be more complex than the mass-loss process is that gainers can
have a very wide range of radii, from black holes and neutron stars (at ~3 — 30km)
to white dwarfs (~10%*km) to normal dwarfs (~0.1 — 10 Gm), and even occasionally to
subgiants (~3—30Gm) or giants ( 2 10 — 30 Gm); whereas the loser is usually only in the
last three of these categories. Not only does the available energy of the accreted material
vary (inversely) over the same range, but also different physical forces (magnetic, viscous,
rotational, gravitational) may dominate at different radii from the gainer.

The study of accretion is one of the most active areas in stellar astrophysics. Phe-
nomena, often dramatic, are observed to happen on timescales ranging upwards from
milliseconds. This book will not attempt to cover the ground in detail — partly for lack
of space, but also because this book is intended to concentrate on the long-term evolu-
tion of binaries rather than on their short-term behaviour. Naturally, in order to test
long-term predictions observationally it would be helpful to be able first to model, and
allow for, the observed short-term behaviour. For a fuller treatment the reader is referred
to some standard works: Lewin & van den Heuvel (1983), Frank, King & Raine (2002).
The following few pages are an attempt to summarise the aspects of accretion that are
most relevant to long-term evolution.

6.1 CRITICAL RADII

The character of an accretion flow depends importantly on the size of the gainer,
particularly relative to the size of its Roche lobe. In a range of systems, one may see, or
expect to see, at least four zones of different radii around the gainer, in which different
physical processes are important. Proceeding outwards from the gainer, there may be
some or all of the following:

(a) A magnetospheric zone, in which a magnetic field anchored in the rotating gainer
dominates the flow, causing the (highly ionised) accreting gas to flow in along field lines,
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arriving on the gainer at its magnetic poles (Lamb et al. 1973). The magnetic field is
normally assumed to be dipolar, and oblique to the axis of rotation and not necessarily
symmetric about the centre. It has to be oblique to account for the observed rotational
modulation; nevertheless in many analytic attempts to model magnetic-dominated ac-
cretion one often assumes axisymmetry for convenience.
(b) A Keplerian disc region, in which centrifugal force largely balances gravity in the
radial direction, while viscosity drives an inward flux of gas superimposed on the almost-
circular motion, and simultaneously drives an outward flux of angular momentum (Liist
1952, Lynden-Bell 1969, Lin & Pringle 1976, Pringle 1981). The mechanism giving rise
to the viscosity might be turbulent motion as a result of convective energy transport in
the disc, but more probably turbulent magnetic field in rough balance with the pressure
supporting the disc against gravity in the direction perpendicular to the disc (Shakura
& Sunyaev 1973, Balbus & Hawley 1991) — see Appendix F;
(c) A region of inward free-falling gas, where the specific angular momentum of the gas is
small compared with Keplerian specific angular momentum. The material gains angular
momentum while falling in, partly due to Coriolis force in the frame that corotates with
the binary, and partly due to the non-central character of the forcefield (3.1.2) around
*2;
(d) A region of wind-flow from the loser. This flow might be fairly uniform and radial in
the frame of the loser, if it were not for the perturbing gravitational field of the gainer.
The first region applies mainly to compact gainers like neutron stars and white dwarfs,
although a magnetic Bp star accreting from a red supergiant might have a similar mag-
netospheric zone. The last region applies mainly where the loser underfills its Roche lobe
but is losing mass by stellar wind.
Dictating the nature and extent (or existence) of these zones are several characteristic
radii, some of which can be estimated only crudely:
(i) The radius Rz of the gainer, or for a black hole its Schwarzschild radius

2G M,
2

Rs = (6.1.1)

C

This is the radius such that light cannot escape from within it. But circular orbits
outside this, up to 3Rg, are unstable to the extent that bodies in them will rapidly
plunge inwards, to within Rg

(ii) The corotation radius R., at which the angular velocity of material in Keplerian
orbit is the same as the angular velocity {2, of the gainer:

M 1/3
R, = <G 22> . (6.1.2)
QQ

If %2 is rotating close to break-up, then of course R. ~ Rj.
(iii) An Alfvén radius Ra determined roughly by the balance of Alfvén speed va with
Keplerian rotational speed vk, as for Equn (3.4.3):

B2 1 [/ ByR%\? G M.
v~ A o ( 2 32> ~ vl = 2, (6.1.3)
Hopa  MopA \ Ra Ry
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B, is the dipole field strength at *2’s surface; the field is assumed to diminish outwards
like r—3. Note that in Section 4.4 on magnetic braking, we took B o r~2, appropriate
for outflowing magnetically-coupled winds in the ‘split-monopole’ approximation; apart
from this the analysis is the same. The Alfvén density pa is estimated from the accretion
rate by

M2 N47rpARA21)A ~ 47rpARA2’UK . (6.1.4)

Combining these, we get

<£>7/2 . AnB < RS >1/2 . (6.1.5)
Ry poMy \ GM>

(iv) The radius R; of the cylinder on which corotating material would have the speed of
light:

2

R, = o W . (6.1.6)
(v) A characteristic disc radius Rp, where the specific angular momentum h of the
material at the inner edge of zone (c) equals the Keplerian value. For particles moving
in the plane of the orbit, Coriolis force, in the frame that rotates with the binary, ensures
that h + wr?, though not h itself, is conserved, except to the extent that the force within
the lobe of *2 is not entirely central towards *2. This latter effect is fairly modest, for
particles falling from rest at L1 into the vicinity of 2, and so for RLOF we can estimate
h by saying that it is roughly the same as wz?, where z is the distance from the centre
of *2 to L1. Then

Rp h? (wz?)? My + M z*
o S G~ GMha = M e " const. (1+ q)zf(1/q). (6.1.7)

Empirically, z is ~20 — 35% greater than the Roche lobe radius Rz = a z1(1/q) —
Equn (3.1.5) — over a large range of mass ratio ¢q. Hence the constant on the far RHS
of Equn (6.1.7) should be in the range 2.1 — 3.3. By comparing Equn (6.1.7) with the
more detailed calculations of Lubow & Shu (1975), we find that we can get very good
agreement (to ~3%) if we replace ‘const. (1 + ¢)’ empirically by 1.9 + 2.2q. Thus we
arrive at the following expression for the ratio of disc radius to lobe radius:

—= ~ (1.9+2.29)z}(1/q) . (6.1.8)

This is not the radius to which the outer part of the disc would settle down in equilibrium,
since the outward transport of angular momentum in a steady-state disc would push the
boundary outwards. But if the radius of the gainer is greater than this radius we expect
no substantial disc to form, because the stream will simply impact on to the trailing face
of the gainer instead of forming a ring. Also, in the case of accretion from a wind rather
than RLOF, the disc radius might be determined by the inhomogeneity in either the
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wind speed or the wind density in zone (d), rather than by the simple argument given
above.
(vi) A Bondi-Hoyle accretion radius R,.., where the kinetic energy in the outflowing
wind from the loser balances the gravitational potential energy in the field of the gainer.
If the wind has speed V, relative to *1 in the radially outward direction when it reaches
the orbit of %2, this balance gives (at a rather simplistic level of approximation)

GM2 d

VW = VW

Racc ~r  ~xr 12 ) 3 ’
‘Vw - Vorb | 2 d

Vo = d . (6.1.9)
Although for circular orbits d and d are perpendicular, we write this in a form which
allows for the possibility of an eccentric orbit (Chapter 6.5).

(vii) The Roche lobe radius of the gainer.

Table 6.1 gives some typical values for these radii, and other parameters, in a variety of
cases.

Table 6.1 - Estimates of critical radii and other parameters in the accretion process

loser (x1) OB star B star M dwarf red dwarf red supergiant
gainer (¥2) NS NS NS WD Bp dwarf
M, 20 10 0.4 0.5 3

M 1.4 1.4 1.4 0.7 4

P(d) 3 100 0.3 0.15 1000

B> (T) 108 108 10° 10? 1

M3 (Mg /Myr) 1073 1076 1073 1073 1

Ps(s) 0.3 3.0 0.05 102 1d

Vi (km/s) 103 103 200 300 30

Rs (Schwarzschild)  5.9x107%  5.9x107% 5.9x107¢

R» 1.4x107%  1.4x107°  1.4x107°  0.01 3

R, (corotation) 1.1x107%  0.005 3.3x107*  0.19 6.7

Ra (Alfvén) 56x107%  4.0x1072  1.1x10"*  0.17 24

R, (light velocity) .021 0.21 3.4x107% 69 5.9x103
Rp (disc) 0.97 9.7 0.33 0.12 76

Race (Bondi-Hoyle) — 0.23 0.26 1.61 0.49 300

RL (Roche lobe) 4.5 46 1.12 0.52 325
Mgad (Mg /Myr) 0.018 0.018 0.018 12 3.7x10%
Pey(s) 3.5 68 0.0095 870 5.8d

Masses and radii in solar units; periods in days or seconds as indicated; 1 Tesla = 10* Gauss.

As material falls on to the gainer, it generates a luminosity

GMyMo

Loace ~ R )
2

(6.1.10)
from which M, may be estimated if we have a rough idea of the apparent brightness and
the distance of the source. This luminosity might be very large if the gainer is compact.
However we expect that the luminosity should not be able to exceed the Eddington
luminosity:

4meG Mo

Lacc < LEdd = T y (6111)
T
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taking kT to be the Thomson scattering opacity, 0.034m?/kg. According to
Equn (2.2.2.5) this is the maximum luminosity of a spherical star in hydrostatic equilib-
rium, the maximum being approached as ( = Prad/Pgas — 00. The Thomson scattering
value is reasonably appropriate for hot luminous objects. Equn (6.1.11) means that the
gainer may not be able to accept more than a fraction of the mass lost by the loser. By
equating L,.. to Lgqq we obtain an upper limit M Edd to the rate at which the gainer
can accrete, except in a short-lived, unstable manner:

drcRy
KT

Mggq ~ (6.1.12)
If this is less than *1’s mass-loss rate, the remainder of the mass is presumably either
lost to the system as a whole, or else accumulates perhaps in the outer part of the
gainer’s Roche lobe, or in a common envelope around the system. For white dwarfs,
if we adopt a mass and radius of 0.7 Mg and 7 x 103 km, then we obtain Lggq ~ 2.8 x
10* Ly, Mggq ~ 12 Mg /Myr. For neutron stars, adopting 1.4 Mg and 10km, we have
Lpaa ~ 5.6 x 10* Lo, Mgqq ~ 0.018 Mg /Myr.

We can rewrite Equn (6.1.5) for the Alfvén radius in a slightly more transparent
dimensionless form by using M Edd as a reference value for M 2, and by introducing a
reference magnetic field By defined by

B  GM,

po Rk

(6.1.13)

For a normal hot star, with photospheric boundary condition px~g — Equn ( 2.2.2.11)
— the RHS is just the photospheric pressure, which represents an upper limit to the
strength of the magnetic field in a starspot. However for the reference value we continue
to use the Thomson scattering opacity kT, even although in the Sun, and most stars
cooler than ~ 10kK, the photospheric opacity is substantially less, by two to four orders
of magnitude. For a white dwarf we have By~8.4T. For a neutron star the physical
picture is not very appropriate, but Equn (6.1.13) nevertheless gives a reference field of
~8.3 x 103 T. Then Equn (6.1.5) can be rewritten

Ry  (GM, YT Mgaa o By\*" 6.1.14
m- ) OG) &) - o

The first factor on the RHS ~0.28 for a white dwarf, and ~0.80 for a neutron star.
When accreted material falls inside the Alfvén radius, it tries to corotate with the field
and %2 as it follows the fieldlines to the surface, so that *2 is spun up or down depending
on whether ;R is less than or greater than the Alfvén speed, or equivalently, by

Equn (6.1.5), the Keplerian speed, at the Alfvén radius. This implies that there is a
stable equilibrium rotation rate ey (and period Pey = 27/Qeq), with

G,
QeqRa = vk = 4/ 2 (6.1.15)
A
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and so from Equn (6.1.14)

. 3/7
Py _ Q9 (GM\*M [ Mpa B\, _ GM (6.1.16)
Py Qeq 2R, M, By YT RS T

Qo is more-or-less the breakup angular velocity, corresponding to periods Py~ 12s for
a white dwarf and ~0.5ms for a neutron star. Table 6.1 lists Mgqq and Feq for some
cases.

6.2 ACCRETION DISCS

An accretion disc is likely to form within the Roche lobe of the gainer (x2) if *2 is
much smaller than its Roche lobe, and not so strongly magnetic that Ry > Rp. This
disc would be a ring if it were not for the possibility of a torque that causes angular
momentum to be transported in an outward direction, allowing material to spiral in to
smaller orbits of lower angular momentum (Appendix F). The force whose azimuthal
component provides this torque is commonly described as ‘viscous’, and modeled by a
Navier-Stokes term of the form (in cylindrical polars) R~ 20/0R{XpR> 0Q/0R}, 2 being
the Keplerian angular velocity within the disc and X the coefficient of viscosity. This
viscosity coefficient is usually written as X = ap/pS2, with a a dimensionless constant.

Recent work (Balbus & Hawley 1991, Stone et al. 1992, 1996, Tout 1997) makes it
rather clear that the torque is in practice magnetic, and should be modeled with the
Lorentz force j x B. The magnetic field is expected to be chaotic, because any weak, sys-
tematic seed field in the presence of rotational shear is expected to be amplified strongly
by a hydromagnetic instability (Chandrasekhar 1961). Since the amplification of the
field, presumably until it reaches some quasi-steady amount dictated by the balance
of magnetic pressure with gas pressure, depends on the shear 9Q/0R, it is not unrea-
sonable that the torque due to the azimuthal part of the Maxwell tensor might have
much the same mathematical form as the Navier-Stokes term above, with the viscos-
ity coefficient X replaced by an effective ‘viscosity’: X ~ aB?/uopQ (Shakura & Sunyaev
1973; Appendix F). It is therefore possibly still reasonable to model disc accretion as an
‘a-disc’.

Modeling of the chaotic magnetic field to be expected will no doubt be complicated
by the fact that the saturation of the magnetic field at some mean value (assumed to
be when magnetic pressure ~ gas pressure) will probably not be achieved by simple
ohmic diffusion, but rather by ‘field-line reconnection’, a highly non-equilibrium process
(Syrovatskii 1981) such as is seen in solar flares as well as in laboratory MHD. When
regions of fluid containing frozen-in field of opposing sign collide with each other, a
singularity develops which leads to an explosive release of energy. In Appendix F we
suppose for simplicity that there is an ohmic diffusion which is sufficiently large that
the heat production is effectively the same as might be achieved by sporadic field-line
reconnection.
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The a-disc gives estimates — Appendix F, Equns (F25), (F26) — for, among other
things, the optical depth m9(R), and the thickness of the disc as a fraction 6(R) of the
radial coordinate R. For the sake of argument we adopt o = const. The model is
only valid if 62 < 1,a%§% <1, but § is indeed expected to be small (0.01 — 0.1) for a
fairly wide range of values of L,.., M3, Ry and R. We can estimate a crudely from the
observed timescale on which discs evolve, which should be ~R?/X. The model gives
this as a multiple a 1672 of the timescale of Keplerian rotation 27!. Accretion discs
in cataclysmic variables seem to require a ~0.01 — 0.1. Ordinary molecular or radiative
viscosity would give a smaller & by many orders of magnitude, but magnetic processes
seem capable of giving « in this range (Stone & Norman 1994).

1000
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Fig 6.1 — Models of accretion discs in cataclysmic variables, from (a) theory, and (b), (c) observation. In (a),
after Lin & Pringle (1976), contours of energy-production rate are plotted, from a model where the gas is
treated as collisionless particles, except that an artificial viscosity is included. In (b), after Wood et al. (1989),
contours of surface brightness in the disc of the dwarf nova OY Car are plotted, reconstructed from eclipse
mapping. The models are not directly comparable, having mass ratios (gainer/loser) of 2.5 and 10 respectively.
(c) Spiral arms in the accretion disc of IP Peg during outburst (Harlaftis etal. 1999). Doppler tomography
maps the gas in velocity space, large velocities (moduluswise) being associated with the innermost part of the

disc, and vice versa.

An alternative source of viscosity that has often been invoked is turbulence, perhaps
driven by convection. Turbulence is not expected to be generated by the shear, because
the Rayleigh criterion for instability would require the angular momentum (per unit
mass) to increase inwards, and in a Keplerian disc it increases outwards. But a torque
capable of causing material to spiral inwards would release gravitational energy, and this
energy has to be transported within the disc before it can be radiated from the surface
(at least if the disc is optically thick). The temperature gradient required might well be
unstable to convection for much the same reason that stellar envelopes can be unstable to
convection, because of the rapid rise of opacity with temperature during partial hydrogen
ionisation at ~6 — 10kK (Chapter 2.2.3). However, numerical simulations (Balbus et
al. 1996) suggest that this will not achieve an « in excess of ~10~%. The basic reason
for the relative insignificance of convective turbulence appears to be that it is not driven
directly by the shear, whereas the hydromagnetic instability is. Nevertheless, at low
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temperatures of a few hundreds Kelvin, such as is expected in accretion discs around
protostars, it may be necessary to have some other source of viscosity than frozen-in
magnetic fields, since the gas will be almost completely unionised.

Fig 6.1 shows three views, one theoretical and two observational, of accretion discs.
The left panel is a model where the gas was treated as a stream of particles coming from
the L1 point and subject to the acceleration of the Roche potential (and Coriolis force).
The effect of viscosity was simulated by dividing the area into small cells and replacing
the velocities of all particles in a given cell by the average for the cell. This allows for
an estimate of the local energy release, and hence of the local temperature. The centre
panel is a reconstruction of the surface brightness in the disc of OY Car, a short-period
(0.063 d) binary with a red dwarf loser and a white dwarf gainer. The track expected for
particles falling freely from the L1 point is marked; perhaps the hot region in the top
right is where the heat from the collision of the stream with the disc is released. The
right panel shows the distribution of the gas in velocity space from Doppler tomography
applied to a rather similar system, but with longer period (0.158d). If one assumes a
model of a steady disc with a Keplerian velocity field, one can map from velocity space
to coordinate space; but such a model would not produce this two-armed spiral pattern.

As a star accretes it is liable to spin up, because the accreting gas acquires angular
momentum from Coriolis force in the corotating frame. In the relatively simple case
that accretion is via a disc, the newly-accreted material has Keplerian velocity when it
is added to *2. If the rotation is redistributed to uniformity within %2, we can write

d dM.
%M2(k2R2)292 = /GM,R, 72 , (6.2.1)

where k; is the dimensionless radius of gyration — Equn (3.1.8). If Ry oc My" and ks is a
constant, we can easily integrate this to see that %2 is spun up from Q; = 0 at My = My
to breakup at M, = My when the mass has been increased by a factor

My 1o\ _3+a
= <1_bk%> Lob=" (6.2.2)

This is largely independent of the exponent a (or b) since k3 is small. For a white dwarf
k% ~0.2, and for a main-sequence star above ~0.5 Mg k3 $0.08. Thus the mass can
only be increased by ~8 — 20%. What happens next is not clear, but it is possible
that the gainer develops a differentially rotating outer shell, which may allow it to be
substantially bigger. There is evidence in some Algols that the gainer has up to twice
the radius expected, and is also in very rapid rotation. We noted in Chapter 3.5 that
R7Z Sct has an anomalously large *2.

Although spin-up of the gainer drains angular momentum from the orbit, the effect
should not normally be substantial, as the gainer is, by the hypothesis of an accretion disc,
well inside its Roche lobe. Nevertheless, it can be allowed for fairly easily in computations
by adding (or subtracting) an appropriate term in Equns (4.8.2) and (4.8.4).

There is plenty of observational evidence to confirm that some gainers are indeed ro-
tating substantially faster than synchronously. Van Hamme & Wilson (1990) determined
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Fig 6.2 — Over-rotation factor F' against mass ratio ¢ in semidetached binaries. F' is the ratio of the gainer’s
angular velocity to the orbital angular velocity. Circles: long-period systems, P > 4.5d. Plusses: shorter-period

systems.

rates of rotation relative to orbital rotation (a factor F, say) in the gainers of 36 Algols
— Fig 6.2. Eleven of them had F > 5, three of them F' = 2 — 5, and the remainder F < 2.
RY Per (F = 10), V356 Sgr (F = 5) and RZ Sct (F = 6) are examples of gainers ro-
tating at several times the orbital rate; probably 8 Lyr is another. Some of the systems
of Fig 6.2 are what we identify as mmS; many are Gms and some are MMS, but it is
sometimes hard to discriminate.

In a simplistic model, we would expect that (a) to start with the gainer accelerates
only moderately during the thermal-timescale mass transfer, because it is fairly large
relative to its Roche lobe, which both limits the amount of angular momentum the
stream can pick up and allows tidal friction to work towards corotation, and (b) as the
mass ratio starts to drop well below the reciprocal of its intial value the system widens,
and so in contrast to (a) the gainer can spin up strongly. There is some evidence for
this: among the longer-period systems (P >4.5d) there is a substantial correlation of F
with ¢. Among the shorter-period systems there is no such correlation; almost all the
gainers are still rotating rather slowly.

However the simple picture above does not take account of mass loss and angular
momentum loss from the system. Four of the 36 systems, all represented by plusses,
have 0.35 < X <1, where X is the parameter (Chapter 3.5) which describes how wide
the system was at age zero. X <1 indicates a substantial amount of orbital angular
momentum loss; and it is likely that this is coupled with substantial mass loss. In fact
most of the systems represented by plusses in Fig 6.2 have X < 2, and in fully conservative
evolution these would not be able to evolve to ¢ <0.35 before coming into contact in
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Case AS. To avoid this probably requires a fairly specific amount of mass loss. If the
gainer fails to gain all of the mass lost by the loser, the acceleration of its evolution,
leading to contact, can be mitigated. But on the other hand if it fails to gain any of
the mass lost, then it is difficult to see how values logq< — 0.7 can be reached. There
is scope here for a rather considerable investigation, which would have to include all of
mass loss, angular momentum loss, spin-up of the gainer and tidal friction, at least.

6.3 PARTIAL ACCRETION OF STELLAR WIND: MODE PA

From the point of view of the long-term evolution of a binary system, the things that
matter most are (a) the fraction of the material lost by %1 which is gained and retained
by %2, and (b) the specific angular momentum carried off by the fraction of the material
which is lost to the system from either 1 or %2; in other words the parameters (3, (s, &, K3
and Ky of Chapter 4.3. Modeling these parameters is necessarily very tentative. In a
relatively simple case, with a radial wind of speed V,, from %1 and with no mass loss
from %2, we might estimate £/¢; as follows:

—£—C = My ~ —4xd*pV, , €=M, ~ 7R’ p|Ved/d—d| , (6.3.1)

d and d being the separation and relative velocity of the two components, as usual.
Hence, using Equn (6.1.9) to estimate the accretion radius,

£ 1(GMp\? 1
£+ G 4< d ) VolVad/d—dp (6.3.2)

Both d and d might be variable functions of orbital phase, if the orbit is eccentric —
see next Section. If Vi, is small compared with |d| the above formula must clearly be
modified to prevent M, > |M 1|- However, we would usually not expect V5, to be so small,
because, in the absence of the gainer, the wind would have to be expanding with a speed
at least equal to the escape speed in order to leave the loser, and the escape speed is
itself larger than the orbital speed.

An alternative estimate of M, in Equn (6.3.1), which probably represents an upper
limit for winds whose velocities are comparable to the orbital velocity, comes from sup-
posing that the accreted fraction of the outgoing wind is given by the fractional solid
angle that %2’s Roche lobe subtends at *1. This leads to the estimate

&
£+ G

%chZ(M2 /M), (6.3.3)

with 21,(q) coming from Equn (3.1.5). It is difficult to be much more precise. Full 3-D
modeling of the accretion problem should help, but it should be noted that some winds
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Table 6.2 Some Ba stars and possibly related systems

Name Spectra State P e fa Reference
¢ Cap WD + G5IbBa2 WHE 2380 .28 .0042 Bohm-Vitense 1980,
McClure & Woodsworth 1990
&l Cet WD + GT7IIIBa0.4 WGD 1642 0 .035 Bohm-Vitense & Johnson 1985,
Griffin & Herbig 1981
¢ Cyg WD + GS8IIIBa0.5 WGE 6489 .22 .0227 Dominy & Lambert 1983,
Griffin & Keenan 1992

HD31487 ? + KlBab wGD 1066 .045 .0379 Jorissen et al. 1998
105 Her ? + KB3IIIBa0.5 wGE 486 .36 .135 Scarfe et al. 1983
HD 77247 ? + GT7IIIBal wGE  80.53 .09 .0050 McClure 1983
HD123949 7?7 + Bad wGE 9200 .97 .105 Jorissen et al. 1998
DR Dra WD + KOIII WGE 903.8 .072 .0035 Fekel etal. 1993

V832 Ara WD + KOIII/IIBa WGE 5200: .18: .03: ”
-43°14304 110kK + K5-MO WsE 1450 .2: .013 Schmidt et al. 1998
V2012 Cyg S3,1+7 SmE 669 .08 1.23 Jorissen et al. 1998
BD Cam WD +83.5/2 WSE 597 .09 .037 ?
AG Dra SDOe + K3plIBa WsE 549 .13 .006 Mikotlajewska et al. 1995,
Smith et al. 1996
T CrB  Be + M4III wSS 227.7 0 .30 Belczynski
&Mikolajewska 1998

For V2012 Cyg alone, the mass-function is f;, not fa

have an MHD origin, and so the problem may be dominated by MHD rather than just
hydrodynamics.

Barium stars are a group of stars that have clearly been affected by Mode PA. These
are ~3% of all G/K giants; they are fairly normal, but on close inspection of their spec-
tra show an overabundance of Ba, and a few other elements such as C, Zr (Bidelman &
Keenan 1951). The overabundant elements all appear to relate to the s-process (Chap-
ter 2.3.2), and suggest that some of the material of the star has been subjected to a flux
of low-energy neutrons. These neutrons can be generated during the thermal pulses of
an AGB star, but it is odd that very few Ba stars (with the possible exception of ¢ Cap)
are of high enough luminosity, or low enough temperature, to be comprehended as such
stars.

The answer (McClure 1983) appears to be that the nuclear processing took place in
a companion star, formerly an AGB star but now a white dwarf. Most, and arguably
all, Ba stars turn out to be spectroscopic binaries, and in a handful the companion can
actually be recognised as a white dwarf (Fig 1.1b). Table 6.2 lists a few. Almost all
Ba star orbits have periods in the range 400 — 4000 d, and this is much like the range
expected for stars which are able to reach the AGB. There does not appear to have been
much orbital shrinkage, despite the fact that one might reasonably expect Mode CE
(Chapter 5.2) for binaries in this period range. Here we attribute the lack of Mode CE
in Ba-star precursors to the fact that these systems presumably had mass ratios in the
range 1 — 2. Evidently %2 of a Ba binary is 2 1 M, since it is massive enough to have left
the main sequence; whereas %2 in the post-CE binaries of Table 5.1 are more typically M
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dwarfs than F/G dwarfs. In Chapter 5.2 we suggested that a mass ratio of more than ~4
is necessary for the drastic orbital shrinkage characteristic of Mode CE. Hence we argue
that a relatively massive 2 can shake loose the envelope of an AGB star without much
orbital shrinkage, while a low-mass *2 cannot avoid being caught up in the expanding
AGB envelope. This points to Modes CW, CU or CUN (Chapter 4.6), but not Mode CUD.

It is likely that Ba stars owe their characteristics to the combination of Mode PA
with Modes NW or EW. Their orbits are commonly more circular than most normal
G/K giants (Fig 1.9b) in the same period range (which presumably have unevolved
companions), although at least one has a markedly eccentric orbit. Within the period
range of Ba-star binaries there are some, such as DR Dra, which do not show significant
Ba enrichment, despite having a recognised white-dwarf companion. Possibly this is
simply at the low edge of the distribution of Ba abundances that can be expected.

While Ba-rich red giants are reasonably well explained by Mode PA, we would ex-
pect that there must also exist (a) some red supergiants, single and binary, which are
Ba-enriched by virtue of their own intrinsic s-processing, and (b) some similar red su-
pergiants which do have white-dwarf companions, but which are now further enriching
themselves by intrinsic s-processing. Examples can indeed be found of both kinds, and
two (V2012 Cyg and BD Cam) are listed in Table 6.2. The former has a mass function
too large to allow credibly for a white-dwarf companion.

When the barium-rich red giant evolves sufficiently, it is possible for reverse mass
transfer to take place, initially with accretion from a wind but perhaps later (if the
wind does not exhaust the envelope) by RLOF. This could make the system a ‘symbiotic
binary’, i.e. one in which the spectrum shows of evidence of both a cool component
(usually MIII) and a hot component (usually SDOBe). AG Dra and T CrB are fairly
typical of these. We might expect the final result to be either a wide or a close pair of
white dwarfs. In the last section of Table 5.2, where we estimate the results of the two
stages, forward and reverse, of evolution leading to ww b binaries, only EG52, with a
long period, seems arguably to have had the parameters of a typical Ba star between the
forward and reverse stages; but there is a great deal of guesswork in this Table, as there
is bound to be in any scenario involving Mode CE. However, the mass ratio in a Ba star
is not likely to be very extreme. With a white-dwarf mass of 0.55 — 0.65 Mg, say, and a
mass for #2 of typically 1.5 — 2.5 M, most (according to our tentative criterion of ¢ <4)
should avoid Mode CE in its rather severe form.

6.4 ACCRETION: MODES BP, IR

When material lost by *1 is accreted by *2, energy is released, and a part of this energy
may be used to drive off a part of the mass that is trying to be accreted. Indeed, it is
not entirely an exaggeration to say that ‘wherever theorists talk of accretion, observers
see an outflow’. This may happen in a number of ways:

(i) Many objects which involve accretion discs are also seen to be accompanied by bipolar
jets apparently emerging from the central region normal to the disc. The disc need
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not be due only to binary-star interaction, because the phenomenon is seen in young
stellar objects (YSOs) where the disc is simply high-angular-momentum material left
over during star formation. Jets are also seen in active galactic nuclei (AGNi), where
it is believed that a central massive black hole is accreting neighbouring material. We
discuss accretion discs very briefly in Appendix F. It may be that a very strong chaotic
magnetic field is produced by differential rotation, and that near the centre magnetic
pressure overcomes gas pressure, in a vertical direction, driving the jets.

(ii) Accretion discs often show P-Cyg type absorption lines which may be due to coronal
heating above (and below) the disc. A tenuous wind may be driven away from the disc,
somewhat like a stellar wind.

(iii) Hydrogen-rich material accreted by a %2 which is a white dwarf or neutron star
accumulates on the surface of 2, but when this layer is massive enough the pressure and
temperature at its base, or at the base of the He shell below it, become enough to trigger
nuclear burning in a highly unstable way — nova explosions, for a white dwarf (Truran
et al. 1977), or Type I X-ray bursts for a neutron star (Taam 1981). In the former case,
though not the latter, there is easily enough energy for much or all of the accreted layer
to be ejected, roughly spherically, and even for some of the underlying white dwarf, if it
has mixed to some extent with the accreted layer (MacDonald 1983); so that over long
times the mass of *2 might actually decrease ((2 > &, Chapter 4.3). For a neutron-star
gainer, however, the nuclear energy is well below the gravitational binding energy, and
the material is unlikely to escape.

In all three cases, a first guess at the amount of angular momentum removed from the
system is that it is the same as the orbital angular momentum of 2 (K3 = 1). We have
referred to this process (Chapter 4.3) as bi-polar re-emission (Mode BP).

For systems in which accretion takes place on to a compact gainer (¥1 probably),
the luminosity from the accretion process may dominate the accretion from either com-
ponent, and may have an important feedback on the evolution of %2 since *2 may be
irradiated by a fraction of the accretion energy — Mode IR. The expectation is that %2
will be somewhat swollen by irradiation, and that this will increase the rate of trans-
fer. If the mass transfer is on the thermal timescale of %2, then the ratio of irradiated
luminosity to intrinsic luminosity is

& ’/TR% Ml/Rl
L2 47ra2 M2/R2

(6.4.1)

This is based on the solid angle subtended by the loser at the gainer, and is likely to be
an upper limit since the loser may be partly or largely in the shadow of the accretion
disc. Raz/a relates to the mass ratio by Equn (3.1.5) if the loser is semidetached. The
ratio Ra/ Ry can be large if %1 is compact, and this can easily outweigh the modest solid-
angle factor. But the shadowing effect may be important, and is hard to assess without
a reliable 3-D model of the disc, including its optical thickness to the accretion radiation
incident on it.

If mass transfer is on a slower timescale than thermal, say Modes NE or MB, the
effect will be less, but still potentially significant for neutron-star gainers. However
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many systems with compact gainers — cataclysmic binaries and low-mass X-ray binaries
— have M dwarf or even brown dwarf losers, for which Mode MB and even Mode GR
may be on a thermal timescale.

Table 6.3 Some Cataclysmic and Related Binaries

Name Spectrum State Class P M Mo Ro Reference

AM CVn He em WeS USP .012 0.04: Harvey etal. 1998

GP Com He em WeS USP .032 Marsh et al. 1991

QY Car SDBe + M7-M8 WMS SU .063 0.685 0.07 0.127 Wood etal. 1989

ER UMa WMS ER .065 Thorstensen et al. 1997

GQ Mus WMS CN,MP,SSX .065 Shanley et al. 1995

HT Cas SDBe + M54V WMS DN .074 0.61 0.09 0.154 Horne etal. 1991

T Pyx WMS RN .075: Patterson et al. 1998

Z Cha SDBe + M5.5V  WMS SU .075 0.84 0.125 0.17 Robinson etal. 1995

ST LMi SDBe + M5-6V WMS PL .079 0.76 0.17 0.20 Smith & Dhillon 1998

QU Vul WMS CN 112 Shafter et al. 1995

AM Her SDBe + M4tV WMS MP 129 0.44 0.29 0.33 Smith & Dhillon 1998

MV Lyr SDBe + M5V WMs VY 134 Beuermann & Pakull 1984

UU Aqr SDBe + 7 WMS NL 164 0.67 0.20 0.34 Baptista etal. 1994

U Gem SDBe + M4tV WMS UG 177 1.26  0.57 0.51 Smak 1993

DQ Her SDBe + M3'V  WMS CN,IP 194 0.60 0.40 0.49 Horne etal. 1993

UX UMa SDBe + K-M WMS UX 197 0.43  0.47 Shafter 1984

EM Cyg SDBe + K3V WMS ZC 291 1.12 0.99 0.87 North etal. 2000

AC Cnc SDBe + KOV WMS NL .300 0.82 1.02 0.92 Schlegel etal. 1984

BT Mon SDBe + G8V WMS CN,SW .334 1.04 0.87 0.89 Smith etal. 1998

AE Agqr SDBe + K4V WgS IP 412 0.79 0.50 0.86 «

V Sge WN: + B8: emec SSX 514 0.9: 3.3: 2.1: Herbig etal. 1965,
Smak et al. 2001

BV Cen SDBe + G6IV-V WGS DN 611 Williger et al. 1988

U Sco SDBe + F8V WhS RN 1.23 1.55: .88 2.1 Thoroughgood et al. 2001

GK Per SDBe + K1IV WGS CN,DN,IP 2.00 0.9: 0.5: 2.5: Morales-Rueda etal. 2002

Some of the major classes are
CN - Classical Nova — one large outburst (AV ~ 10—15) recorded
RN — Recurrent Nova — somewhat smaller outbursts, every ~ 30yr
DN — Dwarf Nova — moderate outbursts (AV ~3-5) every few weeks
UG - U Gem — repetitive lows last weeks, outbursts last days
ZC — Z Cam — occasional long-lasting plateaus between maxima and minima
SU — SU UMa - fairly regular, ~ annual, ‘superoutbursts’ lasting 2 weeks, in addition to UG behaviour
ER — ER UMa — as SU, but more frequent superoutbursts, ~ monthly
NL - Nova-like system — no outburst noted, but similar to CN, DN between outbursts
UX — UX UMa - fairly steady accretion, no substantial outbursts
VY — VY Scl — occasional cessation of mass transfer, lasting years
SW — SW Sex — single-peaked emission; hot spot dominates disc
SSX — Supersoft X-ray source — powerful source of soft X-rays, usually from rapid, steady accretion
USP - ultra-short period — hydrogen absent from spectra, *2 a He white dwarf
MP — magnetic polar — accretion column, not disc; flow dominated by magnetic field; white dwarf locked in

corotation with binary

IP — Intermediate Polars — combination of column and disc; white dwarf rotation slow but not synchronous.

We give here a very brief discussion of ‘cataclysmic binaries’, also known as ‘cata-
clysmic variables’ (CVs), which can be seen as the next stage of evolution of the short-
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period systems in Table 5.1. A whole book can be written — and has been, Warner (1995)
— on this class, but here we must content ourselves with a few paragraphs. CVs include
novae and dwarf novae, along with some other non-outbursting but otherwise similar
systems. The large outbursts of novae are due to a thermonuclear explosion of hydrogen-
rich material recently accreted by a white dwarf from a companion (Truran 1982). The
smaller outbursts of dwarf novae, occuring every few weeks, may be due to instability
in the accretion process, whereby material lost from the companion accumulates in a
disc or ring around the white-dwarf gainer until some criterion is passed that increases
the viscosity so that the accumulation is rapidly dumped into the deep potential well
of the gainer (Bath & Pringle 1982). Additional ‘superoutbursts’, occurring at intervals
of six months to 30 years in a fraction of the systems which usually also show normal
dwarf outbursts, appear to be due to a dynamical 3:1 resonance between the orbit of
the system and the orbit of material within the Roche lobe of the gainer (Whitehurst
1988). The interested reader should study Warner (1995) for a very comprehensive dis-
cussion of these phenomena; here however we treat even the rare outbursts of classical
novae (perhaps one every 2 10%yr) as minor perturbations (principally Mode BP) on an
otherwise fairly steady accretion at a rate estimated from the accretion luminosity as
~10~% — 107 Mg /Myr. This quasi-steady evolution probably spans 10? — 10* Myr.

Probably all CVs suffer thermonuclear outbursts every ~10%yr, but most have not
been observed to do so. When a white dwarf has acquired a thin hydrogen-rich shell
of ~107% M, the density at the base of this shell is great enough to trigger hydrogen
burning. The environment however is electron-degenerate, unlike in a normal red giant
burning shell (Chapter 2.3.2) where the temperature is higher and the density lower.
We therefore have an explosive runaway as in a core helium flash. The luminosity
reaches the Eddington limit, and the shell is blown away. Thus over a long time span
we expect Mode BP, in addition to Modes MB, GR and/or NE that presumably drive
the long-term evolution. It is possible that Mode BP blows away more than 100% of
the accreted matter, since it is likely that shear instability at the interface may result
in mixing of the recently-accreted envelope with deeper carbon-rich (or in some cases
neon-rich, as in QU Vul) core. For unusually large white-dwarf masses, approaching
the Chandrasekhar limit, the critical shell mass can be <107% My, and thermonuclear
outbursts correspondingly more frequent, as appears to be the case for recurrent novae.

Many of the shorter-period systems of Table 5.1, with P<3d and with a cool
(G/K/M) main sequence companion, may be capable of evolving by Mode MB towards
a semidetached state. Some with rather more massive companions might evolve by
Mode NE to a similar state; although the few systems in Table 5.1 with such massive
companions (V651 Mon, FF Aqr) have substantially longer periods than one would ex-
pect as ancestors of those CVs in Table 6.3 (e.g. BV Cen, U Sco and GK Per) in which
%2 is substantially evolved. A wwbp system like 0957-666 (Table 5.1) can evolve by
Mode GR alone to something like AM CVn (Table 6.3).

Several hundred CVs have known orbital periods (Ritter & Kolb 1998), with a dis-
tribution over period showing (a) very strong and rather narrow peaks at ~0.075d and
0.14d, (b) a conspicuous shortage between 0.094d and 0.125d, the ‘period gap’, (c) a
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Fig 6.3 — Theoretical evolution of *2 of a CV, in the log M>—log P plane. (a) In all three tracks the system
‘started’ with parameters (0.6 + 0.4 M;0.2d). In the lowest curve, the thermal response of 2 to mass loss was
ignored, so that *2 simply slid down the ZAMS. In the middle curve, GR alone drove the evolution; the thermal
perturbation was slight except at the very shortest periods of < 0.06 d. In the top curve Mode MB (Chapter 4.5)
as well as Mode GR drove the evolution. The thermal perturbation was substantial below 0.08d, and caused
the period to ‘bounce’ at ~0.065d. The positions of the period gap and cutoff are indicated by horizontal
lines. The dotted line is hypothetical evolution involving ‘interrupted magnetic braking’: see text. (b) Three
tracks all start with masses 0.9 + 1.4 M, and periods of 0.5,1.0 and 5d. RLOF began at M2~ 0.5 My in
the intermediate-period system. The long-period system reached RLOF only briefly, shortly before *2 shrank

away from its Roche lobe to become a well-detached white dwarf of low mass.

conspicuous shortage below ~0.058d, the ‘cutoff’, and (d) a tail towards long periods
with some but not many above 0.4d. There is however a handful at ultrashort periods,
e.g. AM CVn, in which the loser is probably a low-mass helium white dwarf rather than
a low-mass main-sequence star. There are also about a dozen systems within the gap,
e.g. QU Vul, compared with well over 100 in the peaks on either side. Those that are
in the long-period tail tend to be fairly conspicuous because #2 is relatively massive and
bright, but most recent discoveries have tended to be in the short-period peaks.

Fig 6.3a illustrates the evolution of %2 in the M, P plane, ‘starting’ from masses
0.6+ 0.4 Mg and period 0.2d. Bipolar re-emission was set at 90%, so that only 10% of
the mass lost by *2 was permanently accreted by *1. The evolution is under three differ-
ent assumptions: (i) angular momentum loss is given by the combination of Mode GR
(Chapter 4.1) and of Mode MB with the specific model of Chapter 4.5, (ii) it is given
by Mode GR alone, and (iii) the thermal perturbation to the radius is artificially sup-
pressed, so that %2 simply slides down the ZAMS. Because, in the mass range plotted,
%2 is largely or wholly convective, its response to mass loss is to expand, but because
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it is substantially less massive than *1 this does not lead to dynamic Mode SR3 RLOF
(Chapter 3.3). Instead it leads to steady Mode SR2 RLOF — the timescale of Modes MB
plus GR on path (i) being somewhat coincidentally comparable to the thermal timescale,
which is very long at these low masses. Path (iii) terminates at about 0.08 M, because
there are no ZAMS (i.e. thermal-equilibrium) stars below this mass. Path (ii) termi-
nates at a slightly lower mass. Such masses are allowed because the component is no
longer in thermal equilibrium, but the approximate EoS in our code becomes unreliable
at these very low temperatures and high densities where non-ideal-gas effects dominate
it. In fact, any EoS is rather uncertain in this regime. On path (i) *2 was sufficiently ex-
panded and heated that it avoided breakdown of the EoS, but the models are nevertheless
very uncertain.

Fig 6.3a suggests a reason for the observed cutoff at P ~0.058d: it may be due to
the ‘bounce’ caused by increasing thermal disequilibrium, though only if Mode GR is
dominant and Mode MB is not at a substantially greater rate. This — and another reason,
see below — suggests we explore the possibility that Mode MB is somehow switched of
when %2 is below some critical mass or temperature. Let us suppose that above a certain
mass Mode MB is substantially stronger than the model used, by a factor of ~10. We
sketch by hand a hypothetical track, the dotted curve in Fig 6.3a. Starting from the top
right, the star evolves well above the ZAMS to point A. Then Mode MB is switched off.
x2 shrinks on a thermal timescale inside its Roche lobe, mass transfer ceases, and the
system becomes very faint (since ~90% of the luminosity from such CVs is accretion
luminosity). However the Roche lobe also shrinks, more slowly, on the timescale of
Mode GR. When #2 stabilises on the ZAMS at point B, it will fill its Roche lobe again
after a substantial wait, and evolution will continue along curve BC.

Such an assumption kills two birds with one stone. It explains the period gap (provided
the critical mass is ~0.19 My; see Fig 6.3a), because stars on the portion AB are very
inconspicuous, and it explains the period cutoff also. Note that we need the cessation
of Mode MB to be rather abrupt; a steady diminution would leave the star following a
steady RLOF path, without getting substantially but temporarily fainter as required.

It is usually suggested that the sudden cessation of Mode MB is due to the fact that
low-mass stars change from having radiative cores to being fully convective at ~0.35 M.
However, the transition has to occur at about 0.19 Mg, to place the gap at the right
period range. In fact, there are many later and lower-mass M dwarfs known that are
conspicuously active, such as the prototype flare star UV Cet. But UV Cet rotates much
more slowly. Perhaps rapid rotation alters (i.e. supresses) the dynamo, although most
indications are that activity increases, or at least saturates, with increasing rotation.

Another difficulty may be that the model assumes that all CVs start somewhere near
the upper right of Fig 6.3a, perhaps even beyond the right-hand margin of the Figure.
But many of the precursor systems in Table 5.1 have a %2 that is already of quite
low mass. If say KV Vel evolves in the fullness of time to a CV (%2 being above the
critical mass at 0.23 M), it will become a CV squarely in the middle of the period gap.
There are several other such precursor systems; they would have to avoid the mass range
0.17—0.35 Mg, in order not to do so. Although the statistics are very poor, the precursor
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detached *2’s do not seem to do this, and there seems no reason why they should.

Patterson (1998) has discussed very carefully the implications for theoretical evolution
that can be drawn from the short-period systems near the cutoff. He concludes that
angular momentum loss in excess of GR by about 50% is desirable, and that after
‘bouncing’ the systems must dissipate themselves rather quickly, in ~10% of the time
that GR would allow. Evidently the distribution over period among CVs convolves
both the current evolution mechanism and the distribution over mass (Ms) of precursor
systems. The distribution of CVs over period has strong features in it that cry out for
interpretation, but we feel that we are far from understanding them at present.

The modest subset of CVs that show substantial nuclear evolution in *2 —e.g. BV Cen
to GK Per, Table 6.2 — will evolve in a very different manner to the low-mass systems
that are incapable of Mode NE. Whether the period increases or decreases will depend
on the balance of Mode MB to Mode NE, but it is clear that Mode MB cannot always
dominate or something like GK Per would not exist. It is likely therefore that these
systems evolve to longer, not shorter, periods, with a bifurcation at around ~1 Mg for
the ortginal mass of *2. The outcome in the long term would often be a ww D binary,
with a period of a few days. *1 would be unusually massive, and *2 of unusually low
mass.

Fig 6.3b shows possible evolution of systems with different initial periods, but the
same initial masses (0.9 + 1.4 Mg). All of Modes NE, EW, MB, PA and BP were included,
along with (reverse) RLOF. Even the shortest-period system is able to do some significant
nuclear evolution in its early stages, so that by the time that %2 is reduced to the mass
where it becomes fully convective its uniform hydrogen abundance is reduced from 0.7
to 0.55. The next system shows Modes NE and EW winning at first, so that the period
increases, but then Mode MB wins and #2 fills its Roche lobe when reduced to ~ 0.5 M.
Its small, nearly-exhausted, core persists without being entirely mixed by convection, and
so the period ultimately bounces at a somewhat shorter period than in the first case.
In the widest system Modes NE and EW dominate throughout, and the systems widens
from P~5d to P~13d, at which point *2 detaches from its Roche lobe and becomes a
white dwarf of ~0.25 Mg with a rather thick hydrogen shell (~0.01 Mg).

It is possible for a white-dwarf gainer to grow fairly steadily in mass, if it is fed with
fuel at a rate which is not much less than the rate at which a white dwarf is fed fuel if it
is the core of a conventional red giant. In this case the white dwarf could be expected to
retain most of its accreted mass, instead of blowing it away in intermittent CN outbursts.
Some ‘supersoft X-ray sources’ (SSXs) may be in such situation. It is possible that the
white dwarf will grow to the Chandrasekhar mass, and suffer ‘accretion-induced collapse’
(AIC), to a neutron star.

V Sge is a binary that has been known for a long time. It is not clear that it fits
in any regular class of CVs, although it is usually grouped with them. The nature of
both components has been arguable, but Smak et al. (2001) opt for the combination of
a somewhat massive C/O white dwarf core surrounded by a helium-burning shell, and
a late B main-sequence star; a possible product of Case C evolution, which may have
started with parameters not unlike what we hypothesise for the precursor of IK Peg
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(Table 5.2). Both components of V Sge are of much greater luminosity than in normal
CVs. They both appear to fill, or slightly overfill, their Roche lobes, but nevertheless to
have very different temperatures (65 + 12kK). It is unlikely that the outer layers are in a
simple hydrostatic configuration, and there is evidence of a hot gaseous envelope around
the system, fed by mass-loss from the hot component. The luminosity varies erratically
between lower and higher values, but not in the manner of dwarf nova outbursts.

There are observational indications of mass loss from the system, probably from x1
alone. It is not clear that there is any mass transfer at all; both components might be
radiating intrinsic (nuclear) luminosity, while the WR-like component may produce an
intrinsic wind. But the fact that both components appear to be as large as their Roche
lobes makes it rather unlikely that there is no mass transfer. If the system is simply
the last, slightly detached, stage of Case C RLOF that has suffered Mode CE, we would
expect *1 to shrink rapidly inside its lobe. But because of the mass ratio, it is quite likely
that *2 loses mass on a thermal timescale (Mode SR2) as a result of evolution that was
originally (post-Mode-CE) on a nuclear timescale. Some of this mass may be accreted,
burn, and add to the core mass of 1, while some may be re-emitted (Mode BP). Since
Ly ~400L4, it is possible that %1 is burning a substantial fraction of the mass lost by *2,
i.e. that x1’s nuclear timescale is comparable to *2’s thermal timescale. If indeed the
process manages to average to a fairly steady rate of transfer and accretion, it does not
seem unlikely that %1 will grow in mass to the Chandrasekhar mass.

However, it is something of a problem that we would expect rapid (thermal timescale)
RLOF, because of the considerable mass ratio. The observed timescale of period decrease
is P/P~ —3Myr, and Smak et al. (2001) estimate the ratio of mass lost from the system
to mass transferred (from *2 to 1) as 2/3. These correspond to our non-conservative
parameters (Chapter 4.3) £ : ¢; : (¢ = —3 : 2 : 0. Then Equn (4.3.9) — ignoring the
terms in Ry and R — along with Equns (4.3.3) gives My/My~ — 21 Myr. This is quite
a lot slower than the expected thermal timescale. Perhaps the mass transfer is somehow
stabilised by Mode IR, which must be very important in this system.

We believe the system is still highly problematic. We have argued, regarding Mode CE,
that only systems with rather extreme initial mass ratios (go 2 4) undergo conventional
Mode CE with a large period shrinkage; milder initial mass ratios may result in much
mass loss but relatively little period shrinkage, as in IK Peg or V651 Mon (Table 5.2). We
add to this the difficulty of reconciling the timescales. But whatever the past evolution,
future evolution seems quite likely to lead to AIC in <1 Myr.

CVs are a class of binary where accretion energy is often the dominant contribution
to the observed energy output, apart from outburst. This is also the case for low-mass
X-ray binaries (LMXBs). Here the dominant energy is typically in X-rays, but even
in the visual region much of the observed energy often comes from the accretion disc
rather than either stellar component. The gainer is either a neutron star or a black hole.
Mode IR is likely to be substantially more important than for CVs — see Equn (6.2.3).

Some examples are given in Table 6.4. Although the origin of most CVs can be
plausibly accounted for by Mode CE, followed by Mode MB and/or Mode NE, it is
harder to see how LMXBs are formed. The transition sMS;CE -+ WMD seems reasonably
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Table 6.4. Some Low-Mass X-ray and Possibly Related Binaries

Name alias Spectrum State P M, Mo Ro Reference

J1751-305 2.5ms +7 NcS .029 .0000013% Markwardt et al. 2002
UY Vol J0748-6745 XR +7? NMS .159 - - van Paradijs et al. 1988
V616 Mon J0622-0020 XR +K5-7 BMS .323 10: T Johnson et al. 1989
V818 Sco Sco X-1 XR +A: NMS .787 - - Priedhorsky & Holt 1987
HZ Her Her X-1 1.2s+A-FII1 NMS 1.70 1.3: 2.2:  3.9: Deeter etal.(1991)
V1033 Sco J1654-3950 XR +F6IV BMS 262 6.6 2.8 5.2  Shahbaz 2003

V404 Cyg J2024+3352 XR +KOIV  BGS 6.47 6.8% 0.4* 5.0 Casares & Charles 1994
V1341 Cyg Cyg X-2 XR +A9III NHS 9.84 1.8: .6: 7.5 Orosz & Kuulkers 1999
J1012+5307 5.3ms +WD NWD .605 1.6% 129 van Kerkwijk et al. 1996a
J1857+0943 1855+09 5.4ms +WD NWD 123 1.5 .26 Kaspi et al. 1994b
J1640+2224 3.2ms +WD NWD 175 .0058% Lundgren et al. 1996

2Mass function, or if two values M; sin® i

bRy sini

natural, but it is not so clear how a neutron star would emerge from something similar.
Currently there appear to be three main suggestions.

Firstly, the AIC process referred to above might convert a CV directly into an LMXB.
A major problem is that this will not account for black holes, which are several times
more massive than neutron stars. However the existence of objects like V Sge, and other
SSXs, does suggest that at least some LMXBs may form in this way.

Secondly, Mode CE can occur when the core of the large star is still burning helium,
or even somewhat earlier. Stars with M;o %8 Mg, i.e. massive enough to form a neutron
star, evolve rapidly across at least the first half of the Hertzsprung gap before igniting
helium. Mode CE can be expected if g is large, whether RLOF begins in Case B or
Case C. We obviously need a large gy to produce the combination of a neutron star
(or black hole) and an A/F/G/K dwarf. Unfortunately we do not have a clear idea of
how common high-gy systems are. The largest gy (~8) measured fairly reliably in mmD
systems is in EN Lac (Table 2.2), but such systems must be hard to detect.

Thirdly, supergiants with a neutron-star or black-hole core (TZOs) may be the natural
outcome of evolution of those HMXBs (Chapter 5.3) which have relatively short periods.
If such a system lies within a wider triple, it is possible that the distant companion,
presumably a low-mass star, is caught up in the envelope of the TZO, and spirals in by
Mode CE. VV Ori (Table 4.10) might be such a triple, although we would prefer one
with a longer outer period.

A substantial number of radio pulsars with pulse periods of a few milliseconds are
found to be binary (‘MSPBs’), and with orbital periods ranging from a few hours to a
few years. The companions are very inconspicuous. They are conjectured to be white
dwarfs; in a few cases a white dwarf is actually seen at the radio position. They could
be the descendants of those LMXBs in which Mode NE dominates over Mode MB, e.g.
HZ Her and V1341 Cyg. It is however surprising in that case that there are several with
period under 1d, such as J1751-305. We would expect a dichotomy, with shorter-period
LMXBs evolving to shorter period still by Mode MB with no Mode NE, and remaining as
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LMXBs, while the longer-period LMXBs evolve by Modes NE and SR1 to longer period
still, until the envelope is exhausted and a white dwarf core is left. We seem to require
that several systems ‘start’ in an intermediate regime where at first Mode NE allows a
small white-dwarf core to form while the binary widens, but then Mode MB becomes
dominant and shrinks the orbit while it exhausts the envelope. If this is so, it may be
quite a powerful restriction on models of Mode MB.

At the beginning of this Section, we indicated three cases, (i) — (iii), in which Mode BP
might be expected. In cases (i) and (ii), since the energy being tapped is essentially
energy from the accretion process itself it is unlikely that more than a modest fraction of
accreted mass is blown away. The third case does not apply to neutron stars, since even
the nuclear energy from hydrogen-rich accretion is not enough to push material from the
surface of the neutron star to infinity. Thus we appear to be arguing, for a neutron-star
gainer, that in any circumstances it would be likely to accrete most of the material that
falls into its potential well, rather than to re-emit much of it. This is something of a
problem, because (a) several MSPBs (three in Table 6.4), are seen with faint white-
dwarf companions, presumably the relics of companions that were once 21 Mg, and (b)
neutron stars probably have an upper limit to their mass, because of their equation of
state, and although this limit is not well known it would be surprising if it were over
~2 Mg. If, for example, HZ Her evolves in a largely conservative way, with RLOF and
with very little Mode BP, one would expect it to evolve to a state with parameters say
(3.4+0.4 M;30d). *1 would probably become a black hole in the course of this, though
with substantially less mass than any currently-known black hole (as in V616 Mon).

A further reason for believing that neutron stars do not in fact accrete much mass
comes from the fact that, as in Equn (6.2.2), they would be spun up to breakup by
the accretion of a rather modest amount of mass from the inner edge of a Keplerian
disc. We cannot entirely discount the possibility that the neutron star is in a state of
extreme differential rotation, in which case centrifugal support might allow it to be of
substantially greater mass than any non-rotating limiting mass. But J1857+0943, the
only system so far with an SB2 character, seems to argue against this. Although the
inclination is unknown, eclipses being exceedingly improbable, the white-dwarf mass on
the assumption that i ~90° is about what is expected from the orbital period.

However, our non-conservative model of Chapter 4.5 predicts that LMXBs are quite
likely to evolve mainly by Modes EW, MB and PA, rather than RLOF. If the neutron
star accretes only a modest proportion of the wind generated by dynamo activity in the
companion, while the rest of the wind blows to infinity, then it may naturally increase its
mass by only a modest amount, while accelerating its spin to the short periods observed.

Our canonical model of Modes NE, EW and MB gives evolution in the log P —log M,
plane which is, not surprisingly, little different from the CV evolution of Fig 6.3. However,
as mentioned above, it is not easy to see what starting conditions might produce the
very short-period system J1751-305 in Table 6.4. The short-period (AM CVn) systems
of Table 6.3 seem like legitimate descendants of ww D systems like 0957-666 in Table 5.1,
which may themselves be legitimate descendants of post-Algols after Mode CE in reverse
RLOF. But it is not so easy to see how this kind of progression would occur if 1
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were a neutron star rather than a low-mass white dwarf. Possibly the system ‘started’
as in Fig 6.3b but somewhere intermediate between the initial periods of ~1d and
~b5d; presumably very close to some critical period defining the dichotomy between
late contraction and continued expansion. Such models were suggested by Nelson &
Rappaport (2003), although as they did not model Mode EW they favoured a somewhat
shorter initial period.

Surprisingly many LMXBs, as well as MSPBs, are found in globular clusters. This
suggests that Mode DE is much more important there than in the bulk of the Galaxy.
Neutron stars are no doubt formed from the massive stars that existed in very young
globular clusters, but it is surprising that any have been retained given the asymmetric
kicks that seem to be necessary to produce the high proper motions of pulsars in the
solar neighbourhood. A bimodal distribution of kicks may be necessary. But given
that apparently several are retained by their parent globular clusters, they presumably
gravitate slowly to the centre once the mean mass of stars is reduced below ~1.4 Mg,
and there can interact by an exchange reaction (Mode DE) with close primordial K/M
dwarf pairs.

6.5 ACCRETION IN ECCENTRIC ORBITS

Most binaries with P 2 5d have eccentric orbits, at least initially. In many binaries
with P~ 0.5 — 100 yrs, we expect %1 to develop a wind, as a red giant or supergiant, and
x2 is liable to accrete from this wind, even if the orbit is non-circular. Although tidal
friction may well circularise the orbit if and when *1 becomes large enough, the wind may
become significant before then. There are several binaries, such as some in Table 6.2,
whose present evolutionary state suggests a previous interaction, and yet whose orbits
are obstinately non-circular.

Although the concept of a Roche lobe only applies to circular orbits, we expect that
Equn (3.1.10) can be loosely generalised to say that if at periastron the radius of 1 is
a fraction zr,(q) of the separation then some kind of overflow should take place. This
means that P.., the period at which interaction first occurs as the star’s radius expands,
is in effect increased, or equivalently we should compare it to an ‘effective orbital period’
P’ defined by

P~ P1—-¢)®¥* | (6.5.1)

such that the semimajor axis of the effective circular orbit is the same as the periastron
separation in the actual orbit. However, some interaction affecting the orbit might take
place significantly before that, because of wind — either wind which leaves the system,
or wind which is partially accreted by the companion. There is also the possibility of
episodic accretion: this might take place mainly near periastron since the wind density
will be highest there, but might alternatively be peaked to apastron since the relative
velocity is slowest there and therefore the accretion radius is largest — Equns (6.1.9,
6.4.1). Even without wind, and supposing that tidal friction has not in fact circularised
the orbit, we expect some kind of episodic accretion once the star exceeds its ‘Roche
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lobe’ at periastron. A variant of this is that *1 might be a pulsator (Mira, Cepheid),
which might transfer mass at some periastra, those which coincide more-or-less with a
maximum stellar radius, but not at others.

It is difficult to model in detail the accretion process in such cases, but we can seek
guidance in very simple models. In Appendix C(e) a model is put forward for dealing with
the perturbation to an orbit due to mass loss with or without mass transfer. This model
comes from considering the simplest generalisation of the usual momentum equations
Mlal == —Mgag = F(dl - dz) which
(a) is invariant under Galilean transformations d; — d; + Ut, where U is a constant,
(b) is symmetric with respect to suffices 1 and 2, so that it is unimportant whether one
or the other star (or both) is losing mass,
(c) leads, in the case of mass transfer with no wind mass loss, e.g. conservative RLOF
in a circular orbit, to the familiar Equn (3.1.13), and
(d) leads, in the case of wind mass loss with no transfer to the familiar Equn (4.3.2).
Replacing Mid,; by d(Mla)/dt = Myd; + M;d; will not do, since the result is not
Galilean invariant.

Let us write, as in Section 4.3, the following equations for the rates of change of mass:

My = —CG—€&, Ma= —G+€&, M= GG ; (6.5.2)

the (’s are the rates of loss to infinity, and £ is the rate of transfer. Some or all of these
we now imagine to be dependent on orbital phase. Then suitable equations which are
manifestly Galilean invariant and symmetric are
- GMyMd - - GMiM.d -
Md = — "=+ (d-V)E . Mady = T~ (A= V)E, (65.3)
where

MV = Myd; + Mad, . (6.5.4)
Combining these into an equation for the relative motion,

- GMd £ . 1 1 1
d = — f f = — d = — - — 6.5.5
43 +Iwr , twr MWT ) MWT M2 Ml ) ( )

and the label WT stands for Wind Transfer. This equation does have also the required
property, as shown in Appendix C(e), of giving the two familiar results of conditions (c)
and (d) above, in the appropriate limiting circumstances.

We can now determine the effect of the term fyy on a general Keplerian orbit, using
the methodology of the LRL vector as described in Appendix C. In particular, we look
for any general guidance on whether the eccentricity can be expected to decrease or
increase, if the factor £ in fyr is phase dependent. Consider for example a situation
where ¢, = 0 (no wind out of *2) and where ¢; + £ = —M ~ const., but where £, and
hence also (1, is strongly phase-dependent. Using angular brackets for an average over
an unperturbed Keplerian orbit, the rates of change of the specific angular momentum
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vector h = d X d, and of the LRL vector e which gives the direction of the semimajor
axis and the magnitude of the eccentricity, are given — Equns (C106) — by

h=

— h<é¢>
Mwr ¢

e =

<£d>><hfi

&d
*GM;JV[VVT Vi << — > +e ¢ >> . (6.5.6)

d

This is a special case of the more general Equn (C100) which applies if any or all of the
(’s and & are non-zero. We consider the following three models for &, which are loosely
related to the discussion on accretion in Section 6.4, but are mainly chosen for their
analytic convenience:

M| (Vo)™ .
€ = d2° al , j=0,lor2 . (6.5.7)

The quantities dy and V) can be subsumed into one constant, but are given separate
names to indicate their dimensionality: like My, they are assumed constant on an orbital
timescale, but might well vary on a longer timescale. The factor 1/d? imitates the fact
that the density of the wind can be expected to drop off with distance, and the |d|
dependence imitates an expected dependence on accretion radius. From the estimate of
Equn (6.4.2) we might expect that j ~0 is relevant if the wind speed is high relative to
the orbital speed, and j ~ 1.5 is relevant if it is low. Equn (6.5.7) with j = 1.5 leads to a
tedious elliptic integral, but we hope to estimate the behaviour in this limit by looking
at j =1 and 2.

The dependences on d and on |d| in Equn (6.5.7) work in opposite directions. The
d-dependence alone gives most accretion at periastron, whereas the |d|—dependence alone
gives most at apastron. The case j = 1 is neutral: accretion has the same (local maxi-
mum) rate at both apses.

Performing the averages with respect to time over the unperturbed Keplerian orbit,
with the help of the basic equations (C4) - (C9) of Appendix C, we obtain

. - M, . - 2 1
=0: h= — h = - M — 5.
j=0 Y- , € 0e<MWT + M) (6.5.8)
M, .
=1: h= — h , é=0 6.5.9
J VM (6.5.9)
. MO 1+€2 . 2 1
) =2 h = — h 6 = M — 6.5.10
j denitS e — e (5Ao ) 650
where

(Ve
M0:a2(1—62)2 i . (6.5.11)
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Because of the symmetry of £ about the major axis, there is no apsidal motion in these
models, i.e. no term in € proportional to € x h. Thus e changes only in magnitude.
We see that, in the j = 0 case, the eccentricity decreases to a minimum at a specific
mass ratio, which is M;/My = 0.78, and then increases again. In the j = 2 case the
eccentricity reaches a maximum at that value. One might wonder if this critical mass
ratio is an artefact of the specific form of Equn (6.5.7), but variants of this usually give
a similar answer because of the more general character of Equn (6.5.6). This typically
leads to a critical value of M;/Mj that may depend slightly on e.
A different but related situation is one where, perhaps because x1 is a pulsator, say
a Cepheid or Mira, mass transfer is very strongly peaked at periastron — perhaps not
every periastron, if the pulsator happens to be at minimum radius, but nevertheless
only near periastron if at all. A crude model of this can be obtained with a J-function
mass-exchange rate. To some extent the process might even be conservative in the sense
that all the matter lost by the pulsator is gained by the companion. So let us consider
Cl =0= (2, and
£ = MoP > 5(t—tn) (6.5.12)
n

a delta-function pulse of mass transfer at periastron, when t = t,,; Myisa given (positive)
constant. The equation for the evolution of h is the same as in Equn (6.5.6), but the
e-equation is simpler because of assumed mass conservation:

) )
o= ——~ <&d>xh . 5.1
é Giiien <€d>x (6.5.13)

Averaging over the Keplerian orbit, we obtain

. 2M0 l+€
h = — . 6.5.14
L o= — it (6.5.14)

M,

l:l =
Mwt

Thus, for M; > My initially (Mwr > 0), the eccentricity reduces to a minimum at M; =
Mo, slightly earlier than in the previous case. Of course the model fails if e is reduced to
zero before this: episodic accretion at periastron makes no sense once e ~ (0. Presumably
if e reaches zero it stays zero, but if it does not reach zero before M; = My then it
increases again subsequently.

Tout (private communication) has suggested that a more valid model for fyyr —
Equn (6.5.5) — would have Mwrt = M, rather than the definition (6.5.5). This is
because it is unclear what happens to the angular momentum of the matter that is being
accreted by *2. The matter from %1 gains angular momentum from Coriolis force as it
flows towards *2; this is why an accretion disc is formed. As the matter flows in through
the disc, its angular momentum flows out. If %2 is quite small (as usually supposed)
most of the angular momentum must be ‘lost’, but it is not clear where to. In principle,
it might either escape from the system, carried by a very small amount of mass from
the outer edge of the disc, or it might be re-accreted by *1 and thus get back into the
orbit. Equn (6.5.5) indirectly assumes the latter: it assumes that all the matter getting
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to infinity carries only the specific orbital angular momentum of the star from which it
came. The amended version — Mwt = My — assumes the former. Without a detailed
hydrodynamic (or MHD) model, it is not clear which extreme is closer to the truth. Note
that the amended version is no longer symmetric as between %1 and *2.

6.6 CONCLUSIONS

There can be no doubt that RLOF is the most important way in which the evolution of
a star can be affected by the presence of a binary companion. If the RLOF is largely con-
servative of both mass and orbital angular momentum there are several straightforward
consequences that should follow. However, there are certainly some non-conservative
possibilities that can arise in various situations; and the fact that even isolated stars are
quite complicated entities means that we must always be cautious in applying ‘standard’
theoretical conceptions to real systems.

A number of fairly general problems are listed here. The first five are what we consider
to be most important, and the remainder are in no particular order.
(1) Even the evolution of single stars presents severe problems. We emphasise the fact
— Chapter 2.3.5 — that in (arguably) non-interactive wide binaries with well-determined
parameters where one component is a red giant and the other is a main sequence dwarf,
the dwarf’s radius is considerably larger than the mass-ratio would imply in an alarming
fraction of cases.
(2) Many of the closest systems (Case A) must evolve into contact, and evolution beyond
this point is very poorly understood. Some close binaries will probably merge, which
means that a proportion of currently single stars may be former binaries, and of current
binaries may be former triples.
(3) Common envelope evolution is a particularly uncertain area, and it is not possible at
the moment to make a clear a priori estimate of the period of a system that emerges from
a common envelope. Nevertheless it is clear that some compact highly-evolved systems
were created this way: we can only parametrise the situation, and hope that observed
systems will give some sensible value for the parameters introduced.
(4) Many binaries containing cool stars show evidence of dynamo activity considerably in
excess of similar single stars. Many also show some evidence of substantial loss of angular
momentum and/or mass. These problems may be related; we need a non-conservative
model of them. Such a model must also include tidal friction. Models of these processes
have been described here, but are extremely tentative. Much work has to be done in this
area.
(5) Some observed systems are found to disagree both with moderately conservative
evolution (RLOF, but perhaps modified by winds) and the extremely non-conservative
mechanism of common envelope evolution. We need a compromise mode, which we call
Mode EJ, where much of an envelope is ejected rapidly but there is rather little change
to the orbit.
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(6) We have to understand better whether (a) all stars producing black holes are more
massive than all producing neutron stars, (b) there is something systematic but not
necessarily monotonic in the production of compact remnants, or (c) it is a chaotic
process, perhaps depending on the history of rotation and magnetic field in the core and
envelope.

(7) The velocity field of material within even single stars is not well understood, and
may have important effects on both mixing of composition and tidal dissipation.

(8) The heat energy deposited in the gainer as a result of mass transfer from the loser no
doubt depends on the thermal history of the gas as it flows from one star to the other,
either directly or via a disc. When, after much transfer, the material added to the gainer
comes from near the core of the loser its composition will be different and might induce
mixing, by the Rayleigh-Tayler instability. Probably these will only be small effects.

(9) Some of the accretion energy, particularly from a compact gainer, may be used to
drive a bipolar outflow from near the central region of the accretion disc. Probably the
material lost to the system carries off specific angular momentum equal to that of the
gainer’s orbital motion.

(10) The outer radius of the disc can be estimated by integrating the motion of particles
falling inwards from the L; point, to the point where they have acquired an angular
momentum (from Coriolis force) about the gainer equal to the angular momentum of a
circular Keplerian orbit through the same point (Flannery 1975, Lubow & Shu 1975).
However this does not allow for the fact that angular momentum transport outwards
in the disc, due to viscosity, will push out the outer edge of the disc; some discs in
cataclysmic binaries appear to be substantially larger than the simple theory predicts.
At the point where the stream of particles from L; impacts on the outer edge of the disc
we expect a ‘hot spot’.

(11) Averaged over a very long time, it is possible that the gainer might actually lose
mass. If the gainer is a CO white dwarf, and if accreted hydrogen-rich material mixes to
some extent with the CO material at the surface, a thermonuclear explosion will occur
once the H-rich outer layer reaches a critical mass, and this explosion could eject not
only the accreted material but also interior CO material that it mixed with (MacDonald
1983). Thus the WD, and hence the system, might lose mass in the long term.

(12) The gainer may acquire spin angular momentum, until it rotates at its own breakup
speed (Q%~GM,/R3). This may act as a drain on the orbital angular momentum,
though only a modest one. But it may prevent the gainer from actually accreting any
more material, and further material may have to accumulate in some outer part of the
Roche lobe until tidal friction transfers some of the gainer’s spin angular momentum
back into the orbit.

(13) If the gainer is not strongly magnetic, then the accretion disc should extend down
to the stellar surface. But unless the gainer is rotating at breakup, there must be a
boundary layer between the surface and the inner edge of the disc, in which there will
be considerable shear. The boundary layer must liberate considerable energy; but the
details of this region are not definitively modeled.

(14) Equn (6.4.1) assumes that the wind from the loser is spherically symmetric, but real
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winds may well be confined towards the equatorial plane. This could increase significantly
the fraction of mass transferred.

(15) The concept of RLOF is based on the notion that a star has a rather well-defined
photospheric surface, but red supergiants probably have extremely poorly defined sur-
faces, which may be very asymmetric if dominated by a small number of large convective
cells (Tuthill et al. 1999). Such stars may also be pulsating variables, either fairly regular
(Miras) or, lower down the giant branch, semiregular or irregular. This might mean that
Mode 3 RLOF (i.e. on a hydrodynamic timescale) could be irrelevant, or at least much
modified.

(16) RLOF is in theory only meaningful in a circular orbit. It is usually assumed that
an orbit will circularise in the interval prior to RLOF, thanks to tidal friction. But
stars crossing the Hertzsprung gap evolve on a rather short time scale, and it is not so
clear that tidal friction has time to circularise the orbit. Even when evolution slows down
temporarily on the giant branch, the evolution is still rapid compared with main-sequence
evolution, and tidal friction may not be fast enough for circularisation. Some kind of
intermittent mass transfer may take place when a star approaches a radius comparable
to the ‘Roche lobe’ radius at periastron.

(17) Triples, in particular fairly close triples where both periods are less than ~30yr,
while not very common, are also not very rare. Some of these will evolve in rather inter-
esting ways that are not available to mere binaries. Triples are probably also particularly
prone to dynamical encounters.

(18) Dynamical encounters, both in young star-forming regions and in older clusters that
are still dense, may change binaries radically, probably causing collisions in some close
primordial binaries, and also causing exchanges which mean that the current components
may be non-coeval.

A number of the problems may only be approachable via 3-D modeling of entire stars,
and indeed entire binaries. This subject is in its infancy, but rapid advances in computer
technology may mean that a model with 10'! meshpoints in it will be available in perhaps
ten years. Already the Djehuty project (named after the Egyptian god of astronomy) at
the Lawrence Livermore National Laboratory can manipulate whole stellar models with
~10® meshpoints. This may be adequate for studying say convective motion in cores,
but the larger number is minimal for resolving convection in surfaces.
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Appendix A: The equations of stellar structure

The equations of stellar evolution are presented here firstly in a traditional form and
secondly in a form which we have found convenient for computation. Traditionally they
are seen as 4 equations for the 4 structure variables p, T, r and L, with Lagrangian
mass-cordinate m as the independent variable. Omitting a few refinements, they are:

% - 452]9 ’ (4
L
X (alg—fT aalgfp> (A4)

Density p, opacity x, specific heat C},, adiabatic gradient V., nuclear energy generation
rate € and neutrino loss rate ¢, are known functions of pressure p, temperature 7', and
the abundances X; (X¥X; = 1) of the various nuclear species. Equns (A1) — (A4) are
solved for a given distribution of the X;(m), and these abundances are then updated
according to the prescription that, at a radiative meshpoint (V, <V,), is

0X;
at = AiZainj , ZAiaij =0 , (A5)
J %

where A; is the atomic number, R; is the local rate of the jth nuclear reaction, and the
o;; are stoichiometric integers giving the number of particles created or destroyed per
reaction. The number of compositions solved for can be quite large, although in practice
only a modest number of composition variables have an important influence back on the
structure of the star. In a convection zone a more complicated recipe is needed, based on
the concept that the composition is uniform in the zone as a result of convective mixing.
In a semiconvection zone a still more complicated recipe is needed, usually based on
the concept that the composition is determined by the neutral condition for convection:
V: = V.. It is often unclear in published work what these recipes are, and how they are
implemented numerically.

The rates 2; determine the nuclear energy generation rate € as well as the composition
changes:

€ = ZZEiAiOzinj = ZQ]'R]' R Qj = ZEiAiaij y (AG)
i J i

where the E; are the binding energies (per baryon) of the various species and the @), are
the energy yields of the nuclear reactions. We ignore in this discussion the fine distinction
between atomic weight and atomic number, although it is taken account of in the code.
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Note that Equns (A4) above and (A14) below, the latter a consequence of the former,

are not correct in situations where the composition is changing. Thermodynamics tells
us that

dU +pdV = TdS+TY  ;dX;/A;

= CpT(dlogT — Vadlogp) + (S)I?) aX; (A7)
(3 p,T

where V is the specific volume (1/p), the 1); are chemical potentials, available from the
equation of state with a little extra trouble, and H is the enthalpy. The error in missing
out the enthalpy term would only be of consequence if the composition were changing
on a thermal timescale, but of course it normally changes on a nuclear timescale which
is ~1000 times longer. The error could be significant if, say, a convective zone expands
rapidly, on a thermal timescale, into a region with a substantial composition gradient.

In the code used here, we suppose that only 5 nuclear species (H, *He, '2C, 160
and 2°Ne) are important for the changing structure of the star. Then we think of the
structure and composition equations together as a set of 10 partial differential equations
to determine 10 ‘dependent’ variables — 10 rather than 9 because there is an extra one
to determine the distribution of meshpoints (see below). The dependent variables are
defined at a set of discrete meshpoints whose positions within the star are determined
implicitly by the equations themselves. This means for example that the mesh is non-
Lagrangian, and so when Lagrangian time-derivatives are required an advection term
must be included. Such an implicit adaptive mesh turns out to be very stable, at least in
the context of stellar evolution, and allows timesteps to be taken which can in some cir-
cumstances be much larger than those that can be taken with a Lagrangian distribution
of meshpoints.

The 10 dependent variables are r, m, L, T, ¢ (the electron chemical potential), and
X;, for i = 1 to 5, the fractional abundances by mass of *H, “He, 12C, 10 and ?°Ne.
In principle there are many more than 5 abundances which have to be determined, but
in practice these 5 are the main ones determining the structure up to and including
the late stage of carbon-burning. There are two independent variables, ¢ (time), and
a space-like quantity k& which is in principle a continuous function of position but in
practice can be thought as taking consecutive integer values at the meshpoints. Since
the non-Lagrangian mesh is arranged to give meshpoints only where they are needed,
a quite small number of meshpoints (say 200) is normally adequate for the whole star,
from surface to photosphere, independent of the evolutionary stage of the star.

It is convenient to define a number of subsidiary variables, which are functions of the
dependent variables. The following 15 are functions only of the state variables T', ¢ and
Xit p, p, S, Ky, Va, Cp, v, Ri, €, €, and x. These are respectively pressure, density,
entropy, opacity, adiabatic gradient (0logT/dlogp)s, specific heat at constant pressure
(0S5/0logT),, compressibility (0logp/dlogp)s, the destruction rate of the ith nuclear
species (a negative quantity if the species is being produced rather than destroyed), the
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nuclear energy generation rate, i.e. XQ;R; as in Equn (A6), the neutrino energy loss
rate, and a radiative diffusion coefficient

dacT?
= —— . A8
X = 300, (48)

In addition to V,, defined in Equn (A3), we define three more quantities which are
also explicit functions of the dependent variables at a point, but not just of the state
variables. These are [, the convective mixing length, w, the mean velocity of turbulent
eddies in a convective zone, and V, the actual temperature gradient — approximated in
(A3) as min(V,, V,). The last three are only estimates, of course, which come from the
standard version of the mixing-length model of turbulent convection. They are given by

2
. pr p
l= VA A
o min <Gmp’ sz) , (A9)

(lw>3+2 (l“’>2+9lw O VT max(0, Vs — V) (A10)
- - - = 5 ad max\U, Vy — Va),
X X X a2 P
and s
4lw
-v, ——2 All
v v a?2xV,CpT (411)

Equn (A10) is a cubic equation for lw/x which is readily solved algebraically for the
unique positive root: if 3 +22% + 9z = a>0 then 3z = ¢ — 23/c — 2, where ¢ =
b+ vb% + 233 and 2b = 146 + 27a. Obviously Equn (A10) gives w = 0 in a convectively
stable region (V;<V,), and hence V = V, from Equn (A11). Thus we can determine
[,w,V in terms of other local variables.

The 10 differential equations for the 10 dependent variables can now be written:

maolfp N *4%,3%—75 ’ (412)
% _ ﬁ&pg_z, (A13)
T _Gnvom, i
g—i = (;QJRJ—EV)%—TZ—C;)T [mng—Vaalgfp} %—TZ
+CpT[81§]§T aag’]fp]%—? , (A15)
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8_m 1 [a1Gm as -t
ok  C

4rrip T ml/3 (A17)
In the last equation, C' is a kind of eigenvalue, i.e. a constant (in space, but not in time)
whose value is not known until the equations are solved; a; and a9 are constants whose
values have to be chosen in order to give a reasonable dissection of the star into finite
mesh intervals. By combining Equns (A12) and (A17), it can be seen that the effect of
these equations is to make

k= C(—aylogp + 1.5a9m*/3) + const. , (A18)

and so the meshpoints, which are at equal intervals of k, are therefore at equal intervals
of this function of pressure and mass. In the surface layers, where m ~ const., this means
that they are at approximately equal intervals of log p; while near the centre, where p ~
const., they are at approximately equal intervals of m2/3. In practice, a slightly more
complicated function, involving extra terms in log 7 and r2, is used. The significance of
the particular powers m?/3, 72 is that both go linearly with log p, log T near the centre.
C' is determined by the fact that the first-order differential equation (A17) has two
boundary conditions, viz.
m=0 at k =0, (A19)
and
om
ot
where K is the number of the outermost meshpoint. The RHS of Equn (A20) can be
zero, if there is no mass loss by stellar wind, and no RLOF; otherwise Equns (2.4.6)
and/or (3.3.1.19) might be used for the two terms on the RHS. The remaining boundary
conditions are

= Myina + Mgror at k=K (A20)

r=L=0 at k=0, (A21)
L =macr®T* | pr = %Ci_gn at k=K (A22)

and
wagli"zo at k=0 and k=K , i=1tob . (A23)

Notwithstanding the fact that the diffusion coefficient — essentially the factor wl — in
Equn (A16) should for consistency be derived from Equn (A10), in computations such
as those presented in this book we have artificially ‘weakened’ the diffusion coeflicient by
typically two orders of magnitude, because otherwise the gradient of composition is so
shallow in full convection zones that it is difficult to compute even in double precision.
In Equn (A16) we replace wl by something roughly equivalent to

wl = const. (I2C,Tx)3 (V. —Va)? . (A24)
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The constant, expected from Equn (A10) to be of order unity, is sometimes chosen to
be smaller, on an ad hoc basis according to the performance of the code on a particular
machine. This weakened coefficient typically gives a change of composition across a
convective core of ~10~7, whereas one might expect it to be more like ~10~°. According
to the discussion of Chapter 2.2.4, this recipe is further modified to incorporate an ad
hoc recipe for convective overshooting.

Equn (A10) is an implementation of the K. Schwarzschild criterion for convection in
a homogeneous star, and also of the M. Schwarzschild criterion for convection in a star
with a composition gradient. In the latter case it is not a statement that convection
sets in where the entropy decreases outwards, since the entropy gradient involves the
composition gradients as well as the pressure and temperature gradients. Equns (A10)
and (A16) include, without further modification, the possibility of semiconvective mixing,
as discussed in Chapter 2.2.4. It is not necessary to search for the boundaries of these
zones and apply different algorithms within them.

The EoS has an unusual form in that it gives such quantities as p, p, Cy,, . . . as functions
of the two independent variables f, a parameter related to electron degeneracy, and 7', the
temperature. In addition, of course, the EoS depends on the abundances of the various
elements, which are given constants for present purposes. The choice of f rather than
say p or p as independent variable is based on the fact that several physical processes,
notably electron degeneracy in cores and ionisation in envelopes, are ezplicit functions of
f, but not of p or p. So also would be such extra processes as pair production and inverse
[B-decay, although these have not actually been programmed. By using explicit formulae
the computation is rendered very efficient; there is no need to invert a complicated highly
non-linear relation p = p(f,T) in order to determine the electron degeneracy parameter
f, which is needed in the Fermi-Dirac integrals.

Electron degeneracy is normally represented as a quantity 1, which appears in such
Fermi-Dirac integrals as

e z?dx
Nep = COnSt./O\ W . (A25)

The quantities x, ' are the dimensionless momentum and energy of an electron, related
by E = /1 + z2 — 1; N, is the number of free electrons per a.m.u., which itself depends
on ¢ via ionisation (see below). The quantity f gives ¢ explicitly, by definition, as

w_ln\/_—m+2\/l+f . so that %zvlf“ . (A26)

In terms of a further function g(f,T) defined by

g=TV1+f (A27)

the Fermi-Dirac integral above can be approximated, to about 3 s.f. for all physical f, T,
by

3 3 fi g
Zo Eo aijf'g

Nop = const. 3 {o(1 + )12 sl O

Y (A28)
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where the a;; are a set of 16 constant coefficients found by least-squares. It is easy to
see that in four limiting circumstances we have:

f<1, g<1: P o~ ln§+2 ,g~T, N.p = const.dagyT> ?e¥~2 (A29a)

f<1l,g>1: Y o~ lng +2, g~ T, Nep = const.4ags T3e?¥ 2 (A29b)
YT 3/2

f>1, g<1: Y~ 2/, g~ o N.p = const. azo (Y1) (A29¢)
YT 3

f>1,g>1: ¢ ~2f, g~ > Nep = const.ags (¥T)° . (429d)

The functional forms of f,g as functions of ¥, T have been deliberately chosen so that
the series expansions of of Equn (A29) in each of the four limits matches exactly the
series approximations of the integral (A25) in corresponding regimes. This means that
considerable accuracy can be achieved with rather few coefficients. Similar approxima-
tions exist for the pressure and the internal energy U, or equivalently the entropy S, of
the free electrons. The coefficients are to be found in Eggleton et al. (1973).

A second virtue of the above approximation is that, because it is closely based on the
analytic expansions of the integral in its various limiting regimes, its partial derivatives,
even up to third derivatives, are reasonably accurate, and can also be written down
analytically. Since much of the physics we need involves derivatives of p, S w.r.t. T, p, it
is important that the derivatives are also accurate. We can in fact ensure that certain
relations between derivatives of the state variables (Maxwell’s relations) are satisfied
ezactly, and not just to the accuracy of the numerical approximation.

Tonisation is expressed by a number of sets of equations of the form

N,
ht: s ol ¥ tXu/kT , Ny+ + N = Xgm , (A30)
NH WH

where the w’s are statistical weights and Xy is the ionisation potential, and Xy is the
given abundance of hydrogen by mass. Obviously these two equations give both Ny and
Ny+ simply and explicitly in terms of ¢, T' or equivalently f,T. Similar equations (three
rather than two) give the helium ionisation equilibrium. A slight complication is that
for hydrogen we also have to consider the molecular equilibrium, but it turns out that
this only means solving a quadratic rather than a linear equation for Ny.

Two substantial problems remain, one of which is an artefact of the choice f of
independent variable, and one of which is a problem however we choose the independent
variables. In order, (a) f or ¢ becomes indeterminate if the gas is fully non-ionised,



CONCLUSIONS 285

so that there are no free electrons, and (b) the ionisation equation above breaks down
at high density (‘pressure’ ionisation), because the atomic structure of ions is strongly
modified when the ions are so closely packed together that their Bohr radii are less than
their separation. We do not have an answer to (a), but mercifully most stellar material
is hot enough, dense enough, or dilute enough, that at least some atoms are ionised. We
help this along by approximating both Si and Fe as wholly ionised, even although they
are not.

We deal with (b) approximately, by assuming that both w(H) and Xy are dependent
on p, T, which we approximate as an explicit dependence on f,T. This is best done by
adding to the Helmholtz free energy a term of the form AF = N Fy(Nep,T). Then
in the ionisation equation we have to add to ¥ the additional chemical potential term
(kT)~Y(OAF/ON,),r. This works because (JAF/ON,), r, unlike AF itself, is a func-
tion of N, and p only through the combination Nep, and this in turn is a function only
of the input variables f,T. We must also for thermodynamic consistency add terms
p*(OAF/0p) N, 1 to the pressure and —(OAF/dT)n,,, to the entropy.

We conclude by proving an analytic result which is useful in considering the question
‘why are some stars (such as evolved red giants) very centrally condensed?’ (Chap-
ter 2.3.1). We need only the equations of hydrostatic equilibrium, Equns(Al) and (A2).
Let us define 3

X = R (A31)
a quantity which ranges from the central density at » = 0 to the mean density at r = R.
Let us further define some ‘homology invariants’ s, U, V, W thus:

__dlogp . dlogm 4rrip
S = = — =
dlogp’ dlogp Gm?2 ’
dl dlog X
v= 2087 _ TPy G982 gy gy (A32)
dlogp Gmp dlogp

The variable s is the ‘softness index’, closely related to the local polytropic index n by
s=mn/n+ 1. We do not assume that s is a constant; it will in general vary through the
star, in a manner dictated usually by the temperature gradient and the molecular-weight
gradient, but for the present we think of it as some general variable. The theorem we
prove, however, reqires that 0 <s<5/6 everywhere.

A self-gravitating entity in which p is a given function of p is a ‘barytrope’, the special
case of a power law being a polytrope. However, every hydrostatic stellar model is
in principle a barytrope, since once computed it will follow some specific curve in the
(log p,log p) plane whose (variable) slope is the softness index s.

As is generally true of differential equations like (A31) which are ‘homologous’, i.e.
have RHSs which are products of powers of the variables, we can reduce the order of the
system by one, from 2 to 1. We can do this in several ways, but we choose a way which
gives dW/dU as a function of W and U (and also s). Differentiating U, V logarithmically
w.r.t log p, we obtain

dlogU
dlogp

1
= 1420 -4V = (3420 —4W) (A33)
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dlogV 1
=1-—5s— = - (3— 2U — . A34
dlog p s—=V+U 3(3 3s+2U — W) (A34)
Hence
W= aw 3V dlogV 3W —3s(W +U) +5UW — W?2 (435)
T dU U dlogU N U(3 +2U — 4W) ’
and we also see that
dlog X dl
og _ ogp _ 3SW ‘ (A36)
dlogU dlogU 342U —4W

Equation (A35) for W as a function of U — and of s, which we can now think of as a
given s(U) — may not look very promising for analysis, but we can prove a by-no-means
trivial inequality from it. We begin by proving successively three preliminary results:
(a) W—32s, U—ocoasr—0
(b) 0<W < 3 everywhere if 0< s < 2 everywhere
(c) W<Wg, where Wg(U) is the Emden polytropic solution for s = const. =
Smax = max, s(r)<5/6.

To prove (a), we expand equations (A1) and (A2) about the origin. We see that if

2
p = pe (1 - a—2> (A37)
neglecting terms of order r*, and with subscript ¢ meaning a central value, then

r2 4mprs 3 12 3 12
p—pc<1—sc§>, m = <1—gscﬁ>, le—gscﬁ, (A38)

and hence

W= 2s.. (A39)

Clearly U ~1/r? and so U — oo as r — 0; also s — s, so that W — %5 as U — oo.
To prove (b), consider the value of W' on the line W =1/2. It is

3 5

W= (5 -

s) > 0. (A40)
If therefore a barytropic solution W = W (U, s) crosses the horizontal line W = 1/2
in the (U,W) plane, it crosses it sloping upwards to the right, as U increases (U is
always positive by definition). The barytropic solution can therefore never get back
below W = 1/2, and yet it has to since W = 3s/5<1/2 at the centre, according to (a).
By reductio ad absurdum W must remain below 1/2 throughout. By a similar reductio
ad absurdum W must also remain above zero; this utilises our assumption that s>0
everywhere. Note that W = 1/2 is in fact the Emden solution for the s = 5/6 (n = 5)
polytrope, and W = 0 the Emden solution for s = 0 (n = 0), i.e. a uniform-density
sphere.
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We prove (c) similarly. Consider the value of W' as the barytropic curve crosses (if
it can) the Emden solution W = Wg(U) corresponding to a polytrope of softness index
Smax- The value satisfies

3(U 4+ W)(Smax — 8) >0
UB120 —4w) -

W' —Wg = (A41)
where we use the fact that W <1/2 to confirm that the denominator is always positive,
and the fact that W >0 to confirm that the factor U + W in the numerator is too. Thus
the barytropic curve crosses the Emden curve from below left to above right, and cannot
cross back at greater U. But the central value of W is below (or at) the central Emden
value, and so we have another reductio ad absurdum.

Having established that 0 <W <Wg <1/2 everywhere (if 0<s<S8y.x<5/6 every-
where), we see from Equn (A36) that

[log X] U=00 _ /oo 3W dU
U=0 o UB+2U —4W)

° 3WE aUu U=oc0
— [log X L (A2
) /0 UG+ 20 — W) — e Xl (4®)

The central condensation parameter C is defined as

dmp.R? X (centre) X (U = )
_ _ _ A44
¢ 3M X (surface) X({U=0)" (444)

and so we have shown that a barytrope with 0 < s < spax <5/6 is less centrally condensed
than the polytrope with s = syax throughout.
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Appendix B: Distortion and circulation in a non-spherical star

(i) The hydrostatic-equilibrium model.

Here and in Chapter 3.2.1 we consider a star which has a binary companion, which
is in uniform rotation at rate €2, (not necessarily the same as the orbital rate, which
might be varying if the orbit is eccentric) and which has a uniform composition. These
conditions, via hydrostatic equilibrium, give

Vp = —pVo , (B1)

Vi = 4AnGp—20% | (B2)

and lead to the result that p,p,T, s are all constant on surfaces of constant ¢. We can
also define variables V,m, L, r, — volume, mass, nuclear luminosity and ‘volume radius’
respectively — which are constant on equipotentials: V is the volume contained within
an equipotential, m and L are the integrals of p and pe over this volume, and r, is given

by
dm 4

= V() (B3)
The quantities m, L clearly satisfy
dm dL
I = = . B4
av ~ P oav T (B4)
Let us define
K(¢) = 4nGm —2Q*V = /V¢.d2 = /|V¢7|d2, (B5)
and note that IK
2
= —_— . B
Vi = (B6)

We also see that, since the distance between adjacent equipotentials along a normal is

5l =6¢/|Vl,

dav ol dx
b —dy = — . B7
do 00 Ve (B7)
Hence hydrostatic equilibrium can be written as
ldp  d¢p _ d¢pdV 4mr?
pdr.  dr.  dVdr.  [dX/|V¢|
2027, drr2)2

_ G_m _ r ( 7r7“*) ] (BS)

r2 3 ) [IVélds [dx/[V4]

The factor in parentheses simply cancels the first factor in the denominator to its right,
by Equn (B5); we write it this way to show that the ratio to the right of the parentheses
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clearly differs from unity in second order if ¢ differs from spherical in first order, so that
we can write

ldp _ d¢p Gm_292r*
pdry — dr, 12 3

*

(B9)

Now consider the energy flux F, which in general is a combination of radiative and
convective flux. In spherical symmetry, we usually write this as
4acT? dT

F = - - s Bl
3ep dr TPV S, (B10)

where w is the mean velocity of convection and T'0.S is the mean heat excess of an upward-
rising eddy. The mixing-length approximations (Chapter 2.2.2, and Appendix A) for w

and T'ds are s
~ T Bl11
[dlogp] ’ (B11)

ds
w? ~ T§S ~ Tl [——]

dr
where [ is the mixing length, normally estimated by [~ — dr/dlogp, and where the
square brackets have the meaning [X] = max(X,0). In a non-spherical situation the
generalisation of the radiative term in the energy flux is obvious; and of the many possible

generalisations for the convective term we choose one which is

3/2
F = - 4§:€3VT + p [T%] / (Z:;Vaﬁ : (B12)
i.e.
3/2
P x@ve @) = L[S )T (B13)
Thus the equation of energy production and transport is taken to be
VxV¢ = pe—pTv.VS | (B14)
where v is the meridional velocity field, satisfying
V.ov =0 . (B15)

We first establish that the circulation term carries no net energy across an equipo-
tential surface, i.e. that [ pT'v.V.S dV = 0, where the integral is over the interior of an
equipotential surface. From thermodynamics and hydrostatic equilibrium,

1 1
TdS = dU +pd- = dU+L2)— Zdp =dU +L +¢) . (B16)
p p’p p
Hence, using (B15),

/pTV.VS dv = /pv.V(U+ % +)dv = /(U+§+¢)pv.d2 . (B17)



290

Since the expression in parentheses is constant on an equipotential it can come outside
the last integral, and since [ pv.d¥ = 0 by Equn (B15) we have the result. Hence

/F.dE = /XV¢.dZ = /pedV =L . (B18)
Since x is constant on equipotentials, we can write this, using (B5), as
L = X/v¢.dz = xK , ie x = L/K . (B19)

It follows that the only effects of the distortion on the structure equations (Al) - (A4)
are that the factor Gm in Equns (A1) and (A2) is to be replaced by Gm — 2Q%r3/3.
Using Equns (B4) — (B7) with (B19), Equn (B14) becomes
L dK 2 d L _ dL

ds
Z 82 Ve rry-dull pT%V.V(]ﬁ , (B20)

i.e., after some manipulation,

s 1 dy d L
PT% v = <|v—¢/|v¢|dE - |V¢/V—¢|) IV IrGm — 202V (B21)

where v, is the component of v in the direction of V¢.
(ii) The degree of internal distortion

We now define the relative distortion parameter a(r) of an internal equipotential, and
relate it to the quadrupole moment of a star distorted by either rotation or the effect of
a companion.

An equipotential surface can be approximated by

r &~ ol —a(rd)Pe(cosd)} , re xr(l4+a(r)P) (B22a, b)

where 6 is the angle from the axis of symmetry. Since « is first order, it can be thought
of as a function of either r or .. The contribution to the quadrupole moment ¢ from
mass between surfaces ¢ and ¢ + d¢ is

dg 2rr?sinfdf
i P(¢)/W r°Py(cost) (B23)

where we use Equn (B7) to estimate the volume element. Now, ¢ is a function of r,
only, and r, is a function of r,§ given by Equn (B22b), so that

d¢(r*) d¢(7"*) d'f‘a('f‘) d¢('f'*) d'r'*a(/r*)
= T IV R 1 P) =~ 1 P, . (B24
Vg a1Vl . A= = Pe) () (B24)
Hence
dq ~ dr*a(T*) 4 . o 4 4 d’r*a
. ~ p('f‘*)/(l ar Py)ri(1 — 4aPs)Py 2w sin0df = 5 pra(do + i ),

(B25)
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and so, over the whole star,

1 M
g = — g/ (5a +roa)ridm . (B26)
0
(iii) The effect of rotation
First consider rotation alone. In this case the potential distribution outside the star
is

GM Grot
1+ q

1
5 P2(cos0) + 5927“2 sin? . (B27)
r

—¢(r) =

On the stellar surface (r, = Rj) this means, using Equn (B22a), that

r

GM,
R,

GMl quot
— + 3
Ry R3

1 1
—¢(Ry) =~ + gQQR% + <a1 - §QQR%> P5(cosb) (B28)

where oy = «(R;). This must be independent of ¢, so that

Y (R U . (B29)
"\3GM, MR}

Using Equn (B26), this leads to

O*R} 1 ot PR} Q Q = 1 Jo r*dm(50 + ra’)
[0 = _— = — _— = —
VT 3am 1 ¢ 3G 1-Q° 5 M R2a;
(B30a, b, c)

Since « is first order, we do not need to distinguish between «(r,.) and «(r) in the
integral.
(iv) The equation for «(r)

From r,(r,0) as given by Equn (B22b),

V2 = 14 2(ra)' Py (B31)
and
Vir, ~ % + <7"i2dirm ddrra _ 67a> P, ~ % + (ro/' +4a — 27a> Py (B32)
so that

2 2 1
Vi = ¢"|Vr? +¢'Vir. =~ ¢+ —¢' + [ra" +4a — Toz + QW(TO/ + a)] ' Py
T
=4wGp(ry) — 20% . (B33)

For this to be true for all , we need

'+ 24 = anGplr) 2, ie. ¢ =
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where K is the quantity defined in Equn (B5). Equn (B34) is the same as (B9). We also
need 6 o K’ ,
U T e (ST B R
o 25+ <T+T2> o . (B35)

Since « is first order in 2%, we see that (a) the bracketed expression in Equn (B33) can
be thought of as a function of either r or r,, and (b) we can take K = 4wGm in (B35).
Thus our equation for « is

6 2 ! !
o — = 2 <3+a> -0 . (B36)

r2 m T r2

We therefore determine « by first solving the stellar structure equations to obtain m(r),
and then integrating (B36) with this m(r) subject to a and o' being finite at the centre.
These determine « up to a multiplicative constant, since at r = 0 we have rm//m = 3 and
hence from (B36) a ~ B+ C/r® there. The second term has to be excluded on account of
its singularity. Then «(r) determines the constant Q unambiguously, since the definition
(B30c) of @ is independent of a constant factor in a. A numerical treatment of Equns
(B36), (B30c) for polytropes of index n <4.95 leads to the interpolation formula

3 N\ 225 02450-0.096n% —0.0084n°
Q ~ = (1 - _> e?024on=0.096n7—0.0084n" 4 1 504 r m.s.. (B37)

5
(v) An approximation for a(r)

At a lower level of approximation, suppose that (a) the mass is concentrated entirely
at the centre, and (b) the quadrupole is concentrated entirely at the surface, where the
distortion is greatest. Then the potential inside the star (r. <Ri) — ¢f. Equn (B27) for
outside — is given by

GMl quOtT2P2

1
—o¢(r) ~ . + 75 + 5927'2 sin®f . (B38)
1

The condition that ¢ is constant on any interior potential r, =const. implies that

GM;

rot .2
e = G g (60 o

J’_
Tu R?

T

1
— gﬂzr3> Py(cosb) (B39)
is independent of 6 and hence that
QZ qrot QZ qrot
=7 — ~ o7 — . B40
D <3GM1 M1R§> " <3GM1 M1R§> (B40)
Equn (B29) is just Equn (B40) evaluated at r, = R;. We confirm that o o< 73 satisfies

(B36) at least in the outer layers, for centrally condensed stars, since m’ ~ 0 in that case.
Putting a o< 7® in (B30c), we obtain

§fT5dm

©~ SR

(B41)
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A numerical evaluation of Equn (B41) for polytropes gives

0 ~ g (1 _ g>2.205 ¢—0-43Tn+0.066n"—0.023n° 4 907 1. 1 o , (B42)

for polytropes of index n < 4.95.

If the star is so centrally condensed that m’ ~0 for r >0, Equn (B36) has the solution
Br3 + C/r?. This cannot persist all the way to the centre, of course, because the
density, though large there, is finite. Taking C' = 0 nevertheless, we have solution (B40).
Numerical calculation of polytropes shows that C — 0 as n — 5, but unfortunately C is
not really negligible in the important regime n~ 1.5 — 3. In the opposite extreme that
the star is of constant density, rm’/m = 3 throughout and Equn (B36) has the solution
a = B+ C/r5. We must take C' = 0 to exclude the singularity at the origin. This is
just the well-known case of ‘liquid’ stars. For such stars all the equipotentials are similar
ellipsoids with eccentricity e where

QZR3 3 /1 _ p2 2
GMll = 5o € {(3—-2e*)sin te—3ey/(1 —e2)} = 362 . (B43)

The quadrupole moment of a uniform ellipsoid is

‘o 1 QRS
gt = nglR%ez(l — )P fwl (B44)
This ‘agrees’ with (B41) in the case that p = const. and hence @ = 3/5. The agreement
is providential, however, since we ought to use Equn (B30c) with @« = const., whereas
Equn (B41) assumed « oc 73; but both expressions give the same answer if p = const.

The agreement, providential or not, at n = 0, coupled with agreement in the limit
n — b5, suggests that the approximation (B41) might in practice be good enough over
the whole range of models from uniform density to centrally condensed. However detailed
comparison of approximations (B37) and (B42) shows that @ from Equn (B42) can be
in error by ~40 — 50%.
(vi) The distortion due to the companion

For a star distorted by the gravitational field of a companion, and not rotating, the
calculation is the same as in Section (iii) except that the potential (B27) is replaced by
GM, = Gg*°™?

+
r r3

GM27"2

Py(cos®') + po

—o(r) =~ Py(cos®’) (B45)

0’ being measured from the line of centres rather than the rotation axis. This differs
from (B27) mainly in the replacement of ?/3 by —GMa/d? (apart from the orientation).
Thus for the quadrupole moment we similarly obtain

M2R? 1 M2R} Q

- - comp _ % B46a, b
mar1-qQ° 1 B 1-Q° (B46a,b)

o =

with the same @ as before — either the accurate (to first order) Equns (B30c), (B36) or
the approximate (B41).
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(vii) Schwarzschild’s derivation
Schwarzschild (1958) obtained, by a slightly different route, a result which in our

notation is s ,
MR 3a — ra

comp L : B4T

q d3 <2a+Ta’>T_R1 ( )

Although superficially very different from (B46b) with @ given by (B30c) and (B36), it
is in fact the same by virtue of the fact that

d
ar mr?(3a —ra’) = r*(5a+ra’)m’ (B48)
r

as can be verified by using Equn (B36) to eliminate o’ from the LHS of (B48). Thus

3a —ra’ 1 N 9
B _ . B4
Q ( Eo >T_R1 5, R /(5a + ra’)redm (B49)

Note however that o oc 3 gives zero in the differential form of Equn (B47), as against
approximation (B41) in the integral form of Equn (B49). The differential form requires
us to obtain a more accurate solution for o than the integral form, as is not unusual.
(vii) The circulation velocity

The determination of a(r) allows us to estimate the angular-dependent term in the
circulation velocity (B21). It is

1 ax
W/Wﬁﬂdz - |V¢|/W

o 8TRY  1? d(ra) [0 M, ,
T Mi(1-Q) o(Ry) dr [—PQ(COSG) — —5 Pa(cosf )] ,

3G d3
(B50)
where 0 is latitude measured from the rotation axis and 6’ is latitude measured from the

line of centres.

In addition to the rotationally-driven circulation of Equn (B50), there is in principle
a circulation due to the part of the potential that comes from %2’s gravity. But unless
and until *1 is brought into synchronism, and the orbit circularised, this contribution
will fluctuate about zero with the period of x1’s relative rotation. It will therefore be
insignificant until synchronism is reached.
(ix) The quadrupole tensor

For a quadrupole moment g with symmetry axis k, the quadrupole tensor g;; is

q
qij = w(3k1kj —kzéij) . (B51)

Since the symmetry axes are {2 for rotation and d for the companion, results (B30b) and
(B46b) tell us finally that the quadrupole tensor of a star in a binary is

rot comp rot A

%Gij = G5 + S —@(391'93'—92517) ;
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RQ
1-Q ’
(B52)

com; M2A

(x) The force between the stars

When we allow for the quadrupole distortion above, we can write down the potential
¢’ at a general point s outside *1 in the inertial frame centred on the CG of the binary.
With 1 at d;, *2 at ds, and remembering that d = d; — ds, ¢’ is the following:

Flodydy@) = _ OM1  OMy  Glsi—dii)(s; —diy) (a5 +a;7(d))

Cls—di]  Js—dof |s —dy|®
__GM GMy G ot () 4 MeA
 s—dy] Js—da 3 lij(s — di1) |gij" () + D) lij(d) (B53)

where the tensor /;; is defined, for a general vector a, by

2
3aiaj —Qa 5ij

lij(a)

p , sothat [; = 0 . (B54)
Note that ¢’ is different from ¢ of Equns (B2) or (B27) because it is in an inertial frame
whereas ¢ is in a frame that rotates with *1.

The force F; on 1, or equivalently its negative Fo on %2, is

1

F1 = 7F2 = / p(S)VS(ﬁ/(S,dl,dz,Q) d3S 5 p = Vg(f)/ (B55)
Vs 4'/TG

integrated over the interior of #2. In this region p is just a delta-function M>d(s — ds),
since the other terms in ¢’ give zero density outside *1. Excluding the self-term of %2,
we obtain

M—Z“‘Md)] Valis(d)

2
(B56)
Because the same function /;;(d) appears before and after the gradient operator in the

F, = M, [Vs¢l] = - GM M d + GM; |:

s=d» d3 3 qrqt (Q) +

j

term that relates to the companion’s distortion, the resulting F is seen to be derivable
from a new potential ®(,d):

AM.
@+ P @

(B57)

M, M. M.
F = —Va® @:—Géz G32[

which, on replacing /;;(d) in terms of d with Equn (B54), is

_ GMiMy  GMpAdid;

1 M,
d — y — e [—@ {3QZQJ — Qzéij} + id5 {3d1dj - dzéij}]
_ _GMM, L T(QA)? Q2 GM, (B58)
d 245 " 6d® 248
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(xi) The tidal velocity field
In addition to the circulation velocity field there is, in the case of eccentric orbits
and/or non-corotating stars, a tidal velocity field driven by the time-dependent character
of the distortion. In the frame which rotates with %1, this field can be determined by
using (a) the conservation statement
dp

9 gy = B59).
5 Vv =0, (B59)

and (b) the constancy of p on equipotential surfaces, i.e. the fact that
p = plry) , 1o = r+raPy(cosh) . (B60a, b)

We are only concerned here with the companion-induced distortion, so that aj, the
surface value of ¢, is given by Equn (B46a).

Let

— 2 3 2 1o 2
F = r*P, = i(k.r) — 5" , so that V*F =0 r.VF = 2F,
(B61)

where k = d/d. With d time-varying, both « and k depend on ¢, the former because
a « 1/d* (Equn B46a). Then we can differentiate p (Equn B60a,b) w.r.t. time to get

dp  dpOr.,  dp (OaF  3aG\  3adp 10d
ot  dr, Ot dr. <8t T T > T dr, d ot F+G), (B62)
where
_ 1oF ok 2+ B
G = 3 - k.r 5 f o %0 that V*G =0 , r.VG=2G. (B63)

Then it is easy to see that a velocity field given by

30(1 10d

v = () (EEVF—VG> : (B64)

satisfies Equn (B59) to first order, provided that

dpB a dp 1 (" dp
- = =F that = — —d . B65
dr aydr 00U e = ot o Jr, Yar (B65)

The constant of integration comes from the fact that on the free surface, 5 = 1. The
function S is determined unambiguously by the structure of the star, via Equn (B36)
determining «a(r), and is well-behaved at the surface even for polytropic (0 <n <5) sur-
faces as p — 0, despite the apparent singularity there. For the special case n = 0, i.e.
uniform density, we have 8 = a/a; = 1.
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Using suffices, and putting k = d/d, Equn (B64) becomes

3a 1 0d 1 0d; ad;
v; = —1/8( )s”( )m]' , Sij = B ot (5d; d; d25ij) — (d 8; +d; En >
(B66a, b)

The tensor s;; is symmetric and traceless. Equn (B66) allows us to calculate the rate of
dissipation of energy due to the action of turbulent viscosity (or any other viscosity) on
this velocity field, and this dissipation in turn determines the amount of ‘tidal friction’.
(xii) The rate of dissipation
The rate-of-strain tensor is
8’Ui 6’Uj 3C¥1

_ B
ti; = 9, + . = 5 (2551']' + 7{sikka]~ + sjpxRxi} | - (B67)

Squaring this, and averaging it over an equipotential (which at this level of approximation
can be taken to be spherical), we use the standard results

1 r2 1 rt
E/mixj dQ) = gém s E/xixjmkxl dQ) = 1_5(6ij5kl+6ik5jl+6il6jk) . (368)
to obtain
1
o | e = 9a7 sjy(r) , v =B+ 7“/35 t3 25'2 (B69)

Now, after some manipulation of Equn (B66b),

2 _ 2y (04)" (0d\T_ 20d ), 0d ,0d]
i = 2 |*\ae) T\ & = P T (B70)

and so, using Equn (B46a) for ay, the rate of dissipation of mechanical energy is
. 1 9
£ = 3 pwlt;; dV
9MZRS 1 od od  ,od] M
= ———— - |2dd.— +d° l d BT71
MEL-Q)? d® 8t ot~ " ot /0 wiy(rydm, — (B71)
where w, [ are the mean velocity and mean free path of turbulent eddies, assuming that

turbulent viscosity is the dominant dissipative agent. If we define a viscous timescale
tyisc for *1 by

1 1 M
visc 1

then Equn (B71) tells us that the energy loss is equivalent to the rate of working of a
resistive force F where
9M2ZRS 1 od 224 od

F= - — [2dd—+

M (1 — Q)2tyise d'0 ot ot ’ (BT3)

which we can identify with the force due to tidal friction — Appendix C(c).
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Appendix C: Perturbations to Keplerian Orbits

Using the relative position vector d = d; — dz, and mass M = M; + M, the relative
motion of a binary subject to (i) Newtonian point-mass gravity, and (ii) an additional
acceleration f (the perturbing force per unit reduced mass pu = M; My /M) is given by

- GMd

d = B +f . (C1)
Define £ (the Keplerian energy, per unit reduced mass), h (the angular momentum,
similarly) and e (the Laplace-Runge-Lenz vector) by

1. - . . GMd
SE;d.d—T, h = dAd, GMeEd/\h—T. (C2a —c)
Note that £ is not the total energy, if f # 0, but only the part that is kinetic plus
Newtonian point-mass energy. We can see, after some manipulation in the case of e,
that

£ =df, h=dAf, GMé = fAh+dA(dAT). (C3a — ¢)

Hence £, h and e are all constants of the motion if f=0. Using a standard parametrisation
of the Keplerian orbit in this case, for example either of the two parametrisations below,
Equns (C6) - (C10), we find that e is a vector in the direction of periastron, and has
magnitude equal to the eccentricity (thus justifying belatedly the choice of name e).
Even if f # 0, auxiliary variables a, b, l,w (mean angular velocity) and p (period) can be
defined in terms of £, h, e in the usual way:

GM h 2m
= —— = ay/1—¢e2 = a(l—e? = =2 = 2 (Cda-
a T b a ez, 1 a(l—e®), w " » (Cda —d)
For general f, and not just f = 0, four standard relations can be shown to be satisfied:
2h*E+G*M?*(1—-€¢*) =0 , eh =0 , hKW=GMl , w*=GM/d®.
(Cb5a — d)

Thus even when h, [,w and a are continuously changing because f # 0, the orbit can
be perceived as always ‘instantaneously Keplerian’. For example, the instaneous period
and semimajor axis always satisfy Kepler’s third law.

If f is small, we can estimate its effect on £,h,e by averaging over time the RHS’s
of Equns (C3) in a Keplerian orbit. This is done most easily by writing the Keplerian
orbit in Cartesians (origin at focus, e in the 1-direction, h in the 3-direction) using one
or other of the following parametric forms:

l . .
d = m(cos 6,sin6,0) = (acos¢d — ae,bsin¢,0) (C6)
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wab . _ w .
T(fsme,cosﬁ—i—e,O) = T ccosd (—asing,bcos $,0) (C7)
12 do
ab (1 T ccosd)2 = (1 —ecos¢)dp (C8)
)
m = a(l — € COoS ¢) (09)
wabe wae sin ¢
0 = — """ . 1
sin — (C10)

Various scalar, vector and tensor functions of d can be averaged over time using these

parametrisations, 6 being more useful if the function contains a substantial negative

(< —2) power of d and ¢ otherwise (> —1). It is convenient to introduce an orthogonal

right-handed basis of vectors e, @ = h A e and h. These are not unit vectors: we use

overlines to define the corresponding unit vectors €, q, h.

Some examples, expressed in terms of polynomials I,, ;(e), n,l >0, defined below, are

as follows:

1
dn+2
< dn—l
d;d;
dn+2
< dndldl

d-2

dn+2
< ! d;

<

<

<

<

<

dn+4

2 < dzd]

2 < dzd]

2 < d,d]dk
did;dy,
dn+5
d;d;dy,
dn+4

1
> = —1I, Cl11
abln "™° (CLL)
> = an_IIn,O (012)
2ab
> = %{(1 + )0+ 2,1} (C13)
> = w?a" (I, 0 —eln1) (C14)
w?abe?
> = T (Ino — In2) (C15)
> = — a"(In,l + €In,0)Ei (016)
1
= —I,1% c17
Z T b e (C17)
w _
> = W(eln,o +In71)qi (018)
we _
> = lnT (In,O — In,?)qz' (019)
1
> = M{Inggz@j + (Ln,0 — In,2)§ﬁj} (C20)
> = a*{(1+4€e*)eie; + (1 - €%)q,q;} (C21)
> = €ijkhk (€22)
> = eah(€;q;e + ;€€ — 2€i€;qy) (C23)
1 ___
> = W{(In,l —I03) (€T + T, €505 + 07, €k) + In3€i€5€x C24)
w ——
> = W{(In,S —L1)(eiqer + qiejer) + (Ing + €ln0) 0,

+ (Ins +eln2) (€€, — 0;4;0%)} - (C25)
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The polynomials Iy, ,, are defined by

27 de
I m(e) = (1+ ecosf)™ cos™ 0 — (C26)
0 2m
They are easily evaluated from
2w
do (2m)!
1 m — gL = y
0.2 /0 S0 o T (i
IO,2m+1 - 07 In-i—l,m - In,m+€In,m+1 . (027)
Clearly
27 d¢
/ (1 —ecosp)™ cos™ ¢ o = Inm(—e) = (—1)™I, m(e) . (C28)
0 Y

We can now apply these to the following: (a) apsidal motion driven by General Rel-
ativity, (b) apsidal motion and precession driven by quadrupolar distortion, (c) tidal
friction, (d) Gravitational radiation, (e) mass loss and mass transfer, and (f) a third
body.

(a) Apsidal Motion from GR. The motion of a particle in the Schwarzschild metric
is given by

2GM

6/Ldt - 6/\/C2F—d2/F—d292dt ~ 0, F(d) = 1-— (C29)
The equations of motion are therefore
d (d*,
T <f0> =0 (C30)
d 1. 1., 2 F' .2
— | —= = —(c°F' — =2 1
7 ( FLd> 2L(c +d 72 do) (C31)
where primes are derivatives w.r.t. d and dots w.r.t. ¢. The Euler-Lagrange integral is
-0L . 0L F
da—.—f—ﬁa—.—L = & = const. (C32)
od 00 L

Changing to the proper-time coordinate ds = L dt/c, and using dots now for derivatives
w.r.t s, we obtain (after some manipulation)

. . .2 GM 3GMA?
d20 = h = const. , d—df = - 7 — W (033)
Thus the effective perturbing force f is radial:
Mh? d
f = — M_ (C34)

2 d°
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So by Equn (C3a) & averages to zero, and by Equn (C3b) h is zero. Also, by Equns
(C3c), (C4), (C17), (C26) and (C27),

3GMh2 I271 eAh 3G2M2w —

GMé = <fAh> = <f>Ah = - = hA
© c? eabl? c?l ©
(C35)
Hence e rotates about h (apsidal motion) with angular velocity Zggr, where
3GMw 3GMw
7Z = = . C36
o c2l ac?(1 — e2) (C36)

(b) Apsidal motion and precession. We consider here the effect on the orbit of the
quadrupole distortion or ‘equilibrium tide’ of 1 due to its rotation and to the presence of
a companion (Appendix B). We ignore the distortion of %2, but this can easily be added
into the result (C40) below. The force between the stars can be derived — Appendix B(x)
— from a potential ®:

B _ GM M, 02 (Qd)?  GM,
F=-ve -—o=—r—+AM 55 5F 2d5 |

(C37)

where A is the structure constant given by Equn (B51). Hence the perturbing force fop
in the orbital equation due to the quadrupole distortion is given by

. 1 GMd
d= —-V®d = - —— +f
HV B + tqp

AMy [-0%d  5(2d)’d  QdQ  3GMd

p |2 T ad & s (C38)

fop =

We assume first that the stellar rotation is parallel to the orbital rotation, and so
Q.d = 0. Then fqp is purely radial, and & h average to zero, as for any f of the form
F(d)d. The only effect of the quadrupole moment on the otherwise Keplerian motion is
to make the Laplace-Runge-Lenz vector e rotate about the angular momentum vector
h. Using Equns (C3c) and (C17) to average over the orbit,

_ My AQ? 3GM2ZA
GMé = | — —1 hne .
¢ ( 2uabl? 21 uabl® 51 ne (€39)
By (C4), (C26), and (C27), this can be written
— M, AQ? 15GM3ZA 1+ 3e* + Let
éqp = Zhrhe , 7 = 2 4 BEM AL H 5 T8 oy

2uwad (1 — e2)? 2uwad (1—e2)5

Z is the rate of apsidal motion.
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If Q.d # 0, the extra terms in fop give some extra apsidal motion. It is necessary to
use some of the tensorial averages, Equns (C24) and (C25). The extra apsidal motion
turns out to be in a negative sense: Equn (C40) should be replaced by

MyA(Qn* — 307 — 1Q,%)  15GMZA 1+ 3 + %et

Z = Cc41
2uwa®(1 — e2)? * 2uwad (1—e2)5 7’ (C41)

where Q,Q,, {1}, are the components of €2 in the triad of vectors defining the orientation
of the orbit.

The extra terms in fop still make £ average to zero, as for any conservative force, but
they give a couple
MyA < Qdand My A

= QhQAh , (C42)

h = <dAf = _ 24
<@/ op > ’ P 2pablh?

where the average was evaluated using (C20). This means that h precesses about .
However 2 is not a vector fixed in space. Rather, the total angular momentum vector
H = ph + IQ is fixed in space, since x1 experiences a couple which is the negative of the
couple on the binary; I is the moment of inertia of *1. Thus we can write

M;AH

ho= - 224 o HAR 4
2uablh2T AR (C43)

and so h,  both precess about H at a rate x given, using (C4), by

. MyAQpH My AQpH
X = - —— = — ——=— | (C44)
2uablhl 2uwadI(1 — e?)?
We have assumed so far that the star is dissipationless, and so there are no secu-
lar terms leading to orbital shrinkage or circularisation. We now consider a model of
dissipation, i.e. tidal friction.

(c) Tidal Friction. We continue to suppose (for simplicity) that *1 is extended while
%2 is a point mass. In the frame which rotates with x1 the quadrupolar tide will in
general be time-dependent: %1 will be continually changing its shape. If the star is not
perfectly elastic we expect a loss of total mechanical energy, but no loss of total angular
momentum.

In Appendix C(b) we had an acceleration fop which is derivable from a potential
® given by (C37). This conserves total energy, as we verify shortly. But if there is in
addition some slow dissipation of energy (‘tidal friction’) we will have an extra force frp,

say. Writing
- GMd 1
d= —7---Vo+F¢f 4
i MV + fre (C45)

we can see that total angular momentum

H=pdAd+IQ (C46)
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is conserved if the couple on *1 is given by

IQ = dA (VP — pfrp) . (C47)
The total energy
1 . M 1
E'=p€+o(d,N.d) + 5[92 = gd.d — % + ®(d,.d) + 5[92 , (C48)

may change not only because d in £ and ® varies but also because {2, which appears in
® as well as in IQ22, can vary, for instance as a result of precession. We find however that
.1

&€ =0 (in the absence of tidal friction) provided that ® depends only on d and €.d:

g = d{d+nyd+ —V3}+d.Qd +I0.Q
. d ,
= pd.fre+ 2 A (VO = pfrp). (A2 +1Q) (C49)

where we use (C45), (C47) for d and €2; ® means the partial derivative of ® w.r.t. Q.d.
For & = ®(d,Q2.d), V@ is entirely in the plane of d and Q. Hence all terms in (C49)
vanish except those with frp:
od . od
g = w(d—QAd). frp = hoyp - frr , since d = E—I—Q/\d , (C50a,b)
where §/0t is a derivative in the frame that rotates with =1, d being the derivative in
an inertial frame.

When there is dissipation, probably the simplest assumption is that the rate of loss
of energy is some positive-definite function of the rate of change of x1’s shape, e.g. of its
quadrupole tensor since this determines its shape to lowest order. We therefore write

% 9qij 0qij
E = —o— —= C51
ot ot (C51)
where g¢;; is given by Equn (B51) and o is a dissipative constant intrinsic to *1 (dimen-
sions m~![72¢t~1). In the frame that rotates with 1, Q is a constant while d varies at
rate d/0t, so that

quj o 0 M2 2
ot ot 245 (8did; — d0:5)
_ 3MyA[,d8d; ,0d;  dd_  5dd
= 57 [dl—at +dj + d b —Eadld]} : (C52)

Hence, after some manipulation,

_ oMy AT 0d g 94 e
£ 2410 ot +d

g 90 M2 A% od od  ,ad
a5+ ] (©9
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Comparing this with (C50a), we see that a consistent expression for frg is

2 42 2 42
fre = —% 2dd.%—?+d2g—? = _% 3dd.d+ (h-0d)rd] |

(C54a,b)
using Equns (C50b) and (C2b). Comparing the acceleration frp of Equn (C54a) with
the resistive force F (and hence acceleration F/u) of Equn (B67), we obtain o as a

function of the internal viscous dissipation timescale of x1 as defined in Appendix B(xii):

2
= — . Cb5
7 Ml R%tavisc ( )

We first specialise to the case © || h. Using Equns (C3b,c) for & and h, with accel-
eration f from Equn (C54b), and averaging various functions of d according to Equns
(C17) - (C19), we obtain after substantial manipulation

e= —Ve
9o M2 A? Qp 12
= — 0—26 46.[670 + -[6,1 - 36.[672 + 1771 - —h y (6_[470 + 2_[471 + 6_[472) é, (056)
2uabl w ab

90 M2 A2 Q 12
= e [P T o h = —wh o0

Evaluating the polynomials I,,, ,, according to Equns (C27), V' and W can be seen to be

15 15 4 5 3 1 4
V _ i 1+Z62+§6 +6—4€6 _ 119h1+§€2+§6 ’ (058)
tTr (1 — e2)13/2 18w (1 e2)®
_— 1 1+§e2+‘§—564+%66_&1+362+ge4 (C59)
trp (1— e2)13/2 w  (1—e2)p ’
where

2ual 2 a® My [(1-Q\° 2ty a® M2 )
t = 0= — —— —— | — = — 1— . (C60
T 9oM2ZA2 T 90 RO MM\ Q 9 RS MM (1=Q). (C60)

We write €2, the component of € parallel to h, rather than 2 — despite the fact that
they are equal in the present case — because V, W remain useful even in the non-parallel

case (see below).
Using the identities (C3) and (C4), we also obtain

2P & &  2h 2
3P a &£ h 1—e2
_ i 1+%62+28ﬁe4+%66+§68 B %1—1—%62—4—%644—%66 (061)
tTF (1- 62)15/2 w (1—e2)8
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We can obtain the rate of change of the intrinsic spin {2, using the constancy of H in
(C45):
9 _ wh h _ _ph

The factor A, the ratio of orbital to spin angular momentum, is usually large.

For the general case 2 A h # 0 there are more terms, but the problem is tractable.
Equns (C3) give & and h in terms of the perturbing force; we average these over a
Keplerian orbit, using the combination of the forces fop and frr of Equns (C38), (C55).
The recipes (C11) - (C25) allow us to express the results in the form

é/e = —Ve+UA® (C63)

—IQ/ph = h/h = —Wh+UAQ , (C64)

where the vector U = Xe+Yq+ Zh is the angular velocity of the e, q, h frame relative
to an inertial frame. V, W are as above — Equns (C58), (C59). For X,Y we obtain, after
some manipulation,

MzA Qth Qq I4,2

X = — _
2pwa® (1—e€2)?2  wtrp (1 —€2)5 (C65)

MyA Q0 Qe Lo —Isp2

Y = -
2uwa® (1 —e2)2  wtrp (1 —e2)5 ’

(C66)

while Z is exactly the same as Equn (C41): tidal friction contributes nothing extra to
apsidal motion.

It is instructive to use Euler angles 7, x, 1 say to determine the orientations of €,q, h
relative to an inertial frame, say E, Q, H, a suitable choice for H being the total angular
momentum vector of Equn (C46):

H = ph+I1Q . (C67)

E and Q are arbitrary, provided they make a right-handed orthogonal set with H. The
transformation from E, Q, H to €,q, h is the product of three successive simple rotations:
by x about H, by 1 about (new) E, and by ¢ about (newer still) H, which now coincides
with h. This gives

€ = (cosy cos®y — sinx sin cosn,sin x cosy + cos x sin cosn, sinnsineyy)  (C68)
q = (—cosysinty — sin x cos v cosn, — sin x sin ¥ + cos x cos P cos n, sinn cos ) (C69)
h = (singsiny, —sinncosx,cosn) (C70)

where the 1,2,3 — axes are in the directions of E,Q,H. Differentiating Equns (C68)
- (C70) w.r.t. time, and dotting by €,q or h, it is straightforward to show that the
components X,Y, Z of the angular velocity U in Equns (C63), (C64) relate to 7, x, % by

X = ncosy + xsinysinng Y = —7nsiny + xcos¢sing
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Z = 1+ xcosT . (C7la,b,c)

Define a constant £y by

Qo = H/T, sothat Q) = |QAh| = /Q2+Q,2 = Qysiny , (C72a,b)
by the triangle of angular momenta (C67). Then

1

Q. = Qe = i (H—-ph)e = Qpsinnsiny = Q) siny (C73)
Q, = Qq = Qpsinncosyy = Q cosyy Qn,=Qh = Qqcosn—ph/T
(C74)
and so from X,Y, Z in Equns (C65), (C66) and (C41) we obtain
Q) 1+3e?+ 3et + 3e2(1+ Le?)cos 2y
) = X —Ysing = — 8¢ T3 6
7 cos sin ¢ - 1= ) , (C75)
. Xsing+Ycosy  MyA Qo 3Q e*(1+ ge?)sin2y (©76)
X = sinp  2uwa’ (1 —e?)?  dwtrp (1 —e?)5 ’
and
: Mo A(QR2 —102)  15GMZA 1+ 3e% + Llet
. — 7 — 2 2 2 8
¥+ Xcosn 2uwa®(1 — e2)?2 2uwad (1—e2)5 (c77)
If o =0 (trp = o0) we have steady precession, 7 = const., and the same precession

rate x as in Equn (C44).

We now have a complete set of equations for h, é, 7, ¥, 1: Equns (C63), (C64) — dotting
through by e, h respectively — and (C75) - (C77). Ancillary variables a,w, tTr, Qpn, Q1
are given in terms of h, e, n by Equns (C4), (C5), (C60), (C72b) and (C74). A and Qg are
constants given by Equns (B51) and (C72a); My, M2, Ry, Q, 0, H, I are given constants.

When both stars are extended bodies the Euler angles are less helpful, but we can
nevertheless follow the motion numerically using the following larger set of equations:

éle = —(Vi1+VWV)e+ (U +Uz)AeE , (C78)
LD _ —
2 — Wih - Uy AR (C79)
wh
L, _ —
22 — Wyh-UyAh (C80)
wh
with h now given by
1
h = —(H-LQ — L) . (C81)
7]

U1, U, are the obvious generalisations of U to %1 and %2 separately. These equations
by updating e, £, > and h also update q = h A e and so Q, as well as Q, )y, for
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each component. As in the case of the single extended star, a,w are obtained from e, h
by using Equns (C4), (C5).

(d) Gravitational Radiation. In the weak-field approximation, GR implies that a
system loses total energy (u€) by gravitational radiation at a rate

4G dsqij dgqij

£ = - C82
# 45 dtt dd (C82)
where ¢;; is the quadrupole tensor of the matter distribution. For a binary,
_ H 2
¢ij = 5(3did; —d7%ij) (C83)
and hence, using Equn (C1) with f = 0,
d2qi- GMp, .. ..
dt; = — 5 (3did; — d%6;5) + p(3d;d; — d.d 6;5) (C84)
d3qi 1 GM/,L . .
dt3] = E ———(6d; d + 6d; d; —9d;d;d/d — dd §;;) . (C85)
Squaring Equn (C85), we obtain after some manipulation
. .2
. 32G3M?, (dd 114
£= "5 (F‘Ed‘l) ‘ (C86)

Averaging over the Keplerian orbit, using Equns (C4), (C13), and (C15), we find that

; 32G3M?p w?ab 11
£ = - SR ho— (1 - ) — 5 (loo — Ir2)} (C87)

64G3M2/,L8 1+ 7362+37 4
- 5coat (1- 62)7/2 ' (C88)

In the same weak-field approximation, the loss rate of total angular momentum ph is

8G d*qji d*q

Hhi = = BB g g (C89)
which by Equns (C84), (C85) gives
: 3¢ [feMp\? @ eMu? (dd  3d :
h = _5;1,05 B E*l— PE o 1 dAd . (C90)

Averaging with Equns (C14), (C19), (C21), (C27) and (C28), we get

. 32G3M? 1 1 1 3 5
h = _T'u bl2 |: 20+{IQO—§(1—€ )Ilo}——e (110 1172):|h (091)
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i.e.
h 3263 M2 1+ Le?

h 5cat (1 —e2)5/2

(C92)
As in the case of tidal friction, Equn (C60), we can find é from & and h, and obtain

¢ RGEGM* F+ e
5cbat (1 —e?)5/2

(C93)

(e) Mass Loss and Mass Transfer. When one or both stars are losing mass (by
isotropic stellar winds), and perhaps also one star is gaining mass from the other (by
either RLOF or accretion from a wind), the equations of motion have to be modified to
take account of varying mass. In more general circumstances we might have to model
the process in difficult detail, but we suppose here that we can write

My = —G—¢, My = —G+¢&, M= —G-C ; (C94)

the (; are the the rates of mass loss to infinity, and £ is the rate of mass transfer. For
the reduced mass

Ao 11N M, . M
N_£<M2 M1> ClMlM C2M2M : (C95)

The equations of motion of the individual components, allowing for momentum transport
between them, are
- GM;M-.d : - GM;M-.d .
Md; = - =5 6d=V) , Mydy = T —£(dx = V), (096)
where
MV = Md; + Myd, . (C97)

V is not the velocity of the centre of mass, since the masses are varying. V is not
necessarily constant, and neither is D, the velocity of the centre of mass (MD = Mdy +
Mgdg).

It is easy to see that

do (b )a e r—e(p o) o

and further that

. My — M - GM; — My, €
Vo= <7—M>d (C99)
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We can now determine the rates of change of £, h and e from (C3), except that (C3)
were obtained from the definitions (C2) on the assumption that M = const. Correcting
for this, we replace (C3) by

GMd

M g dnf, GM é+Glle — fAB+dA(dAf)— T . (C100)

& = df- 7

We can now average over the Keplerian orbit. If we assume for the moment that £ is
independent of phase over one orbit, then using Equns (C12), (C14) we obtain after some

manipulation
dE (1 _aNeE
dt M2 M, M,y) M2
d &£ 28 M, M,
a4 _ 101
dt M22 M2 <<1 MM +<2M2M> ’ (C101a,b)
1 1
h=¢-—-—-—)h
13 (M1 M2> , or
d - Mo, My
9 = (@ G M2M> ph (C102a,1)
e =0 . (C103)

Consider the two limiting cases of (i) winds with no transfer (§ = 0) and (ii) transfer
with no winds ({; = 0 = {2). In the first case, we get

GM 1
£ x —M? , h = t. = t. = —— x — C104
o8 , const. , e const. , a e % ( )
and in the second,
11 i )
M = const., — —— ) = =, fx , ph = const. |,
5<Mz M1> 7 : a
1

e = const.,, a x — . (C105)

112

The (’s and £ were not assumed either small or constant in obtaining Equns (C98)
- (C100), but they were assumed small and nearly constant (i.e. constant on an orbital
timescale) to do the averaging for Equns (C101)-(C103). If they depend on orbital phase,
say according to some prescribed dependence of £ on d, d, an averaging that incorporates
this can still be done. In this case &€ will not necessarily be zero.

In a particular case where %2 has no wind and *1 loses mass at a constant rate, we
could have (3 = 0, £ +(; = const., but £ = £(d,d). Then Equns (C100) for h,é

become
ho— b2 LY £ >
B M, M, ’
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2 /1 1 . 1
L . d>Ah— —
©T oM <M1 M2><6 > Mg

<< % >+e<¢ >> . (C106)
(f) Third Body. If fis due to a third body at position D(t) (D > d) relative to the inner
binary’s centre of mass, the effect on the binary can be obtained by ‘doubly averaging’
(Heggie, p. c. 1995) over both inner and outer orbits. This is reasonable since the
timescale on which either orbit is changed by the other turns out to be long compared
to either orbit. Let M; and M3 be the masses of the inner pair, and M( = M; + M>)
and M3 be the masses of the outer pair. We use the quadrupole approximation for the
perturbative force f on the inner pair:

5 (C107)

DD; b
fi = Sid;, Sij—GM3<3 . 6’)

The S;; are functions of time, but assumed as usual to be nearly constant over one
Keplerian orbit of the inner binary. By Equns (C3) and (C21) - (C23), we obtain the
following averages:

E =0, and so a = const., p = const. (C108)
) eal _ _ —
e = % {— 55129 + (4511 — Szg)q — 523 h} y (0109)
. 2 J—
h = %{(1 — €%)S538 — (1+4€2)S15q + 52512 h} (C110)

with the 1,2,3 — axes in the directions of e, q, h respectively. From these, the angular
velocity U = (X,Y, Z) of Equns (C63), (C64) can be read off, and also the rates V, W
of the change of magnitude of eccentricity and angular momentum.

Let us assume that H > h, so that H rather than H+h can be taken to be a constant
vector in direction and magnitude; in fact at the level of the quadrupole approximation
H is exactly constant though h is not. We specify the orientation of €, h relative to
E, H by Euler angles 7, x, ¢ as in Section (c), Equns (C68) - (C70). The rates of change
of these angles are found from (X,Y, Z) using Equns (C71). We now average S;; over an
outer orbit, using Equns (C11), (C20) with n = 1. We use capitals E,Q,H, A, B,L, P, ...
to mean the same quantities as e, q, h, a,b,l,p, ... for the inner orbit. Since Sio, for
example, means S;;€;q;,

M; — — M.
3G HeHq = —;’jBZ

< 512 >outer = — sin? nsin v cos 1, etc. (C111)

Then, after considerable manipulation, we obtain the following average rates of change:
trV1 —e2é = be(l — e?)sin® nsiny cosy (C112)

treV1—e2n = — 5e?sinycosnsin cos (C113)
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treV1—e2x = —{1+4¢e*(5sin®¢ — 1)} cosn (C114)

trpV1 —e29) = 2(1—€?) + 5(e? —sin’n) sin?¢ . (C115)

The constant ¢ determines the timescale:

2p? M + M; 2P? My + My + M
t = T (1-E)PP——_—2 = (- p?Pr 2T C116
L ) i, 3 ) o, (C116)
Equns (C112) - (C115) combine to give two integrals:
(1—e€?)cos®’n = const., €*(2—5sin®¢sin®n) = const. (C117)

If we identify the integration constants by taking e = e, at 9 = 0 and e = ey, at ¢ = 7/2,
and then eliminate 7, from Equn (C112), we obtain the following equation for e:

troeneé = % 1/2(e] — €2)(e? — e2)(2e2 + 3e2e?) . (C118)
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Appendix D: Steady, Axisymmetric Magnetic Winds

Most manifestations of MHD in stars are non-steady, or non-axisymmetric, or both.
However, much insight can be gained by considering steady axisymmetric configurations,
which are relatively amenable to analysis. We are also helped by the assumption of high,
in fact infinite, conductivity — even although some dissipation of magnetic energy via
finite conductivity and/or field-line reconnection is probably what drives winds in many
stars. We can further simplify matters by assuming that the wind is adiabatic. This leads,
as we show below, to five equations in five unknowns, four of which can be integrated
analytically.

Since the magnetic field B is solenoidal, and since pv is also solenoidal in a steady
situation, both can be written in terms of a toroidal component combined with a poloidal
component derivable from a stream-function. Using cylindrical polars (R, ¢, z), we can
write

_ 1
pv = pusd+ pvp = pv¢¢—R¢/\VP , (D1)
_ — 1 —
B = By,¢+Bp =B¢¢—}—%¢/\VQ , (D2)

with p, v, Bg, P, Q all functions of R, z only, because of the assumed axisymmetry.
The dynamo equation, for steady fields with infinite conductivity, is

VA(VAB)=0 . (D3)

This (with several other results below) is best written in terms of Jacobians:

xy) =z &% 9200 D4
J(XY) OR 0z 0z OR ’ (D4)

for any X (R, z),Y (R, z). Using Equns (D1), (D2) we see for instance that

1 1
pv.VX = EJ(P’X) , B.VY = RJ(Q,Y) . (D5a,b)
Hence (D3) can be written, after some manipulation, as
— Vg By ) J(P,Q)
) = P — — —_— 0 = . D
¢[J<Q,R) J< ,pR>]+R/\V T 0 (D6)

Generally, if J(X,Y) = 0 then Y is a function of X, and conversely; and for any
further function Z(X),
dz dz
Z(X),Y) = ——=JX,Y) = X,—Y . D
JZ(X),Y) = TSI Y) = J(X52) (D7)
Consequently a sufficient, though not necessary, condition for the poloidal part of
Equn (D6) to vanish is that J(P,Q) = 0, so that P = P(Q) and hence

dpP

a0 (D8)

pve = f(QBp , where f(Q) =
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The toroidal part of Equn (D6) will then also vanish provided that

vy _ 5 (pBe) _ (g B
J(@ %) = J(P, pR) = J(Q, 0 pR) , (DY)
using Equn (D7), so that
OB o o

Putting Equns (D1), (D2), (D8) and (D10) together, a very general condition for a
frozen-in velocity field is that

- @H@(Qw , (D11)

where f, g are arbitrary functions constant on field-lines of B and stream-lines of v, and
determined by conditions at the base of these lines, where they leave the star. P(Q) is
the first integral of f(Q).

The equation of motion also yields an integral, which comes from its toroidal com-
ponent and expresses the gain of angular momentum under the action of the magnetic
torque. For steady axisymmetric motion, with pressure p(R, z) and gravitational poten-

tial ®(R,z) = — GM/VR? + 22,

1
pv.Vv +Vp+pVe® = jAB = M—(V/\B)/\B . (D12)
0
Using Equn (D2), we can write the toroidal component of the magnetic term as

¢.(VAB)AB = %J(Q,RB@ . (D13)

We can write the inertia term in Equn (D12) as

1 1
pv.Vv = %V(p2v2) —vv.Vp+ ;(V ApVv)ANpv . (D14)

The toroidal term, using (D1), and by analogy with Equn (D13), is

_ 1
¢.(pv.VV) = —uyv.Vp+ WJ(P, Rpuy)
Y6 1(P,p) + — J(P, Rpvy) = —J(P, Ruy) (D15)
= — v = 5 v .
pR ’p pR2 ) )0 (}5 R2 ) 45

Since the pressure and potential in Equn (D12) do not contribute toroidal terms, the
toroidal component of (D12) is, from (D13), (D15) and (D7),

"J(@.RBy) = J(P.Ruy) = J(Q.[(QFwy) (D16)
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which integrates immediately to

RB,
Ho

@Ry = —h(@Q) (D17)

where h is another arbitrary function of Q.
Combining the two integrals (D10) and (D17), we obtain

2
L T g(1- pofh ,
R p gpR?

RB, <1 - “°pr> = — oh <1 - R2hf9> . (D18a, b)

The quantities f, g, h are all constant on field-lines, and can be thought of as determined
by given conditions at the surface of the star where the field-lines originate. Equns (D18)
then determine By and v, as functions of p and R on each field line. Clearly both B, and
vy would have singularities at the point where p = pof 2. unless at that point the terms
in parentheses on the RHSs also vanish. This means that there is a critical (Alfvénic)
surface in the flow, at R = RA(Q), p = pa(Q) say, where

_h
fg

Note that for By to be non-singular on the axis R = 0 we need to have h(Q) o Q < R?
near the axis.

RAZ pa = pof? . (D19a, b)

If Bp near the star is roughly dipolar, as we expect, then field-lines emerging from
the northern hemisphere can be expected to be of two types, as illustrated in Fig 3.7:
(a) closed field-lines, which emerge between the equator and a critical latitude, cross the
equatorial plane, and return to the symmetric point on the southern hemisphere
(b) open field-lines, which emerge from a polar cap north of the critical latitude, and
are dragged out roughly radially to infinity by the wind — and similar field-lines in the
southern hemisphere which connect the symmetrical polar cap to infinity but with the
field reversed.

In the region of closed field-lines, the ‘dead zone’, we expect from symmetry that there
is no poloidal flow:

vp = f =0 , RBy=pmh , v =Rg . (D20)

The last two results come from Equns (D18), (D19). In the regions of open field-lines on
the stellar surface, P increases from (say) zero to |M|/4m in the northern hemisphere,
and further to |M|/27 in the southern hemisphere. Since @ will have the same value
at the same (positive or negative) latitude on the two hemispheres, P and f must be
two-valued functions of Q.

We see from Equn (D18) that provided both p and pR? decrease outwards, the angular
velocity 2 = vy/R is roughly constant on field-lines within the Alfvénic cylinder, and
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decreases roughly like 1/R? outside it, i.e. the material is forced to corotate with the
star out to Rp and then expands freely outside Rj conserving its angular momentum.

If we assume that the flow is approximately adiabatic, we can obtain a second integral,
of Bernoulli type, from the equation of motion. The pressure term in Equn (D12) is

Vp = VKp' = pV#I—; (D21)

We dot Equn (D12) through by v, and on its LHS use Equn (D5a). On the RHS we use
Equns (D11) and (D13) to obtain

v{(VAB)AB} = L}?J(Q, RBy) . (D22)
Consequently (D12) gives
1 L, o _ 9@
EJ (P; EU +ﬁ;+¢’> = uORJ(Q,RB¢) , (D23)

which with the help of Equns (D8), (D1), (D7), (D16) and (D17) leads to

VPP 1 Yy p GM
2R2p2+§U¢2+7—1;7\/R27_|_Z279(Q)Rv¢ = k(Q) , (D24)

where k(Q) is yet another arbitrary function which is constant on field-lines. Equn (D24)
remains true in the dead zone, where from Equns (D20) it simplifies to

LGRS = Q) (D25)

Five equations, i.e. the dynamo equation (two components) and the equation of motion

S 2 GM
p 2

(three components), determine the five unknown functions p, vy, P, By, Q. They have
yielded four integrals, Equns (D8), (D10), (D17) and (D24). We can use Equn (D24),
in principle, to obtain p as a function of R, z,@Q and |[VQ)|, since vy, and By are known
functions of @, R and p via Equns (D18). The remaining component of the equation of
motion is then a highly non-linear second-order partial differential equation for Q(R, z).
Since we have already taken components in the ¢ and v directions, the remaining com-
ponent can be taken in the direction of VP (or V@) since this is perpendicular to both.
Unfortunately this component is not particularly simple; it can be written in the form

1 f2 9 0 1 90Q 82Q _ 9 f2 f 9 dk
(aﬂ ve (Rﬁﬁwﬁ = Ve [FVQ‘V (“%)R%]

2,,,2

Q. [pV (R i > _ R2pV(gRus) — V <R;fo¢2>] . (D26)

We now attempt a few simplifications in order to obtain some order-of-magnitude
estimates of, for example, the Alfvén radius and the braking torque. We think of the
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mass-loss rate as given, and also the strength of Bp on the surface, and then we hope
that Ra, By and other quantities follow.

We first make a very bland estimate of the field that solves Equn (D26). We take it to
be dipole-like near the stellar surface, and further out a ‘split monopole’: the wind drags
out field lines until they are roughly radial away from the star in one hemisphere, and
towards it in the other. Separating the two hemispheres at the equator (beyond the dead
zone; see Fig 3.7) must be a plane current sheet, to support the assumed discontinuity
in tangential field. Supposing that the dead zone does not extend anything like as far as
the Alfvén radius, we simply approximate Bp near the equatorial plane by

2 2
Bp| ~ B, (%) . sothat Bs ~ By <%) . (D20)
B being the field on the stellar surface and By at the Alfvén radius. The velocity field
beyond the dead zone is similarly approximated by a monopole (but ‘unsplit’).
We next estimate f, g, h of Equns (D8), (D18), (D19). The stream-functions P and
Q take the following values on the stellar equator:
M|

Py = 7P Qeq ~ BiR? | hence f ~

| M, |
— D28
47TR%Bl ( )

From (D18) and (D19), assuming that both p and pR? increase inwards, we see that

R,|B R4|B
g~ ~Qx , k-~ UBs| , RalBoal , (D29)
Ho Ho

and that By o< 1/R for R< Rs. Then by eliminating f, g,k in Equn (D19a) we obtain
- 9 4m 3 A4rm 3
|M1| Q2 RA" ~ H—|B¢1‘BlR1 ~ H_|B¢'A‘BARA . (D30)
0 0

Thus the torque is largely determined by the product of the poloidal and toroidal fields,
as we expect on very general grounds.
The magnitude va of the poloidal velocity field at the Alfvén radius can be estimated

thus: .
vP M
v = (|—> ~ # . (D31)
pR A 4T RA PA
This along with Equn (D19b) for ps, Equn (D28) for f and Equn (D27) for B gives

B2 R4 B2
pavh ~ L L 24 (D32)
o R Mo

a result that we might well have written down a priori.
We now use Equn (D24) very crudely, ignoring the pressure term, to estimate Ra.
Beyond Rp there is little further radial or tangential acceleration, and so the poloidal
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velocity field must reach escape speed there. On the equatorial plane z = 0, comparing
R = Ra with R = oo, we obtain

2GM
v% o~ N (D33)
Then Equns (D19b), (D28) and (D31) give
. 4
|M 1| Ra/?\/2G M, = u_: BXRY . (D34)

This gives R in terms of supposedly known quantities. Finally the ratio of Equns (D30)
and (D34) gives us an estimate for the tangential magnetic field:

1/2

|By1| Ry \Y? |Byal RA3
Zell o ouR 1Zeal L . D35
B, A 2ar ’ Ba Y\ 2aMm, (D35)

Note that the By in this Appendix, which is external to the star, is not to be identified
with the By of the next Appendix (the a2 dynamo), which is internal to the star.
However, the global Bp field is perceived to be essentially the same field, continuous
across the stellar surface.
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Appendix E: Stellar Dynamos

Some stars, like the Sun, are active dynamos, producing magnetic energy out of
rotational energy. It is not clear whether all magnetic stars (Bp stars, neutron stars,
some WDs, ...) produce fields continuously, or whether some have ‘fossil’ fields generated
during an earlier active phase; the timescale of magnetic diffusion in a large-scale field is
~10%° yrs. In order to have an active dynamo it is thought necessary to have all three
of (a) rotation, (b) differential rotation (the Q mechanism), and (c) turbulent convection
(the o mechanism). The first two alone might seem sufficient, but it is reasonable to
suppose that they would be axisymmetric. Such motion can convert poloidal magnetic
field into toroidal field, but not conversely — Equn (E17), with a = 0, below — and so
the poloidal field is bound to decay by diffusion. Since the Sun reverses its poloidal field
every 11 years, it must be making use of the turbulent convection in its surface layers to
convert toroidal field back to poloidal field.

Even if we think of the velocity field as given, so that the induction equation

0B

5 VA (vAB)+ VB (E1)

is linear in the unknown B, it is difficult to approach the fully 3-D problem; and in
practice B might react back on v through the Lorentz force jAB = (V AB) A B/po.
The usual approach (Steenbeck et al. 1966, Roberts & Stix 1971, Moffat 1978) uses a
‘two-scale’ model, with macroscopic (‘M-scale’) fields vo, By that are axisymmetric, and
microscopic (‘p-scale’) fields §v, §B that are affected by turbulence. The essential result
that emerges from the p-scale analysis (crudely summarised below) is that it adds two
extra terms to the equation for the M-scale field:

0By

&5 — VA (vo ABg +aBg) + (A + 8)V?By (E2)

The a-term is the more important since, even if small, it ‘closes’ the system by allowing
toroidal field to be converted into poloidal field. The 3-term does not change the nature of
the system, but being of the same order as turbulent diffusion it does in practice dominate
the magnetic diffusion. Crude orders of magnitude are a~10"2m/s, [~10!m?/s,
A~105m?/s.

On the M-scale the pu-fields average to zero, except for their products, and so
Equn (E1) becomes

0By

W=VA(VOABO+E)+W230 , where E= <ivAéB> . (E3)

Subtracting this from Equn (E1) we get an equation for the u-field:

0/B

B = VA(VABo+voASB+G)+AVZB |, G = vASB — < 6vAIB > . (E4)
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In an apparent inconsistency we drop G from Equn (E4) while retaining E in Equn (E3).
G is second order, and so might reasonably be dropped. However E, although of the
same order of smallness (at least by hypothesis), is crucial to Equn (E3) because of its
ability to regenerate poloidal field: it leads to the a-term in Equn (E2). A less obvious
but more important inconsistency is that, as applied to turbulence, G is not small: we
expect that [0v| is of the same order as the ratio of length-scale to time-scale of the
p-field, so that |06B/0t| is necessarily of the same order as |V A (6v A dB)|. However we
ignore that point, hoping to gain some insight anyway.
The p-fields are usefully represented by their Fourier transforms (FTs):

5v = /6V€7ik.r+iat d/4,,, ) Sv = /6‘~"€ik.r7iat d/4k , (E5)

and similarly for B, where d’*k, d’*r represent volume elements in k, o and r, ¢ space,
both (somewhat unconventionally) divided by (27)?; the prime is a reminder. Strictly
the integrals should be over all space, but we hope to get away with the concept that we
can use a volume (Vj, say) which is large compared with the p-scale yet small compared
with the M-scale (and conversely in the Fourier space).

We assume for the time being that By and vq are strictly constant on the p-scale.
This allows us to estimate o, whereas to estimate 8 we need to allow B to have a slight
(constant) gradient.

Following the above, Equn (E4) has FT

. . X . k. By 0V
—ic 0B = ik.By6v — ik.vo 0B — \k2 0B §B = ©X-20 . (E6
io i 00v —ik.vg ) N2 —io + ik.vg (E6)

The solenoidal character of B ensures that k. 6B = 0, and we have assumed incompress-
ible motion so that k. v = 0 as well. Using a version of the convolution theorem,

k.By 6v* A 6V d'4k
e o + ik.vo

V,E = /(5v/\(5Bd'4r = /(wm sBd"k = z/ (E7)

The asterisk indicates complex conjugation. The answer must be real, since the first
integral is, and so we can replace the answer by the average of it with its complex
conjugate:

k26v* A ovd'k

A2t + (o — k.vo)? (E8)

V,E ~ BO./i)\k

The factor 0v* A §V in the integrand shows that the integral is related to the ‘helicity’
v.V A v; for, by the same convolution theorem,

/6V.V/\5vd'4r = /5\7.(ik/\ 6V)* d"k = i/k.ﬁm ovrd'tk . (E9)

We also see that the magnetic diffusivity is in fact crucial to the dynamo process, since
the answer in Equn (E8) contains it as a factor. On the other hand, the term k.vy in
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Equn (E8) does not appear very significant, unlike the term in k.By, and so we take
vop = O in future.

In a convective region helicity is generated by Coriolis force. We can model this crudely
by considering an approximate equation of motion including Coriolis force, along with a
buoyancy term which is a vertically upward force —gn dp/p:

OV Insp—2anev. —iocov — —Insp-20A 67,
ot p P
o 0i0)
0V = _90p <n— k /\n> . (E10)
po o

We ignore quadratic terms in /0. Then

dig® 5|

— .
VI A OV ~ 03

nA(QAn) . (E11)
Thus the helicity (Equn E9), and also the turbulence-driven e.m.f. (Equn E8), is largely
dictated by the Coriolis term, i.e. by the rotation of the star.

The integral on the RHS of Equn (E8) is a tensor, say V4a;;. It is common to assume
in practice, for simplicity, that o;; is isotropic, o;; = «d;;. This leads to the symmetric
result E = aBg that was included in Equn (E2). Given the inherent problems of the
analysis one cannot be confident that this is a good approximation. But in fact we only
need E ~ 0‘¢¢BO¢$ in order to accomplish the goal of turning toroidal field into poloidal
field. It is probably not worthwhile to try and estimate oy directly from the integral,
given the uncertainties. All we need to note is that it contains both A\ and 2 as factors.

To estimate 8 in Equn (E2), we replace the constant field By in Equn (E4) by a
magnetic field of constant gradient, r. B, where B is a constant traceless tensor:

Bi]' = 6B0]'/8.Z'i - (E12)

Then the FT of Equn (E4) leads to the following replacement for Equn (E6):

—i0 0By, = — Bim, [%(km 80k) + Okm 551] —\k26B, (F13)
l

and the estimate for the mean turbulent e.m.f. corresponding to Equn (ET7) is

d"k

| 0 . .
V4Ez ~ /((5V/\(5B)Z dl4’l" = —€ijk Blm/ (5Uj |:—(km Jvk) + 5km (5Ul:| m

i . (E14)

Once again, we can do little better than hope that the integral, now a fourth-rank tensor,
will be approximately isotropic, i.e. of the form Vi(8'0;k0im + 8"8;i0km + 8" 0jmOki).
Defining 8" — 8" = 3, we obtain

E;~ — Beijk Bk , i.€. E = —3VABy , (E15)
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using the definition (E12) of B. By these somewhat crude means we smooth the
turbulent-field Equn (E4) to reduce the mean-field Equn (E3) to its standard form,
Equn (E2).

Having shown qualitatively how the effect of the p-field can be incorporated into the
equation for the M-field, we now consider Equn (E2) applied to an axisymmetric star.
As in Appendix D, we describe B (dropping the suffix zero) by a toroidal component
By and a poloidal component with stream-function @; this can be done even when the
magnetic field is time-dependent. However we simplify further by taking the velocity
M-field to be both steady and purely toroidal (P = 0), and write vy = RQ(R, z). Then
with some manipulation Equn (E2) can be written

0B¢ o _ 2 2 )\"i‘ﬂ 2
5 - J(Q,Q) R D=Q + R D*(RBy) , (E'16)
% = aRBy,+ (A +B)D*Q (E17)

J being the Jacobian operator of Equn (D4) and D? a Laplacian-like operator

s -0 1 0 0?
D :Rﬁﬁﬁ—i_ﬁ . (E18)
The Jacobian in Equn (E16) is a source term that winds up the poloidal field to give a
toroidal component, provided that surfaces of constant 2 do not coincide with surfaces
of constant ); and the a-term in Equn (E17) allows toroidal field to be converted back
to poloidal field, although slowly on the assumption that « is small.

To simplify still further, let us suppose that the poloidal field has the simplest possible
structure, being uniform of strength Bpg(t) within the star so that Q@ = BpoR?/2,
D?@Q = 0. Then the Jacobian source term involves only the z-gradient of 2, and
we approximate this as A/l assuming that the gradient in €2 is confined to a shell of
thickness [ (as found by helioseismology at the base of the solar convection zone). For
consistency in Equn (E17) we must take By o< R, i.e. By = Bgo(t)R/Ry, where Ry is
some characteristic radius and By is independent of position. Then D*(RB;) = 0 as
well, and we end up with

. RyAQ :
Bgo~ 01 Bpo , Bpo = R—0B¢0 i (E19)

These equations allow the kind of cyclic behaviour seen in the Sun and some other stars,
provided that « is complex, as we reasonably expect from its derivation.

As emphasised at the end of Appendix D, the By of Appendices D and E are not the
same, even at the surface of the star; however we do assume that the poloidal field Bp,
of Equn (E19) is basically the same in magnitude, at the stellar surface, as the uniform
internal field By of Equn (D27).



322

Appendix F: Steady, Axisymmetric, Cool Accretion Discs

Accretion discs are usually modeled in cylindrical polars, and assumed steady, ax-
isymmetric, and thin in the z-direction: |z| $ h(R) where

h/R =46(R) <1 . (F1)

The material has little velocity in the R and z-directions, compared with its tangential
velocity:
|va| ~ dlvr|] < |vr| < vy = RQ(R) . (F2)

We take the temperature T(R) to be largely independent of z, and low enough that the
tangential velocity is strongly supersonic

—M;R) =¢’® , <QR . (F3)
Of course c; is not actually the sound speed, but is of the same magnitude. Pressure and
density drop off rapidly with |z|, but T' — as well as the radial velocity vg, the viscosity
X, (dimensions length?/time) and the opacity x — are assumed nearly independent of
z, though dependent on R. We show below — Equn (F10) — that ¢s~ A, so that the
strong inequalities (F1) and (F3) are not independent. Most of the above assumptions
are justified below a posteriori, from the basic ones: steady, axisymmetric and cool.

The Equation of Motion (EoM) includes four terms: the inertia term, the pressure
gradient, gravity (potential ® = GM;/+v/ R? + 22, ignoring the self-gravity of the disc),
and Navier-Stokes viscosity. In the R-direction inertia and gravity dominate, their bal-
ance giving Keplerian motion. In the ¢-direction only inertia and viscosity contribute,
and so they are in balance. In the z-direction the pressure gradient and gravity (weak
as it is in that direction) dominate, and balance. The Equation of Heat (EoH) has
three terms: advected heat, radiative heat loss, and viscous heating. In the usual model
advected heat is assumed negligible, and the second and third terms balance.

In reality it is likely that magnetic forces rather than viscous forces are important, at
least when the disc material is hot enough to be substantially ionised, and so the Navier-
Stokes term should be replaced by the Lorentz force j A B, and the viscous heating
by ohmic dissipation. We show below, after dealing with the standard viscous disc,
that under some rather idealised circumstances the magnetic terms become surprisingly
similar to the viscous terms. This does not really justify the viscous model, but it leaves
it as a reasonable first approximation.

The continuity equation is

1 0

R OR
Both terms are comparable if |0/8z|~1/h, |8/0R|~1/R; but if we integrate in the z-
direction, taking p~0 for |z| > h, and suppose that vg is largely independent of z, we
get

0
9, = _ F4
Rpug + 55 PV 0 (F4)

d M2
= —_—— = . F
_R RO’(R)’UR(R) =0 s RO”UR 9 const s ( 5)
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where o is the surface density [ pdz, and M >0 is the accretion rate.
The R-component of the EoM is
1 0Op GM:2R
—PR+v.Vog = —= ——————""__ 4 viscous terms involving vg, v . (F'6
R p OR  (R2+ 22)%2 gur,vs - (F6)
We ignore the terms involving vg, v,, and the radial pressure gradient, to obtain the
usual Keplerian approximation

G M,

2 _
S

(|z|sh<R) . (F7)

The z-component of the EoM is

1 M.
v.Vu, = — p % - (RZC:_% + viscous terms involving vg,v, . (F8)

Again ignoring vg, v,, but keeping the vertical pressure gradient, we get

op

5 = - 0%pz  (|z2|sh<R) . (F'9)
With Equn (F3) this implies that
p = po(R) TP = e/, o = V2mpoh (F'10)

where pg is the density on the plane z = 0.
The ¢-component of the EoM has no terms from pressure or gravity, and so with the
approximation Q@ = Q(R) of Equn (F7) it becomes
pvr d 9 1 0 dQ

B2 2 QR? = — 3= F11
R ar‘E 72 or T 4R (F11)

Integrating over z, and then using Equns (F5), (F7), this gives

const R\ 2
. . . 2
MQ = 3’/TXVU+W ~ 37TXVO'+M2 <E> . (F12)
The constant of integration represents the fact that the disc cannot be Keplerian all the
way to the surface of *2. There must be a point near the inner edge of the disc where
the viscous couple X,0R? 9§2/OR goes through zero, which leads to the estimate above
for the constant.

The EoH is

00\* 9  GM.
pTv.Vs = —V.F+pe , €= X,R? (@) = 71X R32 . (F'13)

The advection term on the LHS is usually expected to be small. The viscous dissipation
rate € neglects terms in vg, v, and 0Q/0z, as usual. F is the radiative heat flux (though
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convection can be significant in some circumstances). F will be mainly in the z-direction,
with surface value say +Fp/2 at z~ =+ h. Integrating perpendicular to the disc,

. Ry 1/2
R
where we have used Equn (F12). We have assumed that Xy, like T', varies only modestly

in the z-direction.

Fy = = SoX,—2 =

/e g = 9. GMy _ 3 GMM,
P 1R T i R

(P

Radiative transport allows us to estimate Fj in terms of the temperature and opacity
K, or more specifically the optical depth 7y at the plane z = 0:

21y = /npdz = ko . (F15)

We approximate Equn (F13) as

dF F
g, = pe S0 that F = %(Tg—T) = 2—7_[;(7'0—7') ) (F'16)

where 7(2) is the optical depth of a general layer, measured from the upper surface. The
usual equation of radiative transport in the grey-body approximation (Mihalas 1970) for
the specific radiation intensity I, at depth 7 and angle 6 to the outward normal, is

1 T4 T
cosﬁg— =I1-= , F = 27r/ Icosfsinfdd . (F17)
0

T 4

For 7921, this has a solution similar in nature to the Milne-Eddington solution for
a stellar atmosphere, but differing slightly because by Equn (F16) the flux F' is not
independent of 7. The solution is

3F, s 1 ,
I = 2% (- - ~ Zre— A
p— (1o — 7) cos @ — cos” 0 2(7'0 )" 4+ A} ,
3F, 1
4 _ 940 T 2
acT* = 270 {A 5 (o —7)*} . (F18)

The constant A(7,) is determined by the condition that at 7 = 0 there is no net inward
flux, i.e.

T 1 2 1
/ Icosfsinfdd = 0 , sothat A(r) = 5t 370 +3 . (F19)
/2

Thus the temperature Ty on the mid-plane, and the effective temperature T, defined by
Fy/2 = surface flux = acT,*/4, are given by

F, 4
acTy = %A(To) = z—TsA(To) , aclt = % = 2F, . (F20)
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The fact that Ty differs from 7. by a factor ~ (379/8)'/* for large optical depths ap-
parently violates our assumption that T is roughly independent of z, but (a) empirical
estimates suggest that 79 is usually not large, and (b) the assumption is not very impor-
tant, since it only influences in detail the estimate (F10) for the density distribution.
The optically thin case (19 < 1) is rather easier to estimate, directly from Kirchhof’s
law:
el = acrt = £ = o (F21)
R 27’0

A single interpolation formula includes both the thick and the thin estimates:

acTy 4 1447
——— ~ acl,” ~ F F22
1+3m/8 2y 0 (£22)
with Fy given by Equn (F14).
It is usual to introduce a dimensionless parameter
Xy
= v F23
= (F23)

In terms of a, along with ¢ of Equn (F1), we can estimate all the neglected terms in
the EoM and EoH, relative to either of the leading two terms, and find that they are
all of order 62, a?6? or a?6*. Further, we can estimate §, along with 79, from some of
the above results, supposing that we know Mo, Ro, «r, and either M, or equivalently the
accretion luminosity Lacc as a fraction of Lgqq (Equn 3.5.11):
GM,M, . 4mcRy Lyce

Lyce ~ —5— y My ~

| (F24)
Ry kr  Lgad

where k7 is the Thomson-scattering opacity. Then using the definitions (F1), (F3), of
J, s, and using Equns (F7), (F14) and (F22) for Q(R), Fo(R), To(R), we obtain

8~ C

Lacc R2 R (Mch)3 (8 + 37'0)(1 + 47'0)
' Liaa Ren Ren \ M 167 ’

3R* Ry
prG3akt Ma,?
where we take p~0.6; we refer radii and masses to the Chandrasekhar values of
Equn (2.3.2.2). From Equn (F15) we estimate

T~ & Lacc R2 <Rch>1/2 <—]\4ch>1/2 i C, = 2 Cchh ~ 40
® " @6% Lgaa R \ R M, ke 27 3\ GMa
(F26)
These linked estimates of §, 7y can be solved simultaneously. Supposing « is independent

of R (for which there is no basis) Equns (F25) and (F26) give

C, = ~2x1071 (F25)

xR % §xR"™ | 1zl (R small)
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xR, §xR® | 151 (Rlarge) . (F27)
If we accept that in reality magnetic fields rather than viscosity are really what drives
accretion, we should replace the viscous term in Equn (F11) by
1 1 1 0 0
—V.(BB = — |— == R?’BgyBs+ — B,B , F28
[#0 ( )La Ho [Rz R TR gy Pele (F28)
The field exists because any seed Br or B, will be turned rapidly by Keplerian differ-
ential rotation — and even more rapidly by MHD instability (Balbus & Hawley 1991)
— into a large By. We assume the field to be limited by magnetic diffusivity, although
more realistically it is likely to be limited by field-line reconnection, a highly non-linear
and non-equilibrium process such as happens in solar flares. The ¢-component of the
induction equation, assuming a quasi-steady balance, gives

s}
[VA(vAB)], = RBr— + terms involving vg, v,

dR
0 Xm O 0 0By
~ IVAXuVAB = —— — —RBy—— Xpn — ,
[V AL o OR R OR™? 0z"™ 0z
where X, is the magnetic diffusivity, with same dimensions as X,. B, will also be

(F29)

created, if it did not exist already, but we shall ignore B, for mathematical simplicity;
we continue also to ignore vgr,v,. The Br and By fields are likely to be chaotic rather
than systematic, so that we guess /0R~0/0z ~1/h and then approximate the balance
of Equn (F29) by ,
By ~ )’(‘—m RBy T8 (F30)
Then the magnetic torque of Equn (F28) is equivalent to the viscous torque of
Equn (F11), provided we define X, by
2
_ h* BT (F31)
Xm pop
The magnetic field will also contribute a pressure term, which by magnetic confinement
we can expect to be limited by balance with the gas pressure:
2
Bs pes? . (F32)
Ko
Using the estimate h = ¢5/Q of Equn (F10), and the definition (F23) of a, Equns (F30)

- (F32) tell us that

v

By’
Xy ~ Xm ~ Br ~ aB . F33
v m aMOPQ R aDg ( )
The magnetic energy generation rate is
X XmBy?
e = 2 |VABP ~ 2229 L x, 0% (F34)

top poph?
using estimate (F32) and (F10), and so is of the same order as the conventional viscous
dissipation of Equn (F13). This crude equivalence of magnetic stress and dissipation
with viscous stress and dissipation suggests that we can continue to use estimates like
(F25), (F26) to model magnetically-driven accretion discs.
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