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Preface

Understanding the stars is the bedrock of modern astrophysics. Stars are the
source of life. The chemical enrichment of our Milky Way and of the Universe
with all elements heavier than lithium originates in the interiors of stars. Stars
are the tracers of the dynamics of the Universe, gravitationally implying much
more than meets the eye. Stars ionize the interstellar medium and re-ionized
the early intergalactic medium. Understanding stellar structure and evolution
is fundamental.

While stellar structure and evolution are understood in general terms, we
lack important physical ingredients, despite extensive research during recent
decades. Classical spectroscopy, photometry, astrometry and interferometry of
stars have traditionally been used as observational constraints to deduce the
internal stellar physics. Unfortunately, these types of observations only allow
the tuning of the basic common physics laws under stellar conditions with
relatively poor precision. The situation is even more worrisome for unknown
aspects of the physics and dynamics in stars. These are usually dealt with
by using parameterised descriptions of, e.g., the treatments of convection,
rotation, angular momentum transport, the equation of state, atomic diffusion
and settling of elements, magneto-hydrodynamical processes, and more. There
is a dearth of observational constraints on these processes, thus solar values
are often assigned to them. Yet it is hard to imagine that one set of parameters
is appropriate for the vast range of stars.

Helioseismology led to a large step forward in the precision of the in-
ternal structural model of the Sun. Asteroseismology aims to obtain similar
improvements for different types of stars by means of their oscillations. Stellar
oscillations indeed offer a unique opportunity to probe the internal properties
and processes, because these affect the observable frequencies. Moreover, stel-
lar rotation and magnetic fields also modify the frequencies of a star’s modes
of oscillation. The confrontation between the measured oscillation frequencies
and those predicted by models improves the input physics of models to a pre-
cision that cannot be reached by any other method, as we have learned from
helioseismology.



VIII Preface

Stellar oscillations are the only diagnostic known that allows us to improve
the stellar structure and evolution models by at least an order of magnitude.
This book, the first dedicated to this research field, explains how this can
be achieved. As such, it encompasses all aspects of the field: we treat raw
data gathering and reduction (Chapter 4), oscillation frequency determination
through time series analysis (Chapter 5), techniques for the identification of
the spherical wavenumbers of the oscillation modes from data (Chapter 6), as
well as the theory of stellar oscillations with specific emphasis on the aspects of
the physics that can be improved by asteroseismology (Chapter 3). The book
begins with an intuitive descriptive introduction into the topic for the non-
expert by comparing stellar oscillations with musical sound waves (Chapter 1),
then provides an overview of all the various classes of stars in which oscillations
have been discovered (Chapter 2). Having introduced all the methodology,
Chapter 7 is dedicated to some selected case studies of successful applications
of asteroseismology, including a brief overview of helioseismology.

Up to now, the best applications of asteroseismology, i.e., those that have
led to improved values of the input physics, have relied dominantly on ground-
based data sets. This will change dramatically when the results of the presently
operational CoRoT and Kepler missions and other future space missions be-
come available, while ground-based spectroscopic measurements will remain
a requirement for a full asteroseismic analysis. We look into the future of
this booming research field in Chapter 8 where we emphasize the immense
progress that is being made in the quality and quantity of asteroseismic data
from ongoing and future space missions, as well as from ground-based instru-
mentation.
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1

Introducing Asteroseismology1

1.1 Introduction

1.1.1 The Music of the Spheres

Pythagoras of Samos (c. 569−475 BC) is best-known now for the Pythagorean
Theorem relating the sides of a right triangle: a2+b2 = c2, but his accomplish-
ments go far beyond this. When Pythagoras was a young man (c. 530 BC)
he emigrated to Kroton in southern Italy where he founded the Pythagorean
Brotherhood who soon held secular power over not just Kroton, but more ex-
tended parts of Magna Grecia. He and his followers were natural philosophers
(they invented the term “philosophy”) trying to understand the world around
them; in the modern sense we would call them scientists. They believed that
there was a natural harmony to everything, that music, mathematics and what
we now call physics were intimately related. In particular, they believed that
the motions of the Sun, moon, planets and stars generated musical sounds.
They imagined that the Earth is a free-floating sphere and that the daily
motion of the stars and the movement through the stars of the Sun, moon
and planets were the result of the spinning of crystalline spheres or wheels
that carried these objects around the sky. The gods, and those who were
more-than-human (such as Pythagoras), could hear the hum of the spinning
crystalline spheres: they could hear the Music of the Spheres (see Koestler
1959).

The idea of the Music of the Spheres seems to resonate in the human
mind; the expression is alive and current today, 2500 years later. A century
after Pythagoras, Plato (c. 427−347 BC) said that “a siren sits on each planet,
who carols a most sweet song, agreeing to the motion of her own particular
planet, but harmonizing with all the others” (see Brewer 1894). Two millennia

1 Text partly reproduced from Kurtz, D.W., 2006, Stellar Pulsation: an Overview,
ASP, Volume 349, 101, Astrophysics of Variable Stars, Eds C. Sterken & C. Aerts,
with permission from the Astronomical Society of the Pacific.

C. Aerts et al., Asteroseismology, Astronomy and Astrophysics Library, 1
DOI 10.1007/978-1-4020-5803-5 1, c© Springer Science+Business Media B.V. 2010
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after Plato, Johannes Kepler (1571 − 1630) so believed in the Music of the
Spheres that he spent years trying to understand the motions of the planets
in terms of musical harmonies. He did admit that “no sounds are given forth,”
but still held “that the movements of the planets are modulated according to
harmonic proportions.” It was only after Herculean efforts failed that Kepler
gave up on what he wanted to be true, the Music of the Spheres, started over
and discovered his famous third law for the planets,2 P 2 = a3. It was this
willingness to discard a cherished belief, an ancient and venerable idea, and
begin again that made Kepler a truly modern scientist.

William Shakespeare (1564− 1616) was a contemporary of Kepler, and of
course you can find the Music of the Spheres in Shakespeare (Merchant of
Venice, v. 1):

There’s not the smallest orb which thou beholdest
but in his motion like an angel sings
Still quiring to the young-eyed cherubim

The Music of the Spheres never left artistic thought or disappeared from the
language, but as a “scientific” idea it faded from view with Kepler’s Laws of
motion of the planets. And so it languished until the 1970s when astronomers
discovered that there is resonant sound inside stars, that stars “ring” like giant
bells, that there is a real Music of the Spheres.

1.1.2 Seeing with Sound

In the opening paragraph of his now-classic book, The Internal Constitution
of the Stars (Eddington 1926), Sir Arthur Stanley Eddington lamented:

At first sight it would seem that the deep interior of the Sun and
stars is less accessible to scientific investigation than any other region
of the universe. Our telescopes may probe farther and farther into
the depths of space; but how can we ever obtain certain knowledge
of that which is hidden behind substantial barriers? What appliance
can pierce through the outer layers of a star and test the conditions
within?

Eddington considered theory to be the proper answer to that question: From
our knowledge of the basic laws of physics, and from the observable boundary
conditions at the surface of a star, we can calculate its interior structure, and
we can do so with confidence.

While we humans shower honours, fame and fortune on those who can run
100 m in less than 10 s, leap over a 2-m bar, or lift 250 kg over their heads,
cheetahs, dolphins and elephants (if they could understand our enthusiasm
for such competitions) would have a good laugh at us for those pitiful efforts.
We are no competition for them in physical abilities. But we can calculate
2 Relating period P and semi-major axis a of the orbit of the planet.
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the inside of a star! That is at the zenith of human achievement. No other
creature on planet Earth can aspire to this most amazing feat.

Some humility is called for, however. In The Internal Constitution of the
Stars Eddington reminds us on page 1: “We should be unwise to trust scientific
inference very far when it becomes divorced from opportunity for observational
test.” Indeed! Therefore he would have been amazed and delighted to know
that there is now a way to see inside the stars – not just calculate their interiors
– but literally see. We have invented Eddington’s “appliance” to pierce the
outer layers of a star: It is asteroseismology, the probing of stellar interiors
through the study of their surface pulsations.

Stars are not quiet places. They are noisy; they have sound waves in them.
Those sounds cannot get out of a star, of course; sound does not travel in a
vacuum. But for many kinds of stars – the pulsating stars – the sound waves
make the star periodically swell and contract, get hotter and cooler. With
our telescopes we can see the effects of this: the periodic changes in the star’s
brightness; the periodic motion of its surface moving up-and-down, back-and-
forth. Thus we can detect the natural oscillations of the star and “hear” the
sounds inside them.

Close your eyes and imagine that you are in a concert hall listening to an
orchestra tuning up: The first violinist walks over to the piano and plunks
middle-A which oscillates at 440 Hz. All the instruments of the orchestra then
tune to that frequency. And yet, listen! You can hear the violin. You can
hear the bassoon. You can hear the French horn. You can hear the cello, the
flute, the clarinet and the trumpet. Out of the cacophony you can hear each
and every instrument separately and identify them, even though they are all
playing exactly the same frequency. How do you do that?

Each instrument in the orchestra is shaped to put power into some of its
natural harmonics and to damp others. The shape of the instrument deter-
mines its natural oscillation modes, so determines which harmonics are driven
and which are damped. It is the combination of the frequencies, amplitudes
and phases of the harmonics that defines the character of the sound emanated,
that gives the timbre of the instrument, that gives it its unique sound. It is
the combination of the harmonics that defines the rate of change of pressure
with time emanating from the instrument – that defines the sound waves it
creates.

A sound wave is a pressure wave. In a gas this is a rarefaction and com-
pression of the gas that propagates at the speed of sound. The high pressure
pushes, compresses and propagates. Ultimately, this is done at the molec-
ular level; the information that the high pressure is coming is transmitted
by individual molecular collisions. In the adiabatic case, the speed of sound
is c =

√
Γ1p/ρ, where Γ1 is one of the adiabatic exponents (see Eqs (3.18)

in Chapter 3 for a definition), p is pressure and ρ is density. Of course, for
an ideal gas p = ρkBT/μmu, where kB is Boltzmann’s constant, μ is mean
molecular weight, and mu is the atomic mass unit; thus c =

√
Γ1kBT/μmu.

The changes in pressure are therefore accompanied by changes in density and
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temperature. Principally, as we can see from the last relationship, in this case
the speed of sound depends on the temperature and chemical composition of
the gas.3 Thus, if the temperature is higher, and the molecules are moving
more quickly, they collide more often and the sound speed is higher. And at
a given temperature in thermal equilibrium, lighter gases move more quickly,
collide more often, and the sound speed is higher than for heavier gases.

This last effect is the cause of a well-known party trick. Untie a helium
balloon, breathe in a lung-full of helium, and you will sound like Donald Duck
when you talk! The speed of sound in helium at standard temperature and
pressure is 970 m s−1, compared to 330 m s−1 in air (78% molecular nitrogen,
21% molecular oxygen and 1% argon). With the nearly three times higher
sound speed in helium the frequency of your voice goes up by that factor of
three, hence the high-pitched hilarity. (As an aside: breathing helium is safe,
so long you do not do it for too long, i.e., so long as it is not the only thing
you are breathing. It is inert and will not react chemically. Deep-sea divers
breathe heliox, a mixture of helium and oxygen, to reduce decompression time
compared to breathing an air mixture, since helium comes out of solution in
the blood more quickly than does molecular nitrogen.)

Thus, if you can measure the speed of sound in a gas, you have information
about the pressure and density of that gas, and, from the equation of state, you
may constrain the temperature and chemical composition. Stars are made of
gas, and they are like giant musical instruments. They have natural overtones
(not the harmonics of musical instruments, so the sounds of the stars are
dissonant to our ears when we play them at audible frequencies), and just as
you can hear what instrument makes the sounds of an orchestra, i.e., you can
“hear” the shape of the instrument, we can use the frequencies, amplitudes and
phases of the sound waves that we detect in the stars to “see” their interiors
– to see their internal “shapes”. A goal of asteroseismology is to measure
the sound speed throughout a star so that we can know those fundamental
parameters of the stellar structure.

We humans are incredibly visual creatures; for us, sight is a dominant
sense. We think “seeing is believing”. Yet other animals perceive the world
in other ways. Take a dog for a walk. The dog dedicates 60 times more brain
to its sense of smell than you do. Dogs can see, but for them “smelling is
believing”. If a dog sees an object that it does not understand and does not
trust, it will approach cautiously (sometimes with its hackles up) until the
suspicious object can be smelled, and then the situation will be clarified and
the dog will “know” the object. For them “smelling is believing.”

What happens to you when you “see”? Does your brain detect the light?
Is there a real image in your head? Of course not. Your eye forms an image
on your retina, the photons are absorbed, an electro-chemical signal passes

3 On the other hand, for a gas dominated by the pressure of degenerate electrons,
the thermodynamic properties, and hence the sound speed, depend little on tem-
perature.



1.1 Introduction 5

down your optic nerve to the part of your brain that interprets the incoming
visual signal, and you have the impression that there is a 3-D theatre in your
head. You “see” an image of the world.

So what then happens to you when you “hear”? Does your brain hear the
sound? Are the sound waves in your head? Again, of course not. Your eardrum
oscillates in and out with the increasing and decreasing pressure of the sound
wave. Through the bones in your ears and through sensitive hairs the sound is
transmitted, then transformed into an electro-chemical signal that passes to
the part of your brain that interprets the incoming aural signal, and you have
the impression that there is a 3-D sound system in your head. You “hear” the
world.

While our perceptions of sight and sound are very different experiences,
they are physiologically similar, and they are both providing us with informa-
tion about the world around us. So it is possible to “see” with sound? Yes. Of
course it is. Bats do it with echo-locating. They emit sounds and the returning
echoes tell the bat where everything in its environment is, down to the small
insects that they catch for food (and also provide velocity information from
the Doppler shift). Those sounds are converted to electro-chemical signals in
the bat’s brain, and the bat has a picture of the world around it. That is
“seeing” with sound. A colony of a million bats leaving a narrow cave mouth
in the dark has few collisions; the bats can “see” each other. It is not possible
to get inside the mind of another creature. We cannot even do it with a fel-
low human; we cannot know if another person has the same experience that
we have, e.g., of colour, of tone, of taste. We assume that they do, and get
along well with that assumption, so similarly we may assume that bats “see”
the world through sound. Their sense of hearing powers the 3-D theatre in
their minds, just as our sense of sight does for us. We may surmise that the
experiences of seeing with light or sound are similar.

Similarly, asteroseismology uses astronomical observations – photometric
and spectroscopic ones – to extract the frequencies, amplitudes and phases of
the sounds at a star’s surface. Then we use basic physics and mathematical
models to infer the sound speed and density inside a star, throughout its in-
terior, and thence the pressure. With reasonable assumptions about chemical
composition and knowledge of appropriate equations of state, the tempera-
ture can then be derived. These are, in a real sense, all the equivalent of the
electro-chemical signals in our brains. We build up a picture in the 3-D theatre
in our minds of what the inside of a star looks like. We see inside the star.
The sounds tell us what the interior structure of the star has to be.

Who has not been amazed to see a picture of the face of a foetus in
the womb, imaged using ultrasound waves? Do you question the reality of
that? No. That is a real picture of the baby before it is born. Identically,
using infrasound from the stars, the pictures of their insides that we see using
asteroseismology have this same reality.
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We have answered Eddington’s question, “What appliance can pierce
through the outer layers of a star and test the conditions within?” The answer
is: Asteroseismology, the real Music of the Spheres.

1.1.3 Can we “Hear” the Stars?

So you have been persuaded that there are sounds in stars and we can use
those to “see” inside them. But can we actually hear them? Is there really a
Music of the Spheres? Amazingly, the answer to that is also yes.

What we consider to be musical is mostly the relationships among the
frequencies, amplitudes and phases of sounds, not their absolute pitch. A few
humans have perfect pitch, and serious musicians and music-lovers do care
about the key that a piece of music is played in – for the sound, and sometimes
for the ease of playing it. But for most people a change of key does not change
the character of the music – a melody is still recognizable in another key –
because the relationships among the frequencies are not changed.

Now think about this: We have sound recording equipment that can detect
the ultrasound of bats. We record the frequencies, amplitudes and phases of
those sounds. Then, we simply shift the frequencies down into the audible
range while keeping the frequency ratios the same, while keeping the ampli-
tude and phase relationships; i.e., we come down some octaves and perform
a change of key. Played through a speaker we can then hear what bats sound
like. It is a legitimate experience and may even be close to what it would be
like to have ultrasound hearing and actually hear the bats directly with our
own ears. (Fortunately, we cannot hear the bats, for they are loud and they
are noisy; we probably would not like it.)

Similarly, with the right equipment we may record the infrasounds of
whales, shift them up in frequency into the audible, and experience the haunt-
ing “songs” of the whales. This, too, is really hearing the sounds of the whales.
(Unfortunately, the whales can hear the infrasounds of our many ships, so their
environment has become vastly noisier over the last two centuries.)

Therefore, it is fair to say that when we observe the frequencies, amplitudes
and phases of a pulsating star that are caused by sounds in the star, and we
shift those by many octaves (usually with a key change) up into the audible
and play them through a speaker, we are experiencing the real Music of the
Spheres. Pythagoras and Kepler would have been amazed.

While it is possible to use our observations of pulsating stars to generate
sound files for the stars, and listen to them, we do not do science that way. As-
teroseismology uses the frequencies, amplitudes and phases from observations
of pulsating stars directly to model and probe the stellar interiors. But the
sounds are intellectually intriguing, and they are even aesthetically pleasing.

The first musical composition based on the sounds of the stars is called
Stellar Music No 1, by Jenö Keuler and Zoltán Kolláth of Konkoly Observa-
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tory. Discussion of the music, a sound file and a score can be found on Zoltán
Kolláth’s website4.

1.1.4 Pressure Modes and Gravity Modes

When an idea is being discussed in Belgium, the response often begins,
“Well, it’s not as simple as that!” This expression, much loved by Belgian
astronomers, is often useful to the rest of us, too. Therefore, given all that
has been said so far: It is not as simple as that.

There is more to stellar pulsation than acoustic waves – sound waves –
in stars. Those acoustic waves are known as “pressure” modes, or p modes.
There are equally important “gravity” modes, or g modes, where the restoring
force of the pulsation is not pressure, but buoyancy. Much of the picture of
stellar pulsation that we have been painting is a valid view of gravity modes,
too; they also probe the interiors of stars, and let us see below their surfaces.
But gravity modes are not acoustic – they are not caused by sounds in the
stars. We shall discuss these two kinds of pulsation in parallel as our view of
stellar pulsation grows clearer.

Now we need to build in our minds a picture of what the 3-D pulsations
of stars look like.

1.2 1-D Oscillations

1.2.1 1-D Oscillations on a String

Fig. 1.1. The first three oscillation modes for a string that is fixed at both ends,
such as a violin string or a guitar string. On the left is the fundamental mode; in the
centre is the first overtone which has a single node; and on the right is the second
overtone which has two nodes. Note that the nodes are uniformly spaced.

Figure 1.1 shows the fundamental mode and the first and second overtone
modes for a vibrating string such as those on violins, guitars or any musical
string instrument. The frequencies of these modes depend on the length of
4 https://www.konkoly.hu/staff/kollath/stellarmusic/.
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the string, the tension and the material the string is made of. Importantly,
the tension and composition of the string are uniform along its length. Under
those conditions the first overtone mode has twice the frequency of the fun-
damental mode, the second overtone mode has a frequency three times that
of the fundamental mode, and so on. We therefore refer to these overtones as
“harmonics”, since they have small integer ratios. To our ears the frequencies
with small integer ratios, such as 2:1, 3:2, 4:3, are harmonious. But note that
here we distinguish the words “overtone” and “harmonic”; while they are the
same for modes on a uniform string, they are not the same for stars, as we
shall see.

1.2.2 1-D Oscillations in an Organ Pipe

Fig. 1.2. The first three oscillation modes for an organ pipe with one end (on the
left) closed, and one end (on the right) open. On the left is the fundamental mode;
in the centre is the first overtone which has a single node; and on the right is the
second overtone which has two nodes. Note that the open end is an anti-node in the
displacement of the air, and that the nodes are uniformly spaced.

If instead of a string we think of the oscillations of the air in an organ pipe, or
any wind instrument with one closed end, then there is a displacement node
at the closed end of the pipe, and the other, open end has a displacement
antinode. Figure 1.2 shows this schematically. As for the string in the previous
section, note that the overtones are harmonic with small integer ratios – in the
cases in Fig. 1.2 these are 3:1 and 5:1 – since the air temperature and chemical
composition are uniform within the pipe, so the sound speed is constant along
the pipe. While the organ pipe is in some ways a simple analogue of a radially
pulsating star, the uniform temperature is far from true for stars, as we shall
see, and therein lies a big difference.

1.3 2-D Oscillations in a Drum Head

To imagine the oscillations of a 2-D membrane, a drum head is easy to visu-
alize, as can be seen in Fig. 1.3. Because the drum head is two-dimensional,
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there are nodes in two orthogonal directions. One set of modes has nodes that
are concentric circles on the drum head, and those modes are called radial
modes. For a drum head the rim is always a node, so the fundamental radial
mode simply has the drum head move up and down with circular symmetry
with maximum amplitude at the centre, which is an antinode. The first radial
overtone has a node that is a circle on the drum head with the centre and
outside annulus moving in antiphase; the second radial overtone has two con-
centric circles as nodes, and so on. (These radial modes are rapidly damped
in an actual drum head, so contribute only to the initial sound of the drum
being struck, and not much to the ringing oscillations that follow.)

Fig. 1.3. Representations of some oscillation modes in a drum head. The rim of
the drum is fixed, so is forced to be a node in all cases. The top left circle represents
the fundamental radial mode for the drum: the rim is a node and the centre of the
drum is an anti-node. The middle top figure represents the first radial overtone,
with one node which is a concentric circle. The plus and minus signs indicate that
the outer annulus moves outwards while the inner circle moves inwards, and vice
versa. The top right figure represents the second radial overtone. The bottom left
figure shows the simplest nonradial mode for a drum, the dipole mode, where a line
across the middle of the drum is a node and one side moves up, while the other
moves down, then vice versa. The middle bottom panel represents the quadrupole
nonradial mode, and the bottom right figure shows the second overtone quadrupole
mode. The modes are characterized by quantum numbers, one for the number of
radial nodes, and one for the number of nonradial nodes. So reading from left-to-
right, top-to-bottom, the modes are numbered (0,0), (1,0), (2,0), (0,1), (0,2) and
(2,2). A similar notation in 3-D exists for stellar pulsation modes, as we shall see.
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The second direction of nodes in a drum head gives rise to the nonradial
modes. The first nonradial mode is the dipole mode which has a node that is
a line across the drum head dividing it in two, so that the two halves oscillate
in antiphase. The second nonradial overtone has two crossing nodes dividing
the drum into four equal sections. Of course, there are modes that have both
radial and nonradial nodes. The important point about the drum head is that
these modes do not have frequencies with small integer ratios, so the drum is
not harmonic; it does not ring with a musical sound5. For a uniform density
and tension drum head, the solutions to the oscillation equations are Bessel
functions, as illustrated by the radial nodes in Fig. 1.3. To visualize drum head
oscillations better, excellent graphical movies can be found on the web site of
Dan Russell6.

1.4 3-D Oscillations in Stars

Stars are three-dimensional, so their natural oscillation modes have nodes in
three orthogonal directions. These are described by the distance r to the cen-
tre, co-latitude θ and longitude φ; here θ is measured from the pulsation pole,
the axis of symmetry (hence is co-latitude, since latitude is measured from
the equator). The nodes are concentric shells at constant r, cones of constant
θ and planes of constant φ. For a spherically symmetric star the solutions to
the equations of motion have displacements in the (r, θ, φ) directions and are
given by7

ξr (r, θ, φ, t) = a (r) Y m
l (θ, φ) exp (−i 2πνt) , (1.1)

ξθ (r, θ, φ, t) = b (r)
∂Y m

l (θ, φ)
∂θ

exp (−i 2πνt) , (1.2)

ξφ (r, θ, φ, t) =
b (r)
sin θ

∂Y m
l (θ, φ)
∂φ

exp (−i 2πνt) , (1.3)

where ξr, ξθ and ξφ are the displacements, a(r) and b(r) are amplitudes, ν is
the oscillation frequency8 and Y m

l (θ, φ) are spherical harmonics given by

5 Tympani do have a musical tone. This is the result of careful design where the
air pressure in the drum damps some modes, and allows those that are close to
harmonic to oscillate, thus giving a recognizable note.

6 http://www.kettering.edu/∼drussell/Demos/MembraneCircle/Circle.html.
7 Here the displacements are written in complex form which is a mathematical

convenience; the physically meaningful quantities are obtained by taking the real
parts. See also Section C.1.

8 more precisely, the cyclic frequency; later we also introduce the angular frequency
ω = 2πν.
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Y m
l (θ, φ) = (−1)m

√
2l + 1

4π
(l −m)!
(l +m)!

Pm
l (cos θ) exp (imφ) (1.4)

and Pm
l (cos θ) are Legendre polynomials (see also Appendix B) given by

Pm
l (cos θ) =

1
2ll!

(
1 − cos2 θ

)m/2 dl+m

d cosl+m θ

(
cos2 θ − 1

)l
. (1.5)

Note that the spherical harmonics are usually defined such that the integral of
|Y m

l |2 over the unit sphere equals 1, as secured by the normalization constant

clm ≡

√
2l + 1

4π
(l −m)!
(l +m)!

(1.6)

(cf. Eq. (1.4)).
In most pulsating stars the pulsation axis coincides with the rotation axis.

The main exceptions are the rapidly oscillating Ap stars where the axis of
pulsational symmetry is the magnetic axis which is inclined to the rotational
axis (see Section 2.3.5 in Chapter 2).

As with the drum heads, where there were two quantum numbers to specify
the modes, for 3-D stars there are three quantum numbers to specify these
modes: n is related to the number of radial nodes and is called the overtone of
the mode9; l is the degree of the mode and specifies the number of surface nodes
that are present; m is the azimuthal order of the mode, where |m| specifies
how many of the surface nodes are lines of longitude. It follows therefore that
the number of surface nodes that are lines of co-latitude is equal to l − |m|.
The values of m range from −l to +l, so there are 2l + 1 modes for each
degree l.

What do these modes in stars look like?

1.4.1 Radial Modes

The simplest modes are the radial modes with l = 0, and the simplest of those
is the fundamental radial mode. In this mode the star swells and contracts,
heats and cools, spherically symmetrically with the core as a node and the
surface as a displacement antinode. It is the 3-D analogy to the organ pipe
in its fundamental mode shown in the left-hand panel of Fig. 1.2. This is the
usual mode of pulsation for Cepheid variables and for RR Lyrae stars, amongst
others.

The first overtone radial mode has one radial node that is a concentric shell
within the star. As we are thinking in terms of the radial displacement, that
shell is a node that does not move; the motions above and below the node
9 A rigorous definition of n will be given in Chapter 3. Sometimes k is preferred to

represent this quantum number, particularly amongst those working on pulsating
white dwarf stars.
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move in antiphase. As an example, in the roAp stars (which are nonradial
pulsators) radial nodes can be directly observed in their atmospheres with
just this kind of motion in antiphase above and below the radial node (Kurtz
et al. 2005b). The surface of the star is again an antinode.

There are Cepheid variables, RR Lyrae stars and δ Sct stars (see Chapter 2
for a definition) that pulsate simultaneously in the fundamental and first
overtone radial modes. In the cases of the Cepheids and RR Lyrae stars they
are known as double-mode Cepheids and RRd stars, respectively. For the
Cepheids the ratio of the first overtone period to the fundamental period is
0.71; for the δ Sct stars it is 0.77. This is in obvious contrast with the 0.33
ratio found in organ pipes and the 0.5 ratio found on strings (see Figs 1.1 and
1.2).

This difference is profound and it is our first use of asteroseismology. If
the star were of uniform temperature and chemical composition (so that the
sound speed were constant), then the ratio would be similar to that in the
organ pipe.10 The larger ratios in the Cepheids and δ Sct stars are a direct
consequence of the sound speed gradient in them, hence of the temperature
and (in some places) of chemical composition gradients. The small, but sig-
nificant differences between the Cepheid and δ Sct ratios are a consequence
of the Cepheid giant star being more centrally condensed than the hydrogen
core-burning δ Sct star. Thus, just by observing two pulsation frequencies we
have had our first look into the interiors of some stars.

1.4.2 Nonradial Modes

The simplest of the nonradial modes is the axisymmetric dipole mode with
l = 1,m = 0. For this mode the equator is a node; the northern hemisphere
swells up while the southern hemisphere contracts, then vice versa; one hemi-
sphere heats while the other cools, and vice versa – all with the simple cosine
dependence of P 0

1 (cos θ) = cos θ, where θ is the co-latitude. There is no change
to the circular cross-section of the star, so from the observer’s point of view,
the star seems to oscillate up and down in space.

That is disturbing to contemplate. What about Newton’s laws? How can
a star “bounce” up and down in free space without an external driving force?
The answer is that an incompressible sphere cannot do this; it cannot pulsate
in a dipole mode. After a large earthquake the Earth oscillates in modes such
as those we are describing. But it does not oscillate in the dipole mode and
bounce up and down in space. It cannot. There was a time when it was thought
that stars could not do this either (Pekeris 1938), but first Smeyers (1966) in
the adiabatic case, then Christensen-Dalsgaard (1976) more generally showed
that the centre-of-mass of a star is not displaced during dipole oscillations, so
stars can pulsate in such modes.

10 For an isothermal sphere in hydrostatic equilibrium the ratio is around 0.5 (Taff
& Van Horn 1974).
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Nonradial modes only occur for n ≥ 1, so in the case of the l = 1 dipole
mode, there is at least one radial node within the star. While the outer shell
is displaced upwards from the point of view of the observer, the inner shell
is displaced downwards and the centre of mass stays fixed. Dipole modes are
the dominant modes observed in the rapidly oscillating Ap stars, and are also
seen in many other kinds of pulsating variables.

Modes with two surface nodes (l = 2) are known as quadrupole modes.
For the l = 2, m = 0 mode the nodes lie at latitudes ±35◦, since P 0

2 (cos θ) =
(3 cos2 θ − 1)/2 (see also Appendix B for the position of the nodal lines of
different modes). The poles of an l = 2, m = 0 mode swell up (and heat up,
although not usually in phase with the swelling) while the equator contracts
(and cools), and vice versa. Figure 1.4 represents and explains a set of octupole
modes with l = 3, giving a mental picture of what the modes look like on the
stellar surface which is generally inclined with respect to the line-of-sight.

Unfortunately, we are not yet at the stage where we can resolve stellar
surfaces and detect the nodal lines directly from intensity or Doppler maps
such as the ones shown in Fig. 1.4. This can only be done for the Sun so far. As
a consequence, for other stars we have to deal with observations representing
integrated quantities over the stellar surface, such as the surface-averaged
brightness or radial velocity. It is then intuitively clear that, for a fixed value of
the amplitude of the oscillation, and for a particular value of the inclination of
the symmetry axis of pulsation with respect to the line-of-sight, such observed
quantities must be smaller for higher degree l modes than for lower degree
modes. Indeed, the higher l, the more sectors and/or zones will divide the
stellar surface, with neighbouring regions having opposite sign in intensity or
velocity. Their influence on the integrated quantity therefore partially tends
to cancel out. This so-called partial cancellation is a simple consequence of
the total number of nodal lines on the stellar surface.

We will derive rigorous mathematical expressions for the partial cancella-
tion in Chapter 6 for the various integrated quantities defined in Chapters 4
and 6. To get a feel for the consequences of this effect, let us assume here
the simplest case, which is the surface-integrated intensity of an axisymmet-
ric mode over a stellar disc that does not suffer from limb darkening. In that
simplest case, the partial cancellation is described well by an integral of the
intensity eigenfunction over the visible stellar disc, i.e., it is proportional to

cl0

∫ π/2

0

Pl(cos θ) sin θ cos θdθ, (1.7)

where cl0 is defined in Eq. (1.6). This factor is shown for all axisymmetric
modes with l = 0, . . . , 10 in Fig. 1.5.

The radial mode does not suffer from partial cancellation and thus reaches
value unity, which is about twice as high as a dipole l = 2 mode. It is very
important to be aware that axisymmetric l = 3 modes are almost invisible
in intensity measurements due to the partial cancelling. The same holds true
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Fig. 1.4. Snapshot of the radial component of the l = 3 octupole modes. The
columns show the modes from different viewing angles; the left column is for an
inclination of the pulsation pole of 30◦, the middle column is for 60◦, and the right
column is for 90◦. The white bands represent the positions of the surface nodes;
red and blue represent sections of the star that are moving in (out) and/or heating
(cooling) at any given time, then vice versa. The top row shows the axisymmetric
octupole mode (l = 3,m = 0) where the nodes lie at latitudes ±51◦ and 0◦. The
second row shows the tesseral (meaning 0 < |m| < l) l = 3, m = ±1 mode with two
nodes that are lines of latitude and one that is a line of longitude. The third row
is the tesseral l = 3,m = ±2 mode, and the bottom row shows the sectoral mode
(meaning l = |m|) with l = 3, m = ±3. Importantly, rotation distinguishes the sign
of m, as discussed in the Section 1.4.3.
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Fig. 1.5. The partial cancelling factor for the surface-integrated intensity in the
case of axisymmetric modes for l = 0, . . . , 10, when ignoring the darkening at the
limb of the stellar surface.

for all the higher-degree odd axisymmetric modes. Partial cancellation for
the l = 4 mode is a factor 10 greater than that of the dipole mode, and
this factor increases as l increases. While the inclusion of rotation and limb
darkening complicates this simplistic description, and the effects are more
complicated for velocity quantities than for the intensity (as will be explained
in detail in Chapter 6), Fig. 1.5 explains why even modes are much easier to
detect in the data than odd modes, except for the special case of the dipole
mode. Moreover, the modes become more difficult to detect as their degree
increases. This will become obvious when we discuss observations of modes in
the following chapters.

1.4.3 The Effect of Rotation

In Eqs (1.1) and (1.4) it can be seen that for modes with m �= 0 the expo-
nentials in the two equations combine to give a time dependence that goes as
exp[−i(2πνt−mφ)]. This phase factor in the time dependence means that the
m �= 0 modes are travelling waves, where our sign convention is that modes
with positive m are travelling in the direction of rotation (prograde modes),
and modes with negative m are travelling against the direction of rotation
(retrograde modes).
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For a spherically symmetric star the frequencies of all 2l+ 1 members of a
multiplet (such as the octupole septuplet l = 3,m = −3,−2,−1, 0,+1,+2,+3)
are the same. But deviations from spherical symmetry can lift this frequency
degeneracy, and the most important physical cause of a star’s departure from
spherical symmetry is rotation. For example, in a rotating star the Corio-
lis force causes pulsational variations that would have been up-and-down to
become circular with the direction of the Coriolis force being against the di-
rection of rotation. Because of this effect and others that will be explained
in Chapter 3, the prograde modes travelling in the direction of rotation have
frequencies slightly lower than the m = 0 axisymmetric mode, and the retro-
grade modes going against the rotation have slightly higher frequencies, in the
co-rotating reference frame of the star, thus the degeneracy of the frequencies
of the multiplet is lifted.

This was discussed by Ledoux (1951) in a study of the β Cep star β CMa
(see Chapter 2 for a definition of this class of stars). In the observer’s frame
of reference the Ledoux rotational splitting relation for a uniformly rotating
star is

νnlm = νnl0 +m (1 − Cnl)Ω/2π , (1.8)

where νnlm is the observed frequency, νnl0 is the unperturbed central fre-
quency of the multiplet (for which m = 0) which is unaffected by the rotation,
Cnl is a mode-dependent and model-dependent quantity with value below 1
that will be defined in Chapter 3, and Ω is the angular velocity, corresponding
to a rotation frequency of Ω/2π. If we rewrite Eq. (1.8) as

νnlm = νnl0 −mCnlΩ/2π +mΩ/2π , (1.9)

then it is easy to see that the Coriolis force reduces the frequency of the
prograde modes with positive m slightly in the co-rotating rest frame, but then
the rotation frequency is added to that since the mode is going in the direction
of rotation. Likewise the retrograde modes with negative m are travelling
against the rotation so have their frequency in the observer’s frame reduced
by the rotation frequency.

In this way we end up with a multiplet with 2l + 1 components all sepa-
rated by the rotational splitting (1 − Cnl)Ω/2π. In a real star rotation is not
expected to be uniform and hence the rotational splitting would depend on
the properties of the modes in a more complicated manner; also, the vari-
ous components of the multiplet may be excited to different amplitudes, and
some may not have any observable amplitude, so all members of the multi-
plet may not be present. The importance for asteroseismology is that where
such rotationally-split multiplets are observed, the l and m for the modes
may be identified and the splitting used to measure the rotation rate of the
star. Where multiplets of modes of different degree or different overtone are
observed, it is possible to gain knowledge of the interior rotation rate of the
star – something that is not knowable by any other means.
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In the case of the Sun, helioseismology has spectacularly measured the
differential rotation rate of the Sun down to about half way to the core.
Below the convection zone at r/R� ∼ 0.7 the Sun rotates approximately
rigidly with a period close to the 27-d period seen at latitudes of about 35◦

on the surface (see Thompson et al. 2003). Within the convection zone the
rotation is not simply dependent on distance from the solar rotation axis, as
had been expected in the absence of any direct observation. It is a remarkable
triumph of helioseismology that we can know the internal rotation behaviour
of the Sun – thanks to rotational multiplets!

1.4.4 So how does Asteroseismology Work?

Since p modes are acoustic waves, for modes that are not directed at the
centre of the star (i.e., the nonradial modes) the lower part of the wave is in
a higher temperature environment than the upper part of the wave, thus in
a region of higher sound speed. As a consequence the wave is refracted back
to the surface, where it is then reflected, since the acoustic energy is trapped
in the star, as can be seen in Fig. 1.7. While the number of reflection points
is not equal to the degree of the mode, higher l modes have more reflection
points. This means that high degree modes penetrate only to a shallow depth,
while lower degree modes penetrate more deeply. The frequency of the mode
observed at the surface depends on the sound travel time along its ray path,
hence on the integral of the sound speed within its “acoustic cavity”. Clearly,
if many modes that penetrate to all possible depths can be observed on the
surface, then it is possible to “invert” the observations to make a map of
the sound speed throughout the star, and from that deduce the temperature
profile, with reasonable assumptions about the chemical composition. In the
Sun the sound speed is now known to a few parts per thousand over 90% of its
radius. To do the same for other stars is an ultimate goal of asteroseismology.

Thus asteroseismology lets us literally see the insides of stars because
different modes penetrate to different depths in the star. But as was noted in
Section 1.1.4, stellar oscillations are not so simple as just p modes. We can
also see inside the stars with g modes. In fact, for some stars, and for parts
of others, we can only see with g modes.

1.4.5 p Modes and g Modes

There are two main sets of solutions to the equation of motion for a pulsating
star, and these lead to two types of pulsation modes: p modes and g modes.
For the p modes, or pressure modes, pressure is the primary restoring force for
a star perturbed from equilibrium. These p modes are acoustic waves and have
gas motions that are primarily vertical. For the g modes, or gravity modes,
buoyancy is the restoring force and the gas motions are primarily horizontal.
There is also an f mode situated between the p mode of radial order 1 and
the g mode of radial order 1 for all l ≥ 2.
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Fig. 1.6. The frequency of modes versus their degree l for a solar model. The figure
clearly illustrates the general property of p modes that frequency increases with
overtone n and degree l. For g modes frequency decreases with higher overtone, but
increases with n if we use the convention that n is negative for g modes. Frequency
still increases with degree l for g modes, just as it does for p modes. Some values of
the overtone n are given for the p modes lines in the upper right of the figure. Note
that while continuous lines are shown for clarity, the individual modes are discrete
points, corresponding to integer l, which are not shown here.

Both p and g modes of high order can be described in terms of the prop-
agation of rays (see also Gough 1993). This provides illuminating graphical
representations of their properties; examples are shown in Figs 1.7 and 1.8.
Also, as discussed extensively in Chapter 3, this representation forms the ba-
sis for powerful asymptotic descriptions of the modes.

There are three other important properties of p modes and g modes: 1) as
the number of radial nodes increases the frequencies of the p modes increase,
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Fig. 1.7. Propagation of rays of sound or gravity waves in a cross-section of a Sun-
like star. The acoustic ray paths (panel a) are bend by the increase in sound speed
with depth until they reach the inner turning point (indicated by the dotted circles)
where they undergo total internal refraction. At the surface the acoustic waves are
reflected by the rapid decrease in density. Shown are rays corresponding to modes of
frequency 3000μHz and degrees (in order of increasing penetration depth) l = 75, 25,
20 and 2; the line passing through the centre schematically illustrates the behaviour
of a radial mode. The g-mode ray path (panel b) corresponds to a mode of frequency
190μHz and degree 5 and is trapped in the interior. In this example, it does not
propagate in the convective outer part. As we shall see in Chapter 2, g modes are
observed at the surface of other types of pulsators. This figure illustrates that the
g modes are sensitive to the conditions in the very core of the star, an important
property. From Cunha et al. (2007).

but the frequencies of the g modes decrease, as is shown in Fig. 1.6; 2) the
p modes are most sensitive to conditions in the outer part of the star, whereas
g modes are most sensitive to conditions in the deep interior of the star,11 as
is shown in Fig. 1.7; 3) for n � l there is an asymptotic relation for p modes
saying that they are approximately equally spaced in frequency, and there is
another asymptotic relation for g modes pointing out that they are approxi-
mately equally spaced in period.

As illustrated in Fig. 1.7, g modes in solar-like stars are trapped beneath
the convective envelope, when viewed as rays. In reality the modes have finite
amplitudes also in the outer parts of the star and hence, at least in principle,
can be observed on the surface; this is in fact the case in the γDor stars
which have convective envelopes. In more massive main-sequence stars, such
as illustrated in Fig. 1.8, the g-mode rays are confined outside the convective
core.

11 except in white dwarfs where the g modes are sensitive mainly to conditions in
the stellar envelope; see Section 3.4.2.
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Fig. 1.8. Propagation of rays of gravity waves in a cross-section of an 8M� ZAMS
star. The ray path corresponds to a mode of frequency 50μHz and degree 5. It is
trapped outside the convective core of the star.

The asymptotic relations are very important in many pulsating stars. From
Tassoul (1980, 1990) they show that for the p modes, the frequencies are
approximately given by

νnl = Δν

(
n+

l

2
+ α̃

)
+ εnl , (1.10)

where n and l are the overtone and degree of the mode, α̃ is a constant of
order unity, and εnl is a small correction. Δν is known as the large separation
and is the inverse of the sound travel time for a sound wave from the surface
of the star to the core and back again, given by

Δν =

⎛

⎝2

R∫

0

dr
c(r)

⎞

⎠

−1

, (1.11)

where c(r) is the sound speed. The large separation is obviously sensitive to
the radius of the star, hence near the main sequence it is a good measure of
the mass of the star. The term εnl gives rise to the small separation δν; this
is sensitive to the core condensation, hence age of the star.

The periods of g modes, asymptotically given by

Πnl =
Π0√
l (l + 1)

(n+ ε) , (1.12)

are nearly uniformly spaced; here n and l are again the overtone and degree
of the mode, ε is a small constant, and Π0 is given by
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Π0 = 2π2

(∫
N

r
dr
)−1

, (1.13)

where N is the Brunt-Väisälä frequency and the integral is over the cavity
in which the g mode propagates (as in panel b of Fig. 1.7). Deviations of
the period spacing for g modes are used to diagnose stratification in stars,
since strong mean molecular weight gradients trap modes and cause deviations
from the simple asymptotic relation given in Eq. (1.12). This technique has
been particularly successful in measuring the stratification in white dwarf
atmospheres with carbon-oxygen cores and layers of helium and hydrogen
above (see Section 7.4 in Chapter 7).

1.5 An Asteroseismic HR Diagram for p-Mode Pulsators

Figure 1.9 shows a power spectrum of the radial velocity variations observed
over a time span of 9.5 years for the Sun by BiSON, the Birmingham Solar
Oscillation Network12. This shows the “comb” of frequencies expected from
Eq. (1.10) for high overtone, low degree (n � l) p modes. The noise level is
so stunningly low in this diagram that it is essentially invisible at this scale.
It is equivalent to an amplitude of only 0.5 mm s−1, precise enough to detect
a mode with a total displacement over the whole pulsation cycle of only 10s
of cm! It is noteworthy that the comb of frequencies consists of alternating
even and odd l-modes, as expected from Eq. (1.10), where it can be seen that
(to first order) modes of (n, l) and (n − 1, l + 2) have the same frequency. It
is the small separation, δν, that lifts this degeneracy.

That may be seen in Fig. 1.10 which is a portion of an amplitude spectrum
of the radial velocity variations of the Sun seen as a star made by the GOLF
(Global Oscillation at Low Frequencies13) experiment on SOHO (SOlar and
Heliospheric Observatory14) orbiting at the Earth-Sun L1 Lagrangian point.
Here it can be seen that the large separations for even and odd l-modes (cf.
Δν0, Δν1) are very similar, that the small separation lifts the degeneracy
between modes of (n, l) and (n − 1, l + 2), and that there is a substantial
difference between the small separations for even and odd l-modes (cf. δν0,
δν1).15

Ultimately, it is the goal of asteroseismology for any star to detect enough
frequencies over ranges in n, l and m that the interior sound speed may
be mapped with precision, so that deductions can be made about interior
temperature, pressure, density, chemical composition and rotation, i.e., it is
the goal to “see”, and to see clearly, inside the star. A step along the way is
to resolve sufficient frequencies in a star, and to identify the modes associated

12 http://bison.ph.bham.ac.uk/.
13 http://golfwww.medoc-ias.u-psud.fr/.
14 http://sohowww.nascom.nasa.gov/.
15 As shown in Chapter 3, δν1 � 5/3 δν0.
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Fig. 1.9. A power spectrum of radial velocity variations in the Sun seen as a star
for 9.5 years of data taken with the Birmingham Solar Oscillation Network (BiSON)
telescopes. The equivalent amplitude noise level in this diagram is 0.5 mm s−1. Figure
courtesy of the BiSON team.

with them unambiguously such that the large and small separations may
be deduced with confidence. That step alone leads to determinations of the
fundamental parameters of mass and age for some kinds of stars.

Figure 1.11 shows an “asteroseismic HR Diagram” (Christensen-Dalsgaard
1993a) where the large separation clearly is a measure of mass (largely because
of the relationship between mass and radius), and the small separation is most
sensitive to the central mass fraction of hydrogen, hence age. Now that many
solar-type oscillators have been found, it is possible to begin to model them
using the large and small separations (see Section 7.2 for case studies). The
pattern of high overtone even and odd l modes is also observed in some roAp
stars, although their interpretation for those stars is more complex because of
the strong effects of their global magnetic fields on the frequency separations
(see Section 7.3.4).
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Fig. 1.10. This amplitude spectrum of radial velocity variations observed with the
GOLF instrument on SOHO clearly shows the large and small separations in the
p modes of the Sun. Courtesy of the GOLF science team.

1.6 A Pulsation HR Diagram

Figure 1.12 shows a black-and-white version of the “pulsation HR Diagram”.
The much more colourful version of this diagram is frequently presented at
stellar pulsation meetings to put particular classes of stars into perspective.
As an example, in Section 1.4.5 it was pointed out that the g modes are
particularly sensitive to the core conditions in the star (see Fig. 1.7). It is that
sensitivity that has made the discovery of g modes in the Sun such a long-
sought goal – so much so that the discovery of g modes in the Sun has been
claimed repeatedly, but general acceptance of those claims is still lacking. On
the other hand, g-mode pulsators are common amongst other types of stars –
even some, the γDor stars, that are not very much hotter than the Sun and
are overlapping with the solar-like oscillators, keeping hope alive that g modes
may eventually be detected with confidence in the Sun. There are three places
in Fig. 1.12 where there are p-mode and g-mode pulsators of similar stellar
structure: for the β Cep (p-mode) and Slowly Pulsating B (SPB; g-mode) stars
on the upper main sequence; for the δ Sct (p-mode) and γ Dor (g-mode) stars
of the middle main sequence; and for the EC 14026 subdwarf B variables (p-
mode) and the PG 1716+426 stars (g-mode). Stars pulsating in both p modes
and g modes promise particularly rich asteroseismic views of their interiors.

1.6.1 How do Stars Pulsate: The Relevant Time Scales

To understand the properties of the oscillations discussed for the various pul-
sators in Chapter 2, it is instructive to consider the relevant time scales of
stars. These are deduced from time-dependent differential equations that each
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Fig. 1.11. An asteroseismic HR Diagram in which the large separation Δν is most
sensitive to mass, and the small separation δν is most sensitive to age. The solid,
nearly vertical lines are lines of constant mass, and the nearly horizontal dashed lines
are isopleths of constant hydrogen mass fraction in the core, at the values indicated
in the figure.

deal with structural changes, the details of which are presented in Chapter 3.
Each of these changes has its own characteristic time scale, which is the ratio
of the quantity that is changed and its rate of change. Relevant quantities are:
the radius, the internal energy and the nuclear energy of the star.

The longest relevant time scale is the nuclear time scale,

τnuc ≡
εqMc2

L
, (1.14)

where q is the small fraction (typically below 10%) of the stellar mass that
can take part in the nuclear burning and ε is the fraction of that mass which
is converted into energy in the nuclear reactions (around 0.7% for hydrogen
fusion); thus the numerator of this expression is the nuclear energy reservoir
of the star. This time scale essentially expresses how long the star can shine
with nuclear fusion as its energy source, given its luminosity. The nuclear time
scale ranges from less than a million years to trillions of years for the highest
to the lowest mass stars, respectively. In the solar case, the nuclear time scale
is around 10 billion years.
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Fig. 1.12. A pulsation HR Diagram showing many classes of pulsating stars for
which asteroseismology is possible.

On the other hand, the shortest relevant time scale is the dynamical time
scale,

τdyn �
√

R3

GM
�
√

1
G ρ

, (1.15)
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where ρ stands for the average stellar density. It expresses the time the star
needs to recover its equilibrium whenever the balance between the pressure
and gravitational forces is disturbed by some dynamical process. For a star
close to such hydrostatic equilibrium, this time scale is equivalent to the time
it takes a sound wave to travel from the stellar centre to the surface, as
well as to the free-fall time scale of the star. For the Sun, τdyn � 20 min
while for a white dwarf it is typically less than a few tens of seconds. Pressure
modes are dynamical processes that disturb the pressure equilibrium and thus
their oscillation periods are expected to be shorter than τdyn. Equation (1.15)
explains why these periods allow us to estimate the mean density of the star.
This has also, particularly in older publications, been used to characterize the
periods Π of pulsating stars by their pulsation constant

Q = Π

(
M

M�

)1/2(
R

R�

)−3/2

. (1.16)

Finally, we introduce the thermal time scale,

τth � GM2

RL
, (1.17)

also termed the Kelvin-Helmholtz time scale. This expresses the time a star
can shine with gravitational potential energy as its only energy source, i.e.,
without a nuclear source. The gravitational potential energy of a star is con-
nected with its internal energy, and thus the thermal time scale may also be
expressed as

τth � 〈cpT 〉M
L

, (1.18)

where cp is the heat capacity of the gas at constant pressure, and 〈. . .〉 denotes
a suitable average over the star. The thermal time scale of the Sun amounts
to several tens of million years.

1.6.2 Why do Stars Pulsate: Driving Mechanisms

We have looked in some detail now at how stars pulsate. But why do they
pulsate? Firstly, not all stars do. It is an interesting question as to whether
all stars would be observed to pulsate at some level, if only we had the pre-
cision to detect those pulsations. For now, at the level of the precision of our
observations of μmag in photometry and cm s−1 in radial velocity, we can say
that some stars do not pulsate.

The ones that do are pulsating in their natural modes of oscillation, which
have been described in the previous sections. In the longest known case of a
pulsating star, that of oCeti (Mira), we usually attribute the discovery of its
variability to Fabricius in 1596. So this star has been pulsating for hundreds of
years, at least. In many other cases we have good light curves going back over
a century, so we know that stellar pulsation is a relatively stable phenomenon
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in many stars. That means that energy must be fed into the pulsation via
what are known as driving mechanisms.

As a star pulsates, it swells and contracts, heats and cools as described
in the previous sections. For most of the interior of the star, energy is lost in
each pulsation cycle, i.e., most of the volume of the star damps the pulsation.
The observed pulsation can only continue, therefore, if there is some part of
the interior of the star where not only is energy fed into the pulsation, but
as much energy is fed in as is damped throughout the rest of the bulk of the
star.

A region in the star, usually a radial layer, that gains heat during the
compression part of the pulsation cycle drives the pulsation. All other layers
that lose heat on compression damp the pulsation. If this region succeeds in
driving the oscillation, the star functions as a heat engine, converting thermal
energy into mechanical energy; thus we refer to this type of driving as a
heat-engine mechanism. For Cepheid variables, RR Lyrae stars, δ Sct stars,
β Cep stars – for most of the pulsating variables seen in Fig. 1.12 – the driving
mechanism is connected with the opacity, thus it is known as the κ mechanism.
For the κ mechanism to work there must be plenty of opacity, so major drivers
of pulsation are, not at all surprisingly, hydrogen and helium.

Simplistically, in the ionization layers for H and He opacity blocks radia-
tion, the gas heats and the pressure increases causing the star to swell past its
equilibrium point. But the ionization of the gas reduces the opacity, radiation
flows through, the gas cools and can no longer support the weight of the over-
lying layers, so the star contracts. On contraction the H or He recombines and
flux is once more absorbed, hence the condition for a heat engine is present:
the layer gains heat on compression.

Of course, since the layers doing the driving are ionization zones, some
of the energy is being deposited in electrostatic potential energy as electrons
are stripped from their nuclei, and that changes the adiabatic exponent Γ1.
That causes the adiabatic temperature gradient to be small, so these zones
are convection zones, too, and variations in Γ1 can make small contributions
to the driving in some cases (see Chapter 3 for a thorough explanation). Note
that when the driving takes place in convective regions the perturbations
to the convective flux must also be taken into account, introducing major
uncertainties in the calculation of stellar stability.

For decades the pulsation driving mechanism for β Cep stars was not un-
derstood. Only since 1992 has it been found that the κ mechanism – operating
on Fe-group elements, not H or He – can drive the pulsation in these stars.
Similarly, pulsation in p-mode and g-mode sdBV pulsators in Fig. 1.12 – as
explained in Chapter 2 – is driven by the κ mechanism operating on Fe.

The other major driving mechanism that operates in the Sun and solar-like
oscillators, as well as some pulsating red giant stars, is stochastic driving. In
this case the heat-engine mechanism is not able to drive the oscillations and
the modes are intrinsically stable. However, there is sufficient acoustic energy
in the outer convection zone in the star that the star resonates in some of its
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natural oscillation frequencies where some of the stochastic noise is transferred
to energy of global oscillation. In a similar way, in a very noisy environment,
musical string instruments can be heard to sound faintly in resonance with
the noise that has the right frequency.

The third major theoretical driving mechanism is the ε mechanism, where
in this case that is the epsilon that is commonly used to refer to the energy
generation rate in the core of the star. Potentially, variations in ε could drive
global pulsations. This has been discussed as a possible driving mechanism
in some cases of evolved very massive stars, but there is no known class of
pulsating stars at present that are thought to be driven by the ε mechanism
alone.

1.6.3 What Selects the Modes of Pulsation in Stars?

So a star is driven to pulsate by one of the driving mechanisms described
above. What decides which mode or modes it pulsates in? Why do most
Cepheids pulsate in the fundamental radial mode, but some pulsate also in the
first overtone radial mode, and rarely a few pulsate only in overtone modes?
Why do the Sun, solar-like oscillators and roAp stars pulsate in high overtone
p modes? Why do white dwarfs pulsate in high overtone g modes? What is
the mode selection mechanism in these stars?

These are complex questions for which answers are not always known. The
fundamental mode is most strongly excited for many stars, as it is for musical
instruments, but not for all. The position of the driving zone as well as the
shape of the mode eigenfunctions determine which modes are excited, just
as where a musical instrument is excited will determine which harmonics are
played, and with what amplitude. For example, if a guitar is plucked at its
twelfth fret (right in the centre of the string), then the first harmonic (which
has a node there) will not be excited. You cannot drive a mode by putting
energy in a node where that mode does not oscillate. So if the driving zone
for a star lies near the node of some modes, those modes are unlikely to be
excited. Any physical property of an oscillator that forces a node will select
against some modes, and/or perturb the frequencies and eigenfunctions of the
modes.

For example, in roAp stars the strong, mostly-dipolar magnetic field almost
certainly determines that dipole pulsation modes are favoured. In stratified
white dwarf stars, the steep gradient of mean molecular weight between layers
of H, He and C/O modifies the character of some modes and may select modes.
Thus the shape of the mode eigenfunction needs to be suitable, i.e., not change
too rapidly with depth in the potential driving zone for the mode to be excited.
This is, however, not a sufficient condition. Some modes fulfil this requirement,
but still are not excited because they are subjected to strong damping effects
activated by layers outside of the driving zone that overwhelm the driving.
As already mentioned, the overall net balance between driving and damping
needs to be optimal throughout the star for the mode to be excited globally.
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Another requirement for modes to be excited by the κ mechanism concerns
their periods of oscillation and is closely related to the discussion of time scales
in Section 1.6.1. Equations (1.14), (1.15), (1.18) are approximate averages over
the entire star. The great difference between the dynamical and thermal time
scales shows that globally the heat loss during a pulsation period is very small;
in other words, globally the oscillation is very nearly adiabatic. However, to
investigate the excitation of the oscillations we need to work with local time
scales in the driving zones that may have vastly different values than those
listed above. Of particular relevance is the local thermal time scale of the
driving zone, defined as

τth ≡
∫ R

r

cpTdm
L

(1.19)

(Pamyatnykh 1999).16 This introduces another condition that must be fulfilled
in order to have driving by the κ mechanism: the period of the oscillation must
be similar to the thermal time scale in the driving zone. If the oscillation
period is much longer than τth, then the driving layer will remain in thermal
equilibrium and not be able to excite the mode. Typical values for τth in
the driving zones of β Cep, SPB and δ Sct stars amount to 0.3 d, 3 d, and
0.1 d, respectively. Note how different these values are compared to the global
thermal time scales of such stars, illustrating that the driving zones are very
close to the stellar surface where heat can easily escape. In the stochastically
driven pulsators the modes excited are those that have natural frequencies
near to the characteristic time scale for the vigorous convective motions in
the near-surface layers of a star with a convective envelope.

Even if all the above requirements are fulfilled, it is still not clear why
some modes predicted to be excited actually are not observed, i.e., there are
obviously additional mode selection criteria at work. Moreover, as already
mentioned, some stars that seemingly fulfil the requirements for pulsation
are not observed to oscillate. Clearly, our understand of mode selection is in-
complete. As already mentioned, any physical property of an oscillator that
forces a node will select against some modes, and/or perturb the frequencies
and eigenfunctions of the modes, as in the examples given above of the ef-
fects of the magnetic field in roAp stars and of the mean molecular weight
stratification in white dwarf stars. Thus, there is some understanding of mode
selection, but in many stars the precise reason why certain modes are excited,
and others not, is not known, or is incompletely understood. A related issue
which is even more uncertain is the mechanisms which determine the limiting
amplitudes of modes excited by the κ mechanism; this, too, affects whether
the modes are likely to be observed.

Some physical characteristic of the star is selecting the modes that are
excited, or not damped, as the case may be, and a determination of that

16 Note that here and the following we use m to denote the mass inside a given
point in the star, in addition to the azimuthal order of a mode. With attention
to context, this should not cause confusion.
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selection mechanism will allow us a clearer, more detailed look at the interior
of the star. And that, of course, is the goal of asteroseismology.



2

Observations of Stellar Oscillations
across the Hertzsprung-Russell Diagram

This chapter is a journey through the Hertzsprung-Russell (HR) Diagram
with stops at all the ellipses shown in Fig. 1.12. We discuss briefly each of
the currently known classes of pulsating stars, outlining their most impor-
tant properties, such as their fundamental stellar parameters and the general
character of their oscillations, but skipping many of the details due to page
constraints. For each class, we provide a recent overview paper and/or book
to which we refer for additional information and deeper discussion. We pro-
vide one prototypical time series of a class member and sometimes its Fourier
transform to give the reader a first impression of the frequency range and the
behaviour of the oscillations. We further restrict ourselves to a description
of the basic properties of the stars. A summary of the properties is provided
in Appendix A. Detailed asteroseismic applications of some selected stars are
presented in Chapter 7. A concise overview of stellar variability, including
a description of extrinsic variables such as binaries and of spotted stars, is
available in Eyer & Mowlawi (2008).

Observations of stellar oscillations cannot stand alone but must be sup-
plemented by other observations of stellar properties. Such “classical observa-
tions” include photometry and spectroscopy, to determine atmospheric prop-
erties of the star such as surface gravity, effective temperature and compo-
sition. The latter is in many cases described just in terms of the abundance
of elements heavier than helium, collectively known as “metals”, and hence
the abundance is referred to as the metallicity. If a reliable parallax is avail-
able, the luminosity of the star can in addition be determined. Well-observed
binary stars are particularly valuable in providing information about stellar
masses and, for eclipsing binaries, stellar radii. Accurate determinations of
such global parameters greatly increase the power of asteroseismic data in
providing information about the properties of stellar interiors.

An evident conclusion from Fig. 1.12 is that stellar oscillations occur in
almost all phases of stellar evolution. However, there clearly exists a particular
region in the HR Diagram in which the density of pulsating stars is greater
than elsewhere. This region is situated between the two slanted dashed lines

C. Aerts et al., Asteroseismology, Astronomy and Astrophysics Library, 31
DOI 10.1007/978-1-4020-5803-5 2, c© Springer Science+Business Media B.V. 2010
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in Fig. 1.12 and is called the classical instability strip. The oscillations in the
stars situated in this strip are caused by the heat mechanism (see Chapter 3
for an explanation of the physics) primarily acting in the second partial ion-
ization zone of helium, i.e., the zone in which both He ii and He iii occur.
The Cepheids, RR Lyrae stars, δ Sct stars and rapidly oscillating Ap stars
are all situated in this strip, along with pre-main-sequence pulsators. On the
other hand, the first partial ionization zones of hydrogen and helium, com-
bined with strong and efficient convection, are responsible for the heat-driven
oscillations in cool red giants and supergiants, such as the Mira stars and
semiregular variables; hence they are situated along the cool, that is, red,
side of the classical instability strip. Finally, opacity features associated with
the iron-group elements are responsible for oscillations in the hottest stars,
such as β Cep stars, slowly pulsating B stars, B supergiants, and also in the
evolved subdwarf B stars. Stochastically excited oscillations are expected in
all stars with an outer convective envelope, i.e., along the main sequence up
to masses of about 1.5 M� and anywhere from the end of the main sequence
up to the giant and asymptotic giant branch. The hottest pulsators among
the compact stars are grouped together in a class termed GW Vir stars. They
are dominantly driven by the heat mechanism acting in the partial ionization
zones of carbon and oxygen at their surface. It was only recently realized that
there is a common cause of the oscillations for stars in this part of the HR Di-
agram, which includes the DOV and DBV stars, as well as the central stars
of planetary nebulae and Wolf-Rayet stars (Quirion et al. 2006). The cooler
DAV stars, on the other hand, are compact pulsators driven by a phenomenon
termed convective driving by Brickhill (1991a). A convection-related mecha-
nism, convective blocking, also operates in the γDor stars along the main
sequence.

Adopting a philosophy similar to the one in the review by Gautschy & Saio
(1996), we organize the journey with five main stopping areas to discuss pul-
sations near the main sequence, in pre-main-sequence stars, in evolved stars
of low mass, in evolved stars of high mass and in compact objects. With the
exception of the B1Ib supergiant HD 163899 (Saio et al. 2006), evolved stars
of high mass are currently not yet the subject of seismic inference because
the observational establishment of their oscillation frequencies is much harder
than for the stars in all other categories, due to occurrence of several kinds
of instabilities in their atmospheres. Moreover, our theoretical understanding
of their oscillations is far less detailed than for lower-mass stars for which
radiation-driven mass loss can be ignored. For this reason we are at present
unable to make a detailed comparison between their overall observed vari-
ability and in-depth stellar structure and oscillation computations; hence we
do not come back to these stars after this chapter. The same holds true for
the pre-main-sequence pulsators. While oscillations have clearly been found in
several of these, we lack good knowledge of their frequency spectra and mode
identification for the moment. Gravitational-wave asteroseismology through
nonradial oscillations of interacting white-dwarf binary stars, neutron stars
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and black holes is also a field still under development lacking strong obser-
vational constraints. We discuss it briefly in this chapter. Finally, the clas-
sical large-amplitude monoperiodic radial pulsators, such as RR Lyrae stars,
Cepheids, RV Tauri stars, Mira stars and semi-regular variables, are not suit-
able for seismic modelling of interior physics. We discuss their pulsational
characteristics in this chapter, including the seismic potential of double- and
triple-mode classical pulsators, in the section on Cepheids and do not return
to them further on in the book.

Before beginning our journey into asteroseismology, we first give a brief
overview of stellar evolution and of the impact of large-scale surveys on pul-
sating star research.

2.1 Stellar Evolution in a Nutshell

Excellent books on stellar structure and evolution are available already and
we do not repeat their contents here. Rather we merely want to set the scene
of stellar evolution before starting our journey towards the pulsating stars in
the HR Diagram. We highly recommend the book by Kippenhahn & Weigert
(1990) as a standard work. Together with Hansen et al.’s (2004) detailed
description of stellar interiors, it provides an excellent in-depth overview of
stellar structure and evolution. A somewhat less heavy and mathematically
easier textbook, ideally suited for undergraduate students, was written by
Prialnik (2000). An extensive recent monograph on the physics, formation,
and evolution of rotating stars, containing both introductory and specialized
chapters, is available in Maeder (2009). Here, we limit to a brief discussion
only1.

Stars are born in groups, called clusters, when dense interstellar molecular
clouds collapse under the effect of gravity. Any perturbation within the cloud,
due to whatever origin, will result in a collapse whenever the mass of the
cloud is above a certain threshold: M > MJ ∝ T 3/2ρ−1/2μ−3/2, with T the
temperature of the cloud, ρ its mean density and μ its mean molecular weight.
This condition for free-fall collapse is known as the Jeans criterion. The pro-
cess will continue as long as the collapse happens isothermally. As soon as
the free-fall time becomes similar to the thermal relaxation time, however, an
adiabatic contraction takes over, and the process comes to a natural end, leav-
ing behind protostellar fragments with masses of the order of stellar masses.
Owing to their rather low internal temperature and consequent high opacity,
the entities that result from the process, called protostars , are initially fully
convective and hence are located on the Hayashi track .

After the rapid dynamical contraction, the protostar reaches hydrostatic
equilibrium and is said to have entered its pre-main-sequence phase. The fur-
1 The authors benefited greatly from private discussions with Anja Andersen, Ar-

lette Noels, Hans Van Winckel, and Lee Anne Willson for the brief descriptions
of stellar evolution in this chapter and in Chapter 3.
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Fig. 2.1. HR Diagram showing the evolutionary tracks of stars with masses between
1M� and 40 M� (full lines, Schaller et al. 1992). The dashed line is the zero-age main
sequence and the dotted line symbolizes the transition phase from the Asymptotic
Giant Branch to the white-dwarf cooling track.

ther contraction of the star implies that the star descends the Hayashi track,
keeping essentially the same effective temperature and decreasing in luminos-
ity. As the internal temperature gradually increases, the opacity decreases and
the convective zone starts to recede from the center of the star. This implies
that the star leaves its Hayashi track and starts radiative contraction along
its Henyey track. As contraction proceeds in a more and more transparent
matter, the star reverses its downward luminosity trend into a rising one.
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The increasing core temperature initiates the proton-proton reaction,
which converts H into 2H, and this fresh deuterium is immediately burnt into
3He. The less massive the pre-main-sequence star, the closer to the Hayashi
track occurs this first nuclear burning. The full proton-proton (PP) chain
cannot be completed yet since 3He is still too scarce for hydrogen burning to
happen in full equilibrium. As a consequence, the temperature sensitivity of
the nuclear reactions is high (about three times the sensitivity of the proton-
proton chain operating at equilibrium) and this leads to the development of
a convective core. In stars less massive than about 1.1 M�, this convective
core will disappear as soon as the PP chain has all its intermediate chemical
species at equilibrium. More massive stars, on the contrary, rapidly switch
to hydrogen burning through the CNO cycle, which is far more temperature
sensitive than the PP chain at equilibrium, and they keep their convective
core during the whole central hydrogen burning phase.

The accretion continues during most of the pre-main-sequence phase, on
a thermal (or Kelvin-Helmholtz) time scale. Consequently, protostars with
masses above about 9 M� move so fast from their Hayashi track to the main
sequence that they are unobservable in their pre-main-sequence phase as they
remain embedded in a thick circumstellar shell of infalling material. Pre-main-
sequence stars with masses between ∼1.6 and 9 M� end their accretion phase
before they reach the main sequence. Such pre-main-sequence stars are termed
Herbig Ae/Be stars . In pre-main-sequence stars with masses between some 0.8
and 1.6 M�, as soon as the accretion process stops, the star lights up in the
HR Diagram as an optically bright source called a TTauri star . Observations
of both Herbig Ae/Be stars and T Tauri stars suggest that they undergo active
surface phenomena such as a stellar wind and differential rotation.

Once the hydrogen is burning in full equilibrium and completely dominates
the energy production, the star reaches a state of thermal equilibrium and is
said to be born on the zero-age main sequence (ZAMS). The circumstellar
remnant material vanishes within a thermal time scale and the star forgets its
formation history. Protostars with a mass below some 0.08 M� never reach the
ZAMS because they become degenerate before having reached a high enough
central temperature to burn hydrogen in equilibrium. Such objects are called
brown dwarfs . Since oscillations have not yet been found in brown dwarfs we
will not discuss them further.

The stars spend about 90% of their life on the main sequence, burning H
into He on a nuclear time scale. Depending on their mass, the interior structure
in terms of radiative, convective, diffusive and rotational energy transport is
very different. The initial chemical composition is also a determining factor
in the details of the evolution. Once the central hydrogen is exhausted, the
star has reached the terminal-age main sequence (TAMS). At that time the
hydrogen shell burning takes over as the energy source; the helium core starts
contracting, while the outer parts of the star expand greatly, causing the star
to move back to and up the Hayashi track as a red giant. The further evolution
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of the star is now again largely dependent on its mass. Evolutionary tracks
for different masses are indicated in Fig. 2.1 and are briefly discussed below.

The gas in the cores of stars with M ≥ 9 M� does not become degener-
ate before carbon burning, so these objects follow subsequent central burning
and shell burning cycles, producing all elements up to iron and nickel. At
that stage, the star encounters a major problem because 56Fe and 62Ni are
the most tightly bound nuclei. Their fusion into heavier elements would re-
sult in less tightly bound nuclei and thus would require an input of energy.
The inescapable core contraction leads to temperatures of billions of Kelvin
accompanied by photodissociation of heavy nuclei, transforming them into He
nuclei and neutrons, with a catastrophic loss of thermal energy and pressure
causing the core to collapse. The stupendous release of gravitational potential
energy implies that the rest of the star explodes as a supernova, blowing away
a huge fraction of its processed material which thus enriches the interstellar
medium in the surroundings, and leaving a neutron star or a black hole as a
remnant. Rapid neutron capture operates for a brief period during supernova
explosions, producing a substantial fraction of the heavy elements beyond
iron. The internal mixing processes acting in these stars while they evolve
from the TAMS to the supernova stage are very uncertain, as are the details
of their mass loss, which implies we are not able to make accurate predictions
of the properties of the star just before the supernova explosion. Stars of such
initial masses have typical lifetimes less than a few tens of million years.

Stars with masses above some 25 M� are subject to very strong radiatively-
driven winds while on the main sequence; such stars lose a huge amount of
mass because of that, dramatically affecting their evolution. The radiation
pressure is so strong that they are not very stable, resulting in complex phe-
nomena such as instabilities and outbursts. Such stars are termed luminous
blue variables and, after a large fraction of their hydrogen envelope has been
blown away, Wolf-Rayet stars. They live less than a few million years, also fin-
ishing their lives in supernovae explosions, and are likely progenitors of stellar
black holes.

At the other end of the mass range, stars with masses below about 0.5 M�
have not yet had time to evolve off the main sequence, but when they do their
core temperatures will not become high enough to initiate helium burning, so
they will finish their lives as He white dwarfs. Stars with an initial mass in
the range 0.5 ≤ M ≤ 2.3 M�, the precise cut-off depending on the metallicity,
have a degenerate helium core after the main sequence. They reach the TAMS
after a few to several gigayears, depending on the birth mass. The shell burning
after the TAMS accompanies a shrinkage of the core until the latter reaches
the temperature at which helium burning through the triple-α reaction starts.
Since this happens in degenerate matter, a thermal runaway occurs and the
star is said to undergo a helium flash. The helium flash lifts the degeneracy in
the helium core, and the star settles down on the horizontal branch burning
helium in its core and hydrogen in a shell. In cases where the metal abundance
is less than about 10% that of the Sun, the horizontal branch is very extended,
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depending on the mass and the extent of the hydrogen-rich envelope (e.g.,
Chapter 8 of Prialnik 2000). Stars with higher metallicity are redder because
their opacity is higher, and they cluster near the red-giant branch in the red
clump.

At that stage of evolution, the low-mass central helium burning objects
join the stars with initial birth mass 2.3 M� ≤ M ≤ 9 M�, which started
helium burning calmly as their core at the end of the TAMS did not reach
degeneracy. After the central helium exhaustion, the stars are forced to shine
by helium- and hydrogen-shell burning. They are said to ascend the Asymp-
totic Giant Branch (AGB). In this phase nuclear burning involves thermal
pulses due to the extinction and re-ignition of the helium shell burning. This
implies a large amount of internal mixing, leading to complex nuclear reac-
tions. The slow-neutron capture process becomes active and leads to nuclear
yields beyond the iron-peak elements. These products are dredged up for stars
with M ≥ 4 M�. Stars with initial masses above some 6 M� and below some
9 M� may experience some stages of carbon burning, leading in the end to
an O, Ne, Mg white dwarf. The lower limit mentioned of 6 M� in birth mass
for which this occurs is rather uncertain and depends heavily on the mass
loss and rotational mixing since the TAMS. It may be that only the heaviest
stars in this mass range effectively ignite carbon. Stars on the AGB lose a
significant amount of their mass through a dust-driven wind in combination
with large-amplitude pulsations. The outer layers are so loosely bound due to
the envelope expansion accompanying the shell burning that they are easily
removed by the radiation acting on dust particles. The dust-driven mass loss
stops as soon as the hydrogen-burning shell is largely extinguished and the
star enters its post-Asymptotic Giant Branch (post-AGB) phase. The remain-
ing envelope is rapidly lost and the resulting circumstellar material shines for
a few thousand years as a planetary nebula. This exposes the degenerate core
as a white dwarf , which subsequently evolves down along the white-dwarf cool-
ing track over a time scale of billions of years. The coolest, and hence oldest,
white dwarfs in the solar neighbourhood have the same age as the Galaxy,
around 10 Gyr.

Most of the post-AGB stars start cooling off directly as a white dwarf, i.e.,
do not return to the AGB once they left it. About 25% of the post-AGB stars,
however, undergo a so-called born-again episode. Such episodes are due to a
late thermal pulse, re-igniting helium near the hot white-dwarf core, either
when the hydrogen shell burning is still active or else shortly after the hydro-
gen burning has essentially stopped. In both cases, the star returns rapidly to
the AGB and becomes a hydrogen-deficient helium-burning object, consisting
of a CO core surrounded by surface layers rich in helium, carbon and oxygen
(Werner & Herwig 2006). They traverse once more the HR Diagram towards
the white-dwarf phase in less than 200 years. Depending on the core mass and
on the effective temperature, a strong or a weak radiation-driven wind occurs
in that stage. The star thus shows up as a hydrogen-deficient compact central
star of a planetary nebula. These stars are almost indistinguishable from the
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Wolf-Rayet central stars of planetary nebulae, usually denoted as [WCE], in
the sense that their position in the HR Diagram is the same. Their spectra
look different, though, because the Wolf-Rayet stars have emission lines in
their spectra due to a strong wind, while the luminosity of the post-AGB cen-
tral stars of planetary nebulae is such that they have only a weak line-driven
wind and thus absorption lines.

2.2 Variability Studies from Large-Scale Surveys

2.2.1 Hipparcos

One of the most important large surveys of variable stars was carried out by
the satellite Hipparcos of the European Space Agency. The mission’s name
stands for HIgh Precision PARallax COllecting Satellite. It was launched in
1989 and has measured the parallax of some 120 000 bright stars in the solar
neighbourhood. The satellite’s name is not only an acronym but also refers to
the Greek astronomer Hipparchus of Nicea, who was the first to compose a
stellar catalogue with the position and brightness of many stars, based upon
personal naked-eye observations. Therefore, Hipparchus is considered to be
the father of astrometry.

The prime goal of the Hipparcos mission was to measure the distances
of stars with unprecedented precision of 2 milli-arc-seconds (mas) for the
parallax. The proper motions of the stars were measured with an accuracy
of 2 mas per year. This was achieved by measuring each star on average 100
times during the 3.3-year lifetime of the mission. The Hipparcos filter was
a broad-band white-light filter sensitive to wavelengths between 4 000 Å and
8 000 Å. The Hipparcos data were further complemented with those of the
Tycho experiment, which determined the parallax and proper motion of a
million fainter stars with an accuracy of 30 mas (per year).

A very important by-product of the Hipparcos mission was that it provided
us for the first time with an unbiased view of variable stars with periods longer
than approximately one hour in the solar neighbourhood. Indeed, for each star
a unique time series was measured, with, on average, 100 time points that
were quasi-randomly chosen during the 3.3 years. These are time series that
are very different from those obtained with ground-based instruments. The
input catalogue was completely unbiased in the sense that the pre-selection
of the target stars did not take into account any knowledge of variability.

The Hipparcos mission led to the discovery of a few thousand new pe-
riodically variable stars and yet another few thousand variables without a
clear dominant periodicity. These were made publicly available by means of
two catalogues: the “Catalogue of Periodic Variables” and the “Catalogue of
Unsolved Variables”. The latter contains stars that are clearly variable but
for which no obvious periodicity could be unravelled from the data for differ-
ent types of reasons (long-term trends, very long uncovered periods, too low
amplitude variability, etc.).
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One of the more striking results derived from the mission was the dis-
covery of numerous new variables with periods of the order of days. Such
variables are indeed very hard to find from (single-site) ground-based data,
which suffer from strong one-day aliasing (see Chapter 5 for a definition of this
phenomenon). The Hipparcos mission particularly had a large impact on the
study of slowly pulsating B stars and γ Dor stars. The number of such nonra-
dial g-mode pulsators known was increased by a factor more than ten in both
cases (Waelkens et al. 1998; Handler 1999a), leading to about one hundred
candidate class members for each of these two classes. As a result, extensive
follow-up long-term ground-based photometric and spectroscopic campaigns
were organized to study the pulsational behaviour of the brightest such class
members (Aerts et al. 1999; Mathias et al. 2001; De Cat & Aerts 2002; and
De Cat et al. 2007 for the slowly pulsating B stars and Eyer & Aerts 2000;
Handler & Shobbrook 2002; Henry & Fekel 2005, Henry et al. 2005; Mathias
et al. 2004; De Cat et al. 2006 and Cuypers et al. 2009 for the γDor stars).
These campaigns led to the general properties of the stars discussed further
on in this chapter.

It is also worth noting that the number of known eclipsing binaries was
about doubled from Hipparcos, with the discovery of 343 new ones (e.g.,
Söderjhelm 2000).

Surveys of variable stars from space will come from the high time-
resolution missions CoRoT2 (Convection, Rotation and planetary Transits,
launched on 27 December 2006) and Kepler3 (launched on 7 March 2009), as
well as from Gaia4 (scheduled for launch near the end of 2011), and, hopefully,
PLATO5 (to be launched in 2017 if approved for implementation by ESA in
2011). The numbers of new variables to be discovered from these missions
will be outrageously large (certainly in the millions), requiring fully auto-
mated variability classification tools based on Artificial Intelligence method-
ology (Debosscher et al. 2007; Sarro et al. 2009).

2.2.2 Ground-Based Surveys

Significant progress on the group properties of large-amplitude oscillators,
such as Cepheids, RR Lyrae stars, and red-giant and supergiant pulsators,
was made by several large surveys that were initiated in the early nineties.
These surveys were set up with the goal to search for MAssive Compact
Halo Objects or MACHOs. The idea was that such MACHOs, if discovered,
could perhaps help explain some of the missing dark matter in the Universe.
The primary aim of the surveys was therefore to test the hypothesis that a
significant fraction of the dark matter in the halo of the Milky Way is made
up of objects such as brown dwarfs and planets.
2 http://corot.oamp.fr/.
3 http://www.kepler.arc.nasa.gov/.
4 http://www.rssd.esa.int/SA-general/Projects/GAIA/.
5 http://lesia.obspm.fr/cosmicvision/plato/.
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It was Paczyński (1986) who suggested that dark matter could be dis-
covered from a microlensing effect. The idea is that, when a dark compact
massive body (the lens) passes in between us and a background light source,
the latter’s apparent luminosity increases because the dark body acts as a
gravitational lens, concentrating the light rays of the source in the line of
sight due to light bending according to general relativity. This implies a mag-
nification of the source luminosity, which is independent of wavelength. One
can therefore use this phenomenon to discover dark compact bodies within
our galactic halo, e.g., using the stars of the Magellanic Clouds or of the
Galactic Bulge as light sources. The duration of the magnification depends
on the speed, the position and the mass of the deflector and ranges from half
an hour to about two months for dark masses ranging from a lunar mass to
a solar mass. The magnification can reach values from a few to a thousand.
The phenomenon is rare and non-repetitive, as it requires a good alignment
of light source, lensing dark body and observer while the lens and observer
move with respect to each other. Microlensing can also be used to discover
exoplanets orbiting around the lens. In that case, the effect of the planet on
the lensing gravitational field causes a brief increase in the magnification.

The detection of microlensing events thus requires long-term monitoring
of a vast number of light sources with high precision photometry, since the
events are rare. Several large observational initiatives to discover MACHOs
were set up more than two decades ago and additional ones were started after
1995 to search for exoplanets. Important by-products of such surveys are
huge inventories of accurate light curves of stars, among them Cepheids and
RR Lyrae stars and long-period red variables, but also many other periodic
variables.

The best known surveys are MACHO6 itself and OGLE7 which stands for
Optical Gravitational Lensing Experiment. EROS8 is another survey whose
acronym stands for Expérience pour la Recherche d’Objets Sombres while
MOA9, which denotes Microlensing Observations in Astrophysics, started
somewhat later than the previous three surveys.

These surveys, and others that can be found through links on the web
pages mentioned, several of which specifically designed for exoplanet detec-
tion, have resulted in millions of stars in the Galactic Bulge and Magellanic
Clouds being monitored and led to thousands of lensing events. Besides these
events, tens of thousands of variable stars were discovered in the Galactic
Bulge and Magellanic Clouds, among which are hundreds of Cepheids, RR
Lyrae stars, eclipsing binaries and ellipsoidal variables, as well as nonradial
pulsators (Sarro et al. 2008).

6 http://wwwmacho.mcmaster.ca/.
7 http://bulge.princeton.edu/∼ogle/.
8 http://eros.in2p3.fr/.
9 http://www3.vuw.ac.nz/scps/moa/.
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In addition to the microlensing surveys, there are also all-sky surveys
specifically designed to find variable stars. They have been carried out with
small wide-field cameras since the mid-1990s. The best known and largest of
these surveys is ASAS10, the All-Sky Automated Survey (Pojmański 1997).
A summary of the variables found by ASAS is provided in Pojmański & Ma-
ciejewski (2004, 2005 and references therein). The 2 Micron All Sky Survey11

(2MASS, Beichmann et al. 1998), on the other hand, is a catalogue of over
100 000 000 individual objects, the vast majority of which are stars of spec-
tral type K and later. Its monitoring was carried out in three wavebands,
J (1.25μm), H (1.65μm), and K (2.2μm), with limiting sensitivity (10σ de-
tection) of point sources with K less than 14. The all-sky coverage was selected
primarily to support studies of the large scale structure of the Milky Way and
the Local Universe. Nevertheless, the catalogue is of much value for variable
star research, particularly when combined with the microlensing surveys dis-
cussed above, e.g., Fraser et al.’s (2005) study of long period variables to
which we will return later in this chapter.

The Sloan Digital Sky Survey12 (SDSS, Stoughton et al. 2002) is an imag-
ing survey that covers one quarter of the celestial sphere while collecting also
spectra of hundreds of thousands of targets. The imaging data are collected
in five bandpasses (u, g, r, i, and z) and are complete to magnitudes 22.0,
22.2, 22.2, 21.3, and 20.5, respectively. The SDSS turned out to be a very im-
portant survey for faint (compact) objects that had been missed in previous
surveys with brighter limits, such as Cataclysmic Variables (CVs, Szkody et
al. 2004), cool dwarfs (Hawley et al. 2002), white dwarfs (Harris et al. 2003;
Eisenstein et al. 2006a), and spectroscopic binaries (Pourbaix et al. 2005),
and of course the pulsating ones among all these categories. Another impor-
tant, more recent survey, specifically designed to find emission line objects, is
IPHAS, which stands for the Isaac Newton Telescope Photometric H-Alpha
Survey13 of the Northern Galactic Plane (Witham et al. 2008). It spans the
latitude range −5◦ < b < +5◦ and reaches down to r′ = 19.5. It contains pho-
tometry on about 80 million objects, making it a major source for the study
of stellar populations in the disc of the Milky Way. Presently, thousands of
point sources have been found to exhibit strong photometric evidence for Hα
emission, representing a wide range of objects, such as early-type emission-
line stars, active late-type stars, interacting binaries, young stellar objects
and compact nebulae. The Radial Velocity Experiment14 (RAVE, Zwitter et
al. 2008) is a spectroscopic survey to measure radial velocities and stellar at-
mosphere parameters of up to one million stars. It will operate in the time
frame 2003 to 2010 and uses the multi-object spectrograph on the 1.2 m

10 http://archive.princeton.edu/∼asas/.
11 http://www.ipac.caltech.edu/2mass/.
12 http://www.sdss.org/.
13 http://astro.ic.ac.uk/Research/Halpha/North/index.shtml.
14 http://www.rave-survey.org/.
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UK Schmidt Telescope of the Anglo-Australian Observatory. Presently, some
50,000 radial velocities as well as stellar parameters for some 20,000 stars
have been published and made available to the community, mainly to study
galactic kinematics.

The impact of large scale surveys on pulsating star research was summa-
rized after about ten years of microlensing monitoring in Szabados & Kurtz
(2000). We refer to the web pages of the consortia mentioned above for more
up-to-date achievements and recent papers on variable star research, as well
as on detected lenses and their interpretation. While the surveys mainly led
to the discovery of new large amplitude pulsators, some nonradial pulsators
such as β Cep stars and δ Sct stars were also found (see, e.g., Pigulski &
Ko�laczkowski 2002; Pigulski et al. 2003; Pigulski 2005), as well as numer-
ous new compact pulsators (see below). As the surveys mainly observe faint
members of the classes, and as they do not provide multicolour photometry
of mmag level precision nor high resolution, high signal-to-noise spectroscopy
(see Chapter 4 for definitions of such type of data), these discoveries have not
yet led to mode identification; hence asteroseismic modelling of the individ-
ual targets has so far not been possible. Massive follow-up projects are thus
required specifically dedicated to this task.

2.3 Oscillations Near the Main Sequence

Our journey along the main sequence starts at the low-mass end and finishes
with the highest mass pulsators.

2.3.1 Solar-Like Oscillations in Solar-Like Stars

The best case of a solar-like star with the clearest solar-like oscillations is of
course the Sun. Its oscillation frequency spectrum has already been shown in
Fig. 1.9 and reveals hundreds of peaks centred on 3 mHz with corresponding
periods between 3 and 15 min. The brightness variations have amplitudes near
8 ppm for the strongest modes and down to the detection threshold of about
1 ppm. These variations correspond to velocity amplitudes of a few to tens of
cm s−1.

As the oscillations of the Sun are caused by turbulent convective motions
near its surface, we expect such oscillations to be excited in all stars with
outer convection zones. Solar-like oscillations are indeed predicted for the low-
est mass main sequence stars up to objects near the cool edge of the classical
instability strip with masses near some 1.6 M� (e.g., Christensen-Dalsgaard
1982a; Christensen-Dalsgaard & Frandsen 1983a; Houdek et al. 1999) as well
as in red giants (Dziembowski et al. 2001a). Such stochastically excited oscil-
lations have very tiny amplitudes, which makes them hard to detect, particu-
larly for the low mass stars. The velocity amplitudes were predicted to scale
roughly as L/M before the first firm discoveries of such oscillations in stars
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Fig. 2.2. HR Diagram showing the stars in which solar-like oscillations have
been detected (with HD49933 = HR2530). The discoveries for 171 Pup, HD139211
(HR5803) and HD210302 (τ PsA) are unpublished (Carrier et al., in preparation).
Figure courtesy of Fabien Carrier.

other than the Sun (Kjeldsen & Bedding 1995). This scaling law was later
modified to (L/M)0.8 from excitation predictions based on 3D computations
of the outer atmosphere of the stars (Samadi et al. 2005), resulting in lower
amplitudes compared with those found for 1D models.

The search for solar-like oscillations in stars in the solar neighbourhood
has been ongoing since the early 1980s. The first indication of stellar power
with a frequency dependence similar to that of the Sun was obtained by
Brown et al. (1991) in αCMi (Procyon, F5IV). The first detection of individual
frequencies of solar-like oscillation was achieved from high precision time-
resolved spectroscopic measurements only in 1995 for the G5IV star ηBoo
(Kjeldsen et al. 1995); Brown et al. (1997) could not establish a confirmation
of this detection from independent measurements, but it was subsequently
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Fig. 2.3. Frequency spectra of a sample of solar-like oscillators covering the entire
range in spectral type. Figure courtesy of Fabien Carrier.

confirmed by Kjeldsen et al. (2003) and Carrier et al. (2005). It took another
four years before solar-like oscillations were definitely established in Procyon
(Martić et al. 1999). Subsequently, such oscillations were found in two more
stars: the G2IV star βHyi (Bedding et al. 2001) and the solar twin αCen A
(Bouchy & Carrier 2001). These important discoveries opened the floodgates
which led to several more discoveries, summaries of which were provided by
Bedding & Kjeldsen (2003, 2007). Meanwhile, solar-like oscillations have been
firmly established in numerous stars. Their position in the HR Diagram is
displayed in Fig. 2.2. Frequency spectra of a selected sample, covering the
whole range in spectral type, are shown in Fig. 2.3. The detected frequencies
and frequency separations for all stars behave as expected from theoretical
predictions and scaling relations based on extrapolations from helioseismology.
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Detailed seismic studies of stars with stochastically excited modes are cur-
rently still in their infancy compared with helioseismology (see Chapter 7).
However, given the recent detections and the continuing efforts to improve
them, we expect a real breakthrough in the seismic interpretation of the tar-
gets in the coming years. We refer to Chapter 7 for in-depth seismic modelling
attempts for a few selected stars.

The quest for solar-like oscillations in metal poor stars considerably less
massive than the Sun is an important goal of asteroseismic space missions.
This is particularly so because asteroseismology has proven to be a very suc-
cessful technique to probe interior stellar structure and derive a high precision
age estimate (Christensen-Dalsgaard 2002; see also Chapter 7). Indeed, such
low mass stars are among the oldest in our Galaxy (and hence in the Universe)
and accurate age estimates of such objects, which can in principle be achieved
from measuring their large and small separations as in the Sun (see Chap-
ter 1), can provide a good age determination of the Universe which would be
completely independent of any method currently in use.

2.3.2 γ Dor Stars

In 1995, a new group of Population I nonradially oscillating stars was estab-
lished near the intersection of the red edge of the classical instability strip and
the main sequence. This followed from the discovery of multiperiodic variabil-
ity with amplitude near 0.1 mag in the F0V star 9 Aur and the realization that
the three stars γDoradus (F4III), HD 96008 (F0V), and HD 164515 (F2IV-
V) have similar behaviour (Krisciunas et al. 1993). These stars have early-F
spectral types and are called after the prototype, the star γDoradus whose
variability was first discovered by Cousins et al. (1989; Cousins 1992) and
extensively studied by Balona et al. (1996).

As already mentioned in Section 2.2.1, the Hipparcos mission was very
important for the discovery of new class members in view of the intrinsic pe-
riodicities near one day and the difficulty to study such variations from the
ground. Some 50 confirmed members are established by now, while more than
100 additional candidates are being studied observationally (e.g., Mathias et
al. 2004; Henry et al. 2005; De Cat et al. 2006; Cuypers et al. 2009, and ref-
erences therein), most of them originally found from mining the Hipparcos
database. The stars have multiperiodic behaviour with individual periods be-
tween about 0.5 and 3 d, which is an order of magnitude longer than acoustic
modes would have for such stars. Their variability is therefore interpreted in
terms of multiperiodic high order nonradial g modes.

Long term multicolour and/or high resolution spectroscopic datasets are
meanwhile available for several γ Dor stars (e.g., Poretti et al. 2002; Aerts
et al. 2004; Cuypers et al. 2009). The particular case of g modes with long
periods of the order of a day implies that the data sets of such oscillators
consist of only a few points per night, and makes it difficult to illustrate the
periodicity in the time domain. One therefore usually uses phase diagrams
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Fig. 2.4. Spectral window (top) and frequency spectra after subsequent stages of
prewhitening (see Chapter 5 for a definition of this procedure; second to fifth panel)
for single site ground based Geneva B data of the γDor star HD12901. The three
detected frequencies that were derived from independent data sets are indicated as
dotted lines. From Aerts et al. (2004a).

(see Chapter 6 for a formal definition). The periodograms of the ground based
Geneva data of HD 12901 (F2V) are shown as a representative example for the
whole class in Fig. 2.4. Figure 2.5 shows the phase diagrams after identification
of the frequencies. It can be seen from Fig. 2.5 that the variations have low
amplitudes. The three frequencies indicated are trustworthy only because they
occur in independent datasets (Hipparcos and multicolour ground photometry,
and sometimes radial velocity data in addition), a situation often encountered
in frequency analysis as will be explained in Chapter 5. All existing data are
in agreement with the interpretation in terms of multiperiodic g modes.

The observational properties of γ Dor stars were summarized by Kaye et
al. (1999). The class members have masses between 1.5 and 1.8 M�. Handler
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Fig. 2.5. Phase diagrams of the γDor star HD12901 for the three frequencies
indicated as dotted lines in Fig. 2.4. From Aerts et al. (2004a).

& Shobbrook (2002) made a careful observational study to understand the
relationship between δ Sct oscillations (see below) and the behaviour of the
γDor stars. They found a very clear separation in oscillatory behaviour be-
tween the two classes, except for the hybrid star HD 209295 which has both
p and g modes, but this object is a member of a very close eccentric binary and
its g modes seem to be tidally driven (Handler et al. 2002, see Section 2.8.2).

The earliest proposals for an excitation mechanism came from Guzik et al.
(2000), who proposed driving by convective flux blocking at the base of the
convective envelope. This mechanism was treated in the frozen convection ap-
proximation, in which the perturbation to the convective flux is ignored. The
resulting instability strip was studied by Warner et al. (2003). However, as
noted by Löffler (2000) and Dupret et al. (2005a), these instability calculations
did not appropriately take into account that these stars have well-developed
outer convection zones interacting with the pulsation. This was achieved by
Dupret et al. (2005a) by means of a time dependent treatment of the convec-
tion. It allowed them to interpret and predict the g-mode instabilities observed
in the γDor stars and to quantify an appropriate value of the mixing length
parameter between 1.8 and 2.2 local pressure scale heights for γDor stars.
Their instability strip is shown in Fig. 2.6. Interestingly, they found that con-
vective blocking was in fact the dominant instability mechanism. Moreover,
Dupret et al. (2005b) applied their theory to interpret successfully the mul-
ticolour behaviour of the five best studied γ Dor stars. A warning is needed,
however, since these theoretical computations ignore the effects of the Cori-
olis and centrifugal forces, while most of the γDor stars are relatively fast
rotators, in the sense that their oscillation periods are of similar magnitude



48 2 Stellar Oscillations across the Hertzsprung-Russell Diagram

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

3.743.763.783.83.823.843.863.883.9

lo
g(

L
/L

su
n)

log(Teff)

1.4 Msun

1.6 Msun

1.8 Msun

2.0 Msun

α=1

α=1.5

α=2

Fig. 2.6. The instability strip for l = 1 modes of the γDor stars for three different
values of the mixing length parameter 	ML = αMLHp (see Chapter 3 for a definition)
based on the convective blocking mechanism for a time dependent treatment of the
convection (Dupret et al. 2005a). The results for the frozen convection approximation
with mixing length parameter 	ML = 1.87Hp obtained by Warner et al. (2003) are
shown as thin dashed lines for comparison. The open circles are all of the bona fide
γDor stars known up to 2005. The squares are binary γDor stars. The evolution
tracks are for the masses indicated and were computed assuming overshoot from the
convective core of αov = 0.2. From Dupret et al. (2005a).

to their rotation period. The urgently required investigation of the rotational
effects on current theoretical predictions remains to be carried out.

At present, very large observing efforts are being undertaken by several re-
search teams, including long term multicolour photometric monitoring and/or
high resolution spectroscopic campaigns (e.g., De Cat et al. 2006; Arentoft et
al. 2007; Uytterhoeven et al. 2008; Bruntt et al. 2008, and references therein).
The γ Dor stars are very challenging objects in this respect, because beat pe-
riods up to years occur. Nevertheless, it seems worthwhile to undertake such
endeavours, because these pulsators have the potential to undergo at the same
time g modes and solar-like p modes. Indeed, they are situated at the high
mass end where solar-like oscillations are predicted (Fig. 1.12). The firm es-
tablishment of the occurrence of both these types of oscillations, which probe
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Fig. 2.7. Radial velocity curve of the high amplitude δ Scuti star ρPup derived
from high quality spectra of which some are shown in Fig. 6.15. Note the slight
deviation from symmetry in this observed curve. Data taken from Mathias et al.
(1997).

very different inner stellar regions, holds great potential for high precision
seismic inference of their interior structure (e.g., Miglio et al. 2008). For this
reason, γ Dor stars are among the prime targets of the CoRoT space mission.

2.3.3 δ Sct Stars

The δ Sct stars form a well established group of Population I pulsating stars
with masses in the range 1.5−2.5M�. They are situated at the position where
the classical instability strip crosses the main sequence (see Fig. 1.12) and so
are in a stage of central hydrogen or shell hydrogen burning. The oscillations
are driven by the heat mechanism active in the second partial ionization zone
of helium.

Both radial and nonradial oscillations occur in δ Sct stars. Those are gener-
ally low order p modes with periods in the range 18 min to 8 hr. The observed
amplitudes have a large range, from mmag up to tenths of a magnitude. The
highest amplitude δ Sct stars (also called HADS, meaning high amplitude δ Sct
stars) are claimed to be monoperiodic radial fundamental mode oscillators and
so, at first sight, of less interest for asteroseismology. Nevertheless, Mathias
et al. (1997) have shown convincingly that the very precise radial velocity
curve they obtained for the HADS ρPup (Fig. 2.7) yielded the detection of
low amplitude nonradial modes besides the dominant radial one. Moreover,
Poretti (2003) found nonradial modes in the light curves of some HADS. It
may very well be that this is a property of all HADS. In several lower am-
plitude δ Sct stars, many nonradial oscillations have been detected. The most
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up-to-date catalogue of δ Sct stars was provided by Rodŕıguez et al. (2000). It
contains a summary of all the observational characteristics of more than 600
class members that had been studied up until 2000. A comprehensive analysis
of the properties of all these class members was made by Rodŕıguez & Breger
(2001). Montgomery & Breger (2000) and Zverko et al. (2004) present the
proceedings of two international meetings on, respectively, δ Sct and related
stars, and A stars in general, containing a wealth of information.

A few δ Sct stars have been observed from space, e.g., θ2 Tau and Altair
with the star tracker on the WIRE15 (Wide-field InfraRed Explorer) satellite
(Poretti et al. 2002; Buzasi et al. 2005, respectively), and HD 263551 with the
MOST (Microvariablity and Oscillations of STars)16 satellite.

Within the class of δ Sct stars one sometimes considers the subclasses of
the pulsating λBoo stars, and pulsating classical and evolved metallic line A
(Am) stars known as δDel or ρPup stars; (Kurtz et al. 1995). These types
of stars have been defined in general (i.e., irrespective of their pulsational
nature) as specific classes with anomalous spectra that are interpreted to be
caused by anomalous surface abundances. The latter affect the oscillations
and, therefore, these subclasses have slightly different behaviour compared to
the δ Sct stars with normal abundances (Rodŕıguez & Breger 2001). Keeping
this in mind, the pulsations of the λBoo and Am stars are fully compatible
with those of normal δ Sct pulsators and we do not consider them as separate
classes of pulsators (hence they are not explicitly indicated on Fig. 1.12).

Numerous radial and nonradial modes have been detected in some selected
δ Sct stars, such as FG Vir (79 frequencies; Breger et al. 2005, see Figs 2.8
and 2.9), 4 CVn (34 frequencies; Breger 2000, see Fig. 2.10) and XX Pyx (30
frequencies; Handler et al. 1998, 2000). These results were all obtained by
the Delta Scuti Network17 (DSN), consisting of several telescopes around the
globe and led by Michel Breger and his research team at Vienna University
in Austria. The frequency spectra of these few, selected, well-studied stars
show that the δ Sct stars have complex oscillation patterns, with variable
amplitudes from season to season and non-linear resonant mode coupling (e.g.,
the case of 4 CVn: Breger et al. 1999a and Fig. 2.10; V1162 Ori: Arentoft et al.
2001b; FG Vir: Breger & Pamyatnykh 2006). This complexity turns out to lead
to a problem in identifying the modes and hence hampers in-depth seismic
interpretation, despite the large number of detected oscillations. An additional
problem in identifying the modes is that mixed modes occur, particularly in
the more evolved class members. These are modes that have a mixed character,
i.e., a g-mode character in the interior and a p-mode character in the outer
layers of the star. Mixed modes occur in general in stars that have evolved off
the main sequence and are undergoing hydrogen shell burning.

15 http://www.ipac.caltech.edu/wire/.
16 http://www.astro.ubc.ca/MOST/index.html.
17 http://www.astro.univie.ac.at/∼dsn/index.html.
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Fig. 2.8. Some observed light curves for FGVir obtained by the DSN (dots) and
a fit including 79 significant frequencies (full line). From Breger et al. (2005).

Pamyatnykh (1999) provided an extensive overview of the history of insta-
bility computations in the upper HR Diagram and presented his own compu-
tations based on improvements in opacity determinations by Iglesias & Rogers
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Fig. 2.9. Schematic frequency diagram of the δ Sct star FGVir deduced from DSN
data, some of which is shown in Fig. 2.8. From Breger et al. (2005).

(1996) and Seaton (1996). His work included the determination of the blue
edge of the classical instability strip, which is mainly determined by the he-
lium opacity bump. The unstable modes in the hottest δ Sct ZAMS models are
found near logL/L� ≈ 2, while instability in the radial fundamental mode
occurs all the way up to logL/L� = 5 for evolved stellar models. In practice,
the δ Sct stars are found on the main sequence and near the TAMS, with
luminosities ranging from logL/L� ≈ 0.6 up to logL/L� ≈ 2 (Rodŕıguez &
Breger 2001). The heat mechanism is no longer effective for the coolest δ Sct
star models. The red edge could therefore not be determined by Pamyatnykh
(1999). For such cool stars, the damping and excitation are strongly affected
by convection (see Section 3.7.3). Houdek (2000) included the time dependent
heat and momentum fluxes following the formulation by Gough (1977a) in
calculations of δ Sct models and found a return to stability at approximately
the correct location of the red edge. The red edge of the instability strip was
also computed by Dupret et al. (2005a, see Fig. 2.11), who included a time
dependent convection treatment for δ Sct star models with different values
of the mixing length parameter. They compared the results obtained from
their time dependent convection treatment with those resulting from a frozen
convection treatment and found much better agreement with observations.
Both Houdek’s and Dupret et al.’s treatments approximate the red edge in a
satisfactory way (Fig. 2.11).

Main sequence stars near 2 M� are transition objects as far as the occur-
rence of a convective (M < 2 M�) versus radiative (M > 2 M�) outer zone is
concerned. On the other hand, stars develop a convective core between 1 M�
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Fig. 2.10. Amplitude variability found from season to season in DSN data of the
δ Sct star 4CVn. From Breger (2000).

and 2 M�. The class of δ Sct stars encompasses such transition objects and
asteroseismology could in principle fine-tune our knowledge of the detailed
physics of these transitions from convective to radiative energy transport and
mixing. Dziembowski & Pamyatnykh (1991) pointed out that the sensitiv-
ity of particular nonradial oscillation modes to the size of the mixed stellar
core could provide a very valuable asteroseismic test of core overshooting in
A- and B-type oscillators. At present, this stage is not yet reached for δ Sct
stars, however. Another outlook for the future is the simultaneous detection of
heat driven and stochastically excited acoustic modes. Indeed, Samadi et al.
(2002) predicted the occurrence of the latter type of oscillations in this area
of the HR Diagram. For all these reasons, δ Sct stars are the prime targets for
CoRoT.

2.3.4 SXPhe Stars

The SX Phe stars have variability behaviour which is very similar to the large
amplitude δ Sct stars known as HADS (see the previous section), but the
SX Phe stars are old Population II stars, while the HADS are younger Popu-
lation I stars. For this reason, the SX Phe stars were proposed as a separate
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Fig. 2.11. Blue and red edges of the instability strip of the δ Sct stars obtained by
Dupret et al. (2005a). The lines are for radial modes p1 to p7 taking a mixing length
parameter 	ML = 1.8Hp. The red edge of the radial fundamental mode computed by
Houdek (2000, •) and by Xiong & Deng (2001, �) are also indicated for comparison.
The small dots correspond to all the δ Sct stars in the catalogue of Rodŕıguez et
al. (2000). The evolution tracks are for the masses indicated and were computed
assuming overshoot from the convective core of αov = 0.2Hp. From Dupret et al.
(2005a).

class of pulsators by Frolov & Irkaev (1984) and have been regarded as such
ever since, even though they only differ from the δ Sct stars in metallicity
(and are hence not indicated as a separate class in Fig. 1.12). They can be
recognized by their high amplitude, low metallicity and large spatial motion.
Most of them are members of globular clusters, but some occur in galactic
discs.

A part of the light curve of the prototype is shown in Fig. 2.12. This star
exhibits variations with two distinct frequencies: 18.19 d−1 and 23.39 d−1 and
their harmonics, along with sum and beat frequencies (Fig. 2.13 and Kim et al.
1993). The SX Phe stars indeed have a bimodal period distribution, which is
interpreted in terms of the fundamental and first radial overtone modes being
excited. Those pulsating only in the first overtone have nearly symmetrical
light curves with peak-to-peak amplitudes less than 0.15 in V . The fundamen-
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Fig. 2.12. Part of the Strömgren y light curve of SXPhe. Data taken from Kim et
al. (1993).

Fig. 2.13. Frequency spectrum of SXPhe. The dotted lines indicate the significant
frequencies. The bottom panel is for the residuals after prewhitening with 18.19 d−1

and its two harmonics. Data taken from Kim et al. (1993).

tal pulsators, such as SX Phe itself (Fig. 2.12), have amplitudes above 0.15 in
V and asymmetrical light curves. This period separation propagates into two
distinct period-luminosity relations with an offset of 0.37 mag, in agreement
with theoretical predictions (McNamara 1995).

Rodŕıguez & López-González (2000) presented the first catalogue of SX Phe
stars containing 149 objects in 18 globular clusters of our Galaxy and in the
Carina and Sagittarius dwarf galaxies. From the observational characteristics
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of all these 149 members they deduced that the metal abundances and mean
periods of these stars show that both parameters are correlated in the sense
that the periods of the variables are longer as the metallicity is higher.

Olech et al. (2005) made a dedicated study of the oscillation spectra of
69 SX Phe stars with very diverse pulsational behaviour, all belonging to the
globular cluster ωCentauri. The observations are interpreted in terms of mul-
tiperiodic oscillations with at least some of the excited modes being nonradial
and with the occurrence of rotationally split triplets in some cases. The stellar
parameters of the radial mode pulsators are found to be consistent with stan-
dard evolutionary models for stars with Z between 0.002 and 0.0002 and in
the mass range 0.9 to 1.15 M�, and the observed frequencies are in agreement
with predictions for unstable modes.

A significant fraction of the SX Phe stars are believed to be blue stragglers.
We come back to this issue in Section 2.8.3.

2.3.5 Rapidly Oscillating Ap Stars

Largely within the classical instability strip, close to the main sequence where
the δ Sct stars are situated, one also encounters the rapidly oscillating Ap
(roAp) stars. These are strongly magnetic Population I stars of spectral type
A or F with a peculiar (hence Ap, or sometimes Fp18) chemical surface com-
position caused by atomic diffusion. They were discovered by Kurtz (1982),
who reported amplitudes up to about 0.01 mag peak-to-peak in blue wave-
lengths for five class members. The roAp stars, of which there are now about
40 known, have multiperiodic variations which correspond to high order, low
degree p modes. Many of the modes show frequency multiplets interpreted
as being caused by rotational amplitude modulation of modes with pulsation
axes that are aligned with the magnetic fields of the star, hence are oblique to
the rotation axes of the stars – the oblique pulsator model (Kurtz 1982). For
extensive overviews of the photometric observations and their interpretation
see Kurtz (1990) and Kurtz & Martinez (2000). In Fig. 2.14 we show part
of the light curve of HD 101065, the first discovered roAp star (Kurtz 1978,
1980; Kurtz & Wegner 1979). Its frequency spectrum is shown in Fig. 2.15
and reveals a principal frequency of 1.37 mHz, corresponding to a period of
12.14 min, with an amplitude of some 6 mmag.

The rapidly oscillating Ap (roAp) stars exhibit many unusual characteris-
tics: strong abundance anomalies – particularly of rare earth elements; strong,
global magnetic fields with polar field strengths typically of several kG, but up
to 24.5 kG (Hubrig et al. 2005; Kurtz et al. 2006a); non-uniform abundances
– both horizontally (spots) and vertically (stratification); high radial over-
tone pulsation with periods in the range 5.65 − 21.2 min and amplitudes up
18 The chemically peculiar stars of the upper main sequence are also classified in

subgroups CP1, CP2, CP3, CP4; the roAp stars are in the CP2 subgroup. A
complete discussion of the nomenclature of the chemically peculiar stars is given
by Kurtz & Martinez (2000).
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Fig. 2.14. Part of the Johnson B light curve of the roAp star HD101065. Data
taken from Martinez & Kurtz (1990).

to 6 mmag in broad-band photometry and up to 5000 m s−1 in radial velocity
(see, e.g., Elkin et al. 2005; Table 1 of Kurtz et al. 2006a).

Theoretical interpretation of the pulsations in roAp stars is complex. The
modes appear to be more-or-less aligned with the magnetic field. They are
low degree, � ≤ 3, modes and preferentially dipole (or distorted dipole) modes
where this can be determined. Both the large and small asteroseismic separa-
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Fig. 2.15. Frequency spectrum of the roAp star HD101065. Data taken from
Martinez & Kurtz (1990).

tions are significantly perturbed by the magnetic field and, at least in some
cases, by the rotation. The modes are magneto-acoustic – generally, magnetic
pressure dominates in the observable atmosphere, although for some mod-
els with ∼kG magnetic fields the magnetic and gas pressure are comparable
around τ5000 ∼ 1; at higher observable levels magnetic pressure dominates in
all models (Saio 2005; Sousa & Cunha 2008). Atomic diffusion not only alters
the vertical and horizontal abundances, but also the atmospheric tempera-
ture structure – manifestations of the latter may be the core-wing anomaly
in the hydrogen lines (Cowley et al. 2001; Kochukhov et al. 2002a) and the
wing-nib anomaly in the Ca K line (Cowley et al. 2006). The frequencies in
many roAp stars exceed the acoustic cut-off frequency of models with stan-
dard stellar atmospheres, thus also indicating abnormal atmospheric structure
(see, e.g., Cunha 2006; Audard et al. 1998). The magnetic field directly alters
the eigenfrequencies and eigenfunctions, it indirectly contributes to driving
the pulsations by suppression of convection, and its geometry contributes to,
or defines, the mode selection. For detailed discussion of the theory of these
stars see, e.g., Sousa & Cunha (2008), Cunha (2005, 2006, 2007), Saio (2005),
Gough (2005), Saio & Gautschy (2004), Bigot & Dziembowski (2002), Balm-
forth et al. (2001), Cunha & Gough (2000), Bigot et al. (2000), Gautschy et
al. (1998), Dziembowski & Goode (1985, 1996), Takata & Shibahashi (1995),
Shibahashi & Takata (1993), Dolez & Gough (1982). For more introduction
to the spectroscopic observations see Kurtz et al. (2006b). A list of 35 roAp
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stars with some photometric and spectroscopic amplitudes is given by Kurtz
et al. (2006a).

All of these complexities make the roAp stars a challenge to understand,
but the rewards for doing so are great. Here are four examples:

1. The kG-strength magnetic fields in sunspots dissipate energy in solar p-
modes and shift their phases significantly, as is clearly seen in both obser-
vational and theoretical local helioseismology. While it is not possible to
perform local asteroseismology in the same detail as for the Sun – for ob-
vious reasons of angular resolution – some unique properties of the roAp
stars have the potential to allow 3D mapping of their pulsation modes,
magnetic fields geometries and abundance distributions within the ob-
servable layers of their atmospheres, hence allow a detailed study of the
interaction of the pulsations with the strong magnetic fields, thus provid-
ing an environment significantly different to that of the Sun in which to
test theories of such interactions.

2. As mentioned above, abundances of many elements and ions are non-
uniformly distributed over the stellar surfaces of the roAp stars, and they
are also vertically stratified. Both of these are a consequence of atomic dif-
fusion, i.e., radiative levitation and gravitational settling. In some cases
overabundances can be up to five orders of magnitude greater than that
of the Sun and other (relatively) chemically normal stars. The horizontal
non-uniformity allows Doppler Imaging maps to be made of the surface
abundance distributions and pulsation geometry (see, e.g., Kochukhov et
al. 2004a; Kochukhov 2006) and the vertical stratification provides depth
information. As yet, the vertical and horizontal components of the abun-
dances and pulsation geometries have not been disentangled, but several
groups are actively working on this complex and potentially highly reward-
ing problem (see Kurtz et al. 2006b for a more extended introduction to
the subject and references).

3. Fe ranges from slightly overabundant to somewhat depleted in the atmo-
spheres of roAp stars as a consequence of atomic diffusion; lines of Fe i
and Fe ii typically form around continuum optical depth log τ5000 ∼ −0.5.
The narrow cores of the Hα lines are a probable consequence of abnormal
T − τ that is, as yet, not successfully modelled; these Hα line cores form
between optical depths −4 ≤ log τ5000 ≤ −2 – levels that are well into
the chromosphere of the Sun. The first and second ionization states of
Nd and Pr and some other rare earth elements form at, or above, optical
depths log τ5000 ≤ −4 (see, e.g., Mashonkina et al. 2005), as they have
been radiatively levitated. Thus by studying lines of different ions, and
by studying the line profile variations of individual lines, it is possible to
probe the abundance distributions and pulsation behaviour as a function
of atmospheric depth in some detail. This in itself has potentially great
rewards, since the geometry of the pulsation modes provides new, inde-
pendent constraints on the stratification of the atmospheres, hence on the
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atomic diffusion that gives rise to this. Atomic diffusion is widely appli-
cable in stellar astrophysics; it is an important process that is part of the
standard solar model (at least for helium settling and the radiative levi-
tation of a few atomic species), and has to be taken into account in any
solution to the current disagreement between helioseismic sound speeds
and solar abundances. It is also an important factor in our understanding
of pulsational driving in subdwarf B (sdB) stars, β Cep stars, Slowly Pul-
sating B stars, in the stratification of white dwarf star atmospheres, and
of globular cluster ages. In the roAp stars the pulsation amplitudes and
phases allow us to specify which ions share horizontal and vertical distribu-
tions in the roAp atmospheres. Since these stars show the most extreme
evidence of atomic diffusion, they provide the strongest constraints on
atomic diffusion theory.

4. Theoretical models (see, e.g., Sousa & Cunha 2008; Cunha 2006; Saio
2005; Saio & Gautschy 2004) indicate that the Alfvén speed and sound
speed are comparable at optical depths of the order of 1 for magnetic field
strengths of the order of 1 kG; higher in the atmosphere the Alfvén speed
exceeds the sound speed significantly. For stronger fields the Alfvén speed
exceeds the sound speed throughout the observable atmosphere. Thus
the observed modes in roAp stars are magneto-acoustic. The detailed
behaviour of the interaction of the pulsation modes with kG-strength
magnetic fields can thus be compared with similar interactions of solar
p modes and sunspots that have been studied with local helioseismology.
Whereas there is a good understanding of the interaction of p modes with
sunspots, with basic agreement between theoretical models and observa-
tions, the variety of behaviour for the roAp stars is still to be understood.
Disentangling the complexities of the line profile variations into their hor-
izontal, vertical, convective and pulsational mode geometry components
is highly challenging.

Thus the roAp stars allow an examination of the upper atmospheres of
these stars in more detail than is possible for any star but the Sun. From
an observational viewpoint, the study of roAp stars has changed drastically
over the past few years, with photometric studies being overtaken by the new
time resolved, high spectral resolution spectroscopic studies. Clearly, further
confrontation between these splendid new data and the oblique pulsator model
will be undertaken in the near future. For the asteroseismic study of the
global properties of roAp stars, the best frequency sets have been obtained
photometrically, the outstanding example being HR 1217 which we discuss in
detail in Chapter 7.

2.3.6 Slowly Pulsating B Stars

The term slowly pulsating B stars (SPB stars) was introduced by Waelkens
(1991). With this term he brought attention to a group of seven young Pop-
ulation I variable mid-B stars with spectral type between B3 and B9, for
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Fig. 2.16. The frequency spectra of Geneva B, Hipparcos, and radial velocity
data derived from the Si ii 4128 Å line of the single SPB star oVel (HD74195). The
horizontal dashed line indicates the 1% false alarm probability and the dotted one
the 3.7 S/N ratio level (see Chapter 5). From De Cat & Aerts (2002).

which he had detected multiperiodic brightness and colour variations in pho-
tometric data spread over some 10 years. In Figs 2.16 and 2.17, the frequency
spectra of the Geneva B and Hipparcos light, and radial velocity variations
of the brightest among the SPB stars, oVel (HD 74195), and of a bright SB2
SPB star, HD 123515, are shown. De Cat & Aerts (2002) found respectively
four and five independent frequencies for these two SPB stars after subsequent
prewhitening. This procedure will be defined in detail in Section 5.1.2. In brief,
it involves subtracting a fit with a selected frequency from the data, followed
by a frequency search for additional frequencies. The intrinsic periods of SPB
stars are similar to those of the γDor stars except a bit longer because the
stars are bigger, i.e., roughly between 0.8 and 3 d. It is therefore extremely
difficult to find such variables, as long term planning is needed, just as for the
γDor stars. This is readily visible in Figs 2.16 and 2.17 where the confusion
between frequencies f and 1 − f is prominent. Only with multisite data, or
with uninterrupted data from space, can one avoid such confusion, as shown
by the MOST light curve of the SPB star HD 163830 reproduced in Fig. 2.18
(Aerts et al. 2006b).

Line profile variable counterparts of SPB stars were known prior to the
discovery of the SPB star class by Waelkens (1991). Already in the late 1970s,
Myron Smith and his collaborators had done a search for line profile variability
in stars surrounding the β Cep stars (see below for a description of this group
of pulsating stars). In this way they had discovered spectroscopic variables
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Fig. 2.17. The frequency spectra of Geneva B, Hipparcos, and radial velocity data
derived from the Si ii 4128 Å line of the SB2 SPB HD123515. The horizontal dashed
line indicates the 1% false alarm probability and the dotted one the 3.7 S/N ratio
level (see Chapter 5). From De Cat & Aerts (2002).

with spectral types between O9 and B5. Smith termed them 53 Per stars
after his prototypical target. It has meanwhile become clear that the coolest
among Smith’s variables are SPB stars, but the explanation for the hotter
stars in Smith’s list is different. Indeed, the hottest among the 53 Per stars
have p mode oscillations like the β Cep stars rather than high order g modes.
For this reason, the term SPB stars was finally chosen to indicate a class of
stars with common pulsational properties in terms of g modes and one well-
understood excitation mechanism, in contrast to the group of Smith’s 53 Per
stars. The masses of SPB stars range from 2 to 7 M�, whereas some of the
53 Per stars have masses as high as 20 M�.

As already emphasized, the Hipparcos mission led to a tenfold increase in
the number of class members; huge long term multicolour photometric and
high resolution spectroscopic follow-up campaigns were undertaken following
this discovery (Aerts et al. 1999; Mathias et al. 2001). Those led to accurate
frequency values and empirical mode identification for some selected targets
(De Cat & Aerts 2002; De Cat et al. 2005) which are in excellent agree-
ment with theoretical predictions of excited (mainly) l = 1 modes (Townsend
2005a). All confirmed SPB stars are slow rotators (De Cat 2002).

As shown by Dziembowski et al. (1993) and Gautschy & Saio (1993), the
explanation for the multiperiodic variations of SPB stars is the excitation
of high order g modes by the heat mechanism, associated with an opacity
enhancement due to iron-group elements, also termed the Z bump. These
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Fig. 2.18. The MOST light curve of the SPB HD163830 (upper panel, dots) and
the best fit based on the 21 significant frequencies (upper panel, full line). The
residuals after subtraction of the fit are shown in the lower panel. From Aerts et al.
(2006b).

features occur at a temperature near 200 000 K. This explanation for mode
excitation in B stars, both for SPB stars and for β Cep stars (see below), had
to await sufficiently accurate opacity computations of elements heavier than
hydrogen and helium, such as those provided by Iglesias & Rogers (1996) in
the OPAL19 opacity project at Livermore, and Seaton (1996) in the Opacity
Project, OP20. Accurate opacity tables for elements heavier than hydrogen
and helium have only been available since the OPAL and OP projects were
completed in 1992. Any previous opacity determinations for such elements
were typically a factor three too low and so did not lead to mode excitation in
B stars. The new opacity projects led to a natural explanation of the modes in
SPB stars and in β Cep stars in terms of the heat mechanism at the position
where the opacity bump occurs. We refer again to Pamyatnykh (1999) for a
general overview of the properties of models with excited modes and their
dependence on metallicity and core overshoot.

19 http://www-phys.llnl.gov/Research/OPAL/opal.html.
20 http://vizier.u-strasbg.fr/topbase/op.html.
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Fig. 2.19. The theoretical instability domains predicted by the heat mechanism
for B stars of metal abundance Z = 0.02 (thick lines, upper panel). The lower panel
shows the oscillation periods as a function of effective temperature, pointing out
the clear separation between the low order p modes in the β Cep stars and the high
order g modes in the SPB stars. From Pamyatnykh (1999).

The agreement between theoretical predictions and observations is excel-
lent in a statistical sense. The known SPB stars indeed lie entirely within
and populate fully the computed theoretical instability strip. As parallaxes
for isolated field B stars are very uncertain, one is not able to provide accu-
rate luminosities, which is the reason why in many seismic studies the model
computations are represented in a (log Teff , log g) diagram as in Fig. 2.19.

During the last half century, there has been significant confusion and de-
bate in the literature about the existence of a specific group of variables with
spectral types between B7 V–III and A2 V–II and periods between 2 and 8 h,
baptized Maia stars by Struve (1955). At the time when Struve (1955) made
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his suggestion, SPB stars were still unknown. These hypothetical stars would
be partly situated within the SPB instability strip, extending towards the
δ Sct strip. There are no oscillations predicted by the classical heat mecha-
nism in this part of the HR Diagram (Pamyatnykh 1999) and indeed, despite
large search campaigns (see, e.g., Scholz et al. 1998 and references therein)
unambiguous detection of short period variability was achieved for only four
out of fifteen stars. Each of these four has high rotational velocity (Aerts &
Kolenberg 2005). In such a situation, the effects of the Coriolis force introduce
significant frequency shifts for the low frequency g modes (Townsend 2003a,b)
so that shorter periods must indeed be observed in an inertial frame. Such
shifts may offer the correct explanation for the relatively high observed fre-
quencies in these four stars. Another suggestion was made independently and
almost simultaneously by Savonije (2005) and Townsend (2005b), who found
heat driven retrograde mixed mode instability in B stars for spectral types B4
to A0 rotating faster than half of the critical rate. Both these interpretations
lead to the conclusion that the Maia stars are rapidly rotating SPB stars.

2.3.7 β Cep Stars

The β Cep stars have been known as a group of young Population I near-main-
sequence pulsating stars for more than a century. They have masses between
8 and about 18 M� and oscillate in low order p and g modes with periods
between about 2 and 8 h. More than 100 members of this group are known
and the class contains dwarfs up to giants. An overview of the properties
of the class was provided by Stankov & Handler (2005). Most of the β Cep
stars show multiperiodic light and line profile variations. Excluding the four
stars BW Vul, ξ1 CMa, V1449 Aql, and σ Sco, which have exceptionally large
velocity and/or light amplitudes, the phase diagrams for individual frequen-
cies are nearly sinusoidal. The light variations clearly have larger amplitudes
at blue than at red wavelengths and have a phase difference of about 0.25
with the radial velocity variations. Such a phase lag is expected for adiabatic
oscillations (Dupret et al. 2003). As for the SPB stars, the majority of the
β Cep stars rotate at only a small fraction of their critical velocity, two of the
exceptions being 19 Mon (Balona et al. 2002) and SY Equ (Aerts et al. 2006)
whose rotational velocities approach half of their critical value.

Until 2002, these stars were mainly observed during single site photometric
campaigns lasting typically one or two weeks. Some stars were monitored
during different seasons, most often, unfortunately, with large gaps of several
years in the data. An example is the star HD 129929 that was monitored
during 21 years in 3-week campaigns from La Silla with one and the same
high precision photometer attached to the 0.70-m Swiss telescope (Aerts et
al. 2003). This led to the detection of six independent oscillation modes, which
was at that time the largest number of excited frequencies known in such type
of star. The star 12 Lac was also known to have six oscillation modes from
much earlier photometry (Jerzykiewicz 1978), and these modes turned out
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Fig. 2.20. Strömgren photometry of the β Cep star 12 Lac from a multisite cam-
paign. From Handler et al. (2006).

to have very stable amplitudes during many years as they were recovered in
high resolution spectroscopy more than a decade later (Mathias et al. 1994a).
Starting from the early 1990s, the β Cep stars were indeed also extensively
studied from high resolution spectroscopy (Aerts & De Cat 2003 and references
therein).

A new era in β Cep star research was initiated after the international
pulsation conference held at Leuven university (Aerts et al. 2002a), where
Mike Jerzykiewicz suggested the consideration of this type of star for multisite
observing campaigns similar to those performed for the δ Sct stars. Handler
& Aerts (2004) set up the largest such campaign ever performed for the star
ν Eri, including not only multi-colour photometry but also simultaneous high
resolution spectroscopy during five months. This very rich dataset implied a
significant step forward in the detection and interpretation of oscillation modes
of a β Cep star. In particular, it led to the conclusion that not only low-order g
modes are present in those stars, but also high-order g modes. We report on the
seismic modelling of ν Eri in Chapter 7. A subsequent campaign was carried
out by Handler et al. (2006) on the star 12 Lac. Several additional modes,
besides the six already detected by Jerzykiewicz (1978) and Mathias et al.
(1994a), were discovered, among which a high-order g mode, just as for ν Eri. A
part of the light curve of the campaign is shown in Fig. 2.20 and the frequency
spectrum in Fig. 2.21. While aliasing still occurs, this figure illustrates the gain
of multisite versus single site data. A simultaneous spectroscopic multisite
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Fig. 2.21. Frequency spectrum of the data for 12 Lac, some of which is shown in
Fig. 2.20. From Handler et al. (2006).

campaign led to the confirmation of ten of the independent frequencies already
detected in the photometry. In particular, the SPB-like g-mode frequency of
0.3428d−1 was detected in the spectroscopy as well (Desmet et al. 2009).

The nonradial oscillations in the β Cep stars are caused by the heat mech-
anism acting through opacity features associated with elements of the iron
group (Dziembowski & Pamiatnykh 1993), as discussed already for the SPB
stars. The short periods of several hours are generally well explained in terms
of heat driven low order p modes, but we stress that low order g modes are
also simultaneously excited and observed in several class members. There is a
small overlap in the theoretical instability strips of the SPB stars and β Cep
stars but no hybrid pulsators have been found yet in that area (see Fig. 2.19).
On the other hand, the presence of both high-order g modes and low-order p
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modes is established for a few hotter β Cep stars, among which is ν Eri (see
Chapter 7). For this best studied star, the most recent seismic models still
do not predict all the observed modes to be excited (Dziembowski & Pamy-
atnykh 2008). The extensive multisite campaign of ν Eri thus made it clear
that not all the details of the mode excitation mechanism are well understood.
Bourge et al. (2006) have shown that atomic diffusive processes, which have
been ignored so far in such hot stars, may in fact enhance significantly the
amount of iron in the driving region. Their computations followed the earlier
suggestions by Pamyatnykh et al. (2004) and by Ausseloos et al. (2004) that
an iron abundance higher by a factor four in the driving zone, or in the star
as a whole, is necessary to solve ν Eri’s excitation problem.

As can be seen in Fig. 2.19, the agreement between observed β Cep stars
and the theoretical instability strip is very satisfactory for the class as a whole,
although the blue part of the strip is not well populated. Numerous new
candidate members were found from large scale surveys, in the LMC and SMC
as well as in our own Galaxy (Pigulski 2005; Ko�laczkowski et al. 2005, 2006;
Narwid et al. 2006; Sarro et al. 2009). Assuming that all these faint variable
stars are indeed β Cep this more than doubles the number of class members
to over 200. The occurrence of so many β Cep stars in environments with very
low metallicity demanded a new look at the mode excitation, which relies
heavily on the iron opacity. Miglio et al. (2007) have shown these results at
the metallicity of the LMC to be fully compatible with excitation predictions
based on the OP opacities and the solar abundances by Asplund et al. (2005).

We describe the current status of β Cep star seismology by means of some
case studies in Chapter 7.

2.3.8 Pulsating Be Stars

Be stars are Population I B stars close to the main sequence that show, or have
shown in the past, Balmer line emission in their photospheric spectrum. This
excess is attributed to the presence of a circumstellar equatorial disc. See the
review on Be stars by Porter & Rivinius (2003) for general information on this
rather inhomogeneous class of stars. Several different physical mechanisms are
thought to be responsible for the disc. Numerous Be stars are members of close
binary systems of very different kinds. Roche lobe overflow or mass transfer in
general may cause the disc in such cases. For single Be stars, rotation close to
the critical velocity (Townsend et al. 2004), in addition to either multimode
beating of oscillation modes (Rivinius et al. 2003) or mass loss along magnetic
field lines (Townsend & Owocki 2005) could explain the disc. However, while
magnetic fields (Neiner 2007) and nonradial oscillations (Rivinius et al. 2003)
have been detected in some Be stars, it is not at all clear if these mechanisms
suffice to explain a disc for the whole class of single Be stars. Also, it is at
present unclear whether the occurrence of a disc around single Be stars can be
attributed to a particular evolutionary state or not. The nature and evolution
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Fig. 2.22. Line profile variations in Be stars, with increasing v sin i for FW CMa
(top left, v sin i = 40kms−1), ωCMa (bottom left, v sin i = 100 kms−1), μCen (top
middle, v sin i = 155 kms−1), DX Eri (bottom middle, v sin i = 180 km s−1), αEri
(top right, v sin i = 225 kms−1), ηCen (bottom right, v sin i = 350 kms−1). Data
taken from Rivinius et al. (2003).

of discs around hot stars was summarized in the proceedings by Ignace &
Gayley (2005) and by Okazaki et al. (2007).

Single Be stars show variability on very different time scales and with a
broad range of amplitudes. Balona (1995a) studied a subclass of the Be stars
which show one dominant period between 0.5 and 2 d in their photometric
variability, with amplitudes of a few tens of mmag which he termed the λEri
variables. He provided extensive evidence of a clear correlation between the
photometric period and the rotational period of the λEri stars and interpreted
that correlation in terms of rotational modulation. When observed spectro-
scopically, several of the λEri stars turn out to have complex line profile
variations with travelling sub-features similar to those observed in the rapidly
rotating β Cep stars, except for the much longer periods (days versus hours).
This suggests oscillations as origin of this complex spectroscopic variability.

The first claim of nonradial oscillations in a Be star dates back to 1982,
when Baade (1982a,b) discovered complex line profile variations for the star
ωCMa, a star listed among the λEri variables in Balona’s (1995a) list. The
picture became even more complicated when Balona (1995b) introduced the
class of ζ Oph variables. These are late-O type stars with clear complex mul-
tiperiodic line profile variations that he attributed to high degree nonradial
oscillations. They are named after the prototypical O9.5V star ζ Oph, whose
rotation is very close to critical and whose photometric variability was firmly
established by the MOST space mission. Walker et al. (2005a) disentangled
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Fig. 2.23. Space photometric light curve of the Be star HD163868 observed by
the MOST satellite. The lower panel shows a higher time resolution look at a 5-d
portion of the light curve. From Walker et al. (2005b).

a dozen significant oscillation frequencies in the 24-d photometric light curve
assembled from space. These frequencies range from 1 to 10 d−1 and clearly
indicate the star’s relationship to the β Cep stars.

An extensive summary of the detection of short period line profile vari-
ations due to oscillations in hot Be stars was provided by Rivinius et al.
(2003). They monitored 27 early-type Be stars spectroscopically during six
years and found 25 of them to be line profile variables at some level. Some
of their data are shown in grey scale plots in Fig. 2.22. For several of their
targets the variability was interpreted in terms of nonradial oscillations with
l = m = +2. Almost all stars in the sample also show traces of outburst-like
variability rather than a steady star-to-disc mass transfer. The authors inter-
preted the disc formation in terms of multimode beating in combination with
fast rotation.

To make the picture complete, multiperiodic oscillations were reported in
the rapidly rotating B5Ve star HD 163868 from a 37-d MOST light curve (see
Figs 2.23 and 2.24). Walker et al. (2005b) derived a rich frequency spectrum,
with more than 60 significant peaks, resembling that of an SPB star and
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Fig. 2.24. Model frequency spectrum resembling the observed one for the Be star
HD163868. From Walker et al. (2005b).

termed the star an SPBe star in view of its Be nature. They interpreted the
oscillation periods between 7 and 14 h as high order prograde sectoral g modes
in the traditional approximation (which will be explained in Chapter 3) and
those of several days as Rossby modes (e.g., Townsend 2005b for a description
of such modes). Finally, nonradial oscillations at low amplitude were also
detected in the bright B8Ve star β CMi, again from the MOST mission (Saio
et al. 2007).

We come to the conclusion that the oscillations detected in Be stars show
a multitude of different behaviour, which is in full accordance with those
of β Cep stars and SPB stars (which is why they have not been indicated
separately on Fig. 1.12). It seems that pulsating Be stars are complicated
analogues of β Cep stars and SPB stars rotating typically above half of the
critical velocity, and with some rotating very close to critical velocity. The
results from MOST and from time-resolved spectroscopy leave no doubt that
many Be stars, across the entire spectral type B range, are nonradial pulsators.
Be stars are among the prime targets of CoRoT and these space data will
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Fig. 2.25. Left: location of the instability strip of the pre-main-sequence stars.
Right: candidate pre-main-sequence pulsators known as of 1998. Triangles: UXOri
stars from Natta et al. (1997), squares: Herbig Ae/Be stars from Berrilli et al. (1992)
and van den Anker et al. (1998), the error box is for HD144668 (HR5999: Kurtz &
Marang 1995). From Marconi & Palla (1998).

undoubtedly reveal details of Be star oscillations as well as shed new light on
the role of oscillations in the disc formation.

2.4 Oscillations in Pre-Main-Sequence Stars

As newly born protostars contract towards the main sequence, either radia-
tively as the Herbig Ae/Be stars or convectively as the T Tauri stars, the higher
mass stars enter or cross the classical instability strip. Such pre-main-sequence
stars tend to be highly variable, both in photometry and spectroscopy, on time
scales of minutes to years. Part of this variability is certainly due to activ-
ity and interaction with the circumstellar environment. On the other hand,
part of the shorter period variability may be due to oscillations. Since the
interior structure of pre-main-sequence stars is different from that of evolved
stars in the instability strip, their oscillation spectra may allow us to distin-
guish between the two evolutionary stages for stars with the same effective
temperature and luminosity.

Breger (1972) found the first two candidate pre-main-sequence δ Sct pul-
sators, while monitoring the young open cluster NGC 2264 photometrically.
He also found 25% of the member stars of this cluster to be short period
variables and unravelled a clear correlation between the variability and shell
characteristics. Some time later, Baade & Stahl (1989a,b) detected nonradial
oscillations in two pre-main-sequence stars based on high resolution spec-
troscopy. They found line profile variability, but were unable to pinpoint clear
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Fig. 2.26. Part of the multisite campaign data obtained in 2003 by Ripepi et al.
(2006b) for the pre-main-sequence star IPPer.ΔV stands for VIPPer−Vcomp. Crosses
and dots indicate data from two different sites.

periodicities from them. Kurtz & Marang (1995) made the next step and
disentangled the low amplitude (6 mmag) δ Sct pulsation with the first clear
oscillation period of about 5 h from the long term, large amplitude (0.35 mag)
variations caused by variable dust obscuration in the disc of the Herbig Ae
star HD 144668 (HR 5999).

Marconi & Palla (1998) investigated the pulsational properties of pre-
main-sequence stars with masses in the range 1 to 4 M� by means of linear
and nonlinear calculations and defined the instability strip for these stars in
the HR Diagram (see Fig. 2.25). They found periods ranging from 1.5 to 7.5 h
for the fundamental mode. Delta Sct type oscillations have been suggested in
about thirty pre-main-sequence stars so far. The reported periods are very un-
certain, and range from less than one hour to several hours, in agreement with
theoretical predictions. For reviews on this topic see Catala (2003), Marconi
& Palla (2004), Zwintz et al. (2004) and Ripepi et al. (2006a).

The most extensive ground-based dataset and interpretation of a pre-main-
sequence δ Sct pulsator was achieved by Ripepi et al. (2006b, see Figs 2.26 and
2.27). They monitored the star IP Per photometrically in a multisite campaign
involving ten sites. The total time span of their data is about 500 d. IP Per is
a low metallicity UX Ori type star, which is a class of precursors of the Herbig
Ae/Be stars surrounded by self-shadowed discs (see Herbst & Shevchenko 1999
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Fig. 2.27. Frequency spectra for the V data of IPPer of which some were shown
in Fig. 2.26. The full, dashed and dotted lines indicate the 99.9%, 99% and 90%
significance levels, respectively. From Ripepi et al. (2006b).

for a photometric catalogue and Dullemond et al. 2003 for a physical model).
It has long term variations with an amplitude of about 0.3 mag and a duration
between 10 and 50 d onto which the oscillatory variability is superposed. The
authors found nine frequencies for the star, ranging from 23 to 52 d−1, and
with an amplitude range from 1.1 to 3.3 mmag (see Fig. 2.27). A fit of theoret-
ical frequencies to the observed ones indicates that at most five of the modes
can be radial; thus nonradial modes occur as well. The frequency matching
of the five radial modes led to an accurate mass, luminosity and temperature
estimate of the star, in agreement with previous spectroscopic derivations.
Unfortunately, the frequencies alone did not allow a discrimination between a
pre- and post-main sequence star.
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Fig. 2.28. Light curve of an RRab star observed by OGLE folded according to the
dominant oscillation period. Data taken from Soszyński et al. (2003).

2.5 Pulsations in Evolved Stars with M ≤ 9 M�

By evolved low mass stars we mean objects with an initial mass below 9 M�,
which have evolved off the main sequence. These stars may, at a certain phase
in their life, start a burning cycle in degenerate matter in their core. This
is surely the case for stars with a mass below 2.3 M�. They will undergo a
helium flash at the tip of the red giant branch. The more massive among the
low mass stars avoid ignition in a degenerate core. In any case, all of these
stars are candidate oscillators during their post-main sequence evolution. As
discussed in Section 2.3.1, solar-like oscillations are found in subgiant stars in
the hydrogen shell burning phase which for stars of mass below around 1.7 M�
is relatively slow. However, only more massive stars cross the instability strips
for heat driven oscillations during this phase, and for such stars the phase is
fast and the probability of catching a star before central helium burning is
small. In the present section we therefore consider only the phases after central
helium burning has started.

2.5.1 RRLyrae Stars

Together with the Cepheids (see below), RR Lyrae stars are considered to
be the classical radial pulsators. Most of them are monoperiodic stars with
an oscillation period near half a day. While their monoperiodicity implies
that they are not suitable for seismic studies, they are of great galactic and
cosmological importance and we highlight some of their properties for this
reason. See the monograph by Smith (1995) for more detailed information
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Fig. 2.29. Light curve of an RRc star observed by OGLE folded according to the
dominant oscillation period. Data taken from Soszyński et al. (2003).

on their observational characteristics and to Catelan (2007) for an extensive
overview of horizontal branch stars in general.

The first RR Lyrae stars were discovered in globular clusters by Bailey in
1895. Their spherical spatial distribution and kinematic properties (high ve-
locities in all directions) imply that these stars must be extreme Population II
stars. As they are low mass stars, their observed abundances are, to a good
approximation, those at their birth, i.e., those of the interstellar cloud from
which they were born. The abundances of elements heavier than hydrogen
and helium, Z, ranges from 0.0001 to 0.01. RR Lyrae stars are also used to
estimate the distance and the age of the clusters they belong to. For these
reasons, they are considered to be standard candles of galactic evolution.

All stars with birth masses between � 0.5 and � 2.2 M� start helium burn-
ing in a degenerate helium core and undergo a helium flash, after which they
settle on the horizontal branch. The stars with the thickest hydrogen envelope
are at the red end of the branch and those with the thinnest at the blue end.
The higher the envelope mass, the more the hydrogen shell contributes to
the energy production and the larger the extent of the convective zone in the
envelope. Blue horizontal branch stars have thin envelopes, weak hydrogen
burning shells and develop a radiative outer zone (see Prialnik 2000). As a
consequence, the hydrogen envelope needs to have a particular mass to re-
sult in oscillations driven by the heat mechanism, which requires a radiative
zone. It turns out that horizontal branch stars with masses between � 0.60
and 0.80 M� have the appropriate regions of hydrogen and helium ionization
zones to become RR Lyrae stars (e.g., de Santis & Cassisi 1999), the precise
mass limits depending on the metallicity and on the mass lost on the gi-
ant branch. RR Lyrae stars have either settled immediately on the horizontal
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Fig. 2.30. Light curve of an RRd star observed by MACHO folded according to
the dominant oscillation period. Data taken from Kovács (2000).

branch within the instability strip after the helium flash, or they crossed the
strip while evolving on the horizontal branch. The excitation mechanism of
the RR Lyrae stars is well-known as the heat mechanism acting in the partial
ionization zone of He ii – He iii (see, e.g., Stellingwerf 1984 for an instabil-
ity strip). Transient phenomena, such as mode switching, are also predicted.
Bono et al. (1995) made a thorough analysis of the different details of the
mode excitation and mode transition within the instability strip.

RR Lyrae stars have been observed for more than a century, mainly in
photometry. They are subdivided into three Bailey classes: RRa, RRb and
RRc stars. This classification is based upon the amplitude and the skewness
of the light curve and on the oscillation period. RRab stars are now consid-
ered to be one class, pulsating in the radial fundamental mode and having
asymmetric light curves. RRc stars, on the other hand, oscillate in the first
overtone and have sinusoidal variations. Two prototypical OGLE light curves,
phased according to the dominant period, are shown in Figs 2.28 and 2.29.

In the mid 1980s, a fourth class of RR Lyrae stars was introduced: the RRd
stars. The amplitudes of these group members change on relatively short time
scales. Such stars have periods between 0.3 and 0.5 d and their light curves
have more scatter than for the RRabc stars (see Figs 2.30 and 2.31 for a
prototypical case observed within the MACHO project). It turns out that the
RRd stars oscillate in both the fundamental and first overtone, i.e., they are
double mode oscillators with a period ratio near 0.74 (Kovács 2001). RRd
stars are found in both the Galactic plane and in globular clusters. They
have the advantage that the excitation of two oscillation modes allows us
to characterize the stellar parameters, such as the mass, with much higher
precision that for RRabc stars (e.g., Popielski et al. 2000; Szabó et al. 2004).
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Fig. 2.31. Residual MACHO light curve of the RRd star shown in Fig. 2.30 af-
ter prewhitening with the dominant oscillation period and folded according to the
second period. Data taken from Kovács (2000).

Fig. 2.32. Light curve of a Blazhko star observed by MACHO folded according to
the dominant oscillation period. Data taken from Kurtz et al. (2000).

Another old classification for RR Lyrae stars concerns their host clusters.
Oosterhoff (1944) pointed out that some clusters have mainly RRab stars,
while others have an equal contribution in RRab and RRc stars. The former
are called Oosterhoff I type clusters and the latter Oosterhoff II. The average
oscillation period of the RR Lyrae stars in Oosterhoff I clusters is 0.1 d shorter
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than for those in the Oosterhoff II clusters. This phenomenon is called the
Oosterhoff period dichotomy (e.g., Catelan 2007 for a discussion).

The absolute visual magnitudes of RR Lyrae stars have values roughly
between 0 and 1. Although less bright than Cepheids (see further on) their
large amplitude and their brightness makes them easy to recognize and hence
suitable to be identified in globular clusters. Just as with Cepheids, they are
used as distance indicators to these clusters. While more accurate and larger
distances can be derived from the more luminous Cepheids, globular clusters
do not have a population of the latter stars and so they cannot be considered
for globular cluster distance determination. The RR Lyrae stars are therefore
an important and good alternative.

Finally, we turn to the phenomenon called the Blazhko effect. For 25%
of the RR Lyrae stars one observes amplitude modulation in the light curve
(see Fig. 2.32 for a prototypical example from the MACHO database) on a
time scale that is typically 100 times longer than the oscillation period. This
modulation is observed in all three classes RRabc. It was observed for the first
time by Blazhko (1907) for the star EW Dra and is named after its discoverer.
RR Lyrae itself is a Blazhko star (e.g., Kolenberg et al. 2006), with a modula-
tion period, also termed Blazhko period, of 40.8 d. Over the Blazhko cycle the
maximum brightness changes considerably, while there is hardly any change
in minimum brightness (Fig. 2.32). The Blazhko effect has also been detected
in line profile variations of RR Lyrae itself (Chadid et al. 1999). Smolec (2005)
pointed out that the Blazhko effect does not correlate with metallicity.

Jurcsik et al. (2005) proposed a correlation between the oscillation period
and the modulation period, which made them conclude that the modulation
period must be equal to the rotation period. However, for some of the Blazhko
stars a third, much longer modulation period is also well established, e.g.,
seven years for RW Dra and four years for RR Lyrae. The start of a new long
modulation cycle is accompanied with a phase jump of several days in the
light curve. It is difficult to understand this in terms of rotation of the star.

For many years now there have been two competing theoretical explana-
tions for the Blazhko effect:

1. It is caused by the excitation of a nonradial oscillation mode of low degree,
besides the main radial mode, through nonlinear resonant mode coupling.
In this model the Blazhko period is interpreted as the beat period between
the radial fundamental and a nonradial mode (e.g., Van Hoolst 1995; Van
Hoolst et al. 1998; Dziembowski & Cassisi 1999).

2. It is caused by a magnetic field that influences the oscillations (similar to
the oblique pulsator model for the roAp stars). In this case the Blazhko
period must be interpreted as the rotation period of the star (e.g., Takata
& Shibahashi 1995).

There is no consensus about the correct interpretation of the Blazhko ef-
fect, particularly not in view of the variety of Blazhko light curve characteris-
tics discovered from the MACHO database (Kurtz et al. 2000). The extensive
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efforts to search for a magnetic field in the best studied and brightest Blazhko
star, RR Lyrae itself, and the failure to detect one with modern instruments
to confirm previous claims (Chadid et al. 2004), have not resolved the issue.
Moskalik & Poretti (2003) rejected the oblique magnetic pulsator model on
the basis of the properties of Blazhko stars discovered from the OGLE project.

2.5.2 Cepheids

After the start of central helium burning in their non-degenerate cores, stars
with initial masses above � 2.3 M� decrease in luminosity while they descend
the giant branch. Stars below 3 M� settle on the horizontal branch while
their more massive counterparts exhibit loops in the HR diagram. For the
stars with masses below 5 M� these loops are too limited to bring them into
the instability strip. For more massive stars, however, the loops do extend
far enough so that they become pulsationally unstable and are observed as
Cepheids .

The importance of Cepheids is not their asteroseismic potential, except
perhaps for the double- and triple-mode pulsators mentioned below, but
their fundamental power for distance determinations through the well-known
period-luminosity relation, discovered by Henrietta Leavitt from Harvard Uni-
versity(Leavitt & Pickering 1912)21 and first calibrated by Ejnar Hertzsprung
(1914). By measuring the oscillation period of a Cepheid and by using the
period-luminosity relation, one can derive the absolute magnitude, hence the
distance to the star. For this reason, Cepheids are also called distance indica-
tors.

In principle, the relation could be calibrated by means of an accurate in-
dependent distance determination to one Cepheid. In practice, however, one
tries to determine accurately the zero-point of the relation by inclusion of as
many stars as possible for which accurate distance determinations are avail-
able. Given the importance of cosmological distance scales, the derivation of
the zero points, including appropriate statistical error estimates, remains a
matter of intense debate in the literature (see, e.g., these conference proceed-
ings: Kurtz & Pollard 2004; Walker & Bono 2006 for compilations).

2.5.2.1 Population I Cepheids

The classical Cepheids, named after the prototype δCephei, are probably the
best known and most homogeneous group of pulsating stars. The variability of
δCephei was discovered in 1784 by John Goodricke, while Henrietta Leavitt
made extensive investigations of Cepheids early in the 20th century.

21 Although the paper is signed by Edward Pickering, its first line reads, “The
following statement regarding the periods of the 25 variable stars in the Small
Magellanic Cloud has been prepared by Miss Leavitt.” History and Website ref-
erencing services are fair and attribute the circular to Leavitt & Pickering.
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Fig. 2.33. Hipparcos light curve of the classical Cepheid HD112044 folded accord-
ing to the oscillation period. Data taken from Perryman (1997, ESA).

A Hipparcos light curve of a classical Cepheid is shown in Fig. 2.33. In
general, the periods of the Cepheids range from 1 to 50 d and their spectral
types are between F5 and G5. They are all giants or supergiants. In our
Galaxy, the Cepheids are situated in the Galactic plane and they take part
in the rotation of the Galaxy. Thus they are Population I objects and are
therefore also called type I Cepheids. Below, we provide only a brief summary
of the properties of Cepheids, referring to the extensive literature on such
stars for more details.

The light curves of the Cepheids are skew and extremely periodic (see
Fig. 2.33). The amplitudes are on average about one magnitude at visual wave-
lengths. Such brightness variations are accompanied by changes in the spectral
type, colour, temperature and luminosity. For the prototype δCep itself, for
example, the spectral type is F5 at maximum brightness and G2 at minimum
brightness, while the corresponding change in temperature amounts to some
1 500 K. In general for Cepheids, the luminosity classes change roughly from
III to Ib during the pulsation cycle for stars with periods below 25 d and
between III and Ia for Cepheids with longer periods.

Bersier et al. (1994) produced an extensive radial velocity catalogue of
bright Cepheids. In Fig. 2.34 we notice a so-called stillstand in the radial
velocity curve they obtained for the star X Cyg. Such a phenomenon occurs
whenever a strong shock wave propagates in the atmosphere of the star in
such a way that the downfall of matter after maximum radius is stopped by
rising gas due to the next shock. This shock is also markedly present at the
same phase in the cycle in the Hipparcos light curve, which was taken about
ten years later (Fig. 2.34).
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Fig. 2.34. The radial velocity and Hipparcos light curve of X Cyg folded according
to the radial fundamental mode period of 16.38538 d. The stillstand is indicated by
an arrow. Data taken from Bersier et al. (1994) and from Perryman (1997, ESA).

In general, maximum brightness occurs near minimal velocity. However,
detailed comparison of the phased light and radial velocity curves suggests the
occurrence of a small phase lag between the photometric and spectroscopic
signatures of the oscillation. This lag typically amounts to a tenth of the
period and can be spotted for X Cyg in Fig. 2.34. There also occurs a clear
relation between the colour, or B − V , of the Cepheids and their oscillation
period. This is called the period-colour relation. At a given luminosity, the
stars shift to later spectral types for longer periods.

For several Cepheids a bump occurs in the light curve. Such a phenomenon
occurs for Cepheids with periods between 4 and 20 d. It is due to a coincident
occurrence of a 2:1 ratio between the period of the fundamental and the second
overtone. The bump shifts as a function of oscillation period. This is called
the Hertzsprung progression.

As is the case for the RR Lyrae stars, there are Cepheids in which both
the fundamental mode and first overtone, or the first and second overtone,
are excited. These are called beat Cepheids or also double-mode Cepheids.

Poretti & Pardo (1997) have made a thorough study of galactic double-
mode Cepheids. The MACHO and OGLE projects revolutionized our knowl-
edge of the statistical properties of Cepheids in general. In particular, numer-
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Fig. 2.35. Petersen diagram, plotting the ratio between the first overtone and
fundamental radial period against the logarithm of the latter. The observed values
are shown by crosses. The curves show the variation along the instability strip; the
solid curve was based on models computed with the Cox & Tabor (1976) opacities,
whereas the dashed curve used OPAL tables from Rogers & Iglesias (1992). From
Christensen-Dalsgaard (1993b).

ous double-mode Cepheids were found in the LMC (Alcock et al. 1999), and
later even more in the SMC (Udalski et al. 1999). These include both first
overtone/second overtone and fundamental/first overtone Cepheids. Only a
few first overtone/second overtone Cepheids are known in the Galaxy (e.g.,
Beltrame & Poretti 2002).

The double-mode Cepheids may be said to constitute the first application
of asteroseismology to determine stellar properties. Petersen (1973) showed
that the two periods could be used to infer the mass and radius of the star.
The results were in striking disagreement with the masses obtained from the
position of the stars in the HR Diagram, on the basis of evolutionary cal-
culations (for reviews of this and other “Cepheid mass problems”, see for
example A. N. Cox 1980; Simon 1987), suggesting potential problems with
the understanding of stellar evolution and pulsations and leading to extensive
efforts to remove the discrepancy. It is common to illustrate the problem in
a Petersen diagram, where the ratio Π1/Π0 is plotted against logΠ0, where
Π1 is the period of the first radial overtone mode and Π0 is the period of
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the fundamental mode. The observed location of a star in such a diagram is
given with great precision. An example is illustrated in Fig. 2.35; the solid
curve shows theoretical results for models along the instability strip, based
on the theoretical relation between mass and luminosity and using pre-1980
opacities, compared with observations of double mode HADS and Cepheids.
The discrepancy is obvious. It was suggested by Simon (1982), and demon-
strated in greater detail by Andreasen & Petersen (1988), that the discrepancy
could be eliminated through a substantial increase of the opacity in the range
5.2 < logT < 5.9. Remarkably, such an increase was found in the OPAL cal-
culations (e.g., Rogers & Iglesias 1992) through increased contributions from
bound-bound transitions in iron group elements; it was the same effect that
led to excitation of modes in, e.g., SPB and β Cep stars (cf. Section 2.3.6).
The effect on the period ratios is shown by the dashed curve in Fig. 2.35;
obviously, with the revised opacities there is excellent agreement between the
computed and observed period ratios (see also Moskalik et al. 1992; Kanbur
& Simon 1994; Christensen-Dalsgaard & Petersen 1995).

Three stars in the Galaxy, AC And, V823 Cas and V829 Aql, are known to
be triple-mode pulsators, pulsating in the fundamental, and first and second
overtone modes (Jurcsik et al. 2006). The longest known of these is AC And
which Fitch & Szeidl (1976) and Kovács & Buchler (1994) thought to be
possibly similar to the δ Sct stars. Fernie (1994) argued that this star lies in-
termediate between the δ Sct stars and Cepheids. Thanks to the OGLE survey,
more triple-mode Cepheids have been found. Moskalik & Dziembowski (2005)
interpreted their oscillation periods as the first three radial overtones. This in-
terpretation imposed stringent constraints on their metallicity Z, which must
be in the range 0.004 to 0.007, and on their evolutionary status, indicating
that the stars must be crossing the instability strip for the first time. The
models also imposed an upper limit of 0.33 times the pressure scale height to
the extent of overshooting from the convective core during the main sequence
phase. Meanwhile the galactic triple-mode Cepheid V823 Cas, originally dis-
covered by Antipin (1997), was subjected to a thorough photometric study.
The lack of agreement between the observed periods and period ratios and
those of evolutionary models led Jurcsik et al. (2006) to propose that this star
is in a transient state during which its oscillations are probably affected by
resonances.

Finally, we mention the existence of short period Cepheids with periods
shorter than 7 d and sinusoidal, low amplitude light curves. They are called
s-Cepheids or overtone Cepheids. They indeed pulsate in the first overtone,
just as the RRc stars do. Their light curves and radial velocity curves often
show a discontinuity due to a resonance between twice the first overtone and
the fourth overtone radial mode frequencies. We refer to Kienzle et al. (1999)
for a homogeneous observational study of a sample of 24 overtone Cepheids.
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Fig. 2.36. Hipparcos light curve of the Population II Cepheid CO Pup folded
according to the oscillation period. Data taken from Perryman (1997, ESA).

2.5.2.2 Population II Cepheids

After central helium burning, stars of Population II with masses higher than
0.5 M� evolve from the horizontal branch towards the AGB. During their
evolution away from the horizontal branch, or during the numerous ther-
mal pulses on the AGB, the stars may cross the instability strip and start
pulsating. Such stars are called type II Cepheids or Population II Cepheids.
Their periods range from 1 d for stars with luminosities similar to those of the
RR Lyrae stars to about one month at higher luminosities. An example of a
light curve is shown in Fig. 2.36.

The oscillations are caused by the heat mechanism active in both the
partial ionization zone of He ii – He iii and of H i – H ii. Theory predicts the
excitation of either the radial fundamental mode or the first overtone (see, e.g.,
Bono et al. 1995, 1997). Despite numerous efforts, the derivation of the precise
location of the instability strip of Population II Cepheids remains uncertain.
As for all monoperiodic radial oscillators, the stars are not well suited for
seismic studies.

The longer period Population II Cepheids were originally also discovered
by Henrietta Leavitt early in the 20th century; they have been called the
WVirginis stars for a long time. Today, the Type II Cepheids are divided in
groups by period, such that the stars with periods between 1 and 5 d (BL Her
class), 10 to 20 d (W Virginis class), and longer than 20 d (RV Tauri class,
see below) have differing evolutionary histories (Wallerstein 2002). A period
gap thus occurs for Population II Cepheids as there are no stars with periods
between 5 and 10 d. It is believed that stars with periods shorter than 5 d
are on their way to the AGB while stars with periods longer than 10 d move
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Fig. 2.37. The visual light curve of the RVTauri star ACHer as observed by ama-
teur astronomers of the American Association of Variable Star Observers (AAVSO).
Figure courtesy of Matthew Templeton.

bluewards in the HR Diagram due to thermal pulses or because they are on
their way to the white dwarf phase (Wallerstein 2002). For a review on Type II
Cepheids we refer to Pollard & Lloyd Evans (1999).

2.5.3 RVTauri Stars

The longest period W Virginis stars seem to merge continuously into yet an-
other group of pulsators in that part of the HR Diagram, namely the RVTauri
stars (see Pollard et al. 2000 for a review). These F to K supergiant stars could
also have been called the longest period W Virginis stars, but are usually con-
sidered as a separate class. For an enlightening discussion on the relation
between Population II Cepheids and RV Tauri stars, and their evolutionary
history, we refer to the review by Wallerstein (2002).

The oscillations of the RV Tauri stars are driven by the heat mechanism
which is active in both the partial ionization zone of He i – He ii and of H i
– H ii. A remarkable feature of RV Tauri stars is that their light curves have
alternating deep and less deep minima, in a very regular way. In fact, this
property is used to classify an object as an RV Tauri star. An example collected
by amateur astronomers is provided in Fig. 2.37 for the star AC Her. It is
evident from this figure that the light variability follows a double wave pattern.
The alternations of the minima and maxima do not always repeat strictly for



2.5 Pulsations in Evolved Stars with M ≤ 9 M� 87

Fig. 2.38. The measured radial velocity variations (open circles) and those
prewhitened so as to leave the dominant oscillation mode alone (crosses) of RVb
star SXCen, obtained from long term monitoring, folded according to the orbit. The
variability due to the oscillations with a period of 16.4 d has an amplitude which is
a large fraction of the orbital amplitude. Figure courtesy of Hans Van Winckel.

all RV Tauri stars as some of them have cycle-to-cycle changes. RV Tauri stars
are further divided in RVa and RVb subclasses, the RVa stars being those
without long term photometric trends and the RVb stars with such trends.

The radial velocity curves of RV Tauri stars have large amplitudes, as can
be seen from Fig. 2.38. The shapes of the radial velocity curves of AC Her and
R Sct were interpreted in terms of shock waves in their atmosphere by Gillet
et al. (1990). The spectroscopic study of 11 RV Tauri stars by Pollard et al.
(1997) indeed confirmed that the data are compatible with two shock waves
propagating in the atmosphere per pulsation period, because the metallic lines
show a double-peaked profile which is characteristic of an atmospheric shock
as already outlined by Schwarzschild et al. (1948).

Infrared observations of RV Tauri stars clearly reveal the existence of cir-
cumstellar matter (Lloyd Evans 1985; Oudmaijer et al. 1992). This implies
that the RV Tauri stars are low mass stars in the early post-AGB phase (Jura
1986). As this phase has a very short duration compared with the lifetime of
the star, it is difficult to catch the objects in this stage.

A definitive interpretation for the alternating minima is not yet available.
It may be that a resonant oscillation pattern is active (Fokin 1994). The
oscillation periods range from 30 to 150 d, which creates an observational
challenge to obtain a good inventory of the oscillatory behaviour of such stars.
A further complication is that variable circumstellar absorption occurs, and is,
in fact, sometimes sufficient to explain the photometric variability (Pollard et
al. 1996). This led Van Winckel et al. (1999) to propose that the photometric
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Fig. 2.39. The visual light curve of the Mira itself, oCet, as observed by amateur
astronomers of the AAVSO. Figure courtesy of Matthew Templeton.

subclasses RVa and RVb are simply due to a geometric projection effect, and
not to a physical difference.

Finally, it is found that a very high fraction of the RV Tauri stars turn out
to be long period binaries (Van Winckel 2003, see Fig. 2.38). It may be that
the long term variability possessed by the RVb stars is due to the binarity
(e.g., Maas et al. 2002).

2.5.4 Mira and Semi-Regular Variables

Population I variable stars with long periods (P > 80 d) situated at luminosi-
ties between about 103 L� and 7× 103 L�, and at low effective temperatures
between 2500 and 3500 K, are called Mira variables (Miras) when their am-
plitudes are larger than 2.5 in V (see Fig. 2.39). Semi-regular (SR) variables
with similar periods but smaller amplitudes are termed SRa (see Fig. 2.40).
This term is highly misleading, because most of these stars have light curves
as regular as Miras (compare Figs 2.39 and 2.40; see also Lebzelter & Hinkle
(2002) for a discussion), but an amplitude below 2.5 in V , which implies a
totally arbitrary division between the Miras and SRa stars. SRb stars, on the
other hand, have lower amplitudes than the SRa stars and semi-regularity in
their light curves, i.e., their periodicity is poorly defined. They often show
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Fig. 2.40. The visual light curve of the SRa star VBoo as observed by amateur
astronomers of the AAVSO. Figure courtesy of Matthew Templeton.

alternating intervals of periodic and slow irregular changes. The SRc stars are
periodic supergiants with an amplitude below 1.0 in V . A class called the SRd
stars has also been introduced. This term is again misleading, because, un-
like the RRd stars, which are double-mode RR Lyrae stars, the SRd variables
are not double-mode pulsators. Rather, they are weak-lined variable giants
and supergiants of spectral types FGK. They are considered to be metal-
poor shorter period analogues of the Miras (Lloyd Evans 1975). One of the
best monitored SRd variables is ρCas, whose visual light curve is provided in
Fig. 2.41. The Miras and SRa stars are AGB stars with large mass loss and
are about to start their way to the planetary nebula phase. Some of the SRb
stars are still on the RGB.

The Miras and SRs are situated to the red of the classical instability
strip, at lower temperatures. They have radial oscillations which, according
to modelling by Ostlie & Cox (1986), are heat driven in the partial ionization
zones of H i – H ii and He i – He ii. Although Ostlie & Cox obtained reasonable
results for the location of the instability region, they recognized that their use
of the “frozen convection” approximation for the pulsations was a serious
limitation. In fact, convection totally dominates the energy transport in the
regions responsible for the driving. Effects of convection were considered by,
e.g., Xiong et al. (1998), Munteanu et al. (2005) and Olivier & Wood (2005)
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Fig. 2.41. The visual light curve of the SRd star ρCas as observed by amateur
astronomers of the AAVSO. Figure courtesy of Matthew Templeton.

with somewhat conflicting results. It is evident that a full understanding of
the driving of these oscillations will require a more secure treatment of the
interaction between convection and pulsations.

The huge amplitudes seen in visible light in some Mira variables (e.g.,
Fig. 2.39) do not reflect similar variations in the total luminosity. As discussed
by Reid & Goldston (2002) the reduction of the visible magnitude at minimum
is dominated by the cooling of the atmosphere and the conversion of the
emitted radiation to the infrared by the effect of the resulting formation of
metal oxides.

The MACHO and OGLE databases generated a real breakthrough in the
study of long period variables. The MACHO data led to the discovery of five
distinct period-luminosity (PL) sequences for the low mass giant branch, as
first suggested by Cook et al. (1997) and worked out in detail by Wood (2000).
This gave unambiguous confirmation that the Miras are radial fundamental
pulsators while SR variables can pulsate in the 1st, 2nd, 3rd radial overtone,
as well as in the fundamental mode. Similar results were obtained from OGLE
data in a series of papers (Ita et al. 2004ab; Kiss & Bedding 2004; Soszyński
et al. 2004; Groenewegen 2004). Fraser et al. (2005) made a careful analysis
of the full 8-yr MACHO database, and disentangled six rather than five PL
sequences, which they termed 1, 2, 3, 4, D and E (see Fig. 2.42). The first four
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sequences are interpreted in terms of radial pulsations at rising radial order.
Cioni et al. (2001) already showed that the large amplitude SRa stars fall on
sequence 1 together with the Miras, while the low amplitude SRa stars fall
on sequences 2, 3, 4. The sequences 3 and 4 contain RGB stars as well as
oxygen-rich AGB stars that did not yet undergo the 3rd dredge-up, i.e., less
evolved stars than those in sequences 1 and 2.

The interpretation of the sequences D and E is less clear. It was suggested
by Wood et al. (1999) that the sequence E is comprised of ellipsoidal or eclips-
ing red giant binaries with an invisible companion and sequence D of stars
with a short primary period and a long secondary period. Later on, however,
Wood et al. (2004) considered different physical causes for the long secondary
periods of stars in sequence D and came to the conclusion that a low degree
g-mode oscillation combined with large scale spots of a single red star offers
the most likely interpretation. Soszyński et al. (2004), on the other hand, con-
cluded that sequence D contains a mixture of AGB, RGB, Mira, SRa, SRb
and small amplitude pulsators. In a follow-up study, Soszyński (2007) noted
that sequence D forms a continuation of the ellipsoidal and eclipsing red gi-
ants of sequence E and therefore argued in favour of the binary hypothesis for
both sequences D and E.

Given these disagreements, we must conclude that it is still unclear which
physical mechanism causes red pulsators to become a Mira or an SRa/b/c/d.
The latter are only rather arbitrarily defined categories introduced by ob-
servers to differentiate among the red variables from the morphology of their
light curves. One suggestion for the discrimination in the physics of these dif-
ferent types of stars is a small difference in chemical composition, and hence
in molecular grain types, resulting in a different mass loss. Another idea is
that the very tenuous envelopes of these stars imply shock waves of different
strength in their outer atmospheres and that these cause quasi-periodic cycles.

Christensen-Dalsgaard et al. (2001) suggested stochastically excited modes
as an explanation for the semi-regularity. Indeed, all these stars have huge
outer convection zones, so one would expect them to undergo solar-like oscil-
lations, which, of course, have much longer periods in supergiant stars than
in main sequence stars. It may therefore very well be that the differences be-
tween Miras and SRa or SRb stars simply reflect the fact that radial modes
are active in the former, while there is beating with solar-like oscillations in
the latter. This idea, tested on amateur astronomer data from the American
Association of Variable Star Observers (AAVSO), was confirmed by OGLE
data (Kiss & Bedding 2003). In fact, in a very detailed analysis of OGLE
data, Soszyński et al. (2007) identified clear substructure in the distribution
of stars in the period-luminosity diagram, in broad agreement with the pre-
dictions of stellar models. They concluded that the OGLE small-amplitude
red giants most likely display solar-like oscillations and noted their potential
value for the investigation of the properties of stochastic excitation. If accu-
rate frequencies of solar-like oscillations in AGB stars can be measured, then
these objects will suddenly become very interesting stars from a seismic point
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Fig. 2.42. Period-Luminosity diagram for MACHO data of long period variables
(grey dots). The observed LMC Mira relation for the fundamental mode by Feast
et al. (1989) is indicated as dashed line. The 3rd, 2nd and 1st overtone models of
Wood & Sebo (1996) are indicated as solid lines (from left to right). Note that stars
with periods near 1 yr were removed from the analysis, due to aliasing problems.
From Fraser et al. (2005).

of view. This will indeed allow us to probe in detail the very complex stellar
structure of stars that are about to end all the phases of nuclear burning they
went through during their complete evolution. It is a major observational
challenge to measure these frequencies for future seismic studies, given the
long periods of these stars, hence the long term observational commitment
needed. However, the stars have such large amplitudes that this is an area of
asteroseismology where amateur astronomers can play a significant role.

2.5.5 Solar-Like Oscillations in Red Giants

As already mentioned in Section 2.3.1, one expects solar-like oscillations to be
excited in all stars with an outer convection zone. While such oscillations are
hard to establish in red supergiants with large amplitude heat driven modes,
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such as the Miras or large amplitude semi-regular variables, they have become
obvious in red giant stars.

The first announcements of short period variability with periods of the
order of hours in a giant star were made by Smith et al. (1987) and Innis et
al. (1988) for the star αBoo (Arcturus, K1III), on the basis of radial veloc-
ity observations. Hatzes & Cochran (1994) found radial velocity variations,
with an amplitude near 50 m s−1, for the K2III star β Oph; no firm periodic-
ity could be derived, although the candidate periods ranged from 0.25 up to
0.8 d. Also, using the Hubble Space Telescope, Edmonds & Gilliland (1996)
found photometric variations in K giants in the globular cluster 47 Tuc which
appeared to be consistent with solar-like oscillations. Merline (1999) subse-
quently reported solar-like oscillations from further long term radial velocity
monitoring of Arcturus, with periods ranging from 1.7 to 8.3 d. This result
was later confirmed by space photometry taken with the WIRE satellite, from
which Retter et al. (2003) deduced an oscillation period of 2.3 d. The WIRE
mission had been used before to claim solar-like oscillations in the K0III giant
αUMa (Buzasi et al. 2000). The longest among the ten detected periods was
6.4 d and the amplitudes ranged from 100 to 400μmag. Although Guenther
et al. (2000) interpreted these frequencies to be due to low order p modes of
a 4 M� giant, Dziembowski et al. (2001a) pointed out that the model pre-
dictions for appropriate stellar masses of αUMa and with appropriate input
physics disagree with the claimed modes, as far as the predicted amplitudes,
frequencies and excitation are concerned.

The first firm establishment of solar-like oscillations in a giant was made
for the G7III star ξHya (Frandsen et al. 2002). Nine frequencies were found
in the radial velocity data of the star, spanning one full month. The strongest
mode has an amplitude of about 2 m s−1. An average large spacing of 6.8μHz
was found, in agreement with radial mode frequencies of adjacent radial or-
der. Modelling of the pulsations by Houdek & Gough (2002), using Gough’s
(1977a) treatment of the interaction between convection and pulsations,
yielded amplitudes in good agreement with the observed values. Stello et al.
(2006) used the data to estimate the mode lifetime of ξHya and found it to be
of the order of 2 d. Such a short lifetime, if confirmed for other giants, would
limit the power of asteroseismology in this part of the HR Diagram. Also,
interestingly, the lifetimes were far shorter than indicated by the calculations
by Houdek & Gough.

A subsequent clear detection of solar-like oscillations in a giant from space-
based photometry was achieved for the Hubble Space Telescope guide star
GSC 09137−03505. Kallinger et al. (2005) found three frequencies ranging
from 21 to 71μHz in the 19 million data points spanning 8 d. Additional
suggestions of such detections came from spectroscopy for the K4III star
HD 32887 and the K3II-III star HD 81797 (Setiawan et al. 2006).

Recent detections of solar-like oscillations in a giant were achieved from
a two-site radial velocity campaign spanning 2 full months. De Ridder et al.
(2006) discovered an excess power near 60μHz for the G9.5III star εOph
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Fig. 2.43. Top: radial velocity data of εOph from a two-site campaign (dots:
CORALIE data taken with the 1.2-m Swiss Euler telescope at La Silla, crosses:
ELODIE data taken with the 1.9-m telescope at Haute Provence observatory). Bot-
tom left: two enlarged parts of the dataset. Bottom right: power spectrum. From De
Ridder et al. (2006).

(see Fig. 2.43). They derived two possible values for the large spacing (4.8
or 6.7μHz). The star was subsequently monitored from space by the MOST
mission during 37 d. The MOST light curve is in full agreement with the
velocity data and, having no daily aliasing problems, pointed out that 4.8μHz
is the correct value for the spacing (Barban et al. 2007). Finally, oscillations
were also firmly established for the K0III star η Ser from the same two-site
campaign (Carrier, unpublished; see also Fig. 2.3).

Red giants could potentially show a complicated mixed mode frequency
structure containing much information on the interior physics of evolved stars,
although the short mode lifetimes obtained by Stello et al. (2006) may reduce
the predictive power of their observed frequency spectra. Moreover, theoret-
ical computations by Dziembowski (1977a), Dziembowski et al. (2001a), and
Gough & Houdek (2002) predict the nonradial modes to be damped far more
strongly than the radial modes, due to the high density contrast between the
core and the extended envelope (we refer to Chapter 7 for more details). This
may imply that only radial modes reach observable amplitudes. This is con-
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sistent with the observed frequency spacings detected so far in ground-based
radial velocity data. On the other hand, Hekker et al. (2006) investigated
the variability in the cross-correlation profiles (see Chapter 4 for a definition)
of four pulsating red giants and came to the conclusion that this variability
can only be understood in terms of the presence of nonradial modes. A sim-
ilar conclusion was drawn from MOST data for the K2 giant star HD 20884
(Kallinger et al. 2008a), even though these results are controversial (as one can
deduce from the editorial note added to this paper). Clearly, more observa-
tional work and theoretical work are needed to obtain a better understanding
of the oscillations in red giants. The latest results are discussed in more detail
in Chapter 7. Undoubtedly, observations with CoRoT will be of much value
in this respect.

2.6 Pulsations in Evolved Stars with M ≥ 9 M�

In the current section we describe the variable nature of stars with initial
masses above 9 M� which are evolved off the main sequence. These stars
never encounter degeneracy in their core and experience different burning
cycles until they have an iron core, after which they explode as supernova.

Their luminosity-to-mass ratios increase significantly as they evolve off
the main sequence. Indeed, during their evolution past the TAMS towards
the red supergiant phase, and then back in the direction of the ZAMS, they
lose a lot of mass while keeping almost the same luminosity. Because of this,
L/M increases and the stars come close to their Eddington limit, the upper
value of L/M determined by the requirement that the inward gravitational
acceleration is larger than the outward acceleration due to the strong radiation
pressure. Any star close to its Eddington limit cannot be very stable. This is
particularly relevant for the lifetimes of stars born with M > 40 M�. For
compilations of studies of the most massive stars we refer to, e.g., Heydari-
Malayeri et al. (2004), Humphreys & Stanek (2005), Ignace & Gayley (2005),
and Bresolin et al. (2008). Here, we concentrate only on those variability
aspects of such stars that may be related to oscillations.

The overall variability of this group of stars in the upper HR Diagram
occurs at different time scales and may have very different physical causes.
Sometimes the lowest amplitude variability is periodic. We term such stars
PVSGs, Periodically Variable SuperGiants, irrespective of the cause of the
periodic variability. These stars are indicated as such in the grey upper zone
in Fig. 1.12. It is unfortunate that seismic modelling has not yet reached these
high masses, because stellar structure and evolution models are most uncertain
for such stars, due to badly understood phenomena such as rotational mixing
and meridional circulation, semi-convection, strong core convective overshoot-
ing and mass loss. As further outlined below, the very first steps were made
by Saio et al. (2006) and Godart et al. (2008) for the B2 Ib/II supergiant
HD 163899 found to be pulsating from the MOST mission. We provide an
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overview of the variable nature of such massive objects in this chapter, but
will not return to them further on in the book.

2.6.1 Periodically Variable B and A Supergiants

2.6.1.1 The A-Type Supergiants

Supergiant stars of spectral type A showing variations in photometry with am-
plitudes of tenths to hundredths of a magnitude were termed αCyg variables,
after the A1I prototype αCygni. They have been monitored for decades by
different teams, e.g., Sterken (1977, 1983), Burki et al. (1978), van Genderen
et al. (1989a,b,c), Lamers et al. (1998), van Genderen (2001), and references
therein. Burki (1978) and van Leeuwen et al. (1998) focused on a sample of
32 and 24 late-B to G supergiants, describing the variability of these αCyg
variables from ground-based Geneva and Hipparcos data, respectively. The
periodicities found by these authors range from 10 to 100 d and are too long
to be due to the radial fundamental mode of such objects (Lovy et al. 1984).
It should be pointed out, however, that significant uncertainties in the theo-
retical oscillation calculations occur for stars of such high luminosity, as they
undergo all sorts of mixing processes in their interior as well as instabilities in
their atmosphere due to the large radiation pressure. These effects are usually
ignored when predicting p- and g-mode frequencies.

Line profile variations in supergiant stars were discovered by Baade et al.
(1990), who studied the O9I companion of the WR binary γ2 Vel. An extensive
line profile study based on years of monitoring of 6 BA-type supergiants was
made by Kaufer et al. (1997). These authors concluded that the variability
patterns in the line profiles are extremely complicated and seem to point
towards cyclic variations in the deduced radial velocities. Besides these cyclic
changes, they concluded nonradial oscillations to be present from travelling
sub-features across the line profiles whose periodicities are not compatible
with the rotation of the stars.

No detailed modelling of the observed periodic variability has yet been
achieved. Nonlinear radial instabilities in so-called strange modes, with peri-
ods between 10 and 100 d roughly, have been put forward as an explanation
for the variations in stars with masses above 40 M� (Kiriakidis et al. 1993;
Glatzel et al. 1999; Dziembowski & Slawinska 2005 and references therein).
Such strange modes are caused by a strong enhancement in the opacity in the
second partial ionization layer of helium and of the heavy elements. They are
excited due to strong non-adiabatic conditions in stars with a high L/M ratio,
i.e., stars not too far from their Eddington limit. These strange modes are
predicted to have amplitudes that are much larger than those found for the
classical radial pulsators. From this, one speculates that they could perhaps
be responsible for triggering the outbursts accompanying the moderate to low
amplitude periodic variability of the A-type supergiants and the Luminous
Blue Variables (see below). The occurrence of strange modes has not yet been
firmly established observationally in the most massive stars.
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Fig. 2.44. Hipparcos light curve of the B2/B3Ib/II star HD98410 folded according
to the dominant period. Data taken from Perryman (1997, ESA).

2.6.1.2 The B-Type Supergiants

Oscillations as in β Cep stars have not yet been firmly established in luminous
stars with logL/L� > 5 and M > 20 M�, although they are predicted in
that part of the HR Diagram as well (Pamyatnykh 1999 and Fig. 2.19). The
reason is probably that the instability strip no longer coincides with the entire
main sequence, but is shifted towards more evolved stars. Pamyatnykh (1999)
predicted SPB-type g modes to be unstable at such high luminosities in pre-
TAMS stars (i.e., stars near the end of their central hydrogen-burning stage,
see Fig. 2.45). The post-TAMS evolution during the hydrogen shell burning
phase of such objects is so fast that it is hard to find stars in that evolutionary
state in the first place. On the other hand, the stars do not spend long in
the red part of the HR Diagram, and return quickly to the position of their
pre-TAMS stage (e.g., Chiosi & Maeder 1986 for a thorough review). It is
very difficult to unravel the evolutionary state of stars in that part of the
HR Diagram from classical observations. Seismic information could help a
great deal here. However, at that stage in their evolution, significant mass
loss in the form of a line-driven stellar wind (e.g., Kudritzki & Puls 2000 for a
review) complicates the unambiguous detection of possible oscillatory motion
at the stellar surface.

Waelkens et al. (1998) discovered a sample of B supergiants to be peri-
odically variable with SPB-type periods from the Hipparcos mission. These
stars, and additional similar ones, were subjected to detailed spectroscopic
and frequency analyses by Lefever et al. (2007a), who found their masses to
be below 40 M� and photometric periods between 1 and 25 d, i.e., shorter
than the periods of the periodic variations found in the more massive A-type
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Fig. 2.45. The position of the sample of B supergiants discovered to be periodically
variable from the Hipparcos mission is compared with Pamyatnykh’s (1999) pre-
TAMS instability computations for p modes (full lines) and g modes (dashed lines).
The instability strips of post-TAMS g modes computed by Saio et al. (2006) are
indicated as dotted lines (grey: l = 1 modes, black: l = 2 modes). From Lefever et
al. (2007a).

supergiant variables. An example light curve is shown in Fig. 2.44. The stars
in the sample perfectly fulfil the wind-momentum-luminosity relation derived
for galactic A- and B-supergiants by Kudritzki et al. (1994). Their line-driven
wind thus behaves normally. Lefever et al. (2007a) found the sample’s peri-
odic supergiants to be placed near the high gravity limit of Pamyatnykh’s
(1999) heat driven g-mode instability strip for evolved stars (see Fig. 2.45).
This implies that the interpretation of their variability in terms of nonradial
oscillations excited by the heat mechanism, as first suggested by Waelkens et
al. (1998), is plausible. The authors found marginal evidence for a connection
between the wind density and the photometric amplitude.

A new step ahead in the understanding of such stars was achieved by Saio
et al. (2006), who detected both p and g modes in the B2Ib/II star HD 163899
from MOST space-based photometry. The authors deduced 48 frequencies
below 2.8 d−1 with amplitudes below 4 mmag and constructed post-TAMS
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stellar models that led to g-mode frequencies which are compatible with the
observed frequency spectrum.

Further research is needed to evaluate if seismic modelling in terms of
internal physics parameter tuning of individual periodically variable B-type
supergiants is feasible. To achieve this, the current mode identification meth-
ods (see Chapter 6) must be adapted to the case of a dynamical atmosphere
dominated by radiative forces.

2.6.1.3 Luminous Blue Variables

Some of the most luminous stars undergo sporadic violent outbursts, the cause
of which is not yet well understood, but may be due to strange-mode insta-
bilities. Their irregular behaviour is comparable to that of a geyser on Earth:

quiet period → moderate activity → heavy dredge-up → violent eruption →
quiet period → . . .

Half a century ago the existence of some very peculiar, strongly variable mas-
sive stars in our Galaxy, such as P Cyg and ηCar, was already known. More-
over, a few such stars were also known in the Magellanic Clouds, e.g., S Dor.
However, it was not clear yet at that time that all of these very massive ob-
jects were undergoing the same type of instabilities. The newly discovered
members were called P Cyg or S Dor star, depending on their presence in our
Galaxy or in the Magellanic Clouds. Moreover, similar objects began to be
found in nearby galaxies, such as the so-called Hubble-Sandage variables in
M31 and M33.

It wasn’t until the 1970s that significant progress was made in the inter-
pretation of these objects. Space observations in the ultraviolet (UV) made
it clear that all of them are losing significant amounts of mass. Moreover,
they all showed excess fluxes at infrared wavelengths. This class of stars was
termed Luminous Blue Variables (LBVs; Conti 1984).

The outbursts of LBVs can take several decades and are of irregular na-
ture, with long periods of quiescence in between. The stars are optically
faint when they are quiet as their outer layers have temperatures of typi-
cally 12 000− 30 000K and so they mainly emit energy in the UV. During the
outbursts, however, the LBVs can increase their brightness by two or three
orders of magnitude because the outer layers cool significantly, typically to
some 8 000 K, so they emit much more of their energy in the visual. The stars
eject about a whole solar mass of their material during such a heavy eruption.
More regular and less violent eruptions also occur. In that case they only take
about one year and they occur almost periodically.

At present there are several tens of confirmed LBVs and some tens of
candidates known in our Galaxy and in nearby galaxies. Their luminosities
are all more than a million times brighter than the Sun and remain almost
constant, even during the violent eruptions.
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Fig. 2.46. Top: Light curve of the LBV AGCar obtained in the framework of the
Long Term Photometric Variables programme of ESO. The bottom panels show two
enlarged sections. Data taken from Sterken (1995).

Very different timescales and amplitudes are present in the light curves of
LBVs. As an example we show in Fig. 2.46 the light curve of AG Car observed
over almost a decade. These variations are mainly caused by changes in the
temperature of the visible surface layers of the star and its radius – thus
causing variations in its V magnitude – while its total luminosity remains
nearly constant. We can subdivide the variations of LBVs into four different
types:

1. Giant outbursts with brightness changes larger than 2 mag, which are the
consequence of eruptions of large amounts of stellar matter. Examples are
the eruptions of P Cygni in 1600 and of ηCarinae in 1841 (e.g., de Groot
& Sterken 2001 for a compilation). During its giant eruption, ηCarinae
clearly went past its Eddington limit. The time scale of these giant erup-
tions is not well known for the simple reason that we have witnessed very
few of them so far. For this reason one assumes that a reasonable estimate
is one eruption every few hundred to thousand years.
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2. Eruptions accompanied with brightness differences of one to two magni-
tudes. These smaller eruptions occur on time scales of 10 to 40 yr. The
visual magnitude usually increases by some 2 mag during a few months
and then a very slow brightness decrease occurs, which takes several years.
The stars S Dor and R 127 in the Magellanic Clouds, and AG Carinae in
our Galaxy experience these types of eruptions.

3. Smaller variations of about half a magnitude in brightness occur on a time
scale of several months to a few years. These variations are superposed on
the moderate eruptions described in 2.

4. Low amplitude (below 0.1 mag) variations occur on a time scale of several
days to weeks. These variations are probably the same as those observed
in the B- and A-type supergiants discussed above and may thus be due
to stellar oscillations.

Since the heat mechanism is so successful in explaining the variability
of many types of stars, particularly B stars on the main sequence, g modes
have been proposed to be the cause of the low amplitude variations of LBVs
from observations (Lamers et al. 1998). However, any theoretical computa-
tions needed to check the excitation of modes are very dependent on the
physical parameters, which are very badly constrained for LBVs and super-
giants in general. Also, one needs to combine the effect of being very close
to the Eddington limit with instability calculations, which evidently leads to
very uncertain predictions about the oscillations and their effect on the mass
loss and outbursts (e.g., Guzik et al. 2005). As already mentioned above, it
may very well be that strange-mode instabilities with periods near 100 d are
responsible for the observed variations, and perhaps even the outbursts, in
stars with masses above 40 M�. The periodic variations of supergiants with
masses below 40 M� having stable periods less than 20 d are due to the clas-
sical heat mechanism, as suggested by Pamyatnykh (1999), Saio et al. (2006)
and Lefever et al. (2007a).

2.6.2 Wolf-Rayet Stars

A star is called a Wolf-Rayet (WR) star after it has lost a large fraction of
its original massive envelope due to a radiation driven wind. The spectra of
WR stars show strong emission lines caused by the rapidly expanding thick
atmosphere. WR stars are situated in the HR Diagram at luminosities of
4.5 ≤ logL/L� ≤ 6 and temperatures logTeff ≥ 4.6. They are the remnants
of stars with initial masses above 40 M� which have lost so much mass that
only some 4 M� is left.

The WR stars are subdivided into two groups: the carbon-rich WC stars
and the nitrogen-rich WN stars. These classes are subsequently subdivided
into WC5 – WC9 and WN3 – WN8 according to the presence of particular
lines in the spectrum. The WN and WC stars represent different evolutionary
phases. The WN stars evolve towards WC stars as more and more stellar
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material gets lost through the stellar wind. For a catalogue of WR stars, see
van der Hucht (2001).

The fundamental parameters of WR stars are extremely hard to determine,
because of their high level of activity in terms of a strong stellar wind and
due to the complex surface phenomena (e.g., Crowther & Smith 1997 and
references therein). The determination of their general properties constitutes
a very active area of research that we will not review here. Mainly, we will
focus on their variable character and even more specifically on the periodic
variability.

The WR stars have quasi-periodic variability with periods ranging from
a few hours to a few days. One of the earliest systematic studies of their
variability was done by van Genderen et al. (1987), who interpreted the data in
terms of temperature induced changes in the continuum emission. Numerous
studies done by the same team followed this initial investigation. Marchenko
et al. (1998a) presented an extensive study of WR stars from the Hipparcos
data and found a very large diversity in the variability of these stars. The three
case studies of the stars WR 6, WR 134, and WR 123, based on long strings
of homogeneous photometry, did not allow a conclusion about whether their
variability is due to a gradual restructuring of the stellar wind or nonradial
oscillations (Marchenko & Moffat 1998). Moreover, the result of coordinated
multisite photometric and spectroscopic observations of WN8 stars in 1989
and 1994-1995 by Marchenko et al. (1998b) still did not allow an unravelling
of the cause of the high level of variability, although the authors state that
it “may be supported/induced by pulsational instability”. A good example
of the difficulty in interpreting the variability is in Veen et al. (2002a,b,c),
who did not even manage to discriminate between orbital and pulsational
variability for WR 46 after years of monitoring.

An important achievement was made by Lefèvre et al. (2005), who used
MOST photometry to analyse the light variability of WR 123 with unprece-
dented precision from a 38 d uninterrupted time series (see Fig. 2.47). They
found periodic signals with periods below 1 d, but none of them turned out to
be stable for more than several days, except for a stable 9.8 h periodic signal
superposed on stochastic variability throughout the whole run. In an attempt
to interpret this observation, Townsend & MacDonald (2006) investigated the
stability of WR stars and suggested unstable g modes of intermediate radial
orders excited by a heat mechanism operating on an opacity bump at an en-
velope temperature near 1.8 million K. The periods they find range from 11
to 21 h for a WR model containing some surface hydrogen (Xsurface = 0.12),
and from 3 to 12 h in a hydrogen depleted WR model. This suggests that
self-excited g modes may be the source of the 9.8 h periodic variation of the
star disentangled in the MOST data. Dorfi et al. (2006), on the other hand,
explained the observed variability in terms of a strange mode oscillation due
to the iron opacity bump in a hydrogen-rich (X = 0.35) stellar model.

We must conclude that strict periodicity has not yet been found so far in
WR stars except for the case of WR 123’s 9.8 h period derived from uninter-
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Fig. 2.47. The light variations of WR 123 as observed by the MOST satellite. Data
taken from Lefèvre et al. (2005).

rupted space photometry. The physical origin of the complete observed vari-
ability remains unclear, but as far as oscillations are concerned, the promis-
ing computations pointing towards the excitation of heat driven g modes or
strange modes will hopefully be continued in the near future and be confronted
with more high quality data.

Some of the LBVs have exactly the same characteristics as WN9 stars
during their visual minimum. For this reason, the LBVs are considered to be
the immediate progenitors of WR stars and it makes sense to try to under-
stand the LBV microvariability in terms of g modes similar to those found by
Townsend & MacDonald (2006). This has so far not been done.

Once a star has reached the WR phase there is no way back: it will soon
explode as a supernova, leaving a compact remnant (neutron star or black
hole).

2.6.3 The Role of Core g Modes in Supernova Explosions

There are several observational facts that demand asymmetric supernova ex-
plosions. Many pulsars, e.g., have high proper motions and a large fraction
of neutron stars have such high velocities that they must have experienced a



104 2 Stellar Oscillations across the Hertzsprung-Russell Diagram

large kick at birth. Neutrino driven convection was put forward as a viable
non-spherical supernova mechanism (Burrows et al. 1995), although it cannot
explain the highest observed velocities of neutron stars.

To solve this problem, Goldreich et al. (1997) proposed the ε mechanism
(see Chapter 3) to be the cause of the necessary asymmetry before the on-
set of core collapse. Murphy et al. (2004) have further explored the viability
of g-mode oscillations excited by nuclear reactions to be at the origin of pre-
collapse asymmetries by performing an eigenmode analysis. They indeed found
unstable outer core g modes in all progenitor models with initial masses be-
tween 11 and 40 M�, with oscillation periods between 1 and 10 s. These modes
are trapped by discontinuities between the fossil Fe core and either the O shell
(lower masses) or the Si burning shell (higher masses). However promising this
mechanism was, the growth time scale of the core modes ranged between 10
and 10 000 s, which is far too long for the ε mechanism to become effective in
the supernova progenitors. Indeed, the asymmetries must typically be achieved
within one second after the onset of the collapse.

An entirely new view on core collapse supernova explosions was proposed
by Burrows et al. (2005). They found the agent of the explosion to be the
acoustic power generated by the excitation and sonic damping of core g-mode
oscillations. Their 2D hydrodynamical computations for a 13 M� star show
that a proto-neutron star is a self-excited oscillator in which an l = 1 mode
with a period of ∼ 3 ms (besides lower amplitude modes) grows and becomes
prominent 500 ms after bounce. The source of the acoustic power is the grav-
itational energy of infall and the core oscillation acts like a transducer to
convert this accretion energy into sound, resulting in an asymmetric ejection
of the mantle. While neutrinos do not drive the explosion in this model, they
do contribute to the deposition of energy in the shock. This mechanism can
explain the observed morphologies and r-process properties of supernovae.
Obviously, it is very hard to test this model observationally, except for the
behaviour of the ejecta and the predicted neutrino fluxes.

2.7 Compact Oscillators

Stars at the end of the AGB phase leave the red part of the HR Diagram to
become white dwarfs. This happens whenever their dust-driven and pulsation-
induced wind comes to an end. During their post-AGB phase, which lasts
typically only 10 000 years, they travel through the HR Diagram with constant
luminosity towards higher effective temperature because their outer envelope
expands quickly and the hot CO core becomes better visible. For some stars,
the last thermal pulse causes a very efficient mixing with large convective
overshooting, implying a drastic change in surface composition and a return
towards the AGB. During this very short born-again phase, the star may cross
the instability strip while moving redward and blueward in the HR Diagram.
Examples of such fast-evolving stars are V605 Aql and Sakurai’s object (e.g.,
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Clayton et al. 2006). On their blueward path back from the AGB, they join
the Wolf-Rayet central stars of planetary nebulae in the sense that they end
up as hydrogen deficient stars whose surface layers are rich in helium, carbon
and oxygen. We will soon turn to the description of the oscillations in such
hot (pre-)white dwarfs. Some low mass stars, however, end up in the extreme
horizontal branch and do not become AGB stars as their hydrogen envelope
contains too little hydrogen to keep the hydrogen shell burning going. These
objects are situated to the left of the RR Lyrae stars and have masses below
0.5 M�. They turn immediately towards the white dwarf phase once their
central helium is exhausted. Some of these subdwarf B (hereafter sdB) stars
turn out to have oscillations and so we describe them here as well because they
are also compact stars whose oscillations have many similar characteristics to
those of white dwarfs. Figure 2.48 shows a compilation of five prototypical
cases of subdwarf and white dwarf pulsators. It can be seen that the time
scales of the g-mode oscillations of the white dwarfs are somewhat longer
than those of the p-modes of the subdwarfs (several to tens of minutes), while
the g-mode subdwarf pulsators have oscillations with periods two orders of
magnitudes longer (hours).

Some white dwarfs accrete matter in a binary and explode as supernovae
of Type Ia. This extreme form of white dwarf variability plays a crucial role
as standard light sources in cosmology (e.g., Perlmutter et al. 1999).

Finally, the core collapse supernovae, originating from exploding massive
single stars, leave behind very compact stellar remnants, such as neutron stars
or black holes. We discuss the current status and prospects of asteroseismology
of these most compact objects as well.

We start off with the least evolved of the compact oscillators, but not
before pointing out that pulsating hydrogen-poor carbon stars and extreme
helium stars will additionally be discussed in the last section of this chapter,
since binarity plays a crucial role in our understanding of this diverse group
of stars.

2.7.1 Variable Subdwarf B Stars

In 1997, a team of South African astronomers discovered a new class of pulsat-
ing stars among the sdB stars. Periodic variations with 144 s were discovered
in the sdB star EC 14026 (Kilkenny et al. 1997, see Figs 2.49 and 2.50). The
“EC” notation stands for the catalogue of the “Edinburgh-Cape Blue Object
Survey”, which was the southern extension of the PG (Palomar-Green) survey.

The sdB stars are helium deficient sub-luminous B stars at relatively high
galactic latitude whose spectra show broad Balmer lines and very weak He I
lines. They have effective temperatures between 23 000 and 32 000 K, values
of log g between 5 and 6, and masses below 0.5 M�. They have lost almost
their entire hydrogen envelope at the tip of the red giant branch such that
their thin hydrogen layer does not contain enough mass to burn hydrogen.
The sdB stars therefore evolve immediately from the giant branch towards
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Fig. 2.48. The light variations for five prototypical compact pulsators taken at the
Canada-France-Hawaii Telescope (CFHT) with the instrument LAPOUNE. Figure
courtesy of Gilles Fontaine.

the extreme horizontal branch (EHB) and have only central helium burning.
They all show a deficiency in helium and chemical anomalies of carbon and
silicon, which supports the idea that they are low mass old Population I stars.
They are the immediate progenitors of low mass white dwarfs.

Currently some 30 short period sdB pulsators are known among the 300 in
which variability has been sought. These 30 all have multiple periods ranging
from 80 to 600 s and amplitudes between 0.001 and 0.3 mag in the visible.
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Fig. 2.49. The light variations in the prototype of the short period sdBV stars. The
employed unit is mma, which stands for milli-modulation amplitude. This differs by
a factor 2.5 log e = 1.08574 from mmag. Data taken from Kilkenny et al. (1997).

As is expected (see Chapters 4 and 6), the amplitudes are higher at bluer
wavelengths. This is nicely illustrated in Fig. 2.51 for four members of the
class. We note that these objects are nowadays also termed V361 Hya stars,
which is the official variable star name for the prototype. We will term these
objects p-mode sdBV stars for simplicity.

The existence of pulsating sdB stars was predicted by a Canadian team
(Charpinet et al. 1996) independently of, and simultaneously with, their ob-
servational discovery. An opacity bump associated with iron ionization turns
out to be an efficient driving mechanism. The atomic diffusion processes that
are at work in sdB stars, particularly radiative levitation, imply that iron be-
comes overabundant in the driving zone. Whenever this overabundance leads
to a local Z-value above 0.04 in the partial ionization zone of iron, low order
p-mode oscillations are excited (Charpinet et al. 1997).

During the course of an ongoing monitoring program to investigate light
variations in additional sdB stars in the northern hemisphere, a group of
some 20 sdB stars were discovered to have multiperiodic light variations with
individual periods around one hour and very low amplitude (Green et al.
2003). These stars are termed PG1716+426 stars after the prototype, but
they have also been called “Betsy” stars as of the scientific meeting at which
the discoverer announced their existence. We term them g-mode sdBV stars.
Their periods are one to two orders of magnitude longer than those in the
p-mode sdBV stars (see Fig. 2.52), while they are located in a similar position
in the HR Diagram, at slightly cooler temperatures. This situation is very
similar to those of the β Cep and SPB stars, and of the δ Sct and γDor stars,
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Fig. 2.50. The amplitude spectrum of the light curve of EC 14026 shown in
Fig. 2.49. Data taken from Kilkenny et al. (1997).

Fig. 2.51. The light variations in the visible (CFHT, LAPOUNE (the Montreal
3-channel photometer); left) and in the far ultraviolet (FUSE (Far Ultraviolet Spec-
troscopic Explorer); right) for four prototypical p-mode sdBV stars. Figure courtesy
of Gilles Fontaine.

near the main sequence. It is therefore logical to interpret these longer periods
in terms of high order g modes.
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Fig. 2.52. Comparison between the light variations of four sdB p-mode oscillators
(upper panel) and four sdB g-mode oscillators (lower panel). The time axis refers to
the top half of the figure; the light curves in the bottom half have been compressed
by a factor two for visual purposes. From Fontaine et al. (2003a).

It was indeed found that the same instability mechanism as for the p-mode
oscillators predicts such modes to be unstable whenever the iron abundance
in the driving region is sufficiently high (Fontaine et al. 2003a). Nevertheless,
only modes with degree l = 3 or 4 are found to be excited, in contrast to the
results found for the p modes. This is rather unsatisfactory, since it is not
evident from a physical viewpoint why only higher degree modes should be
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excited. In this respect, the work by Jeffery & Saio (2006) is very promising.
These authors studied mode excitation using models with envelopes having an
artificial, but homogeneous, iron enhancement and found l = 1, 2 g modes to
be excited for appropriate temperature ranges of the observed g-mode sdBV
stars. Both different approaches, i.e., using a stratified composition with iron
enhanced in the critical layers for excitation (Fontaine et al. 2003a) versus a
global iron enhancement in the envelope (Jeffery & Saio 2006), are precisely
the same as those used by Pamyatnykh et al. (2004, local iron enhancement)
versus Ausseloos et al. (2004, global iron enhancement) to explain all the
excited observed modes for the β Cep star ν Eri, discussed in Section 2.3.7
earlier in this chapter and further on in Chapter 7.

A summary of sdB star research is provided in the volumes edited by
Østensen (2006) and by Heber et al. (2008). There are at present insufficient
frequencies found in any of the g-mode sdBV stars to perform in-depth seismic
studies, but the observational efforts to obtain more data are ongoing. One
of the best light curve, as far as the sampling is concerned, was obtained
from space with MOST (Randall et al. 2005b). It revealed three frequencies
corresponding to periods of 5227 s, 2650 s, and 7235 s, with amplitudes of
0.054%, 0.041%, and 0.038%, respectively, in fractional brightness.

Seismic applications of the p-mode sdBV stars are discussed in Chapter 7.

2.7.2 White Dwarf Stars

White dwarf stars are spectroscopically classified into six major subtypes with
additional classifications indicating crossover spectra. In addition, there are
further subtypes that specify the presence of polarization, magnetic fields and
pulsation, plus there are classes for stars that do not fit any other class! For an
introduction to the white dwarf alphabet zoo, see Table 1 of McCook & Sion
(1999). The hottest pre-white dwarf stars that appear on the white dwarf cool-
ing sequence in the HR Diagram (see Fig. 1.12) have effective temperatures
of nearly 200 000 K, ranging down to about 80 000 K. Some of these hottest
white dwarf stars are central stars of planetary nebulae, some are not; some
pulsate, some do not.

For white dwarfs cooler than Teff ≤ 80 000K there is a clear spectroscopic
sequence into which the vast majority of known white dwarfs fit. The DO
stars lie in the range 80 000 ≥ Teff ≥ 45 000 K and show strong spectral
lines of He ii. It is the presence of the He ii lines that gives them their “O”
subclass, in analogy with the main sequence O stars, but note that there is not
a direct correlation in temperature with the main sequence O stars which are
generally cooler. Thus the DOs are helium atmosphere white dwarfs. Much
cooler than the DOs are the DB white dwarfs with approximately 30 000 ≥
Teff ≥ 12 000 K. These stars are also helium atmosphere white dwarfs, where
in this case the DB classification indicates that generally only spectral lines
of He i are seen with little or no H or metal lines. Note again that the “B”
classification is in analogy with main sequence B stars that show lines of
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neutral helium in their spectra, but that the temperatures do not necessarily
correspond.

The vast majority of the rest of the white dwarfs are classified as DA
stars because they show only lines of the Balmer series of hydrogen in their
visible wavelength spectra. They are thus subclass “A” in analogy to the
main sequence A stars, which by definition show the strongest Balmer lines
of all main sequence stars. But even more so than for the DOs and DBs, the
temperatures of the DAs do not in general correlate with main sequence A
stars. While there are DAs in the main sequence A star temperature range of
10 000 ≥ Teff ≥ 7400 K, other DAs may be found with temperatures as hot as
170 000 K and as low as the coolest white dwarf stars known, Teff ∼ 4500 K, a
lower limit set by the age of the Galaxy; there has not yet been time for the
first white dwarfs to cool beyond this limit.

While white dwarf stars are predicted to be the end state of evolution for
main sequence stars with M ≤ 9M� and are the most common class of stars
in the Galaxy, the number known is not very great as a consequence of their
intrinsic faintness. Thus the study of white dwarfs is plagued by the same
problem as the study of the coolest main sequence dwarfs, brown dwarfs and
especially extra-solar planets: a dearth of photons.

The number of known and studied white dwarfs has increased dramatically
in recent years as a consequence of the data available from the Sloan Digital
Sky Survey (SDSS; York et al. 2000). While the SDSS is primarily an extra-
galactic project, its uniform, relatively deep (magnitude 23) wide-field data
set is of significant use for stellar astronomy, in particular for the discovery of
new white dwarf and hot subdwarf stars. McCook & Sion (1999) presented a
catalogue of 2249 white dwarfs with spectroscopic classifications; their data
were complete through early 1996. Kleinman et al. (2004) increased the num-
ber of spectroscopically classified white dwarfs by 2551 stars using the first
SDSS data release, thus more than doubling the number known. A subsequent
more extensive work from the SDSS data release 4 (Eisenstein et al. 2006a)
presented a catalogue of 9316 spectroscopically confirmed white dwarf stars.
Thus the majority of white dwarfs now known have been found in the SDSS.
A study of these SDSS white dwarfs by Kepler et al. (2007) further illuminates
the temperature and mass distribution for DA and DB stars roughly in the
range 40 000 ≥ Teff ≥ 12 000K.

Eisenstein et al. (2006a) confirm what was earlier known from smaller
samples of white dwarfs: DA white dwarfs dominate, constituting about 86%
of all white dwarfs in their sample (8000 of 9316 stars). DBs are the next most
numerous group comprising 8% of the sample (713 of 9316 stars). All other
classes comprise the remaining 6% of the sample. Hence hydrogen atmosphere
DA white dwarfs are 10 times more common than helium atmosphere DB
white dwarfs.

While DAs can be found at all temperatures under 170 000 K down to the
low temperature limit set by the age of the Galaxy, remarkably, few helium
atmosphere white dwarfs occur in the effective temperature range between
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45 000 ≥ Teff ≥ 30, 000 K. The DOs and DBs are found on either side of
this temperature range, but only a very few genuine helium atmosphere white
dwarfs are found within it (see, e.g., Eisenstein et al. 2006b). This exclusion
is known as the “DB gap” (Liebert 1986).

The process of atomic diffusion is important in many stellar astrophysical
situations, including asteroseismic applications for β Cep stars, SPB stars and
roAp stars, as we have already mentioned in this chapter. It is a competi-
tion between gravitational settling and radiative levitation with any kind of
turbulent mixing – particularly convection – potentially (usually) quenching
the processes. Most importantly in the context of this section: gravitational
settling stratifies the structure of white dwarf stars, and in the presence of
such strong gravitational fields it does so quickly. In the absence of any mix-
ing – particularly in the absence of convection – we would expect all white
dwarf stars with sufficient residual hydrogen (> 10−15 M� of H) to be DA
stars. Some non-DA white dwarfs probably do not fulfil this condition, i.e.
they lack sufficient hydrogen to be DA stars. The amount of mass loss, and in
particular the amount of hydrogen loss during stellar evolution must depend
on an individual star’s circumstances. The major pathway to white dwarfdom
is through single star evolution with envelope loss, leaving behind as the white
dwarf the previous stellar core. Two other pathways are a less common one
of evolution from a hot subdwarf on the extreme horizontal branch to white
dwarf, and a process with unknown frequency: binary merger. It is assumed
that the vast majority of white dwarfs follow the first evolutionary path.

In that context, Fontaine & Wesemael (1987) explained the DB gap as a
natural consequence of the evolution of almost all white dwarfs from planetary
nebulae nuclei. They supposed that a slow rise of hydrogen to the surface, as
heavier nuclei sink in the strong gravitational field, eventually makes helium-
rich white dwarfs appear as DA stars at the blue edge of the DB gap at about
45 000 K. Note that hydrogen is not being radiatively levitated in this case,
but rises instead as a consequence of being the lightest nucleus in an environ-
ment of gravitational settling. They then explained the red edge of the DB
gap as a natural consequence of the onset of a significant convection zone at
the temperature where the He i/ii ionization zone coincides with the upper
atmosphere, thus mixing the small amount of residual hydrogen into a deeper
sea of helium, so the star then appears as a DB white dwarf. The H is es-
sentially overwhelmed by the more abundant He and becomes observationally
undetectable, or at best, difficult to detect.

Shibahashi (2005) revisited this idea and proposed a different model for
the onset of the blue edge of the DB gap as white dwarfs cool: the blue
edge of the DB gap occurs at the effective temperature where the He iii/ii
ionization zone becomes deep enough that the surface convection zone of the
DO stars disappears. Hence in this model the stars are always potentially
DAs, but convection in the He iii/ii ionization zone mixes the atmosphere so
the dominant helium appears in the spectrum for the DO stars, then similar
mixing occurs again when the stars cool to the red edge where the He i/ii
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ionization zone again generates a convection zone, as in Fontaine & Wesemael’s
original suggestion. The difference between the two models is in the time scale
for gravitational settling, hence hydrogen floating to the surface. For Fontaine
& Wesemael (1987) this happens slowly during the cooling of a star from a
PG 1159 pre-white dwarf stage; for Shibahashi (2005) it happens quickly as
soon as the convection is turned off at 45 000 K. One possible explanation for
some of the small number DB stars that do appear in the DB gap is that
they are truly stars for which there is virtually no residual hydrogen to form
an optically thick atmosphere. However, this is inconsistent with Eisenstein
et al.’s (2006b) conclusion from statistical studies that some of the DB stars
in the DB gap cool to be DA white dwarfs. They conclude that the DB gap
is real.

There are three known classes of pulsating white dwarfs. The most com-
mon are the DAVs (DA variable white dwarfs), also known as ZZ Cet stars.
These are hydrogen atmosphere white dwarfs in an exclusive instability strip
that ranges between 12 300 ≥ Teff ≥ 10 850 K with some correlation between
temperature and surface gravity, in that the more massive, higher log g are
somewhat hotter. Since DAs comprise 86% of all white dwarfs, the asteroseis-
mic study of the ZZ Cet stars is a window to understand the vast majority of
white dwarfs. Until recently, there were fewer than 40 known ZZ Cet stars, but
searches for new ones using the SDSS white dwarf data base and other surveys
have led to this number being more than doubled, and it is still growing in on-
going programmes (Mukadam et al. 2004a; Mullally et al. 2005; Castanheira
et al. 2006).

The hottest of the white dwarf pulsators are the pulsating PG 1159 stars,
or GW Vir stars, of which there are fewer than a couple of dozen known; they
have 170 000 ≥ Teff ≥ 75 000K. The asteroseismic record holder at the time
of this writing is the prototype of this classis PG 1159−035 itself, which is
discussed in detail in Chapter 7. This star has 198 pulsation modes identified
from which the mass is determined to very high precision; inner stratification is
constrained; the rotation period is determined to high precision; the rotational
inclination is constrained; and the magnetic field strength has an upper limit
less than 2 kG. The literature is large for this star with, in particular, five
Whole Earth Telescope extended coverage campaigns for which the star was
either the primary or a secondary target (Costa et al. 2008). No modes among
the 198 identified for PG 1159 have a degree l > 2.

The third known type of pulsating white dwarf stars, the DBV (DB vari-
able white dwarfs), or V777 Her stars lie between the GW Vir stars and the
ZZ Cet stars in effective temperature. For his PhD thesis work Winget (1982)
theoretically predicted the existence of a class of helium atmosphere white
dwarf variables, then with his collaborators successfully discovered the proto-
type of the class, GD 358 = V777 Her (Winget et al. 1982). Discovering more
of these stars has turned out to be difficult. They are uncommon, constitut-
ing only 8% of all white dwarfs. Also, unlike the ZZ Cet stars for which there
appears to be a exclusive instability strip in which all stars pulsate, for the
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DBs only some stars are V777 Her stars, while others of similar temperature
and gravity do not seem to pulsate. A new survey for DBVs based on the
SDSS white dwarf catalogue has nearly doubled the number known, adding 8
new V777 Her stars to the 9 known previously (Nitta et al. 2007). The current
range in temperature of the known V777 Her stars is 27 800 ≥ Teff ≥ 21 800K.

All three types of pulsating white dwarfs show multiperiodic variations
that are due to low degree, high order g modes, excited by the heat mech-
anism active in different ionization layers for the two classes DO and DB,
and by convective driving for the DA class. Because of the tight mass-radius
relation of white dwarfs, their oscillation periods necessarily are similar and
are typically of order a few minutes. Very specific to white dwarf oscillations
is the occurrence of strong mode trapping caused by the stratified envelopes,
which affects the eigenfrequencies (Winget et al. 1981; Brassard et al. 1992).

Pulsating white dwarfs have the potential to allow us to examine astro-
physics and high energy physics as can be done in no other laboratory. Aster-
oseismic study of these stars gives their total stellar masses to high precision,
measures the masses of stratified layers in their atmospheres, measures or con-
strains rotation periods and differential rotation, magnetic field strengths, the
rate of evolutionary cooling and changes in radius. For the hotter classes (DO
and DB) neutrino emission through plasmon and other processes plays an
important and potentially detectable role (O’Brien & Kawaler 2000; Kim et
al. 2005). For cooler white dwarfs effects of crystallization, which play an im-
portant and uncertain role for white dwarf cooling, may be detectable (e.g.,
Montgomery & Winget 1999; Metcalfe et al. 2004; Córsico et al. 2005a,b).
White dwarfs may constrain possible axion mass, and provide a laboratory
to study the C(α, γ)O cross-section, important for the understanding of type
Ia supernovae. White dwarfs constrain the age of the Galaxy and preserve
an imprint of galactic history. A compilation of studies of (pulsating) white
dwarfs is available in proceedings edited by Koester & Moehler (2005). For a
short review of white dwarf seismology, see Kepler (2007); a longer review is
available in Winget & Kepler (2008) and even more extensively in Fontaine
& Brassard (2008a). Clearly, white dwarf stars are important for stellar and
galactic astrophysics and as high energy physics laboratories.

We discuss below the oscillations of the three classes of white dwarfs sepa-
rately. First, however, we discuss the variable central stars of planetary nebu-
lae. These were historically treated as a separate class, called Planetary Nebula
Nucleus Variables, but it has recently become clear that several of these ac-
tually behave the same as the DOV pulsators. This had led to the definition
of one global class, the GW Vir pulsators, which is the terminology we adopt
here.
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Fig. 2.53. Top panel: V light curve of CSPN HD35914 from a multisite campaign.
The plus signs denote photoelectric measurements and the open circles CCD data.
Bottom panel: B − V variations. From Handler et al. (1997).

2.7.2.1 Variable Central Stars of Planetary Nebulae: Oscillations
or Stellar Winds?

Central stars of planetary nebulae, often abbreviated as CSPN, constitute
a group of stars for which some members exhibit photometric and spectro-
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scopic variability with periods from several hours to days (e.g., Handler 1995).
This variability has been ascribed to either a variable stellar wind (Hutton
& Méndez 1993; Patriarchi & Perinotto 1997) or stellar oscillations (Zalewski
1993; Gautschy 1995). The periods of order hours are much longer than those
of the g modes detected in the GW Vir stars and cooler pulsating white dwarfs,
as discussed below, and thus require a different interpretation.

While Méndez et al. (1983) reported the variability of HD 35914 (the CSPN
of planetary nebula IC 418, also known as the “Spirograph Nebula” for which
there is a beautiful Hubble Space Telescope picture22) and interpreted it as
modulation in the outflow, Liebert et al. (1988) found the star VV 47 (CSPN
of NGC 2474-5) to exhibit variability similar to the pulsating white dwarfs.
The optical spectrum of VV 47 is also similar to those of the pulsating GW Vir
stars, although somewhat broader absorption lines occurred for VV 47. The
similarity to the behaviour of GW Vir led Liebert et al. (1988) to suggest that
some CSPN have oscillations similar to the white dwarfs. Hence, they termed
these objects Planetary Nebulae Nuclei Variables or PNNV in analogy to the
naming for the variable white dwarfs at that time.

Extensive multisite observations of the best-studied variable among the
CSPN, HD 35914, allowed Handler et al. (1997) to detect irregular light mod-
ulation with a time scale of days, as well as cyclic semi-regular variations
with a time scale of 6.5 h (see Fig. 2.53). The periodicity of hours was found
to be stable over more than a decade. Unfortunately, it was impossible, even
from such an extensive data set, to discriminate between oscillations and wind
variability for the interpretation of the data, but rotational modulation and
binarity could be excluded as the dominant cause of the variability. A similar
conclusion was reached for the central star of M 2-54 (Handler 1999b).

Besides “normal” CSPNs, which show absorption lines in their spectra,
Wolf-Rayet stars also occur among the central stars of planetary nebulae.
Their spectra are characterized by emission lines, pointing towards a strong
stellar wind. They are usually denoted as [WCE] stars. Their characteristics
were summarized by Górny et al. (1995) and Tylenda (1996), and further
refined by Górny et al. (2004). These works point towards the presence of he-
lium, carbon and oxygen and a deficiency of hydrogen at their surface. Their
masses and luminosities are somewhat higher than those of normal CSPNs,
explaining the stronger wind and the disappearance of hydrogen. Their evo-
lutionary status is still unclear, but may involve binary evolution for some
stars (De Marco et al. 2003). On the other hand, their characteristics are
generally not different from those of normal CSPN stars (Girard et al. 2007).
Their infrared properties even point to the presence of dust produced dur-
ing a carbon-rich AGB phase before the atmospheres of these stars became
hydrogen poor (Hony et al. 2001). Werner & Herwig (2006) found a strong
evolutionary connection between the [WCE] and DO white dwarfs. The vari-

22 http://heritage.stsci.edu/2000/28/big.html.
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Fig. 2.54. Part of the light curve of the DOV white dwarf PG1707+427 obtained
during a WET campaign. Data taken from Kawaler et al. (2004).

ability of the [WCE] stars was interpreted in terms of oscillations by Gautschy
(1995).

To make the picture even more complicated, we point out that Handler
(2003a) performed a systematic study of what he termed variable Central
Stars of young Planetary Nebulae, and baptized them ZZLep stars after the
prototype in his sample. This group consisted of 14 members that he found to
exhibit roughly sinusoidal (semi-)regular photometric and/or radial velocity
variations with time scales of several hours. The sample stars’ temperatures
are below 50 000 K and they all show hydrogen-rich spectra. Although Han-
dler (2003a) concluded that stellar pulsation is the most likely cause of the
variability, he could not exclude variable mass loss. To our knowledge, this
group of stars has not been studied further.

2.7.2.2 GW Vir Stars

Among the DO white dwarfs, the PG1159 stars or, more recently termed the
GWVir stars , constitute a well-established class of 11 stars as of this writing
(mid-2008). The DO white dwarfs are situated at the position in the HR Di-
agram where the post-AGB track stops and turns down towards the white
dwarf cooling sequence. They have extremely high effective temperatures in
the range 75 000 K to 170 000 K. Their spectra show a large deficiency in hy-
drogen and high helium, carbon and oxygen abundances due to their stellar
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Fig. 2.55. The amplitude spectrum of the light curve of PG 1707+427 shown in
Fig. 2.54.

wind and helium burning, respectively. The determination of the hydrogen
abundance is rather difficult due to the high temperature. As outlined above,
some GW Vir stars are termed PNNVs because a planetary nebula still occurs
around them. DO white dwarfs are indeed the direct descendents of planetary
nebulae nuclei.

The DOV (DO variable white dwarfs) pulsators are often named after their
prototype, PG 1159−035 or GW Vir. This star, GW Vir itself, was discovered
to be an extremely hot pulsating degenerate star by McGraw et al. (1979a,b).
GW Vir’s light variations observed by the Whole Earth Telescope23 (WET,
Nather et al. 1990) and their interpretation was a very important step for
asteroseismology on which we will report in Chapter 7. Part of the WET light
curve of the DOV star PG 1707+427, and its resulting frequency spectrum,
are shown in Figs 2.54 and 2.55 (Kawaler et al. 2004). These two plots are
typical for most of the GW Vir pulsators.

Kawaler et al. (1985a,b) presented linear, nonradial adiabatic oscillation
computations for evolutionary pre-white dwarf models, leading to predictions
for the DOV star frequencies and eigenfunctions. The oscillation periods range
from about 7 to 30 min. The modes are driven by the heat mechanism active

23 http://www.iastate.edu/wet.
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in the partial ionization zones of carbon and/or oxygen, as already suggested
earlier by Starrfield et al. (1984). The exact shape of the instability domain
near the kink of the evolutionary track was found to depend on the distribution
of helium in the CO-rich envelope.

It is clear that the oscillation periods of several PNNVs are at least a factor
of three longer than those of the DOV stars. The latter are white dwarfs that
are about to start cooling, while the PNNVs are still increasing their effective
temperature while keeping their luminosity essentially unchanged, i.e., their
radius is still decreasing drastically. This different evolutionary status is thus
reflected in the oscillation period difference between the DOV stars and the
PNNVs and is in agreement with the scenario of Werner & Herwig (2006).

The theoretical instability strip of both the PNNV and DOV stars was re-
visited by Quirion et al. (2004), Gautschy et al. (2005), Córsico et al. (2006)
and Quirion et al. (2007). From these studies, which include mass loss and dif-
fusion, it became clear that one and the same instability mechanism, i.e., the
heat mechanism associated with the opacity bump due to partial ionization of
the K-shell electrons in the ionization zones of carbon and oxygen, leads to an
instability domain containing both the observed GW Vir stars and the [WCE]
stars (see Fig. 6 of Córsico et al. 2006). The instability requires the presence
of carbon and oxygen in the atmosphere. This can only be achieved when the
stars are subject to strong radiation pressure, causing the carbon and oxygen
to remain in the envelope thanks to radiative levitation while the hydrogen
is blown away in a stellar wind. As the luminosity of the star decreases, the
wind becomes less strong and gravitational settling causes carbon and oxy-
gen to sink, while helium starts floating to the surface. This diminishes the
excitation of the GW Vir oscillations. This is in complete agreement with the
strong evolutionary connection between the [WCE] and GW Vir stars derived
by Werner & Herwig (2006). This scenario also leads to a natural explanation
of the DBV pulsators whose oscillations are excited by the same heat mech-
anism, but this time acting on helium once it is sufficiently dominant and in
the appropriate partial ionization stage in the envelope.

The seismic analysis of GW Vir presented in the seminal work by Winget
et al. (1991) is discussed in detail in Chapter 7. This was not only a first
test case for the technique of asteroseismology, but at the same time a real
breakthrough in the derivation of white dwarf structure models. This study
paved the road for many more seismic studies of compact stars since 1990,
some of which we describe in Chapter 7. White dwarfs thus became the main
targets of the WET consortium, although numerous other types of pulsators
have also been studied by this group.

2.7.2.3 Variable DB White Dwarfs; the V777 Her Stars

Excitation of g-mode oscillations in DB white dwarfs due to the heat mech-
anism acting in the second partial ionization zone of helium was predicted
by Winget (1982) (see also Winget et al. 1983a). This led to the discovery of
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Fig. 2.56. Part of the light curve of the DBV white dwarf PG1456+103 obtained
with the Nordic Optical Telescope by Jan-Erik Solheim during a WET campaign
(unpublished); from data provided by the WET consortium.

the first such variable DB white dwarf, also termed DBV star, namely GD 358
(Winget et al. 1982). Only 18 DBVs are known to date (Kepler 2007 and
references therein; Nitta et al. 2007), probably due to their faintness (V near
16, except for the prototype GD 358 with a V = 13.6). Their oscillation peri-
ods range from 4 to 16 min and their amplitudes are relatively large, from a
few mmag to 0.2 mag. Bradley (1995) reviewed the properties of these stars.
Their effective temperatures range from 22 000 to 28 000 K and the mass of
their helium-rich envelope is estimated to be between 10−6 and 10−2 times
their total mass. As already mentioned above, this is in full agreement with
the excitation computations for hot compact stars by Quirion et al. (2007).
It should be noted that convective driving, introduced by Brickhill (1991a)
for variable DA white dwarfs, may also play an important role for the DB
variables.

The light variations measured by the WET consortium of the simplest
among the DBV pulsators, PG 1351+489, showed the star to have only two
modes, with periods of 489 s and 333 s (Winget et al. 1987). The prototypical
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Fig. 2.57. The amplitude spectrum of the light curve of PG 1456+103 shown in
Fig. 2.56.

DBV star GD 358, on the other hand, has a very complex frequency spectrum
(Nather et al. 1990, see Chapter 7) with several tens of peaks. These two
stars can be considered to capture the range of complexity across the DBV
class. An intermediate case and its frequency spectrum are shown in Figs 2.56
and 2.57 for the star PG 1456+103 with data obtained during the WET run
XCOV22 (extended coverage campaign 22, unpublished; see the WET website
for more information).

Although the beating effect in GD 358 is prominent, the position of the
peaks in the frequency spectrum turn out to be stable over long time scales
while the amplitudes clearly vary (Kepler et al. 2003). Since GD 358 is by far
the best studied DBV star, it was thought that the frequency spectra of all
the class members were stable. Handler et al. (2003a), however, performed
extensive monitoring of two DBV stars with the WET and found evidence for
amplitude and frequency variability. They suggested nonlinear resonant mode
coupling to be the cause of the complex variability in these two stars (see,
e.g., Buchler et al. 1997).

The potential of asteroseismology of DBV stars was highlighted by Bradley
et al. (1993). Moreover, extensive seismic models and their oscillation prop-
erties for DBV and DAV stars had already been presented by Tassoul et al.
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Fig. 2.58. Part of the light curve of the DAV white dwarf G29-38 obtained with
the 0.75-m at SAAO by Retha Pretorius in the framework of a WET campaign
(unpublished); data courtesy of the WET consortium.

(1990) and Bradley & Winget (1991), pointing out the maturity of this branch
of asteroseismology more than a decade ahead of any other type of star, except
the Sun.

2.7.2.4 Variable DA White Dwarfs; the ZZCet Stars

Further along the white dwarf cooling track one finds the hydrogen-rich vari-
able DA white dwarfs, also called DAV or ZZ Cet stars. The DAV mode excita-
tion results from convective driving, a mechanism first proposed by Brickhill
(1991a) and further developed by Goldreich & Wu (1999) and Wu & Gol-
dreich (1999). The shape of the strip was found to be mainly determined by
the effective temperature and the mass of the white dwarf, the most uncertain
factor in theoretical mode prediction being the poorly known efficiency of con-
vection. This is in very good agreement with empirical determinations of the
instability strip leading to a very narrow range of less than 1 000 K in effec-
tive temperature, from 10 850 to 13 300 K (Bergeron et al. 2004, Mukadam et
al. 2004b; Winget & Kepler 2008). It appears that within this narrow range
of temperature all white dwarfs are ZZ Cet stars, although uncertainties in
effective temperature and gravity leave this open to question.

The DAV stars vary multiperiodically with low amplitudes and fulfil a
period-amplitude relation (Clemens 1994). The periods range from less than
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Fig. 2.59. The amplitude spectrum of the light curve of G29-38 shown in Fig. 2.58.

100 s to more than 1 000 s. Their frequency spectra also show multiplets and
are, in general, simpler than those of the DBV and GW Vir stars. This may
be an observational bias because the DAV pulsators have been less intensively
monitored than the GW Vir and DBV pulsators. Indeed, the spectrum of the
well-studied DAV star G29-38 appears to be very different, with numerous
harmonics and beat and sum frequencies, from season to season (Vuille et al.
2000 and Figs 2.58 and 2.59).

While empirical mode identification in selected DAV stars is mostly
achieved from multiplet structures in the frequency spectrum, or from am-
plitude ratios based on multicolour photometry, time resolved spectroscopy of
G29-38 with the Keck telescope has allowed the identification of the modes
from line profile variations as well (Clemens et al. 2000). All these mode iden-
tification techniques confirm the low degree nature of the oscillations. The
thickness of the hydrogen envelope governs the mode selection. Typically, the
mass of the hydrogen-rich envelope is estimated to be about 10−4 times the
mass of the white dwarf.

Up to 2004, 39 DAV pulsators were known (e.g., Bergeron et al. 2004 and
references therein), most of them discovered from photometry but 7 among
them from spectroscopy. A remarkable step ahead in the understanding of
the class was achieved by Mukadam et al. (2004a), who almost doubled the
number of class members with their discovery of 35 new pulsating DAV stars
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selected from the Sloan Digital Sky Survey and the Hamburg Quasar Sur-
vey. Mullally et al. (2005) subsequently found 11 new DAV stars, Kepler et
al. (2005) another 14, and Castanheira et al. (2006) yet another 11, almost
all again first selected from the Sloan Digital Sky Survey (the total number
of members of the class is over 140 as of mid-2008). This led Mukadam et
al. (2006) to examine changes in the pulsation properties of DAV pulsators
across the instability strip. They found a well-established trend of increas-
ing pulsation period with decreasing effective temperature. Also, they showed
that the pulsation amplitude decreases just before pulsations shut down at
the empirical red edge of the instability strip.

2.7.3 Neutron Stars

Neutron stars are the compact remnants that become gravitationally decou-
pled from the expanding ejecta of a supernova explosion, resulting from a core
collapse of a single star with initial mass above 9 M�. The collapse results ei-
ther in a compact neutron star with a mass between 1.5 and 3 M� and a
diameter of about 12 km, or in a black hole (when the remnant mass is above
about 3 M�). The precise upper mass limit of a neutron star is not yet known,
since the correct equation of state for a fully degenerate relativistic neutron
gas is still much debated. Hence there is as yet no firm value for the analogue
of the Chandrasekhar limit for the upper mass limit of a neutron star.

At birth, the infall causes a dramatic spin-up of the neutron star and a
strengthening of its magnetic field by factors of millions, leading to a rotation
period of only a few milliseconds to seconds, and likely causing the star to
send out radiation along the magnetic field lines. As a result, the neutron
star is observed as a pulsar , with regular pulses at radio, visible, X-ray or
gamma-ray wavelengths, whenever the magnetic axis is inclined with respect
to the rotation axis and when the geometry of the beam is such that the
radiation passes in our line-of-sight during each rotation period. The radio
waves originate from material above the magnetic poles, while the X- and
gamma-rays are caused by the accretion of matter on the very hot magnetic
poles of the neutron star.

Straight after the discovery of pulsars by Jocelyn Bell in the framework
of her PhD Thesis (Hewish et al. 1968), nonradial oscillations were proposed
as the explanation of the pulses (Ruderman 1968). Nevertheless, the pulsat-
ing model was quickly abandoned in favour of an oblique rotation model to
explain the observed features of pulsars (Gold 1969). Only many years later,
Strohmayer (1992) and Strohmayer et al. (1992) re-introduced nonradial os-
cillations to account for the numerous complex observed properties of pul-
sars, including drifting pulses and stationary sub-pulses, because the rotating
models failed to explain all these details in the observed variability. The ob-
servational and theoretical progress in the understanding of pulsar beams was
summarized by Graham-Smith (2003).
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Clemens & Rosen (2004) presented an oblique pulsator model based on
high overtone nonradial surface g-mode oscillations of very high degree (l
near a few hundred and n near a few tens), aligned to, and symmetric about,
the magnetic axis of the pulsar, as an explanation of the complex observed
phase behaviour of the pulses and sub-pulses and of the morphology of pulsar
beams. Such modes have periods near 10 s and were shown to have low energy
and large surface amplitude (McDermott et al. 1988), in contrast to core
g modes. The quasi-periodic changes in the data are explained as switching
between modes of different l and n, while negative beating is held responsible
for null detections occurring in the observed time series of the flux once in a
while. These features of this model were claimed to be similar to mode changes
observed for white dwarfs on the one hand, and to the oblique pulsator model
explaining the roAp stars on the other hand. Quasi-periodic oscillations in soft
gamma-ray repeaters have also been interpreted in terms of oscillation modes,
causing seismic motion of the neutron star crust (Israel et al. 2005, Strohmayer
& Watts 2006). At present, none of the pulsational models of neutron stars
are sufficiently realistic to probe the interior physics to a level of precision
necessary to constrain, e.g., their equation of state. To reach this stage, one
should make fully relativistic computations of a highly magnetized body with
an elastic crust. The first steps are being undertaken (e.g., Samuelsson &
Andersson 2007).

A relatively new aspect of neutron star physics, in which nonradial oscil-
lations could also play an important role, are the gravitational waves radiated
during the formation process of the neutron star. After the gravitational col-
lapse, the proto-neutron star radiates its binding energy through neutrino
emission on a time scale of tens of seconds before the final neutron star is
formed. This formation process is obviously very hard to study, unless we
could detect the gravitational radiation associated with the birth of the hot
compact remnant. Indeed, the oscillation spectrum of a forming neutron star
changes drastically during the formation. This is easily understood from the
argument that the frequencies are mainly dependent on the mass and radius
of the object. Typically, the neutrino emission during the formation results in
a mass decrease of 0.1 M� and a radius decrease from 35 km to 12 km. Such
changes will have a significant effect on the mode frequency values.

Ferrari et al. (2003) have computed the changing frequency spectra and
damping times of the oscillations of forming neutron stars. They found the os-
cillation spectra of p, g, and f modes of forming neutron stars to be remarkably
different from those of cold old neutron stars. The frequencies of the modes
cluster typically between 900 and 1500 Hz at the start of the formation pro-
cess, but evolve to very distinct values for these three different types of modes
about 5 s after the formation. Also, the different modes keep very different lev-
els of the mechanical energy reservoir to send out in the form of gravitational
waves after the completion of the formation. The authors ignored the effect
of rotation, even though a significant amount of angular momentum is gener-
ated during the birth of the neutron star, and they ignored the bounce and
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the first 200 ms after collapse, which needs to be studied hydrodynamically;
even so, this pioneering study gives hopeful prospects for the near future.
Ferrari et al. (2003) also showed that the first generation gravitational wave
detectors (VIRGO24, LIGO25, EURO26) should be able to detect the gravi-
tational signals connected to the nonradial oscillations sent out during these
different stages in the life of the neutron star, within much of the Milky Way
Galaxy. This would open up the field of gravitational wave asteroseismology.
Similarly, the processes leading to the formation of stellar black holes may
involve oscillations that can be detected through observations of gravitational
waves.

2.8 Pulsations in Binaries

For all the classes considered above, numerous examples occur where the pul-
sating star resides in a binary or, more generally, in a multiple system. When
this is a wide visual binary, i.e., for cases where the components do not affect
each other’s behaviour and evolution, the binarity is of not much importance
for the oscillation study, other than being an asset because it allows a more
accurate determination of the fundamental parameters (such as mass, radius
and age) of the pulsating component compared with a single pulsator. A no-
table example is the visual binary αCen A (G2V) and αCen B (K1V), whose
components both show p-mode oscillations (see Chapter 7). At the upper
end of the mass range, the visual binary WR 86 is worth mentioning. It is
a variable WC7 Wolf-Rayet star with an initial mass of some 40 M� having
a 20-M� β Cep companion (Paardekooper et al. 2002). This companion pul-
sates in p modes with frequencies of 6.914 d−1 and 7.236 d−1. Contrary to the
αCen binary, the oscillations of this very massive binary have not yet been
exploited seismically, because of lack of mode identification.

Binarity offers the same advantage of providing accurate fundamental pa-
rameters in close unevolved detached binaries for which the tidal interaction
is negligible. In general, this is the case for orbital periods above some 20 d
for ZAMS components and above some 100 d for TAMS components (Willems
2003). In such cases, a complication may, however, occur when both compo-
nents have the same spectral type, implying a merging of their oscillatory
signature in the data and hence in the Fourier spectrum. As long as the con-
tributions of the different components can be unravelled, seismic modelling
can be achieved to at least the same level as for single stars.

Another type of complication occurs when one of the components of a
currently detached close binary system has already gone through one or more
phases of mass loss during its evolution, usually implying that mass transfer

24 http://wwwcascina.virgo.infn.it/.
25 http://www.ligo.caltech.edu/.
26 http://www.astro.cardiff.ac.uk/geo/euro/.
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between the components has taken place. In such a situation, the gainer star
is polluted by material of the donor star. This may have led to different sur-
face compositions and internal structures of both the gainer and the donor,
depending on whether the outer envelope is radiative or convective. Hence, if
one of them is oscillating, the mass transfer will have affected the oscillatory
behaviour. In fact, asteroseismology may in this case be a good tool to recon-
struct the mass transfer and angular momentum history within the binary.
Unfortunately, we do not know of any example where such reconstruction of
the evolutionary history from oscillations has been achieved.

Extreme cases of interaction occur when a binary system enters a common
envelope phase where a compact component of the system effectively orbits
within the envelope of a more tenuous component. This leads to rapid loss of
mass and angular momentum, and hence to a drastic shrinking of the orbit.

Eclipsing binaries are of special value, because they deliver the most strin-
gent constraints on the physical parameters of the components. For many of
the classes of pulsating stars discussed above, we know of components residing
in an eclipsing binary. The number of such cases is low, however, ranging from
none for solar-like oscillators, roAp, γDor, RR Lyrae stars and Cepheids, to a
few for B-type pulsators and compact oscillators, to a few tens for δ Sct stars,
Miras and semi-regulars (Pigulski 2006). The CoRoT and Kepler missions (see
Chapter 8) will surely revolutionize the study of pulsators in eclipsing bina-
ries. In principle, the oscillation modes can be identified from eclipse mapping
in such cases. We come back to this possibility in Chapter 6.

Excellent overviews of pulsating stars in multiple systems (including clus-
ters) were provided by Pigulski (2006) and Lampens (2006). In the following,
we describe in detail some situations where the binarity is more than just a
happy circumstance that delivers better fundamental parameters. In doing so,
we do not consider disc oscillations as in, e.g., X-ray or Be binaries; we focus
entirely on cases where the oscillations can, in principle, be used to probe the
stellar interiors rather than focusing on stellar disc properties.

2.8.1 Tidal Perturbations of Free Oscillations

An extensive compilation of studies on the tidal evolution and oscillations in
binary stars is available in Claret et al. (2005). Free oscillation modes excited
by mechanisms intrinsic to the star (see the following chapter for a detailed
explanation of such excitation mechanisms) may be altered by tidal effects,
in the sense that their frequencies may undergo shifts. Rigorous and detailed
mathematical descriptions of tidal effects on free oscillation modes can be
found in Smeyers & Denis (1971), Saio (1981), Reyniers & Smeyers (2003a,b),
Willems & Claret (2005), and references in these works.

Detections of tidal effects were first suggested by Fitch (1967, 1969) in
some δ Sct and β Cep stars, but it became evident later on that these were
premature. The first firm observational establishment of tidally affected os-
cillation frequencies was achieved by Fitch & Wisniewski (1979) for the δ Sct
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star 14 Aur Aa. The authors showed that the departure from equidistance in
the observed frequency triplet can be explained by tidal splitting of the mode,
as was confirmed by Reyniers & Smeyers (2003b). Goossens et al. (1984) sug-
gested the variations of the oscillation frequency of the 33 d circular binary
β Cep star σ Sco to be due to modulation by tidal action. Smith (1985a,b)
subsequently made a thorough study of the line profile variability of the bi-
nary β Cep star Spica (αVir), with period 4.015d and eccentricity e = 0.146,
and interpreted the retrograde, toroidal-like oscillation mode he detected to
be due to tidal shear exerted by the B2 companion.

There are also a number of pulsating stars in ellipsoidal variables, in which
the tidally deformed components cause variability with twice the orbital fre-
quency (e.g., Aerts 2007 for a review). A noteworthy example is the star
XX Pyx (Handler et al. 1998, 2000) which was long considered as a prototyp-
ical young δ Sct star suitable for seismic modelling (Pamyatnykh et al. 1998)
until Arentoft et al. (2001a) and Aerts et al. (2002b) found it to be a bi-
nary in a 1.15 d circular orbit with ellipsoidal variations in which tidal effects
dominate over rotational effects. Henry et al. (2004) found HD 207651 to be a
triple system with δ Sct and ellipsoidal variations but no g modes triggered by
tides. Lampens et al. (2005) also found the presence of ellipsoidal variations
in the spectroscopic triple system DG Leo, which is composed of three stars
of late-A spectral type. The wide component is a δ Sct star while the inner
binary consists of two Am components of which at least one is not yet rotat-
ing synchronously although the orbit is circular. Finally, De Cat et al. (2006,
2007) list several ellipsoidal variables among their samples of candidate γDor
and pulsating B stars.

Numerous other pulsating stars reside in close binaries, but their detected
frequencies, or differences among them, are not an exact multiple of the orbital
frequency. Aerts & Harmanec (2004) compiled a list of close binaries with
confirmed light and/or line profile variability, several of which are confirmed
pulsators, so these are all good candidates to continue the search for tidally
affected and/or induced oscillations. This list originated from two independent
approaches, i.e., the search for close binarity among confirmed pulsators and
the search for oscillations in confirmed close binaries. The authors found no
obvious relations among the orbital eccentricity, the orbital frequency, the
rotational frequency and the intrinsic frequencies of oscillations.

2.8.2 Tidally Induced Oscillations

It was realized long ago that resonant excitation of free oscillation modes
by the tidal action of a companion can in principle be an effective way to
trigger oscillations in binary components (Cowling 1941). Tidally induced os-
cillations and their effect on evolution and energy dissipation within a binary
have been studied theoretically, for very different types of situations, by nu-
merous authors, e.g., Kato (1974), Zahn (1975), Savonije & Papaloizou (1984),
Kosovichev & Novikov (1992), Diener et al. (1995), Witte & Savonije (1999ab;
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2001), Savonije & Witte (2002), Willems et al. (2003), Rathore et al. (2005)
and references in these works. These authors show that the occurrence of suit-
able resonances depends not only on the properties of the oscillation modes
of the stars, but mainly also on the period and the eccentricity of the orbit,
as well as on the component masses and radii. The theoretical computations
show that the tide generating potential within an eccentric binary implies
an infinite number of partial dynamic tides with forcing angular frequencies.
Whenever one of those forcing frequencies comes close to an eigenfrequency
of a free oscillation mode of one of the components, it is possible that the
tidal action exerted by the companion is sufficiently enhanced to excite this
mode resonantly. The occurrence of such resonances between partial dynamic
tides and free oscillation modes is particularly relevant for the excitation of
g modes, because their frequencies are similar to those of the orbital frequen-
cies in close binaries. Moreover, the tide generating potential is dominated
by spherical harmonics of degree l = 2. Most computations for resonant exci-
tation are therefore restricted to these modes. As discussed by, for example,
Kosovichev & Novikov (1992) the excitation of modes through tidal inter-
action and the subsequent dissipation of the pulsation energy may play an
important role in the capture of stars by massive black holes, through the loss
of orbital energy by the star.

From an observational viewpoint, the detection of a tidally induced os-
cillation may seem simple at first sight. Indeed, whenever variations with an
exact multiple of the orbital frequency are found, one may interpret these as
due to a resonantly excited mode. In practice, it turns out to be extremely
difficult to establish proof of tidally induced oscillations, despite numerous
long term efforts to search for a relationship between the orbital frequency
and variability in close binaries (e.g., Aerts & Harmanec 2004; Claret et al.
2005, and references therein).

The detection of frequencies which are an exact multiple of the orbital
frequency has, as far as we know, been established for only two stars so far:
the hybrid δ Sct/γ Dor star HD 209295 (Handler et al. 2002) and the SPB
star HD 177863 (De Cat et al. 2000; Willems & Aerts 2002). These two stars
reside in short period eccentric binaries such that the circumstances are in-
deed favourable for tidal resonant excitation. Seismic modelling has not yet
been possible for either of these stars. For HD 209295 the modes could not
be identified, while only one pulsation frequency was firmly established for
HD 177863.

2.8.3 Are the SXPhe Stars all Blue Stragglers?

Blue straggler stars get their name from the fact that they appear close to the
main sequence in stellar clusters, but substantially hotter and bluer, and hence
presumably more massive, than the turn-off in the colour-magnitude diagram
as defined by the bulk of the stars in the cluster. They are believed to be
formed from the evolution and mass exchange of primordial binaries or from



130 2 Stellar Oscillations across the Hertzsprung-Russell Diagram

direct stellar collisions between main sequence stars in dense globular clusters
(e.g., Bailyn 1995; Hurley et al. 2001; Sandquist 2005; Sills et al. 2005, and
references therein). The blue stragglers have significantly smaller projected
rotational velocities, but the same chemical peculiarities, as ordinary cluster
and galactic field stars of the same spectral type (Andrievsky et al. 2000).
Ferraro et al. (2006) detected 300 candidate blue stragglers in the galactic
globular cluster ωCen. They used the absence of central concentration in
the blue straggler distribution across ωCen as an argument to rule out a
collisional origin for all of the blue stragglers and suggest a non-collisional
origin for some of these stars. An interesting cluster is NGC 2506, in which
Arentoft et al. (2007) discovered several oscillating blue stragglers, along with
a number of new γDor stars. Hurley et al. (2005) used M67 as a test bed
for cluster evolution models and found different formation paths for the 28
observed blue stragglers in that cluster. In particular, a substantial population
of short period primordial binaries is needed to explain the observed blue
straggler population of M67. Bruntt et al. (2007) determined a large number of
frequencies for two blue stragglers in M67. Unfortunately, mode identification
is not available for these two stars, preventing seismic modelling so far.

It is a lucky circumstance that many of the SX Phe stars were found to
be blue stragglers. They seem to have a relatively high mass (Rodŕıguez &
López-González 2000). These pulsating blue stragglers are thus interpreted
in terms of binary mergers leading to a globally mixed helium-enriched star
and their oscillations may provide clues to the formation scenario. Gilliland
et al. (1998) made an extensive study of six SX Phe variables in the globular
cluster 47 Tuc with the Hubble Space Telescope. Two of them oscillate in
the fundamental and first overtone, two others oscillate simultaneously in the
fourth and fifth radial overtones and two have multiple nonradial oscillations.
This allowed the authors to combine evolution and pulsation constraints, re-
sulting in mass estimates for the four double-mode SX Phe stars ranging from
1.3 ± 0.1 M� to 1.6 ± 0.2 M�, and additional stellar parameters which are in
excellent agreement with the cluster properties. Zhang et al. (2005) analysed
two SX Phe stars in M67. They found these stars to have, respectively, four
and five radial modes. One of them has fundamental parameters in line with
an unevolved late A star. The other one is the primary of a 4.2-d eccentric
spectroscopic binary and has subsynchronous rotation. This SX Phe star was
probably formed through stable Roche lobe overflow.

The global enrichment of helium in blue stragglers strongly affects the tem-
perature and luminosity of a given star, but the location of the instability strip
blue edge and the slope of the period-luminosity (PL) relation are unchanged.
This suggests that the PL relation is not affected by blue straggler formation
provided that blue stragglers are fully mixed stellar mergers (Templeton et al.
2002). Nevertheless, Bono et al. (2002) found that the modal stability and the
pulsation amplitudes are somehow affected by the He content. The detailed
properties of SX Phe stars could thus supply hints on the He content and on
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the formation history of these stars, but we believe it is fair to state that this
stage has not yet been reached.

2.8.4 Are all Dusty RVTauri Stars Binaries?

Binaries make up a significant fraction of the post-AGB stars known to date
(Van Winckel 2003). It was suggested by Lloyd Evans (1999) that IRAS (In-
frared astronomical satellite) infrared colours imply that RV Tau stars are
stars within the Cepheid instability strip with dusty circumstellar discs. By
comparing the observational characteristics of RV Tau stars and the class of ex-
tremely iron deficient post-AGB objects, Van Winckel et al. (1999) concluded
that binarity is indeed a widespread phenomenon among RV Tau stars.

Yudin et al. (2003) monitored eight RV Tauri and five R CrB stars (see
below) polarimetrically, and established the presence of permanent clumpy
non-spherical dust shells around them. Moreover, De Ruyter et al. (2006)
provided compelling evidence from spectral energy distributions extending
to 850μm that all six well-studied dusty RV Tauri stars are binaries with a
circumbinary disc originating from the AGB evolutionary stage.

The question naturally arises whether all RV Tauri stars are binaries. In
any case, the large amplitude oscillations play a key role in the rapid mass
loss phase on the AGB where the stars undergo a dust driven stellar wind.
Mass transfer between evolving stellar components in a binary then leads to
a natural explanation of a dusty circumbinary configuration and the observed
infrared properties of the RV Tauri stars. This, together with the fact that
their binary nature is very hard to establish on a case-by-case basis, makes it
very likely that all dusty RV Tauri stars result from the evolution of a pulsating
AGB binary that managed to avoid a common envelope phase. It requires very
long term spectroscopic monitoring to establish firm observational proof of
this, because the pulsations cause radial velocity variations that are of similar
magnitude to the orbital variations (see Fig. 2.38).

2.8.5 Hydrogen-Deficient Carbon Stars and Extreme Helium Stars

R Coronae Borealis (R CrB) stars are a particular subset of evolved pulsat-
ing hydrogen-deficient carbon (HdC) stars with large amplitudes. They have
periods between 40 and 100 d, amplitudes of a few tenths of a magnitude in
brightness (see Fig. 2.60) and a few km s−1 in velocity, and they have multi-
periodic light curves (e.g., Lawson & Kilkenny 1996). In general, the HdC stars
are variables with an order of magnitude lower amplitudes than the R CrB
stars. Both the R CrB stars and the HdC stars seem to be fundamental mode
pulsators (Weiss 1987) with semi-regular light and radial velocity curves. In
addition to pulsational variations, Feast et al. (1997) concluded from extensive
long term infrared photometry that the R CrB and HdC stars in general show
variations due to their circumstellar dust on time scales of a few hundred to
a few thousand days.
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Fig. 2.60. Top: Light curve of the HdC pulsator RCrB. The bottom panels show
two enlarged sections. Data taken from Yudin et al. (2002).

Extreme helium (eHe) stars, on the other hand, are highly evolved lumi-
nous stars (e.g., Jeffery 1996). Their surfaces are characterized by a mixture
consisting of the remnant of a H envelope, CNO-processed elements, and car-
bon products resulting from He burning. The eHe stars have high L/M ratios.
They are expected to pulsate, either due to the heat mechanism based on
the Z bump (Saio 1993, 1995; Jeffery & Saio 1999) or due to strange-mode
instabilities (Saio & Jeffery 1988). The variable eHe stars are sometimes
subdivided into categories according to their type of oscillation: V652 Her
variables are radial and nonradial Z bump pulsators with periods near 0.1 d,
PV Tel variables have radial strange modes with characteristic periods near
20 d (Kilkenny et al. 1999) while V2076 Oph variables seem to have nonradial
strange modes with time scales between 0.5 and 8 d (Jeffery & Heber 1992;
Glatzel & Gautschy 1992). The variations turn out to be very complex, with
quasi-multiperiodicity only, and imply an observational challenge in view of
the long periods. In fact, Wright et al. (2006) made a very extensive long term
observational study of the hottest pulsating eHe star, V2076 Oph, and found
no coherence at all in its variability. In particular, they did not manage to
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Fig. 2.61. The light curve for PG1336 obtained with ULTRACAM on the Very
Large telescope (VLT) on the night of 2005 May 18/19. The filters used were SDSS r′

(upper curve), g′ (middle curve) and u′ (lower curve). The insets show the visibility of
the pulsations through the primary eclipse. The ellipsoidal variability of the primary
star, both primary and secondary eclipses, and the pulsations are all clearly seen.
From Vučković et al. (2007).

recover the periods reported earlier in their photometry and spectroscopy of
the star.

From an evolutionary point of view, all of the R CrB, HdC and eHe stars
lie on post-AGB evolutionary tracks. Iben et al. (1996) originally considered
three scenarios to form HdC and R CrB stars, but only two of them are com-
monly accepted now. A first one explains the HdC and R CrB stars as hydro-
gen deficient due to a late thermal pulse at the end of the post-AGB phase.
The result of this born-again scenario is an HdC star with chemical surface
composition in agreement with progenitors of WR stars or of hot planetary
nebulae nuclei. De Marco et al. (2002) tested the born-again scenario on four
stars but concluded that they cannot have the same evolutionary history since
only two of the targets are compatible with the proposed scenario. The second
scenario involves the merging of two low mass white dwarfs, one CO white
dwarf and one lower mass He white dwarf, resulting in a luminous He star
(Saio & Jeffery 2002). This is much more plausible as an explanation for the
eHe stars, and as these show many similarities to the HdC and R CrB stars,
it is probably also an important route to explain these latter objects.

2.8.6 Pulsating sdB Primaries

The prototypical pulsating sdB star EC 14026−2647 is a binary system, as
is the case for about two thirds of the group members (Maxted et al. 2001;
Morales-Rueda et al. 2003, 2005). It is very likely that the binarity is of fun-
damental importance for the formation of all the sdB stars. The sdB stars
are believed to evolve directly to the white dwarf stage and so they are the
immediate progenitors of low mass white dwarfs. Two of the members are
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indeed found in a post-EHB stage (Morales-Rueda et al. 2003). The details
of the evolutionary state of the sdB stars is still largely unknown. In order
to end up on the EHB they must lose nearly all of their hydrogen at almost
exactly the same phase, i.e., when the helium core has attained the minimum
mass required for the helium flash to occur. Moreover, many of them have
short orbital periods between a few hours and a few days and several known
companions are white dwarfs. These observational facts have led to the pro-
posal of three evolutionary channels for the formation of sdB stars (see Han
et al. 2002, 2003 and references therein):

1. common envelope ejection, leading to short period binaries with periods
between 0.1 and 10 d and an sdB star with a very thin hydrogen envelope;
these sdB stars have a mass distribution that peaks sharply at 0.46 M�;

2. stable Roche lobe overflow, resulting in similar masses as in case 1, but
with a rather thick hydrogen-rich envelope and longer orbital periods be-
tween 10 and 100 d;

3. double helium white dwarf mergers giving rise to single sdB stars with a
wide distribution of masses.

An example of case 1 is the eclipsing binary pulsating sdBV PG1336-
018 whose stunning light curve was discovered Kilkenny et al. (1998). This
star has been intensively studied ever since, including during two WET runs
(Kilkenny et al. 2003, see also Chapter 7). We show its g′ light curve obtained
with ULTRACAM27 on the VLT in Fig. 2.61. The circular binary orbit has a
period of 2.4 h and the companion is an M dwarf, leading to a large reflection
effect. As can be seen in Fig. 2.61, the oscillations of the primary remain visible
during the primary eclipse.

An important question is the possible role of the binarity in triggering
the oscillations of sdB stars. This has been tackled by Fontaine et al. (2003b),
who found that, indeed, the work done by the tidal force through the resonant
excitation of a g mode becomes significant as the order of the mode increases.
Thus, it seems plausible that some of the g modes observed in sdB binary
pulsators may be tidally excited. It is unlikely that the p modes are tidally
excited, because their frequencies are too high for that. They may, however,
turn out to be affected by the binarity (see, e.g., Reed et al. 2005).

2.8.7 Pulsating Cataclysmic Variables

Cataclysmic Variables (CVs) are short period interacting close binaries with a
white dwarf component. The white dwarfs within such systems undergo mass
accretion from their companion. The white dwarf component itself is often
invisible, because the accretion process dominates the flux we receive from
CVs. The accretion rates vary significantly from one CV to the other. For
those systems with a low mass transfer rate, the gas of the donor settles in
27 http://www.shef.ac.uk/physics/people/vdhillon/ultracam/.
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a disc. This stored gas settles onto the white dwarf at semi-regular intervals,
leading to a dwarf nova eruption. The white dwarf components of such systems
are detectable in visible light when the systems are in a low quiet state. Such
CVs are, however, intrinsically faint. Several of them have been discovered
from the Sloan Digital Sky Survey (Szkody et al. 2004).

Several CVs turn out to have a pulsating DAV primary. The first such
system discovered was GW Lib (Warner & van Zyl 1998), a dwarf nova with
an orbital period of 76.8 min for which three oscillation modes with periods
of 646 s, 377 s, and 236 s were established in the discovery paper. Several ad-
ditional discoveries, involving systems with similar orbital periods, followed
soon (Warner & Woudt 2005 and references therein). All of them turn out
to have similar oscillation periods ranging from 100 s to 1 400 s. More than
ten pulsating CV primaries have been discovered meanwhile (Marsh, private
communication).

Townsley et al. (2004) managed to derive estimates of the white dwarf
mass, the accreted mass and the mass transfer rate for GW Lib from seis-
mic modelling. The rotation rate could not be derived, because the multiplet
structure in its Fourier spectrum has not been resolved, despite extensive ob-
servational effort (van Zyl et al. 2004). It turns out that the accretion rate of
the pulsating CV primaries is sufficiently low to keep the white dwarf compo-
nent in the DA instability strip, even though a white dwarf of its age should
be much too cool to be a DAV star. A natural question of course emerges:
are the accretion rates within CVs with DO or DB primaries suitable to keep
these white dwarfs in the corresponding instability strip as well?

AM CVn is the prototype of a class of ultra-short period helium-accreting
cataclysmic binaries. It turns out that the AM CVn stars probably have a mass
transfer rate that is too high for them to remain in the DO or DB instability
strips, so it is unlikely that there will be many discoveries of pulsating primary
AM CVn stars. Nevertheless, Solheim et al. (1998) monitored AM CVn in
photometry over a 12-d time span during a WET run. While several periodic
light modulations with harmonics of the basic frequency near 950μHz can be
explained as a two-armed spiral structure (Savonije et al. 1994), the authors
also found evidence for a g-mode pulsation, which indicates that the central
white dwarf may in fact be a DO variable. Arras et al. (2006) indeed concluded
from theoretical instability computations for a wide range of white dwarf
masses that g-mode oscillations are predicted in a diversity of CVs.

Recently, Montgomery et al. (2008) discovered light variability in a hot
DQ (carbon atmosphere) white dwarf star, SDSS J142625.71+575218.3, with
significant amplitude at 417.7 s and 208.8 s. Their study followed the discov-
ery of six DQ white dwarfs reported by Dufour et al. (2007). Montgomery
et al. (2008) discuss the possibility that this may be the prototype of a new
class of pulsating white dwarfs, but they also show that the light curve is
remarkably similar to that of AM CVn, so that it may be a carbon analogue
of AM CVn. Indeed, current evolutionary scenarios do not predict the exis-
tence of DQ white dwarfs and binarity may be an important factor in their



136 2 Stellar Oscillations across the Hertzsprung-Russell Diagram

formation. Fontaine & Brassard (2008b), on the other hand, made instability
computations for single white dwarfs and confirms that there exists a DQV
instability region. Thus, while the precise nature of these stars and their rela-
tion to the AM CVn stars certainly needs further studies, the DQV stars may
constitute an interesting new class of compact pulsators, in any case.

2.8.8 X-Ray Burst Oscillations

Many of the currently known neutron stars reside in close binaries, as this is
a very convenient location to allow their observational detection. Besides the
importance of surface oscillations in explaining the observed complex features
of neutron stars discussed above, Piro & Bildsten (2006) provided evidence
that nonradial surface g modes are also a good explanation for X-ray burst
oscillations. Such burst oscillations are thought to be a modulation of the
neutron star rotation frequency. Piro & Bildsten’s model builds further on
the original ideas by Lee (2004) and Heyl (2004) that a retrograde surface
mode with an observed frequency just below the rotation frequency is the
cause of the burst oscillations.

2.9 Conclusions

This completes our introductory journey through the HR Diagram shown in
Fig. 1.12. The rich diversity of pulsating stars that allow – or have the poten-
tial to allow – asteroseismic inference is impressive. New classes of pulsating
stars continue to be discovered; new extreme examples that test the physi-
cal limits of known classes continue to be discovered. Most importantly, both
new and established observational techniques (that we look at in Chapter 4)
and vigorous new efforts are producing unprecedented data sets for astero-
seismic study. We return to the details of some of the most successful studies
in Chapter 7. Next, we turn to fundamental theory of asteroseismology in
Chapter 3.



3

Theory of Stellar Oscillations

To evaluate the diagnostic potential of stellar oscillations and develop effec-
tive methods to interpret the observations we need an understanding of the
possible modes of oscillation and of the dependence of their frequencies on the
properties of the stellar interior. This is based on numerical computations of
oscillations for different stellar models, but various forms of asymptotic anal-
ysis are also highly illuminating for the understanding and form the basis for
very efficient techniques to interpret the observations.

In the present Chapter we develop the theoretical foundation for the study
of stellar oscillations, starting with a brief summary of the relevant aspects of
hydrodynamics, and consider some examples of the behaviour of the modes,
in terms of numerical calculations and asymptotic analysis. Aspects that are
particularly relevant to the Sun and solar-like stars are taken up in Chapter 7.

3.1 General Hydrodynamics

To provide a background for the presentation of the theory of stellar oscil-
lations, this section briefly discusses some basic principles of hydrodynamics.
A slightly more detailed description, but still essentially without derivations,
was given by J. P. Cox (1980). In addition, any of the many detailed books
on hydrodynamics (e.g., Landau & Lifshitz 1966; Batchelor 1967; Thompson
2006) can be consulted. Ledoux & Walraven (1958) give a very comprehensive
introduction to hydrodynamics, with special emphasis on the application to
stellar oscillations.

3.1.1 Equations of Hydrodynamics

It is assumed that the gas can be treated as a continuum, so that its proper-
ties can be specified as functions of position r and time t. These properties
include the local density ρ(r, t), the local pressure p(r, t) (and any other ther-
modynamic quantities that may be needed), as well as the local instantaneous
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velocity v(r, t). Here r denotes the position vector to a given point in space,
and the description therefore corresponds to what is seen by a stationary
observer. This is known as the Eulerian description. In addition, it is often
convenient to use the Lagrangian description, which is that of an observer who
follows the motion of the gas. Here a given element of gas can be labelled,
e.g., by its initial position r0, and its motion is specified by giving its position
r(t, r0) as a function of time. Its velocity

v(r, t) =
dr

dt
at fixed r0 (3.1)

is equivalent to the Eulerian velocity mentioned above.
The time derivative of a quantity φ, observed when following the motion, is

dφ
dt

=
(
∂φ

∂t

)

r
+ ∇φ · dr

dt
=
∂φ

∂t
+ v · ∇φ . (3.2)

The time derivative d/dt following the motion is also known as the material
time derivative; in contrast ∂/∂t is the local time derivative (i.e., the time
derivative at a fixed point).

The properties of the gas are expressed as scalar and vector fields. Thus we
need a little vector algebra; convenient summaries can be found, e.g., in books
on electromagnetism (such as Jackson 1975; Reitz et al. 1979). In addition,
we need Gauss’s theorem:

∫

∂V

a · n dA =
∫

V

div a dV , (3.3)

where V is a volume, with surface ∂V , n is the outward directed normal to
∂V , and a is any vector field. From this one also obtains

∫

∂V

φn dA =
∫

V

∇φdV (3.4)

for any scalar field φ.

3.1.1.1 The Equation of Continuity

The fact that mass is conserved can be expressed as

∂ρ

∂t
+ div (ρv) = 0 , (3.5)

where ρ is density. This is a typical conservation equation, balancing the rate
of change of a quantity in a volume with the flux of the quantity into the
volume. Had there been any sources of mass, they would have appeared on
the right-hand side. By using the relation (3.2), Eq. (3.5) may also be written

dρ
dt

+ ρ div v = 0 , (3.6)
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giving the rate of change of density following the motion. Note that ρ = 1/V ,
where V is the volume of unit mass; thus an alternative formulation is

1
V

dV
dt

= div v . (3.7)

Hence div v is the rate of expansion of a given volume of gas, when following
the motion.

3.1.1.2 Equations of Motion

Under solar or stellar conditions one can generally ignore the internal friction
(or viscosity) in the gas. The forces on a volume of gas therefore consist of

i) Surface forces, i.e., the pressure on the surface of the volume
ii) Body forces.

Thus the equations of motion can be written

ρ
dv

dt
= −∇p+ ρf , (3.8)

where f is the body force per unit mass which has yet to be specified. The
pressure p is defined such that the force on a surface element dA with outward
normal n is −pn dA. This may be identified with the ordinary thermodynamic
pressure.

By using Eq. (3.2), we may also write Eq. (3.8) as

ρ
∂ v

∂t
+ ρv · ∇v = −∇p+ ρf . (3.9)

Among the possible body forces we consider only gravity. Thus in partic-
ular we neglect effects of magnetic fields, which might otherwise provide a
body force on the gas. The force per unit mass from gravity is the gravita-
tional acceleration g, which can be written as the gradient of the gravitational
potential Φ:

g = −∇Φ , (3.10)

where Φ satisfies the Poisson equation

∇2Φ = 4πGρ . (3.11)

It is often convenient to use also the integral solution to the Poisson equation

Φ (r, t) = −G
∫

V

ρ(r′, t)dV ′

|r − r′| , (3.12)

where the integral is over the volume V of the star.
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3.1.1.3 Energy Equation

To complete the equations we need a relation between p and ρ, which can be
obtained from the thermodynamical properties and the energetics of the gas.
Specifically, the system satisfies the first law of thermodynamics,

dq
dt

=
dE
dt

+ p
dV
dt

; (3.13)

here dq/dt is the rate of heat loss or gain, and E the internal energy, per
unit mass. As before V = 1/ρ is specific volume. Thus Eq. (3.13) expresses
the fact that the heat gain goes partly into a change in the internal energy,
partly into work expanding or compressing the gas. Alternative formulations
of Eq. (3.13), using the equation of continuity, are

dq
dt

=
dE
dt

− p

ρ2

dρ
dt

=
dE
dt

+
p

ρ
div v . (3.14)

By using thermodynamical identities the energy equation can be expressed in
terms of other, and more convenient, variables,

dq
dt

=
1

ρ(Γ3 − 1)

(
dp
dt

− Γ1p

ρ

dρ
dt

)
(3.15)

= cp

(
dT
dt

− Γ2 − 1
Γ2

T

p

dp
dt

)
(3.16)

= cV

[
dT
dt

− (Γ3 − 1)
T

ρ

dρ
dt

]
. (3.17)

Here cp and cV are the specific heat per unit mass at constant pressure and
volume, and the adiabatic exponents are defined by

Γ1 =
(
∂ ln p
∂ ln ρ

)

ad

,
Γ2 − 1
Γ2

=
(
∂ lnT
∂ ln p

)

ad

, Γ3 − 1 =
(
∂ lnT
∂ ln ρ

)

ad

. (3.18)

These relations are discussed in more detail in, e.g., Cox & Giuli (1968; up-
dated by Weiss et al. 2004).

It is evident that the relation between p, ρ and T , as well as the Γi’s,
depend on the thermodynamical state and composition of the gas. Indeed, as
will be discussed in Section 7.1.7, the dependence of Γ1 on the properties of the
gas forms the basis for using observed solar oscillation frequencies to probe the
details of the statistical mechanics of partially ionized gases and to infer the
helium abundance of the solar convective envelope. However, in many cases
one may as a first approximation regard the gas as fully ionized and neglect
effects of degeneracy and radiation pressure, as well as Coulomb interactions.
Then the system behaves like an ideal gas, with the simple equation of state

p =
kBρT

μmu
, (3.19)
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where kB is Boltzmann’s constant, mu is the atomic mass unit and μ is the
mean molecular weight which is determined solely by the composition. Also,
in this case

Γ1 = Γ2 = Γ3 = 5/3 . (3.20)

We need to consider the heat gain in more detail. Specifically, it can be
written as

ρ
dq
dt

= ρ ε− div F ; (3.21)

here ε is the rate of energy generation per unit mass (e.g., from nuclear reac-
tions), and F is the flux of energy. In most cases, radiation is the only signifi-
cant contributor to the local energy flux; in particular, molecular conduction
is negligible. However, very efficient electron conduction plays a major role
in regions dominated by degenerate electrons, such as in the cores of highly
evolved stars or in white dwarfs, making these regions nearly isothermal.

In convection zones turbulent gas motion provides a very efficient trans-
port of energy. Ideally the entire hydrodynamical system, including convec-
tion, must be described as a whole. In this case only the radiative flux would
be included in Eq. (3.21). However, under most circumstances the resulting
equations are too complex to be handled analytically or numerically. Thus it
is customary to separate out the convective motion, by performing averages
of the equations over length scales that are large compared with the convec-
tive motion, but small compared with other scales of interest. In this case the
convective flux appears as an additional contribution in Eq. (3.21). The con-
vective flux must then be determined, from the other quantities characterizing
the system, by considering the equations for the turbulent motion. A familiar
example of this (which is also characteristic of the lack of sophistication in
current treatments of convection) is the mixing-length theory.

The incorporation of convection in the hydrodynamical equations was dis-
cussed in some detail by Unno et al. (1989). However, it is fair to say that
this is currently one of the principal uncertainties in stellar hydrodynamics.

The general calculation of the radiative flux is also non-trivial. In stellar
atmospheres the full radiative transfer problem, as known from the theory of
the structure of stellar atmospheres, must be solved in combination with the
hydrodynamic equations. This is another active area of research, and the sub-
ject of a major monograph (Mihalas & Mihalas 1984). In stellar interiors the
mean free path of photons is very short compared with the scale over which
the structure changes; thus the radiative energy transport is a diffusive pro-
cess, which can be treated in the diffusion approximation, where the radiative
flux is given by

F = − 4π
3κρ

∇B = − 4ac̃T 3

3κρ
∇T ; (3.22)

here B = (ac̃/4π)T 4 is the integrated Planck function, κ is the opacity, c̃ is
the speed of light1 and a is the radiation density constant. Equation (3.22)
1 We use c̃ to distinguish from the extensively used c for sound speed.
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provides a relation between the state of the gas and the radiative flux that is
analogous to a simple conduction equation.

When the mean free path of a photon is very large, one can neglect the
contribution from absorption to the heating of the gas. Then we have Newton’s
law of cooling,

div F = 4πρκaB , (3.23)

where κa is the opacity arising from absorption. The intermediate case in
principle requires a full treatment of radiative transfer. However, in simplified
modelling of static stellar atmospheres one often uses the Eddington approxi-
mation, relating the mean intensity and the radiation pressure. As shown by
Unno & Spiegel (1966), this can be generalized to the three-dimensional case,
to yield

div F = −4πρκa(J −B) , (3.24)

F = − 4π
3(κa + κs)ρ

∇J , (3.25)

where κs is the scattering opacity and J is the mean intensity. When κaρ→ ∞,
J � B and hence, according to Eq. (3.25), we recover the diffusion approxima-
tion, Eq. (3.25), with κ = κa +κs. Furthermore, the Eddington approximation
has the correct limit in the optically thin case.

Here we have implicitly assumed that the scattering and absorption coeffi-
cients are independent of the frequency of radiation. In the diffusion approxi-
mation, the generalization to frequency-dependence leads to the introduction
of the Rosseland mean opacity. In the optically thin case, one must in general
take into account the details of the distribution of intensity with frequency;
thus, in Eqs (3.23)–(3.25) the absorption and scattering coefficients must be
thought of as suitable averages, whereas F and J are frequency-integrated
quantities.

3.1.2 The Adiabatic Approximation

For the purpose of calculating stellar oscillation frequencies, the complica-
tions of the energy equation can be avoided to a high degree of precision by
neglecting the heating term in the energy equation. To see that this is justified,
consider the energy equation in the form, using Eq. (3.22)

dT
dt

− Γ2 − 1
Γ2

T

p

dp
dt

=
1
cp

[
ε +

1
ρ

div
(

4ac̃T 3

3κρ
∇T

)]
. (3.26)

Here the term in the temperature gradient can be estimated as

1
ρcp

div
(

4ac̃T 3

3κρ
∇T

)
∼ 4ac̃T 4

3κρ2cpL2
=

T

τF
, (3.27)

where L is a characteristic length scale, and τF is a characteristic time scale
for radiation,
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τF =
3κρ2cpL2

4ac̃T 3
� 1012κρ

2L2

T 3
, in cgs units . (3.28)

Typical values for the entire Sun are κ = 1 cm2 g−1, ρ = 1 g cm−3, T =
106 K, L = 1010 cm, and hence τF ∼ 107 yr. This corresponds to the Kelvin-
Helmholtz time for the star. For the solar convection zone the corresponding
values are κ = 100 cm2 g−1, ρ = 10−5 g cm−3, T = 104 K, L = 109 cm, and
hence τF ∼ 103 yr. In the outer parts of the star the term in ε vanishes, whereas
in the core it corresponds to a characteristic time τε ∼ cpT/ε which is again of
the order of the Kelvin-Helmholtz time. T/τF or T/τε must be compared with
the time derivative of T in Eq. (3.26), which can be estimated as T /(period of
oscillation). Typical periods are of the order of minutes to hours, and hence
the heating term in Eq. (3.26) is generally very small compared with the time-
derivative terms. Near the surface, on the other hand, the density, and hence
the radiative time scale, is low, and the full energy equation must be taken
into account.

Where the heating can be neglected, the motion occurs adiabatically. Then
p and ρ are related by

dp
dt

=
Γ1p

ρ

dρ
dt

. (3.29)

This equation, together with the continuity equation (3.5), the equations of
motion (3.9) and the Poisson equation (3.11), form the complete set of equa-
tions for adiabatic motion. Much of our subsequent work is based on these
equations.

3.1.3 Equilibrium States and Perturbation Analysis

A general hydrodynamical description of a complete star, using the equations
presented in the preceding section, is far too complex to handle, even numer-
ically on the largest existing computers. Fairly realistic simulations can be
made of convection in small regions near stellar surfaces (e.g., Stein & Nord-
lund 1998; Ludwig et al. 2002; Stein et al. 2007; Trampedach 2007; Nordlund
et al. 2009), by stretching the capabilities of existing computers to the limits;
however, even computations extending over weeks only allow detailed simu-
lations covering a few hours of stellar time. Although this is a tremendous
achievement, of great value to our understanding of stellar convection and
oscillations, it clearly demonstrates the impracticality of a direct numerical
solution for, say, general oscillations involving an entire star. Furthermore,
even to the extent that such a solution were possible, the results would in
general be so complicated that a simplified analysis is needed to understand
them.

Fortunately, in the case of stellar oscillations, considerable simplifications
are possible. The observed solar oscillations, and solar-like oscillations of main-
sequence stars, have very small amplitudes compared with the characteristic
scales of the star, and so they can be treated as small perturbations around
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a static equilibrium state. Even in “classical” pulsating stars, where the sur-
face amplitudes may be large, most of the energy in the motion is in re-
gions where the amplitudes are relatively small; thus many of the properties
of these oscillations, including their periods, can be understood in terms of
small-perturbation theory. In this section we discuss the general equations for
such small perturbations.

3.1.3.1 The Equilibrium Structure

The equilibrium structure is assumed to be static, so that all time derivatives
can be neglected. In addition, we assume that there are no velocities. Then the
continuity equation, Eq. (3.5), is trivially satisfied. The equations of motion
(3.9) reduce to the equation of hydrostatic support,

∇ p0 = ρ0g0 = −ρ0 ∇Φ0 , (3.30)

where we have denoted equilibrium quantities with the subscript “0”. The
Poisson equation (3.11) is unchanged,

∇2Φ0 = 4πGρ0 . (3.31)

Finally, the energy equation (3.21) is

0 =
dq
dt

= ε0 −
1
ρ0

div F 0 . (3.32)

It might be noted that one often considers equilibrium structures that
change on long time scales (see also Section 1.6.1). Here hydrostatic equilib-
rium is enforced (departures from hydrostatic equilibrium result in motion on
essentially the free-fall time scale for the star, of the order of hours). However,
it is not assumed that there is no heating, so that the general energy equation,
Eq. (3.21), is used. Such a star is said to be in hydrostatic, but not in thermal,
equilibrium. Typical examples are stars where nuclear burning does not sup-
ply the main source of energy, as during the pre-main-sequence contraction,
or after hydrogen exhaustion in the core. Even during normal main-sequence
evolution the heating term provides a small contribution to the energy, which
is normally taken into account in calculations of stellar evolution. However,
we need not consider this further here.

For the present purpose the most important example of equilibrium is
clearly a spherically symmetric state, where the structure depends only on
the distance r to the centre. Here g0 = −g0ar, where ar is a unit vector
directed radially outward, and Eq. (3.30) becomes

dp0

dr
= −g0ρ0 . (3.33)

Also, the Poisson equation may be integrated once, to yield
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g0 =
G

r2

∫ r

0

4πρ0r
′2 dr′ =

Gm0

r2
, (3.34)

where m0(r) is the mass in the sphere interior to r. The flux is directed radially
outward, F = Fr,0ar, so that the energy equation gives

ρ0ε0 =
1
r2

d
dr
(
r2 Fr,0

)
=

1
4πr2

dL0

dr
,

where L0 = 4πr2 Fr,0 is the total flow of energy through the sphere with radius
r; hence

dL0

dr
= 4πr2ρ0ε0 . (3.35)

Finally, the diffusion expression (3.22) for the flux may be written

dT0

dr
= − 3κ0ρ0

16πr2ac̃T 3
0

L0 . (3.36)

Equations (3.33)–(3.36) are clearly the familiar equations for stellar structure
(e.g., Kippenhahn & Weigert 1990).

3.1.3.2 Perturbation Analysis

We now consider small perturbations around the equilibrium state. Thus, e.g.,
the pressure is written as

p(r, t) = p0(r) + p′(r, t) , (3.37)

where p′ is a small perturbation; this is the so-called Eulerian perturbation,
i.e., the perturbation at a given point. The equations are then linearized in
the perturbations, by expanding them in the perturbations and retaining only
terms that do not contain products of the perturbations.

Just as in the general case it is convenient to use also a description in-
volving a reference frame following the motion; the perturbation in this frame
is called the Lagrangian perturbation. If an element of gas is moved from r0

to r0 + δδδr due to the perturbation, the Lagrangian perturbation to pressure
may be calculated as

δp(r) = p(r0 + δδδr) − p0(r0) = p(r0) + δδδr · ∇p0 − p0(r0)
= p′(r0) + δδδr · ∇p0 , (3.38)

to leading order in the perturbations; thus ∇p has been replaced by ∇p0. The
relation (3.38) between the Eulerian and Lagrangian perturbations is com-
pletely equivalent to the relation (3.2) between the local and the material
time derivative. Note also that the velocity is given by the time derivative of
the displacement δδδr,
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v =
∂δδδr

∂t
. (3.39)

Equations for the perturbations are obtained by inserting expressions like
Eq. (3.37) in the full equations, subtracting equilibrium equations and ne-
glecting quantities of order higher than one in p′, ρ′, v, etc. For the continuity
equation the result is

∂ρ′

∂t
+ div (ρ0v) = 0 , (3.40)

or, by using Eq. (3.39) and integrating with respect to time

ρ′ + div (ρ0δδδr) = 0 . (3.41)

Note that this equation may also, by using the analogue for ρ to Eq. (3.38),
be written as

δρ + ρ0div (δδδr) = 0 , (3.42)

which corresponds to Eq. (3.6).
The equations of motion become

ρ0
∂2δδδr

∂t2
= ρ0

∂v

∂t
= −∇p′ + ρ0g

′ + ρ′g0 , (3.43)

where, obviously, g′ = −∇Φ′. Also, the perturbation Φ′ to the gravitational
potential satisfies the perturbed Poisson equation

∇2Φ′ = 4πGρ′ , (3.44)

with the solution, equivalent to Eq. (3.12)

Φ′ = −G
∫

V

ρ′(r′, t)
|r − r′| dV ′ . (3.45)

The energy equation requires a little thought. We need to calculate, e.g.,

dp
dt

=
∂p

∂t
+ v · ∇p =

∂p′

∂t
+ v · ∇p0 =

∂p′

∂t
+
∂δδδr

∂t
· ∇p0 =

∂

∂t
(δp) , (3.46)

to first order in the perturbations. Note that to this order there is no difference
between the local and the material time derivative of the perturbations . Thus
we have for the energy equation from, e.g., Eq. (3.15),

∂δq

∂t
=

1
ρ0(Γ3,0 − 1)

(
∂δp

∂t
− Γ1,0p0

ρ0

∂δρ

∂t

)
. (3.47)

This equation is most simply expressed in Lagrangian perturbations, but it
may be transformed into Eulerian perturbations by using Eq. (3.38). From
Eq. (3.21) the perturbation to the heating rate is given by

ρ0
∂δq

∂t
= δ(ρε− div F ) = (ρε− div F )′ , (3.48)
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if Eq. (3.32) is used. Finally, it is straightforward to obtain the perturbation
to the radiative flux, in the diffusion approximation from, Eq. (3.22).

For adiabatic motion we neglect the heating term and obtain

∂δp

∂t
− Γ1,0p0

ρ0

∂δρ

∂t
= 0 ,

or, by integrating over time

δp =
Γ1,0p0

ρ0
δρ ; (3.49)

in Eulerian form this becomes

p′ + δδδr · ∇p0 =
Γ1,0p0

ρ0
(ρ′ + δδδr · ∇ρ0) . (3.50)

3.1.4 Simple Waves

It is instructive to consider simple examples of wave motion. This provides an
introduction to the techniques needed to handle the perturbations. In addi-
tion, general stellar oscillations can in many cases be approximated by sim-
ple waves, which therefore give physical insight into the behaviour of the
oscillations.

3.1.4.1 Acoustic Waves

As the simplest possible equilibrium situation, we may consider acoustic waves
in a spatially homogeneous medium. Here all derivatives of equilibrium quan-
tities vanish. According to Eq. (3.30) gravity must then be negligible. Such a
situation clearly cannot be realized exactly. However, if the equilibrium struc-
ture varies slowly compared with the oscillations, this may be a reasonable
approximation. We also neglect the perturbation to the gravitational poten-
tial; for rapidly varying perturbations regions with positive and negative ρ′

nearly cancel in Eq. (3.45), and hence Φ′ is small. Finally, we assume the
adiabatic approximation, Eq. (3.49).

The equations of motion (3.43) give

ρ0
∂2δδδr

∂t2
= −∇p′ ,

or, by taking the divergence

ρ0
∂2

∂t2
(div δδδr) = −∇2p′ .

However, div δδδr can be eliminated by using the continuity Eq. (3.41), and p′

can be expressed in terms of ρ′ from the adiabatic relation. The result is
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∂2ρ′

∂t2
=
Γ1,0p0

ρ0
∇2ρ′ = c20∇2ρ′ , (3.51)

where
c20 ≡ Γ1,0p0

ρ0
(3.52)

has the dimension of a squared velocity. This equation has the form of a wave
equation. Thus it has solutions in the form of plane waves2

ρ′ = a exp[i(k · r − ω t)] , (3.53)

in terms of the wave vector k and the angular frequency ω. By substituting
Eq. (3.53) into Eq. (3.51) we obtain

− ω2ρ′ = c20 div (ikρ′) = −c20|k|
2
ρ′ . (3.54)

Thus this is a solution, provided ω satisfies the dispersion relation

ω2 = c20 |k|2 . (3.55)

The waves are plane sound waves, and Eq. (3.55) is the dispersion relation
for such waves. This identifies c0 as the speed of propagation of the waves
and hence as the adiabatic sound speed. We note that when the ideal gas law,
Eq. (3.19), is satisfied the sound speed is given by

c20 =
Γ1,0kBT0

μmu
. (3.56)

Thus c0 is essentially determined by T0/μ.
With a suitable choice of phases the real solution can be written as

ρ′ = a cos(k · r − ωt) , (3.57)
p′ = c20a cos(k · r − ωt) , (3.58)

δδδr =
c20
ρ0ω2

a cos(k · r − ωt+
π

2
) k . (3.59)

Thus the displacement δδδr, and hence the velocity v, is in the direction of the
wave vector k.

3.1.4.2 Internal Gravity Waves

As a slightly more complicated case, we consider internal gravity waves in a
layer of gas stratified under gravity. Thus here there is a pressure gradient,

2 As discussed in more detail in Section C.1, it is convenient to write the solution
in complex form; the physically realistic solution is obtained by taking the real
part of the complex solution.
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determined by Eq. (3.33). However, we assume that the equilibrium quantities
vary so slowly that their gradients can be neglected compared with gradients of
perturbations. Also, as before, we neglect the perturbation to the gravitational
potential. Clearly one solution must be the adiabatic sound waves considered
above. However, here we seek other solutions in the form of waves with much
lower frequencies.

It is possible to derive an approximate wave equation under these cir-
cumstances (cf. Section 3.4.3). However, to simplify the analysis we assume
a solution in the form of a plane wave from the outset. Thus we take all
perturbation variables to vary as

exp[i(k · r − ωt)] . (3.60)

Because of the presence of gravity there is a preferred direction in the problem.
We choose a vertical coordinate r directed upward, so that g0 = −g0ar, and

∇p0 =
dp0

dr
ar , ∇ρ0 =

dρ0

dr
ar . (3.61)

Also, we separate the displacement δδδr and the wave vector k into radial and
horizontal components,

δδδr = ξrar + ξξξh , (3.62)

k = krar + kh . (3.63)

The radial and horizontal components of Eqs (3.43) are

− ρ0ω
2ξr = −ikrp

′ − ρ′g0 , (3.64)

− ρ0ω
2ξξξh = −i khp

′ , (3.65)

and the continuity equation, Eq. (3.41), can be written

ρ′ + ρ0ikrξr + ρ0i kh · ξξξh = 0 . (3.66)

From Eqs (3.65) and (3.66) we find the pressure perturbation

p′ =
ω2

k2
h

(ρ′ + ikrρ0ξr) . (3.67)

This may be used in Eq. (3.64), to obtain

− ρ0ω
2ξr = −i

kr

k2
h

ω2ρ′ + ω2ρ0
k2

r

k2
h

ξr − ρ′g0 . (3.68)

For very low frequencies the first term in ρ′ can be neglected compared with
the second, yielding

− ρ0ω
2

(
1 +

k2
r

k2
h

)
ξr = −ρ′g0 . (3.69)
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Fig. 3.1. Perturbations to a layer stratified under gravity, illustrated by the
motion of a blob of fluid, from the lower location (1) to the upper location (2).
At the lower location matter inside the blob is assumed to be in equilibrium
with the surroundings, so that p∗1 = p1, ρ

∗
1 = ρ1. At the upper location the

difference, e.g., ρ∗2−ρ2 corresponds to the Eulerian perturbation ρ′ while ρ∗2−ρ1

corresponds to the Lagrangian perturbation δρ.

This equation has a fairly simple physical meaning, which is best understood
by regarding the perturbation as a blob of fluid displaced in the vertical di-
rection, as illustrated in Fig. 3.1, with the resulting changes in pressure and
density inside the blob and in the environment. Buoyancy acting on the den-
sity perturbation provides a vertical force −ρ′g0 per unit volume that drives
the motion. The left-hand side gives the vertical acceleration times the mass
ρ0 per unit volume; however, it is modified by the term in the wave num-
bers. This arises from the pressure perturbation; in order to move vertically,
a blob of gas must displace matter horizontally, and this increases its effec-
tive inertia. This effect is stronger the longer the horizontal wavelength of the
perturbation, and hence the smaller its horizontal wave number.

The adiabatic relation (3.50) gives

ρ′ = c−2
0 p′ + ρ0δδδr ·

(
1

p0Γ1,0
∇p0 −

1
ρ0

∇ρ0

)
. (3.70)

We may estimate the importance of the term in p′ by noting that, according
to Eq. (3.67),

c−2
0 p′

ρ′
� ω2

c20k
2
h

. (3.71)

Here the denominator on the right-hand side is the sound-wave frequency
corresponding to the horizontal wave number kh (cf. Eq. (3.55)); since we
are specifically interested in oscillations with frequencies far lower than the
frequencies of sound waves, the term in p′ can be neglected. Physically, the
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neglect of the pressure perturbation essentially corresponds to assuming that
the perturbation is always in hydrostatic equilibrium; in the description in
Fig. 3.1 it is assumed that there is pressure balance, with p∗2 = p2. Inserting the
expression for ρ′ resulting from Eq. (3.70), when p′ is neglected, in Eq. (3.69)
finally yields

ω2

(
1 +

k2
r

k2
h

)
ξr = N2ξr , (3.72)

where

N2 = g0

(
1
Γ1,0

d ln p0

dr
− d ln ρ0

dr

)
(3.73)

is the square of the buoyancy or Brunt-Väisälä frequency N .
The physical significance of N is perhaps better understood by deriving

this expression from the description in Fig. 3.1. The behaviour of the displaced
blob depends on whether the density ρ∗2 in the displaced element is larger or
smaller than the value ρ2 in its new surroundings. If the density ρ∗2 in the
blob is smaller than the density in the surroundings, there is a net buoyancy
accelerating the blob towards the surface; this corresponds to convective in-
stability. In the opposite case, the blob is heavier than the surroundings and
returns towards the original position; this results in an oscillation of the blob
around the equilibrium position.

Assuming that the motion is sufficiently slow that pressure equilibrium is
maintained, the pressure p∗2 in the element is equal to the pressure p2 outside;
this obviously corresponds to the neglect above of the terms in p′, and the
condition is that the speed of the motion is far below the speed of sound.
Assuming also that the motion takes place adiabatically,

ρ∗2 − ρ∗1 � 1
Γ1,0

ρ0

p0
(p∗2 − p∗1) � 1

Γ1,0

ρ0

p0

dp0

dr
Δr , (3.74)

and hence

ρ′ = ρ∗2 − ρ1 − (ρ2 − ρ1) � ρ0

(
1
Γ1,0

d ln p0

dr
− d ln ρ0

dr

)
Δr , (3.75)

corresponding to Eq. (3.70) above, if the term in p′ is neglected. With the
buoyancy force −gρ′ this leads to the equation of motion corresponding to
Eq. (3.69), without the increase in the inertia, and hence to Eqs (3.72) and
(3.73). When N2 > 0 the element is heavier than the displaced fluid, and
buoyancy forces it back towards the original position; thus as discussed above,
in this case the element executes an oscillation around the equilibrium posi-
tion. On the other hand, if N2 < 0 the element is lighter than the displaced
fluid and buoyancy acts to enhance the motion, forcing the element away from
equilibrium; this corresponds to convective instability.

From Eq. (3.72) we obtain the dispersion relation

ω2 =
N2

1 + k2
r/k

2
h

. (3.76)
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In the oscillatory case, with N2 > 0, N is the oscillation frequency in the limit
of infinite kh, i.e., for infinitely small horizontal wavelength. This corresponds
to oscillations of fluid elements in the form of slender “needles”. For greater
horizontal wavelength the horizontal motion increases the inertia, as discussed
above, and hence decreases the frequency. These waves are known as internal
gravity waves .3

The condition that N2 > 0 can also be written as

d ln ρ0

d ln p0
>

1
Γ1,0

; (3.77)

when it is not satisfied, ω is imaginary, and the motion grows exponentially
with time. This is the linear case of convective instability. Gravity waves, with
positive ω2, cannot propagate in convective regions. We return to this when
discussing the asymptotic theory of stellar oscillations.

When the stability condition is not satisfied, convection sets in. As dis-
cussed in Section 3.2.1.3, this has major consequences for stellar structure.

3.1.4.3 Surface Gravity Waves

In addition to the internal gravity waves described above, there is a distinct,
and more familiar type of gravity waves, known, e.g., from the surface of a
lake. These are waves at a discontinuity in density.

We consider a liquid at constant density ρ0, with a free surface. Thus the
pressure on the surface is assumed to be constant. The layer is infinitely deep.
We assume that the liquid is incompressible, so that ρ0 is constant and the
density perturbation ρ′ = 0. From the equation of continuity we therefore get

div v = 0 . (3.78)

Gravity g is assumed to be uniform, and directed vertically downwards. Since
the density perturbation is zero, so is the perturbation to the gravitational
potential.

In the interior of the liquid the equations of motion reduce to

ρ0
∂v

∂t
= −∇p′ . (3.79)

The divergence of this equation gives

∇2p′ = 0 . (3.80)

We introduce a horizontal coordinate x, and a vertical coordinate z increasing
downward, with z = 0 at the free surface. We now seek a solution in the form
of a wave propagating along the surface, in the x-direction. Here p′ has the
form
3 not to be confused with the gravitational waves in general relativity.
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p′(x, z, t) = f(z) cos(khx− ωt) , (3.81)

where f is a function yet to be determined. By substituting Eq. (3.81) into
Eq. (3.80) we obtain

d2f

dz2
= k2

hf ,

or
f(z) = a exp(−khz) + b exp(khz) . (3.82)

As the layer is assumed to be infinitely deep, b must be zero.
We must now consider the boundary condition at the free surface. Here

the pressure is constant, and therefore the Lagrangian pressure perturbation
vanishes (the pressure is constant on the perturbed surface), i.e.,

0 = δp = p′ + δδδr · ∇p0 = p′ + ξzρ0g0 at z = 0 , (3.83)

where ξz is the z-component of the displacement. This is obtained from the
vertical component of Eq. (3.79), for the solution in Eq. (3.82) with b = 0, as

ξz = − kh

ρ0ω2
p′ . (3.84)

Thus Eq. (3.83) reduces to

0 =
(

1 − g0kh

ω2

)
p′ ,

and hence the dispersion relation for the surface waves is

ω2 = g0kh . (3.85)

The frequencies of the surface gravity waves depend only on their wave-
length and on gravity, but not on the internal structure of the layer, in par-
ticular the density. In this they resemble a pendulum, whose frequency is also
independent of its constitution. Indeed, the frequency of a wave with wave
number kh, and wavelength λ, is the same as the frequency of a mathematical
pendulum with length

L =
1
kh

=
λ

2π
. (3.86)

A simple generalization of the surface gravity waves is to consider waves
at a density discontinuity, between two incompressible fluids, such that the
amplitude of the waves decays exponentially as one moves away from the
interface. We take the density in the lower and upper layer to be ρ2 and ρ1,
respectively, with ρ2 > ρ1. It is straightforward to show that in this case the
dispersion relation is

ω2 =
ρ2 − ρ1

ρ2 + ρ1
g0kh , (3.87)
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by imposing the condition that the pressure perturbation be continuous at
the interface between the two layers.

Although gravity waves at a free surface or a density discontinuity are
clearly highly simplified cases, they have close analogies in asteroseismology.
At high degree the Sun shows the so-called f modes with a behaviour corre-
sponding to surface gravity waves (see Sections 3.5.1 and 7.1.4.3); also, stars
with growing convective cores develop density discontinuities which give rise
to g modes whose nature approximates the interfacial gravity waves (cf. Sec-
tion 3.5.3).

3.2 Equilibrium Stellar Structure

The goal of asteroseismology is to understand the structure and evolution of
stars. Hence a brief background on the properties of stellar interiors is useful
when discussing the diagnostics that we may hope to obtain from asteroseis-
mology. A detailed discussion of stellar structure and evolution is obviously
beyond the scope of the present book. We refer to the many excellent text-
books in the field, particularly the works of Kippenhahn & Weigert (1990),
Hansen et al. (2004) and Maeder (2009). An overview of stellar evolution was
provided in Section 2.1. Here we discuss the physics of stellar interiors and
some aspects of stellar evolution which will be relevant in our discussion of
asteroseismic investigations.

Much of the discussion of stellar evolution is based on what may be termed
the “standard” theory. This in particular neglects complicating effects such
as rotation and magnetic fields, while hydrodynamical processes are either
ignored or treated in a highly simplified manner. This is partly motivated by
ignorance, partly by the fact that many observed properties of stars, before
asteroseismology, can be understood from such simplified models. However,
the effects ignored are undoubtedly important and in particular may have
a drastic influence on the late evolution of stars, for example in supernova
explosions. One of the hopes is that asteroseismology will clearly show the
inadequacy of the simple models and point to ways in which they can be
improved.

We start by discussing the simplified models and end this section with a
brief discussion of the complications.

3.2.1 Basic Properties of Stellar Evolution

Neglecting rotation and other perturbating forces, stars are spherically sym-
metric; we make this assumption here.

3.2.1.1 Hydrostatic Equilibrium

Stars are hydrodynamical systems and hence, at the most basic level, are
described by the equations presented in Section 3.1.1. A major simplification
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in most phases of stellar evolution, and certainly those that are relevant here,
is the separation between the relevant time scales (see Section 1.6.1). Thus it is
assumed that the stars do not change on a dynamical time scale. This requires
that the star is in hydrostatic equilibrium, such that the time derivative on
the right-hand side of Eq. (3.8) can be neglected, resulting in Eq. (3.30). On
the assumption of spherical symmetry this becomes

∂p

∂r
= −Gmρ

r2
, (3.88)

(for simplicity we drop the subscript 0 on equilibrium quantities in this sec-
tion), using the gravitational acceleration given by Eq. (3.34). Here the mass
m(r) inside the distance r to the centre obviously satisfies

∂m

∂r
= 4πr2ρ . (3.89)

3.2.1.2 Energy Equation and Radiative Transport

On the other hand, several evolutionary phases take place sufficiently rapidly
that changes occurring on a thermal time scale are relevant. This is obviously
the case in the pre-main-sequence phase, before hydrogen ignition, where evo-
lution takes place on a thermal time scale. Thus we require the full energy
equation, Eq. (3.21). Given the assumption of spherical symmetry it is conve-
nient to replace the flux F by the luminosity L = 4πr2F . Then Eq. (3.21) can
be written, using also Eq. (3.14), as

∂L

∂r
= 4πr2

(
ρε− ρ

dE
dt

+
p

ρ

dρ
dt

)
. (3.90)

In stellar interiors, where the photon mean-free path is short compared
with the typical scale of changes in structure, the energy transport by radiation
can be approximated by the diffusion approximation, Eq. (3.22), which in the
spherically symmetric case can be written as

∂T

∂r
= − 3κρ

4ac̃T 3

L

4πr2
. (3.91)

In stellar atmospheres the diffusion approximation is not valid and a more
detailed treatment of radiative transfer is required. This can be included in
general modelling of stellar evolution in two ways. One option is to obtain
conditions at the top of the model by matching to an appropriate detailed
model of the stellar atmosphere, e.g., obtained from interpolation in a grid of
such models. Alternatively, the atmospheric structure can be represented by
the relation between temperature and the optical depth τ , defined as

τ =
∫ ∞

r

κρdr . (3.92)



156 3 Theory of Stellar Oscillations

This T (τ) relation can be obtained from a match to detailed atmospheric
models; alternatively, particularly in the case of the Sun, a match to a semi-
empirical atmosphere model can be used. Given T (τ) the pressure structure
of the atmosphere can be obtained by integrating the equation of hydrostatic
support, expressed in terms of τ .

3.2.1.3 Convection

A more serious issue, indeed one of the major uncertainties in stellar mod-
elling, concerns the instability implied by the discussion of internal gravity
waves in Section 3.1.4.2. It follows from Eq. (3.77) that the condition for con-
vective instability is that

1
Γ

≡ d ln ρ
d ln p

<
1
Γ1

. (3.93)

In terms of the description by a displaced blob (see Fig. 3.1) it is easy to see
that a rising element is hotter than the surroundings and hence carries an ex-
cess thermal energy. The simple analysis in Section 3.1.4.2 leads to exponential
growth with time of the displacement of the blob; presumably nonlinear effects
cause it to break up when the velocity becomes too large, leading to a release
of the thermal energy to the surroundings. Thus the convective motion con-
tributes to the energy transport and hence affects the temperature gradient,
requiring that Eq. (3.91) be modified in regions with convective instability.

It is convenient to express the condition for instability in terms of the
temperature gradient, which in the case of radiative transport is given by
Eq. (3.91). For simplicity we use the ideal gas law, Eq. (3.19). Then Eq. (3.93)
can be written as

∇ ≡ d lnT
d ln p

> ∇ad + ∇μ , (3.94)

where

∇ad =
(
∂ lnT
∂ ln p

)

ad

, ∇μ =
d lnμ
d ln p

. (3.95)

Note that typically μ decreases with increasing r and hence decreasing p.
Hence ∇μ contributes to increasing the stability: in regions of varying μ a
blob moving outwards contains matter with a higher mean molecular weight
than the surroundings, contributing to making the blob heavier.

The interpretation of the instability in stellar modelling requires considera-
tion of the temperature gradient required to transport the energy by radiation.
From Eqs (3.91) and (3.88) this is obtained as

∇rad =
3

16πac̃G
κp

T 4

L(r)
m(r)

. (3.96)

Thus those regions are unstable to convection where ∇rad exceeds ∇ad + ∇μ.
Here part of the energy is transported by convection and hence the actual
temperature gradient ∇ is smaller than ∇rad.
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The equivalent conditions Eq. (3.93) and Eq. (3.94) are known as the
Ledoux criterion of convective instability; it is obvious that they provide the
correct condition for dynamical instability. However, the presence of ∇μ is a
complication: since convective motion mixes the stellar material the onset of
convection could cause mixing which would make unstable a region that is
stable according to the Ledoux criterion. Such complications motivate that
models are often computed where the instability is determined according to
the condition

∇rad > ∇ad , (3.97)

known as the Schwarzschild criterion. In fact, it may be argued by extending
the blob discussion that the intermediate case,

∇ad + ∇μ > ∇rad > ∇ad , (3.98)

gives rise to oscillations with growing amplitude of the blob around the equilib-
rium position (e.g., Kippenhahn & Weigert 1990). The nonlinear development
of such motion, known as semiconvection, might cause partial mixing of the
chemical composition while it seems unlikely to have a significant effect on the
temperature gradient. However, the detailed effects of this instability remain
uncertain.

The expression Eq. (3.96) illustrates the circumstances under which con-
vection instability can be expected. One important aspect is L/m, i.e., the
average energy-generation rate inside the point considered. If energy gener-
ation is strongly concentrated near the stellar centre, this quantity is large,
clearly leading to a tendency towards instability. This is the case when ε de-
pends strongly on temperature. In the case of core hydrogen burning, this
happens when the CNO cycle (see below) makes a substantial contribution
to the energy generation, as is the case in stars only slightly more massive
than the Sun; similarly, in later phases of central nuclear burning the energy
generation rate is highly temperature sensitive. In these cases, therefore, the
star has a convective core. Alternatively, convection is likely when the opac-
ity is high. As discussed below, this happens at relatively low temperature,
particularly in the ionization zones of hydrogen and helium, causing convec-
tion in the outer parts of relatively cool stars, including main-sequence stars
of masses below around 2 M�. Red giants have very deep outer convection
zones, covering much of the mass and by far the largest part of the radial
extent of the star.

The calculation of the temperature gradient in convective regions remains
a serious issue. However, even the simplest estimates show that in the bulk
of convective regions the required difference ∇ − ∇ad, on which the efficacy
of convective energy transport depends, is very small, owing to the huge heat
capacity of stellar matter. Thus in most of the star an adequate approximation
in convective regions is that ∇ � ∇ad, or

∂T

∂r
� −∇ad

GmρT

pr2
. (3.99)



158 3 Theory of Stellar Oscillations

As a result, the bulk of a convection zone is at essentially constant specific
entropy, lying on an adiabat, i.e., a curve in parameter space where the ther-
modynamical quantities are related adiabatically, characterized by the specific
entropy. Only near the stellar surface is the density, and hence the heat con-
tent, of matter so low that a substantial superadiabatic gradient ∇−∇ad is
required for energy transport. This superadiabatic region of convective en-
velopes determines the specific entropy in the nearly adiabatic part of the
envelope, and hence has a major effect on the structure of stars with exten-
sive outer convection zones. Simple estimates also show that the typical time
scales of convection is at most months or years, i.e., much shorter than the
nuclear time scales under all except the most extreme circumstances. This has
the important consequence that convective regions can be assumed to have
uniform chemical composition.

It is evident that modelling of cool stars requires at least a characteri-
zation of the upper, superadiabatic region of convective envelopes. Detailed
hydrodynamical modelling of convection is possible in restricted regions in the
upper parts of convective envelopes (e.g., Stein & Nordlund 1998; Ludwig et
al. 2002; for a major review of solar surface convection, including modelling,
see also Nordlund et al. 2009). These provide remarkable good agreement with
the observed properties of stellar atmospheres, including the detailed spectral
line profiles, without invoking additional sources of turbulent line broadening
(e.g., Asplund et al. 2000; Allende Prieto et al. 2002).4 However, they are far
too time consuming to include in stellar evolution modelling and in any case
only involve a small part of the convection zone. Also, comparably realistic
modelling of deeper convective regions is not possible, owing to the huge mis-
match between the relevant dynamical and thermal time scales, both of which
would have to be covered in such simulations.

Thus stellar modelling typically uses a highly simplified description of
convective transport, based on a rough model of the convective dynamics. A
commonly used approach is to use the mixing-length treatment described by
Böhm-Vitense (1958); a physical basis for this formulation, further developed
to describe the interaction with pulsations, was presented by Gough (1977a).
This is characterized by a length scale, the mixing length �ML, determining
the average scale of the convective eddies and commonly parameterized as
αMLHp, a constant times the pressure scale height Hp. The mixing-length pa-
rameter αML is essentially a free parameter of the treatment, whose meaning
furthermore depends on the value of other parameters typically introduced
and differing between different implementations. In solar modelling the value
of αML is determined such that the model of the present Sun has the correct
radius (see Section 7.1.1.1). The resulting value is often assumed to be appli-
cable to models of other stars as well, with little justification. An interesting
alternative is to calibrate αML as a function of stellar parameters by matching

4 In contrast, traditional stellar-atmosphere modelling invokes a parameterized “mi-
croturbulence” to account for the width of the spectral lines; see also Chapter 6.
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mixing-length models to the results of detailed simulations (e.g., Ludwig et
al. 1999; Trampedach et al. 1999; Trampedach 2007). Other simplified treat-
ments of convection have also been proposed. Canuto & Mazzitelli (1991)
developed what they called the full spectrum of turbulence model, which has
seen considerable use. Here, again, a parameter characterizing a convective
length scale is often introduced and calibrated to obtain the correct solar ra-
dius. It should be noted that the detailed treatment of convection only affects
the outermost parts of convective envelopes where the temperature gradient
differs significantly from its adiabatic value. The properties of this region, to-
gether with the model of the stellar atmosphere, determines the value s of the
specific entropy in the bulk of the convection zone, where the temperature
stratification is essentially adiabatic and where s is therefore nearly constant.

3.2.1.4 Composition Changes

Stellar evolution is largely controlled by nuclear burning, fusing lighter ele-
ments into heavier; this change in composition causes changes in the struc-
ture of the star and controls the evolution of the star in the HR Diagram
(cf. Fig. 2.1). The basic effect is simply understood: fusion increases the mean
molecular weight and hence, according to the ideal-gas law, Eq. (3.19), the
pressure would decrease if nothing else changed; this is incompatible with hy-
drostatic equilibrium and hence the core of the star contracts, increasing ρ
and furthermore increasing T as a result of the release the gravitational poten-
tial energy. The increase in temperature increases both the nuclear reaction
rate and the efficacy of radiative energy transport, leading to an increase in
the luminosity of the star. This increase during the main-sequence phase is
evident in Fig. 2.1.

Nuclear burning is not the only process changing the distribution of chemi-
cal elements in the star. As already noted, convective regions can be regarded
as fully mixed. Outside convective regions, however, diffusion and settling
must be taken into account. Thus the full equation for the evolution of the
abundance Xk of some element can be written

∂Xk

∂t
= Rk +

∂

∂m

(
Dk

∂Xk

∂m

)
+

∂

∂m
(VkXk) . (3.100)

Here Xk is the mass fraction of element k, Rk is the rate of change of Xk due
to nuclear reactions, and Dk and Vk are the diffusion and settling coefficients
for element k. In broad terms there is a tendency for heavier elements to settle
towards the centre of the star while lighter elements rise towards the surface.
Diffusion acts to oppose this effect, by reducing gradients in composition.
However, the effects of settling are greatly complicated by the selective action
of radiative forces on elements with spectral lines in the appropriate region of
the radiative spectrum (Michaud 1970). This may cause some elements to rise
towards the surface and create strong variations in the composition as well as
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very unusual surface compositions in some stars. The time scales of these pro-
cesses are typically far longer than the time scale of convective mixing (which
can in fact be modelled as diffusion with a very large diffusion coefficient), and
hence they are only relevant outside convective regions. Further complications
arise from other possible mixing processes which will be discussed below.

3.2.1.5 Simplifications in Standard Modelling

Here we summarize the approximations made in most stellar evolution calcu-
lations which may be said to define their “standard” form:5

• The treatment of convection is generally approximated through a parame-
trization of the properties of the uppermost layers of the convection zone.
A typical (and commonly used) example is the mixing-length formulation
discussed above.

• The dynamical effect of convection (the so-called turbulent pressure) is
ignored.

• It is assumed that there is no mixing outside convectively unstable regions;
also element settling and diffusion are often ignored.

• Effects of rotation are ignored.
• Effects of magnetic fields are ignored.
• Effects of stellar winds are ignored.

Similarly, as discussed in Section 3.1.2, the calculations of oscillation frequen-
cies are often done in the adiabatic approximation. Even when nonadiabatic
effects are taken into account, their treatment is uncertain, since there is no
definite theory for the perturbation to the convective flux induced by the
oscillations. Also, the perturbations to the turbulent pressure are usually ne-
glected.

It should also be noted that much of the uncertain macrophysics is concen-
trated very near the surface. In cool stars this is true of the dynamical effects
of convection, since convective velocities are likely to be very small elsewhere,
and of the details of convective energy transport, while in hot stars the effects
of radiatively driven winds are also predominantly felt near the surface; fur-
thermore, the effects of a visible magnetic field, such as seen in starspots, are
likely only important for the structure of the near-surface layers. As discussed
in Section 7.1.4.1 such near-surface problems have a very characteristic effect
on the oscillation frequencies which helps in isolating their influence in aster-
oseismic analysis of oscillation frequencies. Apart from convective overshoot
and a hypothetical strong internal magnetic field, the remaining difficulties
listed are mainly concerned with the composition profile in the radiative in-
terior of the model.

5 This is evidently a concept that evolves with time, as more detailed and realistic
calculations become feasible.
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3.2.2 Microphysics of Stellar Interiors

As presented in the previous section, the basic equations of stellar evolu-
tion, Eqs (3.88), (3.89), (3.90), (3.91), (3.99) and (3.100), are relatively sim-
ple. These equations, together with the approximations discussed above, de-
fine what might be termed the macrophysics of stellar evolution. However,
in addition to the complications already hinted at, these equations contain
another layer of complexity in the microphysics, i.e., the properties of stel-
lar matter. A description of these properties is required to relate density to
pressure, temperature and composition, to evaluate the opacity, the energy
generation rate and the nuclear rate of change of composition and the rates
of microscopic diffusion and settling. The relevant processes take place in a
strongly interacting plasma of atoms, ions and electrons, and the detailed
physics of these processes is still a matter of considerable uncertainty. One of
the hopes of helio- and asteroseismology is to obtain substantial constraints
on the microphysics of stellar matter from the observed frequencies. As dis-
cussed in Section 7.1.7 this hope has to a large extent been realized in the case
of helioseismic investigations of the solar interior.

3.2.2.1 Equation of State

The equation of state characterizes the thermodynamical properties of stellar
matter; a review of the treatment of the equation of state, and its relation
to helioseismology, was provided by Christensen-Dalsgaard & Däppen (1992).
The simple approximation in Eq. (3.19) ignores a number of important ef-
fects. First of all, account must be taken of partial ionization, the degree of
ionization generally increasing with increasing temperature. In the ideal-gas
approximation this changes the mean molecular weight; also, the energy re-
quired to ionize the constituents of the gas changes the energetics of the gas
and in particular the adiabatic exponents Γ1, Γ2 and Γ3 which are decreased
below their ideal-gas value of 5/3. A simple treatment of ionization using the
Saha equation leads to the unrealistic prediction that matter at the centre
of, say, the Sun is far from fully ionized. This shows that other effects must
contribute to the ionization; these are typically called “pressure ionization”
but in reality involve various types of interaction between the constituents
of the gas. The Coulomb interaction between the charged constituents of the
gas makes a (negative) contribution to the pressure and furthermore affects
the energetics and ionization states. Radiation makes a significant contribu-
tion to the thermodynamical properties which is relatively straightforward to
include, as long as radiation can be treated in the diffusion approximation.
At very high density degeneracy sets in, where electrons, and at near-nuclear
densities neutrons, are pressed into higher-lying energy states as the lower
quantum states in the system are filled. This gives rise to a finite pressure
even in the limit of zero temperature. At sufficiently high density energies
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are even reached in the degenerate matter where relativistic effects become
important.

A very important aspect of dealing with these complicated effects is to en-
sure that the treatment, although necessarily approximate, is thermodynami-
cally consistent in that it satisfies the thermodynamical identities between the
different quantities. When this is not the case the results of using the treat-
ment may depend on, for example, the choice of thermodynamic variables
used to characterize the system.

One way to ensure thermodynamical consistency is to derive the equation
of state from a free energy. The thermodynamical state, at given temperature,
density and composition, say, is then obtained by minimizing the free energy
under the relevant stoichiometric constraints, to obtain the ionization states
and occupation numbers, and the relevant thermodynamic quantities can be
obtained as derivatives of the free energy. This is the basis for the chemi-
cal picture in determining the equation of state. The various contributions
to and complications of the equation of state are incorporated in the defini-
tion of the free energy. A simple, and widely used, form of such an equation
of state is the EFF equation of state, developed by Eggleton et al. (1973);
this was extended to include Coulomb effects, in the CEFF formulation, by
Christensen-Dalsgaard & Däppen (1992). Perhaps the most highly developed
equation of state of this form is the so-called MHD equation of state6 (e.g.,
Mihalas et al. 1988, 1990; Gong et al. 2001). It is characterized by a detailed
treatment of the occupation probabilities of atomic states which eliminates,
in a smooth fashion, the divergence of the partition function of an isolated
atom; also, it leads naturally to full ionization at high densities.

The second way that has been used to ensure thermodynamical consis-
tency is the physical picture. Here, at least in principle, the concepts of atoms
and ions are dropped. Instead, the system is treated as a system of nuclei and
electrons, where atoms and ions form as one of the results of the interactions in
the system. In practice, the system is analysed in terms of activity expansions.
A major advantage of the formalism is that the coupling to the continuum
states removes the divergence of the normal partition function, which is re-
placed by the so-called Planck-Larkin partition function which is finite. This
treatment has been developed as part of the OPAL opacity project at the
Lawrence Livermore Laboratories in the ACTEX equation of state (Rogers et
al. 1996; Rogers & Nayfonov 2002).

Interestingly, despite their fundamentally different treatments, these two
formulations lead to rather similar results (cf. Trampedach et al. 2006), al-
though the remaining differences may to a large extent reflect simplifications
in the MHD treatment. On the other hand, the latter treatment has the advan-
tage of being somewhat computationally simpler, hence allowing the calcula-
tion of equation-of-state tables of higher numerical accuracy or possibly direct
calculation of the equation of state in stellar modelling, as is done routinely,

6 named after Mihalas, Hummer and Däppen.
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e.g., with simple formulations. Thus an emulation of the ACTEX equation of
state through an extension of the MHD formulation is an attractive option
(e.g., Däppen, 2007).

3.2.2.2 Opacity

The opacity depends on the detailed interaction between the radiation and the
constituents of stellar matter; the total flux of energy obviously depends on
an integral over all radiation frequencies. In stellar interiors, where the diffu-
sion approximation is valid, the relevant average is the Rosseland mean opac-
ity, obtained as a harmonic mean of the frequency-dependent opacity. This
has contributions from bound-bound, bound-free and free-free interactions
between radiation and electrons. Thus it depends on the detailed thermody-
namical state of the gas, including the distribution of atoms on ionization and
excitation states; hence the equation of state is a crucial part of the opacity
calculation. The bound-free and free-free contributions approximately depend
on density and temperature as ρT−3.5; this so-called Kramers dependence, as
well as a very large contribution from the ionization of hydrogen and helium,
lead to the large opacity at low temperature. To these atomic contributions
must be added scattering from free electrons; this obviously depends on the
density of free electrons but is otherwise largely independent of density and
temperature.

At sufficiently high density, where the electrons become strongly degen-
erate, electron conduction dominates energy transport. This is the case, in
particular, for low-mass stars on the red-giant branch where the effective
transport renders the stellar core essentially isothermal (e.g., Cassisi et al.
2007).

The bound-bound transitions are a major complication in the opacity cal-
culation since literally millions of transitions must be taken into account. This
has had interesting asteroseismic consequences, in solving two major problems
in the study of stellar oscillations: the instability of the β Cep and SPB stars
and the period ratios between the fundamental and first overtone of radial pul-
sation in double-mode Cepheids and high-amplitude δ Sct stars. It was pointed
out by Simon (1982) that both problems could be solved by invoking a very
substantial opacity increase, by a factor of 2 – 3. The opacity increase required
to match the observed period ratios were determined more precisely by An-
dreasen & Petersen (1988). This was subsequently confirmed in the so-called
OPAL opacity calculations (Iglesias et al. 1990, 1992), the opacity increase be-
ing caused by contributions from bound-bound transitions in predominantly
iron. Very similar results were obtained by a totally independent effort in the
so-called Opacity Project (OP) (Seaton et al. 1992; Seaton 1993). The result
was that instability, through the heat-engine mechanism, could account for
the occurrence of β Cep and slowly pulsating B stars (e.g., Cox et al. 1992;
Moskalik & Dziembowski 1992; see Sections 2.3.6 and 2.3.7). More recently,
Jeffery & Saio (2006) found that the use of the OP opacities, with the inclusion



164 3 Theory of Stellar Oscillations

of nickel lines, improved the agreement with the observed instability region
for the pulsating subdwarf B stars, and Miglio et al. (2007) similarly found
that using the OP opacities gave rise to somewhat more extended instability
regions for main-sequence B stars than did the OPAL tables. Also, period
ratios in agreement with observations were found for Cepheid and δ Sct star
models with masses corresponding to the relevant evolution tracks (Moska-
lik et al. 1992; Kanbur & Simon 1994). This is probably the first example
where asteroseismic inference, in the broadest sense, has led to an update of
the physics of stellar interiors. As discussed in Section 7.1.7 helioseismology
has recently provided evidence that further revisions of the opacity may be
required; corresponding evidence has been found from the modelling of the
range of unstable modes in the β Cep star ν Eri (cf. Section 7.3.2.4).

3.2.2.3 Nuclear Reactions

Apart from the very latest stages of the evolution of massive stars the rele-
vant reactions are fusion of lighter nuclei into heavier. This requires that the
nuclei approach quite closely, overcoming the very considerable Coulomb re-
pulsion. The processes take place through quantum-mechanical tunnelling, at
energies far below the Coulomb energy corresponding to the radii of the nu-
clei. Thus, under stellar conditions, nuclear reactions are slow processes: the
average lifetime of a hydrogen nucleus at the centre of the Sun is of the order
of 5 × 109 yr. Also, in main-sequence stars the rate ε of energy generation is
low compared with typical energy producing devices: at the centre of the Sun
ε � 17 erg g−1 s−1 or 0.0017 W kg−1. Of course, the total energy generation is
huge, as a result of the large mass in the star that is involved in the energy
generation.

The Coulomb barrier depends of the product of the charges of the in-
teracting nuclei. Thus nuclei with lower charges can react at lower energies,
corresponding to lower temperature. Although details of nuclear properties
may cause deviation from this tendency it clearly indicates that the first reac-
tions that take place are those that lead to fusion of hydrogen into helium. A
second important consequence is that reactions involving more highly charged
nuclei depend more strongly on temperature. The temperature sensitivity is
often characterized by using a power-law approximation to ε,

ε � ε0ρT
n , (3.101)

where n determines the temperature sensitivity. An important example are
the reactions involved in hydrogen fusion. The net reaction,

41H → 4He + 2e+ + 2νe , (3.102)

takes place through various series of reactions, each involving fusion of two
nuclei. One chain of reactions, the PP chain, starts with the fusion of two
hydrogen nuclei to a deuterium nucleus, continuing to the formation of a
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helium nucleus. Here the reaction 1H + 1H controls the combined rate of the
chain; as a result of the low charges involved the temperature sensitivity is
relatively low, with n � 4. The second type of reaction is a catalytic reaction,
the CNO cycle, consisting of the successive addition of hydrogen nuclei to
nuclei of carbon, nitrogen and oxygen, starting from 12C and ending with the
production of a helium nucleus and a 12C or 14N nucleus. Here the reaction
controlling the overall rate is 1H + 14N, with a higher product of charges and
hence leading to a temperature dependence corresponding to n � 20. It is
obvious that the PP chain dominates at relatively low temperature and the
CNO cycle at higher temperature. Since the central temperature increases
with stellar mass along the main sequence, the PP chain tends to dominate in
relatively low-mass stars and the CNO cycle in more massive stars. In practice,
for stars of mass higher than around 1.6 M� the CNO cycle produces more
than 75 per cent of the energy at the centre of main-sequence stars and more
than 50 per cent of the total energy. As discussed above, a consequence of
the high temperature sensitivity of the CNO cycle is that L/m in Eq. (3.96)
becomes very large in the core of such stars, leading to the occurrence of a
convective core.

In Eq. (3.102) charge conservation leads to the release of two positrons
which are immediately annihilated by electrons and hence contribute to the
energy release. In addition, lepton number conservation leads to the emission
of two neutrinos. These have an extremely small probability of interacting
with stellar matter and hence escape the star, carrying a fraction of the energy
released in the reaction. Thus the effective energy available to the star depends
on the details of the reactions. As discussed in Section 7.1.1.1 the neutrinos
emitted by the Sun provide an important, if for a long time problematic,
diagnostic of conditions in the solar core.

When one nuclear fuel has been exhausted in the core of a star, the core
contracts and heats up until the temperature becomes sufficiently high that
the next set of reactions can take place. Furthermore, outside the core the
temperature is typically sufficiently high that burning of the original fuel can
continue in a shell-burning source. Following exhaustion of hydrogen the next
burning stage is the fusion of helium which takes place in the triple-alpha
process,

34He → 12C , (3.103)
accompanied by further fusion with helium to produce 16O. These are the
final reactions for stars of masses below around 8 M�. In more massive stars
nuclear fusion continues until the formation of iron-group nuclei; since these
are the most strongly bound nuclei no further energy can be produced from
fusion.

A substantial uncertainty in the computation of the energy generation
rate and the rate of change of the abundances are the basic parameters of
the nuclear reactions. These must be determined experimentally, but owing
to the relatively low energies at which the reactions take place in stars the
experiments are extremely difficult and significant uncertainties remain in



166 3 Theory of Stellar Oscillations

many important reactions, including the reaction 1H + 14N (Formicola et al.
2004). Further uncertainties come from the fact that the reactions take place
in a plasma, where the other constituents may partly shield the Coulomb
repulsion between the reacting nuclei. A procedure has been developed for
dealing with the screening (Salpeter 1954), but doubts have been raised about
the physical background of this procedure (e.g., Shaviv & Shaviv 2001). Stellar
models are in general relatively insensitive to modifications to the reactions
rates: owing to the high temperature sensitivity a change in the reaction rate
can be compensated for by a small modification to the temperature. However,
the onset of convective cores is obviously sensitive to the balance between
the PP chain and the CNO cycle and hence might be a useful diagnostic of
the nuclear reactions, if the presence or not of convective cores in a sufficient
sample of stars could be ascertained from asteroseismology.

3.2.2.4 Diffusion and Settling

The transport processes in stellar matter are described by the Boltzmann
equation of the kinetic theory of gases, solved in a suitable approximation.
The transport coefficients depend in a complex manner on the collisions and
other interactions between the constituents of the gas. The long-range nature
of the Coulomb interaction causes particular problems, related also to the cor-
responding effects in the treatment of the equation of state and the screening
of nuclear reactions. A further complication is the need to deal with a mixture
of atoms, ions and free electrons. A detailed discussion of the treatment of
diffusion and settling was provided by Burgers (1969); this provides the basis
for many of the implementations currently used (for a brief, recent review, see
Thoul & Montalbán 2007). Michaud & Proffitt (1993) gave simple approxi-
mate expressions for the diffusion velocity, highlighting the contributions from
the pressure and temperature gradients.

As discussed above, radiative forces caused by strong selective absorption
can have a strong effect on the distribution of elements, in some cases leading
to extreme accumulation of certain elements at the stellar surface. Evidently,
the treatment of these radiative effects require consideration of the detailed
frequency-dependent absorption coefficients of the ions involved and hence is
closely related to the determination of the opacity. As a further complication,
such effects may cause strong variations in the relative distribution of heavy
elements with time and with the location of the star, requiring recomputa-
tion of the opacity from its individual contributions at each location in space
and time. This clearly results in a major increase in the computation effort
for stellar modelling. Such effects are therefore most often ignored; however,
extensive and very interesting calculations of this nature have been carried
out by the Montreal group (e.g., Turcotte et al. 1998a,b, 2000, Richard et al.
2001, Michaud et al. 2007).

As discussed above, diffusion and settling are relevant outside convective
regions. The speed of settling depends strongly on the interaction between the
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Fig. 3.2. Diffusion time scales (cf. Eq. (3.104)) for models of a ZAMS 2 M�
star (continuous) and the present Sun (dashed). The thinner grey lines mark
regions in convection zones, where convection ensures complete mixing.

constituents of the gas and hence on the density. Thus the characteristic time
scale of settling varies greatly through the star. This is illustrated in Fig. 3.2
for a zero-age main-sequence model of a 2 M� star and a model of the present
Sun. Here we show an effective settling time scale τdif , defined as

τ−1
dif =

1
Xk

∂

∂m
(VkXk) (3.104)

(cf. Eq. (3.100)) for the case of helium settling. In the solar case the settling
time scale exceeds 9 Gyr in the region (indicated in the figure by the bolder
curve) beneath the convective envelope; thus settling has a modest, if very
significant, effect on solar models (see Section 7.1.7 and Fig. 7.29). However,
in the 2 M� star the settling time scale is only 5 Myr just beneath the very thin
outer convection zone; thus in this case helium very rapidly drains out of the
near-surface layers, unless settling is counteracted by other processes, such
as circulation or turbulence which cause mixing outside convective regions,
or mass loss which drags fresh helium to the surface layers at a rate which
compensates for settling (see also Vauclair et al. 1974).

3.2.3 Standard Stellar Evolution

Section 2.1 provided a general overview of stellar properties and stellar evolu-
tion. Here we concentrate on those evolutionary stages for which asteroseismic
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Fig. 3.3. Evolution tracks for pre-main-sequence evolution for a selection of
masses, indicated in units of M�. The crosses mark the age along the tracks, in
steps of 1 Myr. The dashed lines sketch the location of the classical instability
strip.

investigations may be relevant. Figure 3.3 shows evolution tracks for stars in
the pre-main-sequence phase, before the onset of equilibrium hydrogen burn-
ing.7 This phase is dominated by the contraction of the stars, with much
of the stellar luminosity coming from the release of gravitational potential
energy, and hence evolution takes place on the Kelvin-Helmholz time scale.
As a result of the contraction the effective temperature increases and the
stars move across the HR Diagram. In particular, for masses above around
1.5 M� the stars pass through the Cepheid instability strip where pulsations
would be expected. In fact, as discussed in Section 2.4 δ Sct-like pulsations
have been observed in a number of pre-main-sequence stars (e.g., Zwintz et
al. 2004), providing a potential for investigating these early phases of stellar
evolution (see also Fig. 2.25). A particularly interesting aspect is the potential

7 The evolution tracks were obtained from CESAM computations as part of the
ESTA effort under the CoRoT project (e.g., Monteiro et al. 2006; Lebreton et
al. 2008). See http://astrotheor3.astro.ulg.ac.be/montalban/ESTA/. We are
grateful to A. Miglio for making them available.
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Fig. 3.4. Evolution tracks for main-sequence evolution for selected masses,
some of which are indicated in units of M�. The bolder parts of the curves
indicate the part of the evolution where the model has a convective core. The
dotted line shows the zero-age main sequence, while the dashed line shows the
terminal-age main sequence (TAMS) where the central hydrogen abundance
Xc has been reduced to 10−5; the diamonds indicate where the TAMS crosses
the evolution tracks. The dashed lines sketch the location of the classical in-
stability strip.

to determine frequency changes resulting from the relatively rapid evolution
(Breger & Pamyatnykh 1998).

Since pre-main-sequence stars have extensive outer convection zones, solar-
like oscillations would be expected (cf. Sections 1.6.2, 2.3.1; see also Samadi
et al. 2005). However, as noted in Section 2.1, these stars typically show other
forms of activity and hence are likely to have an intrinsic noise level too high
to allow the detection of solar-like oscillations, at their typical amplitudes of
less than 1 m s−1 in velocity or a few parts per million in intensity.

Evolution after the onset of hydrogen burning was illustrated in Fig. 2.1. A
more detailed representation of the evolution during and just after central hy-
drogen burning is provided in Fig. 3.4. This illustrates the striking distinction
between stars without and with a convective core during the main-sequence
evolution. For the parameters chosen here this transition takes place at a mass
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Fig. 3.5. The evolution of the hydrogen-abundance profile in stars with a
radiative or a convective core on the main sequence. The top panel shows a
1M� star with a radiative core, at ages 0, 2.0, 3.6, 5.0, 6.2, 7.5, 9.6, 11.0 and
11.6 Gyr. The bottom shows the case of 2.5 M�, with a convective core, at
ages 0, 0.15, 0.31, 0.4, 0.44, 0.46 and 0.48 Gyr. No convective overshoot was
included in the latter case.

of around 1.15 M�. The difference in the evolution can be understood from
the changes in the hydrogen profile as the star evolves, shown in Fig. 3.5. In
stars with a radiative core, hydrogen is depleted most rapidly at the centre
where the temperature is highest. When hydrogen is exhausted at the cen-
tre, hydrogen burning continues just outside the resulting very small helium
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Fig. 3.6. The mass mcc of the convective core, in units of the stellar mass, as
function of stellar age, in models with no convective core overshoot. Results
are shown for masses between 1.15 M� (which for this calculation marks the
lowest mass with a significant convective core) to 1.5 M� in steps of 0.05 M�
and thence to 2M� in steps of 0.1 M�. Note that for 1.15 M� there is a phase
where the core is radiative.

core which gradually increases in size. As a result there is a gradual transi-
tion from central hydrogen burning to hydrogen burning in a shell source. In
contrast, in a star with a convective core the hydrogen abundance is reduced
uniformly throughout the core which, as mentioned above, can be regarded
as fully mixed on a nuclear time scale. Consequently, towards the end of cen-
tral hydrogen burning hydrogen is depleted throughout much of the region of
energy generation. To maintain its luminosity the star undergoes overall con-
traction; this increases the central temperature and hence the nuclear energy
generation rate, and in addition the release of gravitational potential energy
contributes to the luminosity. This brief phase of contraction is reflected in the
increasing effective temperature in what is commonly known as the “hook” in
the evolution tracks. Finally, when hydrogen is completely exhausted in the
core, hydrogen burning is established in a shell source and the star begins to
expand.

As is evident in Fig. 3.5, the extent in mass of the convective core decreases
with increasing age in the 2.5 M� model. This is largely the result of the de-
crease in the hydrogen abundance and the resulting decrease in the opacity.
The decreasing core leaves behind a steep gradient in the hydrogen abun-
dance which, as discussed in Sections 3.4.2 and 3.5.3 has a strong effect on
the pulsation properties of the star. This behaviour is typical of stars of masses
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Fig. 3.7. The hydrogen profile in a 1.3 M� star with Z = 0.017, at age
1.47 Gyr, computed without (dashed curve) and with (continuous curve) he-
lium diffusion.

higher than around 2 M�. In the mass range 1.15− 2 M�, however, there is a
phase of increasing size of the convective core, as illustrated in Fig. 3.6. This
is caused by an increase in the importance of the CNO cycle, relative to the
PP chain, caused by an increase in the 14N abundance through burning of 16O
(in more massive stars the CNO cycle dominates from the outset of central
hydrogen burning and this effect is not relevant to the size of the convective
core). It is evident that if diffusion is not taken into account, the growing
core causes a discontinuity in the composition at the edge of the core. Since
pressure and temperature are continuous, this results in a density disconti-
nuity which potentially may give rise to a new class of oscillation modes (see
Section 3.5.3). The discontinuity in composition also causes a discontinuity
in ∇rad which may lead to semiconvection (Popielski & Dziembowski 2005).
This is very similar to the behaviour found during core helium burning, which
leads to substantial uncertainties in the modelling of the subsequent evolu-
tion of the star, and hence asteroseismic diagnostics on the hydrogen main
sequence are potentially very valuable (see also Mazumdar et al. 2006a). If
diffusion is included, the discontinuity is replaced by a very sharp gradient in
abundance and density. This is illustrated in Fig. 3.7. However, the interac-
tion between diffusion and settling of helium and heavy elements, combined
with the evolution of the convective core, may lead to variations in composi-
tion and hence opacity which also induce semiconvection (e.g., Richard et al.
2001; Montalbán et al. 2007).



3.2 Equilibrium Stellar Structure 173

Fig. 3.8. Left panel: evolution tracks for models of a 2M� star; the solid
curve shows evolution without overshoot from the convective core, while the
dashed curve shows a model with an overshoot of αov = 0.2 pressure scale
heights. Right panel: hydrogen profiles at the age 0.8 Gyr for the two models,
using the same line styles. The models are marked by diamonds in the left
panel.

A further complication at the edge of convective cores is the likely pres-
ence of convective overshoot: matter moving towards the boundary of a con-
vectively unstable region reaches the boundary with some velocity and hence
continues the motion into the stable layer, although the distance of pene-
tration is highly uncertain (for simplified treatments of this, see for example
Maeder (1975) and Zahn (1991)). Overshoot increases the mixed region and
hence the amount of hydrogen available for nuclear burning, with potentially
fairly substantial effects on stellar evolution. As an example, Fig. 3.8 shows
evolution tracks and selected hydrogen-abundance profiles in a 2 M� model
without and with overshoot. The actual extent of overshoot is uncertain; Rox-
burgh (1978, 1989) derived integral constraints on the properties of convective
cores, although not of a form that allows calculation of the extent of overshoot.
In stellar modelling it is typically parameterized as a fraction αov of the pres-
sure scale height, in analogy with the mixing length, with αov regarded as a
free parameter that must be calibrated to match observed properties. Evidence
for convective-core overshoot has been obtained from “classical” observations,
particularly of double-lined detached eclipsing binaries (e.g., Andersen et al.
1990; Ribas et al. 2000; Claret 2007) and isochrone fits to observations of
stellar clusters (e.g., Mermilliod & Maeder 1986; VandenBerg et al. 2006).

The evident uncertainties in the treatment of convective cores, in terms
of overshoot and semiconvection, have very substantial effects on the later
evolution of the stars, particularly in the case of massive stars that evolve into
supernova explosions (e.g., Woosley et al. 2002, Poelarends et al. 2008). Thus
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Fig. 3.9. Properties of convective envelopes in zero-age main-sequence stars,
as functions of the effective temperature Teff (lower abscissa) and stellar mass
in solar units (upper abscissa). The vertical dotted lines indicate the approxi-
mate limits of the instability strip. (a) The hatched area shows the extent of
the convective envelope, indicated in terms of temperature T . Note that the
convective envelope shrinks rapidly as the red edge of the instability strip is
approached from lower temperature. The separate convective regions are asso-
ciated with ionization zones of helium and hydrogen. (b) The maximum ratio
between the convective flux Fc and the total flux F . Adapted from Christensen-
Dalsgaard (2000).

a major goal of asteroseismology is to obtain constraints on the properties
of convective cores. As discussed in Chapter 7 this has been, and surely will
become, possible for several classes of pulsating stars.

The properties of convective envelopes are very important to the behaviour
of stellar oscillations, particularly their excitation. Figure 3.9 illustrates the ex-
tent of the outer convection zone, and the contribution of convection to energy
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transport, along the zero-age main sequence. For Teff >∼ 7500 K the convection
zone in these models splits into two components, associated respectively with
the ionization of hydrogen and the first ionization of helium (at lower tem-
perature) and the second ionization of helium (at higher temperature); for
the hottest models the former separates into two components, from hydrogen
and helium ionization. These models are simple mixing-length models with no
overshoot. In reality it seems more likely that overshoot links the whole region,
causing it to be mixed (e.g., Latour et al. 1981; Kupka & Montgomery 2002;
Trampedach 2004; Silvers & Proctor 2007). This is particularly important for
the effects of diffusion on the stellar surface composition.

Heat-engine excitation (cf. Section 1.6.2) is in most cases determined by
the energetics of the near-surface layers where convection dominates the en-
ergy transport in stars with extensive outer convection zones. Since the effect
of convection in many cases appears to act to damp the oscillations (see Sec-
tion 3.7.3) we would expect the modes to be damped in such stars. Figure 3.9b
shows the maximum fraction of energy carried by convection, as a function
of effective temperature, compared with the extent of the Cepheid instability
strip. It is evident that the “red” (or cool) edge of the instability strip does,
in fact, correspond to the point where convection begins to dominate. On the
other hand, convective transport remains important throughout the instabil-
ity strip and hence should be taken into account in the computation of stellar
stability. In cool stars, including the Sun, convection apparently stochastically
excites otherwise damped oscillations (see Section 1.6.2). As a first, rough, ap-
proximation the result is that the energy in a single mode of oscillation is equal
to the energy in a single convective eddy with a time scale corresponding to the
oscillation period (Goldreich & Keeley 1977); for masses exceeding � 1.5 M�
the relevant convective energy decreases rapidly with increasing mass and so,
therefore, do the expected amplitudes (e.g., Christensen-Dalsgaard & Frand-
sen 1983a; Houdek et al. 1999).

As with the convective cores, overshooting is likely below the convectively
unstable region in convective envelopes. The effect on stellar evolution is less
significant than the effect of core overshoot; however, the resulting deepening
on the convectively mixed region in stars on the red-giant branch affects the
location of the so-called “bump” in the distribution of stars in the HR Dia-
gram of stellar clusters (e.g., Cassisi et al. 2002). Also, overshoot below the
solar convective envelope is amenable to helioseismic investigations which pro-
vide significant constraints on the properties of overshoot (see Section 7.1.7).
Similar investigations may become possible from observations of solar-like os-
cillation in distant stars, when sufficiently accurate observations become avail-
able. Such investigations will undoubtedly improve our general understanding
of the processes of convective overshoot. We also note that heavy-element set-
tling may cause semiconvection just below convective envelopes, as has been
found, e.g., in solar-mass stars somewhat more evolved than the Sun (e.g.,
Bahcall et al. 2001; Christensen-Dalsgaard & Di Mauro 2007).
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After the exhaustion of hydrogen in the central region, hydrogen burn-
ing continues in a shell around a gradually growing helium core. Owing to
its increasing mass the core contracts. The response of the outer layers, out-
side the burning shell, follows what might be termed the shell-burning law
(or the mirror principle): when a region inside a shell source contracts the
layer outside the source expands; and vice versa. This behaviour is generally
found in numerical modelling of stellar evolution, but, despite extensive ef-
forts, a fully convincing rationalization of the behaviour has not been found
(see Faulkner 2004 for references, and what is probably the most convincing
analysis to date). For stars more massive than around 2 M� the Schönberg-
Chandrasekhar instability of the core leads to core contraction and envelope
expansion on a thermal time scale (Schönberg & Chandrasekhar 1942; for a
simplified discussion, see, e.g., Kippenhahn & Weigert 1990). The evolution
in this phase is generally relatively rapid and hence the likelihood of finding
a star in this phase is correspondingly small. The rapid evolution across the
HR Diagram towards the red-giant branch is also reflected along the evolution
tracks in Fig. 3.8, and in more detail in Fig. 3.10 where the diamonds mark
steps of 5 Myr in evolution, which are clearly greatly separated in this phase.
The energy used to expand the star strongly reduces the energy available for
radiative output, causing the marked dip in the luminosity at logTeff � 3.71
in Fig. 3.10. The expansion of the envelope leads to a reduction in the effective
temperature and a rapid deepening of the convective envelope until the star
reaches the vicinity of the Hayashi track. It may be shown that stars with an
effective temperature on the cool side of the Hayashi track are unstable; thus
the continuing expansion takes the star up the Hayashi track, as illustrated
in Fig. 2.1. At this point the star has a very compact core surrounded by an
extensive convective envelope.

The evolution up the red-giant branch stops when the temperature in the
core reaches around 100×106 K, sufficient for the ignition of helium burning in
the triple-alpha process. However, even after the establishment of core helium
burning a substantial fraction of the energy produced in the star comes from
the hydrogen shell source. Helium ignition leads to an expansion of the core
and hence, in accordance with the shell burning “law”, to contraction of the
outer layers of the star. This causes evolution down the red-giant branch. At
masses below around 2.3 M� the core is strongly degenerate at the point of
helium ignition; as a result the pressure is independent of temperature, and
the helium ignition takes place as a thermal run-away, with an extremely high
release of energy during a few hours. However, this energy is largely absorbed
in work to expand the layers immediately outside the core and hence does
not have a dramatic effect on the outer layers of the star. When the core has
expanded sufficiently degeneracy is lifted and helium burning settles down into
equilibrium; at this point the star is on the horizontal branch (see Section 2.1).
At higher masses helium ignition takes place more gradually; the evolution
into the phase of central helium burning is illustrated in Fig. 3.10. It is evident
from the markers indicating time intervals of 5 Myr that the evolution between
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Fig. 3.10. Evolution of a model of εOph, of mass 2.35 M�. The diamonds
are placed at 5Myr intervals along the evolution sequence. (see Section 7.2.5).

the end of central hydrogen burning and the stabilization of helium burning
is very fast.

After helium is exhausted in the core, the star has a helium shell source,
outside the carbon-oxygen core, as well as the continuing hydrogen shell
source. However, this double-shell situation develops instabilities, where the
star alternates between burning in the hydrogen- and the helium-shell source.
At the same time the core contracts strongly and the envelope expands, the
star returning to the Hayashi track and moving up what is known as the
Asymptotic Giant Branch (AGB). For stars with masses below around 8 M�
nuclear burning stops with helium burning: as a result of the onset of de-
generacy and strong cooling from the emission of neutrinos the temperature
never gets high enough that the subsequent reactions can take place. Strong
mass loss (see below) removes the outer parts of the star, leaving behind the
degenerate carbon/oxygen core which cools down as a white dwarf. Following
the mass loss the white dwarf consists predominantly of carbon and oxygen,
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Fig. 3.11. Results for a model of a 0.65 M� DA white dwarf, of effective
temperature 12 000 K. The top panel shows the hydrogen abundance (contin-
uous curve), the helium abundance (dashed curve) and the combined carbon
and oxygen abundance (dot-dashed curve), as a function of fractional radius.
The bottom panel shows the squared buoyancy frequency. Note the bumps in
N2 associated with the steep composition gradients. See Brassard & Fontaine
(2006). Data courtesy of P.-O. Quirion.

resulting from the helium burning, although with small amounts of helium
and possibly hydrogen; as discussed in Section 2.7.2, some white dwarfs, the
DB class, appear to lack hydrogen altogether. Owing to the very strong grav-
ity the elements separate according to weight through settling, resulting in
a composition structure as illustrated in Fig. 3.11. This layered structure has
a strong influence on the oscillation properties of the white dwarf and hence
asteroseismology can be used to determine the masses in, in particular, the hy-
drogen and helium layers. Also, the relative abundance of carbon and oxygen
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in the core depends strongly on the, somewhat uncertain, reaction parameters
for the reaction 12C+4He. Thus an asteroseismic determination of the relative
abundance of oxygen and carbon may provide a measure of the rate of this
reaction (e.g., Metcalfe et al. 2002), although obviously subject to other un-
certainties in the modelling of the relevant evolutionary phases (e.g., Straniero
et al. 2003).

The cooling time scale of white dwarfs exceeds the age of the Galaxy.
Thus their observed luminosity and temperature distribution reflects the star
formation history of the Galactic disc, including its age, provided that the
modelling of the cooling is sufficiently well understood or constrained (for a
review, see Fontaine et al. 2001). Asteroseismic determination of the cooling
rate may provide important constraints on the cooling processes.

In more massive stars the reactions continue to the formation of iron-
group nuclei, after which energy generation by fusion has to stop. Instead
an instability sets in which causes the central approximately 1 M� of the
star to collapse to nuclear density, releasing a huge amount of gravitational
potential energy and causing a supernova explosion. The collapsed core is
largely converted to neutrons, or possibly more exotic matter, and ends up as
a neutron star.

3.2.4 Complications

The above description, complicated as it might seem, still leaves out a num-
ber of effects which are observed and which surely play an important role
in stellar evolution. These are at the frontier of stellar modelling; undoubt-
edly the steadily improving data from asteroseismology will be a strong guide
and inspiration to develop more appropriate treatments of them, and deeper
understanding of their physical nature.

3.2.4.1 Mass Loss

Many stars are observed to lose mass at a rate that implies significant losses
during their lifetime; an introduction to the physics and properties of mass loss
was given by Lamers & Cassinelli (1999). In hot main-sequence stars the mass
loss is driven by radiative effects on the ions in the stellar atmosphere (e.g.,
Kudritzki & Puls 2000). This is dominated by the interaction with elements
heavier than hydrogen and helium. Thus the heavy-element abundance Z has a
strong effect on the mass-loss rate and hence on the evolution of such massive
stars. In stars of near-solar metallicity and masses exceeding ∼ 30 M� the
effect is that a large fraction of the outer hydrogen-rich layers of the stars are
lost, leading to the formation of Wolf-Rayet stars with spectra dominated by
helium and carbon or nitrogen (for a review, see Crowther 2007). This has a
strong effect on the properties of the supernova explosions resulting at the end
of the evolution of these stars, limiting the mass of the supernova precursor
and hence also the potential for forming black holes (e.g., Woosley et al. 2002).
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On the other hand, in stars of the first generation after the Big Bang (the
so-called Population III stars) the very low Z and the consequent much less
efficient mass loss lead to the prediction of massive supernova precursors and
hence the potential formation of black holes of considerable mass.

Main-sequence stars with effective temperatures below around 6500 K have
hot coronae, heated by stellar activity, and hence expected to cause mass loss
of the same nature as seen in the solar wind (e.g., Parker 1958). In the case of
the present Sun this leads to a mass loss of around 2 × 10−14 M� y−1. Com-
parable or somewhat larger mass loss has been inferred in solar-like stars by
observations of Lyman α absorption from the “astrospheres” surrounding the
stars (Wood et al. 2005). Mass loss in somewhat hotter stars was invoked by
Michaud et al. (1983) to account for certain abundance anomalies, although
without suggestion of a specific mass-loss mechanism. In both cases, the as-
sumed level of mass loss is too low to be detectable observationally, except in
the case of the Sun. The total loss of mass is likely insignificant for the evolu-
tion of the stars, but the combined effect of mass loss, mixing and settling is
important for the surface composition of the stars and hence for the excitation
of stellar oscillations by the heat-engine mechanism. Also, as discussed in the
following section, in lower-main-sequence stars the resulting loss of angular
momentum has a strong effect on the evolution of stellar rotation.

Mass loss becomes important near the tip of the red giant branch and
on the asymptotic giant branch (for a review, see Willson 2000). Here an
important driver of mass loss is radiation acting on dust grains formed in
the cool atmosphere of these stars (e.g., Andersen 2007), although effects
of an extended chromosphere (e.g., Schröder & Cuntz 2005) and acoustic
waves (Pijpers & Habing 1989) are likely also important. The amount of
mass lost has important effects on the subsequent evolution, including the
location of low-mass stars on the horizontal branch during the phase of core
helium burning (D’Antona & Caloi 2004). The first observations in mass loss
in Population II stars on the red-giant branch were recently obtained with the
Spitzer infrared satellite (Origlia et al. 2007).

Near the tip of the asymptotic giant branch even stronger mass loss is
found, eventually leading to the expulsion of the entire envelope (see, for
example, Decin et al. 2006, 2008). A contributing factor in this dramatic mass
loss are the large-amplitude radial pulsations observed in these stars, e.g., in
the case of Mira variables (see Section 2.5.4). The formation of dust plays an
important role in this process. It was argued by Höffner & Andersen (2007)
that carbon dust grains play a dominant role, even in stars with oxygen-
rich atmospheres, as a result of non-equilibrium processes in the outflow. The
mass loss becomes critical when the rate of mass loss matches the rate of the
evolution of the star (Willson 2000). The outcome of this rapid mass loss is
the formation of a planetary nebula, lasting only a few times 104 yr, and of a
white dwarf, as discussed above.
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3.2.4.2 Rotation, Mixing and Magnetic Fields

Rotation has very substantial effects on many aspects of stellar evolution,
and the treatment of these effects remains a serious uncertainty in stellar
modelling. Effects of rotation on stellar structure were discussed by Tassoul
(2000); also, many aspects of stellar rotation, both observational and theo-
retical, were considered in the volume edited by Maeder & Eenens (2004). A
comprehensive presentation of the effects of rotation on major parts of stellar
evolution was provided by Maeder (2009).

It is evident that a rotating star loses its spherical symmetry, and hence a
major simplification in stellar modelling is lost; in particular, the centrifugal
force must be taken into account in the hydrostatic balance, resulting in an
oblate structure. For relatively slow rotation the stellar structure can still be
approximated by a spherically symmetric model, by including the spherically
symmetric component of the centrifugal force in the equation of hydrostatic
support, to obtain

∂p

∂r
= −Gmρ

r2
+

2
3
ρrΩ2 , (3.105)

where Ω is the angular velocity. For more rapid rotation this approximation
no longer holds and fully two-dimensional model calculations are required
(e.g., Deupree 1995; Roxburgh 2006; MacGregor et al. 2007); in the last case
extremely distorted models were found in cases of very rapid rotation.

The surface distortion strongly affects conditions in the atmosphere of
rapidly rotating stars. The centrifugal acceleration results in a reduced effec-
tive surface gravity geff that depends on latitude, such that it is smallest at the
equator. The magnitude of this effect is measured by the ratio Ω2R̄3/(GM)
between typical centrifugal and gravitational accelerations, where R̄ is a suit-
able average surface radius. An important consequence of this is the so-called
gravity darkening (von Zeipel 1924), a reduction in the flux and hence the ef-
fective temperature resulting from the reduced gravity. This is often expressed
as

Teff = Teff,p

(
geff
geff,p

)β

, (3.106)

where Teff,p and geff,p are the effective temperature and effective gravity at
the pole. For a radiative envelope, the case considered by von Zeipel, β =
1/4. Lucy (1967) considered convective envelopes and found β � 0.08. It
is interesting that interferometric observations of rapidly rotating stars have
revealed the rotationally induced oblateness and latitude dependence of the
surface temperature in a few cases (e.g., Domiciano de Souza et al. 2003, 2005;
Monnier et al. 2007); the analysis of Altair in the latter two papers suggests
a value of β close to 0.25, in accordance with von Zeipel’s result. Maeder
(1999) pointed out that these variations with latitude are also likely to have
strong effects on mass loss in rapidly rotating stars. From a combination of
gravity and opacity effects he found that the distribution of mass loss depends
strongly on the temperature of the star. In very hot stars (O stars) the result
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is a predominantly polar mass loss; an important consequence of this is that
little angular momentum is lost from the star as a result of the mass loss. For
somewhat cooler and evolved stars (B supergiants), on the other hand, the
mass loss takes place predominantly in the equatorial region. A more detailed
investigation of these effects, with application to η Carinae, was carried out
by Aerts et al. (2004c).

In Eq. (3.105) Ω is in general a function of position and time. This is a
major complication and a large uncertainty in stellar modelling. There is lit-
tle doubt that stars are generally born with rapid rotation resulting from the
contraction of interstellar clouds and infalling material from a disc. The initial
rotation profile Ω(r, θ) on the zero-age main sequence is uncertain, but it is
perhaps not implausible that it is approximately uniform: at least the star has
gone through a fully convective phase on the Hayashi track where convection
must have led to rapid angular-momentum transport and hence strong cou-
pling between rotation in the different parts of the star. However, there are
no such obvious angular-momentum transport processes in the radiative part
of the star. The evolution on and beyond the main sequence, at least until
the red-giant branch, involves contraction of the core and expansion of the
envelope. Thus if there is local conservation of angular momentum the angu-
lar velocity of the core increases as the radius and hence moment of inertia of
the core decreases, and conversely the outer layers rotate more slowly.

Two closely related complications affect this simple picture. One is the
loss of angular momentum of the star through a stellar wind. Evidently, the
angular momentum of the material lost to the wind is carried away from the
star. In stars with extended strong winds, such as massive stars, this can play a
major role for the rotational evolution of the star. However, also in lower-main-
sequence stars, with weak winds driven by hot coronae, the loss of angular
momentum is very significant. Here the wind is coupled to the star through
the magnetic field that threads it and hence is forced to rotate with the stellar
angular velocity out to a substantial distance from the star; decoupling takes
place at the Alfvén radius rA, the point inside which the magnetic energy
is larger than the kinetic energy of the flow. In the solar case this happens
at roughly 10 R�. The result is a very significant angular-momentum loss in
these stars, in the case of the present Sun corresponding to a typical time
scale of around 109 yr. The properties of the wind depend on the strength of
the magnetic activity. It is believed that the stellar magnetic field is created
through a dynamo mechanism resulting from the interplay between rotation
and motion in the convective envelope. This gives rise to a direct relation
between the value of the angular velocity and the angular-momentum loss
which can be solved to derive the evolution of the angular velocity with stellar
age. From a limited set of observations Skumanich (1972) demonstrated that
as a result both rotation and stellar activity decrease as τ−1/2, τ being the
age of the star. Motivated by this Durney (1972) showed that such behaviour
results from the dependence of angular-momentum loss and activity on the
stellar angular velocity (see also Schrijver & Zwaan 2000). While the actual
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behaviour is likely more complicated there is strong observational evidence
that the angular velocity of stars in this part of the HR Diagram decreases
with increasing age (e.g., Soderblom et al. 2001; Barnes 2007). Thus we must
expect that the Sun rotated much more rapidly, and consequently was more
active, early in its evolution.

The angular-momentum loss takes place from the stellar surface or, in the
case of magnetic winds, from the convective envelopes of these stars since
this is strongly rotationally coupled. The resulting evolution of the internal
rotation depends on the transport of angular momentum in the stellar interior.
Were there no transport in the radiative regions, we would expect the stars
to retain a rapidly rotating interior. In fact, rotation is directly responsible
for such transport processes. These processes not only affect the evolution of
the angular velocity but also, very importantly, have a strong influence on
the chemical evolution of the star. Radial gradients in the angular velocity
may give rise to a variety of instabilities, which cause transport that can be
modelled as a turbulent diffusion.

Another very important effect caused by rotation is meridional circulation.
It was noted by von Zeipel (1924) that a rotating star can be in thermal equi-
librium only under very special circumstances. In general, heat transport by
meridional currents is required to maintain balance between energy generation
and energy transport, as pointed out by Eddington and Vogt (see Kippenhahn
& Weigert 1990 for a discussion). This was analysed more quantitatively by
Sweet (1950) who found that the circulation was relatively weak and hence
likely of limited significance. However, Zahn (1992) noted that much more
important circulation would be set up when changes of the angular velocity
at the surface8 cause radial gradients in the internal angular velocity. He also
argued that the stable stratification, i.e., the positive buoyancy frequency,
in the radiative regions causes a strong anisotropy in the transport processes,
with transport along surfaces of constant pressure (isobars, i.e., approximately
spherical surfaces in the case of slow rotation) being much easier than trans-
port in the radial direction. As a result, he argued that rotation would be con-
stant on isobars, in a so-called shellular rotation. He derived equations for the
spherically averaged transport in the radial direction. In the case of element
abundances the combined effects of circulation and the assumed very efficient
transport along spherical surfaces lead to transport in the form of turbulent
diffusion (Chaboyer & Zahn 1992); hence it simply corresponds to including
an appropriate turbulent diffusion coefficient Dturb to D in Eq. (3.100). How-
ever, the transport of angular momentum in addition involves advection by
the meridional circulation. The resulting equations, further developed by, for
example, Maeder & Zahn (1998) and Mathis & Zahn (2004), have seen fairly
extensive use in stellar modelling; importantly, the formulation has success-
fully accounted for many aspects of the evolution of massive stars, including

8 either a decrease as a result of angular-momentum loss to a stellar wind or an
increase caused by accretion.
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variations in surface abundances (for a review, see Maeder & Meynet 2000).
Also, rotational mixing is likely required to account for the “normal” surface
abundances observed in most intermediate-mass stars with thin outer convec-
tion zones, despite the short time scale for settling near the surface of these
stars (cf. Fig. 3.2).

Even given this formulation, the rotational evolution in lower main-
sequence stars still gives rise to problems. Most striking is the fact that calcula-
tions of the evolution of solar rotation with advection and/or diffusion predict
a rapidly rotating solar radiative interior, in clear contrast to the helioseismic
inferences (for a review, see Thompson et al. 2003; see also Section 7.1.8). Ad-
ditional problems arise in the understanding of the depletion of 7Li in lower
main-sequence stars, including the Sun, relative to the meteoritic and assumed
primordial composition, and the abundance in post-main-sequence stars. 7Li
is destroyed at temperatures over 2.5× 106 K over the main-sequence lifetime
of typical stars such as the Sun, and hence the depletion requires mixing well
below the convective envelopes in such stars; on the other hand, the mixing
must not be so efficient that lithium is totally destroyed.

The combined constraints of the lithium abundances and the solar inter-
nal rotation strongly argue that to understand the latter additional transport
processes must be invoked (Charbonnel & Talon 2005). These must also ex-
plain the detailed properties of the helioseismically inferred tachocline, the
transition in rotation between the latitudinally differential rotation in the
convection zone and the largely solid-body rotation in the radiative interior
(cf. Fig. 7.36). One set of proposals has invoked magnetic coupling. This could
involve coupling through a primordial magnetic field (Charbonneau & Mac-
Gregor 1993; Gough & McIntyre 1998; MacGregor & Charbonneau 1999);
however, unless such a field is entirely confined to the radiative interior the
link to the differential rotation in the solar convection zone would cause dif-
ferential rotation, not observed, in the radiative interior (see Garaud 2007
for a review). Such confinement was recently demonstrated in calculations
imposing plausible boundary conditions at the interface between the convec-
tion zone and the radiative interior (Garaud & Garaud 2008). Alternatively, a
small-scale field might be generated by dynamo action in the interior (Spruit
2002). This model has successfully reproduced the solar internal rotation pro-
file (Eggenberger et al. 2005a); also, it was used by Suijs et al. (2008) to
explain, at least partly, the low rotation rates of white dwarfs inferred from
asteroseismology (for a review, see Kawaler 2004). On the other hand, more
detailed simulations by Zahn et al. (2007) failed to find the required dynamo
action under solar conditions.

Another set of proposals invokes transport by gravity waves generated
within or at the base of the convective envelope and dissipating in the ra-
diative interior, giving rise to angular-momentum transport (e.g., Schatz-
man 1993; Kumar & Quataert 1997; Zahn et al. 1997). As noted by Gough
& McIntyre (1998) the simple form of this process leads to an oscillatory
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behaviour, similar to oscillations observed in the Earth’s atmosphere. This
may be avoided through the action of differential filtering of the waves in the
layers just beneath the convection zone (e.g., Talon & Charbonnel 2005). A
detailed investigation of the properties of such gravity waves throughout the
cool part of the HR Diagram was carried out by Talon & Charbonnel (2008).
However, the spectrum of gravity waves remains somewhat uncertain (Rogers
et al. 2008), and some models suggest that the resulting rotation profile may
be unstable (Denissenkov et al. 2008). A separate problem concerns the details
of rotation in the solar convection zone; detailed hydrodynamical calculations
have made substantial progress towards accounting for the helioseismic re-
sults (e.g., Miesch et al. 2006), although the models are probably still rather
far from matching the true solar conditions. It may be fair to say that we
still lack a fully convincing description of the origin of the solar internal rota-
tion. Indeed, despite its apparent successes amongst massive stars, the Zahn
model for rotational evolution and mixing probably also requires a more solid
theoretical underpinning.

The effects of the magnetic fields discussed above generally refer to rela-
tively weak or small-scale fields. However, global, basically dipolar fields with
strengths up to 30 kG are found in the magnetic peculiar A stars (Ap stars).
These stars are slowly rotating; competition between gravitational settling
and radiative levitation gives rise to strong atmospheric abundance anomalies
(see Section 3.2.2.4). The magnetic fields modify these processes, as well as
the mass loss which also contributes to the surface composition, resulting in
atmospheric abundances that vary horizontally and are stratified vertically.
Important examples of magnetic Ap stars for asteroseismology are the rapidly
oscillating Ap stars, which are discussed in depth in Sections 2.3.5 and 7.3.4.

3.2.4.3 Evolution of Close Binary Systems

Many stars are members of binary systems. If the components are sufficiently
close, their mutual interaction can have drastic consequences for the evolution
of the system. The two stars orbit around their common centre of mass; in a
coordinate system rotating with the pair, the stars feel an effective potential
which is composed of the gravitational potential of each component, the tidal
interaction from one component on the other, and the centrifugal effect. A
detailed discussion of the dynamical properties of such systems, and their
relation to observed binary stars, was provided by Hilditch (2001).

In the Roche approximation, where the stars are represented by point
masses and the orbit is circular, the result is the potential sketched in
Fig. 3.12a; near the stars the potential is dominated by the gravitational effect
of the star, but with increasing distance it becomes deformed. This leads to a
point between the two stars, the first Lagrange point L1, where the force along
the line between the stars vanishes, and similarly the second Lagrange point
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Fig. 3.12. Possible processes in the evolution of a close binary system. Panel
a) shows contours of the combined potential in the co-rotating coordinate
system for a binary system in a circular orbit, in the plane of the orbit. The
mass ratio M2/M1 is 0.8. The cross marks the centre of gravity, and L1 and
L2 are at the first and second Lagrange points. In panel b) the more massive
component has evolved to fill its Roche lobe and mass transfer to the less
massive component has started. Panel c) sketches the situation of common
envelope evolution, with loss of mass and angular momentum from the system
through L2.

L2 beyond the least massive of the two components.9 The potential surface
passing through the L1 point defines the Roche lobes around the two stars.

9 The Lagrange points in the Sun-Earth system play an important role in spacecraft
navigation: the SOHO spacecraft is located near the L1 point, while, for example,
the Planck and Herschel missions are near the L2 point.
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As the stars evolve as a result of nuclear burning they generally expand.
Consequently, one or the other of the two stars may fill its Roche lobe. Since
the more massive of the two stars, M1, say, evolves most rapidly, it is likely to
reach this point first. Matter at the L1 point is then no longer bound to M1

but is transferred to the second star, M2. As a result this star may become
the more massive, evolve more rapidly, and start a transfer of mass back to
M1. It is evident that, depending on the initial masses and separation of the
two components, a bewildering variety of evolutionary scenarios may result.
An early review of these possibilities, related also to observed types of binary
systems, was provided by Paczyński (1971).

The various types of mass transfer add to the complexity. The expansion of
a single star takes place on a nuclear, or at most a thermal, time scale, leading
to gradual mass transfer that allows the system to adjust (see Fig. 3.12b).
This adjustment also includes the change in the size of the Roche lobe as a
result in the changing masses. In this case, it is plausible that the transfer is
conservative, with no change in the total mass and angular momentum of the
system. However, it was noted by Paczyński (1965) that in stars with extensive
outer convective zones the loss of mass leads to an expansion of the star. If
this expansion is more rapid than a possible expansion of the Roche lobe, the
mass loss takes place on a dynamical time scale, faster than the material can
be accreted in equilibrium by the second star. The result is that the accreting
star’s Roche lobe fills up, and that subsequently the material spills out of the
Roche lobes, forming a common envelope within which the stars orbit. As a
result the envelope is heated by the friction generated by the motion of the
stars through it. This contributes to overall loss of mass from the system,
through the L2 point or more generally, and a consequent loss of angular
momentum, causing the stars to spiral closer together. A detailed review of
such common-envelope evolution was provided by Iben & Livio (1993).

The outcome of this process may be an extremely close binary system, the
components of which have shed their envelopes. As discussed by Han et al.
(2002, 2003) this may be a likely origin for at least a fraction of the subdwarf
B stars (cf. Section 2.7.1). Hu et al. (2008) pointed out that asteroseismic
investigations of such stars will be a powerful tool to help us understand the
details of their evolution.

A special case of interaction in binary stars is likely responsible for at
least some of the blue stragglers, i.e., stars near the main sequence of stellar
clusters that appear to have masses so high that they should have reached
the end of their evolution before the inferred age of the cluster. These stars
are believed to be formed either through collisions between stars or through
mass exchange in close binary systems (e.g., Bailyn & Pinsonneault 1995).
As discussed in Section 2.8.3 many SX Phe stars appear to be blue stragglers;
thus analysis of their oscillations offers the potential of studying the internal
structure and hence get an understanding of the details of the formation
process. An interesting case is the cluster NGC 2506 where Arentoft et al.
(2007) found several oscillating blue stragglers as well as a number of γDor
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stars. Also, Bruntt et al. (2007) determined a large number of frequencies in
two blue stragglers in M67. In very old clusters, including globular clusters,
blue stragglers may fall in the region where solar-like oscillations are expected,
thus offering further information about their interior; however, in such cases
the stars are likely too faint for their oscillations to be observed with existing
facilities.

3.3 Equations of Linear Stellar Oscillations

In the present section the equations governing small oscillations around a
spherical equilibrium state are derived. The general equations were presented
in Section 3.1.3. However, here we make explicit use of the spherical symmetry.
These equations describe the general, so-called nonradial oscillations, where
spherical symmetry of the perturbations is not assumed. The case of radial ,
or spherically symmetric, oscillations, is contained as a special case.

3.3.1 The Oscillation Equations

3.3.1.1 Separation of Variables

We assume that the equilibrium model is non-rotating and ignore possible
effects of magnetic fields. Thus the equilibrium model is spherically symmetric.
Furthermore, in almost all cases it can be taken to be static, on the relevant
time scale of the oscillations. Because of the independence of time, solutions of
the linearized oscillation equations can be found where the time dependence
is given by exp(−iωt), as already used in Section 3.1.4, where the frequency ω
must in general be assumed to be complex. Also, given the spherical symmetry,
it is most natural to describe the star in spherical polar coordinates (r, θ, φ) (cf.
Fig. 3.13), where r is the distance to the centre, θ is colatitude (i.e., the angle
from the polar axis), and φ is longitude. Here the equilibrium is independent
of θ and φ, and hence the solution must be separable in these coordinates.
However, the form of the separated solution depends on the physical nature
of the problem, and so must be discussed in the context of the reduction of
the equations.

The first step is to separate the displacement δδδr into radial and horizontal
components as

δδδr = ξrar + ξξξh . (3.107)

The horizontal component of the equations of motion, Eq. (3.43), is

ρ0
∂2ξξξh
∂t2

= −∇hp
′ − ρ0∇hΦ

′ . (3.108)

As the horizontal gradient of equilibrium quantities is zero, the horizontal
divergence of Eq. (3.108) gives
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Fig. 3.13. The spherical polar coordinate system. Figure courtesy of Regner
Trampedach.

ρ0
∂2

∂t2
∇h · ξξξh = −∇2

hp
′ − ρ0∇2

hΦ
′ . (3.109)

The equation of continuity, Eq. (3.41), can be written as

ρ′ = − 1
r2

∂

∂r
(ρ0r

2ξr) − ρ0∇h · ξξξh . (3.110)

This can be used to eliminate ∇h · ξξξh from Eq. (3.109), which becomes

− ∂2

∂t2

[
ρ′ +

1
r2

∂

∂r
(r2ρ0ξr)

]
= −∇2

hp
′ − ρ0∇2

hΦ
′ . (3.111)

The radial component of Eq. (3.43) is
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ρ0
∂2ξr
∂t2

= −∂p′

∂r
− ρ′g0 − ρ0

∂Φ′

∂r
. (3.112)

Finally, the Poisson equation (3.44) may be written as

1
r2

∂

∂r

(
r2
∂Φ′

∂r

)
+ ∇2

hΦ
′ = 4πGρ′ . (3.113)

It should be noticed that in Eqs (3.111)–(3.113) derivatives with respect to
the angular variables θ and φ only appear in the combination ∇2

h.
We now have to consider the energy equation (3.47), together with

Eq. (3.48) for the heat gain. The result clearly depends on the form assumed
for the flux F . However, if the flux can be expressed in terms of a gradient
of a scalar, as in the diffusion approximation [Eq. (3.22)], the energy equation
also only contains derivatives with respect to θ and φ in ∇2

h.
We may now address the separation of the angular variables. The object

is to factor out the variation of the perturbations with θ and φ as a function
f(θ, φ). From the form of the equations this is clearly possible, if f is an
eigenfunction of the horizontal Laplace operator,

∇2
hf = − 1

r2
Λf , (3.114)

where Λ is a constant. That 1/r2 has to appear is obvious from Eq. (C.14); the
choice of sign is motivated later. Writing it out in full, Eq. (3.114) becomes

1
sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1
sin2 θ

∂2f

∂φ2
= −Λf . (3.115)

As the coefficients in this equation are independent of φ, the solution can
be further separated, as

f(θ, φ) = f1(θ)f2(φ) . (3.116)

It follows from Eq. (3.115) that f2 satisfies an equation of the form

d2f2

dφ2
= αf2 , (3.117)

where α is another constant; this has the solution f2 = exp(±α1/2φ). However,
the solution has to be continuous and hence periodic, i.e., f2(0) = f2(2π).
Consequently we must demand that α1/2 = im, where m is an integer.

When used in Eq. (3.115), this gives the following differential equation for
f1:

d
dx

[
(1 − x2)

df1

dx

]
+
(
Λ− m2

1 − x2

)
f1 = 0 , (3.118)

where x = cos θ. It can be shown that this equation has a regular solution
only when



3.3 Equations of Linear Stellar Oscillations 191

Λ = l(l + 1) , (3.119)

where l is a non-negative integer, and

|m| ≤ l . (3.120)

The regular solution is
f1(θ) = Pm

l (cos θ) , (3.121)

where Pm
l is the Legendre function. By including an appropriate scaling factor

we may finally write

f(θ, φ) = (−1)mclmP
m
l (cos θ) exp(imφ) ≡ Y m

l (θ, φ) , (3.122)

where Y m
l is a spherical harmonic; here clm is a normalization constant, given

in Eq. (1.6) in Chapter 1, such that the integral of |Y m
l |2 over the unit sphere is

1. Y m
l is characterized by its degree l and its azimuthal order m; the properties

of spherical harmonics were discussed in more detail in Chapter 1 (see also
Appendix B). From Eqs (3.114) and (3.119) we also have that

∇2
hf = − l(l + 1)

r2
f . (3.123)

The dependent variables in Eqs (3.111)–(3.113) can now be written as

ξr(r, θ, φ, t) =
√

4π ξ̃r(r)Y m
l (θ, φ) exp(−iωt) , (3.124)

p′(r, θ, φ, t) =
√

4π p̃′(r)Y m
l (θ, φ) exp(−iωt) , (3.125)

etc. Also it follows from Eq. (3.38) that if the Eulerian perturbations are in
the form given in these equations, so are the Lagrangian perturbations. Then
the equations contain Y m

l (θ, φ) exp(−iωt) as a common factor. After dividing
by it, the following ordinary differential equations for the amplitude functions
ξ̃r, p̃

′, · · ·, result:

ω2

[
ρ̃′ +

1
r2

d
dr

(r2ρ0ξ̃r)
]

=
l(l + 1)
r2

(p̃′ + ρ0Φ̃
′) , (3.126)

− ω2ρ0ξ̃r = − dp̃′

dr
− ρ̃′g0 − ρ0

dΦ̃′

dr
, (3.127)

1
r2

d
dr

(

r2
dΦ̃′

dr

)

− l(l + 1)
r2

Φ̃′ = 4πGρ̃′ , (3.128)

together with the energy equation

δp̃− Γ1,0p0

ρ0
δρ̃ = ρ0(Γ3,0 − 1)δq̃ . (3.129)

It should be noted that Eqs (3.126)–(3.129) do not depend on the az-
imuthal order m. This is a consequence of the assumed spherical symmetry of
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the equilibrium state, which demands that the results should be independent
of the choice of polar axis for the coordinate system. Changing the polar axis
would change the spherical harmonics, in such a way that a new spherical har-
monic, with given l and m, would be a linear combination over m of the old
spherical harmonics with the given value of l (see Appendix B). As this change
of axis can have no effect on the dynamics of the oscillations, the equations
must be independent of m, as found here.

From Eq. (3.108) the horizontal component of the displacement is given
by

ξξξh =
√

4π ξ̃h(r)
(
∂Y m

l

∂θ
aθ +

1
sin θ

∂Y m
l

∂φ
aφ

)
exp(−iωt) , (3.130)

where
ξ̃h(r) =

1
rω2

(
1
ρ0
p̃′ + Φ̃′) . (3.131)

Thus the (physical) displacement vector can be written as

δδδr =
√

4π�
{[
ξ̃r(r)Y m

l (θ, φ)ar (3.132)

+ξ̃h(r)
(
∂Y m

l

∂θ
aθ +

1
sin θ

∂Y m
l

∂φ
aφ

)]
exp(−iωt)

}
.

The frequency ω is in general complex. This may be seen from the energy
equation (3.129), if the expression (3.48) for the heating rate perturbation is
used. Assuming the time dependence given in Eqs (3.124) and (3.125) for the
perturbed quantities, Eq. (3.48) can be written as

δq =
i

ρ0ω
δ(ρε− div F ) . (3.133)

Here the perturbations on the right-hand side can be expressed in terms of
the perturbations to, say, density and temperature. For instance, since ε is a
function ε(ρ, T ) of density and temperature, we obtain

δ(ρε) = ρ0ε0

{[
1 +

(
∂ ln ε
∂ ln ρ

)

T

]
δρ

ρ0
+
(
∂ ln ε
∂ lnT

)

ρ

δT

T0

}

. (3.134)

The expression for δ(div F ) depends on the treatment of the energy transport,
discussed in Section 3.1.1. Often the diffusion approximation is adequate; then
δ(div F ) may be obtained in a fashion similar to the derivation of Eq. (3.134)
by perturbing Eq. (3.22), although with considerable effort. Note that this
gives rise to a term in the second derivative of δT with respect to r; the
same is true if the Eddington approximation, Eq. (3.24), is used, whereas the
use of Newton’s law of cooling, Eq. (3.23), gives a direct relation between
the heat loss and the local thermodynamic variables, and hence does not
increase the order of the equations. However, regardless of the approximation
used, substitution of the relevant relations into the energy equation, written
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in terms of ρ and T , results in an equation which, because of the factor i/ω in
the expression for δq, has complex coefficients. Hence the oscillation equations
cannot in general have a real solution.

The complex frequency can be expressed as ω = ωr + iωi, where ωr and ωi

are real; consequently the dependence of the perturbations on φ and t is of
the form

cos(mφ− ωrt+ δ0)eωit , (3.135)

where δ0 is the initial phase. For m �= 0 this describes a wave traveling around
the equator with angular phase speed ωr/m, whereas for m = 0 the pertur-
bation is a standing wave. The period of the perturbation is Π = 2π/ωr. Its
amplitude grows or decays exponentially with time, depending on whether
the growth rate ωi is positive or negative.

Neglecting ωi, we may obtain the mean square components of the displace-
ment, when averaged over a spherical surface and time, from Eq. (3.132). For
the radial component the result is

δr2rms = 〈|δr · ar|2〉 (3.136)

=
1
Π

∫ Π

0

dt
1

4π

∮ {√
4π�

[
ξ̃r(r)Y m

l (θ, φ) exp(−iωt)
]}2

dΩ

=
1
2
|ξ̃r(r)|2 ,

where in this equation Ω denotes solid angle. Similarly, the mean square length
of the horizontal component of δδδr is

δh2
rms = 〈|ξξξh|2〉 = 1/2 l(l+ 1)|ξ̃h(r)|2 , (3.137)

where ξ̃h is the amplitude function introduced in Eq. (3.131).
The kinetic energy of pulsation is

Ekin =
1
2

∫

V

|v|2ρ0dV . (3.138)

As in Eqs (3.136) and (3.137) it follows from Eq. (3.132) that the time-averaged
energy is 1/4ω2E , where

E = 4π
∫ R

0

[|ξ̃r(r)|2 + l(l + 1)|ξ̃h(r)|2] ρ0r
2dr (3.139)

is the mode inertia. For m �= 0 Ekin is independent of t, in accordance with the
running-wave nature of the oscillation in this case, whereas for m = 0 we have
Ekin = 1

2ω
2E cos2(ωt − δ0). It is convenient to introduce the dimensionless

measure E of E , by

E =
4π
∫ R

0
[|ξ̃r(r)|2 + l(l + 1)|ξ̃h(r)|2]ρ0r

2dr

M [|ξ̃r(R)|2 + l(l + 1)|ξ̃h(R)|2]
=
Mmode

M
, (3.140)
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where M is the total mass of the star, and Mmode is the so-called modal mass;
thus E provides a measure of the normalized inertia of the mode. These quan-
tities are defined such that the time-averaged kinetic energy in the oscillation
is

1/2MmodeV
2
rms = 1/2EMV 2

rms , (3.141)

where V 2
rms is the mean, over the stellar surface and time, of the squared total

velocity of the mode.
From Eq. (3.123) it follows that for any perturbation quantity ψ′,

∇2
hψ

′ = − l(l + 1)
r2

ψ′ . (3.142)

Thus if the oscillations are regarded locally as plane waves, as in Eq. (3.53),
we may make the identification

l(l + 1)
r2

= k2
h , (3.143)

where kh is the length of the horizontal component of the wave vector, as in
Eq. (3.63); note in particular that kh depends on r.

For completeness, we note that the modes discussed so far are known as
spheroidal modes . In addition there is a second class of modes, the toroidal
modes , which are briefly discussed in J. P. Cox (1980), Section 17.3 and Unno
et al. (1989), Section 13.3. In a spherically symmetric (and hence non-rotating)
non-magnetic gaseous star, and hence with no internal strain, infinitely slow
motion can proceed unhindered along spherical surfaces. Formally this cor-
responds to oscillations with zero frequency. For such motion, ξr = 0, and
p′, ρ′ and Φ′ are zero. This case, assuming no time dependence, is evidently
a solution to the basic perturbation equations, Eqs (3.42), (3.43), (3.44) and
(3.50), provided that ∇ · ξξξ = 0 or, since ξr = 0, ∇h · ξξξh = 0. A solution satis-
fying this condition can be obtained as ξξξh = ∇h× (ψar) where ψ(r, θ, φ) is an
arbitrary scalar function. Corresponding to the spherical-harmonic expression
of the spheroidal modes it is convenient to write the toroidal modes in terms
of an expansion in spherical harmonics, such that the individual modes have
the form

ξξξh = ∇h × [ψlm(r)Y m
l (θ, φ)] = r−1ψlm(r)

(
1

sin θ
∂Y m

l

∂φ
aθ −

∂Y m
l

∂θ
aφ

)
;

(3.144)
here ψlm(r) is an arbitrary function of r.

In a rotating star the toroidal modes give rise to oscillations whose fre-
quencies are of the order of the rotation frequency. We return to this in Sec-
tion 3.8.1.

3.3.1.2 Radial Oscillations

For radial oscillations, with l = 0, the perturbation to the gravitational
field may be eliminated analytically. From the Poisson equation in the form
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Eq. (3.128) we have, by using the equation (3.110) of continuity with no hor-
izontal part, that

1
r2

d
dr

(

r2
dΦ̃′

dr

)

= −4πG
r2

d
dr

(r2ρ0ξ̃r) , (3.145)

or, as the gravitational force must be finite at r = 0,

dΦ̃′

dr
= −4πGρ0ξ̃r . (3.146)

Furthermore, the term containing Φ̃′ drops out in Eq. (3.126).
With these eliminations, the oscillation equations can be reduced to a

relatively simple form. We write the energy equation (3.129) as

ρ̃′ =
ρ0

Γ1,0p0
p̃′ + ρ0ξ̃r

(
1

Γ1,0p0

dp0

dr
− 1
ρ0

dρ0

dr

)
− ρ2

0

Γ1,0p0
(Γ3,0 − 1)δq̃ . (3.147)

Then Eq. (3.126) may be written as

dξ̃r
dr

= −2
r
ξ̃r −

1
Γ1,0p0

dp0

dr
ξ̃r −

1
Γ1,0p0

p̃′ +
ρ0

Γ1,0p0
(Γ3,0 − 1)δq̃ , (3.148)

or, introducing ζ ≡ ξ̃r/r,

p̃′ = −Γ1,0p0r

(
dζ
dr

+
3
r
ζ +

1
Γ1,0p0

dp0

dr
ζ

)
+ ρ0(Γ3,0 − 1)δq̃ . (3.149)

By substituting Eqs (3.146), (3.147) and (3.149) into Eq. (3.127) we obtain,
after a little manipulation,

1
r3

d
dr

(
r4Γ1,0p0

dζ
dr

)
+

d
dr

[(3Γ1,0 − 4)p0]ζ + ρ0ω
2rζ =

d
dr

[ρ0(Γ3,0 − 1)δq̃] .

(3.150)
It is important to note that the apparent simplicity of Eq. (3.150) hides a

great deal of complexity in the heating term on the right-hand side. Never-
theless, this equation is convenient for discussions of the properties of radial
oscillations. In these notes, however, we shall mostly consider the general
equations for nonradial oscillations, where l can take any value.

3.3.2 Linear, Adiabatic Oscillations

To simplify the notation, from now on we drop the tilde on the amplitude
functions, and the “0” on equilibrium quantities. This should not cause any
confusion.
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3.3.2.1 Equations

For adiabatic oscillations, δq = 0 and Eq. (3.129) can be written

ρ′ =
ρ

Γ1p
p′ + ρξr

(
1
Γ1p

dp
dr

− 1
ρ

dρ
dr

)
. (3.151)

This may be used to eliminate ρ′ from Eqs (3.126)–(3.128). From Eq. (3.126),
using that c2 = Γ1p/ρ is the square of the adiabatic sound speed [cf.
Eq. (3.52)], we obtain

dξr
dr

= −
(

2
r

+
1
Γ1p

dp
dr

)
ξr +

1
ρc2

(
S2

l

ω2
− 1

)
p′ +

l(l + 1)
ω2r2

Φ′ , (3.152)

where we introduced the characteristic acoustic frequency Sl by

S2
l =

l(l + 1)c2

r2
= k2

hc
2 . (3.153)

Equation (3.127) gives

dp′

dr
= ρ(ω2 −N2)ξr +

1
Γ1p

dp
dr
p′ − ρ

dΦ′

dr
, (3.154)

where, as in Eq. (3.73), N is the buoyancy frequency, given by

N2 = g

(
1
Γ1p

dp
dr

− 1
ρ

dρ
dr

)
. (3.155)

Finally, Eq. (3.128) becomes

1
r2

d
dr

(
r2

dΦ′

dr

)
= 4πG

(
p′

c2
+
ρξr
g
N2

)
+
l(l + 1)
r2

Φ′ . (3.156)

Equations (3.152), (3.154) and (3.156) constitute a fourth-order system of
ordinary differential equations for the four dependent variables ξr, p′, Φ′ and
dΦ′/dr. Thus it is a complete set of differential equations.

For radial oscillations Eqs (3.152) and (3.154), after elimination of the
terms in Φ′ by means of Eq. (3.146), reduce to a second-order system in ξr
and p′; an alternative formulation of this set of equations is obtained from
Eq. (3.150), by setting the right-hand side to zero. The reduction to second
order is a useful simplification from a computational point of view, and it
may be exploited in asymptotic analyses. However, here we shall always treat
radial oscillations in the same way as the nonradial case.

It should be noticed that all coefficients in Eqs (3.152), (3.154) and (3.156)
are real. Also, as discussed below, the same is true of the boundary conditions.
Since the frequency only appears in the form ω2, we may expect that the
solution is such that ω2 is real, in which case the eigenfunctions may also
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be chosen to be real. As will be demonstrated in Section 3.6.1 this is true in
general. Thus the frequency is either purely real, in which case the motion is an
undamped oscillator, or purely imaginary, so that the motion grows or decays
exponentially. From a physical point of view this results from the adiabatic
approximation, which ensures that energy cannot be fed into the motion,
except from the gravitational field; thus the only possible type of instability is
a dynamical instability. We shall almost always consider the oscillatory case,
with ω2 > 0; note, however, that the convective instability discussed briefly
in Section 3.1.4.2 is an example of a dynamical instability, which clearly must
be contained in the equations developed here.

3.3.2.2 Boundary Conditions

To supplement the four equations in the general case, we need four boundary
conditions. These are discussed in considerable detail in Unno et al. (1989),
Section 18.1, and in J. P. Cox (1980), Section 17.6. Here we give only a brief
summary.

The centre, r = 0 is a regular singular point of the equations. Thus, as is
usual in the theory of differential equations, the equations admit both regular
and divergent solutions at this point. Two of the conditions serve to select
the regular solutions. By expanding the equations, it may be shown that near
r = 0, ξr behaves like rl−1, whereas p′ and Φ′ behave as rl. In the special case
of radial oscillations, however, the coefficient to the leading-order term in ξr
vanishes, and ξr goes as r. Indeed it is obvious from geometrical considerations
that for spherically symmetric oscillations, the displacement must vanish at
the centre. From the expansions, two relations between the solution near r = 0
may be obtained. In particular, it may be shown that for l > 0,

ξr � lξh , for r → 0 . (3.157)

In the radial case, one of the conditions was implicitly used to obtain
Eq. (3.146), and only one central condition remains.

One surface condition is obtained by demanding continuity of Φ′ and its
derivative at the surface radius r = R. Outside the star the density pertur-
bation vanishes, and the Poisson equation may be solved analytically. The
solution vanishing at infinity is

Φ′ = Ar−l−1 , (3.158)

where A is a constant. Consequently Φ′ must satisfy

dΦ′

dr
+
l + 1
r

Φ′ = 0 at r = R . (3.159)

The second condition depends on the treatment of the stellar atmosphere,
and may consequently be quite complicated. These complications are dis-
cussed further in Appendix D. For the moment, we note that if the star is
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assigned a definite boundary at r = R, it is physically reasonable to assume
that the boundary is free, so that no forces act on it. In this way the star
can be considered as an isolated system. This is equivalent to requiring the
pressure to be constant at the perturbed surface. Thus as the second sur-
face boundary condition we take that the Lagrangian pressure perturbation
vanish, i.e.,

δp = p′ + ξr
dp
dr

= 0 at r = R . (3.160)

As shown in Appendix D, a more detailed analysis of the atmospheric be-
haviour of the oscillations gives a very similar result, except at high frequen-
cies.

The equations and boundary conditions have non-trivial solutions only
for specific values of the frequency ω, which is therefore an eigenvalue of the
problem. Each eigenfrequency corresponds to a mode of oscillation; from the
solution one obtains also the eigenfunction, i.e., the variation of the pertur-
bations ξr, p′, etc. with r. As the equations are homogeneous, the solution is
determined only to within a constant factor. Thus the equations do not deter-
mine the amplitude of the motion. This is fixed by nonlinear effects, or by a
possible external forcing that may be responsible for the oscillations. However,
the eigenfunctions resulting from the calculation give the distribution of the
amplitude with position in the star; thus they may be used, e.g., to relate the
observable surface amplitude to the amplitude in the interior, or to the total
energy in the oscillation.

From Eq. (3.160) one can estimate the ratio between the radial and hori-
zontal components of the displacement on the surface. The amplitude of the
horizontal displacement is given by Eq. (3.131). In most cases, however, the
perturbation to the gravitational potential is small. Thus we have approxi-
mately, from Eq. (3.160), that

ξh(R)
ξr(R)

� gs
Rω2

≡ σ−2 , (3.161)

where gs is the surface gravity, and σ is a dimensionless frequency, defined by

σ2 ≡ R3

GM
ω2 . (3.162)

Thus the surface value of ξh/ξr, to this approximation, depends only on
frequency. The ratio of the rms horizontal to vertical displacement [cf.
Eqs (3.136) and (3.137)] is

δhrms

δrrms
=

√
l(l + 1)
σ2

at r = R . (3.163)

Typical values for σ−2 are 0.01 – 0.1 for low-order acoustic modes, and 10
– 100 for high-order g modes such as found in slowly pulsating B stars or
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γDor stars. Thus it is generally true that p modes have predominantly ver-
tical surface velocities and g modes have predominantly horizontal velocities;
however, it is important to emphasize that these properties are solely related
to the frequency and not to the overall nature of the mode. For the important
case of the solar five-minute oscillations, σ−2 ∼ 0.001, and so the motion is
predominantly vertical, except at large l.

As discussed in Sections 6.1.2.2 and 6.2.1 the ratio ξh(R)/ξr(R), typically
denoted K in analysis of observations, is important for the characterization of
the observed properties of oscillations and issues of mode identification. The
approximation in Eq. (3.161) is useful but should probably be replaced by a
more careful calculation of the properties of the modes in the stellar atmo-
sphere. Given this theoretical uncertainty, in applications to mode identifica-
tion a range of values of K is considered in practice to test the robustness of
the result to a varying value for the true model-dependent ratio ξh(R)/ξr(R).

3.3.3 The Dependence of the Frequencies on the Equilibrium
Structure

3.3.3.1 The Scaling with Mass and Radius

It is evident that the oscillation frequencies depend on the total mass and
radius of the star. Indeed, as noted in Section 1.6.1 the dynamical time scale
tdyn (cf. Eq. (1.15)) can be regarded as a characteristic period of radial oscil-
lation. It is interesting that a similar estimate can be obtained by regarding
the oscillations as standing acoustic waves. Here we expect that the period is
approximately given by the sound travel time across the star, i.e.,

Π ∼ R

〈c〉 , (3.164)

where 〈c〉 is a suitable average of the sound speed. Approximating the den-
sity by the mean density and using the equation of hydrostatic support we
furthermore have the estimates

ρ ∼ M

R3
, p ∼ GM2

R4
(3.165)

(e.g., Kippenhahn & Weigert 1990). Using these to estimate 〈c〉 in Eq. (3.164)
yields

Π ∼
(
R3

GM

)1/2

= tdyn , (3.166)

where we neglected Γ1.
This scaling can be brought on a firmer footing. Motivated by the estimates

in Eq. (3.165) we express p and ρ in terms of

p̂ =
R4

GM2
p , ρ̂ =

R3

M
ρ . (3.167)
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Also, we measure distance r to the centre, and the mass m inside r, in terms
of

x = r/R , q = m/M . (3.168)

Then gravity, sound speed, characteristic acoustic frequency Sl and buoyancy
frequency N may be written as

g =
GM

R2
ĝ , c =

(
GM

R

)1/2

ĉ ,

Sl =
(
GM

R3

)1/2

Ŝl , N =
(
GM

R3

)1/2

N̂ , (3.169)

where

ĝ =
q

x2
, ĉ2 =

Γ1p̂

ρ̂
, Ŝ2

l =
l(l + 1)ĉ2

x2
,

N̂2 = ĝ

(
1
Γ1p̂

dp̂
dx

− 1
ρ̂

dρ̂
dx

)
. (3.170)

Finally, we introduce scaled perturbations ξ̂r, p̂′ and Φ̂′ by

ξr = Rξ̂r , p′ =
GM2

R4
p̂′ , Φ′ =

GM

R
Φ̂′ . (3.171)

Then the adiabatic oscillation Eqs (3.152), (3.154) and (3.156), written in
terms of ξ̂r, p̂′ and Φ̂′ as functions of x, can be expressed solely in terms of
p̂, ρ̂, Γ1, ĝ, ĉ, Ŝl and N̂ , if ω is replaced by the dimensionless frequency σ,
defined by Eq. (3.162). This evidently corresponds to measuring the period in
units of the dynamical time scale.

For models that constitute a so-called homologous series (e.g., Kippenhahn
& Weigert 1990), the functions q(x), p̂(x) and ρ̂(x) are uniquely determined.
Thus the dimensionless frequencies σ for a given mode or, equivalently, the
pulsation constants Q (cf. Eq. (1.16)) are the same for all models in such a
series: in this case the periods scale precisely as tdyn. A particular example is
the case of polytropic models: for each polytropic index there is a unique set
of dimensionless adiabatic oscillation frequencies σ. For more realistic stellar
models the scalings are not exactly satisfied and hence σ (or Q) shows some
dependence on stellar parameters; however, it is still often the case that the
scaling with t−1

dyn dominates the variation of the oscillation frequencies.

3.3.3.2 Dependence on the Internal Structure

The coefficients in the adiabatic oscillation Eqs (3.152), (3.154) and (3.156)
obviously depend on the structure of the equilibrium model. Indeed, this is
the whole basis for the asteroseismic use of observed frequencies to probe
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the structure of stars. A closer inspection reveals that the coefficients are
determined solely by the set of equilibrium variables

ρ, p, Γ1, g , (3.172)

as functions of r. However, the equilibrium model satisfies the stellar structure
Eqs (3.33) and (3.34); in addition we initially assume the model to have a given
mass and radius, which at least in the case of the Sun are known with high
precision.

If ρ(r) is given, g(r) is determined by Eq. (3.34); and, given g, the equa-
tion (3.33) of hydrostatic support may be integrated from the surface to pro-
vide p(r) (the surface pressure is known from theoretical or empirical atmo-
spheric models). Thus of the set in Eq. (3.172) only the two functions ρ(r)
and Γ1(r) are independent, and the adiabatic oscillation frequencies are de-
termined solely by these two functions. Conversely, if no other constraints
are imposed, the observed frequencies give direct information only about ρ
and Γ1.

In the general stellar case we cannot assume the mass and radius to be
known. In this case, it reasonable to discuss the properties of the stellar inte-
rior in terms of the scaled variables introduced in Eqs (3.167)–(3.170) above.
It similarly follows from the dimensionless form of the stellar-structure equa-
tions, as discussed in more detail by Christensen-Dalsgaard et al. (2005), that
the structure is fully characterized by specifying ρ̂ as a function of x. Thus
the adiabatic oscillation equations, and hence the dimensionless frequency σ
defined in Eq. (3.162), are determined by (ρ̂, Γ1) specified as a function of
x. Also, when analysing the region below the hydrogen and helium ioniza-
tion zones in main-sequence stars of modest mass one can often assume that
Γ1 � 5/3; in this case the relevant structure is fully characterized by ρ̂(x).

The preceding discussion was made in terms of the pair (ρ, Γ1). However,
any other independent pair of model variables, related directly to ρ and Γ1,
may be used instead. As will be discussed extensively below, observed os-
cillations have in many cases (including the Sun) essentially the nature of
standing acoustic waves. Their frequencies are largely determined by the be-
haviour of sound speed c, and hence it would be natural to use c as one of
the variables, combined with, e.g., ρ or Γ1. Also, it is evident that analysis
of such oscillations may be used to determine properties of the sound speed.
Indeed, the observations for the Sun are sufficiently rich that the observed
frequencies may be inverted to obtain an estimate of the sound speed in most
of the Sun (see Section 7.1.7). It follows from Eq. (3.56) that this provides a
measure of T/μ. However, it is important to note that measurements of adi-
abatic oscillation frequencies do not by themselves allow a determination of
the temperature in a star. Only if the mean molecular weight can be other-
wise constrained (e.g., by demanding that its variation in the stellar interior
results from normal stellar evolution) is it possible to estimate the stellar in-
terior temperature. This limitation is of obvious importance for the use of
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observed solar oscillation frequencies to constrain the production rate of solar
neutrinos (see Section 7.1.1.1).

3.3.3.3 Dependence on the Physics of Stellar Interiors

Although asteroseismology directly only provides information about p, ρ, Γ1

and c it is obviously of major interest to use this information further to con-
strain the properties of stellar interiors. This requires that the oscillation fre-
quencies are combined with other types of information. An important example
is to use the fact that Γ1 can be determined from the equation of state if p, ρ
and the composition is known. To a fair degree of approximation the chemical
composition can be specified by a single parameter, such as the abundance Y
by mass of helium. In this approximation just three quantities should suffice
to specify fully the thermodynamical state. In principle these three quanti-
ties could be ρ, p and Γ1 which, as argued above, should be obtainable from
the oscillation observations. If the equation of state were known one should
be able to determine any other thermodynamic variable, including Y , from
these observed quantities. Outside the ionization zones, being very nearly con-
stant, Γ1 gives a poor determination of the thermodynamical state; however,
it varies sufficiently in the ionization zones to allow a determination of Y ,
provided that the properties of the equation of state are known with sufficient
accuracy. Also, a further constraint is obtained from the fact that Y can be
assumed to be constant throughout the fully mixed convection zone; this may
permit separately to test aspects of the equation of state and determine the
helium abundance in this region (see Section 7.1.7).

In the radiative interior additional assumptions are required to constrain
the properties beyond the directly determined asteroseismic variables. This
could, for example, involve assuming that the microphysics (equation of state,
opacity and energy generation) is known. Also, the power of asteroseismic di-
agnostics depends greatly on the ability to obtain independent determinations
of stellar mass and radius, as well as determinations of the luminosity and sur-
face composition of the star.

3.4 Asymptotic Theory of Stellar Oscillations

The general oscillation equations appear quite complicated. In particular, ana-
lytical solutions can only be obtained in certain, very restricted cases (cf. J. P.
Cox 1980, Section 17.7). A useful example is the behaviour of oscillations in
an isothermal atmosphere, discussed in Appendix D. While such results offer
some insight into the behaviour of the modes, a more fruitful approach is in
general to approximate the equations to a point where they can be discussed
analytically; an early example is the asymptotic analysis by Ledoux (1962)
of high-order radial modes. The use of such asymptotic analyses is justified
by the fact that in many cases the observed modes are of high radial order.
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Thus solar oscillations, solar-like oscillations in other stars and oscillations
in roAp stars are generally acoustic modes of high radial order, whereas the
comparatively long-period oscillations observed in, e.g., white dwarfs, slowly
pulsating B stars and γDor stars are high-order buoyancy-driven modes. Thus
asymptotic theory is often applicable to an actually surprisingly high degree
of accuracy.

3.4.1 The Cowling Approximation

The general equations are of fourth order. This is a difficulty in asymptotic
studies which generally deal with second-order systems. Fortunately the per-
turbation to the gravitational potential can often be neglected. To see this we
may consider the integral solution in Eq. (3.45) to the Poisson equation. This
can be written on separated form as

Φ′(r) = − 4πG
2l + 1

[
1

rl+1

∫ r

0

ρ′(r′)(r′)l+2 dr′ + rl

∫ R

r

ρ′(r′)
(r′)l−1

dr′
]

; (3.173)

this is most easily seen by verifying that this solution satisfies the separated
Poisson equation (3.128). From Eq. (3.173) it follows that |Φ′| is small com-
pared with ρ′ under the following two circumstances:

i) when l is large;
ii) when the radial order |n| is large.

In the former case (r′/r)l+2 (which appears in the first integral) is small
when r′ < r, and (r/r′)l−1 (which appears in the second integral) is small
when r′ > r; in addition Φ′ is reduced by the factor (2l + 1)−1. In the second
case Φ′ contains integrals over rapidly varying functions of r and is therefore
reduced relative to the size of the integrand.

Under these circumstances it appears reasonable to neglect Φ′. This ap-
proximation was first studied carefully by Cowling (1941), and is therefore
known as the Cowling approximation. It reduces the order of the system of
equations to two, with a corresponding reduction in the number of boundary
conditions.

It must be pointed out that the neglect of Φ′ is not quite as obvious as may
seem from this discussion. In fact its mathematical justification has not been
fully analysed. As will be discussed in Section 3.5.2 the properties of the so-
called f mode, with no radial zeros, with l = 1 are drastically different in the
Cowling approximation and for the full equations. Nonetheless, for high-order
or high-degree modes the validity of the approximation has been confirmed
computationally (e.g., Robe 1968; Christensen-Dalsgaard 1991a).

3.4.2 Trapping of p and g Modes

The equations in the Cowling approximation can be written as
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dξr
dr

= −
(

2
r
− 1
Γ1
H−1

p

)
ξr +

1
ρc2

(
S2

l

ω2
− 1

)
p′ , (3.174)

dp′

dr
= ρ(ω2 −N2)ξr −

1
Γ1
H−1

p p′ , (3.175)

where
H−1

p = −d ln p
dr

; (3.176)

hence Hp is the pressure scale height, i.e., the distance, roughly, over which
the pressure changes by a factor e. For oscillations of high radial order, the
eigenfunctions vary much more rapidly than the equilibrium quantities; thus,
e.g., the left hand side of Eq. (3.174) is much larger than the first term on
the right hand side which contains derivatives of equilibrium quantities. As a
first, very rough approximation, we simply neglect these terms, reducing the
equations to

dξr
dr

=
1
ρc2

(
S2

l

ω2
− 1

)
p′ , (3.177)

dp′

dr
= ρ(ω2 −N2)ξr . (3.178)

These two equations can be combined into a single second-order differential
equation for ξr; neglecting again derivatives of equilibrium quantities, the
result is

d2ξr
dr2

=
ω2

c2

(
1 − N2

ω2

)(
S2

l

ω2
− 1

)
ξr . (3.179)

This equation represents the crudest possible approximation to the equa-
tions of nonradial oscillations. In fact the assumptions going into the deriva-
tions are questionable. In particular, the pressure scale height becomes small
near the stellar surface,10 where therefore derivatives of pressure and density
cannot be neglected. We return to this question in Section 3.4.3. Similarly, the
term in 2/r neglected in Eq. (3.174) is large very near the centre. Neverthe-
less, the equation is adequate to describe the overall properties of the modes
of oscillation, and in fact gives a reasonably accurate determination of their
frequencies.

From Eq. (3.179) it is evident that the characteristic frequencies Sl and N ,
defined in Eqs (3.153) and (3.155), play a very important role in determining
the behaviour of the oscillations. They are illustrated in Fig. 3.14 for a solar
model; this is representative of lower-main-sequence stars. Sl tends to infinity
as r tends to zero and decreases monotonically towards the surface, due to
the decrease in c and the increase in r. As discussed in Section 3.1.4.2, N2

is negative in convection zones (although generally of small absolute value),
and positive in convectively stable regions. The maximum in N very near the

10 notice that Hp = p/(ρg) is proportional to temperature.
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Fig. 3.14. Buoyancy frequency N [cf. Eq. (3.155); continuous line] and char-
acteristic acoustic frequency Sl [cf. Eq. (3.153); dashed lines, labelled by the
values of l], shown in terms of the corresponding cyclic frequencies, against
fractional radius r/R for a model of the present Sun. The heavy horizontal
lines indicate the trapping regions for a g mode with frequency ν = 100μHz,
and for a p mode with degree 20 and ν = 2000μHz.

centre is associated with the increase towards the centre in the helium abun-
dance in the region where nuclear burning has taken place. Here, effectively,
lighter material is on top of heavier material, which adds to the convective
stability and hence increases N . This is most easily seen by using the ideal
gas law for a fully ionized gas, Eq. (3.19) which is approximately valid in the
interior of cool stars, to rewrite N2 as

N2 � g2ρ

p
(∇ad −∇ + ∇μ) , (3.180)

corresponding to the convective instability condition written in the form given
by Eq. (3.94) (see also Eq. (3.95)). In the region of nuclear burning, μ increases
with increasing depth and hence increasing pressure, and therefore the term
in ∇μ makes a positive contribution to N2.

The behaviour of N is rather more extreme in stars with convective cores;
this is illustrated in Fig. 3.15 for the case of a 2.2 M� evolution sequence. The
convective core is fully mixed and here, therefore, the composition is uniform,
with ∇μ = 0. However, in stars of this and higher masses the convective core
generally shrinks during the evolution, leaving behind a steep gradient in the
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Fig. 3.15. (a) Hydrogen content X against mass fraction m/M for three
models in a 2.2 M� evolution sequence. The solid line is for age 0, the dotted
line for age 0.47 Gyr and the dashed line for age 0.71 Gyr. Only the inner 40 per
cent in mass of the models is shown. (b) Scaled buoyancy frequency, expressed
in terms of cyclic frequency, against m/M for the same three models. In the
scaling factor, R and R0 are the radii of the actual and the zero-age main-
sequence model, respectively. For the model of age 0.71 Gyr, the maximum
value of (R/R0)

3/2N/2π is 2400μHz. (c) Scaled buoyancy frequency N (heavy
lines) and characteristic acoustic frequency Sl for l = 2 (thin lines), for the
same three models, plotted against fractional radius r/R.
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hydrogen abundance X , as shown in Fig. 3.15a. This causes a sharp peak in
∇μ and hence in N . When plotted as a function of mass fraction m/M , as in
panel (b) of Fig. 3.15, the location of this peak is essentially fixed although
its width increases with the shrinking of the core11 However, as illustrated in
Fig. 3.15c, the location shifts towards smaller radius: this is a consequence of
the increase with evolution of the central density and hence the decrease in
the radial extent of a region of given mass. This also causes an increase in
gravity g in this region and hence in N , visible in the figure. In accordance
with Eq. (3.169), the characteristic frequencies have been scaled by R3/2 in
Fig. 3.15: it is evident that Sl, and N in the outer parts of the model, are
then largely independent of evolution. Thus the stellar envelope essentially
changes homologously, while this is far from the case for the core; it follows
that stellar oscillations sensitive to the structure of the core might be expected
to show considerable variation with evolution of the dimensionless frequency
σ introduced in Eq. (3.162). This is confirmed by the numerical results which
will be shown in Section 3.5.3.

To analyse the behaviour of the oscillations we write Eq. (3.179) as

d2ξr
dr2

= −Ks(r)ξr , (3.181)

where

Ks(r) =
ω2

c2

(
N2

ω2
− 1

)(
S2

l

ω2
− 1

)
. (3.182)

The local behaviour of ξr depends on the sign of Ks. Where Ks is positive, ξr
is locally an oscillating function of r, and where Ks(r) is negative the solution
is locally an exponentially increasing or decreasing function of r. Indeed, as
will be shown in more detail in Section E.2, in the former case the solution
may be written approximately as

ξr ∼ cos
(∫

K1/2
s dr + φ

)
, Ks > 0 , (3.183)

(φ being a phase determined by the boundary conditions) while in the latter
case

ξr ∼ exp
(
±
∫

|Ks|1/2dr
)
, Ks < 0 . (3.184)

Thus according to this description the solution oscillates as a function of r
when

o1) |ω| > |N | and |ω| > Sl , (3.185)

or
o2) |ω| < |N | and |ω| < Sl , (3.186)

11 The erratic behaviour of N in the chemically inhomogeneous region, shown by
the dotted line, is caused by small fluctuations introduced by numerical errors in
X(m).
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and it is exponential when

e1) |N | < |ω| < Sl , (3.187)

or
e2) Sl < |ω| < |N | . (3.188)

This describes two types of oscillatory behaviour, o1) and o2), and two types
of exponential behaviour, e1) and e2). The exponential behaviour is often de-
scribed by saying that the mode is evanescent in the given region, particularly
if it is decreasing exponentially as one moves away from a dominant oscillatory
region.

For a given mode of oscillation there may be several regions where the
solution oscillates, according to criterion o1) or o2), with intervening regions
where it is exponential. However, in general one of these oscillating regions is
dominant, with the solution decaying exponentially away from it. The solution
is then said to be trapped in this region; its frequency is predominantly deter-
mined by the structure of the model in the region of trapping. The boundaries
of the trapping region are generally at points where Ks(r) = 0; such points are
known as turning points . From Eq. (3.183) it follows that within the trapping
region the mode oscillates the more rapidly as a function of r, the higher the
value of Ks. Thus, if the order of the mode is roughly characterized by the
number of zeros in ξr

12 the order generally increases with increasing Ks.
From the behaviour of Sl and N shown in Fig. 3.14, and the conditions for

an oscillating solution, we may expect two classes of modes:

i) Modes with high frequencies satisfying o1), labelled p modes.
ii) Modes with low frequencies satisfying o2), labelled g modes.

These are discussed separately below.
Typical trapping regions, for a p and a g mode in a model of the present

Sun, are shown in Fig. 3.14. We note also that in evolved stars with convective
cores the large values of N at the edge of the core may lead to the condition o2)
being satisfied even at quite high frequency. Thus here one might expect that
the distinction in frequency between p and g modes becomes less clear. This
results in mixed modes which show both a p-mode and a g-mode character.
Some consequences of that are illustrated in Section 3.5.3.

We finally note that in white dwarfs the buoyancy frequency is very small
in the interior which is dominated by degenerate electrons (cf. Fig. 3.11). Thus
in this case the g modes are largely confined to the stellar envelope. Also, the
modes are affected by the bumps in N2 associated with the steep composition
gradients; as discussed in Section 7.4.1.3 this gives rise to a signature in the
oscillation periods which provides a diagnostics of the thickness of the different
layers.

12 The concept of order is defined more precisely in Section 3.5.2.
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3.4.2.1 p Modes

These are trapped between an inner turning point r = rt and the surface; the
trapping at the surface is in fact not contained in the analysis presented so
far, but will be discussed in Section 3.4.3. The inner turning point is located
where Sl(rt) = ω, or

c2(rt)
r2t

=
ω2

l(l + 1)
. (3.189)

This condition determines rt as a function of l and ω.
For p modes, in particular those observed in the Sun or in solar-like pul-

sators, we typically have that ω � N . Then Ks can be approximated by

Ks(r) �
1
c2

(ω2 − S2
l ) . (3.190)

In this approximation, therefore, the dynamics of the p modes is solely deter-
mined by the variation of the sound speed with r. These modes are standing
acoustic waves, with the restoring force being dominated by pressure, and this
motivates denoting them p modes. Indeed, Eq. (3.190) determining the radial
behaviour of the modes can be obtained very simply from the dispersion re-
lation (3.55) for a plane sound wave. We write the squared length |k|2 of the
wave vector as the sum of a radial and a horizontal component, i.e.,

|k|2 = k2
r + k2

h . (3.191)

Here kh is determined from l by Eq. (3.143); thus Eq. (3.55) becomes

ω2

c2
= k2

r +
l(l + 1)
r2

, (3.192)

or
k2

r =
1
c2

(ω2 − S2
l ) . (3.193)

Here, according to Eq. (3.181), k2
r must be identified with Ks, and Eq. (3.193)

is therefore identical to Eq. (3.190).
The sequence of approximations used to derive Eq. (3.190) corresponds

closely to the approximations made in the analysis of simple sound waves.
Thus it is not surprising that the same dispersion relation is recovered. Nev-
ertheless, it is gratifying to see that the full oscillation equations reduce to
the correct behaviour in this limit.

The interior reflection of the p modes can be understood very simply in
terms of ray theory. A mode can be regarded as a superposition of propagating
sound waves. Two such waves are illustrated in Fig. 3.16. As they propagate
into the star, the deeper parts of the wave fronts experience a higher sound
speed and therefore travel faster. Consequently, the direction of propagation
is bent away from the radial direction. This is completely analogous to the
refraction experienced by light rays when traveling into a medium with a
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Fig. 3.16. Propagation of acoustic waves, corresponding to modes with l =
30, ν = 3mHz (deeply penetrating rays) and l = 100, ν = 3mHz (shallowly
penetrating rays). The lines orthogonal to the former path of propagation
illustrate the wave fronts.

higher speed of light, as reflected by Snell’s law; the speed of light is lower in
materials with higher index of refraction, leading to the change in direction of
the light rays. Mathematically, the effect is expressed by the decrease in the
radial component of the wave vector with increasing sound speed shown in
Eq. (3.193). At the reflection point the wave travels horizontally, with kr = 0;
the condition (3.189) then follows directly from the dispersion relation for
sound waves, in the form given in Eq. (3.192). A detailed analysis of p modes
in terms of ray theory has been given by Gough (1984a, 1986a).

The reflection of the waves at the surface is not contained in this simple
description; it results from the decrease of the scale of variation in the equi-
librium quantities, making invalid the approximations leading to Eq. (3.179).
A simple analytical description of this is possible in the case of an isothermal
atmosphere, discussed in Appendix D. An asymptotic treatment including the
surface reflection is discussed in Section 3.4.3 below.

From Eq. (3.190) it follows that Ks increases with the frequency. This
increases the number of zeros in the eigenfunction, i.e., the mode order. This
means, equivalently, that the frequency increases with mode order.

Equation (3.193) can be used to make plausible a very simple, yet powerful,
relation for the frequencies of acoustic modes. To obtain a standing wave the
change in phase of the eigenfunction in the radial direction must be an integral
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multiple of π, apart from phase changes at the boundaries of the region; this
is entirely equivalent to simple standing waves. Thus

∫ R

rt

krdr = π(n + α) , (3.194)

where α accounts for the phase change at the lower turning point and in the
reflection of the wave at the surface, r = R. Using Eq. (3.193) this becomes

∫ R

rt

(ω2 − S2
l )1/2 dr

c
= (n+ α)π , (3.195)

or

F
(ω
L

)
=

(n+ α)π
ω

, (3.196)

where

F
(ω
L

)
≡
∫ R

rt

(
1 − L2c2

ω2r2

)1/2 dr
c
, (3.197)

with L2 = l(l + 1).13 That solar oscillations satisfy a relation of the form
given in Eq. (3.196) was first found by Duvall (1982), and thus this relation
is known as the Duvall law . It has played a fundamental role in the analysis
of solar oscillations, as discussed in Chapter 7. A more rigorous derivation is
provided in Section E.3, and we discuss further properties of the relation in
Section 7.1.4.4.

3.4.2.2 g Modes

Here the turning-point positions are determined by the condition N = ω. As
seen in Fig. 3.14, for low-frequency modes in solar-like stars this gives rise to
one turning point very near the centre, and a second just below the base of
the convection zone. At higher frequencies the upper turning point is deeper
in the model, and for frequencies close to the maximum in N , the modes
are trapped in the deep interior. In more massive main-sequence stars with a
convective core and a very thin outer convection zone the inner turning point
is at the edge of the core and the mode extends nearly to the surface; obviously
a more complex behaviour may result in evolved stars with a large peak in the
buoyancy frequency associated with regions of varying mean molecular weight
(cf. Fig. 3.15). However, to this approximation the position of the turning
points is independent of l.

For high-order g modes typically ω2 � S2
l , and we may approximate Ks

by

Ks(r) �
1
ω2

(N2 − ω2)
l(l + 1)
r2

; (3.198)

13 Note that rt, as given by Eq. (3.189), is indeed determined by ω/L.
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thus in this case the dynamics is dominated by the variation of the buoyancy
frequency N with r. Gravity, acting on the density perturbation, provides
the dominant restoring force, and this is the reason that the modes are called
g modes. The modes are trapped internal gravity waves. In fact, by arguments
similar to those used above for the p modes, one obtains from the dispersion
relation (3.76) for gravity waves that the radial component of the wave number
is given by

k2
r =

l(l + 1)
r2

(
N2

ω2
− 1

)
; (3.199)

this is in accordance with the relation for Ks given in Eq. (3.198).
From Eq. (3.198) it follows that Ks increases with decreasing ω. Thus the

order of the mode increases with decreasing ω, or, equivalently, ω decreases
with increasing order. It may also be noticed that the frequencies of g modes
cannot exceed the maximum Nmax in the buoyancy frequency in the stellar
interior. As shown below (cf. Fig. 3.20) one does indeed find an upper limit
on numerically computed g-mode frequencies. The approach to this limit as l
gets large was analysed by Christensen-Dalsgaard (1980).

3.4.3 Asymptotic Properties of Frequencies and Eigenfunctions

The analysis presented above is clearly inadequate as an asymptotic repre-
sentation of stellar oscillations. In particular, it neglects the fact that the
properties of the equilibrium model vary on a scale that may not be long
compared with the radial wavelength of the modes in some regions of the
star, particularly near the stellar surface. For acoustic modes the variation of
the mode is characterized by the radial wave number kr � ω/c, whereas the
variation of the equilibrium structure can be characterized by, for example,
the density scale height H , defined by

H−1 =
∣
∣
∣
∣
d ln ρ

dr

∣
∣
∣
∣ . (3.200)

Only when kr � H−1, or ω � c/H , is the assumption of a slowly varying
equilibrium structure satisfied. As discussed in Appendix D a more precise
analysis in the simple case of an isothermal atmosphere shows that the modes
oscillate as a function of r only where

ω > ωa , (3.201)

where
ωa =

c

2Hp
(3.202)

is the acoustic cut-off frequency for an isothermal atmosphere, Hp being the
pressure scale height (see Eq. (3.176))
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H−1
p =

∣
∣
∣
∣
d ln p

dr

∣
∣
∣
∣ =

Gmρ

pr2
(3.203)

(here we used the equation of hydrostatic support, Eqs (3.33) and (3.34)).
Near the stellar surface ρ/p ∝ T−1 (cf. Eq. (3.19)) becomes very large and
hence Eq. (3.201) may no longer be satisfied at a given frequency.

It is possible to extend the analysis in Section 3.4.2 by including derivatives
of the equilibrium quantities (see Unno et al. 1989). In this way the variation
of the equilibrium structure can be taken into account in a more consistent
way. However, the resulting equations contain singularities which make their
analysis somewhat complex. Here instead we discuss the asymptotic proper-
ties in terms of a formalism developed by Gough (e.g., Deubner & Gough
1984), based on an analysis by Lamb (1932). As in Section 3.4.2 it assumes
the Cowling approximation; derivatives of equilibrium quantities are generally
included, with the exception of the derivative of g and r. The derivation is
presented in Section E.1. The result is a second-order differential equation,

d2X

dr2
+

1
c2

[
S2

l

(
N2

ω2
− 1

)
+ ω2 − ω2

c

]
X = 0 , (3.204)

in terms of the quantity
X = c2ρ1/2χ , (3.205)

where χ = div δδδr. Here

ω2
c =

c2

4H2

(
1 − 2

dH
dr

)
(3.206)

is a generalized acoustic cut-off frequency.14

Before analysing Eq. (3.204) in more detail we note that the analysis also
shows the existence of a solution with

ω2 � Lg/R , (3.207)

and with the radial eigenfunction varying as

ξr ∝ exp(Lr/R) . (3.208)

Comparison with Eq. (3.85), with kh = L/R, identifies this as a surface gravity
wave (see also Section 7.1.4.3).

As in the discussion of Eq. (3.181) the overall properties of the eigenfunc-
tions are determined by the properties of

K ≡ 1
c2

[
S2

l

(
N2

ω2
− 1

)
+ ω2 − ω2

c

]
. (3.209)

14 Note that in an isothermal atmosphere H = Hp is constant, and consequently
ωc = ωa.
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Fig. 3.17. The acoustic cut-off frequency ωc defined in Eq. (3.206) (solid line),
and the approximation ωa appropriate to an isothermal region [cf. Eq. (3.202);
dashed line] in the outermost parts of a model of the present Sun.

As in the simplified discussion in Section 3.4.2 a mode is oscillatory as a func-
tion of r where K > 0 and behaves exponentially where K < 0. Near the
surface S2

l is small, and K is dominated by the last two terms; hence X is
exponential when ω2 < ω2

c . This provides the trapping of the modes at the
surface, which was not included in the analysis in Section 3.4.2. Figure 3.17
shows ωc and ωa in the outer parts of a solar model; they are in fact quite simi-
lar, except in a thin region very near the top of the convection zone, where the
rapid variation in the superadiabatic gradient causes large excursions in ωc.
In the interior of models of the present Sun ω2

c (which roughly varies as g2/T )
is generally small, corresponding to cyclic frequencies below about 600μHz.

To characterize the oscillatory properties of the solution we write Eq. (3.209)
as

K(r) =
ω2

c2

[
1 − ω2

c

ω2
− S2

l

ω2

(
1 − N2

ω2

)]

≡ ω2

c2

(

1 −
ω2

l,+

ω2

)(

1 −
ω2

l,−
ω2

)

, (3.210)

defining the characteristic frequencies ωl,+ and ωl,−. They are plotted in
Fig. 3.18, in a model of the present Sun. Equation (3.210) shows that the
trapping of the modes is determined by the value of the frequency, relative to
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behaviour of ωl,+ and ωl,−. In the interior of the star, particularly for large l,

ωl,+ � Sl , ωl,− � N . (3.211)

Thus here we recover the conditions for trapping discussed in Section 3.4.2.
This was indeed to be expected, as the assumptions entering the present for-
mulation provide a natural transition from the previously discussed simplified
asymptotic treatment to the atmospheric behaviour of the oscillations. On the
other hand, near the surface where Sl/ω � 1

ωl,+ � ωc , (3.212)

while ωl,− is small. Thus the trapping near the surface is controlled by the
behaviour of ωl,+. As shown in Fig. 3.18 trapping extends in frequency up to
about 5.3 mHz in the solar case, although the spike in ωl,+ just beneath the
photosphere provides some partial reflection at even higher frequency. Also,
it was noted by Balmforth & Gough (1990) that the rapid variation in tem-
perature, and hence sound speed, at the transition between the chromosphere
and the corona in stars like the Sun, can cause partial reflection. Modes with
frequency ν >∼ 2 mHz propagate essentially to the photosphere, while modes
of lower frequency are reflected at some depth in the convection zone.

As in the simplified case considered in Section 3.4.2 a given mode is typi-
cally characterized by a single region, between r1 and r2, say, where K(r) > 0
and where the mode consequently has an oscillatory behaviour, and such that
the eigenfunctions decrease exponentially as one moves away from this region.
As discussed in Section E.2 an approximate expression for the eigenfrequen-
cies of such a trapped mode can be found from JWKB analysis of Eq. (3.204).
The result is that the frequencies satisfy

∫ r2

r1

K(r)1/2dr =
(
n− 1

2

)
π, n = 1, 2, . . . . (3.213)

Note that in a given frequency interval there may be two or more regions in
the star where K > 0; in this case the star may have separate but weakly
interacting spectra of frequencies each associated with one of these regions.
Numerical examples of this behaviour are discussed in Sections 3.5.3 and 7.2.4.
From JWKB analysis asymptotic approximations to the eigenfunctions are
also obtained (see Section E.4).

3.4.3.1 Acoustic Modes

If ω2 � |N |2 Eq. (3.213) can be approximated by

ω

∫ r2

r1

(
1 − ω2

c

ω2
− S2

l

ω2

)1/2 dr
c

� π(n− 1/2) . (3.214)



216 3 Theory of Stellar Oscillations

Fig. 3.18. Characteristic frequencies ωl,+/(2π) (continuous curves) and
ωl,−/(2π) (dashed curves) for a model of the present Sun (cf. Eq. (3.210)).
The curves are labelled with the degree l. The right-hand panel shows the
outermost parts of the model on an expanded horizontal scale. The figure may
be compared with the simple characteristic frequencies plotted in Fig. 3.14.

Since ωc is generally large only near the surface, the lower turning point is
approximately at r1 � rt, defined in Eq. (3.189), where ω = Sl. Unless l is
large the upper turning point r2 � Rt, where ω = ωc(Rt); note in particular
that Rt is independent of l. Also, in this case ωc can be neglected in the
integrand in Eq. (3.214) except near the surface. Consequently the integral
can be approximately expanded to separate the contribution from ωc. As
discussed in Section E.3 the result is the Duvall law,

∫ R

rt

(
1 − L2c2

ω2r2

)1/2 dr
c

=
[n+ α(ω)]π

ω
, (3.215)

corresponding to Eqs (3.196) and (3.197), with α = α(ω) being a function of
frequency that is determined by the properties of the near-surface region (see
also Christensen-Dalsgaard & Pérez Hernández 1992).

For modes of low degree, rt is very close to the centre. In Eq. (3.215),
therefore, the second term in the bracket on the left-hand side is much smaller
than unity over most of the range of integration. To leading order this results
in the following simple relation for frequencies of low-degree p modes:
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νnl =
ωnl

2π
�
(
n +

l

2
+

1
4

+ α

)
Δν , (3.216)

where

Δν =

[

2
∫ R

0

dr
c

]−1

, (3.217)

the so-called large frequency separation, is the inverse of twice the sound travel
time between the centre and the surface. This equation predicts a uniform
spacing Δν in n of the frequencies of low-degree modes. Also, modes with the
same value of n+ l/2 should be almost degenerate,

νnl � νn−1 l+2 . (3.218)

This frequency pattern has been observed for the solar five-minute modes of
low degree (see Fig. 1.9) and may be used in the search for stellar oscillations
of solar type. In fact, as shown in Fig. 3.25 below it is visible even down to
very low radial order for computed frequencies of models near the zero-age
main sequence.

The simple relation (3.216) is only a first approximation. There are de-
partures from the apparent degeneracy in Eq. (3.218), of considerable diag-
nostic potential, characterized by the so-called small frequency separations
δνnl = νnl − νn−1 l+2. By carrying the asymptotic expansion further, one may
show that

νnl �
(
n+

l

2
+

1
4

+ α

)
Δν − (AL2 − δ)

Δν2

νnl
(3.219)

(Tassoul 1980, 1990; Gough 1986a), where

A =
1

4π2Δν

[
c(R)
R

−
∫ R

0

dc
dr

dr
r

]

. (3.220)

Thus

δνnl ≡ νnl − νn−1 l+2 � −(4l + 6)
Δν

4π2νnl

∫ R

0

dc
dr

dr
r
, (3.221)

where we neglected the term in the surface sound speed. This shows that δνnl

has substantial sensitivity to the sound-speed gradient in the core, which in
turn is sensitive to the composition profile. Thus the small separation is a very
important diagnostics of stellar evolution. Physically, this may be understood
from the fact that for these modes only near the centre is kh comparable
with kr. Elsewhere the wave vector is almost vertical, and the dynamics of
the oscillations is largely independent of their horizontal structure, i.e., of l;
therefore at given frequency the contributions of these layers to the frequency
are nearly the same, and hence almost cancel in the difference in Eq. (3.221).



218 3 Theory of Stellar Oscillations

Fig. 3.19. Schematic oscillation spectrum (a) and échelle diagram (b), based
on Eq. (3.223); the parameters, Δν0 = 135μHz, D0 = 1.5μHz and ε0 = 1.4,
were chosen to match approximately the solar values. In panel (a) the am-
plitudes were chosen as the sensitivities of Doppler-velocity observations in
disc-integrated light (cf. Fig. 7.1).

From an observational point of view, and to illustrate its structure, it is
convenient to represent the spectrum by the average quantities Δν0 and D0,
with

〈νn+1 l − νnl〉nl = Δν0 , δνl ≡ 〈νnl − νn−1 l+2〉n � (4l + 6)D0 (3.222)

(e.g., Scherrer et al. 1983), such that

νnl � Δν0

(
n+

l

2
+ ε0

)
− l(l + 1)D0 , (3.223)
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where ε0 = α + 1/4. The resulting structure is illustrated schematically in
Fig. 3.19a, for frequency separations corresponding to the solar case. To illus-
trate in more detail the properties of the spectrum, it is convenient to use
an échelle diagram (e.g., Grec et al. 1983). Here the frequencies are reduced
modulo Δν0 by expressing them as

νnl = ν0 + kΔν0 + ν̃nl , (3.224)

where ν0 is a suitably chosen reference, and k is an integer such that ν̃nl is
between 0 and Δν0; the diagram is produced by plotting ν̃nl on the abscissa
and ν0 +kΔν0 on the ordinate. Graphically, this may be thought of as cutting
the frequency axis into pieces of length Δν0 and stacking them above each
other. This is illustrated in Fig. 3.19b. According to the simple asymptotic
expression in Eq. (3.223) the result yields points arranged on a set of vertical
lines corresponding to the different values of l, the lines being separated by
the appropriate δνl.

The eigenfunctions of p modes are discussed in Section E.4. The result is

ξr(r) � (3.225)

Aρ−1/2c−1/2r−1

∣
∣
∣
∣1 − S2

l

ω2

∣
∣
∣
∣

1/4

cos

[

ω

∫ R

r

(
1 − S2

l

ω2

)1/2 dr′

c
− (1/4 + α)π

]

,

where we have again neglected N2/ω2. To simplify this expression further we
note that S2

l decreases quite rapidly with increasing r. Near r = rt, ω2 and S2
l

are comparable, but at some distance from the turning point we can assume
that S2

l /ω
2 � 1. Here, therefore

ξr(r) � Aρ−1/2c−1/2r−1 cos

[

ω

∫ R

r

dr′

c
− (1/4 + α)π

]

. (3.226)

It is convenient to express this as

ρ1/2c1/2rξr(r) � A cos [ωτ − (1/4 + α)π] , (3.227)

where we introduced the acoustic depth

τ =
∫ R

r

dr′

c
. (3.228)

Thus the scaled displacement is a simple harmonic function of ωτ . To this ap-
proximation the eigenfunction is independent of l. Oscillations with the same
frequency but different l therefore have approximately the same eigenfunctions
near the surface, if they are normalized to the same surface value.

We finally note that it follows from the analysis in Section E.4.1 that the
energy integral (cf. Eq. (3.139)) can be written as
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E � η̃(ω)ξr(R)2
∫ R

rt

(
1 − L2c2

ω2r2

)−1/2 dr
c

(3.229)

(see Eq. (E.92)), where η̃(ω) accounts for the behaviour of the eigenfunction
near the upper turning point.

3.4.3.2 Asymptotic Properties of g Modes

For g modes in general ω2 � S2
l , and we approximate K by

K(r) � l(l + 1)
r2

(
N2

ω2
− 1

)
. (3.230)

Typically a mode is trapped between two zeros r1 and r2 of K, and Eq. (E.41)
shows that the frequencies are determined by

∫ r2

r1

L

(
N2

ω2
− 1

)1/2 dr
r

= (n− 1/2)π , (3.231)

or ∫ r2

r1

(
N2

ω2
− 1

)1/2 dr
r

=
(n− 1/2)π

L
. (3.232)

Here the left-hand side is solely a function of ω, so that Eq. (3.232) can be
written, in analogy with Eq. (3.196), as

n− 1/2
L

= G(ω) , (3.233)

where

G(ω) =
1
π

∫ r2

r1

(
N2

ω2
− 1

)1/2 dr
r
. (3.234)

For high-order, low-degree g modes ω is much smaller than N over most
of the interval [r1, r2]. This suggests that a similar approximation to the one
leading to Eq. (3.216) should be possible; however, now the properties obvi-
ously depend on whether the star has a radiative or convective core. In the
case of a radiative core, as in Fig. 3.14, the lower turning point is very near
the centre and here the integral may be expanded, in much the same way as
the integral in Eq. (3.197), by using the fact that N ∼ r near r = 0; as in
the p-mode case this gives rise to a dependence on l. However, the expansion
near the upper turning point can apparently not be done in a similarly simple
fashion, and in any case the result does not quite have the correct dependence
on l. In the case of a convective core the phase shift at the lower boundary
is independent of degree. A proper asymptotic analysis (Tassoul 1980) shows
that the frequencies of low-degree, high-order g modes are given by
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ω =
L

∫ r2

r1

N
dr
r

π(n + αl,g)
, (3.235)

where the phase term αl,g depends on the details of the boundaries of the
trapping region. This may also be written as

Π =
Π0

L
(n + αl,g) , (3.236)

where

Π0 = 2π2

(∫ r2

r1

N
dr
r

)−1

. (3.237)

Thus in this case the periods are asymptotically equally spaced in the order of
the mode, the spacing decreasing with increasing l. The analysis was carried
to the next asymptotic order by Tassoul (1980). Smeyers & Moya (2007)
made a detailed analysis of the asymptotic properties of g modes in stars
with a convective core, considering both the case of a radiative envelope and
an outer convection zone.

The phase term αl,g depends on whether the star has a radiative or convec-
tive core. In the case of a radiative core, αl,g = l/2 +αg, such that the period
depends on n + l/2, as in the case of the acoustic modes (cf. Eq. (3.216)).
With a convective core αl,g = αg is independent of l. In both cases αg de-
pends on the detailed properties of the buoyancy frequency in the vicinity of
turning points, which will often be associated with boundaries of convective
regions. Thus Ellis (1986), Provost & Berthomieu (1986) and Gabriel (1986)
considered the signature of the detailed properties of the buoyancy frequency
just beneath a convective envelope, in the asymptotic behaviour of g-mode
periods, as a potential diagnostic of the stratification of this region in the Sun.

The eigenfunctions in the trapping region are discussed in Section E.4. We
may assume that ω2 � S2

l , and so obtain

ξr(r) � Aρ−1/2r−3/2

∣
∣
∣
∣
N2

ω2
− 1

∣
∣
∣
∣

−1/4

cos

[

L

∫ r

r1

(
N2

ω2
− 1

)1/2 dr′

r′
− π

4

]

.

(3.238)
Except close to the turning points r1, r2 we may assume that N2/ω2 � 1
(note, from Fig. 3.14, that N increases very rapidly from 0 both at the centre
and at the base of the convection zone). Here, therefore,

ξr(r) � Aω1/2ρ−1/2r−3/2N−1/2 cos

[

L

∫ r

r1

(
N2

ω2
− 1

)1/2 dr′

r′
− π

4

]

.

(3.239)
Hence we expect that ρ1/2r3/2N1/2ξr behaves like a distorted cosine function.

The behaviour at high degree depends on the detailed properties of the
buoyancy frequency. Assuming that N has a single maximum, Nmax, in the
stellar interior it follows from Eq. (3.234) that
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G(ω) → 0 for ω → Nmax . (3.240)

Consequently
ω → Nmax for L→ ∞ . (3.241)

More complex behaviour, although mostly of theoretical interest, is found
when N has several local maxima, each with an associated spectrum of
g modes at high degree (e.g., Christensen-Dalsgaard et al. 1980).

3.5 Computed Properties of Modes of Oscillation

To get a feeling for the basic properties of the oscillations, it is useful to
consider results of calculations of eigenfrequencies and eigenfunctions. The
results presented in this section are largely based on models computed with
the code described by Christensen-Dalsgaard (2008a). This is similar to other
“standard model” calculations (see Section 3.2.1). The oscillation properties
were computed with the adiabatic code of Christensen-Dalsgaard (2008b).

3.5.1 Results for the Present Sun

Figure 3.20 shows computed eigenfrequencies for a model of the present Sun, as
functions of the degree l. It is convenient to regard l as a continuously varying,
real parameter; this is mathematically completely permissible in the separated
oscillation equations, although clearly only integral l have physical meaning.
Consequently, the curves are shown as continuous, which helps in identifying
the modes. The curves are labelled by the radial order which is essentially
given by the number of zeros in the radial direction in the eigenfunctions (see
also Section 3.5.2).

It is evident that there are two distinct, but slightly overlapping, groups
of modes, with very different behaviour of the frequency as a function of l,
and reflecting the asymptotic behaviour discussed in Section 3.4.2. The upper
set of modes corresponds to the p modes whose dominant restoring force is
pressure. The radial order has been indicated on some of the curves; it is evi-
dent that the frequencies of these modes increase with order, as mentioned in
Section 3.4.2. The modes labelled with order 0, although similar in behaviour
to the p modes, are in fact physically distinct; for l greater than about 20
their frequencies are approximately given by the expression (3.207) for a sur-
face gravity wave, as predicted by the asymptotic analysis in Section E.1.
They are known as f modes . Finally, the lower group of modes corresponds to
the g modes , discussed in Section 3.4.2, where the dominant restoring force is
buoyancy. For these modes the frequencies decrease with increasing number of
nodes (cf. Section 3.4.2). It is evident that buoyancy demands variation over
horizontal surfaces; thus there are no g modes for spherically symmetrical os-
cillations, i.e., for l = 0. Only the g modes of order less than 50 have been
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Fig. 3.20. Cyclic frequencies ν = ω/2π, as functions of degree l, computed
for a solar model. Selected values of the radial order n have been indicated.

shown; in fact, the g-mode spectrum extends to zero frequency at all degrees,
although the modes obviously become increasingly crowded with increasing
degree. On the other hand the gap between the g and the f modes is real. In ac-
cordance with Eq. (3.241) the g-mode frequencies tend to the maximum in the
buoyancy frequency for large l. In fact, the buoyancy frequency in this model,
illustrated in Fig. 3.14, has a weak secondary maximum near r/R = 0.35, and
at a frequency of about 410μHz; this is faintly reflected in the behaviour of
the frequencies shown in Fig. 3.20, where there is an accumulation of modes
at this frequency, for l > 15.
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It might be noticed that there are apparent crossings of the frequencies,
as functions of l, between the f mode and some of the g modes. A closer
examination shows that instead the modes make so-called avoided crossings
where they approach very closely without actually crossing. This phenomenon
is well-known from atomic physics; a very clear discussion of the behaviour in
the vicinity of an avoided crossing was given by von Neuman & Wigner (1929).
Indeed, there is a deep mathematical similarity between the equations of non-
radial oscillations and the Schrödinger equation (see Christensen-Dalsgaard
1980, 1981; also, Section 3.6 below).

Figures 3.21 and 3.22 illustrate typical eigenfunctions for p modes. Accord-
ing to Eq. (3.139) the quantity plotted, viz. r ρ1/2ξr, is related to the contribu-
tion to the energy density from the radial component of velocity. This shows
that for p modes the energy, at least at low degrees, is distributed throughout
most of the star. In particular, the radial modes penetrate essentially to the
centre. At higher degree the modes are trapped in the outer part of the model.
This is in accordance with the predictions of Section 3.4.2; the arrows for the
modes with l = 20 and 60 show the locations of the turning points predicted
by Eq. (3.189). The sensitivity of the frequency of a mode to the properties of
the star is given roughly by the energy density, in a sense to be made more
precise below; thus the frequencies of low-degree p modes depend on averages
of stellar structure over the entire star. In contrast to the energy, the displace-
ment is strongly peaked towards the surface; this is obvious from Fig. 3.21 if it
is recalled that the density decreases by about 9 orders of magnitude from the
centre to the surface of the Sun. With increasing degree the p modes become
confined closer and closer to the surface. It should also be noticed that the
behaviour near the surface, at a given frequency, changes little with l, in ac-
cordance with the asymptotic Eq. (3.227). This property is important for the
interpretation of the observed frequencies. It may be understood physically
by noting that near the surface the vertical wavelength is much shorter than
the horizontal wavelength (i.e., kr � kh); the tangential behaviour of the
oscillation therefore has essentially no influence on its dynamics, which con-
sequently is independent of l. Also, as shown by the dotted lines in Fig. 3.21a,
the envelope of the eigenfunction closely tracks the asymptotically expected
scaling as c−1/2.

Figure 3.22 shows the eigenfunctions in the outer few per cent of the radius
of a solar model, for modes of degree l = 1 with different frequencies. It
is evident that the mode energy decreases in the atmosphere; this can be
understood from the discussion in Section 3.4.2, which shows that the modes
are evanescent in the atmosphere for frequencies below the acoustic cut-off
frequency ωc; in the present case the atmospheric value corresponds to a cyclic
frequency of about 5000μHz. It should be noticed that at frequencies below
about 2000μHz even the photospheric amplitude is substantially smaller than
the amplitudes at greater depth. This is related to the reflection of the modes
near the surface at the point r = Rt, of increasing depth with decreasing
frequency, where the frequency is equal to ωc (cf. Fig. 3.17). For frequencies



3.5 Computed Properties of Modes of Oscillation 225

Fig. 3.21. Scaled radial displacement eigenfunctions, on an arbitrary scale,
for selected p modes in a solar model, with a) l = 0, n = 23, ν = 3310 μHz;
b) l = 20, n = 17, ν = 3375μHz; c) l = 60, n = 10, ν = 3234μHz. The
dotted lines in panel a) show the asymptotically expected amplitude envelope,
proportional to c−1/2 (see Eq. (3.227)). In panels b) and c) the arrows mark
the asymptotic location of the turning points rt (cf. Eq. (3.189)).

above 2000μHz that figure shows that the reflection takes place essentially at
the photosphere.

Figure 3.23 shows eigenfunctions for g modes. These have their largest
amplitudes in the deep interior of the Sun, with maximum energy very near
the centre. At a given frequency the number of radial zeros increases rapidly
with l; on the other hand there is little change in the overall distribution of
the energy. That the modes extend over essentially the same region of the star
is consistent with the fact, mentioned in Section 3.4.2, that for these modes



226 3 Theory of Stellar Oscillations

Fig. 3.22. Scaled radial displacement eigenfunctions of p modes with l = 1,
plotted against fractional radius r/R in the outermost parts of a solar model.
The cases shown are: ν = 1612 μHz ( ); ν = 2293 μHz ( );
ν = 3650μHz ( ).

the locations of the turning points depend on frequency but not on degree.
It should be noticed in panel (d) that the surface displacement amplitudes
for low degree (in this case l = 2) remain comparable with the amplitude in
much of the interior. Thus, even though the modes are formally evanescent
in the convection zone, they retain a potentially observable surface response,
providing of course that they are excited in a given star.

The global properties of the eigenfunctions are reflected in the inertia pa-
rameter E defined in Eq. (3.140). It is shown for p modes and low-degree
g modes in Fig. 3.24, as a function of the cyclic frequency ν = ω/2π. Each
curve corresponds to a given value of l, with the points for the individual
modes being connected.15 The p-mode results in panel (a) show an obvious
marked decrease of the inertia, at fixed surface amplitude, with increasing
frequency, as well as a weaker but still substantial decrease with increasing
degree. The dependence on degree is a direct result of the variation of the
depth of penetration: with increasing degree the lower turning point moves
closer to the surface and hence the oscillation involves a smaller part of the
star, thus decreasing the inertia. Similarly, the increase with decreasing fre-

15 This format for displaying results on the oscillations clearly makes little physical
sense, in that non-integer mode orders do not have any meaning; nevertheless, it
provides a convenient illustration of the dependence of oscillation quantities on
frequency and degree.
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Fig. 3.23. Eigenfunctions, on an arbitrary scale, for selected g modes in a
solar model. Panels a) to c) show scaled radial displacement eigenfunctions
with a) l = 1, n = −5, ν = 110μHz; b) l = 2, n = −10, ν = 103μHz; c) l = 4,
n = −19, ν = 100μHz. In panel d) the solid and dashed curves show unscaled
radial (ξr) and horizontal (Lξh) displacement eigenfunctions, for the l = 2,
n = −10 mode. For clarity, the curves have been truncated: the maximum
values of ξr and Lξh are about 2.7 times higher than the largest value shown.
The vertical dotted line marks the base of the convective envelope.



228 3 Theory of Stellar Oscillations

Fig. 3.24. The dimensionless inertia E [cf. Eq. (3.140)] for computed modes of
oscillation in a solar model, plotted against frequency ν for fixed values of the
degree l. The inertia has been normalized by the norm of the total displacement
at the photospheric level. (a) Results for p modes; selected values of l have been
indicated. (b) Results for low-degree g and p modes, using the following line
styles: l = 0 (solid), l = 1 (dotted), l = 2 (short-dashed), l = 3 (dot-dashed),
l = 4 (triple-dot-dashed), and l = 5 (long-dashed). The heavy vertical dotted
line marks the maximum in the buoyancy frequency (cf. Fig. 3.14).

quency can be understood from the reflection properties near the surface and
is consistent with the eigenfunctions shown in Fig. 3.22: since the inertia mea-
sure in Eq. (3.140) is normalized with the surface displacement, the decrease
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in the value of the eigenfunction at the surface, relative to the interior, leads
to an increase in E at low frequency.

Panel (b) shows that at the lowest degrees there is essentially a continu-
ous transition between the p and the g modes, the inertia continuing to rise
rapidly with decreasing frequency. At slightly higher degree (l = 3 − 5) there
is a beginning tendency towards stronger g-mode trapping as the frequency
approaches the maximum in N in the deep interior of the model and the
evanescent region with ω < Sl extends closer to the surface as l increases.
Note also the strong local decrease in E near 200μHz; this occurs where the
modes predominantly take on the character of an f mode, corresponding to
the extension towards low degree of the f-mode ridge, visible in Fig. 3.20.

3.5.2 The Classification of Modes

The precise assignment of the radial order n is a useful tool to ensure that all
modes of a given model, in a certain frequency range, have been computed, and
to follow the evolution of the frequency spectrum as the star evolves. However,
the definition of n presents some interesting problems. It appears that at each
l it is possible to assign to each mode an integral order n, which ranges from
minus to plus infinity, such that, at least for reasonably simple stellar models16

|n| gives the number of zeros in ξr; the possible zero at r = 0 is only counted
in the radial case, where l = 0. As hinted above, this is arranged such that
in simple models n > 0 for p modes, n = 0 for the f modes and n < 0 for
g modes. Also, with the single exception of the dipolar f mode discussed below,
the frequency is an increasing function of n; this rule is evidently consistent
with the fact, mentioned above, that the frequency increases with the number
of radial nodes for p modes and decreases with the number of radial nodes for
g modes. It is conventional to denote p, f and g modes of a given degree l0 as
pn(l = l0), f(l = l0) and g|n|(l = l0). In Fig. 3.20 such radial orders have been
indicated for the modes.

Eckart (1960) proposed a general, and mathematically precise, scheme for
the classification of waves in a stratified medium. It was applied by Scuflaire
(1974) and Osaki (1975) to the definition of the radial order n for a nonradially
pulsating star, on the basis of the phase curve, traced by (ξr(r), p′(r)) in the
so-called phase diagram as r varies from 0 to R. Specifically, the order is
determined by counting the zeros of ξr, assigning a positive value for zeros
where the p′ axis is crossed in the counter-clockwise direction in the phase
diagram, and negative values when the crossing is in the clockwise direction;
the former case applies where the mode behaves as a p mode and the latter to
g-mode behaviour. It may be shown (e.g., Christensen-Dalsgaard 1980) that
in the Cowling approximation this definition has the desirable property of

16 The definition of a “simple” model in this context is not straightforward; examples
might be zero-age main-sequence models or, e.g., polytropes of index between 1.5
and 3.
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being invariant under a continuous modification of the equilibrium model or a
continuous change of l. This follows from the fact that such changes correspond
to a continuous change to the phase curve which furthermore cannot cross
(0, 0). As a result new zeros of ξr appear in pairs with no net effect on the
mode order. Also, for simple models or in the limit of high-order modes this
definition reduces to the simple counting of radial nodes in the eigenfunction,
described above.

The power of this scheme becomes apparent in stellar models where modes
may be trapped in more than one region at a given frequency. A typical exam-
ple is illustrated by the characteristic frequencies illustrated for the evolved
models in Fig. 3.15 (see also Osaki 1975). Here we expect mixed modes with
an oscillatory behaviour in both the outer parts, where the mode physically
behaves like a p mode, and in the inner part of the model, beneath the peak
in the buoyancy frequency, where the mode behaves like a g mode. In the
former case the nodes in ξr give a positive contribution to the mode order,
whereas in the latter case the contribution is negative. At the same time this
illustrates a weakness of the scheme: a given mode in a given stellar model
may be classified as a p mode, with n > 0, yet have its largest amplitude in the
inner trapping region and hence physically behave like a g mode. Examples
of this behaviour are found in Fig. 3.25 below.

The Eckart scheme in this form is not generally applicable when solutions
of the full equations are considered. Here the scheme fails for dipolar modes,
with l = 1, in centrally condensed models; typically, the problem sets in first
in acoustic modes of the lowest order and gradually spreads to higher orders
with increasing central condensation. This has been observed in the case of
1 M� models at and beyond solar age (Christensen-Dalsgaard 1978; Guenther
1991), in evolved models of δ Sct stars (Lee 1985), and in polytropic models of
index exceeding 3.3 (Christensen-Dalsgaard & Mullan 1994). It is interesting
that these difficulties appear to be restricted to l = 1, at least for realistic
stellar models.

In a major breakthrough in the theory of stellar oscillations, Takata (2005,
2006a,b) has defined a classification scheme that is generally applicable to
dipolar modes in the case where the Cowling approximation is not made, in
the process obtaining further insight into the properties of these modes.17 He
demonstrated that the eigenfunctions of dipolar modes satisfy the identity

p′ +
g

4πG

(
dΦ′

dr
+

2
r
Φ′
)

= ω2r

[
ρξr −

1
4πG

(
dΦ′

dr
− Φ′

r

)]
. (3.242)

On this basis he was able to demonstrate that the dipolar modes are solutions
to a second-order differential equation, and finally as a result showed that
phase curves in terms of (Y1,Y2), where

17 Interestingly, Takata (2008) demonstrated that the analysis could be generalized
to dipolar oscillations of stars treated in general relativity.
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Y1 =
1
g

[
δΦ

r
− δ

(
dΦ
dr

)]
, Y2 =

δp

p
, (3.243)

have the properties required for mode classification. It is important to em-
phasize that this scheme is valid only for l = 1. No corresponding identity or
reduction to a second-order system has been found for other degrees.

There are a few special cases of the mode classification. For l = 0 only
modes with n > 0 are found; this is in accordance with the fact, mentioned
above, that buoyancy can only act in the presence of horizontal variation.
Also, for l = 1 the mode with n = 0 is peculiar in that its frequency is
zero; indeed a mode with l = 1 and no zero in the radial direction may seem
somewhat unphysical, as it displaces the centre of mass of the star. However,
the mode corresponds to an infinitely slow, uniform motion of the entire star,
without deformation; as noted by Lebovitz (1965) this must be a solution to
the original equations which, if written as an oscillation, has zero frequency
(see also Christensen-Dalsgaard 1976).

It is interesting that this f mode with l = 1 behaves very differently in
the Cowling approximation and for the full set of equations. In the Cowling
approximation there is a mode with l = 1 having no nodes in the radial dis-
placement, intermediate in frequency between the p and the g modes, which
must be identified with the f mode. From a physical point of view it can be
thought of roughly as an oscillation of the whole star in the gravitational po-
tential defined by the equilibrium model. The connection between this mode
and the zero-frequency mode for the full problem can be investigated by mak-
ing a continuous transition from the Cowling approximation to the full set
of equations; this can be accomplished formally by introducing a factor λ on
the right-hand side of Eq. (3.113), such that λ = 0 corresponds to the Cowl-
ing approximation and λ = 1 to the full equations (Christensen-Dalsgaard
1978; Christensen-Dalsgaard & Gough 2001). When λ is increased from 0 to
1, the transition from the l = 1 f mode in the Cowling approximation to
the zero-frequency “mode” in the full case takes place through a sequence
of avoided crossings with the g modes, where the frequencies approach very
closely without actually crossing. A similar transition occurs for solutions of
the full equations, between the f mode with l = 2 and the zero-frequency
mode with l = 1, as l is decreased continuously from 2 to 1 (Aizenman et al.
1977; Christensen-Dalsgaard 1978; Christensen-Dalsgaard & Gough 2001).

3.5.3 Results for the Models with Convective Cores

To illustrate the effect of a convective core, particularly the maximum in the
buoyancy frequency at the edge of the core, Fig. 3.25 shows the behaviour of
the oscillation frequencies, as functions of stellar age, for a 2.2 M� evolution
sequence. These models may represent δ Sct stars; characteristic frequencies
at a few ages in the sequence were illustrated in Fig. 3.15. As in that figure
we have applied the scaling according to t−1

dyn. As a result, the frequencies of
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Fig. 3.25. Scaled oscillation frequencies, as functions of age, in a 2.2 M�
evolution sequence; here R is the radius of the model and R0 is the ZAMS
radius. Modes of the same radial order have been connected. The solid lines
are for radial modes, of degree l = 0, the dotted lines are for l = 1 and the
dashed lines for l = 2.

largely acoustic modes, including the radial modes, change very little with
age. It should be noticed also that, except at low order, the acoustic modes
exhibit a distinct pattern, with a close pairing of the radial and l = 2 modes.
Such a pattern of closely-spaced peaks is familiar in solar data (see Fig. 1.9).
This was predicted by the asymptotic results presented in Section 3.4.3 (see
Eq. (3.219)); however, it is striking that it can be followed to quite low mode
orders.

The most striking feature of the computed frequencies, however, is the
interaction for l = 1 and 2 between the p modes and the g modes. At zero
age, there is a clear distinction between the p modes, with frequencies exceed-
ing that of the lowest radial mode, and the g modes with frequencies below
200μHz. However, with increasing age the scaled g-mode frequencies increase;
this is a consequence of the increase in the scaled buoyancy frequency with
age (cf. Fig. 3.15c) which effectively acts to “pull up” the frequencies of the
g modes. As was first found by Osaki (1975), this leads to an interaction be-
tween the p and g modes which takes place through a sequence of avoided
crossings. At the avoided crossing the two modes exchange nature, while still
maintaining the original labelling, as defined in Section 3.5.2. Thus, for exam-
ple, the n = 1 mode for l = 2, which at age zero is a purely acoustic mode
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Fig. 3.26. Scaled eigenfunctions for the p1(l = 2) mode (continuous line)
and the p2(l = 2) mode (dashed line) in the vicinity of the avoided crossing
near age 0.4 Gyr, (R/R0)

3/2ν = 400μHz in Fig. 3.25. (a) Age 0.36 Gyr. (b)
Age 0.39 Gyr. (c) Age 0.44 Gyr.

of frequency 310μHz takes on the nature of a g mode trapped just outside
the convective core at the age 0.32 Gyr and again at the age 0.4 Gyr changes
back to being predominantly an acoustic mode. As discussed in Chapter 7 such
mixed modes, with both p-mode and g-mode character, have a very substantial
asteroseismic diagnostic potential.
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This behaviour is further emphasized by considering the eigenfunctions
of these modes; examples of eigenfunctions near the p1 − p2(l = 2) avoided
crossing at age 0.4 Gyr are shown in Fig. 3.26. Before the avoided crossing,
the p1 mode has a substantial amplitude near the edge of the convective core,
and hence to a large extent behaves like a g mode, whereas the p2 mode is
predominantly a p mode, with largest amplitude in the outer parts. At the
point of closest approach of the frequencies, at an age of 0.39 Gyr, both modes
have a mixed character, with substantial amplitudes in the deep interior and
near the surface, whereas after the avoided crossing the p2 mode looks like
a g mode, whereas the p1 mode largely behaves like a p mode. It should
be noted that this behaviour illustrates the potential difference between the
mathematical classification of the modes and their physical nature, already
mentioned in Section 3.5.2: modes with order n > 0, which in simple models
would be p modes, may take on the character of g modes.

The component of the eigenfunctions in Fig. 3.26 behaving like a g mode
is trapped in the vicinity of the peak in the buoyancy frequency which cor-
responds to the steep gradient in composition and hence density. In fact, it
may be shown that this mode approximates the interface gravity wave de-
scribed by Eq. (3.87). This mode was denoted the gc mode by Dziembowski
& Pamyatnykh (1991) who pointed out that, if observed, it might provide a
powerful diagnostics of the properties of the convective core, including the
possible presence of overshoot.

In general, it is evident that the presence of the g-like modes in the p-mode
spectrum, particularly at late evolutionary stages, may provide very useful in-
formation about the deep interior of the stars. Examples are the identification
of such modes in several observations of β Cep stars, as already discussed in
Sect. 2.3.7. We come back to this for the star ν Eri in Chapter 7 (see Sec-
tion 7.3.2.4). On the other hand it complicates the analysis of the observed
frequencies. Dziembowski & Królikowska (1990) pointed out that mode se-
lection might be affected by the larger energy of the modes that behave like
g modes, thereby restricting the choice of modes in the identification. However,
such arguments depend on the mechanisms responsible for exciting the modes
and limiting their amplitudes, which are so far incompletely understood.

3.6 Variational Properties of Stellar Adiabatic
Oscillations

A great deal of insight into the properties of adiabatic oscillations can be
obtained by regarding the equations as an eigenvalue problem in a Hilbert
space (Eisenfeld 1969; Dyson & Schutz 1979; Christensen-Dalsgaard 1981).
Here we consider two different, but very closely related, formulations: one
based on the unseparated oscillation equations, valid for general perturbations
and a second obtained after separation of the oscillation equations in terms
of spherical harmonics.
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3.6.1 The Oscillation Equations as Linear Eigenvalue Problems in
a Hilbert Space

To obtain the general form, we go back to the perturbed equations of motion,
Eq. (3.43). After separation of the time dependence as exp(−iωt) this can be
written as

ω2δδδr = F(δδδr) , (3.244)

where

F(δδδr) =
1
ρ0

∇p′ − g′ − ρ′

ρ0
g0 . (3.245)

Here the perturbation quantities denote the amplitudes, after the separation of
the time dependence. As indicated, F is a linear functional of δδδr. To see this,
note that from the continuity equation (3.41) ρ′ is a linear functional of δδδr; so,
therefore, is the gravitational potential perturbation Φ′ as given by Eq. (3.45).
In the adiabatic case p′ is obtained from ρ′ and δδδr as in Eq. (3.50); this defines
the adiabatic operator Fa. The nonadiabatic case is more complicated, but
here also it is possible to obtain p′ as a linear functional of δδδr (see Christensen-
Dalsgaard 1981).

To cast the problems in terms of functional analysis, we introduce a space
H of vector functions of position in the star, with suitable regularity proper-
ties, and define an inner product on H by

〈ξξξ, ηηη〉 =
∫

V

ρ0ξξξ
∗ · ηηη dV , (3.246)

for ξξξ, ηηη in H; here “*” denotes the complex conjugate. We also introduce the
domain D(F) of the operator F as those vectors in H such that the boundary
condition (3.160) is satisfied. The central result of this section is now that, as
shown by Lynden-Bell & Ostriker (1967), the operator Fa corresponding to
Eq. (3.245) for adiabatic oscillations is symmetric, in the sense that

〈ξξξ,Fa(ηηη)〉 = 〈Fa(ξξξ), ηηη〉 , for ξξξ, ηηη ∈ D(F) . (3.247)

The formulation in terms of the spatially separated variables proceeds in
a very similar manner. The separated oscillation Eqs (3.112) and (3.111) may
be written

1
ρ

dp′

dr
+
ρ′

ρ
g +

dΦ′

dr
= ω2ξr , (3.248)

1
r

(
p′

ρ
+ Φ′

)
= ω2ξh . (3.249)

As before, the quantities on the left-hand side can be obtained in terms of ξr
and ξh; in particular, Φ′ is found from ρ′ from the separated integral solution
to the Poisson equation given in Eq. (3.173). We introduce the subspace Hl of
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the space of pairs of quadratically integrable functions on the interval [0, R],
with vectors

ξ ≡ (ξr, ξh) ∈ Hl . (3.250)

Then Eqs (3.248) and (3.249) can be written as

Fl(ξ) = ω2ξ , (3.251)

defining the operator Fl corresponding to the separated oscillation equations.
Assuming again the adiabatic relation for p′ one obtains the linear operator
Fa,l for adiabatic oscillations in Hl. The boundary conditions on ξr and ξh
can be imposed by restricting the part of Hl where Fa,l is defined. Thus we
define the domain of Fa,l by

D(Fa,l) = {(ξr , ξh)|ξr − lξh → 0 for r → 0 ∧ δp(R) = 0} ; (3.252)

the boundary conditions on Φ′ are satisfied automatically by the integral ex-
pression (3.173). The inner product on Hl is defined by

〈ξ, η〉l ≡ 4π
∫ R

0

[ξ∗r (r)ηr(r) + l(l + 1)ξ∗h(r)ηh(r)]r2ρdr , (3.253)

for two vectors ξ = (ξr , ξh) and η = (ηr, ηh) in Hl; in particular, ||ξ||2 =
〈ξ, ξ〉 = E , where E is the mode inertia defined in Eq. (3.139). Again one may
show, using the explicit expression, that the operator Fa,l is symmetric, i.e.,

〈Fa,l(ξ), η〉l = 〈ξ,Fa,l(η)〉l for all ξ, η ∈ D(Fa,l) . (3.254)

From Eqs (3.247) and (3.254) follow immediately a number of useful prop-
erties of Fa and Fa,l. For simplicity we generally present them in terms of Fa;
precisely analogous relations are obviously valid for Fa,l. The simplest result
is that the squared eigenfrequencies are real. This may be demonstrated by
introducing the functional Σ on D(F) by

Σ(ξξξ) =
〈ξξξ,Fa(ξξξ)〉
〈ξξξ, ξξξ〉 ; (3.255)

it follows from Eq. (3.247) that Σ(ξξξ) is real. If ω2
0 is an eigenvalue of the

problem with eigenvector ξξξ0, i.e.,

Fa(ξξξ0) = ω2
0ξξξ0 , (3.256)

then
Σ(ξξξ0) = ω2

0 , (3.257)

and hence ω2
0 is real. Since the coefficients in Eqs (3.152), (3.154) and (3.156)

are then real, it follows that we may also choose the eigenfunctions to be real
at all r.
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As is well known, a second property of a symmetric operator is that eigen-
vectors corresponding to different eigenvalues are orthogonal. Thus if

Fa(ξξξ1) = ω2
1ξξξ1; Fa(ξξξ2) = ω2

2ξξξ2; ω2
1 �= ω2

2 , (3.258)

then
〈ξξξ1, ξξξ2〉 = 0 . (3.259)

A very important result concerns the effect of a small perturbation to the
oscillation equations. This perturbation could result from a small change to
the equilibrium model, from the inclusion of nonadiabatic effects (Christensen-
Dalsgaard 1981) or, as discussed in Section 3.8, from the inclusion of the effect
of large-scale velocity fields in the model. We characterize the perturbation
by a change δF in the operator defining the oscillation equations. If δδδr0 and
ω0 are solutions to the adiabatic oscillation equations,

ω2
0δδδr0 = Fa(δδδr0) , (3.260)

the change in ω2 caused by the perturbation δF can be obtained from first-
order perturbation analysis (e.g., Schiff 1949) as

δω2 � 〈δδδr0, δF(δδδr0)〉
〈δδδr0, δδδr0〉

. (3.261)

Thus the frequency change can be computed from the unperturbed eigenvec-
tor. Similarly, if δFl is a perturbation to the operator Fl defining the separated
oscillation equations, and ω2

0 , ξ0 is a solution to the unperturbed problem,

Fa,l(ξ0) = ω2
0ξ0 , (3.262)

then the frequency change can be obtained from

δω2 � 〈ξ0, δFl(ξ0)〉l
〈ξ0, ξ0〉l

. (3.263)

Some further consequences of this relation are discussed in Section 3.6.2.
From the symmetry of the operator of adiabatic oscillations it follows that

ω2 satisfies a variational principle (cf. Chandrasekhar 1964). Indeed, it is easy
to show from Eq. (3.247) that if δξξξ ∈ H is a small change to the eigenvector,
then

Σ(ξξξ0 + δξξξ) = ω2
0 + O(‖δξξξ‖2) , (3.264)

where ‖ · · · ‖ is the norm corresponding to 〈· · · , · · ·〉. Thus Σ is stationary at
the eigenfrequencies. From a physical point of view this reflects Hamilton’s
principle for the system consisting of the pulsating star. It is conservative, be-
cause of the assumption of adiabaticity, and isolated because of the boundary
condition (3.160). As noted by Christensen-Dalsgaard (1982b) this property
can be used to improve the precision of computed eigenfrequencies: if com-
puted eigenfunctions ξξξ, with numerical errors of order ε, are used to evaluate
ω2 as Σ(ξξξ), the resulting value should have an error of order ε2.
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3.6.2 Effects on Frequencies of a Change in the Model

As an example of the use of Eq. (3.263), we discuss in more detail the inter-
pretation of changes in the frequencies caused by changes in the equilibrium
model. Consider a mode (n, l), with eigenvector ξnl = (ξr,nl, ξh,nl) ∈ Hl; with-
out loss of generality we may assume that ξr,nl(r) and ξh,nl(r) are real. The
relative frequency change caused by the perturbation δFl is then, according
to Eq. (3.263),

δωnl

ωnl
=

1
2
δω2

nl

ω2
nl

=
〈ξnl, δFl(ξnl)〉l
2ω2

nl〈ξnl, ξnl〉l
. (3.265)

Here the denominator is proportional ω2
nlEnl, where Enl was defined in

Eq. (3.140). Also, we represent δFl in component form as

δFl(ξnl) = (φr[ξnl], φh[ξnl]) , (3.266)

where φr[ξnl](r) and φh[ξnl](r) are functions of r. Then we can write Eq. (3.265)
as

Enl
δωnl

ωnl
= Inl , (3.267)

where

Inl =
2π
∫ R

0
[ξr,nl(r)φr [ξnl](r) + l(l + 1)ξh,nl(r)φh[ξnl](r)] ρr2dr

Mω2
nl[ξ2r (R) + l(l + 1)ξ2h(R)]

. (3.268)

Thus Inl gives the integrated effect of the perturbation, normalized to the
total surface displacement.

Equations (3.267) and (3.268) provide a linear relation between the change
in the model and the change in the frequency. These expressions are some-
what formal. However, it follows from the discussion in Section 3.3.3 that the
changes in the coefficients of the oscillation equations, and hence the changes
φr[ξnl](r) and φh[ξnl](r) in the components of δFl, can be expressed in terms
of changes in two suitably chosen model variables, for example density and
sound speed. For simplicity, we assume that the change in the model occurs
without a change in its radius (this would in general be the case for models
of the Sun, where the radius is known with high accuracy)18 and let δrρ and
δrc

2 denote the changes, between the equilibrium models, in ρ and c2 at fixed
r.19 Then, after some manipulation, Eq. (3.267) can be written as

δωnl

ωnl
=
∫ R

0

[
Knl

c2,ρ(r)
δrc

2

c2
(r) +Knl

ρ,c2(r)
δrρ

ρ
(r)
]

dr (3.269)

18 For stars the mass and radius cannot be assumed to be accurately known; however,
here a similar expression can be obtained for the correction to the dimensionless
frequency σ in terms of corrections to the dimensionless density and sound speed
introduced in Eqs (3.167) and (3.170).

19 These model changes should not be confused with the Lagrangian perturbations
associated with the oscillations, introduced in Section 3.1.3.
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Fig. 3.27. Kernels for an l = 0, n = 21 mode (with frequency ν = 3.04 mHz)
of a model of the present Sun. Panels (a) and (b) show RKnl

c2,ρ and RKnl
ρ,c2 (the

kernels are multiplied by R to correspond to integration with respect to r/R).
Knl

c2,ρ is positive everywhere, while the kernel Knl
ρ,c2 takes on both positive

and negative values. Panels (c) and (d) similarly show the kernels RKnl
u,Y and

RKnl
Y,u for the same mode, where u = p/ρ; the inset in panel (d) shows the

detailed behaviour of RKnl
Y,u in the hydrogen and helium ionization zones.
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(e.g., Gough & Thompson 1991), where the kernels Knl
c2,ρ and Knl

ρ,c2 are com-
puted from the eigenfunctions. As illustrated by Eq. (3.269) kernels are weight
functions, indicating the sensitivity of the frequency of a given mode to spe-
cific aspects of the stellar interior, in this case changes to the squared sound
speed and density. Examples of such kernels are shown in Fig. 3.27.

As discussed in Section 3.3.3, other pairs of “mechanical” variables may be
used instead of (c2, ρ); the transformation between these pairs can be accom-
plished by means of the equation of hydrostatic support and mass, expressed
in terms of the model changes, and suitable integrations by parts. If it is also
assumed that the equation of state is known, further transformation is possi-
ble. An important example is provided by the relation c2 = Γ1p/ρ, where Γ1

can be obtained as a function Γ1(p, ρ, Y, Z) of pressure, density and chemical
composition as specified by the abundances Y and Z by mass of helium and
heavy elements. This yields20

δrc
2

c2
=

[(
∂ lnΓ1

∂ ln p

)

ρ,Y,Z

+ 1

]
δrp

p
+

[(
∂ lnΓ1

∂ ln ρ

)

p,Y,Z

− 1

]
δrρ

ρ

+
(
∂ lnΓ1

∂Y

)

p,ρ,Z

δrY +
(
∂ lnΓ1

∂Z

)

p,ρ,Y

δrZ . (3.270)

For analysis of acoustic modes it is convenient to work in terms of the squared
isothermal sound speed u = p/ρ. By substituting Eq. (3.270) into Eq. (3.269),
and expressing δrp/p and δrρ/ρ in terms of δru/u by means of the perturbed
equations of stellar structure, δωnl/ωnl can be expressed in terms of δru/u,
δrY and δrZ. Since the surface heavy-element abundance may be obtained
from spectroscopic observations it is reasonable to assume Z to be known;
neglecting therefore the term in δrZ, we finally obtain

δωnl

ωnl
=
∫ R

0

[
Knl

u,Y (r)
δru

u
(r) +Knl

Y,u(r)δrY (r)
]

dr . (3.271)

Examples of these kernels are shown in Fig. 3.27, panels (c) and (d). In partic-
ular, it should be noticed that Knl

Y,u is significantly different from zero only in
the hydrogen and helium ionization zones. As discussed in Section 7.1.6.1 this
substantially facilitates the determination of δru/u through inverse analysis.

3.7 Driving Mechanisms

So far we have almost exclusively considered adiabatic oscillations, and there-
fore have been unable to investigate the stability or instability of the modes.

20 As noted by Basu & Christensen-Dalsgaard (1997) one may in addition include
a contribution from the intrinsic difference (δΓ1)int between the model and the
true Γ1, at fixed thermodynamical conditions and composition.
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Such questions are of obvious interest, however. Here we consider some simple
aspects of mode excitation, including properties of the nonadiabatic problem.
A major goal is to get a feel for the conditions under which a mode may be
self-excited, i.e., with a positive growth rate; in this case the star functions as
a heat engine, converting thermal energy directly into mechanical energy, and
we refer to this driving mechanism as the heat-engine mechanism.21 In cases
where all modes are damped, they may still be driven to observable ampli-
tudes by stochastic forcing from near-surface convection; this is, for example,
the case for solar oscillations.

3.7.1 The Work Integral

The stability properties of stellar oscillations can obviously be investigated by
solving the full set of nonadiabatic oscillation equations. However, to under-
stand the conditions under which modes may become unstable it is useful to
consider an integral expression for the growth rate. This is closely related to
the perturbation expression in Eq. (3.261) which was derived from the oscil-
lation equations written as a linear eigenvalue problem in Eq. (3.244). Now,
however, we need to consider the departure from adiabatic oscillations of the
pressure perturbation in the momentum equation. From the perturbed energy
equation, Eqs (3.47) and (3.48), it follows that

p′

p
= Γ1

ρ′

ρ
+ ξr

(
d ln p

dr
− Γ1

d ln ρ
dr

)
+

i
ω

Γ3 − 1
p

(ρε− div F )′

=
p′ad
p

+
i
ω

Γ3 − 1
p

(ρε− div F )′ , (3.272)

where we dropped the subscript “0” on equilibrium quantities, and assumed
a time dependence as exp(−iωt). Here

p′ad = p Γ1
ρ′

ρ
+ ξrp

(
d ln p

dr
− Γ1

d ln ρ
dr

)
(3.273)

is the pressure perturbation corresponding to adiabatic oscillations. It follows
that the perturbed momentum equation (3.43) can be written, after separation
of the time dependence, as

− ρω2δδδr = −∇p′ad + ρ g′ + ρ′g − i
ω
∇[(Γ3 − 1)(ρε− div F )′] . (3.274)

This is of the form considered in Eq. (3.244):

ω2δδδr = Fad(δδδr) + δF , (3.275)

with
21 Since very often it is caused by the properties of the opacity it is most commonly

known as the κ mechanism.
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Fad(δδδr) =
1
ρ
∇p′ad − g′ − ρ′

ρ
g , (3.276)

and
δF =

i
ωρ

∇[(Γ3 − 1)(ρε− div F )′] . (3.277)

As argued in Section 3.6.1, Fad is in fact a linear operator on δδδr.
Near the surface the nonadiabatic correction to p′ cannot in general be

regarded as a small perturbation, and hence we cannot directly use the per-
turbation expression (3.261). However, by multiplying Eq. (3.275) by ρδδδr∗ and
integrating over the volume of the star we obtain

ω2‖δδδr‖2 = ‖δδδr‖2Σ(δδδr) +
∫

V

δδδr∗ · δFρdV , (3.278)

where Σ is defined by Eq. (3.255). As argued in Section 3.6.1 Σ(ξξξ) is real for
any ξξξ satisfying the boundary conditions; neglecting possible complications
in the treatment of the atmosphere in the outer boundary condition this is
also the case for the nonadiabatic eigenfunction δδδr. Writing ω = ωr + iωi and
taking the imaginary part of Eq. (3.278) we therefore obtain

2ωrωi = Im
(∫

V

δδδr∗ · δFρdV
)
, (3.279)

where Im denotes the imaginary part. Using Eq. (3.277) and the definition of
‖δδδr‖2 and assuming that |ωi| � |ωr| we obtain

ωi �
1

2ωr

Re
{∫

V

δδδr∗ · ∇[(Γ3 − 1)(ρε− div F )′]dV
}

∫
V ρ|δδδr|2dV

. (3.280)

The integral in the numerator can be rewritten as
∫

V

div [δδδr∗(Γ3 − 1)(ρε− div F )′]dV −
∫

V

div (δδδr∗)(Γ3 − 1)(ρε− div F )′dV ;

(3.281)
the first integral can be transformed, by using Gauss’s theorem Eq. (3.3), into
an integral over the stellar surface which can be neglected, whereas in the
second integral we use the continuity equation (3.42). The result is, finally,
that the imaginary part of the frequency, resulting from nonadiabaticity, is

ωi =
1

2ω2
r

∫

V

δρ∗

ρ
(Γ3 − 1)(ρε− div F )′dV
∫

V
ρ|δδδr|2dV

=
1

2ω2
r

∫

V

δρ∗

ρ
(Γ3 − 1)δ(ρε− div F )dV
∫

V
ρ|δδδr|2dV

, (3.282)
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where in the second equation we also transformed to Lagrangian perturba-
tions, using that the equilibrium model is essentially in thermal equilibrium,
with ρε = div F . This is the desired expression.

The physical meaning of Eq. (3.282) is straightforward. Instability (with
ωi > 0) occurs if δρ∗ and δ(ρε− div F ) are in phase. The latter expression is
obviously the heating associated with the oscillation; thus the condition for
instability is that heating occurs during the phase of compression of the gas.
This is precisely the condition for the operation of a heat engine, and hence
the background for calling this general excitation mechanism the heat-engine
mechanism. An interesting mechanical analogue to the excitation of acoustic
waves is provided by Rijke’s tube (see Jones 1976). Here a heated gauze,
appropriately placed in a vertical tube, excites acoustic modes in the tube;
the driving takes place as colder air is drawn past the gauze at compression,
heating the air, while warmer air passes the gauze at expansion, hence with
less heating.22

3.7.1.1 Expressions for the Heating

The detailed properties of the excitation obviously depend on the expression
for (ρε − div F )′. Using that ε = ε(ρ, T ) (we neglect a possible Eulerian per-
turbation to the composition) it is easy to see that

(ρε)′ = ρε

[
εT
T ′

T
+ (ερ + 1)

ρ′

ρ

]
, (3.283)

where

εT =
(
∂ ln ε
∂ lnT

)

ρ

, ερ =
(
∂ ln ε
∂ ln ρ

)

T

. (3.284)

Similarly, the perturbation to the flux can be evaluated from the diffusion
approximation, Eq. (3.22), and in particular assuming that there are no other
contributions (such as convection) to the heat transport. The result is

F ′ =
[
(3 − κT )

T ′

T
− (1 + κρ)

ρ′

ρ

]
Frar −

4ac̃T 3

3κρ
∇T ′ , (3.285)

where

κT =
(
∂ lnκ
∂ lnT

)

ρ

, κρ =
(
∂ lnκ
∂ ln ρ

)

T

, (3.286)

and Fr is the equilibrium radiative flux (which is of course in the radial direc-
tion).

22 A set of tuned Rijke’s tubes was once used by students at a Christmas party in
Aarhus for a striking rendition of Danish Christmas melodies.
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3.7.1.2 The Quasi-Adiabatic Approximation

Equation (3.282) can be used to estimate ωi on the basis of adiabatic eigen-
functions. Regardless of the assumption of adiabaticity we may obtain ρ′ from
the equation of continuity as

δρ

ρ
= −div (δδδr), ρ′ = δρ− ξr

dρ
dr

. (3.287)

From adiabaticity it follows that the temperature perturbation can be com-
puted from

δT

T
= (Γ3 − 1)

δρ

ρ
, T ′ = δT − ξr

dT
dr

. (3.288)

Hence, if δδδr is given, ρ′ and T ′ can be computed, and then (ρε−div F )′ can be
obtained from Eqs (3.283) and (3.285). Since this approximation to the damp-
ing rate can be obtained from the adiabatic eigenfunction, it is known as the
quasi-adiabatic approximation. As the adiabatic eigenfunctions may be chosen
to be real, the integrals in Eq. (3.282) are real, and hence Re is not required.
The use of the adiabatic eigenfunction essentially corresponds to regarding
the nonadiabatic effects as a small perturbation and evaluating the imaginary
part of the frequency from the general expression for the perturbation to ω2,
Eq. (3.261).

It should be noted that the approximation is not without problems. The
perturbation approach is based on the assumption that the perturbation is
small. This is true in most of the star, but not very near the surface where
nonadiabatic effects become strong. Here nonadiabaticity has a substantial ef-
fect on the eigenfunction, and hence an evaluation of the integral in Eq. (3.282)
based on the adiabatic eigenfunctions is questionable. Nonetheless, we may
hope that the quasi-adiabatic approximation at least gives an indication of
the stability properties of the mode.

To illustrate some simple properties of Eq. (3.282) we consider the case
where the nonadiabaticity is dominated by the energy generation. Here it is
convenient to work purely in terms of Lagrangian perturbations. It is obvi-
ous that δ(ρε) can be obtained from an expression analogous to Eq. (3.283).
Neglecting the term in F and using Eq. (3.288) we find

δω =
i

2ω2

∫

V

∣
∣∣
∣
δρ

ρ

∣
∣∣
∣

2

(Γ3 − 1)[ερ + 1 + (Γ3 − 1)εT ]ρεdV
∫

V
ρ|δδδr|2dV

. (3.289)

Since εT and ερ are positive, and Γ3 � 5/3, it is obvious that the integrals
in Eq. (3.289) are positive. With the assumed time dependence as exp(−iωt)
this corresponds to a growth in the oscillation amplitude, i.e., to instability
of the mode.

The physical nature of this instability, generally known as the ε mecha-
nism, is very simple and closely related to the operation of a normal heat
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engine. At compression the gas is hotter than normal and this, together with
the increased density, causes an increase in the release of energy; this increases
the tendency of the gas to expand back towards equilibrium. At expansion the
gas is cooler and less dense and hence the energy production is low, similarly
increasing the tendency of collapse towards the equilibrium. Thus both effects
increase the oscillation amplitude. This is obviously a heat-engine mechanism,
which is closely analogous to the operation of a normal car engine where en-
ergy is also released (through the ignition of the air–fuel mixture) at the point
of maximum compression.

The destabilization through nuclear reactions may play an important role
for g modes in several cases; this includes the Sun which becomes unstable
towards a few low-order g modes in relatively early phases of its evolution (see,
for example, Christensen-Dalsgaard et al. 1974; Boury et al. 1975; Shibahashi
et al. 1975). For acoustic modes, which have large amplitudes in the outer part
of the star, the damping and excitation are normally dominated by the effects
of the flux. This is more complicated and will be discussed in Section 3.7.2.

We note that high-order or high-degree modes, with rapidly varying eigen-
functions, have a tendency to be stable. Here the last term in Eq. (3.285) often
dominates such that −div F ′, as a rough approximation, can be obtained, ne-
glecting gradients of equilibrium quantities, as

− div F ′ � −4ac̃T 3

3κρ
|k|2T ′ , (3.290)

where k is the local wave number. Since in the quasi-adiabatic approximation
T ′ and δρ are essentially in phase this leads to cooling at compression and
hence damping. Physically, this effect arises because of energy loss from hot
compressed regions to nearby cool expanded regions when the mode has a
short wavelength.

3.7.1.3 Convective Effects

The description has so far neglected convection. The flux perturbation F ′

should obviously include a contribution from the convective flux in addition
to the radiative flux evaluated in Eq. (3.285). In addition, the perturbation to
the turbulent pressure makes a direct contribution to the momentum equation
which should be included as an additional term in Eq. (3.272) for the pressure
perturbation and hence in the expression (3.277) for δF . A slightly simplified
version of the resulting expression for ωi can conveniently be expressed as23

η ≡ ωi

ωr
� ηt + ηg =

Wt

J
+
Wg

J
, (3.291)

where

23 For a more complete expression, see Balmforth (1992a).
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Wt = −ωr Im

[∫ R

0

δρ∗

ρ
δptr

2dr

]

,

Wg = Re

[∫ R

0

δρ∗

ρ
(Γ3 − 1)δ(ρε− div F )r2dr

]

,

J = 2ω3
r

∫ R

0

ρ|δδδr|2r2dr ; (3.292)

here δpt is the perturbation to the turbulent pressure. Also, obviously,
F = F rad + F con has a radiative and a convective part, F rad being given by
Eq. (3.285). The evaluation of the turbulent contributions remains a serious
uncertainty in the computation of stellar oscillation frequencies and stabil-
ity (e.g., Balmforth 1992a). We return to this in Section 3.7.3. Furthermore,
as discussed by Balmforth (1992b) effects of turbulent pressure, both in the
equilibrium model and in the pulsations, may have a significant influence on
the oscillations frequencies; this is likely a substantial part of the near-surface
errors seen in analysis of observed solar frequencies (cf. Sections 7.1.4.1 and
7.1.7).

3.7.2 The Condition for Instability

The analysis of stellar instability goes back to Eddington (1926), who pointed
out that the star could function as a heat engine as a result of the phasing
of the heat leak and hence the opacity. The detailed understanding of the
location of the Cepheid instability strip in the HR Diagram was developed in
a series of papers by S. A. Zhevakin (e.g., Zhevakin 1953) and J. P. Cox and
C. Whitney (e.g., Cox & Whitney 1958); a review of the early development
of these studies was provided by Zhevakin (1963). Cox (1967, 1974) provided
a clear insight into the reason why unstable stars tend to be found in well-
defined regions of the HR Diagram, particularly the Cepheid instability strip;
the following description is largely based on Cox’s analysis.

We neglect the effect of turbulent pressure so that, according to Eq. (3.291),
η � Wg/J . Clearly the question of stability or instability depends on the sign
of Wg: if Wg > 0 the mode is unstable, whereas if Wg < 0 the mode is stable.

We consider just the outer parts of the star, where the nuclear energy
generation can be neglected and L consequently is constant. The analysis
is restricted to radial oscillations; however, as we know that the behaviour
of the modes is largely independent of degree near the surface the results
are likely to be at least qualitatively valid for nonradial oscillations as well.
Also, we neglect convection. Finally, we assume that the oscillations are either
quasi-adiabatic or strongly nonadiabatic. The strongly nonadiabatic situation
is discussed below. In the quasi-adiabatic region all perturbation quantities
can be taken to be real, and we can approximate Wg by

Wg � −L
∫

M

δρ

ρ
(Γ3 − 1)

d
dm

(
δL

L

)
dm . (3.293)
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We now assume that δρ > 0 everywhere in the region of interest. This
would in general hold for the fundamental mode. However, even for higher-
order modes the dominant excitation and damping generally take place so
close to the surface that δρ has constant sign in this region. It now follows from
Eq. (3.293) that the contribution of a given layer to the damping or excitation
depends on the rate of change of δL: if δL increases towards the surface, the
layer gives a negative contribution to Wg and hence contributes to the damp-
ing, whereas if δL decreases towards the surface, the layer contributes to the
excitation. This is entirely consistent with the simple heat-engine argument
given in Section 3.7.1, if we notice that we are considering the situation at pos-
itive δρ, i.e., at compression: if δL increases outwards, more energy leaves the
layer at the top than flows in at the bottom; hence there is a net energy loss
from the layer at compression, which acts to damp the motion. The reverse is
true, of course, if δL decreases towards the surface: then energy is dammed up
at compression, and the motion is excited. Clearly, the behaviour of the mode
depends on the global effect as determined by the integral in Eq. (3.293).

We now need to consider the behaviour of the luminosity perturbation in
more detail. It is given by an expression corresponding to Eq. (3.285) for the
perturbation to the flux. The radiative luminosity may be expressed as

Lrad = −4ac̃
3κ

16π2r4T 4 d lnT
dm

; (3.294)

hence, writing the equation in terms of the Lagrangian luminosity perturba-
tion,

δLrad

Lrad
= 4

δr

r
+ (4 − κT )

δT

T
− κρ

δρ

ρ
−
(

d lnT
dm

)−1 d
dm

(
δT

T

)
. (3.295)

To simplify the subsequent discussion, we note that for low-order modes one
can neglect the term in d(δT/T )/dm, as well as the term in the displacement.
Thus we approximate Eq. (3.295) by

δLrad

Lrad
� (4 − κT )

δT

T
− κρ

δρ

ρ
. (3.296)

In the region where the oscillations are nearly adiabatic, δT/T � (Γ3−1)δρ/ρ,
and hence

δLrad

Lrad
�
(
δLrad

Lrad

)

a

= −ψrad
δρ

ρ
, (3.297)

where
ψrad = [(κT − 4)(Γ3 − 1) + κρ] . (3.298)

Thus in the quasi-adiabatic region we have

Wg � L

∫ R

0

(Γ3 − 1)
δρ

ρ

d
dr

(
ψrad

δρ

ρ

)
dr , (3.299)
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assuming that the energy transport is dominated by radiation.
In most of the star, κρ is close to unity, κT is negative (as, for example,

for Kramers opacity) and Γ3 � 5/3. Also, δρ/ρ generally increases outwards.
Hence it follows from Eq. (3.297) that in most cases δLrad increases towards
the surface, so that the tendency is towards stability. This is quite reassuring:
after all most stars do not show obvious variability, suggesting that special
circumstances are required to excite modes to large amplitudes.

In fact, it is clear that a strong increase in κT may give rise to a decrease
in (δLrad)a; a decrease in Γ3 might also contribute. Both effects are likely to
occur in ionization zones of abundant elements. In particular, such regions
tend to be associated with a rapid variation in the opacity and hence with
“bumps” in κT : it should be noted that since what matters in Eqs (3.293) and
(3.297) is effectively the second derivative of opacity, even quite minor features
in the opacity can lead to substantial contributions to the excitation, provided
that they are confined to a narrow temperature interval. Excitation due to
the properties of the opacity is known as the κ mechanism; one occasionally
also talks about the γ mechanism, resulting from the variation in Γ3.

The description given so far suffers from two problems. First, it is clearly
only the lower part of an increase in κT that will contribute to driving; the
upper part similarly contributes to damping, and since δρ/ρ is assumed to
increase outwards the damping part is likely to dominate. Secondly, the ar-
gument depends on the quasi-adiabatic approximation, in that the adiabatic
relation was used to derive Eq. (3.296) for δL. The great beauty of Cox’s anal-
ysis is that it is precisely the transition to nonadiabaticity which is decisive
for the occurrence of instability of a star.

To make plausible the transition from adiabaticity to nonadiabaticity we
use an argument very similar to the one presented in Section 3.1.2. We write
the perturbed energy equation, neglecting the term in ε, as

d
dt

(
δT

T

)
− (Γ3 − 1)

d
dt

(
δρ

ρ

)
� − L

4πρr2cV T
d
dr

(
δL

L

)
. (3.300)

We integrate this expression over r and approximate d/dt by 1/Π , where Π
is the oscillation period. The result can be written, approximately, as

Δ

(
δL

L

)
∼ Ψ

[
δT

T
− (Γ3 − 1)

δρ

ρ

]
, (3.301)

where

Ψ =
〈cV T 〉Δm

ΠL
≡ τth

Π
, (3.302)

defining the thermal time scale τth. Here Δ(δL/L) is the change in δL/L
between the surface and the point considered, Δm is the mass outside this
point, and 〈cV T 〉 is a suitable average over this region. Thus Ψ has a very
simple physical meaning: it is the ratio between the thermal energy stored in
the layer outside the point considered and the energy radiated by the star in
a pulsation period.
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Now Eq. (3.301) can be understood in simple physical terms. Very near
the surface Ψ � 1: the energy content in the stellar matter is so small that
it cannot appreciably affect the luminosity perturbation; thus the luminosity
perturbation is frozen in, i.e., constant. This is clearly the strongly nonadia-
batic limit. Conversely, at great depth Ψ � 1: the energy content is so large
that the flow of energy over a pulsation period has no effect on the energy con-
tent; this corresponds to the almost adiabatic case. Thus the transition from
adiabatic to nonadiabatic oscillations occurs in the transition region, where

〈cV T 〉TR(Δm)TR

ΠL
∼ 1 . (3.303)

The question of stability or instability is now decided by the relative lo-
cation of the transition region and the relevant ionization zone. It has been
shown by Cox that the Cepheid instability strip is controlled by the ionization
of He+; thus in the following we consider only this zone. Also, to understand
the location of the instability strip it is convenient to think in terms of varying
the surface radius, and hence the effective temperature, at fixed luminosity.

Consider first a star of small radius and hence large effective temperature.
Here the He+ ionization zone lies close to the surface, i.e., very likely above
the transition region (cf. Fig. 3.28a). Below the transition region δL/L follows
the adiabatic behaviour and hence increases outwards; this contributes to the
damping. Above the transition region δL is approximately constant, and there
is no contribution to the excitation and damping. Thus the net effect is that
Wg < 0, i.e., the star is stable.

Now increase the radius, and hence reduce Teff , sufficiently that the transi-
tion region coincides with the He+ ionization zone. As illustrated in Fig. 3.28b,
at this critical radius Rcrit the situation changes dramatically. We still get
damping in the interior of the star; however, the lower part of the ionization
zone now contributes strongly to the excitation, and the corresponding damp-
ing in the upper part of the ionization zone is absent because the luminosity
perturbation is frozen in here. Thus in this case there is chance for instability.
This is precisely what happens: the point where R = Rcrit corresponds to the
location of the instability strip.

Finally, at even larger radius and lower Teff the entire ionization zone lies
in the quasi-adiabatic region and hence it makes both positive and negative
contributions to the excitation. As argued above, the general increase towards
the surface of δρ/ρ makes it plausible that the net effect is damping of the
modes (cf. Fig. 3.28c).

In fact, computations show that it is difficult to reproduce the lower (so-
called red) edge of the instability strip unless effects of perturbations to the
convective flux are taken into account. We return to this in Section 3.7.3.

This argument may be more quantitative, to determine the approximate
location of the instability strip. It was arguments of this kind that first led Cox
& Whitney (1958) to identify the He+ ionization as being mainly responsible
for the Cepheid instability.
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Fig. 3.28. Schematic illustration of δL/L at instant of minimum stellar radius
and hence maximum compression against depth below the surface. a) For a
star with R < Rcrit (see text for explanation of symbols); b) for a star with
R = Rcrit; c) for a star with R > Rcrit. Only the He+ ionization zone is shown.
After Cox (1967).
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The location of the transition region, as given in Eq. (3.303), depends on
the period of oscillation. We have so far argued for the behaviour of a single
mode (although the changing radius would also tend to increase the period
and hence push the transition region deeper). However, it should be noticed
that higher-frequency modes would tend to have transition regions closer to
the surface. It follows that they should become unstable at higher effective
temperatures. This is indeed confirmed by more detailed stability calculations.

The arguments as given here refer specifically to the Cepheid instability
strip. However, very similar arguments can be applied to other driving mech-
anisms, at least in fairly hot stars where convection can be neglected. Thus
any suitable feature that may cause a substantial dip in (δL/L)a might be
expected to give rise to an instability region. It has been found, for example,
that there is a bump in the opacities near temperatures of 2 × 105 K which
accounts for the β Cep and other B star pulsations in this way (e.g., Moskalik
& Dziembowski 1992); this arises from opacity contributions from iron-group
elements.24 An opacity-driven heat-engine mechanism is responsible for the
excitation of g modes in at least some pulsating white dwarfs (e.g., Winget et
al. 1982).

An extensive overview of the excitation of oscillations through the opacity
mechanism was given by Pamyatnykh (1999). Following him, Fig. 3.29 shows
the differential work integral for two modes in a model of a δ Sct star, as well
as the quantity ψrad, which determines the luminosity perturbation in terms
of the density perturbation, and the thermal time scale. Evidently, regions
where −dWg/d logT is positive contribute to the excitation of the mode. The
peak in ψrad at logT � 4.6 corresponds to the second ionization of helium.
As expected, the rising part of this peak causes excitation for both the n = 1
and n = 9 modes; in the former case the transition to strongly nonadiabatic
oscillations, with τth/Π � 1, takes place sufficiently close to this region that
the corresponding damping contribution is insignificant, while in the latter
case there is strong damping in the outer parts of the helium peak in ψrad.
The net effect is that the n = 1 mode is unstable while the n = 9 mode
is stable. (The secondary excitation around logT � 4.1 arises from the first
ionization of helium and the ionization of hydrogen but makes a relatively
modest contribution to the overall excitation.)

With increasing effective temperature the helium peak in ψrad moves closer
to the surface, in the direction of decreasing τth. Consequently, higher-order
modes, with shorter periods, have a tendency to be excited. Thus we may ex-
pect to see excitation of higher-order modes on the blue (high-temperature)
side of the instability strip. This is confirmed by the detailed calculations pre-
sented by Pamyatnykh (1999). As discussed by Pamyatnykh, a similar effect
operates amongst the B stars. These are excited by an opacity feature (visible
in Fig. 3.29b around logT � 5.2) caused by contributions from iron-group

24 This contribution was identified in opacity updates around 1990; before these
improvements the origin of B-star pulsations was a major mystery.
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Fig. 3.29. a) Differential work integral −dWg/d log T (cf. Eq. (3.292); the
minus sign is included for consistency with that equation); b) the function
ψrad (cf. Eq. (3.298)) determining the response of the opacity; c) the thermal
time scale τth (cf. Eq. (3.302)). Results are shown for a model of a δ Sct star
of mass 1.8 M�, age 0.8 Gyr and effective temperature 7500 K. The solid and
dashed curves in panel a) and the solid and dashed heavy horizontal lines in
panel c) correspond to radial modes of radial order n = 1 and 9, respectively.
Adapted from Pamyatnykh (1999).

elements. This causes excitation of low-order acoustic and gravity modes with
periods of a few hours in the β Cep stars, with masses of around 10 M� and ef-
fective temperatures around 25 000 K. The same mechanism causes excitation
of the high-order g-mode oscillations, with periods of a day or more, in the
Slowly Pulsating B stars with masses around 4 M� and effective temperatures
around 15 000 K.25

25 As discussed in Section 2.3.2 the apparently analogous situation regarding the
long-period oscillations in the γDor stars on the cool side of the instability strip
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3.7.3 Effects of Convection on Stellar Stability

As already mentioned, the treatment of convective contributions to the heat
flux and other convective effects is a serious problem in computations of stellar
oscillations, introducing a major uncertainty in the calculation of the stability
of modes in cool stars with extensive outer convection zones. As discussed in
Section 3.2.1 even the treatment of convection in the equilibrium model is
highly uncertain. These complications are greatly magnified for convection in
the time-varying environment of a pulsating star.

Simple analyses show that convection may contribute to the excitation in
the extreme cases of very long and very short convective time scales, compared
with the pulsation period. In the former case it is plausible that the convec-
tive flux does not react to the pulsations, leading to a negligible convective-
flux perturbation δLcon. It was noted by Cox & Giuli (1968) that this might
cause excitation if the radiative flux and hence the radiative-flux perturba-
tion become small in the convection zone: since ψrad is typically negative, δL
is in phase with δρ/ρ just beneath the convection zone; thus the change to
very small δL in the convection zone corresponds to a negative dδL/dr in
Eq. (3.293) and hence to a contribution to the driving. Physically this effect
arises from the effective blocking by convection of the luminosity perturbation
at the base of the convection zone, leading to heating in phase with compres-
sion. Thus the mechanism was dubbed “convective blocking” by Pesnel (1987).
It has been shown that this may account for the driving of the long-period
g modes in the γDor stars (e.g., Guzik et al. 2000; Warner et al. 2003). More
extensive calculations by Dupret et al. (2004a, 2005b), using a detailed con-
vection formulation, essentially confirmed that convective blocking dominates
the driving of these oscillations (see Fig. 2.6).

The opposite extreme, the convective time scale being much shorter than
the pulsation period, is relevant to DB and DA white dwarfs, given their long-
period g-mode pulsations and relatively thin convection zones. It was argued
by Brickhill (1991a,b) that in this case also the convection zone may act to
excite the modes; this was confirmed in a more detailed analysis by Goldreich
& Wu (1999). In this case the energy input to the convection zone by the
flux perturbation at its base is redistributed throughout the convection zone
as a result of the short convective time scale, causing heating of the convec-
tion zone; since the radiative flux perturbation is in phase with the density
perturbation at the top of the radiative region, as argued above, and the den-
sity perturbation varies little through the convection zone, heating is in phase
with the density perturbation throughout the convection zone, which there-
fore contributes to the excitation of the mode. A more detailed investigation
of convective effects on the excitation of oscillations in DB white dwarfs was
carried out by Dupret et al. (2008a), using a time-dependent formulation of
convection.

has a different physical origin, since the oscillations in these stars are excited
through convective blocking; see below.
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Fig. 3.30. Stability coefficients η = ωi/ωr for the fundamental radial mode
as a function of effective temperature Teff , for a 1.7M� model of a δ Sct star
evolving during the core hydrogen-burning phase. The dashed and dot-dashed
curves show the contributions from the thermal effect and the perturbation
to the turbulent pressure, respectively (see Eqs (3.291) and (3.292)), and the
solid curve shows their sum. The vertical dotted line marks the location of the
model illustrated in Fig. 3.31. Adapted from Houdek (2000).

Various time-dependent convection formulations have been developed to
deal with the convection-pulsation interactions, based on differing physical
models. The formulation by Unno (1967) was further developed by Gabriel et
al. (1974, 1975) and Gabriel (1996, 2000), as summarized by Grigahcène et
al. (2005). Gough (1977a) developed a somewhat different formulation based
on a detailed physical description of the dynamics of convective elements; this
was extended to a nonlocal formulation by Balmforth (1992a). Alternative
formulations were proposed by Stellingwerf (1982), further developed by, e.g.,
Kuhfuß (1986), Gehmeyr & Winkler (1992) and Feuchtinger (1999), as well as
by Xiong et al. (1997). A review of these different formulations was provided by
Baker (1987). Smolec & Moskalik (2008) recently implemented the formulation
of Kuhfuß (1986) in a nonlinear hydrodynamical code for radial oscillations
and discussed some limitations in previous calculations of this nature.

Early detailed calculations of the excitation of modes in the Cepheid in-
stability strip (e.g., Baker & Kippenhahn 1962, 1965) found reasonable agree-
ment between the upper limit in effective temperature of instability and the
observed blue edge of the instability strip. However, the models remained
unstable at much lower effective temperature than observed. In these calcu-
lations the interaction between convection and pulsations was ignored. An
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Fig. 3.31. Relative work integrals, as functions of the upper limit of integra-
tion expressed in terms of log T , for the fundamental radial model in a model
with Teff = 6813 K in the 1.7 M� sequence illustrated in Fig. 3.30. The dashed
and dot-dashed curves show the contributions from the thermal effect and
the perturbation to the turbulent pressure, respectively (see Eqs (3.291) and
(3.292)), and the solid curve shows their sum; note that the mode is damped
in this model. The shaded areas indicate the regions of hydrogen ionization
(H) and first and second helium ionization (HeI and HeII, respectively). The
dotted curve, using the right-hand ordinate scale, shows the contribution Fc/F
of convection to the total flux in the equilibrium model. Adapted from Houdek
(2000).

early demonstration that convective effects can in fact delimit the Cepheid
instability strip on the cool side was obtained by Baker & Gough (1979), us-
ing the formulation by Gough (1977a), for models of RR Lyrae stars. Gonczi
(1981) similarly found stability at the red edge, for Cepheid models, using the
formulation of Unno (1967). Stellingwerf (1984) also delimited the RR Lyrae
instability strip using the formulation by Stellingwerf (1982). Gehmeyr (1993)
studied the suppression of instability by convection at the red edge of the
RR Lyrae region, in a fully nonlinear calculation, while Xiong & Deng (2001)
used the nonlocal time-dependent theory of Xiong et al. (1997) to locate the
red edge of the δ Sct instability strip. However, although these calculations
generally find that convective effects can account for the stabilization of the
cool models, it is striking that the physical description of the effect depends
strongly on the detailed convection formulation employed.

To illustrate the effects of convection on the location of the instability strip
we consider calculations carried out by Houdek (2000), using a formulation
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developed by Gough (1977a) and Balmforth (1992a). Figure 3.30 shows the
resulting relative growth rates, for an evolution sequence of 1.7 M� models
evolving through the Cepheid instability strip during core hydrogen burning
and hence corresponding to δ Sct stars. The onset of instability, at the blue
edge of the strip, takes place at Teff � 7600 K. Interestingly, the thermal
contribution ηg to excitation, which includes the effects of the perturbation
to the convective flux, grows strongly as the model Teff decreases; however,
this is more than balanced by the large negative values of ηt arising from the
perturbation to the turbulent pressure, leading to overall return to stability
at a red edge of the instability strip near Teff = 6900 K. Further details on
the contributions to excitation and damping are illustrated in Fig. 3.31, for a
model just on the cool side of the instability strip. Obviously, the bulk of the
HeII ionization zone contributes to the excitation of the mode, essentially as
in Fig. 3.29; but the contribution from the turbulent pressure is damping in
most of the convection zone, leading to overall stability.

3.7.4 Excitation of High-Order g Modes

As discussed in Sections 2.3.2 and 2.3.6 both the γDor and the SPB stars show
preferentially high-order g modes, with periods of order days. This seems
at first sight surprising: the high-order modes would be expected to suffer
more strongly from radiative diffusive damping in the core, where the local
wavenumber is high (cf. Eq. (3.290)). As discussed by Dupret et al. (2008b)
the preferential excitation of these modes is an excellent illustration of the
properties of the eigenfunctions and their dependence on the characteristic
frequencies Sl and N (see Section 3.4.2).

As an example, Fig. 3.32a shows these frequencies in a typical model of a
γDor star. Also indicated are the frequencies of two g modes, at periods of
around 3.5 hr and 14 hr, the latter of which would be expected to be unstable.
As discussed in Section 3.4.2, the modes propagate in the region where ω <
N,Sl or ω > N,Sl and are evanescent elsewhere. Thus the g6(l = 2) mode has
a substantial evanescent region between the deep interior and the base of the
convection zone, whereas the g26(l = 2) is propagating in essentially the full
radiative interior. This is reflected in the eigenfunctions; Fig. 3.32b shows the
inertia density ρ|δδδr|2r2, normalized by the mode inertia (cf. Eq. (3.139)). It is
evident that for the g6(l = 2) the mode amplitude decreases very substantially
between the deep interior and the region near the base of the convection zone
where the modes are excited; thus in this case the radiative damping in the
deep interior dominates over the excitation. For g26(l = 2), on the other hand,
the amplitude remains substantial all the way to the driving region and the
mode may be excited, despite the stronger radiative damping in the deep
interior. This is indeed what is found in the computations of the instability;
it is obvious that the same will be true of modes of even higher order, up to
the point where the radiative damping becomes so strong as to yield overall
stability.
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Fig. 3.32. Pulsation properties of a 1.6 M� star with an age of 1.3 Gyr and
effective temperature Teff = 6761 K. a) Characteristic squared frequencies, in
units of GM/R3; also indicated are the squared dimensionless frequencies of
two g modes, the lower of which likely corresponding to an excited mode in a
γDor star. b) Eigenfunctions of these two modes, illustrated in terms of the
normalized differential inertia (cf. Eq. (3.139)). The solid curve is for the g6(l =
2) mode and the dashed curve for the g26(l = 2) mode. The vertical dotted
line marks the base of the convective envelope. See Dupret et al. (2008b).

As noted by Dupret et al. (2008b) a very similar mechanism operates in
the case of the SPB stars where the driving region, associated with the bump
in the iron-group opacity, is again located very near the surface.
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Fig. 3.33. Observed spectrum, from Doppler observations extending over
8 yr with the BiSON network, of a single radial mode of solar oscillations. The
white curve shows the fitted Lorentzian profile, and the smooth grey curve
shows the fit multiplied by three for clarity. See Chaplin et al. (2002a). Data
courtesy of W.J. Chaplin.

3.7.5 Stochastic Excitation of Oscillations

The return to stability at the cool edge of the Cepheid instability strip ob-
served in Fig. 3.30 extends to acoustic modes in stars at cooler temperature in
most nonadiabatic calculations taking convection into account. In particular,
this is the case for the modes observed in the Sun (e.g., Balmforth 1992a).
Thus the presence of oscillations in the Sun and other cool stars requires other
excitation mechanisms. In these stars the convective motion near the surface
likely reaches speeds close to that of sound. Such turbulent motion with near-
sonic speed is an efficient source of acoustic radiation, and it is likely that this
“noise” excites the normal modes of the star, to the observed amplitude. For
a recent review of such stochastic excitation in solar-like stars, see Houdek
(2006).

Since the excitation is caused by a very large number of convective ele-
ments, the driving is essentially random. The problem of a damped oscillator
driven by random forcing was considered by Batchelor (1956). Stein (1968)
estimated the flux of acoustic energy generated by the solar convection zone,
and Goldreich & Keeley (1977) considered the specific problem of the exci-
tation of solar oscillations by convection. Here we discuss a simple analysis
by Duvall & Harvey (1986) and Christensen-Dalsgaard et al. (1989a) which
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captures the essence of the problem. We consider a damped linear oscillator,
A(t), with random forcing and hence satisfying

d2A

dt2
+ 2η

dA
dt

+ ω2
0A = f(t) , (3.304)

where η is the damping rate, ω0 is the (undamped) frequency and f(t) is the
random forcing function. We introduce the Fourier transforms of A and f ,

Ã(ω) =
∫
A(t)eiωtdt , f̃(ω) =

∫
f(t)eiωtdt , (3.305)

where we do not attempt to specify the limits of integration precisely, hence
essentially ignoring initial transients in the solution. Thus Eq. (3.304) is trans-
formed to

− ω2Ã− 2iηωÃ+ ω2
0Ã = f̃ , (3.306)

with the power spectrum of the solution given by

P (ω) = |Ã(ω)|2 =
|f̃(ω)|2

(ω2
0 − ω2)2 + 4η2ω2

. (3.307)

Equation (3.307) describes the solution resulting from a particular realization
of the forcing. It is more interesting to consider an average over several such
realizations (obtained either by repeated observation of the same mode or by
averaging data for several similar modes). Furthermore, since the damping
rate is generally very small compared with the oscillation frequency, we are
mainly interested in the behaviour close to ω = ω0. Thus we finally obtain
that the average power spectrum resulting for a mode of frequency ω0, and
damping rate ωi, is approximately

〈P (ω)〉 � 1
4ω2

0

〈Pf (ω)〉
(ω − ω0)2 + ω2

i

, (3.308)

where 〈Pf (ω)〉 is the average power spectrum of the forcing function. If the
forcing spectrum is a slowly varying function of frequency, the result is there-
fore a Lorentzian spectrum, with a width determined by the linear damping
rate of the mode.

If a single realization, rather than the average, of the spectrum is con-
sidered, as is generally the case for observations of stellar oscillations, the
result is a random function with a Lorentzian envelope, as essentially given
by Eq. (3.307). An example is shown in Fig. 3.33; this is based on observations
of low-degree solar oscillations with the BiSON network, comprising 6 stations
with an appropriate geographical distribution to ensure nearly continuous ob-
servations (see Section 7.1.1.2). Such Lorentzian profiles are often assumed in
the fits carried out to determine the frequency and other properties of the
modes.
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Based on a detailed description of the excitation, Chaplin et al. (2005)
discussed the dependence of the expected amplitudes on mode properties.
The result for the mean squared velocity can be written as

〈V 2〉 � 1
|ωi|E

P̃f(ω)
E

, (3.309)

where E is the normalized mode inertia (cf. Eq. (3.140)), and P̃f(ω) is a mea-
sure of the acoustic energy input which depends on the properties of the eigen-
function in the near-surface region and hence, as indicated, predominantly on
frequency. It should also be noted that, according to Eq. (3.291), ωiE is given
by Wt and Wg which again are predominantly functions of frequency. Thus at
given frequency we expect that 〈V 2〉 ∝ E−1 or, in other words, that the mode
energy 1/2EM〈V 2〉 (cf. Eq. (3.141)), is predominantly a function of frequency.

Chaplin et al. (2005) stressed that some care is required in converting
the root-mean-square signal to the height H of the corresponding peak in the
power spectrum which provides a measure of the observational detectability of
the mode. If the mode is observed for a time T much longer than the damping
time, such that |ωi|T � 1, the Lorentz profile in Eq. (3.308) is fully resolved
and H � 2〈V 2〉/|ωi|. In other words, since both 〈V 2〉 and ωi are proportional
to E−1 at fixed frequency, H is independent of E. However, if |ωi|T � 1
the profile is completely unresolved; in this case H � T 〈V 2〉 and therefore
proportional to E−1. As a suitable interpolation formula between these two
extreme cases, Fletcher et al. (2006) proposed

H � 2〈V 2〉
|ωi| + 2/T

. (3.310)

As noted by Dupret et al. (2009) this distinction is particularly relevant in
the analysis of stochastically excited mixed modes; here neighbouring modes
of predominantly p- and g-mode character and hence of very different inertia
may likely have very different damping times and hence visibility in realistic
observations, even though the height in the power spectrum would be similar
if the modes were observed for an infinitely long time.

As a result of the stochastic nature of the excitation, the observed ampli-
tude of a mode varies over time. The statistical properties of this variation
were discussed by Kumar, Franklin & Goldreich (1988) and Chang & Gough
(1998). If the modes are observed over a time short compared with the damp-
ing time, the mode energy distribution is exponential,

p(E)dE = 〈E〉−1 exp(−E/〈E〉)dE , (3.311)

where 〈E〉 is the average energy, and the energy E is proportional to the
squared amplitude.

It is straightforward, and instructive, to simulate such stochastically ex-
cited, damped, oscillations. An example of such a simulation, for a long-period
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Fig. 3.34. Artificial time series for a stochastically excited oscillation with a
period of 82 d and a damping time of 60 yr, observed at a 20-d cadence. The top
panel shows the computed time series which, as indicated, covers about 1600 yr.
In the bottom panel the points show the binned, normalized distribution of
mode power, in units of the mean power, obtained by analysing the time series
in 1-yr segments. The line corresponds to the expected exponential distribution
in Eq. (3.311) (see text). From Christensen-Dalsgaard et al. (2001).

variable, is illustrated in Fig. 3.34. It is evident that the amplitude varies
strongly and in an irregular fashion, and hence at any given time there is a
significant probability that any given mode may be invisible; this must be
kept in mind in the interpretation of such pulsating stars. Panel b) shows
the distribution of mode energy, obtained by analysing the time series in 1-yr
segments. Here N is the total number of segments, and n is a scaled binned
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Fig. 3.35. Binned, normalized distribution of observed solar mode power, in
units of mean power; this is based on 3368 individual samples, each containing
14 modes, of BiSON observations. The line corresponds to the expected expo-
nential distribution in Eq. (3.311). See Chaplin et al. (1997). Data courtesy of
Y. Elsworth.

number of realizations,

n =
Δn(E)

exp(ΔE/2〈E〉) − exp(−ΔE/2〈E〉) , (3.312)

where Δn(E) is the number of realizations in the interval [E − ΔE/2, E +
ΔE/2]. It may be shown that n/N behaves like exp(−E/〈E〉) (cf. Chang &
Gough 1998); as is clear from Fig. 3.34b the simulated data do indeed have
this property. Very interestingly, the observed distribution of solar oscillation
amplitudes satisfies this relation quite closely (e.g., Chaplin et al. 1997). An
example, based on BiSON data, is shown in Fig. 3.35.

The distribution function in Eq. (3.311) also defines the relation between
the average 〈A〉 and the standard deviation σ(A) of the amplitude:

σ(A) =
(

4
π
− 1

)1/2

〈A〉 � 0.52〈A〉 . (3.313)

It was noticed by Christensen-Dalsgaard, Kjeldsen & Mattei (2001) that ob-
served amplitudes of semiregular variables on the asymptotic giant branch
approximately followed this relation, suggesting that their variability may
have a cause similar to the solar oscillations.

As indicated by Eq. (3.308) this excitation mechanism results in a definite
prediction of the oscillation amplitude, given a model for the power in the
stochastic forcing. This can be evaluated from models of convection, such as
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Fig. 3.36. Unstable modes and mean velocity amplitudes of stochastically
excited modes, for radial oscillations. Evolution tracks, at the masses indicated,
are shown with dotted curves, some models being marked with diamonds.
Selected models with unstable modes are indicated by the symbols, as listed
in the figure; note that, as argued in Section 3.7.2, the higher-order modes
tend to be excited in models with higher effective temperature. The solid and
dashed straight lines indicate the instability strips of the n = 1 and 2 modes,
respectively. The contours to the right of the instability strip show computed
velocity amplitudes, averaged over frequency; the values of the amplitudes, in
cm s−1, are given. For the Sun, indicated by �, the predicted mean amplitude
is 20 cm s−1. From Houdek et al. (1999).

the mixing-length description. A rough estimate was made by Christensen-
Dalsgaard & Frandsen (1983a); following Goldreich & Keeley (1977) they
assumed equipartition between the energy in a single mode of oscillation and
the energy of a convective eddy with a time scale corresponding to the period
of the mode. The results were analysed by Kjeldsen & Bedding (1995) who
found that the amplitudes scaled as L/M . A more careful calculation was
carried out by Houdek et al. (1999), who determined the damping or exci-
tation rates of radial modes using the nonlocal mixing-length description of
Balmforth (1992a) of the interaction between convection and pulsation; for
the stable modes they estimated the stochastically excited amplitudes, from
the computed damping rates and a mixing-length calculation of the energy
input to the modes from convection, following Balmforth (1992c). Further es-
timates of oscillation amplitudes for stars across the HR Diagram were made
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by Samadi et al. (2005, 2007), who pointed out the importance of the as-
sumed frequency dependence of the turbulent energy input, while Belkacem
et al. (2008) considered the excitation of high-degree acoustic modes in the
Sun. These predictions are increasingly being tested against observations (see
Houdek 2006 for a summary); it appears that the predicted and observed
amplitudes are in reasonably agreement for stars at or below the solar ef-
fective temperature, while the predictions are substantially higher than the
observations for hotter stars.

The detailed hydrodynamic simulations of near-surface convection in the
Sun and other stars are fully compressible and hence contain acoustic waves
and oscillations, although obviously confined to the computational box by the
imposed boundary conditions. Thus these simulations provide a very valu-
able tool for investigating the interaction between convection and pulsations,
including those aspects that lead to stochastic excitation (for a review, see
Nordlund et al. 2009). Computations by Stein & Nordlund (2001) of the en-
ergy input from convection to the oscillations, based on the simulations, have
yielded results in general agreement with the observed properties of solar os-
cillations. Such simulations were extended by Stein et al. (2004) to a broader
range of stars, qualitatively confirming the results from the simpler models
that the energy input increases with increasing effective temperature and de-
creasing surface gravity.

The stochastic mechanism is expected to result in the excitation of all
modes in a broad range of frequencies, with amplitudes reflecting the presumed
slow frequency dependence of the forcing function and the damping rate.
In more detailed calculations this in addition involves the overlap between
the oscillation eigenfunctions and the dominant forcing (e.g., Goldreich et al.
2004); the forcing at the relevant time scales tends to be concentrated quite
near the surface while, as discussed in connection with Figs 3.17 and 3.22,
the modes tend to be evanescent near the surface at relatively low frequency,
hence decreasing the efficiency of the driving, as also reflected in the mode
inertia normalized to the surface amplitude (cf. Fig. 3.24). This effect causes
a decrease in the mode amplitudes at low frequency; at high frequency the
amplitudes decrease as a result of a decrease in convective energy at the time
scale of the oscillations, combined with an increase in the damping rate.

These properties of the amplitude distribution are indeed observed in the
Sun and in the cases where solar-like oscillations have been observed in other
stars (see Figs 1.9 and 2.3). It greatly simplifies the identification of the modes,
compared with oscillations excited through the heat-engine mechanism. In
the latter case the mechanisms determining the final amplitude are largely
unknown (see Nowakowski 2005). As illustrated, for example, in Fig. 2.9, the
result is typically a wide range of mode amplitudes, with no obvious system-
atics, and hence a complex selection of modes which reach an observable level,
at a given sensitivity. It seems likely that in many cases only a small subset
of the modes actually excited in the star are detected. This obviously com-
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plicates the identification of the observed modes with modes computed for a
stellar model, and hence the asteroseismic analysis of the observations.

3.8 Effects of Rotation

We have so far assumed that stars are spherically symmetric and that there
are no velocity fields in the equilibrium model. This is manifestly false in the
common case of rotating stars; in the solar case, at least, the observed surface
rotation depends on latitude, thus implying the presence of velocity fields
regardless of the choice of a rotating coordinate system. In addition, other
large-scale velocity fields, such as those caused by convection, could have an
effect on the modes. Hence we must investigate such effects. Apart from their
intrinsic interest, the principal purpose of such studies is obviously to be able
to probe the velocity fields from the observed properties of the oscillations.

Departures from spherical symmetry are also caused by large-scale mag-
netic fields. Such fields are key to the properties of the rapidly oscillating Ap
stars (see Sections 2.3.5 and 7.3.4) and they are undoubtedly important in the
study of the effects of the solar cycle on solar oscillations (cf. Section 7.1.9);
however, a theoretical discussion of the effects of magnetic fields is regrettably
beyond the scope of this book.

3.8.1 A Simplified Description of the Effect of Rotation

It is straightforward to see, from a purely geometrical argument, that rotation
affects the observed frequencies. Assume the angular velocity Ω to be uniform,
and consider an oscillation with a frequency ω0, independent of m, in the
frame rotating with the star. We introduce a coordinate system in this frame,
with coordinates (r′, θ′, φ′) which are related to the coordinates (r, θ, φ) in an
inertial frame through

(r′, θ′, φ′) = (r, θ, φ−Ωt) (3.314)

(cf. Fig. 3.37). It follows from Eq. (3.132) that, in the rotating frame, the
perturbations depend on φ′ and t as cos(mφ′ − ω0t); hence, the dependence
in the inertial frame is cos(mφ− ωmt), where

ωm = ω0 +mΩ . (3.315)

Thus an observer in the inertial frame finds that the frequencies are split
uniformly according to m.

This description is obviously incomplete. Even in the case of uniform rota-
tion, the effects of the Coriolis force must be taken into account in the rotating
frame, causing a contribution to the frequency splitting (Cowling & Newing
1949; Ledoux 1949, 1951). Furthermore, in general the angular velocity is a
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Fig. 3.37. Geometry of rotational splitting. The star is rotating with uniform
angular velocity Ω. The point P has longitude φ′ in the system rotating with
the star and longitude φ = φ′ +Ωt in the inertial system.

function Ω(r, θ) of position. Nevertheless, as shown below, the effect of the
Coriolis force is often small and Eq. (3.315) is approximately correct if Ω is
replaced by a suitable average of the position-dependent angular velocity.

To arrive at an expression valid for any rotation law it is convenient to
consider first the even more general case of an arbitrary stationary velocity
field in the star.

3.8.2 The Effect of Large-Scale Velocities on the Oscillation
Frequencies

We need to reconsider the derivation of the perturbation equations, including
the effects of a velocity field. We shall assume that the equilibrium structure is
stationary, so that all local time derivatives vanish. Even with this assumption
the determination of the equilibrium structure is a non-trivial problem, due
to the distortion caused by the velocity fields (e.g., due to centrifugal effects
in a rotating star; see Section 3.2.4.2). However, we initially assume that the
velocity v0 in the equilibrium state is sufficiently slow that terms quadratic
in v0 can be neglected; effects of rapid rotation are discussed in Section 3.8.6.
The equation of continuity (3.6) gives, because of the assumed stationarity

div (ρ0v0) = 0 . (3.316)
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Also, because of the neglect of terms of order |v|2, the equations of motion
(3.9) reduce to

0 = −∇p0 + ρ0g0 . (3.317)

As usual we have replaced the body force per unit mass f by the gravitational
acceleration g. Thus Eq. (3.30) of hydrostatic support is unchanged. In the
solar case, the ratio between the neglected centrifugal force and surface gravity
is of order 2 × 10−5 and so the error in Eq. (3.317) is in fact small.

The perturbation analysis also requires some care. It was treated in con-
siderable detail by Lynden-Bell & Ostriker (1967), and is discussed in J. P.
Cox (1980), Chapter 5. Here we just present a few of the main features.

The velocity at a given point in space can be written as

v = v0 + v′ , (3.318)

where v′ is the Eulerian velocity perturbation. The displacement δδδr must
be determined relative to the moving equilibrium fluid; it is related to the
velocity perturbation by

dδδδr
dt

= δδδv = v′ + (δδδr · ∇)v0 . (3.319)

Here δδδv is the Lagrangian velocity perturbation and, as in Section 3.1.1, d/dt
is the material time derivative,

dδδδr
dt

=
∂δδδr

∂t
+ (v0 · ∇)δδδr ; (3.320)

in contrast to the zero-velocity case, the local and the material time derivatives
of perturbations are now different.

The perturbed continuity equation may be written as

0 =
∂ρ′

∂t
+ div (ρ′v0 + ρ0v

′) (3.321)

=
∂

∂t
[ρ′ + div (ρ0δδδr)] + div {ρ′v0 + ρ0[(v0 · ∇)δδδr − (δδδr · ∇)v0]} ,

on using Eqs (3.319) and (3.320). After some manipulation, using Eq. (3.316),
this may be reduced to

∂A

∂t
+ div (Av0) = 0 , (3.322)

where
A = ρ′ + div (ρ0δδδr) . (3.323)

This may also, by using again Eq. (3.316), be written as

ρ0
d
dt

(
A

ρ0

)
= 0 , (3.324)
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from which we conclude that A = 0, i.e., that Eq. (3.41) is valid in this case
also.

To obtain the perturbed momentum equation we use Eq. (3.8); from the
fact that Lagrangian perturbation and material time derivative commute,

d
dt

(δψ) = δ

(
dψ
dt

)
(3.325)

for any quantity ψ, we then obtain

ρ0
dδδδv
dt

= δ(−∇p+ ρg) = −∇p′ + ρ0g
′ + ρ′g0 , (3.326)

by using Eq. (3.317). Alternatively this may be written, from Eq. (3.319), as

ρ0
d2δδδr

dt2
= −∇p′ + ρ0g

′ + ρ′g0 , (3.327)

or, by using Eq. (3.320) and neglecting the term quadratic in v0,

ρ0
∂2δδδr

∂t2
+ 2ρ0(v0 · ∇)

(
∂δδδr

∂t

)
= −∇p′ + ρ0g

′ + ρ′g0 , (3.328)

which replaces Eq. (3.43). Finally, from the commutativity in Eq. (3.325), one
finds that the perturbed energy Eq. (3.46) is still valid. Thus to this level of
accuracy, the only change in the perturbation equations is the inclusion of the
term in the first time derivative of δδδr in Eq. (3.328).

As the equilibrium structure is independent of time, we may still separate
the time dependence as exp(−iωt). Using, for simplicity, the same symbols for
the amplitude functions in this separation, we obtain from the equations of
motion

− ω2ρ0δδδr − 2iωρ0(v0 · ∇)δδδr = −∇ p′ + ρ0g
′ + ρ′g0 . (3.329)

Here the term in v0 is a small perturbation. Thus we can investigate its effect
by means of perturbation analysis, as discussed in Section 3.6.1. Following
Eqs (3.244) and (3.245) we write Eq. (3.329) as

ω2δδδr = F(δδδr) + δF(δδδr) , (3.330)

where
δF(δδδr) = −2iω(v0 · ∇)δδδr . (3.331)

It now follows from Eq. (3.261) and the definition of the inner product that
the change in ω caused by the velocity field is, to first order,

δω = −i

∫
V ρ0δδδr

∗ · (v0 · ∇)δδδr dV
∫

V
ρ0|δδδr|2 dV

. (3.332)
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Although our main interest is rotation, we note that Eq. (3.332) has wider
applicability. Lavely & Ritzwoller (1992, 1993) made a detailed analysis of the
effects of stationary flows, such as large-scale convection, on the properties of
stellar oscillations. Roth & Stix (1999) applied the formalism to simple models
of giant-cell convection in the Sun, and Roth et al. (2002) made more extensive
numerical experiments to test whether such effects might be visible in current
observational data. Also, Roth & Stix (2008) investigated the effects on global
solar oscillation frequencies of meridional circulations, concluding that such
effects might be detectable with suitable analysis of the extensive data now
available.

3.8.3 The Effect of Pure Rotation

Now v0 is taken to correspond to a pure rotation, with angular velocity Ω =
Ω(r, θ) that may depend on r and θ. We assume that the entire star is rotating
around a common axis and choose this as the axis of the spherical polar
coordinate system. Then

v0 = Ωr sin θ aφ = ΩΩΩ × r , (3.333)

where we have introduced the rotation vector, defined to be along the rotation
axis and of magnitude given by the angular velocity, by

ΩΩΩ = Ω(cos θ ar − sin θ aθ) . (3.334)

We must now evaluate Eq. (3.332) for a normal mode of oscillation, and hence
we have to consider the derivative in the direction of v0; the relevant re-
lations for the vector operations in spherical polar coordinates are given in
Section C.2. From Eq. (3.122) the perturbations depend on φ as exp(imφ);
thus for a scalar quantity a

(v0 · ∇)a = Ωr sin θ
1

r sin θ
∂a

∂φ
= imΩ a . (3.335)

For a vector F we use Eq. (C.10), and note that the directional derivatives of
the coordinates of F can be found by using Eq. (3.335). The result is

(v0 · ∇)F = imΩF +Ω[−Fφ sin θ ar − Fφ cos θ aθ + (Fr sin θ + Fθ cos θ) aφ] .
(3.336)

This can also be written as

(v0 · ∇)F = imΩF +ΩΩΩ × F . (3.337)

Thus Eq. (3.329) becomes

− ω2ρ0δδδr + 2mωΩρ0δδδr − 2iωρ0ΩΩΩ × δδδr = −∇p′ + ρ0g
′ + ρ′g0 . (3.338)
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In the case of a constant angular velocity Ω this equation may be obtained
much more simply. Here we may transform to a coordinate system rotating
with the star, with coordinates (r′, θ′, φ′) = (r, θ, φ − Ωt). In this system the
dependence of the perturbations on φ′ and t is as

cos(mφ′ + mΩt− ωt) = cos(mφ′ − ω′t) , (3.339)

where ω′ ≡ ω −mΩ (see also the simple analysis in the introduction to this
section). To write down the equations of motion in the rotating system we
note that in this system there is no term in the equilibrium velocity; however,
we must add the term −2ρ0ΩΩΩ × δδδv from the Coriolis force on the right-hand
side. Using that to the required order of precision the velocity perturbation is
δδδv = −iωδδδr, the result is

− ω′2ρ0δδδr = −∇p′ + ρ0g
′ + ρ′g0 + 2iωρ0ΩΩΩ × δδδr . (3.340)

But this agrees with Eq. (3.338), if a term in Ω2 is neglected.
In the general case of non-uniform rotation it might be argued that this

relation would hold locally at any given point in the fluid, thus resulting again
in Eq. (3.338). However, it is not obvious whether this is a consistent deriva-
tion of that relation, or whether it results from fortuitous cancellation of terms
coming from the variation of Ω. In any case it allows a simple interpretation
of the two terms in Ω in Eq. (3.338): the first term comes from the coordinate
rotation, or equivalently from the advection of the rotating star relative to an
observer in an inertial frame, and the second term comes from the Coriolis
force. Neglecting the Coriolis term it follows from this analysis that a rea-
sonable generalization of the argument leading to Eq. (3.315) for non-uniform
rotation is to replace Ω by the average

〈Ω〉 �
∫
Ω|δδδr|2dV∫
|δδδr|2dV

. (3.341)

We must now calculate the integrals in Eq. (3.332). By substituting δδδr,
given by the complex form of Eq. (3.132), for F in Eq. (3.336) we obtain

(v0 · ∇)δδδr = imΩ δδδr +
√

4πΩ
[
−ξh

∂Y m
l

∂φ
ar − ξh

cos θ
sin θ

∂Y m
l

∂φ
aθ

+
(
ξr sin θ Y m

l + ξh cos θ
∂Y m

l

∂θ

)
aφ

]
. (3.342)

Thus

R̃ ≡
∫

V

ρ0δδδr
∗ · (v0 · ∇)δδδr dV = im

∫

V

ρ0Ω|δδδr|2 dV (3.343)

+4π
∫

V

ρ0Ω

[
−ξ∗r (Y m

l )∗ξh
∂Y m

l

∂φ
− |ξh|2

(
∂Y m

l

∂θ

)∗
∂Y m

l

∂φ

cos θ
sin θ

+ξ∗hξr

(
∂Y m

l

∂φ

)∗
Y m

l + |ξh|2
(
∂Y m

l

∂φ

)∗
∂Y m

l

∂θ

cos θ
sin θ

]
dV .
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Here Y m
l is always multiplied by its complex conjugate, so that the φ-

dependence cancels. Hence the integration over φ is trivial. It should be noticed
also that all terms in the second integral in Eq. (3.343) contain the φ-derivative
of Y m

l or its complex conjugate, which is proportional to im. Thus R̃ contains
im as a factor, and can be written, using Eq. (3.122), as

R̃ = im 8π2c2lmRnlm , (3.344)

where

Rnlm =
∫ π

0

sin θdθ
∫ R

0

{
|ξr(r)|2Pm

l (cos θ)2 (3.345)

+|ξh(r)|2
[(

dPm
l

dθ

)2

+
m2

sin2 θ
Pm

l (cos θ)2
]

−Pm
l (cos θ)2 [ξ∗r (r)ξh(r) + ξr(r)ξ∗h(r)]

−2Pm
l (cos θ)

dPm
l

dθ
cos θ
sin θ

|ξh(r)|2
}
Ω(r, θ)ρ0(r)r2dr .

Similarly, the denominator in Eq. (3.332) can be written as

Ĩ ≡
∫

V

ρ0|δδδr|2dV = 8π2c2lmInlm , (3.346)

where

Inlm =
∫ π

0

sin θdθ
∫ R

0

{
|ξr(r)|2Pm

l (cos θ)2 (3.347)

+|ξh(r)|2
[(

dPm
l

dθ

)2

+
m2

sin2 θ
Pm

l (cos θ)2
]}

ρ0(r)r2dr

=
2

2l + 1
(l + |m|)!
(l − |m|)!

∫ R

0

[
|ξr |2 + l(l + 1)|ξh|2

]
ρ0(r)r2dr

(compare with Eq. (3.139)). From Eqs (3.332), (3.344) and (3.346) we finally
obtain the rotational splitting, i.e., the perturbation to the frequencies caused
by rotation, as

δωnlm = m
Rnlm

Inlm
. (3.348)

This may obviously be written in the form

δωnlm = m

∫ R

0

∫ π

0

Knlm(r, θ)Ω(r, θ)rdrdθ , (3.349)

where the kernel Knlm is defined by Eqs (3.345) and (3.347).
From Eqs (3.345) and (3.347), as well as the symmetry property of the

Legendre function with respect to m (Eq. (B.8)), it follows that Rnlm/Inlm is
an even function of m and hence that δωnlm is an odd function of m,
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δωnl−m = −δωnlm . (3.350)

Also, since Pm
l (x) is either symmetrical or antisymmetrical around x = 0, the

factor multiplying Ω(r, θ) in Eq. (3.345) is symmetrical around the equator,
θ = π/2; thus

Knlm(r, π − θ) = Knlm(r, θ) . (3.351)

This has the important consequence that the rotational frequency splitting is
sensitive only to the part of Ω that is symmetrical around the equator.

The rotational splitting for a uniformly rotating star was first obtained by
Cowling & Newing (1949) and Ledoux (1949). The general case, as presented
here, was considered by Hansen, Cox & van Horn (1977) and Gough (1981).

3.8.4 Properties of Rotational Splitting

To proceed we must make an explicit assumption about the variation of Ω
with θ. For simplicity we shall assume first that Ω is independent of θ (even
though, as mentioned earlier, the solar surface rotation depends on θ; this may
well be the case for other pulsating stars). In this case the integrals over θ in
Eq. (3.345) only involve Legendre functions and may be evaluated analytically.
Two of the terms require a little care. One contains

∫ π

0

Pm
l (cos θ)

dPm
l

dθ
cos θ
sin θ

sin θdθ = −
∫ 1

−1

Pm
l (x)

dPm
l

dx
xdx

= − 1
2
xPm

l (x)2
∣∣
∣
∣

1

−1

+
1
2

∫ 1

−1

Pm
l (x)2dx , (3.352)

and here the integrated term vanishes, as Pm
l (x) is either symmetrical or anti-

symmetrical in x = cos θ. The other non-trivial integral, which was already
encountered in the evaluation of Inlm, is

∫ π

0

[(
dPm

l

dθ

)2

+
m2

sin2 θ
Pm

l (cos θ)2
]

sin θdθ (3.353)

= −
∫ π

0

Pm
l (cos θ)

[
d
dθ

(
sin θ

dPm
l

dθ

)
− m2

sin θ
Pm

l (cos θ)
]

dθ

= L2

∫ 1

−1

Pm
l (x)2dx ,

by using that Pm
l satisfies Eq. (3.118). As usual, we have introduced L2 ≡

l(l+1). For adiabatic oscillations we can take ξr and ξh to be real. Thus, from
Eqs (3.345), (3.347) and (3.348), we finally obtain for the rotational splitting

δωnlm = m

∫ R

0 Ω(r)
(
ξ2r + L2ξ2h − 2ξrξh − ξ2h

)
r2ρdr

∫ R

0
(ξ2r + L2ξ2h) r2ρdr

, (3.354)
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Fig. 3.38. Coefficients βnl for acoustic modes in a normal solar model. Points
corresponding to fixed l have been connected, according to the following line
styles: l = 1: ; l = 2: ; l = 3: ; l = 4:

; l = 5: ; l = 10, 15, . . . , 50: (with βnl

increasing with l).

where we have dropped the subscript “0” on ρ. It should be noticed that the
integrands in Eq. (3.354) are given solely in terms of ξr, ξh and l, and therefore
are independent of m. Hence in the case of spherically symmetric rotation the
rotational splitting is proportional to m.

It is convenient to write Eq. (3.354) as

δωnlm = mβnl

∫ R

0

Knl(r)Ω(r)dr , (3.355)

where

Knl =

(
ξ2r + L2ξ2h − 2ξrξh − ξ2h

)
r2ρ

∫ R

0 (ξ2r + L2ξ2h − 2ξrξh − ξ2h) r2ρdr
, (3.356)

and

βnl =

∫ R

0

(
ξ2r + L2ξ2h − 2ξrξh − ξ2h

)
r2ρdr

∫ R

0 (ξ2r + L2ξ2h) r2ρdr
. (3.357)

By using this definition we ensure that the rotational kernelKnl is unimodular,
i.e., ∫ R

0

Knl(r)dr = 1 . (3.358)
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For high-order or high-degree p modes the terms in ξ2r and L2ξ2h dominate;
as shown in Fig. 3.38, βnl is then close to one. Physically, the neglected terms in
Eq. (3.357) arise from the Coriolis force; thus rotational splitting for p modes is
dominated by advection, and Eq. (3.355) essentially corresponds to the average
angular velocity defined in Eq. (3.341). For high-order g modes, on the other
hand, we can neglect the terms containing ξr, so that

βnl � 1 − 1
L2

. (3.359)

For uniform rotation, where Ω = Ωs is constant,

δωnlm = mβnlΩs . (3.360)

In this case the effect of rotation is completely given by the constant βnl. For
high-order or high-degree p modes, where βnl � 1, the rotational splitting
between adjacent m-values is given approximately by the rotation rate. For
high-order g modes, on the other hand, βnl is given by Eq. (3.359). In partic-
ular, the splitting of high-order g modes of degree 1 is only half the rotation
rate.

It is common to describe the effect of uniform rotation also in terms of the
Ledoux constant

Cnl = 1 − βnl =

∫ R

0

(
2ξrξh + ξ2h

)
r2ρdr

∫ R

0
(ξ2r + L2ξ2h) r2ρdr

(3.361)

(Ledoux 1951). It is easily seen that in the frame rotating with the star the
rotational splitting is given by −mCnlΩ, resulting from the Coriolis force. It
follows from the above discussion that for high-order or high-degree p modes
Cnl is small.

Figure 3.39 shows a few kernels for the case of spherically symmetric rota-
tion, for high-order p modes in a model of the present Sun. It is evident that
the kernels increase rapidly towards the surface; it follows from the asymp-
totic properties of the eigenfunctions in Eq. (3.227) that the overall variation
of the kernels scales as c−1, reflecting also that the sensitivity of the mode to
a given part of the star depends on the time spent by the mode, regarded as a
superposition of sound waves, in that region (see also Eq. (7.26) below). Also,
the kernels clearly get very small beneath the turning point, but are locally
enhanced just above it. This effect arises from the term in ξh in Eq. (3.356);
physically it corresponds to the fact that the waves travel approximately hor-
izontally in this region, and hence spend a relatively long time there.

In other asteroseismically interesting cases the rotational kernels may have
a rather different structure. This is the case for solar-like oscillations giving
rise to mixed modes (see Fig. 7.66), or for stars with heat driven pulsations in
low-order p or g modes (see Figs 7.81 and 7.88). In such cases the rotational
splitting may have a substantial sensitivity to the rotation of the deep stellar
interior.
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Fig. 3.39. Kernels Knl for the frequency splitting caused by spherically
symmetric rotation (cf. Eq. (3.356)) in a model of the present Sun (the kernels
are made dimensionless by scaling with R, so as to correspond to integration
with respect to the abscissa r/R). In a) is plotted RKnl(r) for a mode with
l = 1, n = 22 and ν = 3239μHz. The maximum value of RKnl(r) is 62.
In b) is shown the same mode, on an expanded vertical scale, ( )
together with the modes l = 20, n = 17, ν = 3375 μHz ( ), and
l = 60, n = 10, ν = 3234 μHz ( ). Notice that the kernels almost
vanish inside the turning-point radius rt, and that there is an accumulation
just outside the turning point.

In the general case, where Ω depends on both r and θ, the rotational
splitting may be computed from Eqs (3.345), (3.347) and (3.348), by evalu-
ating the two-dimensional integral in Eq. (3.345). This integral is in general
m-dependent, and so the splitting is no longer a linear function of m. Selected
examples of the resulting kernels Knlm(r, θ) (cf. Eq. (3.349)) are illustrated in
Fig. 3.40.

To illustrate the properties of the splitting, it is instructive to rewrite
Eq. (3.345) for Rnlm, using integration by parts:

Rnlm =
∫ π

0

dθ
∫ R

0

Pm
l (cos θ)2

{[
ξ2r + (L2 − 1)ξ2h − 2ξrξh

]
sin θ Ω(r, θ)

+ξ2h

(
3
2

cos θ
∂Ω

∂θ
+

1
2

sin θ
∂2Ω

∂θ2

)}
r2ρ dr (3.362)
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Fig. 3.40. Contour plots of rotational kernels Knlm in a solar quadrant.
The modes all have frequencies near 2 mHz; the following pairs of (l,m) are
included: a) (5, 2); b) (20, 8); c) (20, 17); and d) (20, 20). The dotted circles
mark the locations of the lower radial turning point rt and the dotted lines
show the latitudinal turning points, at co-latitude Θ, defined by sinΘ = m/L
(cf. Eq. (B.16)).

(Cuypers 1980). We consider again the case of high-order p modes; here the
terms in ξ2r and L2ξ2h dominate, and consequently

δωnlm � m

∫ π

0 sin θ [Pm
l (cos θ)]2

∫ R

0 Ω(r, θ)[ξr(r)2 + L2ξh(r)2]r2ρ drdθ
∫ π

0
sin θ [Pm

l (cos θ)]2 dθ
∫ R

0
[ξr(r)2 + L2ξh(r)2]r2ρ dr

.

(3.363)
Hence, the splitting is simply an average of the angular velocity Ω(r, θ),
weighted by r2ρ[ξr(r)2 + L2ξh(r)2]Pm

l (cos θ)2, corresponding to the simple
average in Eq. (3.341).

3.8.5 Effects of Rotation on Low-Frequency Modes

The simple perturbative treatment fails when ω is of the same order of, or
smaller than, Ω since in that case the term in the Coriolis force in Eq. (3.338)
cannot be regarded as a small perturbation compared with the acceleration
term in ω2. This is relevant, for example, for SPB and γ Dor stars with high-
order g modes. This needs a treatment beyond the simple spheroidal modes
considered so far. For simplicity we only consider uniform rotation in this
section and assume it to be so slow that terms quadratic in Ω can still be
neglected. Also, we impose the Cowling approximation; this is reasonable since
the relevant modes, except for very rapid rotation, are high-order g modes.
Finally, we consider only the case of adiabatic oscillations.

In terms of spherical harmonics the equations are still separable in φ (since
the equilibrium model is rotationally symmetric) but not in latitude. Thus
motion corresponding to different degrees is coupled. Formally, the solutions
to Eq. (3.338) treated in a non-perturbative manner, together with Eq. (3.41)
and the adiabatic relation Eq. (3.50) cannot be expressed in terms of single
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spherical harmonics. Furthermore, the full solution for the displacement in-
cludes a component corresponding to the toroidal motion (cf. Eq. (3.144)). As
a result of the completeness of the set of angular functions the solution can
be expanded on these functions. Owing to the rotational symmetry, we can
still write the φ dependence as exp(imφ); the dependence on latitude then
only involves Legendre functions such that l ≥ |m|. Consequently, writing the
displacement as

δδδr = ξrar + ξθaθ + ξφaφ , (3.364)

we express ξr, ξθ and ξφ as

ξr = Σ∞
l≥|m|Ξlm(r)Y m

l (θ, φ)e−iωt ,

ξθ = Σ∞
l≥|m|

[
Hlm(r)

∂Y m
l

∂θ
+ Tlm(r)

1
sin θ

∂Y m
l

∂φ

]
e−iωt , (3.365)

ξφ = Σ∞
l≥|m|

[
Hlm(r)

1
sin θ

∂Y m
l

∂φ
− Tlm(r)

∂Y m
l

∂θ

]
e−iωt ; (3.366)

also, the perturbation to a scalar quantity, e.g., pressure p, is written as

p′ = Σ∞
l≥|m|p

′
lm(r)Y m

l (θ, φ)e−iωt (3.367)

(see Zahn 1966). Substituting these expansions into the oscillation equations
one obtains an infinite set of coupled differential equations for the radial ex-
pansion functions. The properties and numerical solutions of these equations,
after suitable truncation, were discussed, for example, by Berthomieu et al.
(1978), Lee & Saio (1986, 1987) and Dziembowski & Kosovichev (1987a,b,c).
As noted by, for example, Lee & Saio (1987) the equations are very consider-
ably simplified by neglecting the tangential component of the rotation vector
ΩΩΩ, i.e., −Ω sin θ aθ in Eq. (3.334); this approximation, which was essentially
also used by Berthomieu et al. (1978), is commonly used in geophysics where
it is known as the traditional approximation (e.g., Eckart 1960). It is then pos-
sible, through a transformation of the expansion in θ, to bring the equations
in a fully separated form that is very similar to the equations of pulsation in
the non-rotating case (see also Unno et al. 1989).

A simple justification for the traditional approximation can be obtained
from a local analysis of the oscillation equations, extending the analysis in
Section 3.1.4.2 to include the effects of rotation (e.g., Unno et al. 1989; Thorne
& Gough, in preparation). In the appropriate limit of high-order g modes, this
leads to the dispersion relation

ω2 � N2k2
h + (2ΩΩΩ · k)2

k2
. (3.368)

The resulting waves may be characterized as gravito-rotational waves, with
a restoring force resulting from a combination of buoyancy and the Coriolis
force. Since kr � kh the term in ΩΩΩ · k is dominated by the radial component
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of ΩΩΩ and hence the tangential component can be neglected. This is the tra-
ditional approximation (see also Lee & Saio 1997). It should be noted that
Eq. (3.368) was derived under the assumption that |N | � ω. Thus the tradi-
tional approximation is not valid in convection zones.

The separation of variables can be derived more simply in terms of
Laplace’s Tidal Equation (Laplace 1799).26 This has been used extensively
in geophysics (see Eckart 1960) and was introduced to the study of stellar
pulsations by Bildsten et al. (1996). To derive it we consider Eq. (3.338) in a
frame rotating with the star, so that the term in 2mωΩδδδr disappears. Ex-
panding the result in component form we obtain

− ω2ξr + 2iωΩ sin θξφ = − 1
ρ0

∂p′

∂r
− ρ′

ρ0
g0 ,

−ω2ξθ + 2iωΩ cos θξφ = − 1
ρ0

∂p′

∂θ
, (3.369)

−ω2ξφ − 2iωΩ(sin θξr + cos θξθ) = − 1
ρ0

1
sin θ

∂p′

∂φ
.

The traditional approximation now consists of neglecting Ω sin θ in the first
and third of these equations. As a result, the last two equations can be solved
for ξθ, ξφ in terms of the derivatives of p′. The result can be expressed as

ξθ = − 1
rω2ρ0

(1 − μ2)1/2

1 − s2μ2

[
∂p′

∂μ
− is

μ

(1 − μ2)
∂p′

∂φ

]
,

ξφ =
1

rω2ρ0

(1 − μ2)1/2

1 − s2μ2

[
isμ

∂p′

∂μ
+

1
(1 − μ2)

∂p′

∂φ

]
, (3.370)

where μ = cos θ and we introduced the rotation parameter

s =
2Ω
ω

. (3.371)

Substituting Eqs (3.370) into the equation of continuity, Eq. (3.41), and as-
suming that p′ depends on φ as exp(imφ), we obtain

0 = ρ′ +
1
r2

∂

∂r
(r2ρ0ξr) (3.372)

+
1

r2ω2

{
∂

∂μ

(
1 − μ2

1 − s2μ2

∂p′

∂μ

)
+

1
1 − s2μ2

[
ms(1 + s2μ2)

1 − s2μ2
− m2

1 − μ2

]
p′
}
.

It follows that the dependence of ξr and p′ on θ and φ can be separated in
terms of a function of the form Θs(μ) exp(imφ), provided that Θs is a regular
solution to the eigenvalue problem

LsΘs = −L̂2
sΘs , (3.373)

26 See Première Partie, Tome Second, Livre IV, Chapitre III, no. 15.
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where the operator Ls is defined by

Ls ≡ d
dμ

(
1 − μ2

1 − s2μ2

d
dμ

)
+

1
1 − s2μ2

[
ms(1 + s2μ2)

1 − s2μ2
− m2

1 − μ2

]
. (3.374)

Equation (3.373) is known as the Laplace tidal equation, and the regular solu-
tions Θs are the Hough functions ,27 extensively discussed by Longuet-Higgins
(1968) (see also Bildsten et al. 1996; Lee & Saio 1997; Townsend 2003a; Dziem-
bowski et al. 2007). Bildsten et al. (1996) discussed the numerical solution
of this equation, particularly the treatment of the regular singularities at
μ = ±s−1 when s > 1. We also note that Dzhalilov & Staude (2004) general-
ized the Laplace tidal equation to the case of the angular velocity varying in
latitude or radius.

It is evident that ξr can be similarly separated in the first of Eqs (3.369),
given the neglect of the term in ξφ; given Θs, the remaining components of
the displacement can be determined from Eqs (3.370). Also, the adiabatic con-
dition, Eq. (3.50), can obviously be separated. Thus we obtain the following
equations for the amplitude functions for adiabatic oscillations in the tradi-
tional approximation:

dξr
dr

= −
(

2
r
− 1
Γ1
H−1

p

)
ξr +

1
ρc2

(
L̂2

sc
2

r2ω2
− 1

)

p′ , (3.375)

dp′

dr
= ρ(ω2 −N2)ξr −

1
Γ1
H−1

p p′ . (3.376)

These are evidently identical to the equations in the non-rotating case in the
Cowling approximation, Eqs (3.175),28 except that S2

l = l(l + 1)c2/r2 has
been replaced by L̂2

sc
2/r2. Thus the structure of the equations, and hence the

insights that have been obtained by analysing them, carries over immediately
to the rotating case in this approximation. It should also be noted that for
s = 0, Eqs (3.373) and (3.374) reduce to Eq. (3.118) for the Legendre function,
with L̂2

s = Λ. Thus in the non-rotating limit we recover the separation in terms
of spherical harmonics (up to the normalization), with L̂2

0 = L2 = l(l+1). We
also note that for m = 0, a constant Θs is a solution to Eq. (3.373), with L̂s =
0. Thus, regardless of the angular velocity, the radial oscillations are solutions
in the traditional (and Cowling) approximation, with frequencies unaffected
by the rotation. It is conventional, and convenient, to identify modes obtained
in the traditional approximation by (l,m), where l is the degree such that
L̂2

s → l(l + 1) for s→ 0.

27 See Hough (1898).
28 We note, following Thorne & Gough (in preparation), that the Poisson equation

(3.113) cannot be similarly separated; thus this does not generalize to the full
set of equations. However, as already noted the effects of the perturbation to the
gravitational potential are likely small for the relevant modes and hence could be
treated through a perturbation expansion.
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Fig. 3.41. The top panel shows numerically computed eigenvalues L̂2
s of

Laplace’s Tidal Equation as functions of the rotation parameter s, for m = 0.
Modes symmetric around μ = 0 are shown as solid curves, antisymmetric
modes as dashed curves. The lowest case corresponds to l = 1 at s = 0. The
lower panel shows the quantity S (cf. Eq. (3.377)) resulting from Townsend’s
(2003a) approximate analysis for the same modes.

Numerical solutions for the eigenvalue L̂2
s, for m = 0 and 2, are illustrated

in the top panels of Figs 3.41 and 3.42 (we return to the bottom panels be-
low).29 Here we have distinguished the modes according to their parity around
μ = 0, modes where Θs is symmetric being shown with continuous curves and
those with antisymmetric Θs with dashed curves. As mentioned above the
values at s = 0 correspond to L2 = l(l+ 1) for l ≥ m (the case corresponding

29 We are very grateful to D. O. Gough for his assistance in computing the solutions
to the Laplace Tidal Equation illustrated here.
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Fig. 3.42. Numerically computed eigenvalues L̂2
s of Laplace’s Tidal Equation,

for m = 2. See caption to Fig. 3.41.

to l = 0 is obviously excluded in Fig. 3.41). It should also be noticed that
in Fig. 3.42 a new branch of eigenvalues appears for large negative s; these
correspond to modes that have no counterpart in the non-rotating case.

L̂2
s generally increases with increasing |s|. From the form of Eqs (3.375)

and (3.376), and the analogy with the equations in the non-rotating case, it is
natural to identify L̂s/r with a horizontal wavenumber, such that the increase
in L̂s corresponds to an increase in kh and hence a decrease in the horizontal
wavelength. This in fact is in accordance with the horizontal behaviour of the
computed eigenfunctions, as reflected in Θs. As an example, Fig. 3.43 shows
Θs, normalized to Θs = 1 at μ = 0, as a function of μ, for the lowest symmetric
case in Fig. 3.41 (and hence corresponding to l = 2 for s = 0). At s = 0 the
solution is Θs(μ) ∝ P2(μ), P2 being the Legendre polynomial. However, it is
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Fig. 3.43. Numerically computed solutions Θs of Laplace’s Tidal Equation,
for m = 0 and the mode reducing to l = 2 at s = 0, as functions of μ. The
solutions have been normalized to 1 at μ = 0. The cases shown are s = 0
(solid), s = 1 (dotted), s = 2 (dashed), s = 3 (dot-dashed) and s = 4 (long
dashes). The thin lines for s = 2 and 4 show the approximate solution obtained
by Townsend (2003a), given in Eq. (3.379).

evident that for s ≥ 2 the mode becomes increasingly confined to low μ, i.e.,
towards the equator. This effect was interpreted as confinement in a wave
guide by the Coriolis force by Matsuno (1966) in a terrestrial setting; the
importance for stellar pulsations was probably first recognized by Lee & Saio
(1990).

Townsend (2003a) noted that this property allowed an illuminating ap-
proximation to the Laplace Tidal equation for large |s|;30 by neglecting μ2

compared with 1 he obtained an equation with a solution in terms of Hermite
polynomials. Also, the eigenvalues satisfy

L̂2
s −m2 −ms

L̂s|s|
= S � 2ζ + 1 , (3.377)

where ζ is an integer. This property is illustrated in Figs 3.41 and 3.42, where
the lower panels show S computed from Eq. (3.377). It is evident that this
quantity does indeed approximate odd integers for large |s|. The corresponding

30 A detailed asymptotic analysis in this limit was carried out by Longuet-Higgins
(1968).
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solution can be written in terms of the new independent variable

υ ≡ (L̂s|s|)1/2μ (3.378)

as

Θs(μ) = cs

[
ζ

(
1 − m

L̂s

)
Hζ−1(υ) − 1

2

(
1 +

m

L̂s

)
Hζ+1(υ)

]
exp(−υ2/2) ,

(3.379)
clearly displaying the confinement with increasing |s|; here Hk is the Hermite
polynomial of order k. The thin curves in Fig. 3.43 show this approximation
for s = 2 and 4; it is evident that in the latter case the agreement with the
numerical solution is reasonable.

The physical nature of the solutions to Laplace’s Tidal Equation, including
the characterization of the modes obtained in the asymptotic limit of large
|s|, has been discussed in detail by, for example, Longuet-Higgins (1968), Lee
& Saio (1997) and Townsend (2003a). For |s| > 1 the spectrum of solutions
also include modes with negative L̂2

s, not considered here, which Lee & Saio
identified as oscillatory convective modes, stabilized by rotation.31 The modes
with m = 0 (cf. Fig. 3.41) can essentially be identified as rotationally mod-
ified g modes. For m = 2 (Fig. 3.42) the situation is more complicated. For
positive s the lowest solution tends to L̂2

s = 4 = m2; as noted by Townsend
(2003a) this case requires special treatment, although the result still conforms
to Eq. (3.377) with ζ = −1. This mode is identified as a Kelvin mode. The
branch appearing at negative s can be identified with an r mode, resulting
from the effect of rotation on the toroidal modes which have zero frequency
in the non-rotating case (see the discussion in connection with Eq. (3.144));
these can be regarded as global Rossby waves with frequencies in the rotating
frame, to lowest order, of

ω = − 2mΩ
l(l + 1)

(3.380)

(Papaloizou & Pringle 1978). With increasing |s| this mode takes on the nature
of a rotationally modified g mode. A more extensive discussion of these modes,
and their physical interpretation, is beyond the scope of this book. A detailed
analysis of the possible waves in a rotating system, and how they relate to the
global modes, was provided by Unno et al. (1989).

The confinement of the eigenfunctions for large |s| has important effects
on the observational signature of the modes; these effects obviously also de-
pend strongly on the orientation of the rotation axis relative to the plane
of the sky. Lee & Saio (1990) considered the effect on line-profile variations,
noting that prograde modes were enhanced while retrograde modes became
almost invisible. Townsend (2003b) presented results for the light variations

31 It is interesting to note that such modes were considered as possible sources of
the β Cep pulsations (e.g., Osaki 1974; Lee & Saio 1986) before the revision of
the opacity showed that the modes were excited by the opacity mechanism.
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for low-frequency modes in rotating stars. He noted that the confinement very
strongly reduces the observed amplitude for stars that are not viewed from
high latitudes (i.e., nearly pole-on), possibly explaining the lack of observa-
tions of low-frequency photometric pulsations in rapidly rotating stars. He
furthermore pointed out that amplitude ratios between observations in dif-
ferent wavelength bands would depend on the orientation of the star and the
azimuthal order of the mode, thus greatly complicating photometric mode
identification (see Section 6.1). Dziembowski et al. (2007) modelled a rapidly
rotating Be star observed by Walker et al. (2005), attempting to identify the
nature of the very large number of modes detected, and noting that many
modes would be unobservable for geometrical reasons as a result of the con-
finement of the eigenfunctions.

3.8.6 Higher-Order Rotational Effects

In rapidly rotating stars terms quadratic and of higher order in Ω can no
longer be ignored. This also includes the distortion of the star by rotation
(see Section 3.2.4.2). For moderate rotation a perturbation expansion includ-
ing terms of order Ω2 can be carried out. This was initially discussed by Simon
(1969) and further developed, e.g., by Chlebowski (1978), Saio (1981), Gough
& Thompson (1990) and Dziembowski & Goode (1992).32 The treatment was
extended to third order in Ω by Soufi et al. (1998; see also Karami 2008).
An interesting analysis to O(Ω2) was carried out by Sobouti (1980), consid-
ering also an expansion around the convectively neutral state. Christensen-
Dalsgaard & Dziembowski (2000) summarized the main aspects of the pertur-
bation treatment of rapid rotation; the present section draws heavily on their
presentation. For simplicity we assume uniform rotation in the following.

As discussed in Section 3.2.4.2 the spherically symmetric component of the
centrifugal force (cf. Eq. (3.105)) is included in the normal modelling of stellar
evolution; thus this effect is assumed to be included in the equilibrium model
used for the oscillation calculations. However, the distortion of the star must
be taken into account in the analysis to obtain the rotational perturbation
of the frequencies; it can be represented as an expansion in Legendre polyno-
mials, often restricted to second order, as P2(cos θ). The pulsation equations
now contain terms of order Ω2, neglected in Eq. (3.338). Also, in the analysis
we must take into account the perturbations to O(Ω) in the eigenfunctions.33

These also include toroidal components (cf. Eq. (3.144)); for a given mode
(l,m) toroidal components (l′,m) with l′ = l±1 must be included. The result
of the analysis of Gough & Thompson (1990) can be written as

32 See also Martens & Smeyers (1982) and Smeyers & Martens (1983), who in ad-
dition included tidal effects in a binary system.

33 Owing to the variational property of the equations these cause perturbations to
the frequency of order Ω2.
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ωnlm = ωnl +m(1 − Cnl)Ω +
(
Ω2

ωnl

)
(Δ(1)

nl +m2Δ
(2)
nl )

+
(
Ω2R3

GM

)
ωnlΔ

(3)
nl Q2lm (3.381)

(see also Kjeldsen et al. 1998), where

Q2lm =

∫ 1

−1

P2(x)Pm
l (x)2dx

∫ 1

−1

Pm
l (x)2dx

=
l(l + 1) − 3m2

(2l− 1)(2l + 3)
. (3.382)

In Eq. (3.381) ωnl is the frequency of the spherically symmetric model (which
already includes the spherically symmetric component of the effect of rota-
tion). The second term on the right-hand side is the term linear in Ω, already
encountered above, and given by the Ledoux constant Cnl (cf. Eq. (3.361)).
The remaining terms contain the various contributions quadratic in Ω. The
m-independent term in Δ

(1)
nl arises from the toroidal component of the per-

turbed eigenfunction, induced by the Coriolis force. This also causes a fre-
quency shift for radial modes, with Δ

(1)
n0 = 4/3, independent of n, while the

remaining contributions are zero for l = 0; hence34

ωn00 = ωn0 +
4Ω2

3ωn0
. (3.383)

The term in Δ
(2)
nl includes the O(Ω2) contribution in the equations of motion,

as well as from the spheroidal perturbation to the eigenfunctions from the
Coriolis force. Finally, the term in Δ

(3)
nl results from the non-spherical distor-

tion of the equilibrium model. The explicit expressions for these coefficients
can be obtained, with considerable effort, from Gough & Thompson (1990).

For high-order, low-degree acoustic modes simple approximations are ob-
tained for Δ(1)

nl and Δ
(2)
nl :

Δ
(1)
nl � 2

2l + 1

[
(l + 1)(l + 2)

2l + 3
+
l(l − 1)
(2l− 1)

]
, (3.384)

Δ
(2)
nl � 4

(2l− 1)(2l + 3)
. (3.385)

Also, Δ(3)
nl can be approximated by

Δ
(3)
nl � 4

3

∫ R

0

(r/R)3dr/c
∫ R

0

dr/c
. (3.386)

34 Note that in the corresponding Eq. (138) of Christensen-Dalsgaard & Dziem-
bowski (2000) ω is mistakenly missing in the denominator.
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Fig. 3.44. Coefficients Δ
(1)
nl , Δ

(2)
nl and Δ

(3)
nl for acoustic modes in a 2M� star

of age 4×108 yr. Continues, dashed and dot-dashed lines show results for l = 1,
2 and 3, respectively. The heavy curves are the numerical results and the thin
horizontal lines are the asymptotic approximations (cf. Eqs (3.384)–(3.386)).
Based on software developed by Burke & Thompson (in preparation).

For a centrally condensed star, and approximating the outer layers by a poly-
trope, c2 ∝ R/r − 1 in the outer parts of the star (cf. Eq. (E.54)) which
dominate the integrals in Eq. (3.386). Then the integrals can be evaluated an-
alytically, to yield Δ

(3)
nl � 35/48 (Burke & Thompson, in preparation).35 The

computed and asymptotic coefficients are compared in Fig. 3.44, for a 2 M�

35 This result was quoted as Δ
(3)
nl � 2/3 by Kjeldsen et al. (1998) and Δ

(3)
nl � 3/4

by Christensen-Dalsgaard & Dziembowski (2000).
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Fig. 3.45. Effect of rotation on the n = 1, l = 0 and 1 modes of a 2 M�
star of age 4 × 108 yr. Here ω(0) indicates the frequencies of a non-rotating
star with the same mass and effective temperature; ω(rot) corresponds to the
unperturbed frequencies of the rotating model and the remaining bars show
the effect of successively including the terms in Eq. (3.381). Note in particular

the importance of the term in Δ
(3)
nl for l = 1. Adapted from Kjeldsen et al.

(1998).

model. It is evident that in the region corresponding to solar-like oscillations
the asymptotic expressions match the computed values quite well.

In the opposite case, for high-order g modes, Chlebowski (1978) showed
that

ωnlm � ωnl +m
(
1 − L−2

)
Ω − m2Ω2

ωnl

4L2(2L2 − 3) − 9
2L4(4L2 − 3)

(3.387)

(see also Dziembowski & Goode 1992), where, as before, L2 = l(l+ 1) and we
used Cnl � L−2, as implied by Eq. (3.359).

Figure 3.45 illustrates the frequency pattern resulting from Eq. (3.381) for
a relatively rapidly rotating star, assuming uniform rotation, and comparing
it with a star of the same mass, composition and effective temperature. The
change in the unperturbed frequency corresponds to the reduction in luminos-
ity relative to the non-rotating star of 0.8% and the corresponding reduction
in the radius. It should be noted that the rotational perturbation now also
shifts the frequencies for modes with m = 0, including radial modes, and the
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pattern of splitting is no longer uniform, even for constant rotation or rotation
that depends only on r.

The expansion was taken to third order in Ω by Soufi et al. (1998). They
also emphasized the importance of the case of near-degeneracy where the
perturbation method discussed so far cannot be applied. This occurs when the
difference between the frequencies of two modes, 1 and 2, say, is comparable
with, or less than, the rotational splitting and the selection rules l1 = l2 or
l1 = l2±2 are satisfied; the latter case, in particular, often arises as a result of
the asymptotic properties of high-order acoustic modes, as illustrated by the
small frequency separation (cf. Eq. (3.221)). The perturbation treatment then
has to involve both modes simultaneously (e.g., Goupil et al. 2004). This may
result in a substantial shift of the frequencies of the modes involved, relative to
the values obtained from Eq. (3.381). This is illustrated for (l1, l2) = (0, 2) in
Fig. 3.46, which also shows the effect of including in addition the coupling to
modes of degree 4. As noted by Goupil et al. this also may have a substantial
effect on the average small separation, thus potentially affecting the use of
the small separation as a diagnostics of conditions in the stellar core, and
of the stellar age. Goupil et al. presented a procedure based on the detailed
properties of the interaction between the modes which allows this effect to be
minimized. However, it must certainly be kept in mind in analysis of data for
stars with moderately fast rotation.

For sufficiently rapid rotation the expansion in terms of Ω/ω clearly breaks
down; also, as discussed in Section 3.2.4.2, a fully two-dimensional treatment
of stellar structure is required. Already Perdang (1986) noted that the distor-
tion of the star might result in chaotic behaviour of the oscillations, analogous
to quantum chaos.36 Since the star is still assumed to have rotational symme-
try, the dependence of the oscillations on φ can be separated as exp(imφ), as
in the case of slow rotation. However, in general no such separation is possible
in latitude, and the amplitude as a function of (r, θ) satisfies a set of partial
differential equations which must be solved numerically. A simplified case was
considered by Papaloizou & Pringle (1980). Pulsation calculations in the fully
two-dimensional case were treated by, amongst others, Dintrans & Rieutord
(2000), Lignières et al. (2006) and Reese et al. (2006), for polytropic models. A
very careful calculation was carried out by Reese et al. (2006) who developed
the full numerical formalism in the case of polytropic models, and tested the
results for internal consistency as well as by comparing with previous com-
putations. They proceeded to make extensive calculations for a polytrope of
index 3, as a function of Ω̃ = (R3

eq/GM)1/2Ω, Req being the equatorial radius,
defined such that Ω̃ = 1 represents the Keplerian limit where matter would
be unbound at the equator. At low values of Ω̃ the frequency pattern dis-
cussed above, obtained from the perturbation expansion in Ω, was recovered.

36 Such behaviour might also result from other types of distortion of the star; an
interesting example is the δ Sct star XX Pyx which appears to show a substantial
tidal deformation (Aerts et al. 2002b; see also Section 2.8.1).
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Fig. 3.46. Effects of rotation, as seen from an inertial frame, in a case of
near-degeneracy, in a slightly evolved model of mass 1.8 M� and effective tem-
perature 7516 K. The star is uniformly rotating with a surface velocity of
92 km s−1. The dot-dashed lines show modes with degree l = 2 and the dotted
line is for l = 0. Going from left to right increasingly complete effects of ro-
tation are included, starting with a non-rotating model of the same mass and
effective temperature (ω

(0)
0 ). Next, ω

(rot)
0 illustrates the effect of the change

in the spherically symmetric equilibrium structure, ω
(rot)
1 corresponds to the

first-order rotational splitting, and ω
(rot)
2,nodeg corresponds to the full inclusion of

the effects in Eq. (3.381). Finally, ω
(rot)
2,deg2 shows the inclusion of the coupling

between the nearly degenerate modes of degree l = 0 and 2, and ω
(rot)
2,deg4 in

addition includes the coupling to the nearby modes with l = 4. Adapted from
Christensen-Dalsgaard & Dziembowski (2000).

However, for a model roughly representing a δ Sct star the results showed that
the third-order perturbation expansion fails to match the expected frequency
precision of, for example, the CoRoT data of around 0.1μHz at a value of
Ω̃ � 0.15, corresponding in the model considered to a rotational velocity of
around 50 km s−1.37 For the acoustic modes considered, the dominant effects
come from the centrifugal terms. It is evident that a non-perturbative treat-

37 Somewhat similar results were obtained in preliminary calculations of Lovekin
& Deupree (2008), although their conclusions were based on rather less strin-
gent requirements on the frequency precision. Lovekin et al. (2009) made a more
extensive analysis, considering also conservative differential rotation.
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ment of rotation will be essential for many of the asteroseismically interesting
cases of pulsating stars.

As already noted above the oscillation spectrum becomes increasingly com-
plex as the angular velocity increases, making very difficult the identification
of the modes. This obviously also affects the asymptotic behaviour of high-
order, low-degree acoustic modes. However, Lignières et al. (2006) found an
asymptotic behaviour of the results of calculations including only the centrifu-
gal effects which might replace the non-rotating expression in the analysis of
the observations. This was further analysed by Reese et al. (2008) who found
an empirical formula for the frequencies which provided a good approximation
to the computed frequencies for the full calculation for the polytropic model
of Reese et al. (2006). This has the form, as seen from an inertial frame,

ωnlm � Δ̃nñ + Δ̃l l̃ + Δ̃m|m̃| +mΩ + α̃ , (3.388)

where the new quantum numbers ñ and l̃ are related to (n, l) in the corre-
sponding non-rotating case by ñ = 2n + ι, l̃ = (l − |m| − ι)/2, where ι is 0
or 1 for even or odd l+m, respectively. The coefficients in Eq. (3.388) can be
obtained from fitting to the numerically computed frequencies and could in
principle also be recovered from observed frequencies.

The eigenfunctions are also distorted by the rapid rotation. This is illus-
trated in Fig. 3.47. As in the case discussed above for low-frequency modes
affected by slow rotation (cf. Fig. 3.43) the eigenfunction is concentrated to-
wards the equator, although in the present case this is predominantly caused
by centrifugal effects (Lignières et al. 2006). This class of modes, originat-
ing from the modes in the non-rotating case, may be termed island modes.
However, with rapid rotation additional classes of modes develop: the so-
called whispering gallery modes and chaotic modes; examples are illustrated
in Fig. 3.48. A very illustrative analysis of these three classes of modes in
terms of acoustic rays was presented by Lignières & Georgeot (2008, 2009).
For the island modes in the axisymmetric (m = 0) case they recovered the
approximate expression, Eq. (3.388), and related the coefficients Δ̃n and Δ̃l

to the structure of the star. It should be noted that the whispering gallery
and chaotic modes have rapidly varying structure on the stellar surface, as
do high-degree modes in the non-rotating case, and hence are unlikely to be
observed in stellar observations without spatial resolution.

Preliminary results for rapidly rotating realistic models, computed by Mac-
Gregor et al. (2007) with the so-called self-consistent field method, were pre-
sented by Reese et al. (2009a,b). They are qualitatively similar to the results
for the polytropic models although, interestingly, it appears that the island
modes at low m disappear in a model with highly differential rotation.

3.8.7 Effect of Rotation on the Excitation of Oscillations

Even slow rotation affects the eigenfunctions and hence potentially the stabil-
ity of the modes. Hansen et al. (1978) carried out a quasi-adiabatic analysis
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Fig. 3.47. So-called island modes, corresponding to a mode of degree l = 1,
m = 0 in the non-rotating case in polytropic models of index 3. From top
to bottom the dimensionless angular velocity is Ω̃ = 0.18596, 0.58946 and
0.83662. Figure courtesy of Daniel Reese; see Reese et al. (2009a,b).
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Fig. 3.48. So-called whispering-gallery (top) and chaotic (bottom) modes, in
a polytropic model of index 3 rotating with Ω̃ = 0.58946. Figure courtesy of
Daniel Reese; see Reese et al. (2009a,b).

for low-order, low-degree modes in a white dwarf and a massive main-sequence
model and found a correction to ωi, proportional to 2mΩ/ω, such that pro-
grade modes, with m > 0, were made more unstable by rotation, with the
opposite effect for retrograde modes. This tendency was essentially confirmed
in fully nonadiabatic calculations by Carroll & Hansen (1982).

The formalism for treating second-order effects of rotation in nonadiabatic
oscillation calculations was developed by Lee & Baraffe (1995). Lee (1998)
considered the effect of rapid rotation, to O(Ω2), on the instability of modes
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in B stars. For quasi-radial modes38 the effect was small. However, for ax-
isymmetric quasi-quadrupole modes he found stabilization of acoustic modes
at large Ω̃; this was caused by a shift towards the surface of the transition
point to strongly nonadiabatic oscillations (see Section 3.7.2) resulting from
the distortion of the star in the equatorial region. Since the quasi-quadrupolar
modes, unlike the quasi-radial modes, are concentrated towards the equator
this led to a significant damping region outside the dominant driving region
coming from the iron bump.

The effect of rotation on the instability of g modes in massive stars was
investigated by Townsend (2005a). For most modes he found a shift of the in-
stability region towards somewhat higher effective temperature with increas-
ing angular velocity; for sectoral prograde modes the effect was small and
generally in the opposite direction. He identified this as being predominantly
related to the change in periods caused by rotation and hence the shift in the
nonadiabatic transition region. Townsend (2005b) studied retrograde modes
with properties mixed between rotationally modified g modes39 and Rossby
modes, considering rapidly rotating stars in the traditional approximation. In
late B and early A main-sequence stars he found instability resulting from
the κ mechanism in the iron bump. The instability properties showed little
relation to the SPB or β Cep stars but he pointed out that this might be the
mechanism responsible for the Maia stars (see also Section 2.3.6).

The detection of a dense spectrum of low-frequency modes in the rapidly
rotating Be star HD 163868 by the MOST satellite (see Section 2.3.8) by
Walker et al. (2005b) led to increased interest in the effect of rotation on
the mode excitation. Using the techniques of Lee & Baraffe (1995), Walker et
al. found instability of a large number of prograde g modes, with frequencies
in the rotating frame much lower than the rotation frequency; the excitation
was due to the κ mechanism operating in the iron-group opacity bump. As
observed in the inertial frame, this corresponds to groups of excited modes,
of a width corresponding to the frequency range in the co-rotating frame of
the unstable modes, and separated essentially by the rotation frequency. The
comparison between this predicted pattern and the observed frequencies was
illustrated in Fig. 2.24. The theoretical analysis also found instability of high-
order retrograde r modes, with frequency close to the rotation frequency in
the corotating frame and hence at very low frequency in the inertial frames.
As shown in Fig. 2.24 these can to some extent, although not fully, account
for the lowest-frequency observed modes.

A somewhat different interpretation of the observations was provided by
Dziembowski et al. (2007) who took careful account of the likely visibility of
the computed modes and did not in all cases agree with Walker et al. (2005b)
on the stability or instability of the modes; however, the general interpretation
of the observations in terms of clusters of excited modes roughly separated

38 i.e., modes corresponding to radial modes in the non-rotating case.
39 which he termed Poincaré modes.
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in the inertial frame by the rotation frequency was the same. The differences
in the results on mode excitation can probably be traced to the different ap-
proximations used in the pulsation calculations: Walker et al. (2005b) used
a truncated expansion of the eigenfunctions, while Dziembowski et al. (2007)
used the traditional approximation. Saio et al. (2007) carried out an analysis
similar to Walker et al. (2005b) and obtained similar results; they also com-
pared with a treatment using the traditional approximation and found that
this tended to overestimate the instability of the modes, possibly as a result
of the neglect of mode coupling, as discussed earlier by Lee (2001).



4

Observational Techniques for Asteroseismology

The fundamental data of asteroseismology are pulsation frequencies and mode
identifications (see Chapters 5, 6, and 7). There are two main observational
techniques for obtaining these data: 1) photometric observations of variabil-
ity in the stellar flux, and 2) spectroscopic observations of velocity variations
caused by the motion of surface elements. Of course, the observations are
always the sum of the effects of all of the pulsation modes simultaneously,
hence the need for frequency analysis techniques (explained in detail in Chap-
ter 5) to extract the individual frequencies of the pulsation modes. For very
large amplitude pulsating stars it is becoming possible to use interferometry
to study the radial cross-section changes in a few stars, but this technique is
in its infancy and will not be discussed further here. The relationship between
asteroseismology and interferometry – primarily using the latter to provide
precise fundamental stellar data – is discussed in detail in Cunha et al. (2007).

We discuss the two techniques of photometry and spectroscopy sep-
arately. They require different instrumentation and observing conditions,
sources of noise are different for them, and they sample the physics of
the pulsation differently. For example, in the Sun – and by implication in
all solar-like stars – granulation generates much higher noise in photomet-
ric measurements than in spectroscopic measurements at the frequencies
of interest, as is illustrated in Fig. 4.1 with observations from the GOLF
(Global Oscillations at Low Frequencies) and VIRGO (Variability of Solar
Irradiance and Gravity Oscillations) instruments onboard the SOHO (Solar
and Heliospheric Observatory) satellite.

Photometry is primarily sensitive to temperature variations caused by pul-
sation, and generally less so to the apparent stellar cross-section variations,
except for very large amplitude stars such as Cepheids and Mira variables;
as those tend to be singly periodic, they are, in any case, less interesting for
asteroseismology. Spectroscopy is most sensitive to velocity variations with
some contribution from temperature variations.

While the pulsation amplitudes contain rich information about the physics
of the driving, growth, damping and decay of pulsation modes, we cannot yet

C. Aerts et al., Asteroseismology, Astronomy and Astrophysics Library, 295
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Fig. 4.1. Frequency spectra of the Sun derived from the VIRGO (photometry)
and GOLF (spectroscopy) experiments onboard SOHO. Figure courtesy of Hans
Kjeldsen.

put observed amplitudes to much use because our theoretical understanding of
those processes is not yet advanced enough to take advantage of the observa-
tions. Thus for both photometry and spectroscopy we do not attempt rigorous
definitions of exactly what is being measured photometrically or spectroscop-
ically. At the precision of photometric observations from space (a few parts
per million in intensity), and of ground-based high-resolution spectroscopy
(as little as a few cm s−1 in radial velocity), the definitions of what is meant
by the terms “intensity variation” and “radial velocity variation” are com-
plex. See Lindegren & Dravins (2003), for example, for a discussion of the
concept of “radial velocity” for precisions better than 1 m s−1 (we return to
this point again in Section 4.4.4 below). For our purposes here, we will think
of the observations as measuring luminosity variability and radial velocity,
respectively.

There is an over-riding principle in observational astronomy, and nowhere
is it more relevant than in asteroseismology. Let us call it the Tychonic prin-
ciple. Tycho Brahe was driven to measure the positions of stars and planets
more precisely than any who had come before him. This drive may have been
based more on a “gut feeling” than on an intellectual understanding that
higher precision would lead to fundamentally new understanding of the uni-
verse, but he was right. The Tychonic principle can be summarised as: If you
observe anything more carefully, you may make discoveries, and if you improve
your precision by orders of magnitude, then new discoveries are guaranteed.
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We see this clearly in asteroseismology where in the lifetimes of the authors of
this book the precision of astronomical photometry has gone from ∼0.01 mag
down to a few μmag, and that of radial velocity determination from ∼1 km s−1

down to 10s of cm s−1 – improvements by 4 orders of magnitude! It follows
from this that it is imperative that the observer makes every effort to mini-
mize error, to increase precision. There is no such thing as “good enough” in
observational astronomy; only the best is acceptable!

It is the need for higher and higher precision in both photometry and
spectroscopy that drives instrumental development in both asteroseismol-
ogy and planet-hunting. For planet-hunting, high precision in photometry
is needed to detect and study transiting planets and gravitationally-lensed
planets, and high precision is needed in radial velocity to constrain the orbits,
hence masses, of extra-solar planets. In asteroseismology higher precision in
both photometry and spectroscopy leads to larger sets of frequencies. Other
criteria that we will discuss determine which method is best for particular
targets or classes of targets. Asteroseismology and planet-hunting are thus in-
timately connected in their instrumental needs so that space missions such as
MOST, CoRoT and Kepler provide data for both fields, as will planned high-
duty-cycle ground-based projects, such as SONG (Stellar Oscillations Network
Group) and SIAMOIS (Sismomètre Interférentiel A Mesurer les Oscillations
des Intérieurs Stellaires; see Chapter 8).

It is important here to make clear the distinction between precision and
accuracy in the way we use these two terms, since we have repeatedly em-
phasized the need for precision. Accuracy is absolute; it refers to how well
a value may be measured relative to the true value. Precision refers to how
well a number can be measured relative to other measurements of the same
value, irrespective of the systematic uncertainty (or bias) of the value. Thus,
in photometry accurate measurements give the apparent magnitude or appar-
ent luminosity of a star; precise measurements only give the changes in that
value. In spectroscopy accurate measurements give the radial velocity of a
star; precise measurements only give changes in that value. Accuracy requires
the zero point and amplitude of measurements of a variation to be determined,
whereas precision only requires the amplitude to be estimated. Examples we
give below will illustrate this difference more concretely.

4.1 Duty Cycle

One of the most important criteria for observational asteroseismology is the
duty cycle. This is a measure of the fraction of time that is spent success-
fully observing the variability of the target star. The combination of the
day-night cycle, weather, telescope scheduling, instrumental reliability, as-
tronomers’ work schedules, travel funding and other factors makes it extremely
difficult to obtain continuous data sets for extended periods from the ground;
from space it is much easier, but the costs are vastly greater. Even small
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time gaps in data can cause unacceptable confusion in the determination of
the pulsations frequencies, as we discuss in more detail in Chapter 5. The
observational goal is 100% duty cycles. The reality is that for ground-based
observing consortia – e.g., such as the Whole Earth Telescope1 (WET) – duty
cycles of 30 − 70% are typical, and that still leaves confusion in frequency
determination, although it is a great improvement on single site data which
can only reach duty cycles of about 40% for short time spans under ideal
conditions.

The future of asteroseismology lies in space missions – such as MOST,
CoRoT and Kepler which are discussed in Chapter 8 – and in ground-based
networks and polar sites capable of obtaining duty cycles greater than 70% –
such as the proposed SONG2 (Grundahl et al. 2006) and SIAMOIS (Mosser
et al. 2007) projects, also discussed in Chapter 8. Data sets with duty cycles
approaching 100% will dominate theoretical studies, relegating lower duty
cycle observational studies to the roles of discovery, specialist determination
of particular physical results, and support to provide additional data for the
high duty cycle data sets.

4.2 Time

Time series are the observations that allow us to derive asteroseismic frequen-
cies, the principal data of asteroseismology. Obviously, observations must be
made with times known to high precision, and for long data sets to high accu-
racy. Just as radial velocity becomes difficult to define for the highest precision
measurements, the definition of the measurement of time is complex. We refer
the reader to McCarthy (2005) for an introduction to those complexities, as
well as to the United States Naval Observatory (USNO) Website3. For aster-
oseismology we normally rely on Coordinated Universal Time (UTC) which
depends on the Earth’s rotation. We also remove the effects of the Earth’s
motion about the Sun, or about the solar system barycentre, depending on
the precision desired, and we convert all times to one form or another of Julian
Date, which we discuss further below.

Coordinated Universal Time is not a uniform time scale. The length of
the day has an annual variation of about a millisecond, and has long term
drifts caused primarily by tidal interaction of the Earth and Moon. As a
consequence, to keep UTC in phase with atomic time, “leap seconds” are
intercalated as needed. For many asteroseismic studies UTC is acceptable,
even for studies over many years for which there have been leap seconds
introduced into UTC. For the most precise studies, however, a constant time
scale is needed and leap seconds must be removed from the time scale to give

1 http://www.physics.udel.edu/darc/wet; http://wet.physics.iastate.edu.
2 astro.phys.au.dk/SONG.
3 tycho.usno.navy.mil/systime.html.
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“ephemeris time”. See the USNO website for a list of leap seconds that have
been introduced into the calendar.

The best choice of time scale for asteroseismology is Barycentric Julian
Ephemeris Date (BJED). This is the Julian Date corrected to the solar sys-
tem barycentre to remove the effects of the Earth’s orbital motion on the
times of observations (giving BJD; see Stumpff 1980), and with leap seconds
removed from the time scale. Another choice that is often used in asteroseis-
mology is Heliocentric Julian Date (HJD) where are observation times are
corrected to the solar centre, rather than the solar system barycentre. The
major difference between HJD and BJD arises from Jupiter’s orbit which pro-
duces an oscillation in the HJD time scale with a period of 12 yr (Jupiter’s
orbital period) and an amplitude of about 2 s (the distance in light seconds of
the Jupiter-Sun barycentre from the solar centre). Of course, the other bodies
of the solar system must be included for highest precision. For the ultimate
case of pulsar timing, only BJED is good enough; for other applications, less
precise scales may suffice.

The very first claim of a discovery of an exoplanet was made by Bailes et al.
(1991) around the pulsar PSR 1829−10; the planet had a period of 6 months.
That was later retracted by Lyne & Bailes (1992) who found that a small
correction to the ellipticity of the Earth’s orbit needed in their calculation
of BJD, combined with an imprecise position of the pulsar, resulted in a 6-
month periodicity in their timings. They did discover a planet, but it was
the Earth – which had already been discovered by other means. This was a
subtle mistake from which we can learn two lessons: The first is the Tychonic
lesson that only the best is good enough for the highest precision. The second
is that a discovery of any period that is in the instrumental system should
always be examined with the most critical eye; in the case of the purported
pulsar planet, the instrumental system included the observational platform –
the Earth. The orbital periods of the Earth and Moon, the rotational period
of the Earth, orbital periods of asteroseismic satellites are all periods to be
wary of if they appear in stellar data.

Although we have emphasized the need for the highest precision, it is
acceptable for short data sets from single sites to use HJD, rather than BJD
or BJED. But for multi-site campaigns, and for analysis of data spanning
years, BJD or BJED should be used.

There are two ways to think about the effect of the Earth’s motion on
asteroseismic observations: Doppler shift or light travel time. Any observed
frequency is Doppler shifted by the radial velocity of the Earth in the direc-
tion of the target star, and that includes the pulsation frequencies of a star.
This effect could be removed by correcting the Doppler shift of the pulsation
frequencies, but this is not normally done. Instead, we correct the times of
the observations to the solar system barycentre and this removes the varying
times of arrival of the pulsation pulse as the Earth orbits the barycentre. This
is all that needs to be done for photometric observations, but for spectroscopic
observations there are two corrections to be made. The first is the removal of



300 4 Observational Techniques

the light travel time effect which removes the Doppler shift of the pulsation
frequencies caused by the Earth’s motion; this is done by correcting the times
of the observations. The second is the correction of measured radial velocities
for the Doppler shift of the Earth’s motion. These corrections are not the
same. The radial velocities are affected by Doppler shifts to the frequencies
of the incoming electromagnetic radiation; the light travel time correction re-
moves the Doppler shift to the pulsation frequencies. Thus for spectroscopic
observations both corrections need to be applied, one correction to the times,
the other to the measured radial velocities.

It is interesting to note that changes in light travel time for pulsation fre-
quencies also occur for the target star itself when it is part of a binary system,
including cases where the secondary object is a planet. That is how Wolszczan
& Frail (1992) discovered the first extrasolar planets by noting the variation in
the precise times of arrival of pulses from PSR 1257+12. This timing method
has recently been used again by the WET consortium to discover a planet
orbiting the sdBV star V391 Peg that has survived its parent star’s red giant
stage, giving a glimpse of the Earth’s possible future in ∼5 Gyr (Silvotti et al.
2007).

Julian Date is defined to start at midnight UT (Universal Time). This
was originally for the convenience of English astronomers working nights near
longitude zero, so that the astronomical date did not change during the night.
This zero point is not so convenient at other longitudes, and is irrelevant for
astronomical observations that now span the globe and are obtained in space.
Joseph Justus Scaliger chose to start his Julian Date scale in 4713 BCE for the
arcane reason of the coincidence of the zero points of the solar 28-yr calendar
cycle, the Metonic 19-yr cycle and the 15-yr cycle of the Roman indiction
(introduced by Emperor Constantine for tax reasons – the historical baggage
we astronomers get saddled with!).

This distant zero point of the Julian Date scale obviates the need for
negative times of observations, but it also means that the Julian Date is
a big number nowadays. For example, 00:00:00 UT on 1 January 2008 was
JD2454466.500000, where we have given 6 decimal precision to specify that
time to less than 0.1 s, as is needed in asteroseismic observations. The un-
wieldy length of the JDs, as well as a desire by geologists and others to have
a time scale starting at midnight, instead of noon as the astronomers chose,
led to Modified Julian Date (MJD), defined as MJD = JD − 240 0000.5. Thus
JD2454466.500000 = MJD54466.000000. While this conveniently shortens the
numbers, it is dangerous territory. The possibility of confusion, of the loss of
a day or a half-day, in the determination of JD and MJD hangs over astero-
seismic time determination. Great care needs to be taken to avoid mistakes.
Some pipelines work in MJD – that of the VLT UVES (Ultraviolet-Visual
Echelle Spectrograph) spectrograph, for example. Almost all asteroseismology
has been done in HJD, BJD and BJED. Awareness of the differences of these
time scales is needed to avoid mistakes in times of observations, especially
when combining data from different sources, such as in multi-site campaigns
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and in data mining of public archives. This latter certainly has a big role to
play in the future of asteroseismology.

While major observatories usually have reliable, accurate time sources,
much asteroseismology using photometric data is still done with small tele-
scopes where the time source may not be so reliable. Amateur astronomers
now have CCDs that are capable of producing much useful data for aster-
oseismology, and many observatories with smaller telescopes participate in
multi-site campaigns. It is imperative that clocks used to stamp times on raw
data are checked before each observing run (on each night) against a reliable
time standard. GPS (Global Positioning System) clocks are cheap and often
used, but care still must be taken to synchronise the clock recording the times
of observations. Computer clocks generally have very low accuracy and should
not be used for asteroseismic observations. If there is no other choice than a
computer clock, then checks against time standards should be done hourly.
Mistakes in observatory clocks are common. The Whole Earth Telescope con-
sortium has long experience with multi-site campaigns that put together ex-
tensive photometric data sets from many observatories. For their observing
campaigns a headquarters runs 24 hours a day throughout the observing runs.
Those staffing the headquarters telephone all observers at the start of each
night’s observing to discuss observational strategy, the results from the previ-
ous night’s observations and any problems that may have arisen, and to check
the observatory clock. This is done every night for every observer; experience
shows that this is necessary. All asteroseismic observing runs should emulate
this policy.

Beware of time traps! Mistakes are easy to make.

4.3 Photometry

Stellar photometry for asteroseismology has as its goal the precise measure-
ment of stellar intensity for the purpose of determining pulsation frequencies.
It also is useful in mode identification, as discussed in Chapter 6. Note the
use of the word “precise” here, not “accurate”. It is still the case that the
accuracy of stellar apparent magnitude determination is generally no better
than a few mmag, while ground-based photometry has reached precisions of
10s of μmag, and space photometric missions are capable of μmag precision.
Thus while we may only know the mean magnitude of a target star to a few
mmag accuracy, we may determine the amplitudes of the pulsation variations
about that mean to precisions 1000 times better. The more precisely we can
determine pulsation amplitude, the more frequencies we can determine, and
– as we said at the start of this chapter – they are fundamental data for
asteroseismic inference of stellar structure.

Stellar photometry has used a variety of detectors over the last few cen-
turies. At first, of course, the detector was the human eye, and there is still a
place for this in asteroseismology. The American Association of Variable Star
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Observers (AAVSO4) has coordinated observations by amateur astronomers
since 1911. Many of these observations are now done with CCDs, but his-
torically (and often still) they are visual observations with accuracy of about
0.05 − 0.10 mag. While this is low accuracy for many kinds of pulsating vari-
able stars, it is sufficient for large amplitude variables such as Mira stars.
The data base of the AAVSO is an important resource for many studies. An
example is the measurement of phase lags between infrared light curves ob-
served with satellite data and optical light curves from the AAVSO (Smith et
al. 2006) which lead to conclusions about TiO absorption in the atmospheres
of the stars and suggest that the Mira variables are pulsating in fundamen-
tal modes. Similar comparisons for some semi-regular variables suggest first-
overtone pulsation, so here is a case where photometry using the eye as the
detector is valuable for mode identification in certain pulsating stars.

More precise measurement of stellar brightness was attained from the 19th

century with photographic plates as the photon detector. Then, prior to WWII
photoelectric photometry began in earnest, and following the war was the
dominant instrumental method of measuring stellar brightnesses until CCDs
became ubiquitous in the 1990s. In the 21st century CCD photometry is and
will be almost the only method of measuring stellar brightnesses in the visible
part of the spectrum, so our discussion hereafter is mostly confined to CCD
photometry. Photoelectric photometers do still exist and are used; Kurtz &
Martinez (2000 – see their pages 341 − 345) give an extensive discussion of
pitfalls and sources of error in their use and we refer the reader to that article.

4.3.1 Sources of Error in Photometry

The fundamental limitation in the measurement of stellar brightness is pho-
ton statistics. Photon arrival times and detection are a normally distributed
process, so that the photon statistical error on a measurement goes as

√
N ,

where N is the number of photons detected. The signal-to-noise (S/N) ratio
thus goes as N/

√
N =

√
N , so the longer the integration time, the lower the

error from photon statistics alone. For the most accurate measurements of a
star’s mean magnitude, photon statistical error can be overcome by a suffi-
ciently long integration time; in that case, other sources of error dominate.

For asteroseismology we are measuring time variability of stellar bright-
ness, and for many kinds of asteroseismic targets – such as pulsating white
dwarfs, sdB variables, solar-like oscillators and roAp stars – the integration
time must be short to resolve the time variability. Particularly for the white
dwarfs and sdBVs, many targets are faint enough that photon statistics do
dominate the errors. Since integration times cannot be increased (because of
the need to resolve variations over a short period), the solution to this problem
is to use a larger telescope, if possible. However, even the largest telescopes
still produce asteroseismic data that is limited by photon statistics for fainter
targets of particular interest.
4 http://www.aavso.org.
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For brighter targets where photon statistics are not the limiting factor in
the error budget, there are many other sources of error. The major ones are
variations in apparent intensity of starlight caused by atmospheric effects, vari-
ations caused by instrumental effects, and variations caused by data reduction
and analysis procedures. If possible, these must be controlled and minimized,
and where they are beyond control they must be understood. There are many
examples of discoveries of variability in photometric data where the signal
was not from the star. Here is an example of how even experienced, careful
observers can be trapped into misinterpretation of an observed signal in their
photometric data: In February of 1987 the first naked-eye supernova since
the one seen by Kepler in 1604 appeared in the southern skies. Supernova
1987A was not in the Milky Way Galaxy, but in the Large Magellanic Cloud
which is close enough that at its brightest SN1987A was easily visible to the
naked eye; one of us (DWK) remembers seeing it nightly for weeks following
its appearance from his back garden in Cape Town, in spite of the bright city
lights.

From the month following the discovery of the supernova, a team began
to search for the remnant pulsar that is expected in many core-collapse su-
pernovae. They used the CTIO 4-m telescope and were rewarded in January
1989 with the discovery of a pulsar with an unprecedented high frequency of
1968.629Hz – a period of only 0.5 ms (Kristian et al. 1989). Of course, the
observers were aware of the possibility of an instrumental source for the fre-
quency, so they turned the same telescope and equipment on some brighter
known pulsars and showed that only the frequencies known for those stars
were detected and there was no sign of the new 1969-Hz frequency – proof
that the signal was stellar in origin. Unfortunately, follow-up observations
with the Las Campanas 2.5-m telescope failed to confirm the optical pulsar;
the suggested explanation was that debris from the supernova had hidden it.
While the observational search went on, theoreticians had an enjoyable time
exploring how it could be possible for such a star to exist, and how it could
have such a high rotation frequency. Woosley & Chavalier (1989), for exam-
ple, argued in favour of spin-up from accretion of material falling back onto
the remnant. Many other theoretical papers were published. This was a most
interesting, amazing and important discovery.

Then, two years later, the first author of the observational discovery had
to make a lone-author retraction (Kristian 1991). In attempts to confirm the
pulsar with the same equipment used in the discovery with the CTIO 4-m
telescope, it was discovered that the television guiding system used for the
expected faint signal of the expected SN1987A pulsar had a frequency of
1968.629Hz: the signal was in the equipment, not in the star. This was very
disappointing for the whole astronomical community, and a bit embarrassing
for the observers. What went wrong? When the control test was done on known
pulsars, the television guiding system was turned off because the control stars
were brighter and it was not needed. The observers failed to note that there
was this difference between the discovery observations and the experimental
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controls. This is a subtle observing error; it could happen to you or to us, too.
The lesson that it enforces is: “You can never be too careful”. Do not trust
your equipment; do not trust your observations; do not trust yourself. Always
ask, “What might I have done wrong?” Always look for improvements.

Edwin Hubble famously said: “When a theoretician says something, no
one believes him – except himself. When an observer says something, every-
one believes him – except himself.” The first source of error in photometric
measurements (or any other observations) is observer error; only you can
guard against it.

4.3.1.1 Atmospheric Sources of Error in Photometry: Sky
Transparency Variations and Scintillation

How fortunate we are that the Earth’s atmosphere is stunningly transpar-
ent in the visible part of the electromagnetic spectrum under clear skies. All
planets are not like this, as we can easily see for Venus, or for Saturn’s moon
Titan. Yet there is more gas between you and the top of the atmosphere, than
there is from there to the Big Bang! Would we have developed astronomy on
a cloud-bound planet? This is an interesting question to which the answer
may be “no”. Our experience observing at wavelengths to which the Earth’s
atmosphere is opaque supports this contention. For example, we would not
have discovered γ-ray bursts without observations from space.

Transparency is a technical term that we use to refer to both the amount
of light transmitted from space to the ground through the atmosphere, and
to the steadiness of that transmission. A night referred to as “photometric” is
one where there are no clouds and no strongly variable dust or aerosols (e.g.,
due to humidity, or from volcanoes or forest fires) that cause the transparency
to vary. At some of the best observing sites the transparency is so good that
it is not possible to watch a sunset without pain and possible eye damage.

The corollary to transparency is extinction. This is a measure of the
amount of starlight removed from the light path per unit airmass, where
1 airmass is defined for observations at the zenith. For a plane-parallel ap-
proximation to the Earth’s atmosphere, the airmass for an observation is just
secz, where z is the angular zenith distance. This is a rough, but convenient
measure that is often used for planning photometric observations. For the real
atmosphere with its curvature a polynomial approximation (Hardie 1964) is
usually used:

X = secz−0.0018167( secz−1)−0.002875( secz−1)2−0.0008083( secz−1)3.
(4.1)

This is useful up to zenith angles of 85◦ which is far closer to the horizon than
photometric observations are made, except under special circumstances, such
as an important time-dependent event. Often, just the first two terms of the
relation are sufficient.

Typical extinction coefficients are 0.15 mag/airmass in Johnson V and
0.27 mag/airmass in Johnson B (we discuss the filter systems in Section 4.3.4).
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Thus the amount of starlight removed from the light path by the atmosphere
depends only on the zenith angle of the observations for a photometric night
with perfectly stable transparency. In practice, there is no such night. The
atmospheric extinction is always variable in time, zenith angle and azimuth,
even after mean extinction has been taken into account. The extinction de-
pends on temperature; it depends on humidity; it depends on the dust and
aerosol levels; it varies with zenith angle; it varies with azimuth. And, of
course, it varies with clouds, the bane of photometric observations.

In the absence of clouds on the best photometric nights sky transparency
variations occur on times scales of about 15 min, and longer. They do not
affect time scales shorter than this. On nights with poor conditions this is not
true. Thus photometric observations of stars with pulsation periods shorter
than about 15 min can be made without knowledge of the sky transparency
variations. In practice, the pulsation frequencies are well-separated from the
sky transparency variation frequencies in Fourier space (see Chapter 5). For
pulsating stars with periods longer than about 15 min knowledge of the sky
transparency variations is usually necessary.

The major source of atmospheric noise in photometric observations (after
clouds!) is thus transparency variations, and that can be partially controlled
by observation of non-variable comparison stars. We discuss this further and
give examples below. This is described as “pink” noise, meaning that it is
frequency dependent and has higher amplitude at lower frequencies.

The second major source of atmospheric noise in photometry is scintilla-
tion which is seen by the naked eye as “twinkling” of stars. Scintillation is
caused not by variable extinction, but by variable refraction. The atmosphere
is composed of cells of gas typically 10s of cm in radius with slight variations in
temperature, pressure and humidity between cells, leading to slightly different
refraction of a ray path entering the cell. The light path to the telescope thus
passes through many individual cells, changing direction slightly at each one.
As the cells move with wind conditions, the set of cells along the light path
varies and the amount of light reaching the telescope (or eye) varies. This
leads to the apparent twinkling seen by eye, and it leads to variable inten-
sity in stellar photometric observations. It is a “white” noise source with no
frequency dependence. Hence on a photometric night scintillation is the dom-
inant noise source at frequencies higher than those of the sky transparency
variations, i.e., for periods shorter than about 15 min.

Scintillation is not the same as atmospheric seeing or briefly seeing by
which we mean the size of the point spread function (PSF) of the stellar im-
age, usually characterised by the full-width-at-half-maximum (FWHM) of the
two-dimensional point spread function of the starlight on the instrumental de-
tector. Diffraction at the aperture of the telescope is the ultimate limit to the
stellar PSF; in that limit it is specified by the well-known Rayleigh resolution
of R = 1.22λ

D , where λ is the wavelength of the light, and D is the diameter
of the aperture of the telescope (both in the same units, hence the resolution
is in radians; multiply by 206205 to put into arcseconds). Atmospheric seeing



306 4 Observational Techniques

degrades the stellar image to make it larger than the Rayleigh limit. As an ex-
ample, an 8-m telescope has a Rayleigh resolution of R = 0.′′016 (λ = 5000 Å),
whereas the typical FWHM seeing size of the PSF at good observatories is
0.′′5 to 1′′ under good conditions. While adaptive optics (AO) is now able
to overcome seeing and produce diffraction-limited images using guide stars,
or artificial laser guide stars, this does not solve the independent problem of
scintillation noise in astronomical photometry. Seeing and scintillation are not
well correlated. For example, seeing is dramatically affected by ground-level
humidity, whereas scintillation is strongly dependent on high-level wind speed.

Because the atmospheric cells that produce scintillation are relatively small
– say for argument’s sake ∼20 cm – all but the smallest telescopes look through
multiple independent cells simultaneously. This, too (as for photon statistics)
is a normally distributed noise source, so the scintillation noise goes down as
the square root of the number of scintillation cells in the light path. Since
that goes up with telescope area, it follows that scintillation noise goes down
roughly inversely with telescope aperture. Thus for bright asteroseismic tar-
get stars for which the limiting noise source is scintillation, larger telescope
aperture is needed to reduce noise, even though there is no strong need for
more photons. In practice, scintillation noise drops somewhat more slowly
than 1/aperture of the telescope; see Dravins et al. (1998), and previous pa-
pers in the same series, for a thorough discussion of atmospheric intensity
scintillation.

There are two noticeable visual consequences of scintillation for both
naked-eye observations and for viewing stars through telescope eyepieces. It is
often noted that “stars twinkle; planets do not”. This is because the angular
size of the stars is smaller than the angular size of scintillation cells in the
atmosphere, which are of the order of 1′′ at a height of 20 km for a 10-cm
cell. Thus the starlight passes through only one cell at each height and twin-
kles noticeably. Planets, on the other hand, have angular sizes greater than
1′′; Jupiter, for example has an angular diameter ≥ 16′′. Thus the light from
planets passes through many scintillation cells at each height which averages
the variability and causes the planet to shine with a steadier light than that
of a star. The other noticeable effect is of the image size and stability of a
star seen in a telescope. Small aperture telescopes are of similar size to scin-
tillation cells, hence the starlight passes through few cells at each height and
is not averaged much. The image then appears sharper to the eye, but moves
around rapidly. For larger aperture telescopes the averaging over many cells
makes the image appear steadier, but with a larger PSF. See Young (1971)
for a discussion of seeing and scintillation.

The character of sky transparency noise and scintillation noise can be
seen in the amplitude spectrum in Fig. 4.2 where photometric data obtained
for the roAp star HR 1217 without a comparison star has clear low-frequency
variations with periods longer than 30 min (frequencies below about 0.6 mHz),
and some residual sky transparency variation for periods longer than 15 min
(frequencies below about 1.1 mHz). For higher frequencies the noise is white,
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i.e., flat in the amplitude spectrum, and is caused by scintillation noise for
this bright star. The actual pulsation frequencies are evident near 2.6 mHz.
The scintillation noise is governed by the 1-m aperture of the telescope; a
larger telescope would reduce that and produce a higher S/N ratio roughly
proportional to telescope aperture.

Fig. 4.2. An amplitude spectrum (see Chapter 5 for an explanation of amplitude
spectra) for a photometric time series for the roAp star HR1217 obtained through
a Johnson B filter using 10-s integrations with the South African Astronomical
Observatory 1-m telescope on 10/11 November 1986 (JD2446745); see Kurtz et al.
(1989). Low-frequency sky transparency noise drops to level scintillation noise at
higher frequencies. The actual pulsation frequencies in HR1217 are evident near
2.6 mHz.

4.3.1.2 Instrumental Sources of Noise: Periodic and Random

The most important source of instrumental noise in a photometer is sensi-
tivity variation across the detector. Photometers using photomultiplier tubes
always use a Fabry lens to defocus the starlight onto the detector so that
these sensitivity variations are averaged out. For CCDs defocusing is some-
times used for stars that are so bright that they saturate the central pixels
of the PSF; in this case higher precision is also obtained from the averaging
over more pixels, although the handling of the doughnut-shaped PSF for a
strongly out-of-focus image also brings problems.
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High quality CCDs have sensitivity variations from pixel to pixel of about
1% – vastly higher than the noise level we strive for in asteroseismic observa-
tions. For all uses of CCDs the first level of correction for the pixel to pixel
variation in the detector is the “flat field”. For this a uniform light source
(often the twilight sky) is imaged. Variations in that flat field image are then
known to be caused by pixel to pixel variations in the sensitivity of the CCD
and a correction can be made for this. For imaging purposes and for ob-
servations that are not as demanding as the precise photometry needed for
asteroseismology, this is usually a sufficient correction. For the most precise
photometry, however, autoguiding which can keep a stellar image fixed at the
sub-pixel scale is needed. No telescopes track to this precision – autoguiding is
needed. This is true even for the usual case where the plate scale is such that
the stellar PSF covers many pixels. With the star kept fixed on a particular set
of pixels, pixel-to-pixel sensitivity variations do not contribute to the noise.
Let the star wander on the CCD, however, and such sensitivity variations are
a major contributor to the noise – even after flat-fielding.

We saw at the beginning of this section how an instrumental electronic
signal appeared in the data in the search for a pulsar at the core of SN1987A
and was mistaken for a real stellar signal. This story was told as a warning
about the care that is needed in interpretation of observations. It is also a
warning about periodic instrumental signals appearing in photometric data.
Of course, the test for any periodic instrumental signal is to observe a standard
star that is constant in brightness. At high photometric accuracy it can be
difficult to find constant brightness stars, so it is important to test purported
constant stars against each other, as we discuss further in Section 4.3.2 below.

Other sources of noise for CCDs are dark current, bias and read-out noise.
These all must be dealt with in the data reduction and observing strategy
planned around them. For faint sources, for example, read-out noise may
dictate the binning of pixels before readout for the highest S/N. The CCD
itself collects charge, and the read out of a pixel involves measuring the charge
in the potential well of that pixel. The conversion of that charge to a digital
number for further processing then gives measurements in Analogue-to-Digital
Units, or ADUs. The gain of a CCD is the number of electrons per ADU; for
photon counting this is 1. Typical 16-bit A-to-D converters can handle counts
up to 65 535 ADU which is therefore the saturation level for a particular pixel.
If a star saturates pixels then photometric accuracy will be compromised. The
PSF is then flat for the saturated pixels and information has been lost. Of
course, this must be avoided.

It is standard to de-bias and flat-field observation in the reduction proce-
dure. An important decision to be made in the reduction of photometric data
is whether to use aperture photometry where all light within a selected radius
of the centroid of a stellar image is used to measure the brightness of the star,
or PSF photometry where a PSF is fitted to a bright star in the field-of-view
and then scaled for use in measuring the brightnesses of target stars. This
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decision depends on sky background, stellar brightness and field crowding; it
often has to be made by testing a particular field for the best results.

For a thorough discussion of CCDs, how they work, how data is read out
and reduced, and how these affect the final S/N ratio, see the monograph
“Handbook of CCD astronomy” by Howell (2006). Kurtz & Martinez (2000)
give a long list of other problems that can arise in photoelectric photome-
try, many of which are also relevant to CCD photometry. For troubleshooting
photometry that is of lower precision than expected, this is a starting point in
the search for the source of the problem. For an introduction to CCD photo-
metric data reduction three commonly used reduction packages are dophot
(Schechter et al. 1993), daophot (Stetson 1987) and, for aperture photom-
etry, the Image Reduction and Analysis Facility (IRAF) apphot package5

(Davis 1989).
One source of periodic instrumental signal that appears all-too-often in

photometric data arises from periodic drive error in the telescope. In the
absence of autoguiding any periodic error in the right ascension drive will cause
the image of a star to move back and forth on the detector. Since flat fielding
does not remove all sensitivity variation on a CCD, this then injects a signal
into the photometric time series with the period of the telescope drive – usually
2 sidereal minutes or 4 sidereal minutes (8.36 mHz and 4.18 mHz, respectively).
As these are frequencies in the range of expected pulsation frequencies in
many asteroseismic targets – solar-like oscillators, sdBV stars, pulsating white
dwarfs, roAp stars – the discovery of any frequency near to these should be
examined carefully. Tracking rates are proportional to cos δ, where δ is the
declination of the observations, so tracking error signals, when they do arise,
diminish with increasing declination. Where this problem does exist, as long
as it is not large, frequent autoguiding can eliminate it.

4.3.2 Differential Photometry

Differential photometry is the standard for all photometric asteroseismic ob-
servations. It is always desirable to have constant comparison stars in the same
field of view as a target star. Changes in the brightnesses of the comparison
stars thus give knowledge of sky transparency changes and, for stars that have
small angular separations, even some reduction in scintillation noise. Ideally,
at least two – and preferably more – comparison stars brighter than the target
star should be measured on each CCD frame. Two are necessary to show that
they do not vary with respect to each other, since at high precision many stars
are variable. In fact, at μmag precision there may be no constant stars; this
is still to be determined. Once constancy of the comparison stars has been
proved, the differential measurement consists of subtracting the comparison
star magnitude from that of the target star, or dividing the target star inten-
sity by that of the comparison star. This process, to first order (see below),

5 iraf.noao.edu/iraf/ftp/iraf/docs/apuser.ps.Z.
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removes sky transparency variations and can even be used to correct for ex-
tinction. The reason the comparison stars need to be brighter than the target
star is to keep photon statistical noise in their measurement from increasing
the noise in the final differential magnitude.

In practice, the comparison stars seldom remove all atmospheric effects.
The major reason for this is differential extinction. Observations are over a
limited wavelength range, either because a filter has been purposely chosen,
or because of the wavelength response of the detector. If the target star and
comparison star have different effective temperatures, then the convolution of
the spectral energy distribution with the wavelength response of the detector
plus filter results is slightly different effective wavelengths of the observations.
This, because of the variation of atmospheric extinction with wavelength,
then gives rise to slightly different extinction curves for the target star and
comparison star and a residual signal in their differential magnitudes.

The comparison stars and target stars seldom have the same effective
temperature, therefore do not have the same effective wavelengths and atmo-
spheric extinction. Fig. 4.3 shows an amplitude spectrum for the differential
magnitudes between two comparison stars observed with the ULTRACAM6

photometer in a study of white dwarf pulsation (Kurtz et al. 2008). The low
frequency peak is significant at the 6.5σ level, yet is probably the result of
differential extinction between the two comparison stars. The time span of
the data was 1.82 hr, and the period of the peak is 2.89 hr. If a real varia-
tion in one of the stars were suspected to be present with that period, much
longer data sets covering many cycles would need to be obtained, and more
thorough analysis of the comparison stars would be needed to prove it. The
highest accuracy photometric measurements – ones that remove atmospheric
low frequency peaks such as this one – need detailed knowledge of the fun-
damental parameters of the comparison stars (especially Teff), and excellent
comparison stars in the same field of view as the target star.

Good comparison stars are often a problem. For brighter stars for which
photon statistics do not limit precision, there is seldom a sufficiently bright
comparison star in the field of view. For many photometers the field of view
may be only arcminutes, hence few stars may be present. In fact, frequently
no comparison stars are present and the asteroseismic target star is the only
object in the CCD image. In that case, there are two choices. For stars with
periods long enough to allow it, the telescope can be moved from target star
to nearby comparison stars and back in a continuous cycle over the observing
run. Differential photometry is then still possible, but with loss of observing
time while moving the telescope. Automated photometers can do this auto-
matically; if the observer has to do it, then it is very hard work.

If, however, the period of the asteroseismic target star is too short – for
solar-like oscillators, pulsating white dwarfs, sdBV stars, roAp stars, for ex-
ample – then it is not feasible to cycle from target star to comparison stars

6 http://www.shef.ac.uk/physics/people/vdhillon/ultracam/.
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and back in a time shorter than the pulsation period. In that case, we use
what is known as high speed photometry.

Fig. 4.3. An amplitude spectrum (see Chapter 5 for explanation of amplitude spec-
tra) for a photometric time series for the differential light curve for two supposedly
constant comparison stars. The low frequency peak at 0.096 mHz (P = 2.89 hr) is
significant at the 6.5σ level. It is likely to be caused by differential extinction, rather
than to be a real variation in one of the stars.

4.3.3 High-Speed Photometry (Non-differential Photometry)

To study stellar pulsation it is necessary to use integration times that are
shorter than the pulsation period. In Chapter 5 the Nyquist frequency is
discussed. While two points per cycle are sufficient for frequency analysis, it
is important to determine if stellar light variations are sinusoidal; if they are
not, then at least two points per cycle are needed for frequencies as high as the
highest frequency harmonic that is needed to describe the light curve shape.
Furthermore, integration times that are a significant fraction of the pulsation
period (only a few points per cycle) will smear the signal and reduce the
observed amplitude. In practice, observers often opt for about 10 points per
cycle, or more, where the target is bright enough to allow for this. Photometric
integration times for asteroseismic targets are often selected to be 10 s, then
may be averaged to longer integrations if such short integration times are not
needed. For Fourier analysis it makes no difference to the noise levels whether
integrations are averaged, or not, but for viewing a light curve in the time
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domain, longer integration times will show lower high frequency scatter, hence
make it easier to compare frequency solution fits with actual light curves.

One problem with short integration times is poor use of telescope time
when the readout time of the CCD is significant compared to the integration
time. In that case much of the night is wasted not collecting photons as the
CCD is read out. For brighter stars this can be very wasteful of telescope
time. Photoelectric photometers have no significant readout time, so are still
used for bright star high speed photometry. Frame transfer CCDs also can
cope with very short integration times without loss of time to readout. In this
case half the CCD is used for data acquisition; the other half is masked off so
no light falls upon it. The collected charge in the observing half of the CCD
can be transferred to the unused half of the CCD in typically just tens of ms,
then a new integration can begin while the dark half of the CCD is read out.
Obviously integration times still have to be longer than the readout time of
the dark half of the CCD, but there is no significant loss of observing time as
long as this is the case.

It is not the length of the integration times that defines what is meant by
the term high speed. The use of 10-s integration is very low speed in comparison
with 1-ms integrations that may be used in optical studies of pulsars, for
example. Therefore, “high speed” photometry does not necessarily equate to
high time resolution photometry. What it does mean is that the target star
varies too quickly for the observer to move between it and comparison stars,
so that the telescope is trained continuously on the target star, in spite of
there being no comparison stars. Thus, this could be called non-differential
photometry (but it never is).

High speed photometry foregoes the use of comparison stars for better
time resolution on the target star. This has a high price: there is no control
over sky transparency variations. In practice, good photometric sites have sky
transparency variations that are confined to low frequency, as we showed in
Fig. 4.2, so that the actual pulsation frequencies – as is the case for the roAp
star HR 1217 shown in that figure – are well-separated in frequency space from
the low frequency noise. Information about low-frequency variability in the
target star is lost, but good time resolution of the pulsation is the reward.

High speed photometry is widely used in asteroseismology, in particular
for the higher frequency pulsators such as white dwarfs, sdBV stars and roAp
stars. For estimating errors on frequency, amplitude and phase in the fre-
quency solutions to the light variability of these stars, the noise level in the
frequency region of the pulsations should be used. One easy way to do that
is to assure that the noise in the amplitude spectrum is white across all fre-
quencies. A variety of high pass filters (those that reduce the low frequency
noise level) can be used for this. It is important not to reduce the noise level
below that of the rest of the amplitude spectrum, if least squares estimates
of errors on frequency, amplitude and phase are wanted, as those depend on
the total variance in the data which should be representative of the frequency
region of interest, as it is for white noise.
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4.3.4 Filters

Photometric observations can provide us with neither the bolometric magni-
tude of a star, nor with a monochromatic magnitude. Because of the wave-
length dependence of the transmission of the atmosphere and the wavelength
dependence of the detector, the observations of stellar brightness are always
over a range of wavelengths, transmission curves and sensitivity curves. This
is a very important point, since stellar pulsation amplitude and phase are not
constant as a function of the observed wavelength.

A first-order reason for this is that variation in stellar brightness from
pulsation depend primarily on temperature changes. Fig. 4.4 shows sections
of black body curves from the blue to the near infrared for various temperature
ranges, including those of many pulsators discussed in Chapter 2. It is easy to
see that the monochromatic pulsation amplitude as a result of the temperature
variation is much higher in the blue than in the red and infrared for all stars,
including solar-like oscillators. Thus pulsation amplitude is strongly a function
of the wavelength of the observations. In fact, subtler effects than the gross one
illustrated in Fig. 4.4 for temperature allow differences in pulsation amplitude
and phase as a function of wavelength to be used for mode identification, as
is discussed in Chapter 6.

To use mode identification techniques that depend on pulsation amplitude
and phase as a function of wavelength of the observations, and for multi-site
campaigns that combine data from many observatories to obtain high duty
cycles, it is usually necessary to use filters to define precisely the wavelength
range of the observations. For some multi-site campaigns on faint targets, such
as the pulsating white dwarf stars, no filter has been used (the observations
are said to be in “white light”). This is only practical for hotter stars where
the blue part of the spectrum dominates the light variations. In principle,
differences in the effective wavelength of the observations from telescope to
telescope can generate apparent (but instrumental) amplitude variations that
generate additional peaks in the amplitude spectrum. When data analysis
is pushed down to the noise level to try to extract the maximum number of
frequencies for asteroseismic analysis, it is important to be aware of a potential
problem and guard against it. For other types of pulsating stars such as the
roAp stars, filters are mandatory because of strong pulsation amplitude and
phase variations with observed wavelength.

The filter systems used are those that are common in astronomical photom-
etry, are well-defined and which are in wide-spread use at most observatories
so that all observers will have the same filters. Three of the most common are
Johnson UBVRI filters, Strömgren uvby and Sloan Digital Sky Survey (SDSS)
u′g′r′i′z′ (Fukugita et al. 1996), in addition to many others such as Geneva,
DDO, Vilnius, Walraven, Washington, HST, Hipparcos-Tycho and other filter
systems. These filters for standard photometry, and their important transmis-
sion curves, are discussed in detail by Bessell (2005). As an example, Fig. 4.5
shows the transmission curves of the SDSS filters along with the response
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Fig. 4.4. Black body curves for objects of various temperatures. Top: temperatures
range from 5000 K (lower line) to 9000 K (upper line) in steps of 1000 K; bottom:
temperatures range from 9000 K (lower line) to 25000 K (upper line) in steps of
4000 K. The pulsation amplitudes are generally greater at shorter wavelengths for
asteroseismic targets.

curve of one of the CCDs used in the SDSS. It is the convolution of those two
curves with the observed (through the Earth’s atmosphere) spectral energy
distribution of a star that defines the effective wavelength for a particular
filter. Other filter systems and detectors are analogous to this.
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We can see from Fig. 4.5 that we can think of photometry through filters as
a form of very low resolution spectroscopy. It is high resolution spectroscopy
that provides the most information for asteroseismology, so we now turn our
attention to that.

Fig. 4.5. The transmission curves for the SDSS filters, along with the response
curve of a CCD typical of those used in the SDSS (dotted curve). From Fukugita et
al. (1996).

4.4 Spectroscopy

Spectroscopy is an important observational tool for all fields of astrophysics.
For stellar astronomy, it allows for spectral classification, for the derivation
of the atmospheric parameters such as the effective temperature and grav-
ity, for estimates of the abundances of the chemical elements in the stellar
atmosphere, for the derivation of the amount of mass loss and circumstellar
material through emission line and P Cygni line modelling, etc. It also allows
the detection of binarity, or, more generally, multiplicity of the studied object
whenever a time series is available. The discovery of the first exoplanet orbit-
ing a main sequence star, 51 Peg b, in 1995 was made thanks to high-precision
spectroscopy, and this has been the technique that has allowed the discovery
of the vast majority of the more than 300 exoplanets known today7 (i.e., mid-
2008; the number of exoplanet candidates is growing rapidly). In view of the

7 http://exoplanet.eu/.
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small orbital velocity of the parent star about the star-planet barycentre, the
discovery of exoplanets, through the Doppler effect, requires special observing
and analysis methods. These will be outlined below and compared with the
methodology used in asteroseismic diagnostics for the interpretation of small
oscillatory velocity perturbations.

Spectra with sufficiently high resolution for asteroseismology can at present
only be obtained from ground-based telescopes. The modern spectrographs
mounted on them usually consist of a collimator, a dispersive element (prism
or grating) and a CCD camera (linear detector arrays are less common
these days). Very complicated set-ups may occur, such as curved gratings
or multiple-pass optical systems8. Some of the reflection gratings are designed
in such a way as to maximise the efficiency at certain wavelengths, so that
one has to take into account the so-called blaze function in the reduction.

Each of the instruments requires its own reduction procedure. The basic
steps are, however, the same for most spectrographs, i.e., the removal of dark
current, offset and bias correction, sky background subtraction, flat fielding as
discussed in Section 4.3 above, and wavelength calibration. To this one must
add identification of the orders and correction for the blaze function in the
case of échelle spectra (this is not needed for a linear array). The wavelength
calibration is usually achieved by means of the measurements of a suitable
calibration lamp. For asteroseismology, a high-accuracy wavelength calibra-
tion of the spectrograph throughout the oscillation cycle is essential, as well
as accurate flat-fielding. It is therefore necessary to measure several calibra-
tion and white lamps between the target exposures; the stability properties
of the spectrograph determine how often such calibration measurements must
be done throughout the night.

For major spectrographs on large telescopes there are often pipelines for
data reduction. For more flexible data reductions tools are provided by the
European Southern Observatory-Munich Image Data Analysis System (ESO-
MIDAS) and by the Image Reduction and Analysis Facility (IRAF). Both of
these major facilities have on-line manuals and freely available software.

After the spectroscopic data have been reduced, the spectra should be
shifted to the solar system barycentric reference frame. This can be achieved,
e.g., by application of the algorithm by Stumpff (1980), after computation of
the UT of mid-exposure. This step is also included in most of the pipeline
reduction software packages provided by the observatories. The times also
need barycentric correction, as discussed in Section 4.2.

Fig. 4.6 gives parts of a fully reduced normalised high-resolution spectrum
of the B1III β Cep star ξ1 CMa and of the iron-depleted F6I RV Tau star
RU Cen. The S/N ratio for ξ1 CMa is more than twice that of the RU Cen
spectrum. These two examples illustrate the range in S/N level we aim for to
study the stellar oscillations from line profile variations. Fig. 4.6 demonstrates
the diversity in spectral line occurrence, line depth and line shape for pulsators

8 several examples are available from http://www.eso.org.
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Fig. 4.6. Parts of the spectrum of the B1III β Cep star ξ1 CMa (top and 3rd
panel, S/N ratio ∼ 400) and of the F6I RVTau star RUCen (2nd and bottom panel,
S/N ∼ 150). Data taken from Saesen et al. (2006) and Maas et al. (2002).
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in different areas of the HR Diagram. We will want to exploit time series of
deep, well-isolated (i.e., unblended) spectral lines that are little affected by
pressure broadening. As is clear from Fig. 4.6, the choice of such line(s) and
the region in wavelength to focus on during the observing depend entirely on
the type of pulsator and its rotational broadening.

4.4.1 Wavelength Stability and Low Frequency Noise
in Spectroscopy

Modern high resolution spectrographs are placed in stabilised temperature
and pressure environments to minimize the wavelength shifts that come with
changes in those parameters. Nevertheless, for radial velocity measurements
precise to the m s−1 level, or better, observations still show wavelength drifts
during an observing night. Control of those drifts can be made by observing
through a cell with iodine vapour to impress the rich spectrum of molecular
I2 onto the stellar spectrum (Marcy & Butler 1992), as we discuss further in
Section 4.4.6 below. That can be used to characterise the instrumental line
profile, as well as control the wavelength calibration of the spectrograph on
a spectrum-by-spectrum basis. It leads to the highest possible radial velocity
accuracy, as is needed in exoplanet studies, where the periods are long – days
and more. It comes at a cost, however, since the iodine spectrum must be
deconvolved from the stellar spectrum for line profile studies, and the iodine
reduces the intensity of the starlight by about 50%, hence reduces the S/N.

Therefore, for asteroseismology iodine wavelength calibration is not nor-
mally used. This, then, leads to low-frequency drifts in the wavelength calibra-
tion on a time scale of hours typically, hence leads to low-frequency noise in the
amplitude spectra of the radial velocity variations. For asteroseismic targets
with short enough periods, the frequencies of interest are well-separated in fre-
quency space from the low frequency noise generated by the wavelength drifts.
This situation is completely analogous to that discussed above for photome-
try, where instead of sky transparency variations causing the low-frequency
noise, small changes in the wavelength calibration as the result of temperature,
pressure and humidity changes in the spectrograph produce the low-frequency
noise.

Fig. 4.7 shows an example for the roAp star HD 101065. The observa-
tions were obtained with UVES the on the VLT in Chile. The data span 2 hr
with 65-s time resolution. The noise level is only σ = 7 m s−1 for radial ve-
locities measured from a single spectral line. The pulsation is clear, as is a
low-frequency peak with an amplitude of 75 m s−1 that is the result of drift in
the wavelength calibration during the 2 hr of observations. A Th-Ar reference
spectrum was taken before the observations commenced, but not during the
2-hr observing run. A comparison of Fig. 4.7 with Fig. 4.2 for high-speed pho-
tometry shows that the wavelength shifts in spectrographs such as UVES are
of minimal concern in asteroseismology of stars with sufficiently high pulsation
frequencies.
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On the other hand, of course, that low amplitude, low frequency peak seen
in Fig. 4.7 would destroy any study of an exoplanet radial velocity variation or
longer period pulsation on a time scale of days, or longer. As for photometry,
we give up information about longer time-scale variability in the study of such
data. We pay that price to obtain the highest possible S/N ratio for line profile
studies.

Fig. 4.7. An amplitude spectrum of the radial velocity variations of a single spectral
line of Nd iii at λ6145 Å in the roAp star HD101065 showing a low-frequency peak
caused by wavelength drift during the 2 hr of observations with UVES on the VLT.
The pulsation frequency is obvious at higher frequency. The precision of the data in
amplitude is σamplitude = 7m s−1. Data courtesy of D.W. Kurtz, V.G. Elkin and G.
Mathys.

4.4.2 High-Resolution Spectroscopy and Line Profile Variations

A line profile is an isolated spectral line in the spectrum of a star. Whenever
the shape of such a line profile varies in time, one speaks of line profile varia-
tions. We restrict our discussion here to variations caused by motions at the
stellar surface, not by circumstellar material due to an outflowing stellar wind
nor to the presence of a disc, a hot stellar corona or a magnetic active region.
With this restriction, the line profile variations are either caused by intrinsic
surface velocity changes, or a non-uniform temperature, gravity or chemical el-
ement distribution across the stellar surface, or a combination thereof. Stellar
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Fig. 4.8. Grey-scale representations (top panel) of the line profile variations (of
which some are shown in the middle panel) of Si iii at λ4553 Å of the β Cep star
β Cru, measured in different years. The average profile of the night is shown in the
bottom panel and was subtracted from each of the measured profiles, after which
the residual flux at each wavelength pixel was assigned a grey value according to
the scale (in continuum units) shown on the right of each upper panel (white means
less absorption than for the average profile, black means deeper absorption than the
average). From Aerts et al. (1998a).

oscillations cause both velocity and flux (i.e., temperature and gravity) per-
turbations. The effects of the flux perturbations are usually smaller than those
caused by the velocity perturbations for nonradial oscillations of chemically
normal stars, as will be explained in detail in Chapter 6.

Line profile variations can be visualised in different ways. Two of them
are shown in Fig. 4.8 which displays line profile variations observed during
two nights of different years of the bright β Cep star β Cru. The classical way
to show the variability is to overplot the measured profiles, as in the middle
panels of the figure. The upper panels present the variations in a grey-scale
plot. This concept was introduced for pulsating stars by Gies & Kullavanijaya
(1988) in their pioneering study of the line profile variations of the β Cep
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star εPer whose oscillations are not detected in photometric data because
their degree, l, is greater than 4. A grey-scale plot makes it easy to detect
line profile variations by eye. In such a representation, it is much easier to
see patterns travelling across the profile in time than in simple overplots of
the time series of the profiles, as in the middle panels of Fig. 4.8 and as in
Fig. 2.22. One can readily see from Fig. 4.8 that the pattern of the line profile
variations is different on the two different nights, while this is hard to see in
the overplots of the observed profiles in the middle panels of the figure. This
different behaviour on the different nights is due to the beating of several
oscillation modes (Aerts et al. 1998a).

Periodic extrinsic motion of a star (e.g., due to binarity or orbiting planets)
only leads to global Doppler shifts of the line profiles and not to a variation
of their shape. This important difference famously led to a debate in the
pages of the journal Nature about the very existence of the first exoplanet
discovered orbiting a main sequence star, 51 Peg (Mayor & Queloz 1995) when
Gray (1997) claimed detection of line profile variations, implying a nonradial
g mode was responsible for the 4.2-d period in the star, not a hot Jupiter
exoplanet. Both low-amplitude radial velocity variations caused by a planet
and line profile variations caused by nonradial pulsation were at the limit
of observational capabilities at the time of the debate over 51 Peg. Further
research showed no line profile variations, hence the case for the existence
of the planet 51 Peg b is strong. At the time of the debate tempers flared in
public discussions – there was fame and fortune in the discovery of exoplanets.
Now that the dust has settled and exoplanet and asteroseismology work so
closely together, we wistfully think it is too bad that the line profile variations
were not present in 51 Peg. Had they been, it would have implied a g mode
in a solar analogue – a probe of the star’s core. As of this writing there are
more than 300 known exoplanets and no known g modes in a solar-like star,
so, in retrospect, the discovery of a g mode would have been astrophysically
more important in the long run. We fully understand, of course, the incredible
importance of the discovery of 51 Peg b for exoplanet science, and, along with
it, for asteroseismology.

In cases where line profile variability is caused by temperature or chemical
spots rotating at the stellar surface, one detects only periodicity connected
with the stellar rotation (but affected by the spectral window – see Chapter 5).
In the case of rigid surface rotation, this implies the detection of only one basic
frequency and its (sub)harmonics in the line profile variations, depending on
the number and distribution of spots across the visible surface. In contrast to
these “monoperiodic” variations, multiperiodic stellar oscillations may cause
very complex variations of the line profiles.

Observed line profile variations are one of the most important diagnostics
for a detailed study of the pulsational behaviour of a star, including mode
identification. This will be explained in detail in Chapter 6, where we will
show that an in-depth interpretation of observed line profile variations offers
the possibility of a complete reconstruction of the velocity due to nonradial
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oscillations at the stellar surface, provided that they are measured with a suf-
ficiently high S/N ratio and spectral and temporal resolution, and that they
cover the entire beat period. These very stringent requirements on the data are
detailed in this chapter, which serves as a guide for future spectroscopic ob-
serving campaigns of nonradial pulsators. We also define the most important
diagnostics derived from the spectra for asteroseismology. The methodology
for the interpretation of observed line profile variations and their diagnostics
is treated in Chapters 5 and 6.

4.4.3 Requirements of Spectroscopy for Asteroseismology

The goal of the spectroscopic time series is to interpret small time-dependent
perturbations of the spectral lines due to the oscillations. These perturbations
imply that the spectral lines deviate from a constant symmetrical shape, which
they would have if only time-independent thermal, pressure and rotational
broadening occurred. In order to detect these relatively small deviations, it
is necessary to have spectra with a sufficiently high resolving power and S/N
level.

The spectral resolution of the measurements, defined as λ0/Δλ with λ0 the
laboratory wavelength of the spectral line under consideration, needs to reach
at least 30 000 and is preferably above 50 000 given that all successful appli-
cations of asteroseismology so far concern slow rotators and were based on
metal lines. The optimal value to adopt depends, of course, on the instrument
capabilities in terms of the dispersive element, as well as on the brightness
and rotational broadening of the target. Ideally, one would want the observed
individual line profiles to be covered with some 50 wavelength points (20 is
still useful for low-degree modes) and to reach a S/N level above 200. If these
demands are too stringent for the available instrument and target, compro-
mises should be made such as to have the highest possible spectral resolution.
In other words, it is possible to come up with clever methods to increase the
S/N ratio, as will be discussed below, but making up for insufficient resolving
power is impossible.

The observed spectrum is necessarily a convolution between the “true”
spectrum and the instrumental profile. The latter is caused by imperfections
in the instrument and limitations due to the instrumental setup which im-
ply an effective spectral resolution lower than the theoretically expected one.
The instrumental profile can usually be approximated by a Gaussian with a
specific width of typically a few km s−1 and can best be estimated from the
narrowest emission lines in the calibration measurements. One can also esti-
mate it from telluric lines if the observed spectrum contains such signatures
from the Earth’s atmosphere, but that usually leads to a less accurate approx-
imation. In Gray (2005) the reader finds a clear description of the method to
deconvolve the instrumental spectrum from the observed one. In principle,
it involves only a deconvolution. In practice, however, this deconvolution is
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affected by the noise in the measured spectrum due to which additional fil-
tering is necessary. Gray (2005) defined such an optimum additional filter,
assuming white noise, in terms of a free parameter to be adopted to each
data set. Given the complication, this deconvolution with the instrumental
profile is usually omitted for the analysis of a time series of single instrument
spectra. In this case, the intrinsic broadening of the stellar lines will simply
be overestimated with a value according to the instrumental profile width.
In a case where spectra of different instruments constitute one time series,
one should do the deconvolution with the instrumental profile before merging
the data sets, unless the differences in the widths of the instrumental profiles
among the instruments are much smaller than the amplitude of the line profile
variations caused by the oscillations.

It is of paramount importance to achieve an accurate wavelength cali-
bration of the spectroscopic data for asteroseismology, since one will be in-
terpreting tiny velocity changes caused by the oscillations. Several internal
emission-line lamps are therefore usually observed in between the stellar ex-
posures, in order to correct for small changes in the thermal conditions of the
instrument. In view of its rich emission spectrum, a thorium-argon (Th-Ar)
lamp is often preferred as a wavelength calibration source (e.g., Kaufer et al.
2000). The pixel coordinates of the emission lines of the lamp are then fitted
with a suitable function, e.g., a polynomial or a spline. A standard devia-
tion typically of 1 mÅ, or less, between the measured emission line positions
and those of the laboratory wavelengths of the calibration source should be
attempted.

A particular point of attention in the reduction of the spectroscopy for as-
teroseismology, is the spectrum normalisation according to the continuum flux.
We will be dealing with the interpretation of relative line profile variations in
time rather than variations in the absolute flux. The latter are appreciably af-
fected by atmospheric and instrumental conditions compared to the variations
induced by the oscillations, so one usually does not attempt an absolute flux
calibration for each spectrum. The choice not to measure standard stars, but
rather use all the available telescope time on the target itself, is also due to the
decrease in the quality of such a flux calibration as the slit width decreases,
because the seeing conditions and guiding quality become more and more
important. Since asteroseismology involves high-resolution spectroscopy, and
thus tiny slit widths, absolute flux calibration is not a priority. Nevertheless,
it may be useful to measure the spectrum of a bright standard star during the
night and estimate the correspondence between the measured ADUs and the
real flux value. This also allows an independent check of the wavelength cal-
ibration, although the radial velocities of the standards are often not known
to an accuracy required for the wavelength calibration. A standard star spec-
trum may also help in the normalisation of the target spectra, even though
the averaged target spectrum is often a better option.

It is essential to apply one and the same normalisation procedure to the
whole time series, such that the deviations from symmetry, which may be
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slightly affected by the normalisation, are always affected in the same way.
This imperfect treatment then cancels out in the time variations of the nor-
malised line profiles with respect to the mean. One can normalise the spectra
near absorption lines by computing a polynomial or spline function through
manually selected points of the continuum flux at each wing of a line profile.
When dealing with hundreds or thousands of spectra, it may be advanta-
geous to consider an automated routine that selects these continuum points
and computes the fit. Care should be taken, however, not to include atypical
continuum points. This can be achieved by accepting points only when they
deviate less than a specified threshold from the mean continuum value in the
neighbouring wavelength pixels. It is always advisable to inspect the fit to
the continuum visually, after its computation, before dividing the observed
spectrum by it, even when one opts for an automated normalisation proce-
dure. In the case of pulsators in a single or double-lined binary, or for single
pulsators with high-degree modes inducing moving bumps travelling through
the profiles between the line wings, we advise manual selection of the points
for the continuum fit.

As asteroseismologists, we are concerned with the signature of stellar os-
cillations in time-resolved spectroscopy. As we discussed in the section above
on high speed photometry, we want to have several (typically more than ten)
spectroscopic measurements spread over each oscillation cycle. Ideally, this is
done in such a way that many cycles are observed to have a sufficiently long
time base, and that each, or at least some of the cycles are densely covered
to have appropriate conditions for the derivation of a good frequency spec-
trum (see Chapter 5 for these requirements), i.e., there are at least two points
per cycle for all harmonics needed to describe the shape of the radial veloc-
ity curve. Unlike photometric CCDs where frame transfer can reduce readout
times to negligible fractions of integration times, spectroscopic CCDs are not
generally providing this possibility yet. Thus for studies of very bright stars –
where nevertheless the largest telescopes are needed to have the required S/N
ratio and temporal resolution – it can be the case that only a small fraction of
the observing night is spent actually gathering photons. When the integration
time is much shorter than the readout time, much of the night is wasted. As
an example, in their pioneering study of the solar-like oscillation of αCen A,
Butler et al. (2004) used integration times of only 1 − 3 s with UVES on the
VLT with a 23-s readout time, hence for most of the night the VLT was idle
while the CCD was being read out. Spectrographs for high precision radial
velocity measurements are being designed to overcome this problem.

Besides being time-resolved in the sense of covering the cycles with suffi-
cient data points, the spectra also must have a good temporal resolution, as
we discussed for photometry above. This condition requires the data to have
an integration time that is only a fraction of the oscillation period. Ideally,
this fraction is only 1 or 2 %, such that the measurement can be consid-
ered as instantaneous. In practice, this is often not possible, particularly for
faint and/or short-period oscillators, depending on the telescope size and the
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properties and efficiency of the spectrograph. In that case, one must simulate
the effect of smearing out the measurement over a fraction of the oscilla-
tion cycle and account for this in the interpretation of the data, especially for
multi-site campaigns that combine data taken with different integration times
and numbers of points per pulsation cycle.

Depending on the purpose of the data, e.g., frequency analysis (Chapter 5)
alone, or mode identification (Chapter 6), the observational strategy must be
carefully chosen. For accurate frequency analysis, for example, we need to
cover many oscillation cycles to achieve a good estimate of the frequency
values, particularly when complicated beating patterns due to multiperiodic
oscillations occur. Any diagnostic derived from the time series of spectra will
suffice in this case. Usually, one takes the time series of the radial velocity,
which we define below, to derive the oscillation frequencies from spectroscopic
data. For mode identification, on the other hand, we need very precise, i.e.,
high S/N (> 200), high-resolution (> 50 000) spectra covering a few oscil-
lation cycles whenever the frequency values are already known from other
diagnostics, e.g., from photometric time series. A rule of thumb is that one
needs about 100 line profile measurements for each mode to identify, although
strong beating may require more than that.

It is clear that the optimal cadence and integration times of the obser-
vations, as well as the details of the instrumental set-up, depend, for ideal
atmospheric conditions, on the target’s brightness, on the instrumental capa-
bilities and of course also on the oscillation period of the star under study.
The latter may be unknown for some targets, since modes of degree typically
higher than 3 or 4 are invisible in ground-based photometry. As we explained
in Chapter 2, the periods range from only a few minutes to several days for
different types of stars. One should make a compromise between the optimal
observational requirements listed in this section, according to the goal of the
time series. Lower quality than the guidelines given here can, to a certain ex-
tent, be made up for by a larger number of measurements. The last parameter
to compromise is the spectral resolution.

4.4.4 Observational Line Diagnostics

The most widespread diagnostic value derived from a time series of stellar
spectra is the radial velocity. As mentioned in the introduction to this chap-
ter, Lindegren & Dravins (2003) analysed the different concepts and usages
of this term with the aim of deriving a fundamental definition of radial ve-
locity for m s−1 precision. They proposed the quantity derived from accurate
spectroscopic measurements to be termed the barycentric radial velocity mea-
sure. This equals the line-of-sight velocity in the absence of relativistic effects.
It is not a physical quantity, however, such as the astrometric or kinematic
velocity. The definitions of those are adopted in an IAU resolution given as
appendix to their paper. Lindegren & Dravins (2003) also pointed out that,
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even though spectroscopy cannot deliver accuracies of order m s−1 for abso-
lute stellar radial motions (the zero-point), the precisions of the variations of
derived quantities, such as the radial velocity measure, can easily reach such
level for modern equipment.

Having defined the theoretical concept or the definition of radial velocity
is one thing, how to compute the radial velocity measures from data (such as
those shown in Fig. 4.8) in practice is another. Different approaches are made
to achieve this, the simplest one being the estimate of the displacement of
the minimum of an absorption line due to the Doppler effect with respect to
the laboratory wavelength. Very often, this minimum is derived from making
a Gaussian fit to the profile. This procedure is, however, inappropriate in
the case of spectra of a pulsating star, as its line profiles will be skew and
deviate from a Gaussian during most of the oscillation phase (see Fig. 4.8
and numerous additional examples in Chapter 6). This has to be taken into
account in the derivation of an accurate radial velocity measure. The best way
to do so is to compute the centroid (also referred to as the centre-of-gravity)
of the spectral lines:

Vrad ≡

∫ vred

vblue

v [1 − F (v)] dv
∫ vred

vblue

[1 − F (v)] dv
, (4.2)

with v the line-of-sight velocity, vblue and vred the blue and red edges of the
line profile and F (v) the normalised flux at v. Whenever we speak of “radial
velocity” further on, we mean the quantity defined by Eq. (4.2). The time
series of Vrad is very suitable to search for the oscillation frequencies.

Note that this quantity we have just defined as the radial velocity is not
the pulsation velocity of any particular part of the stellar atmosphere. For
nonradial pulsation the actual velocity of motion is a function of stellar lat-
itude, longitude and atmospheric depth. Even a single spectral line samples
a range of depth in the atmosphere; for the roAp stars, for example, which
have radial pulsation wavelengths that are short compared to optical depth 1,
pulsation amplitude and phase vary strongly with depth in a single spectral
line. Additionally, we are viewing the limb-darkened spherical surface of the
visible hemisphere of the star in projection and we are integrating over that
surface to produce the radial velocity. The projection factor reduces our mea-
sured velocity compared to the atmospheric pulsation velocity, even in the
simplest case where a single layer radial pulsation is a good approximation to
the observed pulsation mode. This is, to first order, the case for Cepheid pul-
sation and the projection factor, including limb-darkening, in that case is 1.3
(Parsons 1972), meaning that the pulsation velocity is 1.3 times the measured
radial velocity. For the more complex case of nonradial pulsation, projection
factors can easily be calculated by integrating the local pulsational velocity
over the visible hemisphere, taking into account the geometry of the pulsation
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and limb darkening, as will be described in Chapter 6. The radial velocities
defined by Eq. (4.2) are usually, but not always, sufficient for the purpose of
deriving pulsation frequencies.

The computation of the radial velocity requires the determination of the
equivalent width of the line, whose definition is given in the denominator in
Eq. (4.2). This equivalent width does not change in time if the temperature,
gravity, pressure, density and chemical composition of the line-forming region
in the atmosphere do not change during the oscillation cycle. The equivalent
width is thus a very valuable measure to test any changes of conditions in the
line-forming region.

To get an idea about the absolute radial velocity precision, one usually
considers the mean values Vrad for each time series, and this for the different
spectral lines. Subsequently, one computes the average of those Vrad and its
standard deviation. The latter will depend on the quality of the data, but
also, and not negligibly, on the appropriateness of the laboratory wavelengths
used for the different spectral lines and the detailed understanding of line-
blending. These are quite often not well known, which may lead to systematic
differences of several km s−1 for the different Vrad values. We are not bothered
by this situation in our interpretation of the oscillations, as long as we will
be dealing with the variability in each of the Vrad time series for the different
lines separately, irrespective of the systematic differences in their Vrad. This is
a good demonstration case where the precision is high, but not necessarily the
accuracy; it is the precision we need. Another thing to keep in mind is that
the amplitude and phase of the oscillations may reach different values for the
various spectral lines. This is the case whenever the lines are formed in regions
of the atmosphere that are so far apart that the oscillation displacement vector
has changed in modulus and phase between the different line-forming layers.
All these effects are the reason why one often limits a line profile analysis
to the best isolated unblended line that is not heavily affected by pressure
broadening. We refer to Chapter 5 for guidelines on how to combine radial
velocity data from different spectral lines in the frequency analysis.

Stellar oscillations cause not only periodic changes in Vrad, and perhaps
in the equivalent width, but also in the line width and the line skewness of
the profiles, as is clearly visualised for the case of β Cru in the middle panels
of Fig. 4.8. The variations of these four quantities are readily interpretable in
terms of stellar oscillation theory, i.e., theoretical expressions exist for these
four quantities in terms of the oscillation frequencies and their quantum num-
bers (l,m), as well as the pulsation amplitudes and the inclination angle of the
star. These expressions and their exploitation in terms of mode identification
will be discussed extensively in Chapter 6. This is the reason why these quan-
tities, and not others such as line bisectors and their span (e.g., Brown et al.
1998a,b; Gray 2005), are used by asteroseismologists in the interpretation of
line profile variations. It was shown independently by Dall et al. (2006) and
by Hekker et al. (2006) that line bisectors (and their spans) are not suitable
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as a diagnostic for solar-like oscillations. In particular, they are not a good
tool for mode identification.

4.4.5 Increasing the Signal-to-Noise Ratio of the Line Profile
Variations

Given the requirements on the signal-to-noise ratio for a line profile analy-
sis, it is tempting to combine the information contained in different spectral
lines. Whenever the amplitude and phase of the profile variations of different
spectral lines are equal within their errors, one can do this, provided that the
intrinsic line broadening is similar. The latter condition implies that we must
exclude H and He lines in this exercise. Moreover, we can use only unblended
lines for the interpretation of the line profile variability, as this was already a
condition for the analysis of a single line profile. Let us assume that the avail-
able spectrum contains a number N of lines that fulfil these requirements.

Different methods have been proposed in the literature to merge the infor-
mation contained in different lines that are spread over a wavelength range.
We outline some of them here. We stress that any analysis based on merged
profiles must be done very cautiously, because none of these methods is fool-
proof. They usually work for frequency analysis, where the time variations in
line diagnostics are analysed. In that case, the manipulations done to increase
the S/N ratio are safe. When it comes to mode identification, however, the
precise shape variations are interpreted, and their precision can suffer from the
merging. This is why one should strive to restrict the interpretation of profile
variability to a single well-chosen line whenever possible, i.e., merging should
only be done when the S/N ratio of all single unblended lines is insufficient
for the analysis.

Fig. 4.9. Part of the spectrum of the δ Sct star FGVir taken by Zima et al. (2006).
The four indicated Fe I lines were averaged for the interpretation of the line profile
variability.
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The simplest way to merge information in different spectral lines is to com-
pute an average of carefully chosen line profiles of the same chemical element
that have very similar depth and broadening. This method was adopted by
Zima et al. (2006) in their mode identification of the δ Sct star FG Vir. We
show part of a spectrum of that star in Fig. 4.9. The authors have averaged
the four Fe lines indicated in the figure to obtain a combined line profile with
higher S/N ratio and analysed its variations to derive frequencies and identify
modes. As one can see from Fig. 4.9, the four selected lines do not have the
same depth, nor are they broadened by exactly the same amount, although
they look very similar. This means that the variations of the shape of the com-
bined profile cannot be a perfect representation of the individual line shape
variations, but come very close to it for lines with similar depth, broadening,
and central wavelength (to avoid too different limb-darkening coefficients). In
the case of FG Vir, the averaging of four lines allowed the authors to increase
the S/N ratio by a factor ∼2 and to find frequencies and identify modes for
more than ten modes, in agreement with photometric results that had been
obtained before.

For photon-noise dominated signals, the S/N level within a merged profile
increases roughly as

√
N , with N the number of lines used in the merging pro-

cess, compared to the one of a single spectral line. It is therefore tempting to
merge as many lines as possible. This same idea was originally used by planet
hunters to obtain ultra-precise radial velocity measures (Mayor 1980). The
quest for higher S/N ratios thus led to the consideration of cross-correlation
functions . In order to compute these, we define a line mask based on the N
lines selected for the merging. The simplest mask one can imagine has a boxed
shape and is defined as

M(v) ≡
N∑

i=1

wi δ(v − vi), (4.3)

where the vi are the velocity pixels belonging to each of the N considered
lines and wi is the weight given to each line. If all lines considered in the mask
are treated equally, one has wi = 1/N within a line and wi = 0 outside of the
lines. One then defines the cross-correlation function (CCF) of the observed
spectrum (v, F (v)) with the line mask at velocity v by

CCF(v) ≡ (F %M)(v) =
N∑

i=1

wi F (v − vi). (4.4)

This is a weighted mean of all the spectral lines considered in the mask. For
a thorough description, we refer to Baranne et al. (1996). The CCF should
contain the line profile variability, but with a higher S/N level, provided that
this variability is coherently present in these chosen mask lines.

Equation (4.4) is the simplest form of a CCF. More sophisticated proce-
dures are available in the literature. They have mainly been defined in the
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context of planet hunting, but are suitable here as well. The basic idea of the
improvement over Eq. (4.4) is to differentiate better between the suitability of
the spectral lines by assigning weights according to the true line profile shapes
and depths. One thus replaces the boxed-shaped mask by a synthetic spectrum
for the fundamental stellar parameters of the star, appropriately broadened
according to its rotation, and uses that as a mask (v,M(v)). This mask has
an infinite S/N ratio, just as the simple boxed one. However, it still has the
drawback that the “real” stellar spectrum will not be matched perfectly by
the synthetic one. In particular, the chemical composition is often not known
with a high precision. Also, many small blended lines will be present in the
true spectrum of the star, but not in the synthetic one because the atomic
data are unknown for them. To avoid these uncertainties, it is better to choose
a very high S/N spectrum of the target itself as the mask (v,M(v)). In that
case, the mask has noise, but it represents in the best way the true stellar
spectrum.

The computation of the CCF (v) = (F % M)(v) with (v, F (v)), the indi-
vidual measurements of the spectrum within the time series, and (v,M(v)),
the high S/N mask, is still by no means a guarantee for successful line profile
analysis. It does result in very high S/N CCFs compared to the individual
spectral lines. However, one should realise that the inclusion of small blended
lines in the mask implies artificial broadening in the CCFs, particularly for
moderate to rapid rotators. This artificial broadening is only averaged out
well if one considers a large part of the spectrum containing many lines, be-
cause the line blending leads to incoherent contamination of the signal while
the nonradial oscillation adds up coherently. It is thus not well suited for hot
stars with few spectral lines. Moreover, as is well known, there are many lines
in the spectra of stars cooler than, say, 10 000 K. For such stars, it is usually
very difficult to achieve a safe normalisation over a large part of the spectrum.
The numerous lines form a kind of pseudo-continuum, making it very difficult
to derive the position of the true continuum. This introduces uncertainty in
the depth and wings of the profiles from different échelle orders. This uncer-
tainty is of different importance for different lines and it propagates into the
computation of the CCF.

A slightly different type of line merging was considered by Donati et al.
(1997) and Kennelly et al. (1998). Donati et al. (1997) developed their method
in the context of spectropolarimetric signatures in the line profiles of magneti-
cally active stars, while Kennelly et al. (1998) applied it for their interpretation
of the line profile variability of δ Sct stars. Their method also comes down to
a convolution, just as defined above, but a slightly more sophisticated one.
They make a least-squares deconvolution (LSD), as they termed it, of the time
series of data (v, F (v)) with a carefully constructed mask, but in such a way
as to take into account the error of the extracted flux level measured in each of
the CCD pixels as an additional factor in the weighting. In the study of non-
radial oscillations, one can thus also work with the time series of (v,LSD(v))
as a more sophisticated version than (v,CCF(v)) provided that the flux noise
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can be well estimated. The same remark about the artificial broadening and
normalisation holds true here.

One is thus left with the following situation. If, and only if, it is necessary
to increase the S/N ratio of the observed spectral lines for an interpretation
in terms of the nonradial oscillations, then one has essentially two choices.
Either one uses a very small number (a few) of carefully-chosen unblended
lines, as in the example of FG Vir above, or one uses a mask consisting of
hundreds to thousands of spectral lines selected from carefully-defined line-
selection criteria concerning their width and depth to compute a CCF or LSD
to replace each spectrum in the time series. The type of spectroscopic data
available to the user should determine the best strategy.

4.4.6 Increasing the Radial Velocity Precision in the Context
of Exoplanet Finding and Solar-Like Oscillations

The first exoplanets were discovered in an exotic environment orbiting a pul-
sar, PSR 1257+12 (Wolszczan & Frail 1992). The quest for extrasolar planets
intensified dramatically following the first discovered around the solar-type
star 51 Peg by Mayor & Queloz (1995). Exoplanet hunting requires radial ve-
locity measures with a precision of the order of m s−1. It was realised before
the first exoplanet was discovered that such a precision is also necessary in
the context of solar-like oscillations (Brown & Gilliland 1990; Gilliland et al.
1993; Hatzes & Cochran 1994; Kjeldsen et al. 1995). One can achieve the nec-
essary precision by monitoring the atmospheric and instrumental conditions
simultaneously with the target star. This can be done in essentially two ways.

A first method relies on the simultaneous measurement of the Th-Ar cali-
bration lamp and the target star. This can be done with a spectrograph having
two fibres, where one is used to measure at the same time the sky background
and the Th-Ar lamp and the other one is reserved for the target. In this way,
the instrumental conditions are ideally monitored. Those conditions must still
be kept as stable as possible, putting stringent constraints on the environment
of the spectrograph in terms of temperature, pressure and humidity stability.
This method is therefore expensive. The advantage is that the needed pre-
cision is reached by applying the technique of CCF, as detailed in the last
section.

For exoplanet hunting, the goal is to derive the best possible radial veloc-
ity measure from a minimal number of spectral lines. As the latter are not
deformed, but merely displaced by the stellar motion about the planet-star
barycentre, there is no change in line shapes. This led to the development of
specific methods to acquire the highest possible accuracy in the radial veloc-
ity. These methods are based on the original one introduced by Connes (1985)
and use the full spectral information. The optimum weight method by Bouchy
et al. (2001) gives a clear description of how to optimise the computation of
the weights wi to be used for the radial velocity measure derivation. In this
method, one considers the full 2-D wavelength-calibrated échelle spectrum
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consisting of numerous orders to compute the CCF and the Vrad. In this way,
one avoids having to normalise the flux level. Such a procedure is not opti-
mal for the interpretation of line profile variations because the simultaneous
recording of the Th-Ar and stellar spectrum implies contamination of the stel-
lar lines during the reduction process, particularly at blue wavelengths. For
asteroseismology of heat-driven modes with amplitudes at km s−1 level, one
thus preferably separates the recording of the stellar and calibration spectra.
For solar-like oscillations with m s−1 amplitude, one must do the recording
simultaneously to achieve the necessary accuracy.

The second method of obtaining high-precision radial velocity measures
relies on the simultaneous measurement of the stellar spectrum and the spec-
trum of gaseous molecular iodine, I2 (Marcy & Butler 1992). To achieve this,
an iodine vapour absorption cell is placed in front of the spectrograph slit.
This method is cheap and implies high flexibility. The stellar and iodine spec-
trum are thus simultaneously convolved with the instrumental profile and are
recorded together. The iodine lines provide a direct wavelength calibration
over the wavelength area where they occur (between 500 and 600 nm). The
radial velocity measure is then obtained by deconvolving the measured stellar
and iodine spectrum with the instrumental one and subsequently using the
iodine transmission function known from laboratory measurements. We refer
to the paper by Marcy & Butler (1992) for a detailed description. This method
works fine for the derivation of Vrad, but a reconstruction of the line shape
variations is far from trivial, and requires an iterative procedure to correct
for small iodine features left in the stellar spectrum, as explained in detail by
Brown et al. (1998b).

We conclude that the simultaneous measurement of the stellar spectrum
with either a Th-Ar calibration lamp or an iodine absorption gas both affect
the spectral lines of the reduced spectrum. It is therefore unclear how line
profile variations are preserved in the merged profiles or CCFs computed
from such data. Hekker et al. (2006) have used CCFs computed from the
optimum weight method by Bouchy et al. (2001) to study the line profile
variations induced by solar-like oscillations of red giant stars. They managed
to detect the line profile variability, with frequencies in full agreement with
those found in the Vrad variations. This seems to point out that the optimum
weight method is also suitable for the interpretation of line profile variations in
terms of nonradial oscillation modes. From extensive simulations of line profile
variations of stochastically-excited solar-like oscillations taking into account
the damping, Hekker et al. (2006) subsequently found the surprising result
that some of the modes of three of the four red giants they studied seem to
be nonradial. This result certainly deserves further attention, from both the
theoretical and instrumental/observational point of view.
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4.4.7 Disentangling Spectra to Interpret the Oscillations
of Double-Lined Binaries

The determination of radial velocity measures from line profiles of double-
line spectroscopic binaries (SB2s) is not straightforward. This is illustrated in
Fig. 4.10, where we show an observed Si iii λ 4552.6 Å line profile of the SB2
β Cep star β Cen. Whenever the Vrad of the narrow-lined component is esti-
mated from integration between the two vertical bars indicated on the plot,
a systematic error is introduced. Such a systematic error will occur in the ra-
dial velocity measures for any spectroscopic binary in which both components
contribute to the lines. This problem led to the development of methods to
separate the component spectra of stars in a double-lined binary. Early devel-
opments were done by Bagnuolo & Gies (1991) and Simon & Sturm (1994).
An attempt to avoid such systematic error in the study of a nonradial pul-
sator can be found in Tomkin et al. (1995) for the δ Sct star θ2 Tau. In that
work, the authors subtracted the lines of the primary by means of spectra of
reference stars with the same spectral type before computing the secondary
star’s Vrad-values. Ausseloos et al. (2006) provided analysis schemes based
on disentangling to overcome such systematic errors in a more accurate way.
The authors used the disentangling methodology korel developed in a series
of papers by Hadrava (1995, 1997, 2001, 2004a, 2007) and applied it to the
double-lined β Cep star β Cen, which does not show photometric variability
but strong line profile variations due to oscillations.

0.88

0.92

0.96

1.00

 4546  4550  4554  4558

N
or

m
al

is
ed

 fl
ux

Wavelength (Å)

0.88

0.92

0.96

1.00

 4546  4550  4554  4558

N
or

m
al

is
ed

 fl
ux

Wavelength (Å)

0.88

0.92

0.96

1.00

 4546  4550  4554  4558

N
or

m
al

is
ed

 fl
ux

Wavelength (Å)

0.88

0.92

0.96

1.00

 4546  4550  4554  4558

N
or

m
al

is
ed

 fl
ux

Wavelength (Å)

0.88

0.92

0.96

1.00

 4546  4550  4554  4558

N
or

m
al

is
ed

 fl
ux

Wavelength (Å)

0.88

0.92

0.96

1.00

 4546  4550  4554  4558

N
or

m
al

is
ed

 fl
ux

Wavelength (Å)

Fig. 4.10. Si iii λ 4552.6 Å line profile of the SB2 β Cep star β Cen. The two vertical
and the horizontal lines denote the integration limits used by Ausseloos et al. (2002)
to calculate the Vrad of the component with the deep line. The two dotted lines
denote the disentangled line profiles of both components.
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Fig. 4.11. A Si iii λ 4552.6 Å line (full line) and the secondary’s disentangled line
profile, which is shifted according to its corresponding orbital Vrad (dashed line).
The residual spectrum obtained by subtracting the shifted disentangled line profile
from the original spectrum is shown as dots.

Another disentangling method, termed fdbinary was developed by Ilijic
et al. (2001, 2004). The disentangling can be done in the wavelength domain
or in the Fourier space. Ilijic (2004) briefly compared the performance and
advantages/disadvantages of these two approaches.

For an overview of the history of the method of disentangling, and a thor-
ough discussion of the comparison between the various methods, we refer to
Hensberghe et al. (2008). In that paper, the reader also finds a comprehensive
mathematical description, as well as a discussion on the spurious effects which
might occur in applications and a practical guideline to observers to plan their
observing strategy according to the best performance. Present-day versions of
the algorithms can handle flux variations, e.g., due to the eclipsing nature of
the binary or due to oscillations.

Applications of the disentangling of spectra of double-lined binaries with
a pulsating component, besides those mentioned above, can be found in, e.g.,
Harmanec et al. (2004), De Cat et al. (2004), Uytterhoeven et al. (2005a,b),
Frémat et al. (2005) and Freyhammer et al. (2005) to which we refer for details.
In these applications, the disentangling not only led to a significant improve-
ment in the precision of the physical parameters and dynamical parallax of the
components of the binaries, but it also allowed one to study the oscillations of
(one of) the components. In Fig. 4.11 we show the disentangled profile of the
deep-lined secondary shifted to the orbital Vrad. This disentangled spectrum
was subsequently subtracted from the measured one and reveals at once that
it is the broad-lined primary that exhibits oscillations, and not the component
with the deep lines as was thought until the study by Ausseloos et al. (2006).
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As soon as the spectra are disentangled reliably, they can be used to study
line profile variability as for a single star.

As a final remark, we point out that Hrudková & Harmanec (2005) and
Hadrava (2006) demonstrated that the disentangling technique can also be
used to remove telluric lines from the spectrum of a single star by treating the
telluric spectrum as a second star. They illustrated that the method works
well and is valuable especially for the spectra of red stars which may be
heavily blended with telluric lines. One can thus obtain a disentangled stellar
spectrum with a higher S/N ratio than the original one by the removal of the
telluric lines. Similar applications to reliably remove iodine line signatures still
need to be explored.



5

Frequency Analysis

As already discussed in Chapter 3, the three components of the Lagrangian
displacement vector of an undamped oscillator contain a time-dependent fac-
tor exp(−iωt), with ω = 2πν the angular frequency of the oscillation mode
and Π = 2π/ω = 1/ν its period (see, e.g., Eq. (3.124) where it was explained
that all Eulerian and Lagrangian perturbations contain a common factor). It
is therefore clear that stellar oscillations give rise to periodic variations of the
physical quantities. These translate into periodic variations of observables,
such as the brightness, the colours, the radial velocity and the spectral line
profiles. In this Chapter we describe methodology to derive the oscillation
frequencies from time series of data of pulsating stars.

Time series analysis is a well-developed field in statistics (e.g., Bloom-
field 1976; Kendall & Ord 1990). Unfortunately, the available classical theory
is not appropriate to analyse data of pulsating stars because this theory al-
most always assumes uninterrupted measurements which are evenly spaced in
time. Astronomical time series usually contain large gaps and unevenly spaced
data. Moreover, the gaps themselves may have quasi-periodicities, e.g., daily
interruptions of single-site measurements by the Sun, monthly interruptions
because of telescope scheduling based on the phases of the moon and annual
interruptions because of the Earth’s orbital motion for the large majority of
stars that are not circumpolar. While techniques to treat several types of
missing data (missing completely at random, missing at random, missing not
at random) are also well developed in statistics (e.g., Little & Rubin 2002;
Molenberghs & Verbeke 2005), it is not advised to apply them to astronomical
time series because

• the oscillation frequencies need to follow a well-known deterministic dis-
tribution in order to make an appropriate reconstruction to fill the gaps,
which is not always a safe assumption;

• the amount of missing data is often larger than the available data, i.e.,
one usually deals with low duty cycles implying uncertain reconstruction
by interpolation as well.

C. Aerts et al., Asteroseismology, Astronomy and Astrophysics Library, 337
DOI 10.1007/978-1-4020-5803-5 5, c© Springer Science+Business Media B.V. 2010
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The latter concern is particularly relevant for ground-based data, even those
assembled from multi-site campaigns. It is less of a problem for data assembled
from space with missions dedicated to oscillation studies, where duty cycles
above 90% can be achieved. However, here we provide methodology that is
appropriate to treat the hardest possible type of time series of pulsating stars,
i.e., unevenly spaced data with a low duty cycle. The methods will also work
for data sets with a high-duty cycle that are (quasi-)equidistant. In such cases,
additional classical methods, such as those based on Fast Fourier Transforms
(e.g., Press et al. 1992, Chapter 12; Bracewell 1999), will also be applicable
and may imply faster computations.

In the present Chapter, illustrations of the theory are based on simulated
data. The reader is referred to Chapters 2 and 7 for extensive applications of
the methodology to real modern data.

5.1 Harmonic Analysis by Least Squares

With a harmonic analysis we mean the search for a certain sum of harmonic
functions that best describe the data in the time domain in the least-squares
sense. Least-squares fitting is a well-known statistical technique familiar to
most readers, which is why we consider it here as a first easy case of a para-
metric method for frequency search in time series of stellar oscillations, before
treating other methods. The particular case of harmonic fitting described here
is equivalent to taking a Fourier transform of the time series, which will be
considered in Section 5.3.

Consider measurements of a quantity x at different times ti: x(ti) ≡ xi

with i = 1, . . . , N . Considering the time dependence of the oscillation modes,
we aim at using a model of the following form:

x(ti) =
M∑

k=1

ak cos[2πνk(ti − τ)] + bk sin[2πνk(ti − τ)] + c+ εi, (5.1)

describing the variations due to M oscillation modes with frequencies νk,
k = 1, . . . ,M which are excited with amplitudes above the detection threshold,
with τ an arbitrary reference epoch, ak, bk and c the free fitting parameters and
εi the measurement errors. The latter are usually assumed to be independent
and normally distributed with average zero and constant variance σ2

N , i.e.,
we assume to be dealing with white Gaussian noise. We come back to this
assumption in Section 5.5. We have to find a way to derive each frequency νk,
as well as the unknowns ak, bk and c, from the data.

5.1.1 Searching for a Single Frequency

Let us first assume that the time series is due to one single undamped oscilla-
tion mode whose frequency ν1 we seek to find, i.e., M = 1 and a1 = a, b1 = b.
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For each test frequency ν we determine the unknowns a, b, c by means of a
least-squares algorithm. The best estimates for a, b, c are those that minimize
the quadratic deviations between the observed and calculated values. We de-
fine the likelihood function L as:

L ≡
N∑

i=1

{xi − a cos[2πν(ti − τ)] − b sin[2πν(ti − τ)] − c}2 , (5.2)

with τ a fixed reference epoch. We then find a, b, c by solving the set of equa-
tions:

∂L

∂a
= 0,

∂L

∂b
= 0,

∂L

∂c
= 0. (5.3)

After some manipulation this results in the following values for the unknowns:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a =
cx
c2

− c1
c2

cxc1
c2

+
sxs1
s2

− xsum

c21
c2

+
s21
s2

−N

,

b =
sx

s2
− s1
s2

cxc1
c2

+
sxs1
s2

− xsum

c21
c2

+
s21
s2

−N

,

c =

cx
c2
c1 +

sx

s2
s1 − xsum

c21
c2

+
s21
s2

−N

,

(5.4)

in which we have used the following definitions:

c2 ≡
N∑

i=1

cos2[2πν(ti − τ)], s2 ≡
N∑

i=1

sin2[2πν(ti − τ)],

cx ≡
N∑

i=1

xi cos[2πν(ti − τ)], sx ≡
N∑

i=1

xi sin[2πν(ti − τ)],

c1 ≡
N∑

i=1

cos[2πν(ti − τ)], s1 ≡
N∑

i=1

sin[2πν(ti − τ)],

xsum ≡
N∑

i=1

xi.

(5.5)

The solutions for a, b, c allow us to compute the predicted value of xc
i (ν) for

the test frequency ν :
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xc
i (ν) ≡ a cos[2πν(ti − τ)] + b sin[2πν(ti − τ)] + c. (5.6)

The difference between the measured value xi and the predicted value xc
i (ν)

is called the residual at time ti:

Ri(ν) ≡ xi − xc
i (ν). (5.7)

Searching for the most likely frequency comes down to searching for the
frequency ν for which the sum of squares of the residuals is minimal, i.e.,
searching for a minimum of the function

R2(ν) =
N∑

i=1

R2
i (ν) =

N∑

i=1

[xi − xc
i (ν)]2 . (5.8)

We note that estimating the best value of a, b, c for the test frequency ν is
equivalent to searching for the best value of A, δ, c such that

xc
i = A cos {2π[ν(ti − τ) + δ]} + c. (5.9)

This is perhaps a more often used harmonic model, as the amplitude A and
the phase δ of the frequency ν are readily interpretable observables that result
from the data, unlike a and b whose meaning is more complicated. It is indeed
easy to show that A2 = a2 + b2 and 2πδ = arctan(−b/a).

After having determined the value of A, δ, c such that the curve describes as
well as possible the data with the least-squares method for each test frequency
ν, we derive the variance of the data with respect to the best average curve.
Whenever this variance is small we have found a frequency that explains a
large percentage of the variability in the data. This percentage is called the
variance reduction or fraction of the variance (fv) and is defined as:

fv = 1 −

N∑

i=1

(xi − {A cos {2π [ν(ti − τ) + δ]} + c})2

N∑

i=1

(xi − x)2
= 1 − L

N∑

i=1

(xi − x)2
.

(5.10)
with x ≡

∑N
i=1 xi/N . The search for a minimum of R2(ν) is, in fact, a search

for a maximal variance reduction in the data. We thus assign to ν1 the test
frequency ν with the largest variance reduction and our procedure at once
gives us its amplitude A and phase δ.

As the very simple example shown in Fig. 5.1 demonstrates, one can easily
have equivalent solutions whenever the observed time series is limited in num-
ber of points and in time coverage. It is important to keep in mind that almost
equivalent solutions occur whenever the times of measurement cover a limited
number of cycles and are taken with intervals equal to the beat periods of the
occurring frequencies.
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Fig. 5.1. Simulated data (dots) representing a periodic signal with frequency ν =
0.123456789 d−1. The dotted line is a harmonic fit for this frequency. The full line
represents a fit with the frequency 2.123456789 d−1.

5.1.2 Searching for Multiple Frequencies

In principle, we could now repeat the previous derivation in order to find the
most likely set of frequencies νk, k = 1, . . . ,M of the model fit in Eq. (5.1) from
the data. Unfortunately, as explained in Chapter 3, we are unable to predict
the amplitude of excited oscillation modes in a star. Thus, we do not know
the number M of oscillations that will be excited with detectable amplitude
in the observed time series. This implies that this discrete unknown M has to
be estimated along with the frequency search itself.

Estimation of discrete parameters is a very poorly developed field in statis-
tics. This is a mathematical problem with very important implications for
many fields, among which is asteroseismology. Besides causing a problem here
for frequency determination, a similar situation will occur in Chapter 6 on
mode identification, where the discrete wavenumbers of each of the detected
oscillation modes (l,m, n) have to be estimated. A consequence of this is that
frequency analysis for asteroseismology is unavoidably data-driven. This is a
huge disadvantage from a statistical viewpoint compared with the situation
where we would be able to estimate simultaneously the number of frequencies
present in the data and their value from a model description.

We cannot but conclude that the search for multiple oscillation frequencies
necessarily must be done by means of some kind of prewhitening procedure
by which we mean that, at each stage of the frequency search, a fit with the
selected frequency is computed and subtracted from the data values before a
subsequent frequency search is started. The statistical interpretation of such
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a data-driven approach is much more challenging than one based on a model-
driven treatment, unfortunately.

A prewhitening strategy thus has to be chosen to perform the frequency
analysis. The simplest such strategy is to prewhiten the data according to
Eqs (5.9) and (5.7) after the frequency ν1 with the largest variance reduction
was derived and to start a new frequency analysis to search for ν2 in the
residuals, and so on. One thus determines, at each stage of prewhitening, the
values of νk, Ak, δk.

As pointed out by Vańıček (1971), one can improve this procedure by
fitting the original data at each step with all the frequencies found up to
then (he termed them “known constituents”), fixing only the frequency values
and leaving their amplitudes and phases (the “unknown constituents”) free
during the whole procedure. Vańıček showed that these unknown constituents
determine “systematic noise” that is present in the data, besides the additional
random noise, and there is in principle no need to fix them while searching
for additional frequencies.

A rather evident next step is then to recompute a least-squares solution
according to Eq. (5.1) at every prewhitening stage, starting each time from
the original data and leaving also the frequency values νk free in making the
fit, using the outcome of one or several different frequency search methods
described here as a good starting value. This procedure is most commonly used
nowadays in asteroseismology. It works fine as a prewhitening strategy and
as a method to derive the most likely values for the frequencies, amplitudes
and phases, provided that good starting values for the frequencies, already
very close to their true values, are known and that a sufficient number of data
points is available with respect to the degrees of freedom of the fit. As a rule of
thumb we advise against making such a fit for data sets with fewer points than
ten times the number of degrees of freedom. Additional requirements have to
be fulfilled for such a fit to be meaningful. We discuss these in Sects 5.3 and 5.4
and the reader is strongly advised to take these into account. Error estimation
is treated in Section 5.5.

5.2 Non-parametric Frequency Analysis Methods

Non-parametric methods imply that one does not a priori assume a chosen
model function to describe the data. This is in contrast to the search for the
maximal variance reduction described above, as well as to any method based
on Fourier transforms discussed further on, where harmonic model functions
are assumed from the start.

5.2.1 String Length Methods

The string or rope length methods are also based on the principle of least
squares. Lafler & Kinman (1965) initially introduced such a method with the
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purpose to determine periods of RR Lyrae stars from small samples of visual
data. Clarke (2002) presented a clear recent evaluation of these methods and
proposed their generalization to the application for multivariate data, the so-
called Rope Length Method. This methodology is very suitable to analyse time
series of multicolour photometric observations or of radial velocity variations
from different spectral lines. The prime disadvantage of these methods, the
long computation time needed, has largely been reduced with current speed
of modern computers, except for very rich data sets. Nevertheless, the string
and rope length methods are much less often applied compared with those
discussed in the following sections. This has to do with the multitude of false
peaks compared with Fourier methods, as we will show below. On the other
hand, the non-parametric methods may be preferred to search for periodicity
in strongly non-sinusoidal variations. These not only occur for large-amplitude
pulsators, but also for eccentric and/or eclipsing binary light curves.

Consider again measurements of a quantity x at different times ti, x(ti)
with i = 1, . . . , N . The phase φ(ti) corresponding to the frequency ν, or to the
period Π = 1/ν, with respect to the reference epoch τ is defined as follows:

φ(ti) = [ν(ti − τ)] =
[
ti − τ

Π

]
, (5.11)

where [y] stands for the decimal part of y, increased by one if y is negative.
From this definition it follows that 0 ≤ φ < 1. A plot of the observations x(ti)
as a function of φ(ti) is called a phase diagram. An example for the simulated
data shown in Fig. 5.1 is provided in Fig. 5.2.

For each trial frequency ν, taken from a grid of test frequencies, the original
data x(ti) are first assigned phases φ(ti), which are then ordered in ascending
value 0 ≤ φ1, . . . , φN < 1. For each trial frequency, the original Lafler-Kinman
statistic performs a “string length” summation of the squares of the differences
between the consecutive phase-ordered values. Following Clarke (2002), we
advise the use of the following modified string length statistic:

ΘSL(ν) ≡

N∑

i=1

[x(φi+1) − x(φi)]
2

N∑

i=1

[x(φi) − x]2
× N − 1

2N
, (5.12)

where x is the mean value of the measurements and x(φN+1) is taken to be
equal to x(φ1). The sum in the denominator of Eq. (5.12) is nothing but the
product of the number of measurements with the variance of the data set
such that ΘSL is independent of the noise in the data. Moreover, the factor 2
results in a normalized statistic with continuum level unity. If the time series
contains periodicity with frequency ν, then ΘSL will reach a minimum at ν
while fluctuations in ΘSL due to the noise will result in a level ΘSL ≈ 1.0.
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Fig. 5.2. Simulated data from Fig. 5.1 drawn in a phase diagram where the arbitrary
reference epoch τ was chosen such as to place the maximum of the observable at
phase φ = 0.25. The full line is the phased fit for the frequency 0.123456789 d−1 or
for 2.123456789 d−1 shown as dotted and full line in Fig. 5.1.

Fig. 5.3. Simulated gapped data representing a typical time series for a ground-
based single-site campaign of a pulsating star.

A typical example of a simulated single-site time series of a star discovered
as a new variable is shown in Fig. 5.3. These data represent the following
situation. The discovery of the variability is made in one season. A few follow-
up tests are being done some months later, confirming the variability, and a
dedicated campaign is then undertaken to derive the periodicity in the next
year. The simulated data have a standard deviation of 0.696 and a variance
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Fig. 5.4. Statistic ΘSL according to Eq. (5.12) of the data shown in Fig. 5.3.

of 0.485. The white noise has a standard deviation of 0.01111 and a variance
of 0.00012.

The string-length statistic of this prototypical time series is shown in
Fig. 5.4. One notices clear minima with a daily repetition, the minimum of
ΘSL occurring at the input frequency 5.123456789d−1. A forest of peaks also
occurs for frequencies below 2 d−1. The occurrence of minima at subharmon-
ics of the frequency and of their aliases (see Section 5.3 for a definition) is a
general property of the frequency analysis methods based on phase diagrams
(see, e.g., Cuypers 1987 for an extensive discussion) and is considered as one
of its disadvantages.

After having computed ΘSL comes the task to try and disentangle which
of the minima is the real oscillation frequency. In principle, this is the one
corresponding to the deepest minimum. In practice, however, the interaction
between the effects of the time sampling and (non-white) noise may imply
a minimum in ΘSL deeper than the one for the true oscillation frequency.
It can be helpful to draw phase diagrams of the few deepest peaks in ΘSL

to discriminate the true frequency from false ones, besides comparing their
variance reduction fv from a least-squares fit using the peak values of the
candidate frequencies as starting values for the fit. In Fig. 5.5 six such phase
diagrams are shown. These make it evident, in this prototypical example, that
5.123 d−1 is the true frequency. Note, however, that also its alias frequencies
near 4.121 d−1 (middle left) and 7.129 d−1 (lower left) give “good” phase di-
agrams in the sense that the periodic variability is clearly present in them.
These phase diagrams also make it clear why the string-length statistic leads
to a minimum for them. One should therefore not mistakenly belief that the
frequency is real as soon as clear variation is seen in its phase diagram. All
apparently significant deep minima in the statistic (or high peaks in Fourier
analysis, see further) will produce phase diagrams in which one can see the
variability, even if the selected frequency is a noise peak. The right panels are
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Fig. 5.5. Phase diagrams for six minima in ΘSL found from Fig. 5.4. The phases for
the data (dots) and harmonic fit (full lines) are computed for 5.123 d−1 (upper left),
4.121 d−1 (middle left), 7.129 d−1 (lower left), 2.562 d−1 (upper right), 1.021 d−1

(middle right), 0.244 d−1 (lower right).

those for half of the true frequency, and for frequencies due to a mixture of
effects due to harmonics, the noise and the sampling. From the upper right
panel it is again apparent why subharmonics of the true frequency also deliver
a low value of the string-length statistic. The examples for the other two spu-
rious frequencies show that the phase diagram can be a very useful tool. The
phase coverage of the data and the amplitude of the fit with respect to the
peak-to-peak variation is bad for these diagrams. This would also have been
clear from a least-squares fit as it would result in an insignificant amplitude
and a low variance reduction fv for these cases. If the data are not well-spread
in phase for limited data sets, but cluster narrowly at particular phases and/or
the variability occurs mainly at phases where there are no data points, then
one is probably also dealing with a false frequency. These issues are important
to check for and justify the use of phase diagrams besides computation of fv.

The behaviour of ΘSL was studied extensively from simulations by Clarke
(2002), to whom we refer for more information. He computed cumulative
distribution functions for ΘSL in order to develop confidence levels for it as
a function of data sampling and size. His work mainly focused on small time
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series, though. This is also the case for the evaluation of earlier versions of
different string length statistics as those by Lafler & Kinman (1965), Burke
et al. (1970), Renson (1978) and Dworetsky (1983).

With the goal to perform empirical mode identifications, asteroseismolo-
gists often gather multicolour observations of their target stars. The measure-
ments in different filters of a photometric system are usually taken as close as
possible in time, or ideally simultaneously, as explained in Chapter 6. Most
often, however, the frequency analysis is performed for the different colours
separately. One then either accepts the frequency value derived from the fil-
ter that delivered the highest signal-to-noise ratio (S/N ratio), or determines
a weighted average frequency based on the values obtained for the different
colours. The same is true for observables derived from different spectral lines,
which are of course necessarily simultaneous. Although it is in principle pos-
sible to extend most frequency analysis techniques to multivariate data (see
Section 5.6), such an endeavour is usually not undertaken. Nevertheless, using
a weighted statistic has significant advantages in some cases, as we will dis-
cuss below for the parametric methods. It is a major advantage of the string
length methods that they allow straightforward generalisation to a multivari-
ate treatment.

The brightness variations in different photometric bands due to oscilla-
tions are strongly correlated. Depending on whether or not there are phase
differences between the colour curves of the pulsating star, the measurements
plotted in a brightness-brightness diagram for two different filters lie on a
straight line or an ellipse-like structure. They can hence be connected by a
“rope” consisting of various connecting strings, whose squared length can be
added, again after assigning a phase to each measurement and ordering the
data according to increasing phase. The same reasoning can be repeated for
all the k = 1, . . . , Z filters in which a photometric time series has been ob-
tained or for the Z spectral lines from which a radial velocity has been derived.
Clarke (2002) proposes the following statistic for multivariate time series:

ΘRL(ν) ≡ 1
Z

Z∑

k=1

⎛

⎜⎜
⎜
⎜
⎜
⎝

N [k]∑

i=1

[xk(φi+1) − xk(φi)]
2

N [k]∑

i=1

[xk(φi) − xk]2
× N [k] − 1

2N [k]

⎞

⎟⎟
⎟
⎟
⎟
⎠
, (5.13)

where xk(φi) is the magnitude in filter k or radial velocity from line profile k
for each of the measurements taken at times t1, . . . , tN after re-arranging the
data such that φ1, . . . , φN increases from 0 to 1 for each of the test frequencies
ν. It is rather cumbersome, however, to interpret the outcome of this statistic
for extensive multicolour asteroseismic time series due to the numerous false
frequency peaks.



348 5 Frequency Analysis

5.2.2 Phase Dispersion Minimization

The Phase Dispersion Minimization, or briefly PDM method, is another non-
parametric approach. It was introduced as an improved method compared
with string length methods. One searches for the frequency by requiring that
the spread of the data around an average curve in the phase diagram reaches
a minimum. The average curve is determined from average values of the data
in different phase intervals. We describe here the method as developed by
Stellingwerf (1978).

For each test frequency ν one divides the phase interval [0, 1] into B equal
sub-intervals, called bins. The bin index Ji = INT(Bφi) + 1, with INT(x) ≡
x− [x], determines to which bin each observation x(ti) belongs. Suppose that
the j−th bin contains Nj measurements. The average value of the data, the
sum of the quadratic deviations and the variance for this bin are

xj =
Nj∑

i=1

xij

Nj
, (5.14)

V 2
j =

Nj∑

i=1

(xij − xj)2 =
Nj∑

i=1

x2
ij −Njxj

2, (5.15)

s2j =
V 2

j

Nj − 1
, (5.16)

with xij the observation x(ti) with bin index Ji = j. The analogous quantities
for all data, x, V 2 and s2, are defined as

x =
N∑

i=1

xi

N
, (5.17)

V 2 =
N∑

i=1

(xi − x)2 =
N∑

i=1

x2
i −Nx2, (5.18)

s2 =
V 2

N − 1
. (5.19)

For the B bins we introduce the following quantities:

V 2
B =

B∑

j=1

V 2
j , (5.20)

V 2
G =

B∑

j=1

Nj (xj − x)2 . (5.21)

We hence find that
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V 2 = V 2
B + V 2

G. (5.22)

The differences between the bin averages xj and the average of the entire
data set are small whenever the test frequency is not present in the data. In
that case V 2

G is small compared with V 2. In the case where the true frequency
is close to the test frequency, the bin averages are very different from the
overall average and V 2

G is comparable with V 2. The search for the most likely
frequency in the data hence comes down to the search for a maximum of V 2

G,
which is equivalent with a search for the minimum of V 2

B.
The partition of the phase diagram into B equal bins can have disad-

vantages. It may very well happen that some bins are almost empty if B is
chosen to be large or if we have only few data points with a particular time
spread. For this reason one makes use of a more complicated bin/cover struc-
ture (B,C). The phase diagram is divided into B bins, each of length 1/B.
This partition is then applied C times, such that each partition is shifted over
1/(B×C) with respect to the previous one. The incomplete bin near phase 1
is completed with the data of the corresponding phase interval near φ = 0. In
this way one covers the phase diagram C times, and each partition contains
B bins. Such a bin structure allows one to make sure that each observation
belongs to at least one bin. Further on we denote the total number of bins as
BC ≡ B × C.

We subsequently introduce the statistic ΘPDM:

ΘPDM ≡

⎛

⎝
BC∑

j=1

(Nj − 1) s2j

⎞

⎠/

⎛

⎝
BC∑

j=1

Nj −BC

⎞

⎠

(
N∑

i=1

(xi − x)2
)

/ (N − 1)

, (5.23)

where s2j is defined as:

s2j ≡

Nj∑

i=1

(xij − xj)2

Nj − 1
. (5.24)

With the notation introduced we can also write ΘPDM as:

ΘPDM =

V 2
BC

/

⎛

⎝
BC∑

j=1

Nj −BC

⎞

⎠

V 2/ (N − 1)
=

V 2
BC

/C (N −B)
V 2/ (N − 1)

. (5.25)

A minimum in the ΘPDM−statistic corresponds to a minimum of VBC and so
this statistic is suitable to search for frequencies in the data. For each test
frequency that is not present in the data we will find ΘPDM � 1.

The ΘPDM−statistic defined in (5.23) was introduced by Stellingwerf
(1978) and is a generalisation of the Θ statistic used by Jurkevich (1971)
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which is only based on bins. Jurkevich’s method is therefore equivalent to
Stellingwerf’s for C = 1.

The more covers one uses, the larger the probability of finding the true
frequency, but the longer the computation time. In practice one usually takes
B between 5 and 20, so that sufficient data points per bin occur in order to
guarantee a well-determined bin average. Typical values for the number of
covers is from 1 to 10.

Fig. 5.6. Statistic ΘPDM according to Eq. (5.23) of the data shown in Fig. 5.3 using
10 bins and 2 covers.

In Fig. 5.6 we show ΘPDM for the time series shown in Fig. 5.3. Comparing
this statistic with ΘSL shown in Fig. 5.4 highlights a much “cleaner” statistic.
The peak structure is similar, except for the low frequency region where we
see much less false peaks for the PDM version of the statistic. This is due to
the far better ability of ΘPDM to judge the spread of data within the bins
with respect to the average bin value, compared with ΘSL’s evaluation of the
string lengths across the phase diagram as a whole. This comparison at once
makes it clear why users prefer the PDM statistic among the non-parametric
methods. Subharmonics still occur prominently, though.

Far more in use in asteroseismology these days are, however, the parametric
methods to which we turn now.

5.3 Parametric Frequency Analysis Methods

All the methods described in this category are based upon Fourier analysis,
i.e., one fits a harmonic model function to the data. One must therefore keep in
mind that these methods will do a very good job as long as the signal consists
of a combination of sine (or cosine) functions. Of course, any function that
has a more or less smooth behaviour can always be approximated by a Fourier
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series, such that the applicability of the parametric methods discussed here is
very good, particularly for frequency search. The methods are less suited to
analyse time series with strong discontinuous behaviour.

In frequency analysis based on Fourier transforms one also defines a func-
tion of test frequencies in such a way that it reaches an extremum for the test
frequency that is close to the true frequency present in the data, just as for the
non-parametric methods. The plot of this function is usually called the peri-
odogram, rather than the terminology of a statistic used in the non-parametric
methods.

We first recall some useful properties of Fourier analysis and subsequently
introduce different types of periodograms in use today.

5.3.1 The Continuous Fourier Transform of an Infinite Time Series

The Fourier transform of a function x(t) that fulfils the necessary conditions
of continuity and finiteness is given by

F (ν) ≡
∫ +∞

−∞
x(t) exp(2πi ν t)dt. (5.26)

Whenever we perform this transformation, we move from the time domain to
the frequency domain. The Fourier transform of the constant function 1, e.g.,
is Dirac’s delta function:

δ(ν) ≡
∫ +∞

−∞
exp(2πi ν t)dt, (5.27)

which has the following properties:
∫ +∞

−∞
δ(ν)dν = 1,

∫ +∞

−∞
δ(ν − ξ)g(ν)dν = g(ξ). (5.28)

Frequency determination from Fourier analysis is based on the fact that
the Fourier transform F (ν) of a function x(t), which can be written in terms
of a sum of harmonic functions with frequencies ν1, . . . , νM and amplitudes
A1, . . . , AM :

x(t) =
M∑

k=1

Ak exp(2πi νkt), (5.29)

is given by

F (ν) =
M∑

k=1

Akδ(ν − νk). (5.30)

Whenever x(t) is a sinusoidal function with frequency ν1, the Fourier trans-
form of x is only different from zero for ν = ν1 and ν = −ν1. The Fourier
transform of a multiperiodic function x(t), which is the sum of M harmonic
functions with frequencies ν1, . . . , νM , is a sum of δ−functions that are differ-
ent from zero for the frequencies ±ν1, . . . ,±νM .
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5.3.2 The Continuous Fourier Transform of a Finite Time Series

In practice, we never have the luxury to work with infinite continuous time
series. Let us go back to the definition of the Fourier transform of a signal x(t)
given in Eq. (5.26) and consider the case of a signal x(t) = A cos[2π(ν1t+ δ1)]
for which we have observations from t = 0 until t = T . In that case, the
continuous Fourier transform is

F (ν) =
∫ T

0

x(t) exp(2πi ν t)dt

=
A

2

∫ T

0

exp(2πi ν t) {exp[2πi (ν1 t+ δ1)] + exp[−2πi (ν1 t+ δ1)]}

=
A

2

{
exp(2πi δ1)
2πi (ν + ν1)

[exp[2πi (ν + ν1)T − 1] +

exp(−2πi δ1)
2πi (ν − ν1)

[exp[2πi (ν − ν1)T − 1]
}

= A

{

exp[iTπ(ν + ν1) + 2πi δ1]
sin[T

2 2π(ν + ν1)]
2π(ν + ν1)

+

exp[iTπ(ν − ν1) − 2πi δ1]
sin[T

2 2π(ν − ν1)]
2π(ν − ν1)

}

.

(5.31)

The periodograms are often displayed as power periodograms, i.e., |F (ν)|2
is plotted as a function of frequency ν. In this case, their shape is determined
by the function

sinc(x)2 ≡
(

sinx
x

)2

. (5.32)

We strongly prefer to work with amplitude periodograms, however, in which
case |F (ν)| is displayed. This will be done throughout the book, except for
some figures taken from the literature that display power. For simplicity we
omit the notation of absolute values and note F (ν) on the periodograms. The
function sinc(x) and its square are graphically depicted in Fig. 5.7.

Whenever T >> 1/ν1, the two frequency peaks following from Eq. (5.31)
centred at −ν1 and ν1 are well separated such that it is justified to limit
display of the transform to ν1 > 0 as we will do throughout the book. In this
simple case, the maximum of the sinc or sinc2 and its centre of gravity occur
exactly at ν1.

As a first rough measure of the frequency accuracy, we could consider the
width of the sinc peak, i.e., � 1/T . This is sometimes termed the Rayleigh cri-
terion. In practice, however, any observed peak will have a much more complex
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Fig. 5.7. The sinc function (left) and its square (right).

shape due to observational noise, to the finite number of measurements over
the interval [0, T ], and to multiperiodic beating between oscillation modes re-
sulting in frequency interference. As stressed by Schwarzenberg-Czerny (2003),
the Rayleigh criterion only provides a lower limit to the accuracy reachable.
The true accuracy is necessarily dependent on the S/N ratio. The realistic
case thus requires a more sophisticated estimate of the frequency error, which
will be treated in Section 5.5.

Whenever simultaneous oscillations occur, x(t) will be of a form like
Eq. (5.1). In such a situation, the frequencies ν1, . . . , νk can only be well sepa-
rated provided that T >> 1/|νi−νj| for all pairs i �= j. When this condition is
not fulfilled, interference occurs in the periodogram and the ability to identify
the correct frequency values depends largely on the phase difference between
the modes as well as on their amplitude ratios. Loumos & Deeming (1978) first
studied the resolving power of a periodogram and derived that the frequencies
νi and νj are separated when 1/T < |νi −νj | < 1.5/T , but the maxima do not
occur necessarily at the real frequencies. They also concluded that the differ-
ence between two peak frequencies in the periodogram and the real frequencies
are negligible whenever |νi−νj | > 2.5/T , because the first sidelobe of one sinc
function no longer interferes with the main peak of the other sinc function.
This rule-of-thumb was further elaborated upon by Christensen-Dalsgaard &
Gough (1982), who made a deeper investigation of the resolving power in a
periodogram focussing on solar-like oscillations. They came up with a similar
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condition for accurate frequency separation of |νi − νj | > 2/T covering all
cases of relative phases of the modes.

Things get more complicated when the time series does not cover one time
interval [0, T ], but is a concatenation of continuous data spread over several
different time intervals [0, T1], [T2, T3], [T4, T5], . . ., i.e., in the case of gapped
data.

The degradation of the Fourier transform from dream to what is not even
yet reality in frequency analysis is illustrated in Fig. 5.8. In this figure, we
compare the Fourier transforms for an almost infinite noiseless time series
(1 000 000 data points spread over 1 000 d) with one of a finite noiseless series of
10 000 points spread over 10 d and a randomly gapped finite noiseless series of
4472 points with a total time span of 10 d, all for a simple noise-free sinusoidal
signal in the approximation of continuous measurements (i.e., still far too
optimistic). The graph speaks for itself and makes one realize why frequency
analysis of astronomical time series is so inherently difficult even if the data
are close to being noise-free.

In reality, the gaps in data sets are not randomly distributed. In the simple
case with one interruption during a time ΔT , the sinc function determining
the periodogram (see Fig. 5.7) will be modulated by a term cos[ΔTπ(ν− ν1)].
This modulation factor introduces fine structure in the periodogram peaks
whose relevance depends mostly on the values of ΔT and T . Two examples
are provided in Fig. 5.9 where the time series used in the middle panel of
Fig. 5.8 was interrupted for respectively two days from day 4 until day 6 and
for six days from day 2 until day 8. These interruptions imply a strong rise in
the height of spurious frequencies that are due to the gap compared with the
situation where there is no interruption in the data (middle panel of Fig. 5.8),
particularly when the gap is large. These spurious frequencies are termed alias
frequencies and will be defined in the following section.

In real data, the value of the modulation factor will be affected by noise
and may differ substantially from a simple cosine value, even if there is only
one large gap.

5.3.3 Real Life: The Discrete Fourier Transform

For a real data set, the function x(t) is only known for a discrete number
of time points ti, i = 1, . . . , N . We are thus unable to determine its F (ν).
Following Deeming (1975), we introduce the discrete Fourier transform of the
function x(t):

FN (ν) ≡
N∑

i=1

x(ti) exp(2πi νti). (5.33)

This transform can be calculated whenever the N measurements of the func-
tion x(t) are available.

It is clear that FN differs from F , but we can associate them with each
other through the window function defined as
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Fig. 5.8. Fourier transforms of an almost infinite noiseless time series with 1 000 000
points spread over 1 000 d for a harmonic signal with frequency ν = 5.123456789 d−1

(top), of a noiseless time series with ten thousand points and a finite time span of
10 d (middle) and of a gapped finite noiseless time series with 4472 points and a
time span of 10 d (bottom).

wN (t) ≡ 1
N

N∑

i=1

δ(t− ti). (5.34)



356 5 Frequency Analysis

Fig. 5.9. Fourier transforms of a noiseless time series of a sine function with fre-
quency 5.123456789 d−1 generated for a finite time span of 10 d and containing one
large gap from day 4 until day 6 (top) and from day 2 until day 8 (bottom).

The window function and the properties of the Dirac function allow us to
transfer FN to an integral form:

FN

N
=
∫ +∞

−∞
x(t)wN (t) exp(2πi νt)dt. (5.35)

The discrete Fourier transform of the window function is called the spectral
window WN (ν) :

WN (ν) =
1
N

N∑

i=1

exp(2πi νti). (5.36)

The discrete Fourier transform can be written as the convolution of the spec-
tral window and the Fourier transform:

FN (ν)/N = (F ∗WN )(ν). (5.37)

If F (ν) is a δ-function at frequency ν1, then FN (ν)/N will have the same
behaviour as the spectral window WN (ν) at ν1 because FN (ν)/N = WN (ν) ∗
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δ(ν − ν1) = WN (ν − ν1). Comparison of the WN (ν) with FN (ν)/N near the
frequency ν1 thus helps one to conclude if the frequency ν1 may be real or
not. Whenever F (ν) is a sum of M δ−functions we have:

FN (ν)
N

= WN (ν) ∗
M∑

k=1

δ(ν − νk)

=
M∑

k=1

WN (ν) ∗ δ(ν − νk)

=
M∑

k=1

WN (ν − νk)

=
1
N

M∑

k=1

N∑

i=1

exp(2πi (ν − νk)ti).

(5.38)

Hence, FN (ν)/N is the sum of M spectral windows that are all centred around
the different frequencies νk. Due to the fact that WN (ν) can differ from zero
at frequencies ν that are not necessarily equal to νk, k = 1, . . . ,M , we expect
the presence of interference. This will give rise to maxima in the periodogram
that do not correspond to real frequencies. These maxima are due to noise
and/or the times of observation, which introduce spurious frequencies in the
periodogram. This phenomenon is called aliasing when it concerns peaks due
to the times of measurement and the false frequencies are termed alias fre-
quencies. The latter can be recognized as maxima in the window function at
frequencies different from zero. This property of the alias frequencies occur-
ring in the spectral window highlights one of the big advantages of Fourier
analysis in frequency searches.

The question of course arises: which alias frequencies are most common?
Let us assume for simplicity that we are dealing with measurements that are
evenly spaced: tj = τ + jΔt. In such a case of evenly spaced data, the spectral
window is given by:

WN (ν) =
1
N

N∑

j=1

exp(2πi ντ) exp(2πi νjΔt)

=
1
N

exp(2πi ντ)
N∑

j=1

exp(2πi νjΔt)

= exp(2πi ντ) exp(πi νΔt(N + 1))
sin(πνNΔt)
N sin(πνΔt)

,

(5.39)

in which we have made use of
N−1∑

j=0

zj =
1 − zN

1 − z
(5.40)

with z = exp(2πi νΔt). For τ = −(N + 1)Δt/2 we obtain
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WN (ν) =
sin(πNνΔt)
N sin(πνΔt)

. (5.41)

The absolute value of this function is periodic with period 1/Δt because
∣
∣
∣WN

(
ν +

n

Δt

)∣∣
∣ = |WN (ν)| . (5.42)

The function FN (ν) hence reaches a maximum in an infinite number of fre-
quencies νj = j/Δt. Evenly spaced data therefore give rise to a strong aliasing
effect.

The situation of unevenly spaced data does not allow one to derive the alias
frequencies in such a straightforward analytical way. However, one can show by
simulations that certain periodicities in the observation times, such as Δt = 1
sidereal day, 1 sidereal year, etc., will also give rise to alias frequencies. We
call these the one-day aliases , or the daily sidelobes,occurring with intervals
of ±1, ±2, . . . when the frequency is expressed in d−1 or, equivalently, with
intervals of multiples of ±11.5741μHz. These are particularly troublesome in
the observation of solar-like oscillations, showing high-order acoustic modes,
where frequency separations of this magnitude are common. The one-year
alias occurs with intervals of 0.00274d−1 = 0.0317μHz, etc. Thus also aliases
with intervals of 1.00274d−1 = 11.6225μHz occur for data sets spanning more
than one year. Such an alias structure was already very clearly seen in Figs 5.4
and 5.6.

The total time span of the data, as well as particular gaps in them, will
give rise to additional alias frequencies that are due to uncertainties in the
number of cycles in or between the gaps. Moreover, regularity in the sampling
with intervals close to (a multiple of) the intrinsic periodicities of the star
will inevitably hamper the discrimination between the true frequencies and
their aliases. An example of the latter situation occurred in Figs 2.16 and
2.17, where peaks at ν and 1−ν are almost indistinguishable in the single-site
ground-based data of the slowly pulsating B stars HD 74195 and HD 123515,
which exhibit periodicities near one day.

All these caveats due to aliasing should be checked carefully in any fre-
quency analysis through a detailed study of the spectral window. We show
in Fig. 5.10 the spectral window according to the definition in Eq. (5.36) of
the time series shown in Fig. 5.3. Spectral windows computed according to
Eq. (5.36) are symmetric with respect to zero frequency. The daily and yearly
aliasing are apparent in this plot. Other examples were given in Figs 2.4 and
2.43 in Chapter 2. Nevertheless, we advise to take a different approach in prac-
tice. Indeed, for real data it is more informative to plot the discrete Fourier
transform of an artificial, noise-free sinusoid at a determined frequency (or
frequencies). The reason is that the negative part of the discrete Fourier trans-
form may have an effect on the positive part of the periodogram. The latter
approach therefore gives the best guidance to discriminate real from false
frequencies. This approach is represented in Fig. 5.11 for the data shown in
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Fig. 5.10. Spectral window of the data shown in Fig. 5.3 computed according to
Eq. (5.36).

Fig. 5.11. Discrete Fourier transform of an noise-free sinusoid with amplitude 1 at
frequency 5.123456789 d−1 for the sampling shown in Fig. 5.3.

Fig. 5.3, in which the discrete Fourier transform of an artificial sinusoid com-
puted at the sampling of the time series is shown. It gives us at once the
complete picture of how FN (ν) would look like if only this one frequency is
present in the data. In the current artificial example with only one periodic
signal, the discrete Fourier transform of this artificial noise-free sinusoid will
be almost indistinguishable from the one of the observed time series, since
the latter had white noise with a low standard deviation of only 0.0111. For
another example in the case of a multiperiodic pulsator we refer to Fig. 2.21
in Chapter 2.

All these examples, and numerous others in the literature as well as sim-
ulations, lead one to the following conclusions. The heights of the alias peaks
and of the noise peaks in the spectral window express the lack of knowledge
from the data set. One must realize that both the noise and the true sig-
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nal have an amplitude and a phase and that both are convolved in complex
Fourier space. The noise signal may thus add to or subtract from a real fre-
quency peak. Noise may also add to or subtract from an alias peak. Finally
noise may do nothing to real peaks. We therefore advise to study the spectral
window in detail in any frequency analysis before making firm conclusions on
frequencies.

So far, we have not discussed the practicalities of the interval of test fre-
quencies one should consider. This can and should be derived from the data
set. It is customary to take zero frequency as a lower limit, since the limit-
ing case of an infinite oscillation period is then covered. The highest useful
frequency to search for is the so-called Nyquist frequency νNy. One can show
that νNy = 1/2Δt, with Δt the sampling step in the case of evenly spaced
data. Some authors therefore use the same formula, taking as Δt the average
of all the sampling intervals in the case of unevenly spaced data. In practice,
however, the Nyquist frequency can be quite different from this value if nu-
merous large gaps and/or serious undersampling or oversampling occur in the
data set. In that case, it was shown by Eyer & Bartholdi (1999) that a better
approach to obtain the Nyquist frequency is to take νNy = 1/2p, with p being
the greatest common divisor of all differences between consecutive observation
times. This is rather cumbersome to be used as daily approach in practice. A
good and fast way to make a realistic estimate νNy in the case of unevenly
sampled data, appropriate whenever the deviation from equidistance is not
too severe, is to take the inverse of twice the median value of all the time
differences between two consecutive measurements of the entire data set.

One should not blindly believe that peaks occurring above the Nyquist
frequency in the periodogram cannot correspond to true frequencies. It may
very well be that a particular frequency occurring as highest peak in the com-
puted periodogram is, in fact, an alias of the true frequency that occurs above
νNy. This would still allow the detection of the true frequency, by implica-
tion, even though it occurs above νNy. In any case, such a situation would
call for further observations at higher sampling rate to rule out the original
low-frequency aliases. If the type of star is known, one can also accept the
frequency outside of the interval up to νNy on astrophysical arguments.

As we have shown, the irregular sampling of data usually implies a compli-
cated response in the Fourier transform. It can alter the peak frequencies and
the amplitudes of the signal, besides introducing the occurrence of very large
false peaks. Several different definitions of periodograms have been devised to
try and overcome impracticalities in the Fourier transform. We discuss some
of them below.

5.3.4 The Classical Periodogram

Assume we have a time series of N measurements (ti, x(ti)). The classical peri-
odogram was defined originally in meteorology (Schuster 1898) and is written
as follows:
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(5.43)

If the signal we are searching is a pure harmonic one of the form x(ti) =
A cos(2πν1ti), the periodogram will have the value

PN (ν1) =
1
N

{
N∑

i=1

A cos(2πν1ti) sin(2πν1ti)

}2

+
1
N

{
N∑

i=1

A cos2(2πν1ti)

}2

(5.44)
at frequency ν1. For large N we have

N∑

i=1

cos(2πν1ti) sin(2πν1ti) ≈ 0,
N∑

i=1

cos2(2πν1ti) ≈ N/2, (5.45)

and so PN (ν1) ≈ A2N/4 for N → ∞. For ν �= ν1, positive as well as negative
terms occur and these will largely compensate each other. The overall sum
will thus be small for such a test frequency.

The frequency ν for which PN (ν) is maximal is the most likely one present
in the data. For sufficiently extensive data sets, e.g., those with a couple of
hundred data points (as in Fig. 5.3, e.g.), the approximation PN (ν1) ≈ A2N/4
is reasonably good. This is why we advise to consider the amplitude spectrum
rather than the power spectrum, i.e., to plot and analyse

A(ν) =

√
4PN (ν)
N

(5.46)

as a function of test frequency ν. After all, the amplitude of a mode is what
we hope to interpret in terms of the physics of the star.

5.3.5 The Lomb-Scargle Periodogram

The periodogram introduced by Lomb (1976) and further improved by Ferraz-
Mello (1981) and Scargle (1982), is defined in a different way than the classical
periodogram. We present here the formulation by Scargle (1982) and speak of
the Lomb-Scargle periodogram as it is often done in the literature:

PLS(ν) =
1
2

{
N∑

i=1

x(ti) cos[2πν(ti − τ)]

}2

N∑

i=1

cos2[2πν(ti − τ)]

+

{
N∑

i=1

x(ti) sin[2πν(ti − τ)]

}2

N∑

i=1

sin2[2πν(ti − τ)]

.

(5.47)
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Fig. 5.12. Lomb-Scargle periodograms according to Eq. (5.47) for the data shown
in Fig. 5.3.

In this expression, the reference epoch τ is chosen in such a way that

N∑

i=1

cos[2πν(ti − τ)] sin[2πν(ti − τ)] = 0, (5.48)

or, equivalently

tan(4πντ) =

N∑

i=1

sin(4πνti)

N∑

i=1

cos(4πνti)

. (5.49)

Using the simplifications in notation introduced in Eqs (5.5), the Lomb-
Scargle periodogram is written as:

PLS(ν) =
1
2

{
c2x
c2

+
s2x
s2

}
. (5.50)
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It takes the value A2N/4 for a harmonic signal with frequency ν1 and for
sufficiently large N . The amplitude spectrum based on the Lomb-Scargle pe-
riodogram is therefore defined by Eq. (5.47):

ALS(ν) =

√
4PLS(ν)

N
. (5.51)

We show in Fig. 5.12 ALS(ν) for the simulated data shown in Fig. 5.3. The
median value of the subsequent time differences for this data set amounts
to 0.012 d, such that the Nyquist frequency is estimated to be near 42 d−1.
The whole Lomb-Scargle periodogram up to that value is shown in the top
panel, while the lower panel is an enlarged section focusing on the region
[0, 10] d−1 where significant amplitude occurs. It can be seen that this lower
panel is indeed almost indistinguishable from Fig. 5.11 as predicted for this
monoperiodic signal with white noise of low standard deviation. Compare this
with the idealized situation of having a continuous Fourier transform of an
almost infinite noiseless signal at one frequency with which we started this
section (upper panel of Fig. 5.8)!

One of the reasons to have introduced the Lomb-Scargle periodogram is
that its value does not change when all time values ti are replaced by ti + T
because of the definition of τ . Another reason has to do with hypothesis testing
(see Section 5.4).

Horne & Baliunas (1986) and Schwarzenberg-Czerny (1997) have proved
the Lomb-Scargle periodogram to be equivalent to the variance reduction
fv obtained from fitting a sinusoid at test frequencies by least squares, as
explained in Section 5.1. It is thus good practice to fit harmonic series of si-
nusoids at test frequencies to data to search for non-sinusoidal signals as well.
This proof implied that the original motivation for the use of non-parametric
methods as more efficient tools to detect non-sinusoidal signals than paramet-
ric ones weakened considerably, particularly so since they require a lot more
computational time and introduce a complex spectrum with subharmonics
and their aliases.

5.4 Significance Criteria

During a frequency analysis, one of course needs to adopt a stop criterion to
decide whether or not a candidate frequency is still significant or not. For ob-
vious reasons, this aspect of frequency analysis has received a lot of attention.
To derive the significance of a frequency one needs to know the distribution
function of the employed frequency statistic. As a consequence of the data-
driven approach of the frequency analysis methods outlined above, one is
unable to construct appropriate distribution functions based on theoretical
principles.

Stellingwerf (1978) and Cuypers (1987) derived that the significance of
ΘPDM can be related to an F -test. However, Schwarzenberg-Czerny (1997)
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pointed out that the sensitivity of the significance test proposed by these
authors is poor and he demonstrated that ΘPDM rather follows a β distribu-
tion. It was shown by Scargle (1982) that the distribution function for the
Lomb-Scargle periodogram belongs to the exponential family, but it has to
be kept in mind that this is only true for N → ∞. Moreover, the author
could not come up with a simple treatment of the statistical properties of
ALS. Schwarzenberg-Czerny (1997) came to the important conclusion that all
methods outlined in this chapter are mathematically equivalent for a given
sampling, binning and weighting pattern.

Schwarzenberg-Czerny (1998) demonstrated that an empirically derived
β distribution is the only valid approach to derive good significance levels
and that theoretical distributions as used in e.g., Scargle (1982) or Horne
& Baliunas (1986, the so-called False-Alarm Probability or FAP) have to
be treated with caution. It is therefore common practice these days to take
a frequency peak as significant whenever its amplitude in the periodogram
is above a particular empirically determined critical value, i.e., to let the
data speak for itself rather than relying on assumptions about the (uncertain)
statistical model distributions.

Depending on the data set and authors, different so-called S/N level sig-
nificance criteria are considered appropriate and adopted. The S/N level is
computed as the average amplitude in a well sampled periodogram of the final
residuals and for an appropriate interval in the frequency region where the
candidate frequency is situated. We denote this level by σres. The S/N level of
a particular frequency is then computed as the ratio between its amplitude and
σres. Breger et al. (1993) derived empirically, from experience with numerous
data sets resulting from δ Sct network campaigns, that a frequency can be very
safely considered to be significant whenever its amplitude, computed either in
the time domain or in the frequency domain, fulfils A > 4σres. This result was
supported from simulations based on data assembled with the Hubble Space
Telescope Fine Guide Sensors and assuming photon-dominated white noise
by Kuschnig et al. (1997). They concluded that the criterion A > 4σres cor-
responds to a 99.9% confidence level of having found an intrinsic peak rather
than one due to noise. The confidence levels corresponding to A > 3.6σres

and A > 3σres are respectively 95% and 80% for photon-dominated noise.
Since noise peaks can reach a 3σres level with 20% probability, we do not con-
sider this to be a sufficiently safe significance criterion. In reality, the noise is
not photon-dominated for most data sets, particularly those assembled from
the ground. Moreover, the noise is usually correlated, i.e., non-white. Un-
fortunately, the true noise profile may be very hard to compute (see also
Section 5.5). This is why this step is often omitted and the abovementioned
criterion of A > 4σres is adopted as a very safe one, at least when only one
data set is at hand.

For the example of the simulated data shown in Fig. 5.3, we derive the
frequency from Fig. 5.12, compute the residuals from subtracting the least-
squares fit shown in the upper left panel of Fig. 5.5 from the data, recompute
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Fig. 5.13. Lomb-Scargle periodogram of the residuals after subtracting the fit shown
as full line from the data in the upper left panel of Fig. 5.5. Note that this pe-
riodogram’s y-axis is enlarged with a factor 300 compared with the one for the
original data before prewhitening shown in Fig. 5.12.

the Lomb-Scargle periodogram for these residuals and derive the noise level
of the residuals in the frequency domain. The periodogram of the residu-
als is shown in Fig. 5.13 and was computed with the same sampling as the
original periodogram according to the frequency accuracy discussed in the
following section. One should not undersample the periodogram for the S/N
level computation (nor for the frequency derivation!). The average ampli-
tude in Fig. 5.13 amounts to 0.0011 and is a good estimate of σres in the
considered frequency interval of [0, 10] d−1. This implies that the frequency
ν = 5.123456789d−1 reaches a level of 909 σres for this example. One can
easily derive from Fig. 5.13 that the highest noise peaks in [0, 10] d−1 reach a
level of 3 σres. The highest noise peaks in the interval [0, νNy] d−1 reach 3.6
σres.

Examples of significance level computations for real data were already
shown graphically in Figs 2.21 and 2.27 for the multisite campaigns of the
β Cep star 12 Lac (Handler et al. 2006) and of the pre-main-sequence star
IP Per (Ripepi et al. 2006b). We refer to the original papers for the details of
the adopted criteria and their means of computation of the S/N level. More
examples will be treated in Chapter 7.

One can take a less conservative attitude than A > 4σres whenever more
than one independent data set is available for analysis (see, e.g., Figs 2.16
and 2.17 and De Cat & Cuypers (2003) for additional examples). One is
usually also less conservative when it concerns the acceptance of combination
frequencies, such as multiples or linear combinations of frequencies, which
have already passed the requirement of A > 4σres. In both these cases, i.e.,
for frequencies present in independent data sets or for combination frequencies
searched in one data set, we advise to use A > 3.6σres as a safe condition of
acceptance.
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5.5 Error Estimation of the Derived Frequencies

Once the user has reached the stage to have concluded that M frequencies
with determined values are present in the data, the question of final error
estimation of all the unknowns needs to be settled. We limit ourselves here
to the case of linear oscillations, with time dependence ∼ cos[2π(νt + δ)].
In order to compute the errors in an appropriate way, one can consider the
model described in Eq. (5.1), where M is assumed to be error-free due to our
inability to treat discrete parameter estimation in the data-driven frequency
analysis. The error estimation is done in the time domain here, by means of
least-squares fitting, because the periodograms only give a good amplitude
estimate in the limit of large N .

In general, error estimation is usually based on derivatives of a kind of
likelihood function, e.g., the one defined in Eq. (5.2). The goal should be to
make appropriate assumptions on the character of the data, on the properties
of the noise and on the inter-dependence of the model parameters that are
in our case the frequencies, their amplitudes and phases, and the mean value
of the observable xi, when deriving the errors. Appropriate error propagation
is a poorly developed field in astronomy in general, and its application in
asteroseismology is, unfortunately, no exception to this rule. We emphasize
below the shortcomings we have to live with in current analyses. The reader
is advised to keep these in mind in all the seismic interpretations based on
observed frequencies.

5.5.1 Data without Alias Problems

As a first approach to the problem of error estimation, we consider data not
suffering from aliasing and oscillation modes with infinite lifetime. This implies
that we assume there to be no ambiguity in selecting the true frequency values
from the methods outlined above. We discuss the complication introduced by
aliasing separately further on.

A first approximation usually adopted is to assume the times of mea-
surement ti, as well as the reference epoch τ , to be error-free. As already
emphasized in Chapter 4, the observers always should care about the accu-
racy of the clocks they are using during the data gathering, particularly when
observing short-period oscillators. Even for data assembled with a carefully
calibrated clock, the assumption of having instantaneous measurements with
error-free timings is in general not valid. Indeed, the data gathering is done
by adopting a certain integration time during which photons are detected
by the instrument, and ti is usually taken to be the error-free time of mid-
exposure. The integration of course implies a smearing out of the oscillatory
signal over a fraction of the oscillation cycle for each of the modes. Moreover,
the integration time is sometimes not constant during an observing run, e.g.,
it is continuously adapted to the atmospheric conditions for ground-based
spectroscopic data.
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All this implies that the timings ti cannot be error-free. Moreover, they
are not independent of each other. The assumption of instantaneous measure-
ments with error-free timings may be a good approximation as long as the
temporal resolution of the data, i.e., the ratio of the integration times to the
oscillations periods, is very small, let’s say below 1%. This will in general not
be the case for high-resolution spectroscopic time series or for ground-based
photometric time series of compact oscillators. A remedy to this problem is
achievable, but it requires a good model description of the oscillatory be-
haviour and it is time consuming. The user can check a posteriori how much
the data set suffered from smearing over the oscillation cycles for each of the
modes after the frequency derivation is finished. This allows a measure of the
effect of this assumption on the frequency values and their amplitudes.

A second approximation in deriving error estimates is much more prob-
lematic than the first one: the assumption of having white uncorrelated noise
with average zero and constant variance σ2

N in time. The overall noise profile
of the data contains, in general, contributions from the instrument perfor-
mance and from the environmental conditions, such as the behaviour of the
atmosphere for ground-based data and the effect of stray light, satellite jitter,
proton impact, etc., for space data. It is clear that the noise profile must be
time dependent and that the different noise factors are by no means uncorre-
lated. Unfortunately, it is in general impossible to propagate all the different
noise factors appropriately, due to lack of good model descriptions for each of
them. The conclusion must therefore be that any error estimate ignoring the
correlations among the noise factors and their time dependence cannot be but
lower limits of the true errors.

A third approximation is to assume that there is no interference between
the different true frequencies and the noise peaks. This is an additional con-
dition compared with the resolution issue described in Section 5.3.2, where
interference among intrinsic frequencies was considered. For similar reasons
as outlined there, this approximation is valid whenever the noise peaks are
well separated from those of the intrinsic frequencies, a situation seldom en-
countered.

The three approximations described here are followed out of necessity to
avoid an ill-conditioned statistical description for the error derivation. Indeed,
in the derivation of the error of one particular parameter, a significant simpli-
fication is met when assuming that all other parameters are perfectly known.
This situation occurs when adopting the discussed four approximations. In
this case, one ends up with the following standard error estimate for the de-
rived amplitudes, phases and frequencies:

σν =
√

6 σN

π
√
N A T

, σA =

√
2
N

σN, σδ =
σN

π
√

2N A
(5.52)

with T the total time span of the data and N the number of data points
(Bloomfield 1976; Cuypers 1987; Montgomery & O’Donoghue 1999). In these
formulae, σN stands for the average error on each of the data points. Quite



368 5 Frequency Analysis

often, error estimates are not available for individual measurements, even in
the simplified assumption of uncorrelated time-independent noise. It is then
good practice to take the standard deviation of the residuals after removal of
all accepted significant frequencies as a realistic and conservative estimate of
σN . If the data are correlation, one should take this into account in the error
estimation (see, e.g., Schwarzenberg-Czerny 2003).

We note that the error estimates provided in Eq. (5.52) are 1σ errors, i.e.,
the true values of the frequency, amplitude and phase belong with 68.3%
certainty to the intervals [ν − σν , ν + σν ], [A − σA, A + σA], [δ − σδ, δ + σδ]
respectively. Much more common practice in statistics is to use the so-called
2σ error estimates, which imply that the true values are with 95.4% certainty
in the intervals [ν − 2σν , ν + 2σν ], [A− 2σA, A + 2σA], [δ − 2σδ, δ + 2σδ].

Schwarzenberg-Czerny (1991) has shown that the error estimate of the
frequency can also be done in the frequency domain, leading to the same
accuracy as the one discussed above in the time domain. Since he proved
both methods to be statistically equivalent, error estimation in the frequency
domain suffers from the same limitation of underestimating the variance due
to the four assumptions outlined above.

For the choice of the interval of test frequencies it does not make sense
to search for frequencies with a step much smaller than the value of σν given
in Eq. (5.52). A good guideline to start the first frequency search, before an
estimate of σν can be made, is to take a step of 0.1/T . Once the first frequency
is found, one can improve the frequency step by calculating σν and adapting
the step to this value for all subsequent frequency searches.

Another issue in the derivation of the errors is to assume that the oscil-
lation frequencies are independent. As described in Chapter 3, the oscillation
spectrum of a star is determined by its stellar structure and follows a clear
pattern dependent on the internal physical properties. So, even in the lin-
ear approximation, the oscillation frequencies cannot be independent because
they are determined by the same stellar structure. Deviations from linearity
even imply complex coupling between oscillation modes and their frequencies
that are also dependent on the stellar model. This is usually ignored in the
error estimation of frequency analysis. It will be discussed further for the Sun
in Chapter 7.

5.5.2 Data suffering from Aliasing

Most data sets have gaps, quite often leading to ambiguity in the selection
of the true frequency peak from its aliases when the duty cycle is limited.
The situation is usually far more complex than having one simple modulation
factor as in Fig. 5.9, because numerous data gaps, all with different values of
ΔT , occur. An accurate study of the spectral window, or the consideration of
independent data sets of the same star if available, may help to discriminate
between the true frequency peaks and their aliases. Sometimes, however, this
is impossible and in such a situation one has to take the uncertainty due to
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alias confusion into account in the error estimate of the frequency. As a rule-
of-thumb, one can take a peak to be uncertain when the difference between
its amplitude and the one of its aliases is less than the height of the highest
noise peaks. Indeed, noise peaks and real peaks convolve with each other in
complex space, such that they may add in amplitude, subtract in amplitude,
or anything in between.

The best way to proceed when alias confusion cannot be overcome is to
determine the full-width-at-half-maximum of the envelope of all alias peaks
that bring confusion, and to add this value to the frequency error given in
Eq. (5.52). While the full-width-at-half-maximum of the central peak depends
on the total time span of the data, as shown by Eqs (5.52), the one of the
envelope depends mainly on the duty cycle, as is clear from Fig. 5.9.

Finally, if the addition of a new frequency implies a modification of the
derived amplitudes and phases for previously determined frequencies (say by
more than 3σ) during the process of fitting multiple frequencies by least
squares, then there is interaction between the spectral window patterns of
the frequencies. In that case, the formal errors on amplitude and phase given
in Eqs (5.52) underestimate the true uncertainties.

5.6 The use of Weights in Merging different Data Sets
for Frequency Analysis

Very often, more than one time series is available for the analysis of a pulsator
and the question arises if one should merge them or simply analyse each of
them separately before making final conclusions. The goal of merging them
would be to reach a lower noise level in the Fourier transform, or a higher
frequency precision or a cleaner spectral window. In any case, appropriate
weights cannot be but data-driven, i.e., based on the noise properties and the
sampling of each of the separate data sets. This is why one cannot provide one
simple theoretical statistical treatment, nor perform all-encompassing simu-
lations encapsulating each of the different circumstances. We therefore limit
ourselves here to a brief discussion of some prototypical situations.

As a first example, we consider the situation of a white-light photomet-
ric multisite campaign with different instruments attached to telescopes of
different apertures and data gathered in different atmospheric conditions. In
this case, the data from the smaller telescopes have higher noise level, but,
on the other hand, they usually imply a better duty cycle. In such a situa-
tion one wants to investigate what data to include in the final analysis, and
whether weights should be used or not in the computation of the Fourier
transforms. It was shown in the highly recommended seminal paper by Han-
dler (2003b), who studied in detail the merging of such type of data from the
different telescopes of the WET consortium and for different targets, that the
use of appropriate weights is indeed advantageous compared with the use of
unweighted merged sets. He considered three different weighting schemes and
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concluded that weights proportional to the inverse local scatter in the light
curves produce the best result in Fourier space. The advised procedure is as
follows. After having completed the frequency analysis for the unweighted
merged data set, one computes the residuals and their standard deviation σ.
Each individual point is then weighted as follows:

⎧
⎨

⎩
wi = 1 if Ri ≤ Kσ,

wi = (Kσ/Ri)α if Ri > Kσ,
(5.53)

where Ri is the residual of data point i with respect to the unweighted least-
squares solution and K and α are free parameters to be adapted to the merged
data set. A Fourier transform of the weighted data is then computed to try and
improve the result in terms of finding the frequencies with amplitudes of better
S/N level and/or to find more significant frequency peaks. The best values of
K and α must be derived by using a few trial values and evaluating the noise
level in the Fourier transform. Typical values turn out to be K,α ∈ [0, 2]. Since
this method depends on the frequency solution found from the unweighted
merged data set, a scheme with a few iterations is the best approach. A similar
strategy may be advantages to follow when new data are merged with archival
ones of the same kind. Recent applications of the methodology evaluated by
Handler (2003b) are available in Rodŕıguez et al. (2003) for a δ Sct star and
in Vučković et al. (2006) for an sdB star.

As a second example, we consider the case of multicolour photometric data
obtained with the same instrument and having (almost) the same sampling.
This is also an often encountered situation, because the identification of the
degree l of the oscillation may be within reach in this circumstance. In this
case, the duty cycle is not improved by merging the different sets. As we will
show in the following Chapter, the amplitude of a mode is different in different
wavelengths and it depends also on the geometry of the mode (i.e., the number
and position of the surface nodal lines l and m) and on the direction to the
line of sight (inclination angle). For a specific star, the amplitude ratios will
be shown to be dependent on l only (Chapter 6). This implies that the best
wavelength to detect a mode is dependent on its degree. In addition, it involves
limb-darkening effects, as well as flux, gravity and temperature variations and
these may be quite different for different types of oscillations in different types
of stars. Pulsating B stars, e.g., have their largest amplitude in the U filter,
while the amplitude of pulsating A or F stars peaks at wavelengths of the
B filter, irrespective of the mode geometry. For one and the same star, the
l-dependence of the amplitudes implies that a particular mode may have an
amplitude just above the detection threshold of A > 4 S/N in one or a few
of the used filters, but not in all of them. It is therefore surely necessary to
analyse the time series of the different filters explicitly to decide upon the
reality of all the significant oscillation frequencies, and not just look at the
filter where the best S/N is reached. Indeed, the difference in detected mode
amplitude for the various filters may be larger than the difference in the noise
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level among the filters. Recent examples of this situation can be found in De
Cat et al. (2007) and Cuypers et al. (2009). The modes that have significant
amplitude in all filters will pop up better after (weighted) merging of the data
sets because the noise level is proportional to the number of data points as√
N , but those that are only significant in a subset of the filters may increase

or decrease in significance.
A similar situation to the previous one occurs for radial-velocity measure-

ments of different line profiles from échelle spectra. The amplitudes of the
modes may turn out to be quite different for different spectral lines because
of various reasons, such as a different intrinsic profile (Gaussian broadening
due to temperature versus Stark broadening due to pressure, e.g.), a different
line depth, a different skewness due to blending, different formation depth
in the atmosphere, a different limb darkening effect, etc. It may therefore be
worthwhile to consider merged data sets for the different spectral lines with
the same sampling, in the same way as outlined for the multicolour photom-
etry.

Finally, we consider the case of having data sets of very different nature,
i.e., different quantities obtained for different sampling, for one and the same
star. Examples are shown in Figs. 2.16 and 2.17 where Hipparcos, Geneva and
radial-velocity data of two SPBs are displayed. In this case, it is not obvious to
think of an appropriate weighting scheme similar to the one in (5.53) because
of the different physical units. Usually, the data are analysed separately first.
In a second step, one could simply lower the threshold of accepting a peak in
terms of amplitude, e.g., take A > 3.6 S/N as a necessary condition whenever
it is met for all the available independent time series. Sometimes, however,
oscillation frequencies are easier to detect in spectroscopy than in photometry,
depending on their l-value and one would want to give different weights to
the various data sets and lower the detection threshold further. This holds
the danger of taking noise peaks for real. A simple test in such a case may be
to standardize each of the separate Fourier transforms, i.e., to rescale them
to [0, 1] by dividing through the amplitude of the highest peak, and then
multiply them with the idea that, if additional frequencies at S/N below 4
would be present in each of the periodograms, they would have an improved
S/N in the multiplied periodogram while they would reduce in amplitude if
the frequency was a spurious peak present in only one of the independent
data sets. This method was employed by Aerts et al. (2006c) to unravel low-
amplitude frequencies from MOST, Hipparcos and radial-velocity data of the
β Cep star δCeti and by Rauw et al. (2008) to investigate the coherence
between candidate oscillation frequencies in photometry and spectroscopy of
a low-amplitude O-type pulsator.
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5.7 Damped Oscillations

The descriptions in the preceding parts were valid under the assumption that
the oscillation amplitude A and phase δ are constant in time, i.e., that the
modes under consideration have an infinite lifetime or a lifetime several orders
of magnitudes longer than the time series and that phase coherence is pre-
served over the entire observing run. This assumption is not valid whenever
growth and/or decay of modes occur during the obtained time series. The
best known example of such a situation is, of course, the one of stochastically
excited solar-like oscillations. Also modern high-precision radial-velocity mea-
surements of roAp stars contain evidence of growing and damping of mode
amplitudes.

We recall from Chapter 3 that, whenever an oscillation with frequency ν1

is damped, one has, instead of Eq. (5.9):

x(ti) = A cos [2π(ν1ti + δ)] exp(−ηt) + c, (5.54)

with η the damping rate which is also the inverse of the mode lifetime. Suppose
such a signal would be observed continuously over an infinite amount of time.
In that case, it is easy to show that the power at a test frequency ν equals

P (ν) =
1
4

A2

4π2(ν − ν1)2 + η2
. (5.55)

The power spectrum thus takes a Lorentzian profile around the frequency
ν1 with a half-width-at-half-maximum equal to η (see, e.g., Fig. 3.33). If the
signal is continuously observed during a finite time T , then the resulting peak
in the power spectrum is intermediate between the sinc2 function and the
Lorentzian, tending to the former for ηT << 1, and towards the latter for
ηT >> 1.

Even Eq. (5.54) is an idealization in that it implicitly assumes a sudden
excitation of the mode, followed by an exponential decay. As already explained
in Chapter 3, the modes are stochastically excited by random fluctuations due
to the turbulent motions in the convection zone. In this case, one has

P (ν) =
Pf (ν)

16π2ν2
1 [4π2(ν − ν1)2 + η2]

(5.56)

(cf. Eq. (3.308)), with Pf (ν) the average power spectrum of the forcing func-
tion. Given that the forcing function is a slowly varying function of frequency,
the result is a Lorentzian spectrum with a width determined by the linear
damping rate of the mode.

The uncertainty of the frequency, amplitude and linewidth of the stochasti-
cally excited modes is usually computed from maximum likelihood estimators
of fits to the Lorentzian profile expected for a mode, see, e.g., Libbrecht (1992),
Toutain & Appourchaux (1994), and Chaplin et al. (2002a,b), to list just a few
of the key papers in this area. These maximum likelihood estimators are based
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on the assumption of dealing with independent harmonic oscillators super-
posed on a general background noise spectrum, such as the one measured for
the Sun (e.g., Duvall & Harvey 1986, Kumar & Goldreich 1989). The appro-
priate computation of the estimators requires the addition of a large number
of independent realizations of the mode whose parameters are searched for.
Libbrecht (1992) cleverly solved this problem analytically, by splitting the so-
lar time series into a large number of sub-series, each with length longer than
the lifetime of the mode under study. This allowed him to compute the stan-
dard error of the mode frequency. Toutain & Appourchaux (1994) improved
this approach by comparing results based upon general maximum likelihood
theory applied to appropriate estimators for a symmetric Lorentzian profile
with those from Monte Carlo simulations. For a single mode, they came up
with the following approximation for the error of the mode parameters:

σ2
ν =

η

2πT

√
1 + β

[√
1 + β +

√
β
]3
, (5.57)

σ2
A =

ηπT

2
(1 + β)−3/2

(√
1 + β +

√
β
)−1/2

,

σ2
γ = 2πηT

(√
1 + β +

√
β
)−4

,

with γ ≡ ln(2η) and where β is the inverse signal-to-noise ratio in a single
frequency peak. These formulae are a good approximation of the lengthy full
expressions (given in Toutain & Appourchaux 1994) and replace the results
given in Eqs (5.52) for non-damped modes with an infinite lifetime.

Whenever the observed time series is a single realization of the spectrum,
the resulting frequency spectrum is only a random function with a Lorentzian
envelope. The observed profiles are asymmetric in this case and represent-
ing them by a Lorentzian cannot be but an approximation. Neglecting such
asymmetries in the fitting of the frequency peak causes systematic errors in the
inferred frequencies, such that the approximate formulae given in Eqs (5.57)
provide only a lower limit. The best way to proceed in this case is, therefore,
to perform simulations and fit the Fourier transforms of the observed time se-
ries with Lorentzian profiles to determine acceptable ranges for the frequency,
amplitude, and the mode lifetime. Such simulations have been performed ex-
tensively for the solar oscillation spectrum. It was found that the stochastic
nature of the excitation gives rise to a number of sharp frequency peaks, with
a distribution around the Lorentzian envelope. It thus cannot be assumed that
the maximum observed amplitude corresponds to the true frequency of the
mode.

Substantial care is required in analysing data of stochastically-excited os-
cillators and the simulations have to be designed on a case-by-case basis. We
refer to some of the case studies in Chapter 7 for more details on the technical
aspects of appropriate frequency analysis and mode parameter estimation for
damped oscillators.
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5.8 Eliminating Aliases

Several methods designed to “remove” false peaks from a periodogram have
been devised. The widest used one among them is the so-called CLEAN
method. The original CLEAN algorithm was written by Högbom (1974) in the
context of aperture synthesis. It was developed to help radio astronomers in
their interpretation of interferometric data by cleaning up the spatial window
pattern. This algorithm was later adapted by Roberts et al. (1987) to clean
up the spectral window pattern for frequency analysis.

CLEANing implies that one first constructs the dirty spectrum, which is
the Fourier transform of the data. Subsequently, one deconvolves this observed
spectrum with the window function shifted to the highest peak of the dirty
spectrum (cf. Figs 5.10 and 5.11). This deconvolution is done by first applying
a particular scaling to the window function according to the gain factor g,
with 0 < g < 2. Thus, one subtracts the scaled spectral window from the
dirty spectrum to produce a residual spectrum. This deconvolution process is
repeated until the strongest residual peak is below a specified cutoff level or for
a chosen number of iterations. At that point, the CLEAN algorithm restores
the removed frequency to the spectrum by convolving it with the CLEANed
residual spectrum. This process can be repeated at each prewhitening stage.

The first application of the adapted CLEAN version by Roberts et al.
(1987) in pulsating star research was made by Gies & Kullvanijaya (1988),
who used it to treat their data of line-profile variations of the B2III star
εPer, an archetypical line-profile variable without clear periodic photometric
variations due to high-l modes. Numerous applications have followed since.

Foster (1996ab) developed the CLEANest frequency spectrum. The nam-
ing is quite unfortunate, because CLEANest has not much to do with CLEAN.
The CLEANest spectrum is the sum of a discrete amplitude spectrum and
the residual spectrum. The discrete spectrum is derived from a model fit of
the best M frequencies to the data according to Eq. (5.1). This is done for one
frequency at a time, i.e., one starts with one frequency, tests the significance
of its amplitude, next one makes a fit to find the best pair of frequencies,
tests their amplitudes, continues with a fit for the best triple of frequencies,
etc. At a certain point, the fit for the best (M + 1) frequency set does no
longer lead to a significant peak for the (M + 1)th frequency. At that stage,
one constructs a composite graphical representation of the optimal discrete
amplitude representation of the M accepted frequencies and the amplitude
spectrum of the residuals after prewhitening the best fit for M frequencies.
This CLEANest spectrum thus is not a true frequency spectrum, but merely a
convenient graphic that captures the different stages of a least-squares fitting
procedure and its resulting residual spectrum.

Following Kurtz (2002), we issue some warnings in the use of these two
methods that were designed to eliminate aliases. It is in fact a crucial mistake
in frequency analysis to think that methods capable of eliminating aliases ex-
ist. Alias confusion in a data set can only be overcome by additional data.
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All the two methods described above do, is to hide the aliases for the user,
seemingly easing the interpretation in terms of intrinsic frequency detection.
One must keep in mind that the final result obtained by CLEANing depends
crucially on the choices of highest peaks made during the deconvolution, while
the CLEANest spectrum assumes that frequencies are not confused with their
aliases in the least-squares fitting. So both the CLEAN and CLEANest meth-
ods are ambiguous.

The main danger of CLEANing occurs in situations where the noise in
the data set under analysis has added amplitude to an alias or subtracted
amplitude from the true peak. If this is the case in such a way that the
alias peak has become the highest one in the periodogram, then this false
peak will be selected as the true frequency by the algorithm. The subsequent
iteration schemes of CLEAN will take away an amount of amplitude of the
true frequency according to the gain and number of iterations.

CLEANest will consider the least-squares fit at the alias frequency if the
noise has boosted its amplitude above the one of the true peak. It will then
start or continue an iterative least-squares fitting scheme based on one or
more alias frequencies rather than on true frequencies.

The user is thus easily fooled by these algorithms if they are used as a black
boxes without making a careful analysis of the spectral window at each step
of the prewhitening. We advise against their use for this reason, particularly
for inexperienced frequency analysts.

5.9 Conclusions

We provided the most commonly used methods to treat frequency analysis
of unevenly spaced data with large gaps of observables of variable stars. All
methods discussed here in detail are suitable to determine the oscillation fre-
quencies of stars whose modes have infinite lifetime. The string length meth-
ods and the phase dispersion minimization methods are of broader application
than stellar oscillations because they can handle non-sinusoidal signals or sig-
nals with variable amplitude without loss of accuracy. On the other hand,
the approximation of having sinusoidal signals, the basic assumption of the
methods based on Fourier transforms, is usually very good in the study of
stellar oscillations.

The reader has hopefully learned that frequency analysis of unevenly
spaced gapped data with noise is an inherently difficult mathematical problem
to solve. Methods based on Fourier analysis are best suited to apply signif-
icance criteria and to obtain frequency error estimation. One should never
forget to make a detailed inspection of the spectral window before coming
to final conclusions on the detected significant frequencies. One should also
check if the assumption of white Gaussian noise is justified.

Frequency analysis of data resulting from stars with damped modes is
much more cumbersome and requires a specific treatment, whose basic ingredi-
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ents have been pointed out here but whose detailed application is case-specific
and will be illustrated in Chapter 7.



6

Mode Identification

The basic data for asteroseismology are the pulsation frequencies, and we
have just shown in Chapter 5 how those are derived from the observations.
But before the frequencies can be used for detailed modelling, it is imperative
to know what pulsation mode gives rise to each frequency. Determining this is
called mode identification. The reason it is so important can easily be seen in
Fig. 1.7 in Chapter 1 for p modes. The frequency of pulsation is a measure of
the sound travel time along the ray path for p modes, and that is determined
by the variable sound speed and the length of the ray path itself. It is thus
critical to know the ray path, and that is specified by the pulsation mode ge-
ometry. The situation is similar for g modes (see Fig. 1.8). Mode-identification
techniques assign values to the discrete spherical harmonic quantum numbers
(l,m) of each of the detected oscillation modes. The amount of astrophysical
information that can be derived from the observed pulsations depends directly
on the number of successfully identified modes. Therefore, great effort is put
into mode identification in any seismic analysis.

For oscillations in the asymptotic frequency regime, the derivation of fre-
quency or period spacings often suffices to identify the modes for slowly ro-
tating pulsators. This can be achieved for the Sun, for solar-like oscillators
and for white dwarfs (Chapter 7). However, when only a limited number of
modes is excited to observable amplitudes, or when the modes do not follow
particular frequency patterns, or whenever a very dense frequency spectrum
is predicted, the frequency values alone are insufficient to derive the (l,m, n).
In this case, one cannot proceed with seismic modelling considering all values
for (l,m, n) for any of the detected frequencies. In order to limit the compu-
tation time of such forward modelling, the values of the degree l are usually
limited from arguments of partial cancellation. As we will show later on in
this chapter (see Fig. 6.4), the observed photometric amplitude of modes with
l ≥ 3 are a factor five to ten less than those of modes with l < 3 having the
same intrinsic amplitude, as first demonstrated by Dziembowski (1977b) and
already emphasized in Chapter 1. It is then customary to consider modes with

C. Aerts et al., Asteroseismology, Astronomy and Astrophysics Library, 377
DOI 10.1007/978-1-4020-5803-5 6, c© Springer Science+Business Media B.V. 2010



378 6 Mode Identification

l ≤ 2 and to assume m = 0 when no obvious evidence for rotational splitting
is found in the Fourier transform of the time series.

This procedure is not very satisfactory, though, because rotation can easily
result in non-equidistant splitting and imply merging of frequency multiplets
in such a way that they cannot be unravelled. Moreover, quite a number of
classical pulsators show evidence for modes with degree l ≥ 3 from spec-
troscopy, where the partial cancellation has a different effect than in photom-
etry, as will become clear from comparing Figs 6.4 and 6.14 further on. In
these cases, the assumption of l ≤ 2 or m = 0 is unjustified. Within astero-
seismology the quest for empirical mode identification has therefore become
an extended topic by itself. By this term we mean the assignment of values
of the spherical harmonic quantum numbers (l,m) to each of the frequen-
cies derived from the data, without relying on the (unknown) details of the
model properties of the star. To obtain a correct mode identification for each
detected oscillation frequency is usually impossible. However, even only one
correct (l,m) identification, e.g., the one for the dominant mode, can imply
a significant reduction of the free parameter space in the modelling, and is
therefore worthwhile to attempt.

Empirical mode identification is a sophisticated and time-consuming task.
It requires a detailed confrontation between oscillation theory applied to the
outer stellar atmosphere and observational characteristics different from the
frequencies, such as observed amplitudes and phases. All the methods we
present in this chapter were developed for the identification of heat-driven
nonradial modes whose lifetimes can be assumed infinite for their applica-
tion. The reason is that it is relatively easy to establish a value for the large
frequency separation of damped stochastically-excited oscillations and this
usually suffices to start the process of forward modelling efficiently. Examples
of mode identification from pattern recognition of solar-like oscillation fre-
quencies will be treated in Chapter 7. The current chapter is thus restricted
to mode identification of heat-driven modes. In what follows, we will speak
of the atmosphere of the star as the regions with negative log τ , τ being the
optical depth, while the parts where log τ is positive will be termed the stellar
envelope.

Essentially two types of diagnostics are in use to identify the modes. One
of them is based on time series of multicolour photometry, and the other
relies on time series of line-profile variations detectable from high-resolution
spectroscopy. The introduction of high-resolution spectrographs with sensitive
detectors in the 1980s, as outlined in Chapter 4, had a large impact on the
field of empirical mode identification. Spectroscopic data indeed offer a very
detailed picture of the pulsation velocity field, as will be outlined below. On
the other hand, it requires moderate to large telescopes equipped with sophis-
ticated instrumentation to be available for extended observing time spans. It
remains a challenge to obtain spectra covering the overall beat period of the
multiperiodic oscillation, with a high resolving power and with a high signal-
to-noise ratio for a good temporal resolution, i.e., for a ratio of the integration



6.1 Mode Identification from Multicolour Photometry 379

time to the oscillation periods below a few per cent. The latter condition is
necessary in order to avoid smearing out the oscillations during the cycle. Also,
the methodology to derive the full details of the pulsational velocity field (at
least six unknowns – see Section 6.2) is complicated. For this reason, multi-
colour photometric observations, which can only lead to an estimate l, but
which can be obtained from small telescopes, are still of utmost importance
for mode identification. These kinds of data are especially more suitable to
study long-period pulsations because small telescopes are available on longer
time scales. The most reliable results are obtained from the exploitation of
simultaneous multicolour photometry and line-profile data.

One remark we wish to repeat here was already made in Chapter 5: seek-
ing mode identification from observables implies the estimation of the discrete
numbers (l,m). However, while doing so, one also must estimate real-valued
unknowns, such as amplitudes and phases of the frequencies detected in ob-
servable quantities. This mixture of real and discrete unknowns cannot be
treated simultaneously with standard statistical techniques to estimate (l,m).
Therefore, any of the discriminating functions that will be defined below will
be computed for each set of (l,m) separately, and its minimal value for the best
choice of the continuous parameters will subsequently be compared among the
(l,m) couples to decide about the most likely one.

In the following, we describe the methods for empirical mode identifica-
tion. We divided the chapter according to the observational data available to
apply them. This also corresponds to the historical progression in this field of
research.

6.1 Mode Identification from Multicolour Photometry

A pulsating star changes in temperature and in geometrical cross-section over
its pulsation cycle, both of these contributing to variations in its bolometric
luminosity. As we discussed in Chapter 4, photometric observations measure
the intensity of the starlight reaching us – usually through various filters, and
never bolometrically; no photometer can measure the entire electromagnetic
spectrum! So in all observational cases we are measuring the starlight and
its variations over some wavelength range. The wavelength dependence of the
effect of the temperature variation on the light variability in a pulsating star
was already shown in Fig. 4.4. We recall that the intensity change is much
greater in the blue than it is in the red – just because of the shape of the
black body curves. That effect alone means that most pulsating stars will
have larger photometric variations in the blue than in the red.

In addition to this basic effect, the light variations at different wavelengths
depend on the geometry of the temperature variations – hence on the spheri-
cal harmonic of the pulsation mode – and on the change in geometrical cross-
section, also dependent on the pulsation mode. Both the pulsation amplitude
and phase as a function of wavelength are affected by the geometry of the
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Fig. 6.1. Observed amplitude ratios from long-term monitoring of the l = 0 mode
of the B2 β Cep star HD71913 (left, Aerts 2000) and for the l = 1 mode of the F2
γDor star HD12901 (right, Aerts et al. 2004a) in the Geneva 7-band photometric
system with filters X=UB1BB2V1V G.

temperature changes and the cross-section changes; thus observations of the
pulsation amplitudes and phases in different photometric passbands can con-
strain mode identification. In the best cases the spherical degree l can be
uniquely determined – an important step for asteroseismology.

The mode-identification method that uses photometric amplitudes and
phases is based on the time variations of the stellar magnitude measured with
different filters of a photometric system. One considers only the oscillation
frequencies that are found in all the different filters for the mode identification;
when the amplitude is too small in one or more filters of the system being used,
then there is too little information for that mode. For reasons given above the
amplitudes of a mode can be markedly different in the different filters. This is
illustrated for two main-sequence stars in Fig. 6.1. As will be explained below,
this amplitude difference depends on the kind of oscillation mode – more
particularly on the degree l of the mode as illustrated in Fig. 6.2. Similarly, the
difference in phase behaviour of the light curves in the different photometric
bands is connected to the degree of the mode. This implies that, for a certain
oscillation mode whose frequency is detected with sufficient signal-to-noise in
all the filters of the photometric system, the comparison of the amplitude and
phase values for the different filters allows one to derive the mode degree. This
can be seen for the case of the amplitude ratios by comparing Figs 6.1 and 6.2.

6.1.1 General Considerations

Different versions of the photometric mode-identification method are present
in the literature. It was originally proposed by Stamford & Watson (1981), re-
lying on the work by Dziembowski (1977b), Balona & Stobie (1979) and Buta
& Smith (1979). A specific treatment for the case where temperature varia-
tions dominate the light variations was provided in Robinson et al. (1982),
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Fig. 6.2. Theoretically predicted amplitude ratios for various degrees l of a typical
B2 star for the dominant p-mode frequency of HD71913 (left) and of a typical F2
star for the dominant g-mode frequency of HD12901 (right). The computations were
done in the adiabatic approximation and assumed Z = 0.02. The line style coding is
as follows: full for l = 0 (not applicable in the right panel), dashed for l = 1, dashed-
dot for l = 2, dotted for l = 3 and dash-dot-dot-dotted for l = 4. Comparison of
these predictions with the observations shown in Fig. 6.1 allows the identification of
the mode degree l. In the current examples we find l = 0 for HD71913 and l = 1 for
HD12901.

with an application to white dwarfs. Watson (1988) improved the Balona &
Stobie (1979) method by bringing it into applicable form, while Garrido et al.
(1990) and Heynderickx et al. (1994) included the perturbation of the limb
darkening and, subsequently, of the surface normal, respectively, in a proper
way. All these versions are based on adiabatic oscillation theory, and treat
the non-adiabaticity of the oscillatory behaviour in the outer atmosphere by
means of an ad-hoc parameter. For an extensive review of the methods in this
approximation, we refer to Garrido (2000).

The theoretical expressions of the amplitude and phase of the light curve
in the different filters (i.e., as a function of wavelength) depend on, among
other things, the geometrical configuration of the nodal lines with respect to
the observer, i.e., on the values of (l,m, i), where i is the inclination angle
between the symmetry axis of the oscillation and the line-of-sight, as defined
in Eq. (6.1) further on and also in Appendix B. The symmetry axis of the
oscillation is usually taken to be the rotation axis, except for stars with a
strong magnetic field, such as the rapidly oscillating Ap stars, where the mag-
netic axis is probably a more natural and better choice, and possibly for some
close binaries where the pulsation axis could be the tidal axis. It was already
realised by Watson (1988) that the functional dependence of the amplitude
and phase on the mode geometry allows one to group the terms depending
on m and i into one single factor which is independent of wavelength. One
can thus make this factor disappear, and with it the very disturbing and un-
known inclination angle, by considering amplitude ratios and phase differences
among the different filters. This is the procedure that is usually adopted. The
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disadvantage is that one loses the information on the m-value and one can
thus only identify the degree l of the mode.

A big step forward was achieved by the new versions of the method devel-
oped by Cugier et al. (1994) and Cugier & Daszyńska (2001) for β Cep stars,
by Brassard et al. (1995) for ZZ Ceti stars, by Balona & Evers (1999) for
δ Sct stars, by Townsend (2002) for slowly pulsating B stars, and by Dupret
et al. (2003) for all main-sequence oscillators. In these works, a non-adiabatic
treatment of the oscillations was included, with different levels of sophisti-
cation, through which the unknown ad-hoc factor was eliminated. Dupret et
al. (2003) included for the first time a detailed non-adiabatic treatment of
the oscillations in the optically-thin atmosphere of main-sequence stars. They
illustrated the applicability of their method to β Cep stars, slowly pulsating
B stars, δ Sct stars, and γ Dor stars. A non-adiabatic treatment similar to the
one by Dupret et al. (2003) was presented by Randall et al. (2005b) in the
context of pulsating subdwarf B stars. It does not contain an equally detailed
treatment of the oscillations in the outer atmosphere, however.

In order to achieve identification of l, the theoretical expressions for am-
plitude ratios and phase differences must be computed, and this requires the
computation of the perturbed version of the adopted limb darkening and of
the perturbed stellar flux as a function of the effective temperature and the
gravity, which are also affected by the oscillations. This brings us to the need
for good atmosphere models and an appropriate limb-darkening description.
In particular, it turns out that this identification method is rather sensitive
to the adopted treatment of convection when constructing the atmosphere
models for stars with outer convection zones, such as δ Sct and γDor stars
(Garrido 2000; Dupret et al. 2005a,b). This treatment of convection is not a
problem in the application of the method to stars with a radiative envelope,
but here, the results of the identification turn out to depend on the adopted
metallicity (Dupret et al. 2003). These two dependencies must always be kept
in mind when making conclusions about the l-value.

The theoretical amplitude ratios and phase differences are dependent on
the stellar flux, which is determined by the metallicity, the effective tempera-
ture, and the mass and radius, or, equivalently the gravity, of the star. These
parameters are often not known with high precision. Their uncertainties must
be propagated into the final selection of the best value for l from the ob-
served amplitude ratios. This was often ignored in the past, but is accounted
for in modern applications of this method, following Balona & Evers (1999).
Examples of such applications were provided by Handler et al. (2003b, 2005,
2006), De Ridder et al. (2004) and Shobbrook et al. (2006) for β Cep stars,
by De Cat et al. (2005, 2007) for slowly pulsating B stars, by Dupret et al.
(2005a,b) for δ Sct and γ Dor stars, and, finally, by Jeffery et al. (2004, 2005)
and Tremblay et al. (2006) for subdwarf B stars. We refer the reader to these
papers for more detailed information.
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6.1.2 Detailed Description

In the following, we provide a detailed mathematical description of the photo-
metric mode-identification method. In doing so, we use two reference frames: a
first one with Cartesian coordinates (x, y, z) and spherical coordinates (r, θ, φ)
such that the unit vector az coincides with the symmetry (i.e., polar) axis of
the star and the origin at the stellar centre; and a second one with Cartesian
coordinates (x′, y′, z′) and spherical coordinates (r′, θ′, φ′), also with origin at
the centre of the star but with az′ pointing towards the observer. As origin
for the angular coordinates φ and φ′, we take the meridian passing through
the az and az′ axes. We define the inclination angle of the star as the angle
between az and az′ such that

az′ = − sin i ax + cos i az (6.1)

and we adopt the usual definitions of μ and μ′:

μ = cos θ = ar · az, (6.2)
μ′ = cos θ = ar′ · az′ . (6.3)

6.1.2.1 Treatment of the Atmosphere

The equations valid in the interior of the star, as described in Chapter 3,
are no longer valid in the outer stellar atmosphere. First of all, the diffusion
approximation, which connects the radiative flux to the temperature gradient,
does not hold when the density is very low, i.e., when the mean free path of
the photons becomes a considerable fraction of the remaining distance to the
surface. Secondly, the approximation that the radiation field is isotropic is no
longer appropriate, implying that the momentum equation must be modified.
The approximations made in Chapter 3 are fine for the computation of the
oscillation frequencies, which are determined by the interior structure of the
star, as well as for the instability computations, but they are not sufficient for
the description of the photometric amplitudes and line-profile variations. In
the following, we adopt the approach outlined in detail in Dupret (2002) and
summarised in Dupret et al. (2002, 2003).

It is assumed that the local atmosphere characterised by the coordinates θ
and φ remains in radiative equilibrium during the oscillation. This approxima-
tion is valid because the heat capacity in the atmosphere is very low, such that
its thermal relaxation time is far shorter than any of the relevant oscillation
periods. In that case, a plane-parallel atmosphere in hydrostatic equilibrium is
fully described by its effective temperature Teff , its gravity g and its chemical
composition. For a given chemical composition, we write the temperature of
the local atmosphere as

T = T (τ, Teff, g), (6.4)
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with τ the Rosseland mean optical depth, and we assume that this tempera-
ture law does not change during the oscillation cycle. Hence, the temperature
of the local atmosphere at position (τ, θ, φ) varies according to

T (τ, θ, φ) = T0 + δT (θ, φ)
= T (τ0 + δτ(θ, φ), Teff,0 + δTeff(θ, φ), g0 + δge(θ, φ)), (6.5)

where δge is the Lagrangian perturbation of the gravity corrected for the pul-
sational acceleration. In the linear approximation, Eq. (6.5) can be written as

δT

T0
=

∂ lnT
∂ lnTeff

δTeff

Teff,0
+
∂ lnT
∂ ln ge

δge
g0

+
∂ lnT
∂ ln τ

δτ

τ0
. (6.6)

From the definition of the Rosseland mean optical depth we find

∂δτ

∂τ0
=
δκ

κ0
+
δρ

ρ0
+
∂ξr
∂r

. (6.7)

As in Eqs (3.124), (3.125), etc. the Lagrangian perturbations again contain a
common factor

√
4πY m

l (θ, φ) exp (−iωt). Elimination of δτ between Eqs (6.6)
and (6.7), and division by this common factor leads to
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.

This equation, rather than Eq. (3.129) is used as energy equation in the atmo-
sphere. The derivatives in Eq. (6.8) must be estimated numerically from a set
of atmosphere models with effective temperatures and gravities surrounding
those of the star.

While the temperature variation in the atmosphere can be computed lo-
cally, as just explained, the variation of the density, pressure and Lagrangian
displacement must come from the solution of the mass and momentum equa-
tion considering the entire outer atmosphere. In general, the momentum equa-
tion contains a pressure gradient with a contribution from the gas pressure
and one from the radiation pressure. The latter implies a radiative acceleration
vector, which is, in the case of continuum radiation, given by grad = κFF /c
with κF the flux weighted mean opacity (e.g., Lamers & Cassinelli 1999).
It is in general safe to ignore the line radiation, except for the hottest main-
sequence stars (Teff > 25 000K) and for supergiants (log g < 3.0), which suffer
from a line-driven stellar wind (e.g., Kudritzki & Puls 2000). In that case, one
is dealing with a dynamical atmosphere and the treatment we present here is
not strictly valid (but a better approximation is not available).
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While solving the continuity and momentum equations one assumes that
δ|F | remains constant from the base of the atmosphere to the outermost layer,
that F remains parallel to the temperature gradient during the oscillation cy-
cle and that the relative variation of κF equals the relative variation of the
Rosseland opacity: δκF/κF � δκ/κ. The first two assumptions are again re-
lated to the short thermal relaxation time in the very thin outer layer, which
allows the plane-parallel approximation. The validity of the third assump-
tion was checked numerically by Dupret (2002). The first assumption implies,
through Stefan’s law, that

δ|F |
F 0

=
δFr

Fr,0
= 4

δTeff

Teff,0
(6.9)

and leads to the radial component of δgrad:

(δgrad)r = grad

(
δκ

κ0
+ 4

δTeff

Teff,0

)
, (6.10)

where grad is the equilibrium value of the radial component of grad. This leads
to the following expression for the radial component of the equation of motion:

ω2ξ̃r =
∂(δp̃g/p̃g)

∂r

pg,0

ρ0
(6.11)

+
∂Φ̃′

∂r
+
∂(g0ξ̃r)
∂r

+
(
δρ̃

ρ0
− δp̃g

pg,0

)
(g0 − grad)

− grad

(
δκ̃

κ0
+ 4

δT̃eff

Teff,0
+
∂ξ̃r
∂r

)

.

This equation is used in the atmosphere, instead of Eq. (3.127). The horizontal
component of the momentum equation becomes, through the assumption that
F remains parallel to the temperature gradient:

ω2ξ̃h =
1
r

(
δp̃g

ρ0
+ Φ̃′ + g0ξ̃r − grad

δT̃

∂T/∂r

)

. (6.12)

This equation replaces Eq. (3.131). And, finally, the continuity equation
Eq. (3.126) is replaced by its version valid in the outer atmosphere:

ω2

[
δρ̃

ρ0
+

1
r2

∂

∂r

(
r2ξ̃r

)]
=
l(l + 1)
r2

(
δp̃g

ρ0
+ Φ̃′ + g0ξ̃r −

gradδT̃

∂T/∂r

)

. (6.13)

Following Dupret et al. (2002), appropriate boundary conditions are im-
posed at the outermost layer of the star. This requires a little more attention
than the discussion in Chapter 3 when we derived Eqs (3.157), . . . , (3.163).
Contrary to several other versions of the method, it is preferable to choose a
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mechanical boundary condition that is valid for application to all stars, i.e.,
for the case where both the gas and radiation-pressure accelerations may be
significant. Therefore, Dupret et al. (2002) considered as boundary condition
the version of Eq. (6.11) in which the contribution of the gas pressure at the
surface is ignored, but not the radiation pressure, thus deleting the first term of
the right-hand side of Eq. (6.11). As boundary condition for the gravitational
potential, we impose, as usual, continuity of Φ̃′ and its first derivative between
the inner solution given by the Poisson equation and the outer solution given
by the Laplace equation:

∂Φ̃′

∂r
+
l + 1
r

Φ̃′ = −4πGρ0ξ̃r. (6.14)

As boundary condition for the energy equation, Eq. (6.8), Eq. (6.6) is evaluated
in the outermost layer by computing limτ→0 δτ/τ from Eq. (6.7), resulting in

δT̃

T0
=

∂ lnT
∂ lnTeff

δT̃eff

Teff,0
+
∂ lnT
∂ ln ge

δg̃e
g0

+
∂ lnT
∂ ln τ

(
δκ̃

κ0
+
δρ̃

ρ0
+
∂ξ̃r
∂r

)

(6.15)

(Dupret 2002).
In order to solve for the unknown quantities ξ̃r, ξ̃h, T̃ , . . ., we must require

continuity of these variables at a so-called connecting layer, bridging the stellar
interior and the outer atmosphere. As explained in Dupret (2002) and for the
reasons outlined below, this connecting layer must be chosen carefully, i.e.,
at a position where the flux is predominantly radiative. In this case, Dupret
(2002) derived the following matching conditions for the connecting layer:

3
δT̃

T0
− δκ̃

κ0
− δρ̃

ρ0
+

dδT/dr
dT/dr

− dξ̃r
dr

= 4
δT̃eff

Teff,0
(6.16)

and
δg̃e
g0

=
∂Φ̃′/∂r
g0

+
4πρ0r

3

m

ξ̃r
r

−
(

2 +
ω2r

g0

)
ξ̃r
r

(6.17)

which reduces to the simpler condition

δg̃e
g0

= −
(

2 +
ω2r

g0

)
ξ̃r
r

(6.18)

in the Cowling approximation, if one ignores the surface density divided by
the mean density of the star. By means of Eqs (6.16) and (6.17), Dupret
(2002) showed that Eqs (6.11) and (6.13) are mathematically equivalent to
Eqs (3.127) and (3.126) for the stellar interior, thus guaranteeing the continu-
ity of the derivatives of ξ̃r/R and δp̃g/pg,0. Following Dupret et al. (2002), the
continuity of δT̃ /T0 should be checked a posteriori . These authors achieved
this condition by placing the connecting layer at log τ = 1 for main-sequence
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B stars and at log τ = 0 for δ Sct stars, confirming the validity of their treat-
ment.

The theory presented here is more sophisticated than what is often used
in the literature, where the Eddington approximation with temperature dis-
tribution

T 4(r) =
3
4
T 4

eff

(
τ +

2
3

)
(6.19)

is regularly adopted for the stellar atmosphere rather than the general form
given by Eq. (6.4) for a non-grey atmosphere. The advantage of the treatment
presented above is mainly important for hot stars as it includes the radiative
acceleration due to continuum radiation. The current treatment also allows
one to use any type of equilibrium atmosphere model, as long as it is static,
i.e., whenever the acceleration due to line-driving can be ignored. When the
atmosphere is perturbed due to the oscillations, it is, in fact, no longer strictly
static. Dupret et al. (2002) checked for the difference between the perturbed
atmosphere due to an oscillation and the static one in the LTE approximation
with corresponding temperature and gravity, and found relative differences
less than 20% in the quantities, depending on the order of the oscillation
mode. This slight inconsistency is negligible compared with the gain of using
much better equilibrium atmosphere models.

We compare in Fig. 6.3 the temperature structure of an Eddington at-
mosphere with state-of-the-art NLTE line-blanketed atmosphere models with
and without a line-driven wind, for a star with Teff = 24 000K and log g = 4.5.
It can be seen that significant deviations from the Eddington model are en-
countered for the atmosphere region where log τ < 0, even for the static
plane-parallel non-grey atmosphere without mass loss (dash-dotted line). This
discrepancy in T (τ) for log τ < 0 is a general property for all effective tem-
peratures of relevance for mode identification. The Eddington approximation
is thus only appropriate for the connecting layer, provided that it can be po-
sitioned in the regime of log τ > 0. We therefore advise that any user of the
methodology checks for the validity of the Eddington approximation for the
connecting layer and for the outer atmosphere. In any case, when comput-
ing the amplitude ratios and phase differences it can easily be replaced by the
treatment provided here, based on a non-grey static plane-parallel atmosphere
model.

Coming back to Fig. 6.3, the discrepancy between the grey atmosphere and
more realistic models is particularly significant for hot stars and supergiants.
One can see from Fig. 6.3 that even a state-of-the-art NLTE plane-parallel
model (Lanz & Hubeny 2007) does not give a good description of the tem-
perature distribution in the atmosphere where a temperature bump occurs
near log τ < −2 in the case of a unified spherical NLTE line-blanketed atmo-
sphere with a line-driven wind. This bump is generally understood in terms
of line-heating (e.g., Mihalas 1978) but its exact position and height depend
on the presence of particular ions in the wind (see, e.g., Pauldrach et al. 2001;
Puls et al. 2005 for discussions of this effect). As can be derived from Fig. 6.3,
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Fig. 6.3. Temperature distributions in the envelope and outer atmosphere of a
hot star with Teff = 24 000 K and log g = 4.5 for different approximations. Dotted
line: grey atmosphere as in Eq. (6.19), dot-dashed line: NLTE plane-parallel line-
blanketed static atmosphere model without wind (Lanz & Hubeny 2007), full/dashed
line: NLTE spherical unified atmosphere model with weak/strong wind. Data from
Lefever et al. (2007b).

the current treatment of the outer atmosphere in mode identification should
be improved by also considering the line acceleration in the dynamical atmo-
spheres of OB-type stars and supergiants, but this has not yet been done to
our knowledge.

Finally, we come back to the prerequisite that the connecting layer must
be situated in a part of the atmosphere where the flux is predominantly ra-
diative. The reason is that the assumptions made about the link between the
temperature structure and the flux are no longer valid when the convective
flux dominates. It is therefore important to position the connecting layer in
the very outer part of the envelope for stars with envelope convection zones,
such as δ Sct and γDor stars along the main sequences and any type of evolved
pulsator.



6.1 Mode Identification from Multicolour Photometry 389

6.1.2.2 Non-Adiabatic Observables

In what follows, we adopt the single-layer approximation as has always been
done so far in photometric mode identification. This means we assume there
to be a single stellar photosphere, whose distance to the stellar centre is char-
acterised by the stellar radius R and whose temperature equals the effective
temperature of the star. Moreover, it is assumed that the outward flux does
not depend on the optical depth in the atmosphere. The deformation of the
photosphere is thus derived from the evaluation of the displacement vector ξ
at r = R in the linear approximation.

We seek to determine the monochromatic amount of energy radiated by
the star as measured by a distant observer: E(λ, t). In doing so, we again
recall the short thermal relaxation time of the atmosphere which has led us to
assume that, at each moment in the oscillation cycle, the atmosphere remains
in radiative equilibrium and the temperature distribution in the atmosphere
T (τ) remains the same as in the equilibrium model. We also use the same
argument now to keep a fixed prescription for the monochromatic outgoing
flux of the local atmosphere F+

λ and limb-darkening law hλ(θ) during the
oscillation cycle. Moreover, we assume that the local atmosphere’s chemical
composition stays constant and that F+

λ remains perpendicular to the local
photosphere. Under these assumptions, the monochromatic flux variation in
the local atmosphere is given by

F+
λ,0 + δF+

λ (θ, φ, t) = F+
λ [Teff,0 + δTeff(θ, φ, t), g0 + δge(θ, φ, t)] , (6.20)

where we have introduced the notation F+
λ = |F+

λ |. In the linear approxima-
tion, this can be written as

δF̃+
λ

F+
λ,0

=
(
∂ lnF+

λ

∂ lnTeff

)
δT̃eff

Teff,0
+
(
∂ lnF+

λ

∂ ln ge

)
δg̃e
g0

(6.21)

≡ αT,λ
δT̃eff

Teff,0
+ αg,λ

δg̃e
g0

. (6.22)

Similarly, the variation of the limb-darkening law hλ(θ) in the linear approx-
imation is written as

δrh̃λ

hλ,0
=
(
∂ lnhλ

∂ lnTeff

)
δT̃eff

Teff,0
+
(
∂ lnhλ

∂ ln ge

)
δg̃e
g0

+
(
∂ ln hλ

∂μ′

)
δr (n · az′) , (6.23)

where n is the normal to the stellar photosphere and δr stands for the radial
Lagrangian perturbation defined in this Section by

δrX = δX (6.24)

for a scalar quantity X , and

δrY = Y ′ +
dYr

dr
ξrar (6.25)
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for a vector quantity Y . With Eq. (6.23) we thus assume δrθ = δrφ = 0.
It is noteworthy that Heynderickx et al. (1994) and De Ridder et al. (2002)
did not make this approximation and considered the more general classical
Lagrangian perturbation in their description. It was, however, shown explic-
itly by Dupret (2002) and by Townsend (2003b) that these treatments are
mathematically equivalent in the linear approximation for the perturbations.
Hence, we limit ourselves to the simpler treatment here, which comes down
to the approximation that the geometrical distortion is not affected by the
horizontal components of the displacement field.

As we have shown in Eq. (6.18), δge/g0 is to a very good approximation
in antiphase with the radial displacement. The phase of δTeff/Teff,0 can in
principle take any value, depending on the kind of oscillation mode and on
the stellar model. Therefore, it is customary to introduce the coefficients fT ,
ψT and fg defined as

δT̃eff

Teff,0
(R, θ, φ) = fT

ξ̃r(R)
R

exp (−iψT ) (6.26)

and
δg̃e
g0

(R, θ, φ) = −fg
ξ̃r(R)
R

. (6.27)

We recall that these amplitude functions are the true amplitudes divided by
the common factor

√
4πY m

l (θ, φ) exp (−iωt) as before. The coefficients fT , ψT

and fg are termed non-adiabatic observables ; in particular, the coefficient ψT

is called the phase lag. They follow directly from the integration of the basic
equations in the stellar interior and in the atmosphere through the connecting
layer, with the treatment of the atmosphere as discussed above. In models with
an outer convection zone, their values depend on the treatment of convection,
including the choice of mixing-length parameter and the possible inclusion of
modelling of the coupling between convection and pulsations; thus, inferring
them observationally provides a possibly diagnostic of the physics of convec-
tion in the outer layers (cf. Section 6.1.3).

For the equilibrium model, we have

E(λ) =
R2

2πd2

∫ 1

0

∫ 2π

0

F+
λ hλ(μ′)μ′dμ′dφ′, (6.28)

with d the distance to the observer, so we must determine δE(λ, t). We omit
this long derivation here, as it is readily available in several extensive papers in
the literature, such as Heynderickx et al. (1994), Brassard et al. (1995), Dupret
(2002), Townsend (2002), Dupret et al. (2003), Daszyńska-Daszkiewicz et al.
(2003), and Randall et al. (2005b), all of which following the original work by
Dziembowski (1977b). The outcome, written in terms of the observed variation
of the monochromatic visual magnitude at wavelength λ and for our choice of
the coordinate systems as described in Section 6.1.2, can be written as
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Fig. 6.4. The product of the normalisation constant cl0 and the integral bl,λ defined
in Eq. (6.30) is shown for different mode degrees l for a linear limb-darkening law
taken from Claret (2000). The lower three curves are for a star of Teff = 6000 K and
log g = 4.0 at the wavelengths of the U (full line), B (dotted line) and V (dash-dotted
line) filters. The two upper curves are for a star of Teff = 25000 K and log g = 4.0
at U and B (indistinguishable, shown as dashed line) and V (dash-dot-dot-dotted
line) wavelengths.

δmλ = − 2.5
ln 10

√
4π

ξr(R)
R

clm Pm
l (cos i) bl,λ (6.29)

× [−(l − 1)(l − 2) cos(ωt)
+fT cos(ψT + ωt)(αT,λ + βT,λ)
−fg cos(ωt)(αg,λ + βg,λ)] ,

with

bl,λ =
∫ 1

0

μ′ hλ(μ′) Pldμ′, βT,λ =
∂ ln bl,λ
∂ lnTeff

, βg,λ =
∂ ln bl,λ
∂ ln g

. (6.30)

The terms proportional to (l−1)(l−2), fT and fg correspond to the variation
of the surface, of the local effective temperature and of the gravity, respec-
tively. We show the value of the integral bl,λ for different l in Fig. 6.4, for
two different types of stars and for the wavelengths of the U, B, V filters. It
can be seen that there is a steep decrease in value as l increases from 0 to 3,
and fluctuating values converging to zero as l raises above 9. While Eq. (6.29)
makes it clear that the computation of the decrease in the observed amplitude
of the brightness variations as a function of l is far more complex than simply
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considering bl,λ, this dependence of bl,λ on l forms the basis of the so-called
partial cancellation effect. We can see from Fig. 6.4 that bl,λ is a factor ∼ 4
smaller for l = 2 than for l = 0. The factor is even larger for l = 5, 6, while
b3,λ ≈ 0. This is the reason why one often assumes l ≤ 2 in the modelling of
the photometrically detected oscillation frequencies.

Another point of attention in Eq. (6.29) is the factor Pm
l (cos i). For each

(l,m), there exists at least one inclination angle i for which Pm
l (cos i) = 0.

Such angles are termed Inclination Angles of Complete Cancellation, abbre-
viated as IACC. We list them for l = 0, . . . , 5 in Appendix A.

As explained in Chapter 4, observations usually do not provide us with
the monochromatic magnitude, but rather magnitudes for particular filters j
with transmission curves wj(λ) and a wavelength range from λj,blue to λj,red.
One thus computes

δmj =

∫ λj,red

λj,blue

δmλ wj(λ) dλ

∫ λj,red

λj,blue

wj(λ)dλ
(6.31)

for comparisons with observations. It is readily seen from Eq. (6.29) that one
eliminates the common factor −(2.5/ ln 10)

√
4π(ξr(R)/R)Pm

l (cos i), which is
independent of wavelength, by considering amplitude ratios for different pho-
tometric bands. With it, the dependence on the inclination angle and on the
position of the nodal lines on the stellar surface (by means of m) disappears.
This is an asset of the method, because the inclination angle is often not, or
only very poorly, known, but it is also a disadvantage as it cannot deliver an
estimate of m.

Finally, we wish to emphasize that, in the early development phase of
this method, some less accurate approximations have been proposed for the
computation of fT , fg and δpg. These were mainly based on adiabatic ap-
proximations or an ad-hoc generalization thereof, and/or the assumption that
the Lagrangian perturbation of the local temperature equals that of the effec-
tive temperature. These assumptions are not appropriate for the outer stel-
lar atmosphere. We advise against usage of the treatments published before
2000. Cugier & Daszyńska (2001) first came up with an improved computa-
tion of fg in terms of the dimensionless frequency of a mode already defined
in Eq. (3.161) in Chapter 3:

fg � 2 + σ2 � 2 +
ω2R3

GM
. (6.32)

This result is equivalent to the one we encountered in Eq. (6.18), which was a
special case of the more general Eq. (6.17) in the Cowling approximation and
ignoring the surface density divided by the mean density of the star in the
outer atmosphere.

We point out that the ratio ξh(R)/ξr(R), i.e., the ratio between the hor-
izontal and radial components of the displacement evaluated at the stellar
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surface, is termed the K-value of the mode by observers. They introduced
this concept of K while interpreting data of stellar oscillations. The K-value
is usually approximated by Eq. (3.161), although it is often also kept as a free
parameter, when interpreting observations of stellar oscillations.

6.1.3 Mode Identification Schemes

Even though the oscillations always behave highly non-adiabatically in the
outer atmosphere, some stars have ψT -values close to the adiabatic values.
This is, for example, the case for main-sequence B stars and is understood in
terms of their excitation by the heat mechanism acting on an opacity feature
resulting from iron-like elements, near a temperature of logT � 5.3. This is
rather deep in the star where the quasi-adiabatic approximation is still quite
good. Therefore, the phase difference between the variation of the luminosity
and the radial displacement amounts to almost the adiabatic value, i.e., 180◦

for the p modes in β Cep stars and 0◦ for the high-order g modes in SPB
stars. In such cases, it is customary to exploit only the amplitudes in the dif-
ferent photometric bands, and not the phase differences, when identifying the
degree of the modes. The same holds true for the pulsating sdB stars. Other
pulsators, such as δ Sct stars and all other pulsators in the classical instability
strip, are predominantly driven by the partial ionization zone of once ionized
helium. This layer is positioned near logT � 4.6, i.e., much further out where
the non-adiabatic effects are stronger. Non-adiabatic theoretical computations
indeed predict large phase differences in the magnitude variations for different
filters for such stars. This is confirmed by the observations. In that case, it is
advantageous to exploit also these phase differences in identifying l, besides
the amplitude ratios. We treat these two situations below.

6.1.3.1 Mode Identification Schemes using only Amplitudes

When using only the amplitudes, the following scheme is advised, after Dupret
et al. (2003):

i) Compute stellar models with appropriate effective temperatures and
gravities. One must make sure to cover the observational error box in
(Teff , log g) with models for a safe propagation of the uncertainty of these
fundamental parameters on the mode identification. As Teff and log g fol-
low readily from an interpretation of the stellar spectrum, it is best to use
these as constraints to construct the models. Observational values for the
luminosity (or the absolute magnitude) require additional information,
such as the distance which is often poorly known, or rely on calibrations
which can suffer from unknown systematic uncertainties.

ii) Perform non-adiabatic computations to derive fT , ψT , fg for modes with
frequencies close to the observed ones, for different degree l, for all the
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models that pass through the observational error box computed in 1. Usu-
ally, one restricts the search to l = 0, . . . , 4 by arguments of observational
cancellation for higher degree modes.

iii) For each filter j and for each degree l, compute the theoretical ampli-
tude while omitting the common factor −(2.5/ ln 10)

√
4π(ξr(R)/R)clmPm

l

(cos i), i.e., compute the amplitude factor:

Aj,th =

∫ λred

λblue

|bl,λ| |T1 + T2 + T3|wj(λ)dλ

∫ λred

λblue

wj(λ)dλ
, (6.33)

with

T1 ≡ (1 − l)(l + 2), (6.34)
T2 ≡ fT exp(−iψT ) (αT,λ + βT,λ), (6.35)
T3 ≡ −fg (αg,λ + βg,λ). (6.36)

iv) Choose a reference filter Aref,th to compute the amplitude ratios. The best
choice is to take the particular filter for which the relative uncertainty of
the measured amplitude is smallest. Quite often, this is the filter in which
the highest intrinsic amplitude is reached, but not always as this also
depends on the instrumental noise.

v) Compare the theoretical amplitude ratios Aj,th/Aref,th with the observed
ones Aj,obs/Aref,obs, for all the stellar models that pass through the error
box in (Teff , log g). This comparison can be made by visual inspection, as
is often done, as it makes it possible to see the confusion regions due to
the uncertainty in (Teff , log g). It can also be done by computing the χ2

function defined as:

χ2(l) =
#filters∑

j=1

(
Aj,th/Aref,th −Aj,obs/Aref,obs

σj,obs

)2

, (6.37)

where σj,obs is the properly propagated standard error of the observed
amplitude ratio for filter j and the reference filter, i.e.,

σj,obs =
Aj,obs

Aref,obs

√(
sAj,obs

Aj,obs

)2

+
(
sAref,obs

Aref,obs

)2

, (6.38)

with sAj,obs the standard error of the observed amplitude in filter j. Also
in this case, one must consider different stellar models across the entire
observational error box.

While performing step 3, one needs to derive the coefficients αT,λ and
βT,λ, which are derivatives of the monochromatic flux at wavelength λ, from
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appropriate stellar atmosphere models. Several grids of state-of-the-art mod-
els are available in the literature, well suited to particular kinds of pulsating
stars, e.g., the LTE plane-parallel models by Kurucz (1993) or Smalley &
Kupka (1997) for main-sequence stars cooler than spectral type B and the
NLTE plane-parallel line-blanketed models for B stars (Lanz & Hubeny 2007)
and O stars (Lanz & Hubeny 2003) without wind. As already discussed in
the context of the connecting layer and Fig. 6.3, one should in principle adapt
the theory presented here to NLTE unified spherical line-blanketed models
including winds, such as those computed by Lefever et al. (2007b), for O and
B stars. For the time being, such generalization is not available, but Dufton et
al. (2005) made a comparison between the NLTE static plane-parallel models
without wind and the dynamical spherical models with wind and concluded
that most of the atmospheric parameters and chemical compositions are quite
similar. One may thus hope that the current description and the use of static
NLTE models are sufficient to compute appropriate values for αT,λ and βT,λ.
Nevertheless, it would be very useful if the current treatment of the atmo-
sphere were generalised to a dynamical spherical unified atmosphere with a
line-driven wind for the identification of the oscillations of O and the hottest
B stars.

One also needs good values for the limb darkening hλ(μ′) to perform step
3. In a series of papers, Claret (2000, 2003, 2004) has computed several limb-
darkening laws for a very broad range of effective temperatures, gravities and
metallicities, and for several photometric systems. These are ideally suited to
be used for mode identification. In the approaches by Ramachandran et al.
(2004) and Randall et al. (2005b), on the other hand, the use of a perturbed
atmosphere model is constructed in such a way that it automatically incorpo-
rates the wavelength-dependence of the limb darkening, so that approximate
parameterised limb-darkening coefficients are not needed for the computation
of βT,λ and βg,λ.

In all of the applications of the method so far, steps 1 and 2 are done for
non-rotating stellar models. For each evolutionary stage of each track through
the error box, one selects, for each l, the mode with frequency closest to the ob-
served one and considers its amplitude for comparison with the observed ones.
This implicitly assumes that the observed frequency corresponds to the central
peak of a multiplet. Given that the Ledoux constant defined in Eq. (3.361) is
usually substantially smaller than 1, the assumption thus becomes that m = 0
or Ω � 0. This is invalid for many pulsators. For stars with rapid rotation,
the first-order approximation of the rotational splitting breaks down, and even
the central peaks of the multiplets are shifted (Goupil et al. 2000). Rotational
mode coupling also occurs between modes whose degree l differs by 2 when
they have the same azimuthal order m (Daszyńska-Daszkiewicz et al. 2002).
All these effects are ignored in the mode identification. It is very important
for readers to realise the limitation of assuming the measured frequency to
be equal to the central peak of the excited modes. This is, in fact, quite a
weak point of the photometric mode-identification method, except when the
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star is a very slow rotator in the sense that its rotation period is far shorter
than the pulsation periods in the co-rotating frame. Indeed, in many cases,
we have clear spectroscopic evidence that the observed mode has m �= 0 (see
Section 6.2), even for moderate rotators. This is particularly the case for the
high-order g modes in SPB stars and γ Dor stars with their long pulsation
periods, but also for some of the p modes in β Cep stars and δ Sct stars.
One should, therefore, not expect perfect agreement between the theoretical
and observed amplitude ratios. It should also be kept in mind that deviations
from linearity may occur, and that non-linear effects can also be the cause of a
departure from the theoretical predictions based on the linear approximation.

While performing step 2, one can take two attitudes. Either one gives full
confidence to excitation computations, and one considers only the modes that
are predicted to be excited when computing the theoretical amplitude ratios.
Or, a more conservative approach is taken, and one does not restrict the search
by using predicted theoretical amplitudes, but rather considers all modes with
frequencies close the observed ones, irrespective of their excitation predictions.
As we have shown in Chapter 3, we have a good, but not perfect, view of mode
excitation in main sequence stars. Thus we advise the conservative approach.

Table 6.1. The ten independent frequencies for the β Cep star ν Eri, and their
amplitude in the radial velocity derived from the Si III 455.3nm line as well as in the
Strömgren u filter (from De Ridder et al. 2004).

ID Frequency Amplitude Amplitude Degree

(d−1) (km s−1) (mmag) l

ν1 5.7633 22.4 73.5 0

ν2 5.6539 8.9 37.9 1

ν3 5.6201 8.1 34.6 1

ν4 5.6372 7.9 32.2 1

ν5 7.898 1.0 4.3 1

ν6 6.244 1.0 3.9 1

ν7 6.223 0.3 – –

ν8 6.262 0.8 2.8 1

ν9 7.200 – 1.4 –

ν10 0.432 – 5.5 –

The most likely mode degree l is, obviously, the one with the best agree-
ment between theory and observations. Discrimination among the l-values is
achieved by comparing the results for the amplitude ratios, either by visual
inspection or from comparison of the χ2(l)-values. These two approaches are
illustrated in Figs 6.5 and 6.6 for nine of the ten independent oscillation fre-
quencies detected for the β Cep star ν Eri, the values of which are available
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Fig. 6.5. Amplitude ratios with respect to the Strömgren u filter for the β Cep
star ν Eri, resulting from a 5-month multisite campaign. The dots are the observed
values with their errors, and the full lines are the predicted values as a function of
l, for a model in the centre of the observational (Teff , log g) box. The grey zones
indicate the uncertainty of the theoretical prediction due to the observational error
of (Teff , log g). All modes close in frequency to the observed ones were considered
for the theoretical prediction, irrespective of their excitation. For a description of
the data and the derived frequencies, we refer to Chapters 2 and 7. From De Ridder
et al. (2004).
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Fig. 6.6. χ2(l) as defined in Eq. (6.37) for the excited modes closest to the observed
frequencies of one model in the observational error box (Teff , log g) of the β Cep star
ν Eri. Compare this figure with Fig. 6.5. From De Ridder et al. (2004).

from De Ridder et al. (2004) and are repeated here in Table 6.1. As can be
seen in Table 6.1, the frequency ν7 is only detected in the spectroscopy and
could thus not be identified from the photometry. In Fig. 6.5, all the modes
of numerous models within the error box with frequencies close to the ob-
served ones are considered for the theoretical predictions of the amplitude
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ratios (indicated as the grey zones). With this way of working, one assumes
that the theory is error-free, and that the uncertainty in the theoretical predic-
tion of the amplitude ratios comes from the errors of the fundamental stellar
parameters. It can be seen that the first four dominant modes ν1, . . . , ν4 are
safely identified as a radial mode on the one hand and an l = 1 triplet on the
other hand, given the similar frequency values of ν2, ν3, ν4. The modes with
frequencies ν5, ν6 and ν8 are also still safely identified as l = 1 modes. The
identification of ν9 and ν10 is impossible. For ν9 this due to the uncertain-
ties on the observed amplitude. For ν10, which corresponds to a high-order g
mode, numerous such modes with different l- and n-values have almost similar
frequency values which makes a discrimination among the possibilities impos-
sible, as is reflected by the large grey area in the bottom panel of Fig. 6.5. The
reader will have noticed that the theoretical predictions of the l = 3 modes
do not occur in Fig. 6.5. This is due to the authors’ choice to omit them in
order to keep the graphs clear, because odd modes with l > 1 have a very
specific wavelength dependence crossing the one of the even modes for B stars
(see Fig. 6.1) which was not compatible with the observed ones. From Fig. 6.6
one would get the impression that all modes but the one with frequency ν9

can be safely identified. We use this example to illustrate the importance of
propagating the errors on (Teff , log g) into the theoretical predictions, as is
done in Fig. 6.5, before making firm conclusions on the mode degree.

In principle, one could take one step further and use standard quality-of-fit
measures of the χ2 approach (e.g., Press et al. 1992) to decide if a model is ac-
ceptable or not in an absolute sense, i.e., as a deterministic tool to decide when
to accept a mode identification as well as to decide which of the solutions χ2(l)
are statistically equivalent/different. However, we refrain from using such a
cut-off value for χ2 as a decision criterion to decide if we can accept the mode
identification or not, because it assumes that the complicated non-adiabatic
oscillation theory, the construction of the model atmospheres, the treatment
of the oscillations in the atmosphere, and the input physics of the models
(including the metal mixture, the description of convection and the ignorance
of rotation) are error-free, besides the assumption that the determination of
the fundamental parameters of the star does not suffer from systematic uncer-
tainties. While all of this may be true, it is rather optimistic, to say the least.
In fact, a discrepancy between the theoretical and observed amplitude ratios,
translating into a high value for χ2(l), was exploited by Dupret et al. (2003),
by Daszyńska-Daszkiewicz et al. (2003) and by Daszyńska-Daszkiewicz et al.
(2005a) to improve the metallicity of main-sequence B stars, the treatment
of convection of δ Sct stars, and the values for the opacities of β Cep stars,
respectively, after securely identifying the degree(s) of the mode(s). Dupret
et al. (2003) termed this non-adiabatic asteroseismology. Such fine-tuning can
only be applied when there is no overlap among the amplitude ratios of differ-
ent l-values, after consideration of the propagated uncertainties on the ratios
due to the observational error box and after making sure that the total neglect
of rotation and non-linear effects in the models and oscillations is justified.
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A final remark on the amplitude-ratio method concerns the slightly differ-
ent treatment of the deviation parameter by Randall et al. (2005b). Instead
of Eq. (6.37), they preferred to minimize

χ2(l) =
#filters∑

j=1

⎛

⎝
f�

l Aref,obs
Aref,th

Aj,th −Aj,obs

σj,obs

⎞

⎠

2

=
#filters∑

j=1

(
flAj,th −Aj,obs

σj,obs

)2

,

(6.39)
where f�

l and fl are free parameters that are solved for by minimizing the χ2.
The main difference with Eq. (6.37) is thus the introduction of the factor fl. In
this way, one still uses amplitude ratios, but one does not give preference any
longer to the amplitude of one specific reference filter to compute the ratios.
This is more objective in the sense that all filters are treated equally, but, on
the other hand, introduces an additional free parameter that is adapted for
each l separately. This is done in such a way that the shape of the amplitude-
ratio distribution across the wavelength range is matched with the observed
shape. This is a valid treatment within the χ2 approach, where the number of
degrees of freedom is simply increased by one. An example of this χ2, as an
application to identify the dominant mode of the sdBV star KPD 2109+4401,
is shown in Fig. 6.7. The data have a very high S/N level and were taken
with ULTRACAM by Jeffery et al. (2004). These authors also tentatively
identified this mode in the adiabatic approximation and found it to be radial,
albeit that confusion among the l = 0, 1, 2 solutions occurred. The results
in the figure contain a non-adiabatic treatment and leave no doubt that the
dominant mode is radial (Randall et al. 2005b), thanks to the small error bars
on the observed amplitudes.

6.1.3.2 Mode Identification Schemes also using Phase Differences

For the case of δ Sct oscillations, information is also encapsulated in the ob-
served phase differences. Typical ψT -values for such oscillators range from 60◦

to 200◦, depending on the mixing-length parameter, the mass and the degree
of the mode. This strong dependence of ψT on the mode degree has led to a
slightly different mode-identification method for such stars. Pioneering work
in this respect was done by Garrido et al. (1990), who defined so-called regions
of interest for the Strömgren system. These are areas in diagrams of, e.g., v/y
versus δ(v) − δ(y) (where δ(x) is the phase of time series x) as a function
of the degree l. The level of non-adiabaticity and ψT were rather arbitrarily
treated as free parameters in the ranges [0.25, 1] (where adiabatic equals 1)
and [90◦, 135◦], respectively, for the computation of these areas. Several ex-
amples of such regions are shown in Fig. 6.8, where a confrontation with the
modes detected in several δ Sct stars is also shown. It can be seen that the
identification of the degree is easiest to achieve by considering the u filter in
combination with one of the three other filters. For an overview of applica-
tions of this method we refer to Garrido (2000). In particular, this method was
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Fig. 6.7. Identification of the dominant mode of the sdBV star KPD 2109+4401
from ULTRACAM photometry according to Eq. (6.39). The data are taken from
Jeffery et al. (2004) while the identification was done by Randall et al. (2005b).

applied by Breger et al. (1999b) to identify several modes of the prototypical
multiperiodic δ Sct star FG Vir.

A higher level of sophistication in δ Sct oscillation mode identification was
reached by Dupret et al. (2003), following the scheme outlined above, and sub-
sequently by Daszyńska-Daszkiewicz et al. (2003). These authors developed
a method based on non-adiabatic computations similar to those described
here, but considering the amplitudes and phases themselves in the differ-
ent passbands by re-arranging the equations. While doing so, they defined a
different type of χ2, which they minimized as a function of the coefficients
[ξr(R)/R] Pm

l (cos i) and fT [ξr(R)/R] Pm
l (cos i). In this way, one does not

need to know a value for the unknown factor Pm
l (cos i) because this factor

is considered together with the unknown amplitude ξr(R)/R of the mode.
In fact, seeking the best solution for the two chosen unknowns by means of
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Fig. 6.8. Regions of interest based on amplitude ratios and phase differences for the
Strömgren system in the case of modes with degree l = 0, 1, 2. The dots with error
bars denote the observed values for modes detected in several δ Sct stars. Figure
kindly reproduced from Garrido et al. (1990) by Rafa Garrido.

a minimum in their χ2 for models with different parameters allowed them
to constrain these parameters. The identification of l then comes as a by-
product, excluding the l-values whenever their χ2(l) turned out to be too
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Fig. 6.9. χ2 for the observed photometric data of the δ Sct star 20 CVn for four mod-
els in the observational error box in the HR Diagram From Daszyńska-Daszkiewicz
et al. (2003).

high and discriminating among l whenever possible. We show in Fig. 6.9 the
application of their method to the low-amplitude δ Sct star 20 CVn, which
was already known to have a radial mode (see also Section 6.2 below). There
is no ambiguity in the mode identification for this star, as all modes with
l > 0 have much higher χ2-values than the radial mode. The main goal of
the authors was to constrain the properties of the convection treatment by
comparing the value of fT resulting from the fit with theoretically computed
values. Using a simplified treatment of the convection-pulsation interaction by
assuming “frozen convection” they noted a preference for very small values of
the mixing-length parameter α, although in all cases the agreement between
the observationally inferred and computed values of fT was rather poor; this
clearly indicates inadequacies in the convection modelling.

Daszyńska-Daszkiewicz et al. (2005b) applied a similar method, in which
the radial velocity amplitude and phase is included and which will be discussed
further in Section 6.3, to the data of FG Vir; this led to the same result for the
eight dominant modes as the one obtained already by Viskum et al. (1998) and
Breger et al. (1999). We display these results in Fig. 6.10 and compare them
with the spectroscopic mode identification in Section 6.2 by means of Table 6.4.
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Fig. 6.10. χ2 for the twelve dominant modes in the photometry of the δ Sct star
FGVir, for three different stellar models characterised by the given effective temper-
ature. The full horizontal line indicates a confidence level of 80%. From Daszyńska-
Daszkiewicz et al. (2005b).

Here again a major goal was to investigate the treatment of convection. Using
a time-dependent formulation of mixing-length theory originally proposed by
Gough (1977a) resulted in a somewhat better agreement between inferred and
computed fT than for the frozen-convection approximation, without requiring
a possibly unrealistically low value of α.

Even though the method by Daszyńska-Daszkiewicz et al. (2003) is a sig-
nificant improvement to the one by Garrido et al. (1990), it suffers from the
same limitation as Dupret et al.’s (2003) amplitude-ratio scheme outlined
above, i.e., it uses model and oscillation computations for non-rotating stars
and assumes the theory to be well enough developed so that the discriminat-
ing values of the χ2 are mainly due to different l-values and not to limitations
of the theoretical models.
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The application of the above theory to the case of the high-overtone
p modes of the roAp stars was used with a different goal. As explained in
Chapter 2, some of these stars are known to have a dominant dipole (l = 1)
mode from frequency splitting in terms of the oblique pulsator model. This
information can thus be used to derive observational information on the badly
known limb darkening, and from it of the temperature structure T (τ) of the
atmosphere, from a confrontation between observed amplitudes in different
filters and Eq. (6.29). This idea was put forward by Matthews et al. (1990,
1996) who derived such an empirical T (τ) relation for the star HR 3831 in the
approximation of a grey atmosphere as in Eq. (6.19) and assuming the steep
amplitude decrease with increasing wavelength to be dominated by the limb-
darkening variations. Kurtz & Medupe (1996), on the other hand, showed
from an analytical derivation that the limb-darkening could not account for
the observed steep decline of the amplitudes towards red wavelengths. They
suggested instead that this is a consequence of a depth effect in the atmo-
sphere, and settled the ambiguity between these two different interpretations
by showing that the factor two difference between the theoretical predictions
according to Eq. (6.29) and the observations cannot be due to limb-darkening
variations alone. They re-affirmed the failure of the theory outlined above
due to the basic assumption adopted at the start of Section 6.1.2.2, i.e., the
single-layer approximation. This is inappropriate for roAp stars, given that
depth effects are clearly visible in the line-profile variations of such stars (e.g.,
Mkrtichian et al. 2003; Elkin et al. 2005; Kurtz et al. 2007a; Ryabchikova et
al. 2007a). The generalization of the method of photometric amplitudes to a
multi-layer approach is still awaited.

To conclude this section, we stress that the photometric mode-identification
methodology, in whichever of the modern formulations, has to be treated with
care. It relies rather heavily on the theoretical models and assumes the input
physics to be free of errors. In this sense, it is not really empirical. Neverthe-
less, it works well for the large-amplitude p-mode oscillations in β Cep and
δ Sct stars, provided that they are not fast rotators. The performance of the
method has not yet been tested properly for the very dense frequency spectra
of high-order g modes in SPB stars and γ Dor stars, and it needs to be modi-
fied to include better atmosphere models and depth effects for the application
to roAp stars. Despite these limitations, we stress once more that even the
secure identification of the l-value of only one or two of the dominant modes
is a huge step forward in the seismic modelling.

6.2 Mode Identification from High-Resolution
Spectroscopy

As already explained in Chapter 4, the velocity field caused by the nonradial
oscillation(s) leads, through Doppler displacement, to periodic variations in
the profiles of spectral lines. The introduction of high-resolution spectrographs
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with sensitive detectors in the 1980s thus had a large impact on the field of
empirical mode identification. Spectroscopic data offer a very detailed picture
of the pulsational velocity field. As we will show below, its interpretation in
terms of (l,m) is far less dependent on the details of the oscillation theory
in the outer atmosphere than multicolour photometry. Indeed, it basically
relies on the interpretation of the data in terms of the oscillation velocity
vector, derived from ξ, and not so much on the Lagrangian variation of the
temperature and of the flux.

From an observational point of view, it remains a challenge to obtain
spectra covering the overall beat period of the multiperiodic oscillations, with
a high resolving power (typically above 40 000) and with a high signal-to-noise
ratio (typically above 200 and preferably much higher than that), for a good
temporal resolution (typically below a few per cent) in the sense of the ratio of
the integration time to the oscillation period. The latter condition is necessary
in order to avoid smearing out of the oscillations during the cycle.

The methodology to derive the full details of the pulsational velocity field
at the stellar surface contains at least six unknowns, as will be shown below,
and therefore tends to be complicated. For this reason, multicolour photomet-
ric observations, which can only lead to an estimate of the l, but which can
be obtained from small telescopes, are still of utmost importance for mode
identification. These kinds of data are in particular more suitable to study
long-period pulsations because small telescopes are available on longer time
scales. Ideally, one combines both types of data, in ways outlined in Section 6.3.
In the current section we first explain how theoretical line-profile variations
can be calculated. Subsequently we describe two modern mode-identification
methods based on line-profile variations.

6.2.1 Calculation of Theoretical Line-Profile Variations

Osaki (1971) published a pioneering paper including a scheme on how to
compute theoretical line-profile variations for nonradial oscillations. This is
remarkable since, at the time Osaki published his work, high-resolution spec-
troscopy was not yet available. His scheme could therefore not be tested on
real data. We follow below the basic ingredients of a modern line-profile gen-
eration code based on Osaki’s description.

In the case of one linear spheroidal mode with infinite lifetime, the surface
pulsation velocity vector expressed in the coordinate system (r, θ, φ) is given
by

vosc(R, θ, φ, t) = (vr, vθ, vφ, t) (6.40)

= �
{
−iωξr(R)

(
1,K

∂

∂θ
,
K

sin θ
∂

∂φ

)
Y m

l (θ, φ) exp (−iωt)
}
,

in the approximation where one can ignore the effects of the rotation in the
computation of the oscillation eigenfunctions. We recall that the value of K
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Fig. 6.11. The stellar surface is subdivided into a finite number of surface elements
determined by a step-size in θ and φ for the computation of theoretical line-profile
variations.

can be approximated by Eq. (3.161) but that it is advised to consider a range
in K when applying mode identification, in order to test the robustness of the
result against the true unknown model-dependent ratio ξh(R)/ξr(R).

To this, we add the rotational surface velocity vector in the approximation
of uniform time-independent rotation:

vrot(R, θ, φ, t) = ΩRaφ (6.41)

to obtain the total velocity vector v(R, θ, φ, t) = vosc(R, θ, φ, t)+vrot(R, θ, φ, t)
at the stellar surface for the surface element with coordinates (R, θ, φ).

In order to compute the observed line-profile shape corresponding to this
velocity vector field, denoted as p(λ, t), we have to determine the velocity
vector component, as well as the normalised flux of a particular stellar surface
element with coordinates (R, θ′, φ′), in the line-of-sight:

p(λ, t) ≡

∫ π/2

θ′=0

∫ 2π

φ′=0

(dA(R, θ′, φ′, t) · a′
z) Iλ(R, θ′, φ′, t,a′

z)

∫ π/2

θ′=0

∫ 2π

φ′=0

(dA(R, θ′, φ′, t) · a′
z) Icont

λ (R, θ′, φ′, t,a′
z)

, (6.42)
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where dA is the local surface normal, Iλ(R, θ′, φ′, t,a′
z) is the intensity of the

point with coordinates (R, θ′, φ′) at time t in the line-of-sight and Icont
λ is the

continuum intensity, i.e., the intensity that would be observed if the spectral
line were absent. In practice, one subdivides the visible stellar surface into a
large number of elements with central coordinates (θ′i, φ

′
j), i = 1, . . . , N ; j =

1, . . . ,M for the computation of the integrals in Eq. (6.42) (see Fig. 6.11). For
present-day computational power, one usually takes a step of 1◦ in the angles
θ′ and φ′, leading to N = 180 and M = 360. In order to get reliable results,
N and M must be at least 45 and 90, respectively.

We now consider all the ingredients necessary for the computation of p(λ, t)
through Eq. (6.42). The velocity field due to the rotation and the pulsation
leads to a Doppler shift at a point (R, θ′, φ′) on the visible equilibrium surface
of the star. The local contribution of a point (R, θ′, φ′) to the line profile is
proportional to the flux at that point. We assume that the intensity Iλ(θ′, φ′)
is the same for all points of the considered surface element. The flux through
the surface element surrounding the point (R, θ′, φ′) thus is the product of
the intensity Iλ(θ′, φ′) and the projection on the line-of-sight of the surface
element around the considered point:

Iλ(θ′, φ′) R2 sin θ′ cos θ′ dθ′ dφ′. (6.43)

An important effect that changes the flux over the visible surface is the limb
darkening. The flux of a surface element centred around the point P (R, θ′, φ′)
of the equilibrium surface with size R2 sin θ′ dθ′ dφ′ is

Fλ(R, θ′, φ′) = I0 hλ(θ′) R2 sin θ′ cos θ′ dθ′ dφ′, (6.44)

where I0 is the continuum intensity at θ′ = 0. For line-profile variation calcu-
lations, a linear approximation of the limb darkening largely suffices, because
the profile variations are dominated by the Doppler shifts due to the surface
velocity. One therefore often encounters the limb darkening in terms of one
coefficient uλ(Teff , log g, Z) because this saves an order of magnitude in compu-
tation time for spectroscopic mode identification, where numerous parameter
combinations must be considered.

Perturbations of the intensity and of the surface due to the oscillations
change the line profile. Usually, however, these effects are far less impor-
tant than the velocity effect for classical pulsators, and one often assumes
δFλ(θ′, φ′) = 0 during the oscillation cycle. However, one can easily generalise
any line-profile generation code to include the non-adiabatic perturbation of
the intensity, δ[I0hλ(θ′)], as well as the perturbed surface due to the oscil-
lation, according to the treatment in the outer atmosphere discussed above.
This has been tested for the spectroscopic identification methods we discuss
below and has been found to be an unnecessary complication.

A spectral line with central wavelength λ0 is subject to different broaden-
ing mechanisms, which we also have to take into account in the computation
of p(λ, t):
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i) Atomic broadening results in a Lorentz profile and is caused by the finite
lifetime of the energy levels of the ions responsible for the line.

ii) Neighbouring particles disturb the energy levels of the ions, causing a
small change in the wavelength of the spectral line. This pressure broad-
ening results in a Lorentz profile. The higher the pressure the larger this
broadening becomes.

iii) All ions move on a microscopic scale due to thermal agitation. This thermal
broadening leads to a Gaussian profile as the particles follow a Maxwellian
velocity law with a temperature dependence ∼

√
T .

iv) The stellar rotation causes rotational broadening. We assume the rotation
to be uniform across the stellar disc, and time independent. The resulting
line profile is then symmetrically broadened by the rotation.

v) Stellar oscillations give rise to periodic broadening of the line profile. The
shape of the line profile is completely determined by the parameters oc-
curring in the expression of the pulsation velocity given in Eq. (6.40). In
particular, it is dependent on the (l,m) of all the oscillation modes.

The first three of these are usually combined and termed the intrinsic line
broadening. In order to take into account such intrinsic broadening effects, the
local line profile is convolved with an intrinsic profile, which, in the simplest
approximation of thermal broadening, is a Gaussian whose variance depends
on the spectral line considered as well as on the fundamental stellar param-
eters. Generalisations to an intrinsic Voigt profile or a profile derived from a
stellar atmosphere model are easily performed, but are not necessary for mode
identification (see below) while implying much longer computation times.
In principle, if the theory of model atmospheres and the time-independent
broadening mechanisms were well enough understood, we would not need a
free parameter to describe the intrinsic line broadening, but we could simply
take the intrinsic shape of the considered spectral line. In practice, however,
one is always faced with the need to introduce some unknown level of time-
independent non-thermal microturbulence, of up to several km s−1, when fit-
ting observed spectral line profiles, and quite often even time-independent
non-thermal macroturbulence, which may reach velocities as high as or even
above the speed of sound in hot massive stars (Howarth et al. 1997; Morel
et al. 2006; Lefever et al. 2007a; Markova & Puls 2008). Various models to
describe the micro- and macroturbulence are in use (see Gray 2005, for a
description of turbulence in stellar atmospheres), but there is no physical ar-
gumentation to prefer one above the other. For this reason, we may as well
omit the computation of the intrinsic line profile from atmosphere models and
estimate a time-independent intrinsic profile which is a convolution of all the
unknown time-independent thermal and non-thermal broadening effects that
occur, in addition to rotational and pulsational broadening. For the purpose of
mode identification, one always works with carefully selected metal lines whose
intrinsic broadening is dominated by thermal effects, which is why the intrin-
sic profile is assumed to be a Gaussian with an unknown time-independent
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variance v2
int. This assumption does not impose a restriction on the mode iden-

tification methods based on high-resolution spectroscopy, because the time-
independent rotational broadening profile is sufficiently different from the in-
trinsic profile, while the pulsational broadening is time dependent and it is
this part that will be used for the mode identification.

We have now considered all the ingredients for the computation of the
observed line profile p(λ, t). We represent by λij the Doppler-corrected wave-
length for a point on the star with coordinates (R, θ′i, φ

′
j , t), i.e.,

λij − λ0

λ0
≡
λ(R, θ′i, φ

′
j , t) − λ0

λ0
=
Δλ(R, θ′i, φ

′
j , t)

λ0
=
v(R, θ′i, φ

′
j , t)

c̃
. (6.45)

An explicit expression for v(R, θ′i, φ
′
j , t) can be found in, e.g., Aerts et al.

(1992):

v(R, θ′i, φ
′
j , t) = − v

Ω
sin θ′ sinφ′

+ vp

l∑

k=−l

al m k(i)
(

cos θ′P k
� −K sin θ′

dP k
�

dθ′

)

× sin((ω −mΩ)t + kφ′) , (6.46)

where the velocity amplitude is defined as vp ≡
√

4πclmξ̃r(R)ω with the nor-
malization constant clm introduced in Chapter 3 and where we use vΩ ≡
ΩR sin i, usually denoted as v sin i, for the projected rotation velocity for con-
venience of shorter notation. Equation (6.46) is based on the transformation
formula for spherical harmonics for two different coordinate systems whose
polar axes are inclined with angle i and whose zero point for the azimuthal
angles φ and φ′ were chosen to be equal:

Y m
l (θ, φ) =

l∑

k=−l

al m k(i)Y k
l (θ′, φ′), (6.47)

where

al m k(i) ≡ (l +m)!(l −m)!

×
min{l−m,l−k}∑

r=max{0,−k−m}
(−1)l+k+r sin(i/2)2l−2r−m−k cos(i/2)2r+m+k

r!(m + k + r)!(l −m− r)!(l − k − r)!
(6.48)

(Jeffreys 1965, Condon & Odabasi 1980, see also Appendix B). Note that
al m 0(i) = Pm

l (cos i) as used in Eq. (6.29), but the use of the more gen-
eral transformation formula as in Eqs (6.47) and (6.48) is more convenient
for the computation of line profile diagnostics, such as the moments (see
Section 6.2.3).
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Fig. 6.12. Theoretically determined line-profile variations calculated by means of
the basic formalism described in the text considering an l = 2 mode and m = 0
(left panel), m = −1 (middle panel), and m = −2 (right panel) respectively. The
other velocity parameters are: pulsation amplitude vp = 5km/s, projected rotational
velocity v sin i = vΩ = 30km/s, thermal velocity vint = 4 km/s, and inclination
i = 55◦. The line-of-sight velocity is given on the x-axis while the normalised flux
(unitless, with values between 0.7 and 1.0) is drawn on the y-axis. The profiles are
stacked according to increasing oscillation phase, from 0.00 (lowest profile) to 0.95
(uppermost profile) in steps of 0.05.

The line profile is then approximated by

p(λ, t) =

∑

i,j

I0hλ(θ′i)√
2πvint

exp
(
− (λij − λ)2

2v2
int

)
R2 sin θ′i cos θ′i Δθ

′
i Δφ

′
j

∑

i,j

I0hλ(θ′i)R
2 sin θ′i cos θ′i Δθ

′
i Δφ

′
j

, (6.49)

where the sum is taken over the visible stellar surface, i.e., θ′ ∈ [0◦, 90◦], φ′ ∈
[0◦, 360◦] and where we have assumed a constant Gaussian intrinsic profile
and a non-variable surface normal for simplicity. Equation (6.49) essentially
represents the line-profile computation suggested by Osaki (1971). We show
in Figs 6.12 and 6.13 sets of theoretically calculated profiles for l = 2 and l = 6
modes computed from Eq. (6.49).

It is obvious that the pulsational broadening is easiest to unravel from
the intrinsic broadening for the sharpest lines in the spectrum, provided that
they are well resolved. Indeed, for sharp lines with narrow wings, the defor-
mation of the line is detectable across the whole profile and not only in the
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Fig. 6.13. Same as in Figure 6.12, but for l = 6 with m = +2 (left panel), m = +4
(middle panel), and m = +6 (right panel).

line centre. This is why we want to avoid hydrogen and helium lines for mode
identification whenever possible, because the former suffer heavily from Stark
broadening and both types of lines may be strongly affected by a stellar wind.
Nevertheless, Viskum et al. (1998) used the equivalent-width variations of
Balmer and metal lines in low-resolution (R = 4 000) spectra to identify the
dominant modes of FG Vir. They discriminated among different possibilities
for l from a plot of the ratio of the amplitude of the equivalent-width variation
of the Hα and an Fe I line versus the ratio of the amplitude for Hα and an av-
erage photometric amplitude for the four Strömgren filters. In this way, they
noticed “different observational regions” in their plot, similar to those used
by Garrido et al. (1990) for multicolour photometry of δ Sct stars. The appli-
cation by Viskum et al. (1998) concerned a purely observational diagram. In
fact, the amplitude ratios in photometry are replaced here by amplitude ratios
of the equivalent-width variations of lines that are strongly affected by δT/T .
On this basis they identified l for the eight dominant modes; this identifica-
tion was later confirmed by Breger et al. (1999) and Daszyńska-Daszkiewicz
et al. (2005b) (see Table 6.4 below). With the advent of high-resolution spec-
troscopy and the coupling between pulsation theory and observations in the
quantitative methods outlined below, this Balmer-line application was not
pursued for other stars.

As explained, the time dependence of the spectral line caused by the
temperature eigenfunction δT may be important for the computation of the
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intrinsic line profile for lines that are sensitive to small temperature variations.
This is particularly the case for metal lines with significant equivalent-width
changes because the δT/T is such that it brings the ion into a higher/lower
ionization stage at compression/expansion compared with equilibrium. For
this reason, one carefully selects the best spectral line for mode identification.
It is advantageous to use an unblended, deep line which is insensitive to small
temperature changes in the line-forming region in the atmosphere, so that
one can avoid having to include δT/T in the computations. This has been
thoroughly investigated by De Ridder et al. (2002) for pulsating B stars. The
choice of the best line depends, of course, on the effective temperature and
gravity of the star. For β Cep stars, e.g., the best line is the Si III 4560Å triplet
(Aerts & De Cat 2003), while for slowly pulsating B stars the Si II 4130Å dou-
blet is ideally suited (Aerts et al. 1999). For very fast B-type rotators, these
multiplet lines are unfortunately blended and one has little choice but to con-
sider the isolated He I 6678Å line (e.g., Balona et al. 1999) or other helium
lines (Rivinius et al. 2003). Temperature effects on line-profile variations of
δ Sct and γDor stars have not been studied in the same detail as for B stars.

As discussed above, Eq. (6.49) for the computation of line-profile varia-
tions can be generalised in order to take into account the following additional
time-dependent effects: a perturbed surface, a perturbed flux through non-
adiabatic temperature and gravity variations, a time-dependent intrinsic pro-
file. For fast rotators, Coriolis and centrifugal correction terms to the pulsation
velocity expression should also be included. The most up-to-date line-profile
generation codes take into account several of these effects, except those due
to the centrifugal force. We refer the reader to Lee et al. (1992), Aerts &
Waelkens (1993), Townsend (1997), Schrijvers et al. (1997), De Ridder et al.
(2002), and Zima (2008) for a detailed description of such codes. Among these,
the code presented by De Ridder et al. (2002) is the only one that treats the
eigenfunctions appropriately in the line-forming regions of the atmosphere,
where one should not rely on the diffusion approximation. The properties of
the eigenfunctions in the stellar atmosphere are discussed in detail in Dupret
et al. (2002), to which we refer the reader for additional information. De Rid-
der et al. (2002) have shown that the effects of the non-adiabatic temperature
perturbations on the resulting line profiles remain modest for hot massive
stars in the case that the rotation can be ignored.

The complication due to the centrifugal force is not included in spectro-
scopic mode-identification methods at present. It would thus be necessary to
adapt the methodology presented below in the case of oscillations in rapid
rotators, i.e., for stars that rotate at a considerable fraction of their critical
velocity (say above 50%). In such a case, the expression for the velocity field in
terms of one spherical harmonic as in Eq. (6.40) is inaccurate. It is clear that
the applicability of the methodology breaks down in such a situation. As al-
ready emphasized in Chapter 3, we have no good theory of stellar oscillations
for fast rotators. Thus, one cannot hope to build a good mode-identification
method for such cases at present.
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The improved stability of spectrographs, some of which have been devel-
oped for exoplanet searches since the beginning of this century, has allowed
radial-velocity measurements with a precision of order m s−1. This led Hekker
et al. (2006) to generalise the computation of line-profile variations to the case
of solar-like damped oscillations. This revealed that line bisectors, as defined
in Chapter 4, are not a good diagnostic to investigate such oscillations, as
was also found independently by Dahl et al. (2006). Hekker et al. (2006) com-
pared their simulations with the variations detected in the cross-correlation
functions (CCF) of three red giants in which such damped oscillations were
firmly established from radial-velocity measurements. This led to the surpris-
ing result that nonradial modes seem to explain the CCF far better than
radial modes for some of the detected frequencies. This is at present not well
understood in terms of the theory outlined briefly in Chapter 3 and more
thoroughly in Chapter 7.

6.2.2 Line Profile Fitting

It is clear that the velocity expression based on the nonradial oscillation the-
ory contains many free parameters, even in the simple formulation in which
rotational and non-adiabatic effects are neglected. The very large number of
candidate modes is especially a problem when constructing identification tech-
niques and it often keeps the predictive power low. This is particularly the
case for the methods that are based on a trial-and-error principle. Quantita-
tive methods are better to obtain a reliable mode identification. This need
for quantitative methods has become apparent since more and more detailed
spectroscopic analyses have revealed that multimode pulsations are more the
rule than exception. Below, we treat two such methods, but first we mention
trial-and-error line-profile fitting as a mode-identification method for histori-
cal reasons.

This rather subjective method was pioneered by M. Smith and his col-
laborators. They obtained for the first time high-resolution spectroscopic ob-
servations for various types of pulsating stars along the main sequence and
implemented Osaki’s (1971) scheme to compare these data with theoretical
predictions (e.g., Campos & Smith 1980a,b; Smith 1983, 1985a,b,c; Smith et
al. 1984, 1986). The idea to identify modes is the following: one generates
theoretical line profiles (λ, p(λ)) over the oscillation cycle from Eqs (6.45) and
(6.49), or their more sophisticated version including temperature and Corio-
lis effects, and one compares them with the observed ones to select the best
set of line-profile parameters. These are the velocity amplitude vp of each of
the modes, the projected rotation velocity vΩ , the inclination angle i, and
the intrinsic profile width vint. This selection of (l,m, vp, i, vΩ

, vint) is either
done by simple visual inspection (early days) or by defining a criterion that
includes the deviation of the theoretical profiles from the observed ones in
each wavelength pixel. In order to do this objectively, one must construct a
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fine grid of theoretical profiles for different values of (l,m) and for realistic
ranges of the other line-profile parameters.

This method is relatively easy and straightforward to apply to a monope-
riodic oscillator. Assume we have M observed normalised profiles of a spec-
tral line (λj , pobs(λj , tk)) with j = 1, . . . , N and k = 1, . . . ,M . We can then
compute theoretical line profiles (λj , ptheo(λj , tk)) as explained above using
Eq. (6.49) for different input parameters vp, i, vΩ

and vint. Subsequently, we
derive the line deviation parameter based on the classical statistical technique
of standardised residuals (e.g., McCullagh & Nelder 1989):

Σm
l (vp, i, vΩ

, vint) ≡

√√
√
√ 1

(M ·N) − 1

M∑

k=1

N∑

j=1

[pobs(λj , tk) − ptheo(λj , tk)]2

ptheo(λj , tk)[1 − ptheo(λj , tk)]
.

(6.50)
The optimal choice of the continuous parameters (vp, i, vΩ

, vint) leads to a
minimum of Σm

l for each (l,m). By carefully screening a four-dimensional
parameter space for each (l,m), and by subsequently comparing the Σm

l -
values, one can thus identify the most likely mode.

Whenever more than one mode is present, however, the method becomes
unrealistic in computation time because one cannot search a large enough
parameter space. The latter has six dimensions for one mode and increases by 3
for any additional mode, in the approximation where one neglects temperature
and Coriolis effects as well as mode coupling. Also, this method is sensitive
to the neglect of low-amplitude modes that do affect the profiles slightly,
because the time series of line profiles is used in an absolute sense. Quite often
one constructs theoretical line profiles after the mode identification has been
achieved with quantitative methods for direct comparison with the data. This
is of course no longer line-profile fitting, but serves as an empirical goodness-
of-fit test to check identifications resulting from other methods.

6.2.3 The Moment Method

To overcome the computational obstacle of line-profile fitting, and to make
the identification more objective, quantitative mode-identification methods
have been developed since the second part of the 1980s. With each of these,
one replaces the observed line profiles by carefully studied diagnostics derived
from the data. One such method is based on the moment variations of the
spectral lines and was first introduced by Balona (1986ab, 1987) and further
developed by Aerts et al. (1992), De Pauw et al. (1993), Aerts (1996), Cugier
& Daszyńska (2001) and Briquet & Aerts (2003). This method essentially
relies on the statistical property that a line profile is fully characterised by all
of its velocity moments. Given this, one derives information about the velocity
of the nonradial oscillations from the time series of the moments of the line
profiles. The moment method has meanwhile been applied to many different
types of heat-driven pulsators along the main sequence. It is very powerful to
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identify low-degree modes (l ≤ 4) in slow rotators (v sin i ≤ 50 km s−1). We
discuss now the basic ingredients of this method and refer the reader to the
papers listed above for details.

6.2.3.1 Definition of the Moments

As discussed above, a line profile ptheo(v) ≡ (f ∗ g)(v) is the convolution of an
intrinsic profile denoted here as g(v) for brevity, with the flux in the direction
of the observer, denoted for convenience as f(v), integrated over the visible
stellar surface. The function f(v) corresponds to the one defined in Eq. (6.44)
while the velocity v is a function of the angular coordinates θ′ and φ′ and of
time t: v = v(R, θ′, φ′, t). The function g(v) is assumed to be a Gaussian with
variance v2

int for reasons described above.
We define the jth moment of the line profile as follows:

〈vj〉f∗g ≡

∫ +∞

−∞
vjptheo(v) dv

∫ +∞

−∞
ptheo(v) dv

=

∫ +∞

−∞
vj(f ∗ g)(v) dv

∫ +∞

−∞
(f ∗ g)(v) dv

(6.51)

with v the component of the total (pulsation + rotation) velocity field in the
line-of-sight.

All the information contained in the line profile can be reconstructed from
the entire series of moments of order j. In practice, we consider the first three
moments, i.e., those for j = 1, 2, 3. There are several reasons for that, the
major one being that each of these first three moments is connected to a
specific property of the line profile:

i) the first moment 〈v〉 is the centroid of the line profile in a reference frame
with origin at the stellar centre;

ii) the second moment 〈v2〉 is a measure of the width of the line profile;
iii) the third moment 〈v3〉 is a measure of the skewness of the line profile.

All higher-order moments can be written in terms of the first three moments
for profiles whose wings do not deviate much from a Gaussian. For the prac-
tical application to observed line-profile variations one easily shows that the
noise level in the observed moments increases with increasing moment order
and that the noise is higher for even moments than for odd moments. Aerts
et al. (1992) and Aerts (1996) showed that the use of the three lowest-order
moments is the optimal balance between having a clear signal and adding
independent information. Thus, each measured line profile is replaced by its
first three normalised moments 〈v〉, 〈v2〉 and 〈v3〉.

6.2.3.2 Theoretical Expression of the Moments for a Monoperiodic
Oscillation

In Eq. (6.51) we consider normalised moments, i.e., each moment is divided
by the moment of order zero M0. The latter is the equivalent width of the line
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profile, already defined in Chapter 4. The division by the equivalent width
is very convenient because small temperature and flux variations during the
oscillation are more or less averaged out in this way, as they occur in the same
way in the numerator and denominator in the definition of the moments. De
Pauw et al. (1993) tested the robustness of the mode identification against
small equivalent-width variations and found the assumption of a constant M0

to be acceptable up to equivalent-width changes of 5% in amplitude.
We subsequently make use of the property that the integral of a convolu-

tion equals the product of the integrals of the functions to be convolved. Hence
it is straightforward to show that the first three moments can be written as:

〈v〉
f∗g

= 〈v〉
f

+ 〈v〉
g
, (6.52)

〈v2〉
f∗g

= 〈v2〉
f

+ 2〈v〉
f
〈v〉

g
+ 〈v2〉

g
, (6.53)

〈v3〉
f∗g

= 3〈v2〉
f
〈v〉

g
+ 3〈v〉

f
〈v2〉

g
(6.54)

+〈v3〉
f

+ 〈v3〉
g
.

The odd moments of a Gaussian with average 0 km/s and variance v2
int

are zero. The second moment of the intrinsic Gaussian equals v2
int. Thanks

to these simple properties of a Gaussian, the convolution with the Gaussian
intrinsic profile can be written as follows:

〈v〉
f∗g

= 〈v〉
f
, (6.55)

〈v2〉
f∗g

= 〈v2〉
f

+ v2
int, (6.56)

〈v3〉
f∗g

= 〈v3〉
f

+ 3v2
int〈v〉f

. (6.57)

By considering the component of the total velocity vector v = vpuls + vrot

and by transforming the expression for f(v) given by (6.44) to the reference
frame (r, θ, φ) connected with the stellar rotation axis, we obtain the following
expressions for the three normalised moments of a monoperiodic nonradial
pulsator whose mode has infinite lifetime, after integration over the visible
stellar surface:

〈v〉
f∗g

= vpA(l,m, i) sin(ωt + δ), (6.58)

〈v2〉
f∗g

= v2
pC(l,m, i)sin(2ωt+ 2δ + 3π/2) (6.59)

+ vpvΩ
D(l,m, i)sin(ωt+ δ + 3π/2)

+ v2
pE(l,m, i) + v2

int + b2v
2
Ω

〈v3〉
f∗g

= v3
pF (l,m, i) sin(3ωt+ 3δ) (6.60)

+ v2
pvΩ

G(l,m, i)sin(2ωt+ 2δ + 3π/2)

+
[
v3
pR(l,m, i) + vpv

2
Ω
S(l,m, i) + vpv

2
intT (l,m, i)

]

× sin(ωt+ δ).

In these expressions, δ is a phase constant depending on the chosen reference
epoch and b2 is a constant that depends only on the limb-darkening law. The
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functions A,C,D,E, F,G,R, S, T depend on the (l,m) of the oscillation mode
and on the inclination angle. Together with the pulsation velocity amplitude
vp, these dimensionless and normalised functions contain the complete phys-
ical information connected with the theoretical expression of the nonradial
oscillation mode. The derivation of the expressions for these (complicated)
functions was presented by Aerts et al. (1992) to which we refer the reader
for further information. We only consider the case of the first moment in
somewhat more detail here. The function A(l,m, i) can be decomposed as

A(l,m, i) = al m 0(i) · a(l,K, hλ). (6.61)

An explicit expression for a(l,K, hλ) is available in Aerts et al. (1992) and
in De Ridder et al. (2002) and is omitted here. From this decomposition, we
encounter in a natural way again the same IACCs as for a photometric light
curve, as the angles i for which al m 0(i) = 0. Moreover, we can estimate the
partial cancellation effect for spectroscopy from a(l,K, hλ).

Some values are graphically depicted in Fig. 6.14 for two main-sequence
stars with different spectral types (B and G) and for a typical p mode (upper
panel) and g mode (lower panel). First of all, a comparison of Figs 6.4 and
6.14 shows at once that the partial cancellation effect is very different for a
photometric time series compared with a spectroscopic one. While the decrease
in detectability of modes with increasing l is apparent for photometry, this
is not the case for spectroscopy. This explains why a larger variety of mode
degrees is detected in spectroscopic data. It can be seen from Fig. 6.14 that, for
p modes with the same intrinsic amplitude, those with l = 1 and 4 are easiest
to detect in the time series of the first moment if we ignore the projection
effect , particularly for hot stars. Modes with l = 2 and 3 have about equal
probability of being detected if they have the same intrinsic amplitude and
similar projection effect. This explains why such modes have been derived
from spectroscopy for some stars, while l = 3 modes are usually absent in
photometry (see, e.g., the example of the β Cep star β Cru, Aerts et al. 1998a).
In general, the detected heat-driven p modes in individual target stars that
have been studied do not follow the patterns predicted from Figs 6.4 and 6.14.
This probably means that the intrinsic amplitudes of the excited p modes are
clearly different, although the inclination effect may also partly be the cause
of this.

The situation is somewhat different for g modes, which have, first of all,
smaller a(l,K, hλ) values than p modes. They are thus harder to detect in
spectroscopy. In this case, the modes with l = 1, 2, 3, 4 are almost equally
probable of being detected and the bottom panel of Fig. 6.14 shows that it is
easier to achieve this for B stars than for G stars. Modes with degree l > 5
are very hard to detect in the first moment. This is fully compatible with
the observations of g modes in SPBs (De Cat et al. 2005) and in γDor stars
(Aerts et al. 2004a).

The detectability of modes in 〈v2〉 is different than in 〈v〉. It would lead
us too far to discuss this in detail; we refer to Aerts et al. (1992), De Pauw



6.2 Mode Identification from High-Resolution Spectroscopy 419

Fig. 6.14. The function a(l,K, hλ) is shown for different mode degrees l for a
linear limb-darkening law taken from Claret (2000). We considered a star of Teff =
6000 K and log g = 4.0 at the wavelengths of the U (full line), B (dotted line) and
V (dash-dotted line) filters, as well as a star of Teff = 25000 K and log g = 4.0 at
U and B (indistinguishable, shown as dashed line) and V (dash-dot-dot-dotted line)
wavelengths. Upper panel: results for a typical p mode with K = 0.1; lower panel:
results for a g mode with K=10.
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et al. (1993), and Aerts (1996). The important message is that photometric
and spectroscopic observables not necessarily favour the same degrees to be
detected in the case of equal intrinsic amplitudes.

6.2.3.3 Computation of the Observational Moments

In practice we have sets of numbers (λi, Fi) with i = 1, . . . , N at our disposal
for each measured line profile. Here, Fi stands for the normalised flux value
measured at wavelength λi for pixel i. These profiles are considered to be
barycentric, i.e., their observation time and wavelengths have been shifted to
the barycentre of the solar system in order to take into account the motion
of the Earth around the Sun. The star under consideration exhibits an (a
priori unknown) radial velocity with respect to the Sun caused by its space
motion and possibly any binary orbital motion. These space motions are not of
interest to us here and are not contained in the theoretical expressions of the
moments, which are valid for a reference frame connected to the stellar centre.
We therefore have to correct the observed line profile (λi, Fi) for the radial
velocity shift of this space motion, before we can study the intrinsic velocity
due to the oscillation of the star as it occurs in the theoretical expressions
(6.58), (6.59), (6.60) of the moments. This implies that we have to determine
the observed moment variations in three different stages:

i) First we determine the small unnormalised moments as follows:

m0 =
N∑

i=1

(1 − Fi)Δxi, (6.62)

m1 =
N∑

i=1

(1 − Fi)xiΔxi, (6.63)

m2 =
N∑

i=1

(1 − Fi)x2
iΔxi, (6.64)

m3 =
N∑

i=1

(1 − Fi)x3
iΔxi, (6.65)

with Δxi ≡ xi − xi−1 where xi is the velocity corresponding to λi with
respect to the laboratory wavelength of the spectral line. One has to make
a clever choice for the velocity (or wavelength) range [x1, xN ]: not too
narrow a range in order to have all the information in the line profile
contained in the moment values and not too broad to limit the noise in
the calculated higher-order moments.

ii) The reduction of the small moments to average zero is achieved by cor-
recting for the relative motion of the star with respect to the Sun. This
motion is given by the average radial velocity of the star, which is the
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average value of m1/m0 (unit km s−1). We denote this average by x0.
The large unnormalised moments are obtained by using x0 as a reference
value:

M0 =
N∑

i=1

(1 − Fi)Δxi, (6.66)

M1 =
N∑

i=1

(1 − Fi)(xi − x0)Δxi, (6.67)

M2 =
N∑

i=1

(1 − Fi)(xi − x0)2Δxi, (6.68)

M3 =
N∑

i=1

(1 − Fi)(xi − x0)3Δxi. (6.69)

This leads to odd moments with average zero.
iii) Finally, we obtain the observed normalised moments 〈vj〉 for j = 1, . . . , 3

as Mj/M0. These moments now have velocity units (km s−1)j and can be
compared with the theoretical expressions (6.58) – (6.60).

In the case of a spectroscopic binary, the spectra need to be shifted to
prewhiten the orbital motion before the moments are computed.

6.2.3.4 Interpretation of the Moments

The periodograms of the three moments are immediately interpretable in
terms of the oscillation frequencies of the detected modes. The variations of
the moments 〈vj〉 in time are thus a very suitable diagnostic that allows one
to derive the temporal behaviour of the oscillations in full detail. It usually
suffices to search the frequencies of the modes in the observed first moment
variations, but some modes may show up easier in 〈v2〉 because this quantity
has a different partial cancellation than the first moment.

As soon as the oscillation frequencies have been derived, one is able to
construct phase diagrams of the moment variations from a harmonic analysis
as explained in Chapter 5. The results of such a harmonic analysis are ob-
servational values for the different amplitudes that occur in the theoretical
expressions Eqs (6.58), (6.59), (6.60) of the moments. We are therefore able
to derive information about the six oscillation parameters (l,m, i, vp, vΩ , vint).
We explain how to do that, by means of an example.

In Figs 6.15 and 6.16 we show some observed profile variations and the
three normalised moments of the δ Sct star ρPuppis. The full lines in Fig. 6.16
correspond to the result of a harmonic analysis according to the Eqs (6.58),
(6.59) and (6.60). The peak-to-peak value of the first moment gives an idea
about the overall velocity range due to the oscillation with that particular
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Fig. 6.15. Some observed line-profile variations of the δ Sct star ρPup obtained in
1995 with the Coudé Auxiliary Telescope of the European Southern Observatory in
Chile phased with the dominant frequency of 7.098 d−1. Data taken from Mathias
et al. (1997).

frequency, although it is an integrated quantity. For linear oscillations (an as-
sumption we adopted for the theoretical description of the moment method)
we expect this range to be well below the sound speed in the line-forming
region within the stellar atmosphere. If not, shock waves occur and the de-
scription of the modes in terms of a sine function is no longer valid. For a
linear oscillation, the first moment is expected to behave sinusoidally as is the
case for ρPuppis (see Figure 6.16).

The second moment turns out to be a very good diagnostic for the az-
imuthal number m. Indeed, as shown in Aerts et al. (1992), the function
D(l,m, i) equals zero for m = 0. This allows us readily to distinguish between
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Fig. 6.16. Phase diagrams of the normalised moments of the δ Sct star ρPup for
the dominant frequency 7.098 d−1. The dots are the observations and the lines are
the result of harmonic analyses according to expressions (6.58), (6.59) and (6.60).
Data taken from Mathias et al. (1997). The analysis shows that this mode is radial.
Part of the scatter in the diagrams arises from the presence of other, weaker modes.

m = 0 and m �= 0 from a harmonic analysis of 〈v2〉. Whenever the temporal
behaviour of 〈v2〉 can be described by a single sine function with frequency
2ω we are sure that m = 0. The middle panel of Figure 6.16 therefore implies
that it is likely that m = 0 for the main mode of ρPuppis, although there
is clearly a small sinusoidal contribution with frequency ω since the shape of
〈v2〉 is not fully symmetric. On the other hand, Aerts et al. (1992) have shown
that C(l, l, i) = 0. This implies that 〈v2〉 will behave purely sinusoidally with
frequency ω in the case of a sectoral mode. Any intermediate situation, i.e.,
a second moment in which both a term with ω and one with 2ω occur with
equal amplitudes, points towards a tesseral mode.

In order to obtain a complete identification of the mode from the three
moments, one proceeds as follows. The idea is to compare the observed vari-
ations of the moments with their theoretical expectations and to select the
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most likely set of parameters (l,m, i, vp, vΩ
, vint). This comparison is done ob-

jectively by means of the calculation of the so-called discriminant. This is a
function based on the observed amplitudes of the moments for all terms that
occur in the moment variations, i.e., one term in 〈v〉, three terms in 〈v2〉 and
three terms in 〈v3〉. The discriminant is defined as follows:
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(6.70)

(Aerts 1996). Here Aobs, Cobs, . . . , Tobs are the observed values of the functions
A(l,m, i), C(l,m, i), . . . etc. occurring in Eqs (6.58), (6.59) and (6.60) of the
theoretical predictions of the moments. These can be found from a harmonic
least-squares fit to the observed moment time series. The quantities fA, . . . , fT

are normalised weights that take into account the quality of such a fit to the
observed moments. An amplitude that has a smaller standard error will receive
a larger weight in the discrimination among the candidate l-values because it
is more dominant in the discriminant Γm

l compared with an amplitude with
a large standard error. The discriminant is constructed in such a way that it
is expressed in km s−1. From its definition, it is unable to distinguish between
positive and negative m. However, a greyscale representation of the observed
line profiles or the phase behaviour across the line profile (see below) provides
this additional information on the sign of m.

The adopted criterion for mode identification works as follows: the function
Γm

l (vp, i, vΩ
, vint) is minimized for each set (l,m):

γm
l ≡ minvp,i,v

Ω
,vintΓ

m
l (vp, i, vΩ

, vint). (6.71)
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As “overall best solution” for l and m we retain the one with the lowest
γm

l . This solution also provides us the most likely values for the continuous
unknowns in the velocity expression, namely vp, i, vΩ and vint.

De Pauw et al. (1993) and Aerts (1996) each made an extensive simula-
tion study to test the performance of the discriminant, taking into account
realistic gapped time series with an appropriate noise level. In these papers,
one also finds numerous examples of the behaviour of the three moments as a
function of (l,m, i), and of the radial and horizontal amplitudes vp and Kvp.
We advise a new user of the method to study these two simulation papers
carefully and we refer to the paper by Aerts (1996) for more information on
the performance of the discriminant defined in Eq. (6.70). In particular we
warn the user not to accept solutions with i close to an IACC. Viewing in the
direction of a nodal line of a mode is an easy way to get small amplitudes
for the moment terms. Thus, stars with low moment amplitudes are easily
explained by any (l,m) for inclinations equal to their IACC. The predictive
power of the discriminant cannot be large in such a case. This must be kept
in mind whenever interpreting the minima γm

l . Such a situation occurred for
the star 20 CVn and is discussed in detail further in this Section.

A robustness test was done by De Pauw et al. (1993) to assess the as-
sumption of constant equivalent width despite the occurrence of δT/T . It
turned out that the discriminant defined in Eq. (6.70) keeps performing well
in identifying the correct input mode as long as the peak-to-peak variations of
M0 remain below 10% (De Pauw et al. 1993). This good performance occurs
thanks to the use of normalised moments. It would not hold if we would work
with M1,M2,M3 without dividing them by M0. Since most of the pulsating
stars fulfil the criterion of having equivalent-width variations below 10% (see,
e.g., De Ridder et al. 2002 for B pulsators), it is indeed not necessary to in-
clude the consequences of δT/T in the discriminant of the moment method,
as already anticipated above. This is a very comforting situation, as we are
thus not dependent on the details of the non-adiabatic oscillation theory in
the outer atmosphere to identify the modes. All one relies on is the velocity
expression in Eq. (6.40). This is a serious advantage over photometric mode
identification. Of course, the condition of the relative amplitude of M0 being
below 10% should be tested in any application of the discriminant.

The moment method as presented here is a good identification method,
particularly for low-degree modes (l ≤ 4). It is complementary to the Pixel-by-
Pixel method outlined below. Modes with high degree (l ≥ 5) have very small
moment amplitudes with large standard errors, which limits the application
of the discriminant for such cases.

The application of the discriminant defined in Eq. (6.70) for the moments
of ρPuppis shown in Figure 6.16 is given in Table 6.2. One finds a radial main
mode for this star, as was already suggested by Campos & Smith (1980a).
The finding that m = 0 could be anticipated from the behaviour of 〈v2〉. The
latter, however, does deviate from a pure double sine (see Fig. 6.16). Such a
deviation is expected whenever additional modes, besides the dominant one,
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are present. Mathias et al. (1997) indeed found two additional candidate low-
amplitude modes in ρPup. Due to their beating with the dominant mode,
〈v2〉 is not perfectly symmetric. The same situation occurs for the line-profile
variations and their 〈v2〉 of the β Cep star δCeti (Aerts et al. 1992), whose
low-amplitude modes were revealed in MOST space photometry (Aerts et
al. 2006c). The second moment is thus a suitable diagnostic to detect low-
amplitude modes.

Table 6.2. The minima of the discriminant for the main mode of the δ Sct star
ρPup. γm

l , vp, Kvp, vΩ and vint are expressed in km s−1.

l |m| γm
l vp Kvp i vΩ vint

0 0 0.08 5.6 0.218 – 15.3 6.5

1 1 0.13 10.0 0.390 38◦ 14.8 5.9

2 1 0.17 12.1 0.472 64◦ 16.4 2.2

1 0 0.18 5.0 0.195 7◦ 19.6 1.7

2 2 0.23 15.0 0.585 53◦ 10.3 4.8
...

...
...

...
...

...
...

...

The largest shortcoming of the discriminant is that it lacks a statistical
significance test. In other words, we have no means to decide if the mode with
the lowest γm

l in the list of best candidates in Table 6.2 is truly better than the
following solutions, or if it is acceptable to a certain significance level. This
was elaborated upon by De Ridder et al. (2005), but the complexity of the
theoretical expressions for the moments, and the mixture of discrete and con-
tinuous unknowns, prevented a solid goodness-of-fit test. The best procedure
to adopt, as already mentioned above, is to generate theoretical line-profile
variations for the top listed solutions and compare them with the data. In this
way, one first eliminates a sufficient number of unlikely combinations of l, m,
vp, i, vΩ and vint from the moment variations before starting a line-profile fit-
ting method, fixing l and m combinations from a list like the one in Table 6.2
and allowing for slight changes in the continuous parameters to minimize the
deviation between the observed and theoretically computed profiles. Even af-
ter such a test, it may still be impossible to discriminate among several (l,m)
combinations and one should not do so in such a situation. In fact, confu-
sion between different (l,m) is inherent to the mode-identification problem.
A radial mode, e.g., will resemble a (1, 1) mode looked upon from the equa-
tor and is indistinguishable from a (1, 0) mode viewed from the pole. There
are several combinations of (l,m, vp, i) that have closely resembling profiles,
and thus moment variations. There are also cases where the profiles are not
very similar, but the moment values are, because of the integration over the
surface. Such cases can still be distinguished by applying the Pixel-by-Pixel
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method discussed in Section 6.2.4. To unravel similar profiles resulting from
different combinations of (l,m, vp, i), one needs a strong constraint on the
inclination angle. Multiperiodicity helps in this respect, as will be shown be-
low, but independent observational information is needed as well. This will be
illustrated for the case of the δ Sct star 20 CVn in Section 6.2.3.6.

6.2.3.5 Generalisation to Multiperiodic Oscillations
and to a Numerical Version of the Discriminant

A generalization of the mode-identification method described above for a mul-
tiperiodic star was provided by Mathias et al. (1994b). Whenever more than
one mode is excited to measurable amplitude, the moment variations become
more complicated. The first moment will simply consist of a linear superpo-
sition of all the separate modes. However, this is no longer the case for the
second and third moments, as they will contain coupling terms from taking
the square and the third power of the velocity expression in the integrand
of Eq. (6.51). For example, a biperiodic oscillation with frequencies ω1 and
ω2 will give rise to six frequencies in the second moment: ω1, 2ω1, ω2, 2ω2,
ω1 − ω2 and ω1 + ω2. The third moment will in that case have to be fitted
with twelve frequencies: those of 〈v2〉 and in addition 3ω1, 3ω2, 2ω1 + ω2,
2ω1 −ω2, 2ω2 +ω1 and 2ω2 −ω1. The number of frequencies occurring in the
moment expressions increases very rapidly with the number of modes. This is
a disadvantage of this method.

In order for the harmonic analysis to be accurate for a multiperiodic oscil-
lation, i.e., to lead to amplitudes with a small standard error as input for the
discriminant, it is necessary to cover all the beat frequencies with line-profile
observations. The sampling of the data also has to be of high temporal resolu-
tion in order to estimate the amplitudes of the sum frequencies in an accurate
way. This fact implies large observational challenges. An example in which a
beat phenomenon occurs in the time series of centroid velocities derived from
spectra of the β Cep star ν Eri, which was the target of a multisite campaign,
is shown in Fig. 6.17. A beat pattern is clearly visible in this figure. It is even
more apparent in the night-to-night photometric variations which will be dis-
cussed in Chapter 7. Several other time series including beating phenomena
were already shown in Chapter 2, such as in Figs 2.8, 2.12, 2.18, 2.20, 2.23,
2.52. The challenges are most prominent for stars with multiperiodic g-mode
oscillations, such as slowly pulsating B stars, γDoradus stars, pulsating Be
stars and pulsating supergiants. In all of those, the beat periods can be of the
order of months to years.

Solving the mode identification for multiperiodic oscillations is, of course,
more complex than for a single mode. Three unknowns (l,m, vp) are added
for each additional oscillation mode. On the other hand, having more than
one mode helps significantly to discriminate among almost equivalent solu-
tions with different inclination angles i. From the very complicated analytical
expressions for 〈v2〉 and 〈v3〉 available in Mathias et al. (1994b), one sees that
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Fig. 6.17. Time series of the first velocity moment of the multiperiodic β Cep star
ν Eri derived from a five-month dedicated multisite campaign. From Aerts et al.
(2004b).

almost all of the terms contain couplings between different frequencies. As
a consequence, identification of the modes is best performed simultaneously,
and not mode by mode as was originally done by Mathias et al. (1994b). With
the advent of faster computers, the option of simultaneous identification of
all detected frequencies in the moments was implemented by Briquet & Aerts
(2003). With this technique, the authors did not use the analytical expres-
sions of the moments to identify the modes as Aerts (1996) did. Instead, they
computed line-profile variations for various combinations of the parameters,
derived their moments numerically as in Section 6.2.3.3, and compared them
with the corresponding values derived from the observations, in a similar way
as in Eq. (6.70). Given that many of the factors occurring in the moments can
be separated, one only needs to compute them once and stack them into huge
tables. In that way, the moment method of Briquet & Aerts (2003) is more
than a factor of ten faster than the version of Mathias et al. (1994b). Some
applications will be discussed in Chapter 7.

6.2.3.6 Application to Cross-Correlation
or Least-Squares-Deconvolved Profiles

The requirements on the quality of the spectra to apply the moment method
successfully are stringent. The same is true for the Pixel-by-Pixel method, as
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Fig. 6.18. Phase diagrams of the observed normalised moments derived from cross-
correlation functions of the δ Sct star 20 CVn for the frequency 8.2168 d−1. From
Chadid et al. (2001).

will be discussed below. This limits the applicability of the methods to very
bright stars (typically with V < 6 for telescopes with diameter below 4m)
with not too short oscillation periods (typically longer than 15 min). One
can overcome this obstacle, to a certain extent, by combining the information
present in different spectral lines, such that fainter stars can be considered as
well, or the integration times can be limited, or lower-amplitude modes can
be searched for. Although of interest, one will seldom gain information on the
correct (l,m) when repeating an analysis on additional different individual
lines, because the best line will have been picked to start with in the first
place.

While one can in principle combine the 〈v〉 values of different lines, this is
certainly not true for 〈v2〉 and 〈v3〉. Indeed, each of the lines has its own ther-
mal broadening, i.e., its own value of vint. This leads to a different constant
term EE for 〈v2〉 and different amplitudes for 〈v3〉 for each of the lines, as
can be seen from Eqs (6.59) and (6.60). One could still merge the second mo-
ments 〈v2〉 of different lines, after shifting them to a common constant term
EE = 0 and by avoiding using that term in Eq. (6.70) for the mode identifi-
cation. However, the amplitudes are also different for different lines, because
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Table 6.3. The minima of the discriminant according to Eq. (6.70) (left) and of
the deviation parameter from line-profile fitting following Eq. (6.50) (right) for the
monoperiodic δ Sct star 20 CVn (Chadid et al. 2001).

l |m| γm
l vp Kvp i vΩ vint l m Σm

l vp Kvp i vΩ vint

3 2 0.09 4.50 0.27 75◦ 6 5.0 2 0 0.0022 2.50 0.15 45◦ 4.0 5.5

0 0 0.12 0.75 – – 5 6.0 3 0 0.0022 2.00 0.12 25◦ 4.0 5.7

3 0 0.12 4.00 0.24 55◦ 6.0 4.0 0 0 0.0023 0.85 – – 7.0 5.0

1 1 0.13 1.00 0.06 80◦ 6.0 5.0 3 +1 0.0024 2.50 0.15 85◦ 6.0 5.5

1 0 0.15 2.00 0.12 70◦ 6.0 5.0 4 +4 0.0026 1.50 0.09 70◦ 6.0 5.5

3 1 0.15 5.00 0.30 55◦ 5.0 5.0 3 +2 0.0026 3.00 0.18 15◦ 6.0 5.5

2 0 0.17 1.50 0.09 35◦ 7.0 5.5 3 -2 0.0027 3.00 0.18 15◦ 4.0 5.5

2 1 0.17 3.50 0.21 80◦ 4.0 5.5 2 +1 0.0029 2.00 0.12 90◦ 4.0 5.5
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

there is always some level of blending and this is different for different lines
(see, e.g., Mathias et al. (1994b) for a thorough discussion and illustrations).
The conclusion is that a simple line-by-line treatment is not helpful, from the
viewpoint of improving the mode identification. Such an analysis is very useful,
however, to detect small shock phenomena and details of wave propagation in
the outer stellar atmosphere (e.g., Crowe & Gillet 1989; Mathias et al. 1991;
Mathias & Gillet 1993).

We thus must search for a different way to combine the information in
different spectral line variations. Whenever the different line-forming regions
do not enclose nodal surfaces and are situated not too far from each other,
one expects the moments to vary perfectly in phase with each other. This can
easily be tested in practice. In that case, one may combine them to increase
the S/N level. This can be done by computing a cross-correlation function
(CCF) of each spectrum, or by least-squares deconvolution (LSD), as outlined
in Chapter 4. The reader finds numerous examples of oscillation signatures
in the CCFs of γDor stars in De Cat et al. (2006). It is very clear from that
paper that the oscillations turn up in the CCFs. How to use them for mode
identification, is, however, another issue to that of detecting the modes.

While computing the CCF or LSD, the same requirement as for the in-
dividual lines should be respected, i.e., the study must be restricted to un-
blended thermally-broadened metal lines. This usually reduces the number of
spectral lines considerably compared with the case where computation of the
most accurate radial-velocity value is the goal. The S/N level in the CCF or
LSD will increase by a factor

√
N , with N the number of lines used for the

CCF or LSD, so even using only four lines for a mask to derive the CCF or
for the computation of the LSD will imply doubling the S/N level.
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Fig. 6.19. Theoretically determined line-profile variations (full lines) are compared
with the observed cross-correlation functions (open circles) of the δ Sct star 20 CVn.
The input modes are (l,m) equal to (2, 0) (left), (4,+4) (middle), (0, 0) (right). The
continuous input parameters are listed in the right part of Table 6.3. From Chadid
et al. (2001).

One should not be fooled by thinking that the application of the moment
method to such type of variations is exactly the same as for the individual
spectral lines. This is not the case, because the second moment 〈v2〉 of the
CCF or LSD is again affected by the merging of lines with different vint and
by slight differences in the line blending of the different lines. The EE value
is therefore affected, and, if computed without giving this thought, also the
discriminant defined in Eq. (6.70).

A thorough discussion of such a situation is presented in Chadid et al.
(2001) for the F3III monoperiodic δ Sct star 20 CVn. The purpose of their
paper was to investigate the appropriateness of using CCF and the mo-
ment method to identify low-amplitude modes, because photometric mode-
identification efforts for this star in the literature, before the one done by
Daszyńska-Daszkiewicz et al. (2003) discussed above, led to a large discrep-
ancy between the theoretical predictions and the observed values. We show
in Fig. 6.18 the moment values derived from a CCF computed from a mask
for an F-type star including some 2000 lines using the ELODIE spectrograph.
The curves are phased according to the frequency 8.2168d−1 known from pho-
tometric light curves. It can be seen that the second moment hardly varies,
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Fig. 6.20. Theoretically determined moment variations for (l,m) equal to (0, 0)
(full line), (2, 0) (dashed line) and (4,+4) (dotted line) for the parameters listed in
the right part of Table 6.3. These moments correspond to the theoretical line-profile
variations shown in Fig. 6.19 and should be compared with the observed ones shown
in Fig. 6.18.

while the first and third moments have clear observed variations. This means
that the constant term EE dominates in 〈v2〉. This is a case where one has
to be careful with the mode identification because solutions with i close to
the IACC risk being favoured. The discriminant was subsequently computed,
leaving out the constant terms of 〈v2〉 and 〈v3〉 following the careful analysis
of all the terms occurring in the observed moments by Chadid et al. (2001).
The values of this modified discriminant are provided in the left part of Ta-
ble 6.3. It turns out that several solutions with i closer than 15◦ to an IACC
occur (rows 1, 3, 6 and 8). These cannot be trusted. The minima γm

l are very
close to each other, such that a unique solution cannot be derived without
additional effort.

In order to check for the power of the modified discriminant for this
monoperiodic star, the spectral deviation parameter in Eq. (6.50) through line-
profile fitting was computed for all modes with l ≤ 4. The results are listed
in the right part of Table 6.3. It can be seen that the discriminating power of
this method is lower than the one of the moment method for this star. Several
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Fig. 6.21. Simulated line-profile variations due to nonradial oscillations of different
(l,m). From top to bottom we show: a representation of the real part of the radial
component of the eigenfunction, the line profile due to the mode at a particular
phase in the cycle in comparison with the profile without an oscillation, the difference
between the two profiles, a grey-scale representation of the profiles with respect to
the mean during three cycles, the distribution of the amplitude across the pulsation-
induced line-profile variations (thick line) and its first harmonic (thin line) with
the maximum values indicated, the distribution of the phase across the pulsation-
induced line-profile variations (thick line) and its first harmonic (thin line) in units
of π radians with the blue-to-red phase differences Δψ0 and Δψ1 used in Eqs (6.72)
and (6.73) indicated. The projected equatorial rotation velocity is indicated by the
outer vertical lines in the top panel. From Telting & Schrijvers (1997).

solutions of almost equal quality occur. Three of those are compared with the
observed CCFs in Fig. 6.19: one with an inclination angle close to an IACC
(left), one with i far from an IACC (middle) and the radial mode. This is a
clear case where line-profile fitting, even when using an objective deviation



434 6 Mode Identification

parameter, does not work, but where the addition of the moment variations
allows the selection of one unique solution for (l,m). Indeed, a choice among
the solutions in Table 6.3 can be made, by considering the theoretical mo-
ments belonging to the best solutions from Σm

l and comparing them with the
observed ones shown in Fig. 6.18. These are plotted in Fig. 6.20. It is clear
that only one set of 〈v2〉 is in agreement with the observed ones and that
20 CVn is a radial oscillator. This is the second-best solution of the modified
discriminant, the first one having i � IACC.

This example shows that, indeed, it is valid to work with CCFs in iden-
tifying modes, provided that one makes a very careful analysis. The moment
method has not yet been tested on LSDs, but we expect similar performance.
The performance of the Pixel-by-Pixel method, to which we turn next, has
not yet been tested for CCFs or LSDs.

6.2.4 The Pixel-by-Pixel Method

A second quantitative identification method was first introduced by Gies &
Kullavanijaya (1988) and further developed by Kennelly & Walker (1996),
Telting & Schrijvers (1997), Mantegazza (2000) and Zima (2006). Its use is
illustrated and explained in Fig. 6.21. It is based on the properties of the
amplitude and phase distribution of each oscillation frequency and its first
harmonic across the entire line profile. These properties are linked to the
(l,m)-value of the mode, and to the inclination angle, as can be seen from
Fig. 6.21.

The computation of the amplitude and phase behaviour across the profile
is particularly suited to analyse line-profile variations in moderate to rapid
rotators (v sin i ≥ 50 km s−1), because we need a high resolving power within
the lines to interpret small changes in the skewness of the line, and/or moving
subfeatures. The method can also be applied to slow rotators with low-degree
modes, however, when combined with the moment method (see Telting et al.
1997 for the first such application).

A particularly promising idea related to this method was to transform the
line profile variations into 2D Fourier space, where power is sought for ap-
propriate combinations of time and spatial frequency, in analogy to what had
been done for the solar oscillations. This idea was put forward by Kennelly et
al. (1992) and was further developed by Kennelly et al. (1998), who applied
it to the δ Sct star τ Peg (see Fig. 6.23). In order to obtain the amplitude of
the frequency as a function of l, however, one must perform a deconvolution
of the original data into a time-dependent and a time-independent broaden-
ing function, and this relies on particular assumptions. Kennelly et al. (1998)
assumed to be dealing with p modes having K � 0, with profiles having a
constant intrinsic width which can be disentangled from the constant rotation-
ally broadened profile ignoring pulsational broadening, and with spectral lines
which can all be well described by one and the same linear limb darkening law.
Based on these assumptions, the authors developed a deconvolution scheme
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Fig. 6.22. Line-profile computations (full lines) for two different biperiodic models
are compared with data (dots) for the star β Cephei. The double full line has a
slightly lower rotational velocity and amplitude for the radial mode (labelled as f1),
but a somewhat larger intrinsic width vint (differences of 2 kms−1) than the single
thin full line. The amplitude of the nonradial mode (labelled as f2) was adopted to
fit the observations after having fixed the parameters of the dominant radial mode,
and varies between 1 and 2 kms−1, depending on its (l,m) assignment. The top
panel shows the average profile, the middle panels the amplitude and phase across
the profile for the dominant radial mode and the lower panels the amplitude and
phase of the three most likely identifications of the small-amplitude nonradial mode
(f2). Discrimination among these three possibilities is not possible. From Telting
et al. (1997).

that connects the two-dimensional Fourier transform of the line profile with
the time and spatial frequency, where the latter is assumed to be a particular
measure of the mode degree l which is valid in the case of K = 0. The example
shown in Fig. 6.23 shows this two-dimensional Fourier transform visually for
τ Peg. While this idea was very attractive at first sight, the many assumptions
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Fig. 6.23. The observed line profile variations of the δ Sct star τ Peg were Fourier
transformed and displayed as a function of the degree l by relying on particular
assumptions (see text). The inset is the same transform representing the pattern due
to the window function and gives an idea about the uncertainty in the identification
of the mode degree due to the sampling. From Kennelly et al. (1998).

underlying this method and the iterative manipulations of the data to end up
with the result displayed in Fig. 6.23 leave a rather high level of uncertainty
for the identification of the mode degree, in additional to the limitations of
the predictive power introduced by the window function. This is due to the
absence of a rigorous mathematical derivation of theoretical expressions for
for the amplitude and phase variations across the profile, as a function of l and
m. Hao (1998) tried to achieve such expressions, but did not succeed. This is
thus the main difference between this method and the moment method, for
which such expressions are readily available in Eqs (6.58), (6.59) and (6.60).

In order to remedy this situation and to understand the behaviour of
the amplitude and phase variation across the profiles, without having to
rely too much on assumptions and omitting deconvolution operations, Telting
& Schrijvers (1997) performed an extensive simulation study to exploit the
method visualised in Fig. 6.21 in terms of mode identification. Their simula-
tions were restricted to p modes and low-order g modes, and included the
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Fig. 6.24. Fit of the amplitude and phase across the profile for the twelve dominant
oscillation modes in the spectroscopy of the δ Sct star FGVir. The top panels show
the average, also termed zero profile (indicated as “Z”). For every single frequency,
the observed amplitude (label “A”) in units of the continuum and the phase distri-
bution (label “P”) in radians are shown together with the two best fitting models.
Reproduced from Zima et al. (2006).
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Table 6.4. Comparison of the results for the mode identification of the thirteen
dominant modes of the multiperiodic δ Sct star FG Vir, as available from the litera-
ture. Whenever more than one value for l or m is given in a column, discrimination
among them was impossible.

Frequency Viskum Breger Daszyńska-Daszkiewicz Zima

d−1 et al. (1998) et al. (1999) et al. (2005b) et al. (2006)

9.199 l = 2 l = 2 l = 2 l = 1, 2, 3 m = +1

9.656 l = 2 l = 1, 2 l = 2 l = 0, 1, 2 m = 0

12.154 l = 0 l = 0 l = 0 l = 0, 1, 2 m = 0,+1

12.716 l = 1 l = 1 l = 1 l = 1 m = 0

12.794 – – l = 2, 1 l = 2, 3, 4 m = −2

16.071 – – l = 0 – –

19.227 – – l = 2, 1, 0 l = 1, 2 m = +1

19.867 l = 2 l = 2 l = 2, 1 l = 0, 1, 2 m = 0

20.287 – – l = 0, 1 l = 1, 2, 3 m = −1

20.834 – – – l = 2, 3, 4 m = +1

21.051 l = 2 l = 2 l = 1, 0 l = 0, 1, 2 m = 0

23.403 l = 0 l = 0, 1 l = 2, 1 l = 2 m = 0

24.227 l = 1 l = 1, 2 l = 1 l = 0, 1 m = 0

effects of the Coriolis force in the velocity eigenfunctions. They computed
more than 15 000 time series of line-profile variations for different combina-
tions of (l,m, vp, i, vΩ

, vint) considering l ≤ 15 and all corresponding m-values
m ∈ [−l, l], realistic amplitudes for the modes, with or without the effects of
the Coriolis force, with or without parameterised equivalent-width variations.
For each of these time series, they subsequently computed the amplitude and
phase across the profile for the input frequency and its first harmonic, in the
way visualised in the lower panels of Fig. 6.21. The differences in phase be-
tween the bluest and reddest point in the line profile were then derived, for
the frequency (Δψ0) and for its first harmonic (Δψ1). The authors then com-
pared these values for Δψ0 and Δψ1 with the input values for (l,m) for all
these simulated time series and reached the following conclusions:

• there exists a strong correlation between the phase difference Δψ0 at the
blue and red edge of the profile for the oscillation frequency ω and the
degree of the mode. A good estimate of l can be derived from the empirical
relation

l � (0.10 + 1.09 |Δψ0|/π) ± 1; (6.72)

• there exists a clear, but less strong correlation between the phase difference
Δψ1 from blue to red for the first harmonic of the oscillation frequency
2ω and the azimuthal number of the mode. A good estimate of m can be
derived from the empirical relation
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m � (−1.33 + 0.54 |Δψ1|/π) ± 2. (6.73)

The simulations of Telting & Schrijvers (1997) clearly showed that the original
suggestion by Gies & Kullavanijaya (1988) to associate the phase differences
Δψ0 with a measure of the m-value of the mode, assuming only sectoral
modes to occur, is too limited for appropriate mode identification. This was
also concluded by Kennelly et al. (1998). In a generalisation of their work,
Schrijvers & Telting (1999) took into account the effects of intrinsic profile
variations and equivalent width changes as well. This resulted in very similar
fitting formulae than those given in Eqs (6.72) and (6.73). A similar simulation
study to the one by Telting & Schrijvers (1997), but for stars with g modes,
is not available.

The fitting formulae in Eqs (6.72) and (6.73) are easy to apply once the
oscillation frequencies are determined. However, they provide only a crude es-
timate of the degree and azimuthal order with a large uncertainty, particularly
for low-degree modes. It is therefore necessary to model the amplitude and
phase across the profile in full detail to achieve a reliable identification. In or-
der to do that, one computes theoretical line-profile variations from Eqs (6.45)
and (6.49), derives their amplitude and phase across the profile as in Fig. 6.21
and compares them with those derived from the observations. The earliest
such application was made for the star β Cephei by Telting et al. (1997) and
is depicted in Fig. 6.22 for a biperiodic model with a dominant radial mode
and with the three best solutions for the identification of the second, low-
amplitude mode.

Slightly different versions of the method by Telting & Schrijvers (1997)
have been presented (e.g., Mantegazza 2000). The most important and recent
one is by Zima (2006), who introduced a statistical significance test into the
method. In this way, he was able to discriminate more easily between differ-
ent mode identification solutions. He tuned and applied his method, which he
termed the Pixel-by-Pixel Method or PPM, after Mantegazza (2000), to ob-
served line-profile variations of the δ Sct star FG Vir (Zima et al. 2006). Zima
et al. (2006) found eleven modes in the line-profile variations in common with
those detected with significant amplitude in the multicolour photometry. The
fits to the amplitude and phase variation across FG Vir’s profile for the best
two identifications of the twelve dominant modes in spectroscopy, are shown
in Fig. 6.24. This shows at once the big advantage of this method over the mo-
ment method: each mode can be treated separately without having to worry
about coupling between the modes, at least in the linear approximation. The
drawback, however, is that its discriminating power starts to fail whenever
v sin i drops below, say typically, 20 km s−1.

The spectroscopic mode identification for FG Vir is in good agreement
with previous identifications. In particular, Fig. 6.24 illustrates the power to
identify m from spectroscopy. In Table 6.4 we show the evolution of the ability
to identify the dominant modes for this star from the literature. It can be
seen that it is more difficult to find a unique l-value from the high-resolution
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spectroscopy. Despite the many identified modes, a good seismic model of
FG Vir is still not available. This is true in general for the class of δ Sct stars.
We thus do not return to this class in Chapter 7.

It is evident from Table 6.4 that the ideal way to proceed with mode iden-
tification of multiperiodic stars is to use multicolour photometry to find the
l-values, and line-profile variations to fix m. Depending on v sin i, a moment
or PPM analysis should be preferred, but there is no reason not to do both
since they are complementary. This brings us in a natural way to the following
section.

6.3 Mode Identification from Combined Photometry
and Spectroscopy

Numerous applications of the mode-identification methods outlined above are
available in the literature. The successful applications mainly concern p modes
in β Cep or δ Sct stars, but also the dominant g modes in SPB stars (De Cat et
al. 2005). Given the complementarity between the photometric and spectro-
scopic methods in terms of observational requirements and ability to derive l
versus m, it is only natural to check whether consistency in the identifications
is reached. This was already shown to be the case for the complex oscillations
of FG Vir, besides the “simple” cases of 20 CVn and ρPup, all δ Sct stars
discussed above. Agreement between photometric and spectroscopic mode
identifications was also achieved for the β Cep stars, such as for the domi-
nant mode of δCeti (Aerts et al. 1992; Cugier et al. 1994), all three modes
of 16 Lac (Cugier et al. 1994; Aerts et al. 2003a), and most (but not all) of
the modes of ν Eridani (De Ridder et al. 2004). There are, however, also cases
with differences in the mode-identification results. One example is the famous
β Cep star β Cru, which was found to be a monoperiodic l = 2 pulsator from
photometric data (Cugier et al. 1994), while Aerts et al. (1998a) found it to
have two low-amplitude modes of l = 3 or 4, besides a dominant l = 1 mode
for the frequency detected in the photometry, from a line-profile analysis. The
three modes found in the spectroscopy were later also detected in WIRE space
white-light photometry (Cuypers et al. 2002). The misidentification from the
multicolour photometry is probably due to the presence of the companion,
which was ignored in that analysis but which is of similar spectral type to
the oscillating component, and/or due to the neglect of the low-amplitude
modes that are invisible in the ground-based photometry but clearly detected
in spectroscopy. Consistency was also reached between the most likely l = 1
mode identification of SPB stars as a group by Townsend (2002) and the mode
identification from multicolour photometry and high-resolution spectroscopy
of seven selected SPB stars by De Cat et al. (2005).

The case of β Cru brings us to the fact that several β Cep stars and some
SPB stars have modes that are invisible in ground-based photometry, while
they are clearly present in the line-profile variations. The example of β Cru
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shows that this may occur for slow rotators, but, most frequently, such finding
is obtained for moderate to rapid rotators, e.g., ω1 Sco (Telting & Schrijvers
1998), λ Sco (Uytterhoeven et al. 2004), κ Sco (Uytterhoeven et al. 2005a),
β Cen (Ausseloos et al. 2006) and numerous pulsating Be stars (Rivinius et
al. 2003), all of which have v sin i above 60 km s−1. Of course, in such cases,
one cannot rely on photometry to help in the mode identification, except
that one can test a posteriori if the solutions found from the spectroscopy
are compatible with the absence of photometric variations. The many B stars
found to be oscillating from WIRE (Bruntt 2007) and MOST (Walker et al.
2005a,b; Aerts et al. 2006b,c; Saio et al. 2006, 2007) space photometry, while
being essentially constant in ground-based photometry, prove that numerous
low-amplitude modes are excited by the heat mechanism.

With the occurrence of low-amplitude modes in spectroscopy, only some of
which are detectable in multicolour photometry in some cases, the idea arose
to obtain simultaneous observations of these kinds. This is particularly the
case for β Cep stars, for which extensive multisite, multi-technique campaigns
were initiated by G. Handler from Vienna since 2002, as already outlined in
Chapter 2. Cases where the multicolour photometry allowed the derivation of
l, while the spectroscopy did not, occurred for the stars β CMa (Handler et al.
2005) and θOph (Shobbrook et al. 2006). The spectroscopists then were able
to find the m-values, by fixing the photometric values for l and applying the
moment method and evaluating the phase and amplitude across the profile for
the best solutions as in Fig. 6.22 (Mazumdar et al. 2006b, Briquet et al. 2005).
We come back to the case of θOph in Chapter 7, where we discuss its seismic
modelling based on the detected frequencies and the mode identification.

Whenever modes are detected in quasi-simultaneous multicolour photom-
etry and high-resolution spectroscopy, one can do better than simply compare
the mode identification results by exploiting the data simultaneously. This was
first done by Daszyńska-Daszkiewicz et al. (2005a) for the β Cep stars δCet
and ν Eri. These authors added the amplitude and phase of the first moment
to the multicolour amplitudes and phases, and upgraded the χ2 criterion as in
Eq. (6.37) accordingly. This led them to a safer mode identification, and also
an estimate of the parameter fT , provided that the different types of data are
not obtained too far apart in time to avoid different beat patterns to occur in
the two types of data. From the derived fT values for models with different
opacities, the authors found a way to derive information on the most appro-
priate opacities to explain the modes. It is this combined method that also
led to the identification of twelve modes for FG Vir discussed in the previous
section and listed in Table 6.4. A natural extension of this method would be to
include also the second and third moment variations to obtain an even more
powerful discriminant, but this has not yet been done so far.

Finally, we point out that the empirical identification of the (l,m) val-
ues for the multiperiodic γDor stars remains difficult to achieve. There are
hardly any simultaneous long-term multi-technique data sets available for such
g-mode pulsators. The mode-identification results by De Cat et al. (2005) for
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some selected SPB stars show that the modes can be successfully identified,
provided that one assembles multicolour photometry and high-resolution spec-
troscopy with a time span of a few years. Multicolour photometry with such a
time span has been assembled from multisite campaigns dedicated to specific
targets such as 9 Aur (Zerbi et al. 1997a), HD 164615 (Zerbi et al. 1997b),
QW Pup (Poretti et al. 1997), HR 8799 (Zerbi et al. 1999), and from single-
site campaigns dedicated to samples of γDor stars (Henry et al. 2004; Henry
& Fekel 2005; Cuypers et al. 2009). Long-term spectroscopic campaigns for
large samples were also carried out (Mathias et al. 2004; De Cat et al. 2006).
Unfortunately, these extensive data have not led to mode identification. The
modes of only five γDor stars have been identified so far from multicolour
photometry (Dupret et al. 2005b). This seems to point towards the excitation
of only l = 1 modes, but this conclusion must be considered as preliminary. In-
deed, a huge ground-based campaign set up for the CoRoT main target γDor
star HD 49434, which is a fairly rapid rotator, only revealed modes with l > 2
(Uytterhoeven et al. 2008). Very likely, ground-breaking results for g-mode
oscillators will come from the CoRoT and Kepler photometry, in combination
with ground-based spectroscopy.

6.4 Towards Mode Identification from Combined
Interferometry and Spectroscopy?

In an extensive review, Cunha et al. (2007) have discussed the synergies and
cross-fertilisation between interferometry and asteroseismology. Interferomet-
ric measurements can help a lot in asteroseismic analyses in several different
ways. Direct radius estimates with a relative precision better than a few per
cent, e.g., can be obtained for several hundred stars in the solar neighbourhood
with VLTI/AMBER. The masses of binary stars with a pulsating component
can be derived independently from asteroseismology by interferometry, with
precision of only a few per cent. As far as mode identification is concerned,
the combination of interferometric and spectroscopic data allows, in principle,
the identification of the oscillation modes.

The PPM method described above exploits the amplitude and phase across
the profile as a mode-identification diagnostic by relying, through Eqs (6.45)
and (6.49), on the expression for the pulsational velocity in terms of l and m.
The Doppler effect is considered to be the dominant source of information in
identifying l and m from the variations through Eq. (6.49). A new interesting
idea was put forward by Berdyugina et al. (2003a). They inverted a time se-
ries of line-profile variations, in this way turning the data into a stellar surface
brightness distribution. This comes down to an image reconstruction method,
also termed Doppler Imaging in the context of spotted stars. They applied
this inversion without assuming any prior knowledge of the physical cause
of the variations of the line profiles. After having performed the inversion,
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the authors assumed that the most important cause of the line-profile vari-
ations are surface brightness variations superposed onto a time-independent
broadened Doppler profile. Rather than focusing on v(R, θ′i, φ

′
j , t) in the in-

terpretation through Eq. (6.49), they thus considered δ[Fλ(θ′, φ′)] to be the
dominant information for the mode identification. Such a situation may occur
for rapidly rotating stars, whose velocity perturbation due to the oscillations
is very small compared with its rotational broadening. In such a case, the
pulsation-induced intensity perturbations gain importance with respect to
the velocity perturbations. Berdyugina et al. (2003b) applied their method
to the β Cep star ω1 Scorpii and found it to be capable of recovering l and m
of the oscillation, which had been derived before from a PPM-like application
by Telting & Schrijvers (1998). This brings us to the capability of combining
surface brightness variations, e.g., derived from interferometry, with surface
velocity variations derived from high-resolution spectroscopy.

Long before the availability of appropriate instrumentation, Vakili et al.
(1994) had already suggested the study of surface variations due to nonradial
oscillations of rapidly rotating stars from long-baseline differential interferom-
etry (see Cunha et al. 2007 for the technicalities of how this can be achieved).
As shown by Jankov et al. (2001, 2002), such a combined technique can be
successful in identifying oscillation modes with l > 2 in rapid rotators, pro-
viding information on the modes that can perhaps not be obtained from each
of the two types of observations, interferometry and spectroscopy, separately.
The flux variations due to the nonradial modes introduce a complex pattern
in the so-called interferometric UV plane (Cunha et al. 2007). This pattern
can be disentangled by comparing the photocentre displacements in this plane
due to the oscillations with predicted monochromatic intensity maps of a con-
stant star. In practice, one simulates photocentre displacements as a function
of (l,m, i). Such a simulation defines a kind of “spatial filter” for each (l,m, i).
Applying one-by-one all these spatial filters to the data allows one to identify
the true nature of the mode. This is illustrated in Fig. 6.25, in which the orig-
inal signal in panel (a) is compared with a map (b) recovered from spectra
alone with a method similar to the one of Berdyugina et al. (2003a), as well
as with the map based on the photocentre shifts alone displayed in panel (c),
and a combination of both shown in panel (d). The limitations of panels (b)
and (c) are particularly apparent in the reconstruction of the features below
the equator, where a loss of contrast occurs. A significant improvement with
respect to these separate reconstructions is obtained using both spectra and
photocentre shifts simultaneously, as in panel (d).

Domiciano de Souza et al. (2002, 2003) and Jankov et al. (2004) showed
that measurements of the displacement of the photocentre across the stel-
lar disc allows mapping of the surface brightness, but requires a minimum
of three telescopes in an interferometric array in such a way that fringes are
collected for all three baselines. The simulation study by Jankov et al. (2004)
anticipates that the interferometric measurements are sufficiently sensitive
to detect a mode of low (l,m). In general, however, numerous modes are
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Fig. 6.25. (a) Simulation of the pole-on projection of the stellar surface brightness
perturbations due to an l = 5,m = 4 mode on a star with an inclination angle
of i = 45◦. The equator and the latitudes 30◦ and 60◦ are presented by full and
dashed circles, respectively. Reconstruction based on (b) simulated flux spectra,
(c) photocentre shifts, and (d) combined flux spectra and photocentre shifts. From
Jankov et al. (2002).

simultaneously excited. In such more realistic cases, the photocentre displace-
ments are “washed out” by the averaging effect of the many (l,m)-values. In
that case, one can still obtain identification for a fixed number of oscillation
frequencies which have been derived from time series analysis of observables
of any kind. When carrying out the interferometric measurements, a selected
oscillation frequency is used to phase-lock the data to this frequency. In this
way, all surface structures that are not associated with this frequency are as-
sumed to be removed, greatly improving the signal strength for the frequency
under consideration. Such frequency filtering can be done as a post-processing
step by an appropriate weighting procedure. It is possible to design the ap-
propriate weights for each of the measured oscillation frequencies separately,
and use the same set of interferometric observations to constrain the identi-
fication of all the oscillation modes whose frequencies are known from other
diagnostics.
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Concrete applications of this promising mode-identification method are
still awaited.

6.5 Towards Mode Identification from Eclipse Mapping?

Unno et al. (1989, p.22) pointed out the possibility to observe phase shifts due
to nonradial oscillations during the eclipse of a pulsating star by a compan-
ion, and to use this as a mode-identification method. No applications of this
technique existed at the time they wrote the second edition of their mono-
graph on nonradial oscillations of stars. Unno et al. (1989) realised that the
earlier interpretation of phase jumps of 360◦ in the nova-like binary UX UMa
in terms of nonradial oscillation modes of l = 2 by Nather & Robinson (1974)
was premature, and that the observed phase phenomenon could be far better
explained in terms of an oblique rotator model.

Current versions of the eclipse-mapping method for cataclysmic variables
are based on the original development by Horne (1985). He introduced the
method with the goal of mapping the surface brightness distributions in eclips-
ing cataclysmic variables. Eclipse mapping allows a test of accretion theory
because the spatial structure of the discs can be derived from the light-curve
behaviour. Moreover, the spot structure, including the hot spot originating
from the collision of the stream of the donor onto the disc of the gainer, can
be derived. For early applications to interacting binaries we refer to, e.g.,
Rutten et al. (1993), Collier Cameron & Hilditch (1997) and Hilditch et al.
(1998).

In the case of mode identification of a non-radially pulsating star in an
eclipsing binary, one needs to reconstruct a time-dependent intensity map from
the data, and subsequently infer the amplitude and phase behaviour of the
pulsation mode. Nuspl & Bı́ró (2002) and Nuspl et al. (2004) modified Horne’s
method for mode identification from photometric data, as did Gamarova et
al. (2003) who baptised their method the Spatial Filtration method. Unfortu-
nately, these studies were only published in short proceedings papers and there
is as yet no extensive simulation study of the methodology, highlighting its
applicability to multiperiodic oscillations and an evaluation of the uniqueness
of solutions.

While several δ Sct stars in eclipsing binaries are known (Pigulski 2006),
the mode identifications performed for them are almost all based on the out-
of-eclipse data, e.g., RZ Cas (Ohshima et al. 2001; Rodŕıguez et al. 2004b)
and Y Cam (Kim et al. 2002). The next step towards application of mode
identification through eclipse mapping was performed by Mkrtichian et al.
(2004) for the Algol-type eclipsing binary star AS Eri. They did not use the
eclipse-mapping method, but they excluded the odd l + m combinations of
(l,m) from the fact that their disc-integrated amplitude disappears during the
eclipse. Rodŕıguez et al. (2004a,b) made preliminary estimates of (l,m) for
the Algol-type eclipsing binaries AB Cas and RZ Cas from Spatial Filtration.
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Rodŕıguez et al. (2004a) also applied Spatial Filtration to AB Cassiopeia. Both
studies provided a radial mode for the star, in agreement with the out-of-
eclipse identification. This result was recently confirmed by Riazi & Abedi
(2006), who considered only radial modes in their methodology. As far as we
are aware, the case of AB Cas, a radial pulsator, is the only application they
made so far.

By far the best documented version of mode identification from photo-
metric data using eclipse mapping was provided by Reed et al. (2005). While
their primary goal was to search for evidence of tidally tipped pulsation axes
in close binaries, they also made simulations for the very specific case of eclipse
mapping of pulsating subdwarf B star binaries, i.e., assuming that the sec-
ondary has more or less the same size as the primary and does not contribute
to the light. They assumed that the pulsation axis can take any value and
is not necessarily aligned with the rotation or orbital axis. They investigated
how the visibility of different types of modes varies between the out-of-eclipse
and in-eclipse phase. In particular, they found that l > 2 modes become visi-
ble during an eclipse while they are essentially absent outside of eclipse. Their
tools have so far only been applied to concrete cases of KPD 1930+2752 (Reed
et al. 2006a) and of PG 1336−018 (Reed et al. 2006b; see also Fig. 2.61) but
without clear results.

We must conclude that, still today, more than 35 years after the original
idea of Nather & Robinson (1974), eclipse mapping has hardly been evaluated
critically as a mode-identification method, nor has it been applied successfully
in practice for binary stars that have been subjected to seismic modelling
afterwards.

We end this Chapter by directing attention to the software package
FAMIAS1 (Frequency Analysis and Mode Identification for AsteroSeismology;
Zima 2008) which was developed in the framework of the FP6 Coordination
Action in Helio- and asteroseismology (HELAS2). This package allows mode
identification from multi-colour photometry or high-resolution spectroscopy
with the methods discussed in this Chapter. Along with FAMIAS, a Database
for AsteroSeismology (DAS3), which contains numerous published suitable
data sets to apply FAMIAS to, has been published in the framework of HELAS
as well (Østensen 2008).

1 http://www.ster.kuleuven.be/∼zima/famias/.
2 http://www.helas-eu.org/.
3 http://newton.ster.kuleuven.be/∼roy/helas/.
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Applications of Asteroseismology

This chapter is devoted to case studies of asteroseismology, starting with a
section on helioseismology, which also discusses aspects of stellar oscillations of
specific relevance to this case. We have selected stars that have been the sub-
jects of successful seismic modelling, in the sense that quantitative measures of
internal structure parameters have been derived from their oscillations or that
shortcomings in the current stellar models were encountered when fitting the
oscillation frequencies. We did not aim to present an overview of applications
of asteroseismology, but rather to highlight some carefully chosen examples
across the HR diagram that are instructive to illustrate the current status of
the research field. Our choice is biased towards the interests of the authors.

7.1 Helioseismology

7.1.1 Introduction

Quite apart from its obvious practical importance, the Sun is an ideal case for
seismic investigations. Its proximity makes it the only case where oscillations
of high degree (up to l >∼ 1500) can be studied. As discussed in Sections 7.1.7
and 7.1.8 this provides sufficiently extensive, rich sets of data that we can infer
properties as functions of position within most of the solar interior. Also, we
have accurate determinations of the solar mass, radius and luminosity as well
as independent determinations of the age of the solar system, from radioactive
dating of meteorites, further constraining the solar models. The solar surface
rotation rate can be determined directly from Doppler observations and from
the apparent motion of features on the surface, showing a differential rota-
tion with latitude, the equator rotating more rapidly than the poles. Finally,
very detailed spectroscopic analysis has been used to determine the compo-
sition of the solar atmosphere, which in many cases can be verified through
comparison with the composition of undifferentiated meteorites; however, as
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discussed in Section 7.1.7, recent analyses have raised some questions about
the abundances of carbon, oxygen and nitrogen in the solar atmosphere.

Here we consider mainly the study of the solar interior on the basis of
observed frequencies of global modes of the Sun; such global helioseismology
is obviously the case of most relevance to asteroseismic studies of other stars.
However, we note that the high spatial resolution of solar data has also al-
lowed the development of local helioseismology, based on the analysis of other
aspects of the wave field on the solar surface. This has provided information
about the three-dimensional time-dependent properties of the subsurface lay-
ers, flows associated with large-scale convection, meridional flows in the solar
convection zone and the wave propagation speed beneath active regions. Such
investigations are of major importance to the understanding of the dynamic
solar interior, including the origin and properties of the solar magnetic cycle;
however, they are beyond the scope of the present book. We refer instead to
the major review by Gizon & Birch (2005).

General overviews of the properties of the Sun have been provided, for
example, by Stix (2002) and Foukal (2004), while Schrijver & Zwaan (2000)
discussed the magnetic activity of the Sun and sun-like stars. An extensive
review of helioseismology was given by Christensen-Dalsgaard (2002), while
Chaplin & Basu (2008) gave a recent overview of the present status and per-
spectives of global helioseismology. Basu & Antia (2008) presented a detailed
discussion of helioseismology, emphasizing the application to solar structure
and in particular the consequences of the assumed solar composition, while
Howe (2009) similarly considered solar rotation, particularly from the point of
view of helioseismic inferences. Here we discuss aspects of stellar oscillations
which so far are specific to the solar case, including the application of inverse
analyses, and present some recent results of helioseismology.

7.1.1.1 Solar Modelling

In many ways the Sun is a simple star. It is half-way through central hydro-
gen burning, it does not have a convective core and it is slowly rotating. Also,
compared with other stars the conditions in the solar interior are relatively
benign. On the other hand, its proximity allows us to realize the complexity
of the phenomena in even simple stars. Particularly striking is the complex
magnetic activity, varying in a 22-year cycle, which dominates the properties
of the outer solar atmosphere. Based on our understanding of the solar mag-
netic activity, evidence for similar activity, in some cases much more dramatic,
has been found in other stars, although the observational data are unavoid-
ably very limited. Another important set of observations, so far only possible,
amongst main-sequence stars, in the Sun is the measurement of the flux of
neutrinos from the nuclear reactions in the solar core (cf. Section 3.2.2). As
reviewed by Bahcall (1989) there was until fairly recently an apparent dis-
crepancy between the measured flux and the flux predicted by solar models,
possibly indicating deficiencies in stellar modelling. In fact, helioseismology
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provided strong indications that the model predictions were essentially cor-
rect (see Section 7.1.7); this was confirmed with the detection of the conversion
of the electron neutrinos generated in the nuclear reactions into other types
of neutrinos, the combined number agreeing with the solar models. Recent
reviews on solar neutrinos were provided by Bahcall & Peña-Garay (2004),
McDonald (2004) and Haxton et al. (2006).

A model of the Sun must obviously be consistent with the accurately
known overall properties: the solar mass, radius and luminosity, M�, R� and
L�, at an assumed age τ� of the present Sun. In addition, the model should
match the observed surface composition, often represented by the ratio Zs/Xs

between the abundance by mass of heavy elements and hydrogen. Although
helium, as indicated by its name, is observed in the solar spectrum, the lines
are formed under conditions that are too complex to allow a reliable deter-
mination of the abundance. Thus the individual abundances of hydrogen and
heavy elements cannot be determined. Since mass loss is typically neglected
in solar modelling, the models are calculated with the appropriate mass. To
match the remaining observables, R�, L� and Zs/Xs, at τ� the models are
calibrated by adjusting three parameters that are otherwise essentially free:
a parameter, such as the mixing-length parameter αML, characterizing the
near-surface convection (cf. Section 3.2.1) and the initial abundances Y0 and
Z0 of helium and heavy elements.1 All models discussed in the present section
are assumed to be calibrated in this manner.

The near-surface layers of solar-like stars present particular problems in
the modelling of the stars and their oscillations. The use of the mixing-length
formulation in the treatment of convection is an obvious limitation, in the
superficial part of the convection zone where the temperature gradient is sub-
stantially superadiabatic. Also, turbulent Reynolds stresses, often described
as a turbulent pressure, undoubtedly have a significant effect on the hydro-
static structure of stellar models, given that the convective Mach number
approaches unity near the surface. Nonadiabaticity and other effects of mode
excitation clearly affect the oscillations in this region. Although nonadiabatic
calculations of stellar oscillations are entirely feasible (see Section 3.7), the
treatment of the effects of the convective flux and turbulent pressure on the
oscillations remains a serious uncertainty (cf. Section 3.7.3). As discussed in
Section 7.1.7 these issues play a major role in the analysis of the observed
solar oscillations.

Important goals of the helioseismic analysis of observed frequencies are
evidently to test both the microphysics of the solar interior and the other
assumptions underlying the model calculation. A complication is that a given
region of the model in general is affected by several aspects of the microphysics,
e.g., both the opacity and the equation of state; under these circumstances
it may evidently be difficult or impossible to isolate the cause of discrepan-

1 As diffusion and settling are generally included in the modelling, these do not
match the present surface abundances.
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cies between observations and models. In the analysis of solar data a very
considerable simplification results from the presence of the convection zone,
despite the uncertainties in the detailed description of convection. The reason
is that, regardless of these uncertainties, there is no doubt that convection in
almost the entire convection zone is a very efficient means of energy trans-
port, requiring only a minute superadiabatic gradient. Thus to a very good
approximation the relation between pressure and density is determined by

d ln ρ
d ln p

� 1
Γ1

, (7.1)

such that the specific entropy s is virtually constant; accordingly, the temper-
ature structure is essentially adiabatic and hence independent of opacity. The
value of s is determined by the structure of the thin region just beneath the
surface where the gradient is significantly superadiabatic, as characterized, for
example, by the value of the mixing-length parameter αML. It follows that the
structure of the bulk of the convection zone is determined just by the value
of s, by the composition (which, because of the very efficient mixing can be
assumed to be uniform), and by the equation of state. Consequently modes of
oscillation that are sensitive just to the structure of the convection zone are
ideally suited to test the properties of the equation of state and to determine
the solar composition (see also Christensen-Dalsgaard & Däppen 1992). It will
be shown in Section 7.1.4 that solar five-minute oscillations of degree higher
than about 40 have this property.

7.1.1.2 A Brief History of Helioseismology

The first detections of oscillatory motion in the solar atmosphere, with periods
near five minutes, were made by Leighton (1961) and Leighton et al. (1962).
Measurements in small regions on the solar surface (e.g., Musman & Rust
1970) suggested that these might be localized oscillations, possibly excited by
granular motion. However, preliminary observations by Frazier (1968) of the
distribution of power with wavenumber kh and frequency ν led Ulrich (1970)
and Leibacher & Stein (1971) to suggest that the oscillations were acoustic
modes trapped in the solar interior. This was dramatically confirmed by the
observations of Deubner (1975) which showed a clear modal structure in the
(kh, ν) diagram. The analysis by Ulrich, and more detailed modelling by Ando
& Osaki (1975), showed that these were modes trapped in outer parts of the
convection zone. Although they therefore only provided direct information
about this region, this constrains the adiabat of the bulk of the convection
zone (cf. Section 3.2.1.3) and hence its overall structure. Thus, Gough (1977b)
showed that to match the observations the depth of the convection zone had to
be substantially higher than the value in the models of the time; he inferred a
value close to the 200 Mm now determined from helioseismic analysis of more
complete data (cf. Section 7.1.7).
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At approximately the time when Deubner’s results were published, ad-
ditional data strongly indicated the presence of global solar oscillations. Hill
et al. (1976) found a set of peaks in measurements of the apparent solar diam-
eter, corresponding to periods between around 5 and 60 min, and preliminary
calculations seemed to indicate that they were consistent with frequencies of a
solar model. Also, Brookes et al. (1976) and Severny et al. (1976) detected an
oscillation in the solar Doppler shift with a period very close to 160 min. The
latter detection clearly suggested the presence of a high-order g mode but the
lack of additional observed modes in the relatively dense predicted g-mode
spectrum was peculiar; however, their presence appeared to be confirmed by
further observations (Scherrer et al. 1979; Severny et al. 19792). These detec-
tions, even more than Deubner’s observations of high-degree modes trapped
near the surface, immediately suggested the possibility of seismic investiga-
tions of the entire solar interior and led to a flurry of activity (e.g., Scuflaire
et al. 1975; Christensen-Dalsgaard & Gough 1976; Iben & Mahaffy 1976). It
is somewhat ironic that this promise of helioseismology has since been am-
ply fulfilled, beyond the wildest dreams of the initial investigations, while the
observations of the diameter oscillations and the 160-minute oscillations have
failed to be confirmed by later data.

The first true detection of global solar modes of oscillation was obtained
by the Birmingham group (Claverie et al. 1979) who found five-minute oscil-
lations in light integrated over the solar disc, indicating that the modes were
of low degree. Evidence for power in this frequency region had previously
been found by Fossat & Ricort (1975) although without resolving the modal
structure. This was followed by a week-long nearly continuous observation
in integrated light from the geographical South Pole by Grec et al. (1980),
which clearly resolved the multiplet structure of the oscillations, confirming
the asymptotic behaviour of high-order acoustic modes (cf. Section 3.4.3, in
particular Eq. (3.219)) and determining the large and small frequency separa-
tions. It is interesting, as discussed in Section 2.3.1, that present observations
of solar-like oscillations in other stars are now at a similar stage to these early
helioseismic results. From more extensive observations of low-degree modes,
particularly with the beginning BiSON network, it became clear that models
of the solar core were in reasonable agreement with the observations, while this
was not the case for models modified to reduce the neutrino flux to match
the neutrino detections (see above). Thus Elsworth et al. (1990) concluded
that, unlike standard solar models, models proposed to explain the low ob-
served neutrino flux were inconsistent with the observed small separation; on
this basis they argued for a solution to the neutrino discrepancy in terms of
neutrino oscillations and a finite neutrino mass, as confirmed by more recent
neutrino measurements.

Given just the low-degree modes, the degrees of the modes, as in the case
of solar-like stars, could be determined from the structure of the frequency

2 This appears to be the first paper where the term “helioseismology” was used.
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spectrum by identifying the small separations between modes of degree 0, 2
and 1, 3. However, as in the stellar case there was no observational determi-
nation of the radial order. Christensen-Dalsgaard & Gough (1981) fitted solar
models to the observed frequencies and in this way obtained a plausible mode
identification. The major breakthrough came with the observations of Duvall
& Harvey (1983) who covered the range of degree from the low-degree modes
to the results of further observations of high-degree modes by Deubner et al.
(1979). In the latter case, modes of the full range of radial orders, starting at
the f mode, had been observed and by following the modes to lower and lower
degree a full identification could be established.

On the basis of these results, including the determination of the rotational
splitting between modes of azimuthal order m = ±l (Duvall & Harvey 1984),
it was possible to infer the variation of the solar internal angular velocity as
a function of radius near the equatorial plane (Duvall et al. 1984); this, some-
what surprisingly, showed that the radiative interior rotated at or perhaps
slightly below the surface equatorial rate. Also, Christensen-Dalsgaard et al.
(1985) carried out the first asymptotic inversion for the solar internal sound
speed, finding reasonable agreement with solar models although with evidence
that the opacity required an increase in the region below the convection zone.

The final major breakthrough in observational global helioseismology was
the detection of modes over a range in m, allowing the study of the lati-
tude variation of solar rotation (Brown 1985; Duvall et al. 1986; Libbrecht
1988a). Already the early analyses of such data (e.g., Brown & Morrow 1987;
Christensen-Dalsgaard & Schou 1988; Kosovichev 1988; Brown et al. 1989;
Dziembowski et al. 1989) established the presence of a region of strong shear,
dubbed the tachocline by Spiegel & Zahn (1992) near the base of the con-
vection zone; these results led to a drastic revision of the dynamo models
attempting to account for the solar magnetic cycle.

The early successes of helioseismology have motivated major observational
efforts. To reach the required frequency precision, observations extending over
at least several weeks or months are required. A severe problem for such ob-
servations of solar (and stellar) oscillations is the gaps in data from single-site
observations; as discussed in Section 5.3 these increase the noise level and
greatly complicate the analysis of the data. As mentioned above, continuous
data extending over several days can be obtained from Antarctica, although
even there breaks in the observations may be introduced by weather. In order
to ensure near continuity over longer periods it is necessary to combine data
from several sites or to carry out observations from space. This led quite early
to multi-site disc-integrated observations by the BiSON3 group, expanded
into a six-station network that has been operating since 1992 (Chaplin et al.
1996). Extensive disc-integrated data have also been obtained by the IRIS4.

3 Birmingham Solar Oscillation Network, http://bison.ph.bham.ac.uk.
4 Installation d’un Reseau International de Sismologie solaire; see
http://www-luan.unice.fr/iris/.
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network (Fossat 1991). A major ground-based effort is the GONG5 project
(Harvey et al. 1996); this has established a six-station network of observatories
in operation since 1995, with an optimal global distribution to secure nearly
continuous data, carrying out helioseismic observations with high spatial res-
olution. Observations from space have been carried out by the very successful
SOHO6 spacecraft (Domingo et al. 1995), in operation since 19967 at the first
Lagrange point L1 point between the Sun and the Earth.

A more detailed overview of the development of helioseismology was pro-
vided by Christensen-Dalsgaard (2004a). Very enjoyable accounts, including
a general introduction to the field, were given in the books by Zirker (2003)
and Chaplin (2006).

7.1.1.3 Observations of Solar Oscillations

The solar oscillations evidently affect many aspects of the solar atmosphere
and hence may be observed with a number of different techniques. An over-
riding requirement is obviously to reach a sufficient signal-to-noise ratio in the
face of the very small oscillation amplitudes: the velocity amplitude per mode
is typically less than 15 cm s−1, while the corresponding amplitude in broad-
band intensity is around 4 parts per million (4 ppm) (see also Section 2.3.1).
This places strong demands on the stability of the observing techniques, in
terms of wavelength references for velocity observations or photometric sta-
bility for intensity observations. The solar background “noise”, resulting from
phenomena other than the oscillations, must also be taken into account: as
noted by Harvey (1988) this background is substantially higher, relative to
the oscillations, for intensity than for velocity observations (see also Fig. 4.1).
An additional important issue is the possibility of observations resolving the
variation of the oscillations across the solar disc and hence allowing detec-
tion of modes of higher degree. However, as discussed below, disc-integrated
observations, i.e., observations in light integrated over the disc of the Sun,
also provide very valuable information about low-degree modes. Finally, we
note that observations of the same modes with different techniques, such as
velocity and intensity, provides information about the behaviour of the oscil-
lations in the solar atmosphere and hence in principle about mode physics or
atmospheric structure.

At the very low amplitudes of solar oscillations, the effects of the Earth’s
atmosphere make observations in broad-band intensity impractical from the
ground (but see Nishikawa 1986). However, from space such observations are
feasible. Early observations were made in irradiance by the Solar Maximum

5 Global Oscillations Network Group; see http://gong.nso.edu/.
6 SOlar and Heliospheric Observatory.
7 Apart from relatively brief periods, including June – October 1998, where contact

was lost with SOHO because of operational or technical problems (see Nature:
394, 5; 395, 313; 396, 399).
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Mission (e.g., Woodard & Hudson 1983), even though the instrumentation
was not designed for this purpose, and interesting results were obtained from
the Phobos mission to Mars (Toutain & Fröhlich 1992). In both cases disc-
integrated observations were made, and hence only modes of the lowest degrees
were detected (cf. Fig. 1.5). The SOHO spacecraft carries the VIRGO8 instru-
ment (Fröhlich et al. 1995, 1997) to measure irradiance variations and to carry
out disc-integrated oscillation observations in three wavelength intervals, as
well as intensity observations with limited spatial resolution.

Oscillation observations in line intensity, relative to the surrounding con-
tinuum, is feasible from the ground. Particularly successful have been observa-
tions in the calcium H and K lines which have been used in several productive
observing campaigns from the South Pole (e.g., Duvall et al. 1986; Jefferies
et al. 1988), as well as in the Taiwanese Oscillation Network (TON; Chou et
al. 1995).

In radial-velocity observations the critical issue is to secure wavelength
stability, either through the design of the instrument or with a stable refer-
ence. An ingenious example of the latter possibility is to use the location of
the Zeeman-split components of the lines in an alkaline vapour in a stable
magnetic field. This was developed by Isaak (1961) and Fossat & Roddier
(1971) and has been used very successfully for helioseismic observations. In
its simplest form it is used in disc-integrated observations. Here light from the
Sun is scattered resonantly on the Zeeman-split components and the intensity
difference between the contributions from the two components, distinguished
by their polarization, provides a very stable measure of the averaged velocity
of the solar surface (for details, see Brookes et al. 1978). These observations
led to the first detection of global solar five-minute oscillations (Claverie et al.
1979) and the first observations, from the South Pole, which clearly resolved
the multiplet structure of these modes (Grec et al. 1980). Full-disc observa-
tions using a potassium vapour are used in the BiSON network (Chaplin et
al. 1996). Also, similar observations using sodium vapour were used in the
IRIS network (Fossat 1991) and are used in the GOLF9 instrument for disc-
integrated observations on the SOHO spacecraft (Gabriel et al. 1995, 1997).

Cacciani & Fofi (1978) developed a variant of the resonant cell technique
where two cells are used to make a filter that alternates between the red and
blue wings of the sodium lines, allowing the velocity field across the solar
surface to be resolved (see also Rhodes et al. 1986). This has been used for
extensive observations from the Mt Wilson observatory (e.g., Rhodes et al.
1987, 1993). Furthermore, the technique provided very stable observations

8 Variability of solar Irradiance and Gravity Oscillations.
9 Global Oscillations at Low Frequency;

see http://golfwww.medoc-ias.u-psud.fr/.
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with the LOWL10 instrument (Tomczyk et al. 1995), extended into the two-
station ECHO network, which is currently not operating.

A very widely used technique was originally developed by Brown (1984) in
the form of the so-called Fourier Tachometer . Here a Michelson interferometer
is used as a filter to isolate four passbands across a suitable spectral line. By
combining observations of the intensity in these passbands a velocity image
can be constructed. This has proven a very stable and sensitive technique,
allowing observations with very high spatial resolution. Fairly extensive results
from the original Fourier Tachometer were presented by, for example, Brown
(1985), Bachmann et al. (1993) and Schou & Brown (1994). A modification of
this technique has been used in the two main helioseismic projects to measure
oscillations in Doppler velocity with spatial resolution: the GONG project
(Harvey et al. 1996) and the MDI11 instrument (Scherrer et al. 1995; Rhodes
et al. 1997) on the SOHO spacecraft.

The huge helioseismic observational efforts over the past several decades
have resulted in very extensive datasets. Although many of these have con-
tributed to our understanding of the solar interior, four sets stand out:

• The BiSON disc-integrated Doppler-velocity data that extend over three
decades (see Chaplin et al. 2007a), with a full six-station network in op-
eration since 1992.

• The results from the GONG six-station network on Doppler-velocity oscil-
lations, starting in 1995 and upgraded to higher resolution in 2001 (Harvey
et al. 1996, 1998).

• The GOLF disc-integrated observations from the SOHO spacecraft, start-
ing in 1996 (e.g., Gabriel et al. 1997). Although originally designed to ob-
serve Doppler velocity, the observations have for most of the mission been
made in just the intensity of either the blue or red wing of the sodium D
lines, owing to technical problems (see Garćıa et al. 2005). However, these
observations are still dominated by the Doppler shift and have proved to
be of very high quality.

• The MDI observations in Doppler velocity, starting in 1996 (Scherrer et al.
1995; Larson & Schou 2008). These have been run nearly continuously in
the so-called medium-l programme with a 20 arcsecond resolution, covering
modes of degree l up to around 300. In addition, there have been yearly
campaigns of a duration of 2 – 3 months, with a resolution of 4 arcseconds,
in the so-called dynamics programme; this allows the study of modes with
l as high as 1500.

We note in particular that by having observations over more than a sunspot
11-year cycle and, in the case of BiSON, more than three such cycles, the

10 This is not an acronym; it refers to the design of the instrument to make it suitable
for modes of low degree.

11 Michelson Doppler Imager; see http://soi.stanford.edu/.
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Fig. 7.1. Spatial response functions for intensity observations (dashed curve)
and radial velocity observations, assuming a negligible horizontal component
of the velocity (solid curve), computed for a typical solar limb-darkening pro-
file. The response functions are defined such that, for example, the observed
combined radial-velocity signal for all the modes for given n and l, excited to
the average amplitude V0 and with random phases, is S

(V)
l V0. See Christensen-

Dalsgaard & Gough (1982).

data have allowed investigations of the possible variation in the solar interior
associated with the sunspot cycle (cf. Section 7.1.9 below).

In Sections 7.1.3, 7.1.7 and 7.1.8 we present some of the results obtained
from these observational projects.

7.1.2 Analysis of Solar-Oscillation Observations

As discussed above, disc-integrated observations of the Sun as a star are par-
ticularly suitable for the analysis of low-degree modes; also, obviously, they
are relevant for observations of solar-like oscillations in other stars. In Chap-
ters 1 and 6 we considered the resulting partial cancellation of the signal from
modes of higher degree, caused by the integration over the stellar disc (see
Eq. (1.7) and Fig. 1.5). As explained in Chapter 6, an accurate evaluation of
this spatial response function, (or spatial filter) must take into account the
limb darkening which reduces the contribution to the signal of the regions
close to the limb. For radial-velocity observations we must include the pro-
jection of the velocity on the line of sight; a substantial simplification results
from the fact that solar-like oscillations are of high frequency, such that the
horizontal component of the velocity can be neglected (cf. Eq. (3.163)). In
this case an expression similar to Eq. (1.7) is obtained, but with an additional
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factor cos θ to account for the projection. Results of such calculations of re-
sponse functions (e.g., Dziembowski 1977b; Christensen-Dalsgaard & Gough
1982) are shown in Fig. 7.1 (see also Figs 6.4 and 6.14). The response for in-
tensity (S(I)

l ) is quite similar to the results shown in Fig. 1.5; however, as a
result of limb darkening, the response does not vanish identically for odd de-
grees higher than one. For radial velocity (S(V)

l ) the response is shifted to
slightly higher degrees; this results from the projection which effectively re-
duces the area on the disc over which the signal is obtained. This has some
similarity to Heisenberg’s uncertainty principle: by confining the modes, at
least observationally, in space they are spread out in wavenumber and hence
degree.12 Additional effects may arise if the observations have a non-uniform
and possibly time-dependent response to the oscillations across the solar disc;
an important example is the response of the resonant-scattering technique
which depends on the local line-of-sight velocity between a point on the disc
and the observer and hence is affected by the variation across the solar disc
of the velocity associated with rotation (e.g., Christensen-Dalsgaard 1989).

It is obvious, however, that a major advantage of the solar case is the
ability to determine properties of frequencies over a broad range of degrees,
based on observations made as functions of positions on the solar surface.
The first step in the analysis of such data is to isolate, as far as possible,
the modes corresponding to individual spherical harmonics. Had data been
available covering the entire Sun, modes corresponding to a single pair (l0,m0)
could in principle have been isolated by multiplying the data, after suitable
scaling, with the spherical harmonic Y m0

l0
(θ, φ) and integrating over the solar

surface; it follows from the orthogonality of the spherical harmonics that the
result would contain only oscillations corresponding to (l,m) = (l0,m0). In
practice, the observations are restricted to the visible disc of the Sun, and the
sensitivity to velocity oscillations is further limited close to the limb due to
the projection onto the line of sight.

To illustrate the principles in the mode separation in a little more detail,
we note that, according to Eqs (3.122) and (3.132) the combined observed
Doppler velocity on the solar surface is of the form

VD(θ, φ, t) = sin θ cosφ
∑

n,l,m

Anlm(t)clmPm
l (cos θ) cos[mφ− ωnlmt− δnlm(t)] .

(7.2)
To simplify the presentation we here neglected the horizontal component of
the velocity, and assumed the axis of the coordinate system to be in the plane
of the sky, measuring longitude φ from the central meridian.13 The factor
sin θ cosφ results from the projection of the velocity vector onto the line of

12 This effect is obviously stronger if the modes are observed through smaller aper-
tures on the solar disc, as did Fossat & Ricort (1975); see Christensen-Dalsgaard
& Gough (1982).

13 Also, to simplify the notation the factor (−1)m
√

4π has been included in Anlm.
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sight. The amplitudes Anlm and phases δnlm may vary with time, as a result
of the excitation and damping of the modes.

The spatial transform to isolate modes corresponding to a given (l0,m0)
may be thought of as an integration over the solar disc of the observations
multiplied by a weight function Wl0m0(θ, φ) designed to give greatest response
to modes in the vicinity of l = l0,m = m0. The result is the filtered time string

Vl0m0(t)=
∫

A

VD(θ, φ, t)Wl0m0(θ, φ)dA

=
∑

n,l,m

Sl0m0lmAnlm cos[ωnlmt + δ̂nlm,l0m0 ] . (7.3)

Here, the integral is over area on the solar disc, and dA = sin2 θ cosφdθdφ;
also, we introduced the leakage matrix Sl0m0lm, defined by

(Sl0m0lm)2 =
(
S

(+)
l0m0lm

)2

+
(
S

(−)
l0m0lm

)2

, (7.4)

where

S
(+)
l0m0lm = clm

∫

A

Wl0m0(θ, φ)Pm
l (cos θ) cos(mφ) sin θ cosφdA , (7.5)

and

S
(−)
l0m0lm = clm

∫

A

Wl0m0(θ, φ)Pm
l (cos θ) sin(mφ) sin θ cosφdA . (7.6)

The new phases δ̂nlm,l0m0 in Eq. (7.3) depend on the original phases δnlm and
on S

(+)
l0m0lm and S

(−)
l0m0lm.

It is evident that to simplify the subsequent analysis of the time string
Vl0m0(t), it is desirable that it contain contributions from a limited number of
spherical harmonics (l,m). Thus the choice of the weight function Wl0m0(θ, φ)
should be such that Sl0m0lm is large for l = l0, m = m0 and “small” other-
wise. Indeed, it follows from the orthogonality of the spherical harmonics that
if Wl0m0 is taken to be the spherical harmonic Y m0

l0
, if the integrals in Eqs (7.5)

and (7.6) are extended to the full sphere, and if, in the integrals, sin θ cosφdA
is replaced by sin θ dθdφ, then essentially Sl0m0lm ∝ δl0lδm0m. It is obvious
that, with realistic observations restricted to one hemisphere of the Sun, this
optimal level of concentration cannot be achieved. However, the result sug-
gests that suitable weights can be obtained from spherical harmonics. Weights
of this nature are almost always used in the analysis. The resulting response
functions are typically of order unity for |l − l0| <∼ 2, |m −m0| <∼ 2 and rel-
atively small elsewhere (e.g., Duvall & Harvey 1983; Christensen-Dalsgaard
1984a); this is roughly comparable to the mode isolation achieved in full-disc
observations. Typical examples are shown in Fig. 7.2. We note that the proper
calculation of the leakage matrix is a crucial part of the analysis of spatially
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Fig. 7.2. Leakage matrices Sl0m0lm for (l0,m0) = (10, 0) (diamonds) and
(l0,m0) = (10, 10) (circles), as functions of (l,m). The size of the symbols is
proportional to Sl0m0lm. See Christensen-Dalsgaard (2002).

resolved helioseismic data. This includes minimizing the spread (e.g., Toutain
& Kosovichev 2000); however, it is equally important to ensure that the in-
ferred leakage matrix is a good representation of the actual properties of the
observations, including instrumental effects and the response of the solar at-
mosphere, as reflected in the observations, to the oscillations (e.g., Korzennik
et al. 2004; Vorontsov & Jefferies 2005).

Given the time series in Eq. (7.3), the next step is to carry out a Fourier
analysis to determine the frequencies, amplitudes and phases of the modes;
procedures used in several of the major observational projects were discussed
by, for example, Anderson et al. (1990), Schou (1992) and Hill et al. (1996,
1998). The fit to the Fourier transform or power spectrum must take into
account the stochastic nature of the excitation, resulting in complex spectra
with approximately Lorentzian envelopes (see Sections 3.7.5 and 5.7). Also,
the fit obviously needs to include a background arising from instrumental
effects or other phenomena, such as granulation, in the solar atmosphere (see
Fig. 4.1). Thus for a single mode, (n, l,m), the fitted function has the form
(cf. Eq. (3.308) and Fig. 3.33)
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P (ν) = Anlm
(Γnlm/2)2

(ν − νnlm)2 + (Γnlm/2)2
+B(ν) , (7.7)

where νnlm, Γnlm and Anlm are the frequency, full width at half maximum and
amplitude of the mode and B(ν) is a suitably parameterized representation
of the background. Note in particular that the fit provides a measure of the
linewidth and hence the damping rate ωi = πΓ . A further complication is
the presence in the time series of modes corresponding to several (l,m), as
a result of the incomplete separation in the spatial analysis. This cross-talk
between modes of different m is particularly problematic at low degree where
the rotational splitting is comparable with the width of the Lorentzian profiles,
corresponding to the damping rates of the modes.

At high degree the frequency separation between modes of adjacent degrees
becomes comparable with, or smaller than, the width of the spectral peaks. In
fact, analysis of the high-degree modes shows that, approximately, νnl ∝ l1/2

(see Eq. (E.61)); thus

νn,l+1 − νn,l �
1
2l
νn,l . (7.8)

With typical linewidths of several μHz at relatively high degree this causes
overlap between adjacent peaks at degrees of around 200. Physically, this re-
sults from the fact that the phase propagation time around the solar circumfer-
ence becomes comparable to, or smaller than, the mode lifetime; as a result,
the oscillations can no longer be regarded as coherent modes of the whole
Sun and the description in terms of spherical harmonics becomes irrelevant.
Here a local description is more appropriate, characterizing the oscillations
in terms of the horizontal wavenumber kh and describing the observations in
terms of ridges in a (kh, ν) diagram. As discussed in Section 7.1.3, the transi-
tion between these two descriptions of the oscillations still causes substantial
problems in the data analysis, limiting the usefulness of the high-degree data.

A more careful analysis shows that the observed profiles in the power
spectrum have definite asymmetries and hence cannot strictly be represented
by a Lorentzian envelope as in Eq. (7.7). This behaviour can be understood
from the detailed properties of the excitation, in particular the fact that the
dominant contributions to the forcing arise from a relatively thin region (e.g.,
Duvall et al. 1993; Gabriel 1993, 2000; Roxburgh & Vorontsov 1995; Abrams
& Kumar 1996; Nigam & Kosovichev 1998; Rast & Bogdan 1998; Rosenthal
1998). Neglecting this effect in the fitting causes systematic errors in the
inferred frequencies; however, it appears that these are of a form similar to
the effects of the near-surface errors (cf. Section 7.1.4) and hence have no effect
on the results of structure inversion (e.g. Rabello-Soares et al. 1999a; Basu
et al. 2000a). Observational determination of the asymmetry does, however,
provide constraints on the properties of subsurface convection (Chaplin &
Appourchaux 1999; Kumar & Basu 1999; Nigam & Kosovichev 1999).

Ideally, the analysis of the observations should result in determinations of
the individual frequencies νnlm. Because of observational errors and the large
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amount of data resulting from such determination, it has been common to
present the results in terms of coefficients in fits to the m dependence of the
frequencies, either averaged over n at given l (Brown & Morrow 1987) or for
individual n and l (e.g., Libbrecht 1989). A convenient form of the expansion
was established by Ritzwoller & Lavely (1991); this can be expressed as

νnlm = νnl0 +
jmax∑

j=1

aj(n, l)P(l)
j (m) , (7.9)

in terms of the so-called a coefficients aj(n, l). Here the P(l)
j are polynomials

of degree j which satisfy the orthogonality relation
∑

m P(l)
i (m)P(l)

j (m) = 0
for i �= j (see also Schou et al. 1994). Explicit expressions for these polynomi-
als were given by Pijpers (1997). The coefficients with odd j result from the
leading-order effects of rotation (cf. Section 3.8.1), whereas coefficients with
even j result from magnetic effects, rotational distortion of the equilibrium
model and higher-order effects of rotation. The a coefficients can be deter-
mined through fits to the individual frequencies νnlm; however, a more stable
technique may be to use the parametrization in Eq. (7.9) directly in the fits
to the Fourier or power spectra.

The determination of solar oscillation frequencies is affected by systematic
errors which may have significant effects on the results of the helioseismic
analysis of the frequencies. These are to a large extent caused by the com-
plex physics of the mode excitation and damping, as well as the unavoidable
mixture in any given time series of modes corresponding to several (l,m).
Although in principle this provides several measures of a given frequency,
in practice it is dealt with in various approximate ways, each with its own
problems, as discussed by Schou (1998). The resulting systematic errors are
probably now the dominant barrier for obtaining even more accurate frequen-
cies and hence better inferences about the solar interior. Ideally, the analysis
should take all modes present into account, and include suitable models for
the excitation and damping processes, as well as for the solar background. A
programme to approach this ideal has been outlined by Jefferies & Vorontsov
(2004) and Jefferies et al. (2006) and is now under development. A very in-
teresting aspect is the proposal to include the seismic structure of the Sun
in the fit to the time-series data, thus bypassing the determination of the
frequencies. Further results of this project are eagerly awaited.

7.1.3 Observational Results on Solar Oscillations

7.1.3.1 Solar p and f Modes

We begin by considering observations of the Sun as a star. Figure 7.3 shows an
example of an observed power spectrum of solar oscillations. This was obtained
by means of Doppler velocity measurements in light integrated over the solar
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Fig. 7.3. Power spectrum of solar oscillations, obtained from Doppler obser-
vations in light integrated over the disc of the Sun. The ordinate is normalized
to show velocity power per frequency bin. The data were obtained from the
full six-station BiSON network and span approximately 15 yr. Panel (b) pro-
vides an expanded view of the central part of the frequency range. Here some
modes have been labelled by their degree l, and the large and small frequency
separations Δν and δνl have been indicated. See Chaplin et al. (2007a).

disc, and hence, according Fig. 7.1, is dominated by modes of degrees 0 –
3. The data were obtained from the BiSON network of six stations globally
distributed in longitude, to suppress the daily side-bands, and span 15 yr.
Thus the intrinsic frequency resolution (see Section 5.3.1) is much smaller
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than the thickness of the lines. There is a visible increase in the linewidth
when going from low to high frequency. The broadening of the peaks at high
frequency is probably caused by the damping and excitation processes, as
discussed in Section 3.7.5; thus the observations indicate that the damping rate
increases with increasing frequency, as confirmed by the more detailed analysis
illustrated in Fig. 7.7 below. Finally, there is clearly a well-defined distribution
of amplitudes, with a maximum around 3000μHz and very small values below
2000μHz and above 4500μHz. The maximum power corresponds to a velocity
amplitude of around 15 cm s−1; observations in broad-band intensity show
amplitudes up to around 4 ppm.

The spectrum illustrated in Fig. 7.3 evidently has a highly regular fre-
quency structure, most clearly visible in the expanded view in panel (b). This
reflects the asymptotic expression in Eq. (3.223). According to the leading
term in Eq. (3.223), the peaks should occur in groups corresponding to even
and odd degree, such that n + l/2 is the same, the groups being uniformly
spaced with a separation Δν/2; this apparent degeneracy is lifted by the
second term in Eq. (3.223). Thus the spectrum is characterized by the large
frequency separation Δν = νn+1 l − νnl and the small frequency separation
δνl = νnl − νn−1 l+2. These separations are indicated in Fig. 7.3b, where also
selected peaks corresponding to l = 0 and 1 have been labelled, in each case
with a neighbouring peak with l = 2 or 3, respectively. It should be noticed
that the observed amplitudes of the l = 3 peaks are much reduced relative
to the l = 1 peaks, as predicted by the spatial response function S

(V)
l shown

in Fig. 7.1; on the other hand, the observed amplitudes for l = 0 and 2 are
roughly similar, as expected.

As illustrated schematically in Fig. 3.19b, it is convenient to show the
structure of the spectrum in an échelle diagram. This is done in Fig. 7.4, based
on frequencies from BiSON observations. The general behaviour is clearly as
expected, although with significant departures in the details. The curvature
of the lines indicates that the frequencies for each l are not exactly uniformly
spaced; as discussed in Section 7.1.4.4 this results from the structure near the
solar surface, including the effects on Γ1 of helium ionization. Also, it is fairly
evident that the small separation varies with frequency.

Precise measurements of frequencies, frequency separations and rotational
splittings for low-degree modes were published by, for example, Fröhlich et
al. (1997), Lazrek et al. (1997), Gelly et al. (2002), Garćıa et al. (2004) and
Chaplin et al. (2001a, 2007b); such measurements are of great diagnostic value
for the study of the properties of the solar core (cf. Section 3.4.3).

Very extensive spatially resolved observations of solar oscillations have
been made, particularly in Doppler velocity with the GONG network and the
MDI instrument on the SOHO spacecraft. To illustrate the quality of current
frequency determinations, Fig. 7.5 shows observed mean multiplet frequencies
at low and moderate degree from observations spanning 72 d with the MDI
instrument on SOHO (see Larson & Schou 2008). The error bars have been
magnified by a factor 1000 over the usual 1σ standard errors. For more than
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Fig. 7.4. Échelle diagram for observed solar frequencies obtained with the
BiSON network (Chaplin et al. 2002a), plotted with ν0 = 830μHz and Δν =
135μHz (cf. Eq. (3.224)). Circles, triangles, squares and diamonds are used for
modes of degree l = 0, 1, 2 and 3, respectively.

half the modes illustrated the relative standard error is well below 10−5, thus
substantially exceeding the precision with which the solar mass is known.

As discussed in Section 7.1.2 the m dependence of the frequencies is often
parameterized in terms of the so-called a coefficients (cf. Eq. (7.9)). To illus-
trate this, Fig. 7.6 shows the first three odd a coefficients from MDI observa-
tions. It may be shown that a1 is determined by the spherically symmetric
component of the angular velocity Ω(r, θ), while the higher-order coefficients
depend on the latitude variation of Ω (see also Section 3.8.4). In particular,
as discussed in Section 7.1.8, the decrease of a3 for modes with turning point
rt in the radiative interior reflects the nearly latitude-independent rotation in
this region.

As discussed in Section 7.1.2, frequencies for individual modes can be de-
termined up to degrees around 200. For higher degree the modes merge into
ridges of power, substantially complicating the analysis (for a review, see Re-
iter et al. 2004); thus, although results on high-degree mode frequencies have
been published (e.g., Bachmann et al. 1995) they have so far seen relatively
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Fig. 7.5. Plot of observed solar p-mode multiplet frequencies, as a function
of the degree l, from MDI observations spanning 72 d (Larson & Schou 2008).
The vertical lines show the 1000σ error bars. Each ridge corresponds to a
given value of the radial order n, which is indicated for the lowest n; note in
particular that the lowest ridge corresponds to the f modes, with n = 0.

limited use in helioseismic analyses. Owing to the small spatial scale of the
modes the analysis is very sensitive to the influence of the Earth’s atmosphere
in ground-based observations; these problems are avoided in the space-based
observations with the MDI instrument, but here optical distortions and plate-
scale errors, possibly varying with time as a result of thermal effects, add
complexity (Korzennik et al. 2004). A recent analysis of the MDI data by
Rabello-Soares et al. (2008) attempted to take these effects into account, but
still found significant differences between the frequencies obtained from the
analysis of individual modes in the MDI medium-l programme and the results
of the ridge fitting of the data from the dynamics programme. Since high-
degree modes would be extremely valuable for helioseismic inversion (e.g., Di
Mauro et al. 2002) a resolution of these problems has high priority.

The spatially resolved observations also provide information about the de-
pendence of the modal properties on degree and frequency. A detailed analysis
of the mode lifetime and energy was carried out by Komm et al. (2000), based
on GONG observations, for modes of degree up to 150. They found that the
dependence on degree of both the linewidth Γ and the amplitude essentially
scale inversely with the mode inertia. This is similar to the frequency changes
caused by near-surface effects, discussed in Section 7.1.4.1 below, and the ef-
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Fig. 7.6. Odd a-coefficients (a) a1, (b) a3 and (c) a5 from MDI data,
with one-standard-deviation error bars. The bottom axis indicates the value
of ν/(l + 1/2) of the modes, which is mapped to the location rt/R of the
lower turning point of the mode (top axis; cf. Eq. (3.189)). Adapted from
Christensen-Dalsgaard & Thompson (2007).

fect of the inertia can similarly be suppressed by scaling with the inertia ratio
Qnl (cf. Eq. (7.10) and Fig. 7.9). Results on linewidths based on MDI observa-
tions are shown in Fig. 7.7. The linewidth shows a characteristic dependence
on frequency, with a plateau, or even a slight decrease, between 2500 and
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Fig. 7.7. The symbols show full widths at half maximum determined from
72 d of medium-l MDI observations; these have been scaled by the inertia ratio
Qnl (cf. Eq. (7.10)) to correct for the degree dependence of the mode inertia.
The curve is based on computed damping rates for radial modes in a solar
model (Houdek 2006; see also Chaplin et al. 2005).

3100μHz. As illustrated in the figure, this is also a feature of damping rates
of solar oscillations, taking the interaction with convection into account (e.g.,
Houdek et al. 1999, Houdek 2006), and appears to be a consequence of the
detailed interaction between convection and the pulsations.

The distribution of mode amplitudes, resulting from the stochastic excita-
tion (cf. Section 3.7.5) is clearly the result of the balance between the energy
input from convection and the damping (cf. Eq. (3.308)). This was discussed
in detail by Goldreich et al. (1994) and reviewed by Houdek (2006). Chap-
lin et al. (2005) carried out a careful analysis of the observed amplitudes of
disc-integrated BiSON observations. According to Eq. (3.309) and the associ-
ated discussion we expect the mean square velocity 〈V 2〉 to be proportional
to E−1, where E is the surface-normalized mode inertia. This is illustrated in
Fig. 7.8, based on GONG observations, where the degree dependence of the
inertia has been suppressed by multiplying the mean square velocity by the
inertia ratio Qnl. The resulting values are essentially a function of frequency;
this would be expected, for damping and excitation taking place near the sur-
face of the Sun, where the interactions are largely independent of degree for
low and moderate degree.
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Fig. 7.8. Observed mean square velocities of solar oscillations of degree l ≤
150, determined from GONG observations; the results have been multiplied
by the inertia ratio Qnl (cf. Eq. (7.10)) to correct for the degree dependence
of the mode inertia. Adapted from Komm et al. (2000).

Woodard et al. (2001) made a careful investigation of the dependence of
the mode energy on degree and frequency of oscillation, based on observations
from the SOHO spacecraft. They found a rather substantial decrease with
degree, at fixed frequency, in the mode amplitudes; this appeared stronger
than would be expected from the inertia scaling. They speculated that the
amplitude variation might reflect additional sources of damping at higher
degree.

7.1.3.2 Solar g Modes?

As mentioned above, one of the early claims for the detection of global solar
oscillations concerned the 160-minute oscillation which was identified as a
high-order g mode. In fact, observation of such modes in the Sun would be
extremely interesting. As shown by Fig. 3.23 they have large amplitudes in
the solar interior and hence are far more sensitive to conditions in the solar
core than are the p modes (cf. Fig. 3.21). In particular, measurement of the
rotational splitting of a few g modes would provide strong constraints on the
rotation of the deep solar interior (e.g., Mathur et al. 2008). Thus the solar
g modes have been something of a holy grail of helioseismology for several
decades.
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Unfortunately, the quest to find them has so far met with somewhat limited
success. This has been marked by a number of claims, sometimes quoting high
statistical significance, that have been disproved by later observations. A ma-
jor goal of two of the three helioseismic instruments on the SOHO spacecraft
was to study low-frequency modes, in particular g modes. A major analysis ef-
fort, combining several different types of data, by Appourchaux et al. (2000a)
in the so-called Phoebus collaboration found an upper limit on the g-mode
amplitude at 200μHz of 10 mm s−1. A slightly lower limit, based on a more
extensive time series of GOLF data, was obtained by Gabriel et al. (2002); a
further decrease will be obtained with the continued activities of the Phoebus
group as more data are accumulated (Elsworth et al. 2006). Also, by search-
ing for significant occurrences of multiplets Turck-Chièze et al. (2004a) found
tentative evidence in GOLF data for a few modes between 150 and 400μHz,
with amplitudes around 2 mm s−1. However, the definite acceptance of these
modes as real will probably require further independent confirmation.

A common technique in trying to find high-order g modes has been to
use their asymptotically predicted uniform period spacing (cf. Eq. (3.236)).
Recently Garćıa et al. (2007) apparently succeeded in detecting this for modes
of degree l = 1 in observations from the GOLF instrument on SOHO. By
suitably filtering the data they furthermore obtained evidence that the solar
core rotates somewhat more rapidly than the surface. This is evidently a
very interesting result; however, given the complexity of the analysis and the
uncertain sensitivity to the solar noise background it is probably fair to regard
the evidence so far as less than compelling.

A reliable theoretical estimate of the amplitudes of the solar g modes would
obviously be a great help in the search. Unfortunately, this is not available.
As discussed in Section 3.7.1 a few low-order, low-degree g modes may have
been unstable during earlier phases of solar evolution although it is uncertain
whether the instability has been maintained until the present; see, however,
Cox & Guzik (2004). Dziembowski (1983) estimated the resulting amplitude,
limited by parametric resonance, to be around 10 cm s−1, well above present
observational upper limits (see also Jordinson & Gough 2000). Apart from
these modes there is little doubt that the modes generally are stable and that
stochastic forcing within, and perhaps below, the solar convective envelope
excites them. On the other hand, the estimates of the resulting amplitudes
have varied substantially; Gough (1985a) obtained amplitudes around or be-
low 1 mm s−1, while Kumar et al. (1996) obtained values lower by an order
of magnitude. Thus, in both cases the results are substantially below the ob-
servational upper limit. Recently, Belkacem et al. (2009) redid the analysis,
assuming stochastic forcing within the convection zone, but using a different
form of the temporal correlation of convection, with some basis in hydrody-
namical convection simulations. This resulted in predicted amplitudes of the
order of a few mm s−1, very close to current observational limits. Although
several aspects of the calculation, and the resulting amplitudes, remain uncer-
tain, this is certainly encouraging. One may hope that continuing observations,
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including the use of new instruments now under development for possible use
in future space projects (e.g., Turck-Chièze et al. 2008) may finally provide
definite detection of g modes and determination of a sufficient number of
frequencies to allow their inclusion in the helioseismic analysis.

7.1.4 Properties of Solar Oscillations

The availability of modes over a broad range of degrees is so far specific to
the solar case and provides crucial information about the solar interior. Also,
the solar data obviously serve as a model for the investigation of solar-like
oscillations in other stars. Thus it is appropriate to expand the discussion
of oscillation properties from Chapter 3 to cover aspects that are specifically
relevant to this case.

7.1.4.1 Near-Surface Effects

An important example concerns the uncertainties in the physics of the model
and the oscillations in the near-surface region (cf. Section 7.1.1), which are
generally confined to the outermost layers of the stellar interior and the at-
mosphere. To discuss their effects on the oscillation frequencies we use the
general expression in Eqs (3.267) and (3.268). Here we assume that the per-
turbations to the model, characterized by φr [ξ](r) and φh[ξ](r), are non-zero
only in a region very near the surface, with r ≥ rns = R(1 − ε), say, for some
small ε. For modes extending substantially more deeply than this region, with
lower turning point rt such that R − rt � R − rns, the eigenfunctions are
nearly independent of l at fixed frequency for r ≥ rns (see also Fig. 3.21 and
the associated discussion). Hence Inl depends little on l at fixed ω. To get a
more convenient representation of this property, we introduce

Qnl =
Enl

E0(ωnl)
, (7.10)

where E0(ω) is obtained by interpolating to ω in the values of En0, i.e.,
for radial modes. Then we expect that Qnlδωnl is largely independent of l,
at fixed ω, for such modes and hence can be written as a function of ω,
Qnlδωnl � G(ω), say. Conversely, if Qnlδωnl is independent of l at fixed ω for
a given set of modes, then the cause of the frequency difference is probably
largely localized well outside the most shallow inner turning point for the set
of modes considered.

Qnl has been plotted in Fig. 7.9, for selected values of l. Its variation with
l is largely determined by the change in the penetration depth. Modes with
higher degree penetrate less deeply and hence have a smaller inertia at given
surface displacement. As a consequence of this their frequencies are more
susceptible to changes in the model.
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Fig. 7.9. The inertia ratio Qnl, defined in Eq. (7.10), against frequency ν, for
f and p modes in a solar model. Each curve corresponds to a given degree l,
selected values of which are indicated.

This property can be used to eliminate the effects of the uncertainties in
the analysis of observed frequencies. To illustrate it, we analyse the effects of
model changes localized very near the solar surface. Specifically, we consider
a solar model where the opacity has been artificially increased by a factor of 2
at temperatures below about 105 K; this is compared with a normal model of
the present Sun. In both models the mixing-length parameter and composition
have been adjusted so as to obtain a model with solar radius and luminosity;
the effect of this is that the interior of the model is virtually the same. The
opacity has no effect in the bulk of the convection zone where energy transport
is totally dominated by convection; hence the change in the model is largely
confined to the atmosphere and the uppermost parts of the convection zone.
Fig. 7.10 shows the relative sound-speed difference δrc/c between the modified
and the normal model.

The unscaled differences between frequencies of the two models are shown
in Fig. 7.11a. It is evident that the differences show a very systematic increase
in magnitude with increasing degree. As shown by Fig. 7.11b this is entirely
suppressed by scaling the differences by Qnl. Indeed, the differences now de-
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Fig. 7.10. Relative sound-speed difference δrc/c between a model with in-
creased surface opacity and a normal model, in the sense (modified model) –
(normal model).

crease with increasing l. This is predominantly due to the fact that at the
largest values of l the eigenfunctions can no longer be assumed to be inde-
pendent, near the surface, of degree at fixed frequency (for an asymptotic
description of this behaviour, see for example Gough & Vorontsov 1995); this
results in peeling-off of the points corresponding to the lowest orders, as in-
dicated by the symbols in Fig. 7.11b. A small additional contribution comes
from the fact that the modes only penetrate partly, to a degree-dependent
extent, into the region where the sound speed has been modified.

It might also be noted that the frequency differences are very small at low
frequency. This is related to the fact that low-frequency modes have very small
amplitudes in the surface region (cf. Fig. 3.22). However, a proper understand-
ing of this feature requires a more careful analysis (see Christensen-Dalsgaard
& Thompson 1997).

The probable presence of near-surface errors in the model must be taken
into account when relating differences between observed and computed fre-
quencies to the corresponding differences between the structure of the star
and the model. Specifically, consider the determination of corrections δrc

2

and δrρ to a stellar model, from the differences δωnl = ω
(obs)
nl − ωnl between

observed frequencies ω(obs)
nl and model frequencies ωnl: here we expect differ-

ences between the star and the model both in the internal structure, charac-
terized by (c2, ρ), and in the near-surface layers. The analysis in Section 3.6.2
demonstrated that the effect of the differences in the internal structure can be
represented by the kernels Knl

c2,ρ and Knl
ρ,c2 (cf. Eq. (3.269)), while the analysis

above leads to an effect of the near-surface errors of the form Q−1
nl G(ω). In
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Fig. 7.11. Frequency differences between a model with increased sur-
face opacity and a normal model, in the sense (modified model) – (normal
model). Panel (a) shows the raw differences. In panel (b) the differences have
been scaled by Qnl, defined in Eq. (7.10). Points corresponding to acoustic
modes of a given degree have been connected, according to the following line
styles: l = 0, 1, 2, 3, 4, 5, 10, 20, 30 (solid); l = 40, 50, 70, 100 (short-dashed);
l = 150, 200, 300, 400, 500 (long-dashed); l = 600, 700, 800, 900, 1000, 1100
(dot-dashed). As indicated, the dotted lines show results for f modes; the
symbols in panel (b) mark modes of degree n = 1, 2 and 3, for every 10th

value of l.

addition, the observed frequencies are unavoidably affected by errors. Thus
we expect that Eq. (3.269) must be replaced by

δωnl

ωnl
=
∫ R

0

[
Knl

c2,ρ(r)
δrc

2

c2
(r) +Knl

ρ,c2(r)
δrρ

ρ
(r)
]

dr + Q−1
nl G(ωnl) + εnl ,

(7.11)
where the function G(ω) accounts for the effect of the near-surface uncer-
tainties, and εnl are the relative observational errors in the frequencies. The
term in G must then be determined as part of the analysis of the frequency
differences, or suppressed by means of suitable filtering of the data.
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7.1.4.2 Effects of “Acoustic Glitches”

As discussed below, asymptotic analysis is extremely powerful in assessing
the diagnostic potential of solar oscillations and in analysing the observed
frequencies. The analysis assumes that the equilibrium model varies on a
scale long compared with the wavelength of the modes. However, the opposite
situation, of features that are sharp compared with the scale of the modes,
also gives rise to very interesting seismic diagnostics (e.g., Thompson 1988;
Vorontsov 1988; Gough 1990a). Such features were denoted “acoustic glitches”
by Gough (2002a); we consider some examples of their use in Section 7.1.7
below. Here we provide a brief discussion of their properties.

A simple way to illustrate the effect of an acoustic glitch is to use the
general expression in Eq. (3.269) for the effect on the frequencies of a small
change to the equilibrium model. In the present case we take the reference
model to be a smoothed version of the true model, containing a glitch at
some location r = r0, and the perturbation to reflect just the effects of the
glitch which, for simplicity, we assume to affect only the sound speed and
hence to correspond to a perturbation δrc

2/c2 strongly localized near r0. If
the extent of the perturbation is small compared with the wavelength of the
mode, its effects on the frequencies are simply proportional to Knl

c2,ρ(r0). The
behaviour is illustrated in Fig. 7.12, for acoustic glitches near the base of the
convective envelope and in the second helium ionization zone, for low-degree
modes. In this case the lower turning point is well below the locations of
the glitches; as discussed in Section 3.5.1 the eigenfunctions, and hence the
kernels, are then essentially independent of degree and the frequency change
is a function of frequency alone. The behaviour can be understood from the
asymptotic behaviour of the p-mode eigenfunctions. According to Eq. (3.227)
ξr ∝ cos[ωτ − (1/4 + α)π], in terms of the acoustic depth τ (cf. Eq. (3.228)).
Since the kernels are approximately proportional to the square of the eigen-
functions, we find that Knl

c2,ρ(r0) ∝ cos(2ωτg + φ), for some suitable phase φ,
where τg is the acoustic depth of the glitch. This accounts for the oscillatory
behaviour found in Fig. 7.12 and shows that the “period” of the oscillation
directly reflects the depth of the feature that is responsible. This provides a
powerful diagnostics of sharp features in stellar interiors. More detailed anal-
yses of these properties were provided by, e.g., Monteiro et al. (1994) and
Houdek & Gough (2007).

Figure 7.12c shows the effect of a sound-speed change in the photosphere
of the model. This essentially corresponds to the effects of the near-surface
changes discussed above and, in particular, confirms that these effects are very
small at low frequency.

7.1.4.3 Properties of f Modes

The computed frequencies for solar models (cf. Fig. 3.20) show a mode in-
termediate between the p and g modes at degrees higher than above 20; at
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Fig. 7.12. Kernels Knl
c2,ρ(r0) at r0 = 0.72R (panel a) r0 = 0.98R (panel b)

and r0 = R (panel c), for modes of degree l ≤ 5, plotted against frequency.
Here R is the photospheric radius. For clarity the points have been connected.
Adapted from Christensen-Dalsgaard (1996).

lower degrees this can still be identified, undergoing avoided crossings with
the g modes (Christensen-Dalsgaard 1980). At moderate or high degree it has
the mathematical classification as the f mode, with radial order n = 0. From a
physical point of view it can be identified with a surface gravity wave. Indeed,
the asymptotic analysis (see Section E.1 for details) results in a mode with
frequency and radial displacement given approximately by

ω2 � gs
L

R
, ξr ∝ exp(Lr/R) (7.12)
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(cf. Eqs (3.207) and (3.208)), where gs is the surface gravity; this corresponds
to the solution for a simple surface gravity wave (cf. Section 3.1.4.3). Equa-
tion (7.12) shows that the modes are confined near the surface in a region
of extent of order R/l. As shown in Fig. 7.5 these modes have in fact been
observed in the Sun.

Rosenthal & Gough (1994) noted that this behaviour could not extend into
the solar corona, since this would correspond to an unphysical increase in the
energy with height; they proposed that the modes should be regarded as inter-
facial modes at the transition between the chromosphere and the corona. This
model was investigated in more detail by Rosenthal & Christensen-Dalsgaard
(1995) who confirmed the interfacial nature of the modes but showed that this
had very modest effects on the frequencies or eigenfunctions of the modes, ex-
cept at very high degree.

According to Eq. (7.12) the frequencies of the f modes are determined only
by the surface gravity of the Sun and hence provide no information about
the solar interior; indeed, the observed frequencies approximately satisfy this
relation. However, the asymptotic analysis assumed a plane-parallel model
with constant gravity. In reality sphericity must be taken into account, as
well as the variation of the gravitational acceleration over the region where
the modes are confined. It was shown by Gough (1993) that

ω2R

Lgs
= 1 − ε(L) , (7.13)

where

ε(L) = 2L−1 +

∫ R

0
(r/R − 1)ρ exp(2Lr/R)dr
∫ R

0
ρ exp(2Lr/R)dr

. (7.14)

Chitre et al. (1998) analysed this relation in more detail and showed that it
agreed very well with the computed frequencies for solar models. In princi-
ple the frequencies provide information about the density stratification of the
near-surface layers of the Sun. In practice, Fig. 7.11 shows that the effect on
the f-mode frequencies of even quite substantial changes to the models is very
small; as will be discussed in Section 7.1.7 below, the differences between the
observed f-mode frequencies and the model frequencies appear to be domi-
nated by effects unrelated to structural differences. On the other hand, the
simple structure of the eigenfunctions and hence of the kernels for rotational
splitting (cf. Section 3.8.3) makes these modes very valuable for the determi-
nation of solar interior rotation (see Section 7.1.8).

7.1.4.4 Asymptotics of Solar Oscillations

Most of the observed solar oscillations are acoustic modes of high radial order
or degree, and hence a great deal of understanding of their diagnostic potential
can be obtained from asymptotic analyses. As discussed in Section 3.4.2 the
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acoustic modes are trapped between the surface and a lower turning point. The
dependence of the turning-point position rt on mode degree and frequency (cf.
Eq. (3.189)) is of great importance for the interpretation of the observations of
the solar 5-minute oscillations. Figure 7.13 shows rt for a model of the present
Sun, at three different frequencies, spanning the range of most observations.
For small l, rt is very close to the centre, whereas for higher degrees the turning
point moves closer to the surface. In particular, we note that for l >∼ 40 the
modes are essentially trapped in the convection zone, which has a depth of
about 0.28R. As discussed in Section 7.1.1 such modes are very well suited for
investigations of the properties of the equation of state of stellar matter.

It was shown in Section E.3, on the basis of the asymptotic theory of
p modes, that such modes satisfy the Duvall law: we can find a function
α(ω) of frequency such that the quantity [n+α(ω)]/ω depends principally on
frequency ω and degree l only in the combination w ≡ ω/L,14 i.e.,

(n+ α)π
ω

= F
(ω
L

)
. (7.15)

Here the function F (ω/L) is related to the adiabatic sound speed c(r) by

F (w) =
∫ R

rt(w)

(
1 − c2

r2w2

)1/2 dr
c

(7.16)

Also, the function α(ω) is primarily determined by conditions near the stellar
surface. As illustrated in Fig. 7.14 the observed frequencies of solar oscillation
satisfy a relation of the form given in Eq. (7.15) quite accurately. This suggests
that these relations are useful tools for analysing solar oscillation frequencies.
It should be noted, however, that they are only approximately valid. In fact, a
much more precise fit to the observed frequencies can be obtained by including
additional terms (e.g., Gough & Vorontsov 1995) which take into account the
effect of the perturbation to the gravitational potential (significant at low
degree) and the dependence of the modes on degree near the upper turning
point (important at high degree).

A very powerful relation can be obtained by considering the effect on
Eqs (7.15) and (7.16) of small changes to the equilibrium structure. We con-
sider two solar models (or a model and the Sun) with the same surface ra-
dius, labelled by the superscripts (1) and (2), and introduce the differences
δωnl = ω

(2)
nl − ω

(1)
nl , δrc(r) = c(2)(r) − c(1)(r) and δα(ω) = α(2)(ω) − α(1)(ω).

By substituting c(2)(r) = c(1)(r) + δrc(r) and α(2)(ω) = α(1)(ω) + δα(ω) into
Eqs (7.15) and (7.16), retaining only terms linear in δrc, δα and δω, we obtain

Snl
δωnl

ωnl
�
∫ R

rt

(
1 − c2L2

ω2
nlr

2

)−1/2
δrc

c

dr
c

+ π
δα(ωnl)
ωnl

, (7.17)

14 as discussed after Eq. (E.52) one should here use L = l + 1/2, rather than L =√
l(l + 1) as a simple analysis would suggest; we do so in the following.
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Fig. 7.13. The location rt (a) of the inner turning point (cf. Eq. (3.189)), and
the depth of penetration R− rt (b), in units of the solar radius R, for p modes
in a standard solar model. The results are shown as functions of degree l, for
three typical frequencies of solar oscillation.

where

Snl =
∫ R

rt

(
1 − L2c2

r2ω2
nl

)−1/2 dr
c

− π
dα
dω

, (7.18)

and we have suppressed the superscript (1). This relation was first obtained
by Christensen-Dalsgaard et al. (1988a).

Equation Eq. (7.17) may be written as

Snl
δωnl

ωnl
� H1

(ωnl

L

)
+ H2(ωnl) , (7.19)
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Fig. 7.14. Observed frequencies of solar oscillation, plotted according to
Eq. (7.15). The constant value of α, 1.45, was determined such as to minimize
the spread in the relation Eq. (7.15). Adapted from Christensen-Dalsgaard et
al. (1985).

where

H1(w) =
∫ R

rt

(
1 − c2

r2w2

)−1/2
δrc

c

dr
c
, (7.20)

and
H2(ω) =

π

ω
δα(ω) . (7.21)

Some properties of this equation were discussed by Christensen-Dalsgaard et
al. (1988a) and by Christensen-Dalsgaard et al. (1989b). As pointed out in
the latter paper, H1(ω/L) and H2(ω) can be obtained separately, to within
a constant, by means of a double-spline fit of the expression Eq. (7.19) to p-
mode frequency differences. The dependence of H1 on ω/L is determined by
the sound-speed difference throughout the star, whereas H2(ω) depends on
differences in the upper layers of the models.

There is a close analogy between Eq. (7.19) and the “exact” Eq. (7.11).
From Eqs (3.229) and (7.18) it follows that Snl, apart from the term in the
derivative of α, is proportional to the energy integral E . Thus one finds that
the scaling Qnl in Eq. (7.11) is essentially asymptotically equal to Snl/S0,
where S0 = limw→0 S(w) (Christensen-Dalsgaard 1991b); one may show that
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Fig. 7.15. The solid lines show the inertia ratio Qnl, defined in Eq. (7.10),
against ν/(l+1/2) in a solar model, each curve corresponding to a given degree
l. The upper abscissa shows the turning-point radius rt, related to ν/(l+1/2)
through Eq. (3.189). The heavy dashed curve shows the asymptotic scaling
S̃nl/τ0, where S̃nl is defined as in Eq. (7.18) but neglecting the term in dα/dω.

S0 = τ0 where

τ0 =
∫ R

0

dr
c

(7.22)

is the acoustic radius of the star. The close correspondence between Qnl and
Snl/τ0 is illustrated in Fig. 7.15. Furthermore, the term G(ω) in Eq. (7.11) to
some extent corresponds to the term H2(ω) in Eq. (7.19), in that both terms
contain contributions from the uncertain regions very near the stellar surface.

In Eq. (7.17) the first term essentially defines a contribution to δωnl/ωnl

as an average of δrc/c, if we neglect the term in dα/dω in Eq. (7.18). The
weight function in this average has a simple physical meaning. The waves
corresponding to a given mode travel along rays, as illustrated in Fig. 3.16. It
is easy to see that the distance along the ray, corresponding to a change dr
in r, is given by

d� =
(

1 − c2L2

ω2r2

)−1/2

dr . (7.23)

Thus the weight function in the average is simply d�/c, i.e., the travel time of a
sound wave corresponding to the distance dr in r. This shows that the change
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Fig. 7.16. The top panel shows the fractional difference in squared sound
speed between a model of the present Sun with diffusion of helium and a model
without diffusion, in the sense (diffusive model) – (non-diffusive model). The
bottom panel shows the adiabatic exponent Γ1 in the model without (solid
curve) and the model with (dashed curve) helium diffusion and settling. From
Christensen-Dalsgaard et al. (1993a).

in sound speed in a region of the Sun affects the frequency with a weight
determined by the time spent by the mode, regarded as a superposition of
traveling waves, in that region. Thus changes near the surface, where the
sound speed is low, have relatively large effects on the frequencies.

To illustrate the behaviour of the separation in Eq. (7.19) we consider dif-
ferences between two models of Christensen-Dalsgaard et al. (1993a): a solar
model with diffusion and settling of helium and a model neglecting these ef-
fects. Figure 7.16 shows the sound-speed difference between these models. It is
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dominated by the fact that the convection zone is slightly deeper in the model
with diffusion: since the temperature and sound-speed gradients are steeper in
the convection zone than in the radiative region below, there is a region where
the sound speed increases more rapidly with depth in the diffusive model, and
this leads to the behaviour seen in the figure. Furthermore, due to settling of
helium out of the convection zone the hydrogen abundance Xe in the convec-
tive envelope is higher by 0.030 in the model including diffusion, compared
with the non-diffusive model. This causes differences in Γ1 (illustrated in the
bottom panel of Fig. 7.16), and hence in the sound speed, in the ionization
zones of hydrogen and helium.

Figure 7.17a shows scaled relative frequency differences, at selected values
of l, between these two models, plotted against ν/L.15 We have normalized
the scaling by S0, such that it tends to unity at low degree; hence the scaled
frequency differences correspond in magnitude to the differences for low-degree
modes. The upper abscissa shows the location of the lower turning point, which
is related to ν/L through Eq. (3.189). The general behaviour of the frequency
differences reflects the asymptotic expression Eq. (7.19). The dependence of
Sδν/ν on ν/L can be understood from the sound-speed difference shown in
Fig. 7.16: for ν/L <∼ 100μHz the modes are entirely trapped in the convection
zone, and the frequency difference is dominated by the term H2(ω) arising
from differences near the surface, particularly the difference in Xe. In contrast,
modes with ν/L > 100μHz sense the substantial positive δrc just beneath
the convection zone, and hence display a positive frequency difference; the
transition occurs quite abruptly as the modes begin to penetrate beyond the
convection zone.

This qualitative description suggests that the frequency differences may
be analysed in detail in terms of Eq. (7.19). To do so, we have determined the
functions H1 and H2 by means of the spline fit of Christensen-Dalsgaard et al.
(1989b), where details about the fitting method may be found. Figure 7.17b
shows the result of subtracting the function H2(ω) so obtained from the scaled
frequency differences. It is evident that what remains is in fact very nearly a
function of ω/L alone, directly reflecting the behaviour of δrc/c, as discussed
above. The function H1(w) obtained from the fit is shown in Fig. 7.17c.

In Fig. 7.18a we show the residual scaled frequency differences after sub-
traction of the term in H1(ω/L); these are clearly predominantly functions of
frequency, although with some scatter. The fitted function H2(ω) is shown in
Fig. 7.18b. The oscillatory part of H2 largely arises from the modest difference
in Γ1 illustrated in Fig. 7.16 and hence reflects the difference in the envelope
helium abundance between the two models. This is an example of the effect
of an “acoustic glitch”, as discussed above. The “period” of the oscillation in
H2 corresponds to the acoustic depth of the second helium ionization zone,

15 To facilitate the comparison with the observations, in the following we present the
properties of the frequency differences in terms of the cyclic frequency ν, rather
than the angular frequency ω = 2πν; this should cause little confusion.
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Fig. 7.17. Scaled frequency differences corresponding to the model differences
shown in Fig. 7.16, plotted against ν/(l + 1/2). The upper abscissa shows the
location of the lower turning point, which is related to ν/(l + 1/2) through
Eq. (3.189). In panels (a) and (b) points corresponding to fixed l have been
connected. (a) Original scaled frequency differences. (b) Scaled differences,
after subtraction of the function H2(ω) obtained from the spline fit. (c) The
fitted function H1(ω/L).

around r � 0.98R. It is evident that a difference ΔYe = −0.03 in the envelope
helium abundance results in a signal that is clearly visible in the frequencies,
when analysed in this manner.
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Fig. 7.18. The frequency-dependent part of the scaled frequency differences
corresponding to the model differences shown in Fig. 7.16. (a) Scaled differences
after subtraction of the function H1(ω/L) resulting from the spline fit. (b) The
fitted function H2(ω).

It was shown by Christensen-Dalsgaard & Pérez Hernández (1992) that
the Duvall phase function α(ω) could be determined as a continuous func-
tion of frequency, by computing partial solutions to the oscillation equations,
satisfying just the outer boundary conditions, and fitting those solutions to
the asymptotic expression, Eq. (3.226), at a suitable point near the surface of
the model. This provides an explicit determination of the phase change from
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the near-surface reflection, as given by the structure of the outer layers of the
model. The dependence of α on frequency, including the variations induced by
the second helium ionization zone, is reflected in the curvature in the échelle
diagram shown in Fig. 7.4. Based on this analysis they demonstrated that the
behaviour of H2 can be understood in terms of the difference between the
structure in two models, through kernels that relate H2 to the change in c
and the acoustic cut-off frequency ωa (cf. Eq. (3.202)).

7.1.4.5 Inversion of the Duvall Law

The function F (w) in Eq. (7.15) can be determined from the observations (cf.
Fig. 7.14). Given F , Eq. (7.16) is an integral equation of the Abel type and
can be inverted analytically to obtain the sound speed implicitly, thus:

r = R exp
[
− 2
π

∫ a

as

(
w−2 − a−2

)−1/2 dF
dw

dw
]

(7.24)

(Gough 1984a), where a = c/r and as = a(R). This relation was used by
Christensen-Dalsgaard et al. (1985) to infer the sound speed in the solar inte-
rior. The properties of this inversion technique were discussed in considerable
detail by Gough (1986b).

The asymptotic description leading to Eq. (7.24) clearly suffers from sys-
tematic errors. It has been found, for example, that for the most deeply pen-
etrating modes of low degree the perturbation to the gravitational potential
has a substantial effect on the functions F (ω/L) obtained by fitting the rela-
tion Eq. (7.15) to computed or observed frequencies; this may cause problems
for the inversion in the solar core. Also, for modes trapped near the surface
the behaviour near the upper turning point depends on the degree; this intro-
duces what is effectively an l-dependent term in α. It is possible to generalize
Eq. (7.15) to take such effects into account and hence obtain a substantially
more precise inversion (e.g., Vorontsov & Shibahashi 1991).

Alternatively, it appears that the systematic errors cancel to some extent
when differences are taken between inversions of different sets of frequencies.
Christensen-Dalsgaard et al. (1985) made use of this by considering differences
between inversions done for the solar data and for frequencies of a reference
model. A more systematic approach follows from the separation of scaled
frequency differences in Eq. (7.19). Here the function H1(ω/L) is related to
the sound-speed difference between the models, or between the Sun and the
model, through Eq. (7.20). As shown by Christensen-Dalsgaard et al. (1989b),
given a determination of H1, that equation is an integral equation for δrc/c,
with the solution

δrc

c
= −2a

π

d
d ln r

∫ a

as

(a2 − w2)−1/2H1(w)dw . (7.25)

This was first derived in the corresponding case (cf. Eq. (7.26) below) of the
asymptotic inversion for an r-dependent angular velocity Ω(r), by Gough
(1984a).



486 7 Applications of Asteroseismology

Fig. 7.19. The solid line shows the difference in squared sound speed δrc
2/c2

inferred by applying Eq. (7.25) to the function H1(ω/L) shown in Fig. 7.17c.
For comparison, the dashed line shows the true difference between the two
models. Adapted from Christensen-Dalsgaard et al. (1993a).

Christensen-Dalsgaard et al. (1989b) carried out a careful test of the
differential method, as applied to several different pairs of models. Also,
Christensen-Dalsgaard et al. (1988b) used the method to invert differences
between observed frequencies and frequencies computed for a solar model.
Here we illustrate its properties by applying it to the model pair shown in
Fig. 7.16.

Figure 7.19 shows the δrc
2/c2 inferred from the scaled frequency differences

in Fig. 7.17 between the diffusive and the non-diffusive solar model, by apply-
ing Eq. (7.25) to the fitted function H1(ω/L) shown in Fig. 7.17c. For compar-
ison, the figure also shows the true sound-speed difference, previously plotted
in Fig. 7.16. It is evident that the inversion reproduces the main features of
the true δrc

2/c2 with considerable accuracy. One noticeable difference is that
the transition at the base of the convection zone is less sharp: as discussed
in Section 7.1.5 below, it is a general property of inverse analyses that they
smooth the properties of the true structure. However, otherwise the inferred
and the true δrc

2/c2 are quite close over the entire range, 0.2R < r < 0.95R,
where the solution is plotted. At smaller and larger radii the systematic errors
associated with the asymptotic representation increasingly affect the results;
hence here the solution has not been obtained.

It should finally be mentioned that several other techniques have been
developed to invert the Duvall law, Eq. (7.15) (Brodsky & Vorontsov 1987,
1988; Shibahashi 1988; Sekii & Shibahashi 1989). Gough & Thompson (1991)
have made a comparison of these different techniques. The results suggest that,
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at least for the cases considered, the differential technique described here is
superior. Nonasymptotic inversion of similar data sets will be discussed in
Section 7.1.6.

7.1.4.6 Asymptotic Properties of the Rotational Splitting

It is also instructive to consider the asymptotic description of the rotational
splitting, considering first the case where Ω = Ω(r) depends only on r. For
high-order p modes, with βnl � 1, the integral in Eq. (3.355) provides a
weighted average of Ω(r); using the asymptotic properties of the eigenfunc-
tions we obtain

δωnlm � m

∫ R

rt

(
1 − L2c2

r2ω2
nl

)−1/2

Ω(r)
dr
c

∫ R

rt

(
1 − L2c2

r2ω2
nl

)−1/2 dr
c

. (7.26)

Thus, as in the case of the sound-speed difference, we obtain the rotational
splitting as an average of the angular velocity, weighted by the sound travel
time along the ray (see the discussion in connection with Eq. (7.23)). This
expression can also be obtained from ray theory (Gough 1984a). As discussed
above, it can be inverted, as in Eq. (7.25), to infer Ω(r) from m−1δωnlm.

In the more general case where Ω = Ω(r, θ) depends also on co-latitude we
obtain, using furthermore an asymptotic approximation to Pm

l (see Eqs (B.15)
and (B.16)), that

δωnlm � (7.27)

m

∫ cos Θ

− cos Θ

(
cos2Θ − cos2 θ

)−1/2
∫ R

rt

(
1 − L2c2

r2ω2

)−1/2

Ω(r, θ)
dr
c

d(cos θ)

π

∫ R

rt

(
1 − L2c2

r2ω2

)−1/2 dr
c

,

where Θ = sin−1(m/L) (Gough & Thompson 1990, 1991). The asymptotic
approximation to Pm

l shows that a given spherical harmonic is confined es-
sentially to the latitude band between ±Θ; within this region Pm

l oscillates
as a function of θ, whereas at higher latitudes it decreases exponentially. The
variation of the extent of the Pm

l with m/L allows resolution of the latitudinal
variation of the angular velocity, in much the same way as the variation of the
depth of penetration with ω/L allows resolution of the variation with radius.
In particular, with increasing l the sectoral modes (with l = |m|) get increas-
ingly confined towards the equator (see also Fig. B.1). Thus, the rotational
splitting of sectoral modes provides a measure of the solar equatorial angular
velocity.
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7.1.5 Principles of Inverse Analysis

The expression Eq. (3.355) for the splitting caused by spherically symmetric
rotation is a particularly simple example of the relation between the observ-
able properties of the oscillation frequencies and the properties of the solar
interior which we wish to determine. The determination of Ω(r) from the
δωnlm constitutes the simplest example of an inverse problem. In particular,
there is a linear relation between the observables and the property of the
solar interior. In contrast, the oscillation frequencies depend in a nonlinear
fashion on the structure of the Sun, as specified by for example ρ(r) and c(r)
(cf. Section 3.3.3). However, by assuming that the real solar structure can
be obtained from the structure of a given reference model by applying small
corrections, the differences in frequency between the observations and the
reference model can be obtained from a linear perturbation analysis of the
oscillation equations, resulting, once more, in a linear relation between the
frequency differences and the corrections to the model; this was discussed in
some detail in Section 3.6.2 (see Eq. (3.269)). Thus the linear inverse problem
forms the basis for much of the inverse theory for solar oscillations.

Inverse problems have a vast literature, covering their application in, for
example, geophysics and radiation theory (e.g., Parker 1977; Craig & Brown
1986; Deepak 1977; Tarantola 1987). The application to the solar inverse
problem was discussed by Gough (1985b) and Gough & Thompson (1991).
Christensen-Dalsgaard et al. (1990) made a systematic comparison of differ-
ent inversion techniques, as applied to the problem of spherically symmetric
rotation; the following discussion is to a large extent based on their results.

The simplicity of the inversion for a spherically symmetric rotation rate
Ω(r), related to the observed rotational splittings by Eq. (3.355), makes it a
very useful prototype of more general inversions, and hence we discuss it in
some detail. The problem may be expressed as

Δi =
∫ R

0

Ki(r)Ω(r)dr + εi , i = 1, . . . ,M , (7.28)

where, for notational simplicity, we represent the pair (n, l) by the single
index i; M is the number of modes in the data set considered. Δi is the scaled
rotational splitting m−1β−1

nl δωnlm, the kernels Ki having been normalized as
in Eq. (3.358), and εi is the observational error in Δi. The goal of the inversion
is to determine an approximation Ω̄(r0) to the true angular velocity, as a
function of position r0 in the Sun; obviously this is only possible for those
parts of the Sun about which the oscillations provide data. In most cases
considered so far, the inversion is carried out through linear operations on the
data. Hence Ω̄ is linearly related to the data: for each r0 there exists a set of
inversion coefficients ci(r0) such that

Ω̄(r0) =
∑

i

ci(r0)Δi =
∫ R

0

K(r0, r)Ω(r)dr +
∑

i

ci(r0)εi , (7.29)
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using Eq. (7.28) in the second equality; here the averaging kernel K(r0, r) is
given by

K(r0, r) =
∑

i

ci(r0)Ki(r) . (7.30)

The inversion coefficients and averaging kernels clearly depend on the
choice of the inversion method, and of possible parameters that enter into
the method; indeed, the inversion may be thought of as a way to determine
coefficients and averaging kernels such as to obtain as much information about
the angular velocity as possible, while controlling the error in the inference.
On the other hand, once the method and parameters have been chosen, the
coefficients and averaging kernels are independent of the data values. Hence
they can be used to make a data-independent comparison of different inver-
sion methods; this was the approach taken by Christensen-Dalsgaard et al.
(1990).

The averaging kernels provide an indication of the resolution of the in-
version; it is clearly desirable to achieve averaging kernels that are sharply
peaked around r = r0, and with small amplitude far away from that point. As
a quantitative measure of resolution it is common to use a width of K(r0, r)
obtained as the distance r3 − r1 between the first and third quartile points,
defined by

∫ rk

0

K(r0, r)dr =
k

4

∫ R

0

K(r0, r)dr , k = 1, 2, 3 . (7.31)

Also, from the last term in Eq. (7.29) it follows that the variance in the result
of the inversion is

σ[Ω̄(r0)]2 =
∑

i

ci(r0)2σ2
i , (7.32)

assuming that the standard errors σi on Δi are uncorrelated. In particular,
if (somewhat unrealistically) σi = σ is assumed to be the same for all the
observed modes, σ[Ω̄(r0)] = Λ(r0)σ where we introduced the error magnifi-
cation

Λ(r0) =

[
∑

i

ci(r0)2
]1/2

. (7.33)

The optimization of the inversion techniques is often based on a trade-off
between width of the averaging kernels and error or error magnification mag-
nification (cf. Figure 7.21 below).

A procedure which is based explicitly on the determination of the inversion
coefficients is the technique of optimally localized averages (OLA), developed
by Backus & Gilbert (1970); this has been used extensively for helioseismic
inversion. The goal is to choose the coefficients ci(r0) such as to make K(r0, r)
approximate as far as possible a delta function δ(r − r0) centred on r0; then
Ω̄(r0) provides an approximation to Ω(r0). This is achieved by determining
the coefficients c(r0) such as to minimize
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∫ R

0

(r − r0)2K(r0, r)2dr + μ
∑

i

ci(r0)2σ2
i , (7.34)

subject to the constraint
∫ R

0

K(r0, r)dr = 1 . (7.35)

This is equivalent to solving the set of linear equations
∑

j

Wijcj = b ,
∑

j

cj = 1 , (7.36)

where b is a Lagrange multiplier. Here

Wij = Sij + μσ2
i δij , (7.37)

where

Sij =
∫ R

0

(r − r0)2Ki(r)Kj(r)dr . (7.38)

Furthermore, μ is a parameter which, as discussed below, must be adjusted
to optimize the result.

The effect of the minimization is most easily understood for μ = 0. Min-
imizing Eq. (7.34) subject to Eq. (7.35) ensures that K(r0, r) is large close to
r0, where the weight function (r − r0)2 is small, and small elsewhere. This
is precisely the required “delta-ness” of the combined kernel. However, with
no further constraints, the optimization of the combined kernel may result
in numerically large coefficients of opposite sign. Hence, the variance in Ω̄,
obtained from Eq. (7.32), would be large. The effect of the second term in
Eq. (7.34), when μ > 0, is to restrict σ2(Ω̄). The size of μ determines the rel-
ative importance of the localization and the size of the variance in the result.
Hence, μ must be determined to ensure a trade-off between the localization
and the error, measured by the width of K(r0, r) and σ[Ω̄(r0)], respectively;
μ is generally known as the trade-off parameter.

The principal difficulty of this method is computational expense: at each
target radius r0 it involves the solution of a set of linear equations whose
order is the number of data points. Jeffrey (1988) proposed an alternative
version where the coefficients were determined by minimizing the difference
between K(r0, r) and the delta function δ(r − r0). This is computationally
more efficient, in that only one matrix inversion is required, but results in av-
eraging kernels with somewhat undesirable properties. Pijpers & Thompson
(1992, 1994) developed this method further, by matching K(r0, r) instead to a
prescribed target function T (r0, r) which more closely matches the behaviour
that can be achieved with the given mode set. They dubbed this the SOLA
technique (for Subtractive Optimally Localized Averaging), to distinguish it
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from the MOLA technique (for Multiplicative Optimally Localized Averag-
ing) discussed above. Specifically, the coefficients ci(r0) are determined by
minimizing

∫ R

0

[K(r0, r) − T (r0, r)]
2 dr + μ

∑

i

σ2
i ci(r0)2 , (7.39)

where again μ is a trade-off parameter. In addition, the width of T (r0, r) func-
tions as a parameter, in most cases depending on r0, of the method. As before,
the inclusion of the last term in Eq. (7.39) serves to limit the error in the so-
lution. The minimization leads to the following system of linear equations for
the ci(r0): ∑

j

(Kij + μσ2
i δij)cj(r0) = Ti(r0) ; (7.40)

here

Kij =
∫ R

0

Ki(r)Kj(r)dr , Ti(r0) =
∫ R

0

T (r0, r)Ki(r)dr . (7.41)

In Eq. (7.40) the coefficient matrix on the left-hand side is independent of r0.
Thus it can be inverted or, more efficiently, suitably factored, once and for
all; after this the determination of the coefficients at each target point r0 is
virtually free. Compared with the MOLA technique the computational effort is
therefore reduced by roughly a factor given by the number of target locations.
An additional advantage of the technique is the ability to choose the target
function such as to tailor the averaging kernels to have specific properties. In
addition to the usual trade-off parameter μ controlling the weight given to the
errors, the method obviously depends on parameters controlling the properties
of the target functions T (r0, r). These are often taken to be of Gaussian shape;
it was argued by Thompson (1993) that the radial resolution, for inversion of
acoustic modes, is proportional to the sound speed c, and hence the width
of T (r0, r) is generally taken to be proportional to c(r0), the constant of
proportionality serving as a parameter characterizing the targets.

A second commonly used technique is the regularized least-squares, or
Tikhonov, method (the RLS method; see, for example, Craig & Brown 1986).
Here the solution Ω̄(r) is parameterized, often as a piecewise constant function
on a grid r0 < r1 < . . . < rN , with Ω̄(r) = Ωj on the interval [rj−1, rj ];
the parameters Ωj are determined through a least-squares fit to the data.
In general, this least-squares procedure needs to be regularized to obtain a
smooth solution. This is achieved by including in the minimization a term
which restricts the square of Ω̄, or the square of its first or second derivative.
Thus, for example one may minimize

∑

i

σ−2
i

[∫ R

0

Ki(r)Ω̄(r)dr −Δi

]2

+ μ

∫ R

0

(
d2Ω̄

dr2

)2

dr , (7.42)
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where in the last term a suitable discretized approximation to d2Ω̄/dr2, in
terms of the Ωj , is used. The minimization of Eq. (7.42) clearly leads to a set
of linear equations for Ω̄j , defining the solution; however, it is still the case
that the procedure can be formulated as in Eq. (7.29) and hence leads to the
determination of inversion coefficients and averaging kernels. By restricting
the second derivative, the last term in Eq. (7.42) suppresses rapid oscillations
in the solution, and hence ensures that it is smooth; the weight μ given to
this term serves as a trade-off parameter, determining the balance between
resolution and error for this method.

The asymptotic expression Eq. (7.26) for the frequency splitting provides
the basis for a final example of an inversion method in widespread use. After
multiplication by the denominator the right-hand side of that equation is a
function H(ω/L) which is in principle determined by the observed splittings.
Given H(w), the angular velocity can be inferred as in the determination in
Eq. (7.25) of the sound-speed difference from the function H1(ω/L). As in that
case an approximation to H(ω/L) is obtained by making a least-squares fit to
the scaled splittings, e.g., of a spline over a suitably chosen set of knots. The
number of knots determines the resolution achieved in representing H(w) and
hence in the inferred solution Ω̄(r), hence effectively serving as a trade-off
parameter. Again, the processes of carrying out the spline fit to the scaled
data and evaluating the integral corresponding to Eq. (7.25) are linear, and
hence the method allows the evaluation of inversion coefficients and averaging
kernels (see Christensen-Dalsgaard et al. 1990 for details).

An illustration of the use of these methods is provided by the results ob-
tained by Christensen-Dalsgaard et al. (1990). They considered a set consist-
ing of about 830 modes at selected degrees between 1 and 200, and frequencies
between 2000 and 4000μHz; for simplicity, the standard errors were assumed
to be the same for all modes. Figure 7.20 shows examples of averaging kernels
K(r0, r) for the MOLA, regularized least-squares and asymptotic methods.
The trade-off parameters were chosen such that the error magnification at
r0 = 0.5R was close to 1 in all three cases. It should be realized that the
kernels entering into the combination are of the form shown in Figure 3.39.
Thus, a very large degree of cancellation has been achieved of the dominant
contribution from near the surface. Nevertheless, it is obvious that the aver-
aging kernels are only approximate realizations of delta functions; structure
on a scale smaller than roughly 0.05R is not resolved.

This limitation is inherent in any inversion method. Indeed, it is evident
that from a finite set of data one can never completely resolve the function
Ω(r). To obtain a definite solution, additional constraints must be invoked.
The constraints used here essentially demand that the solution be smooth.
This is ensured in the method of optimally localized kernels by representing
the solution by smooth averaging kernels whose shape is determined by the
minimization in Eq. (7.34). For the Tikhonov method smoothness is explicitly
demanded by constraining the second derivative of the solution, whereas in
the case of the asymptotic technique the constraints lie partly in using the
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Fig. 7.20. Averaging kernels K(r0, r) at selected radii (r0/R = 0.1, 0.2,
. . . , 1.0) for inversion by means of the MOLA technique (panel a), the Tikhonov
inversion with second-derivative smoothing (panel b) and asymptotic inversion
(panel c). The parameters in each inversion method have been chosen to obtain
approximately the same error magnification for r0 = 0.5R. In each case, the
kernel at r0 = 0.5R is shown as a bolder curve. From Christensen-Dalsgaard
et al. (1990).

asymptotic description, which in itself assumes that the solution varies on a
scale larger than the wavelength of the modes, partly in the spline fit to the
scaled data.

All methods contain trade-off parameters which determine the relative
weight given to the demands of resolution on the one hand, and smoothness
or minimizing errors on the other. To illustrate this balance, it is common to
consider trade-off diagrams, where a measure of error is plotted against a mea-
sure of the width of the averaging kernels. Examples are shown in Fig. 7.21.
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Fig. 7.21. The trade-off between error magnification Λ(r0) (cf. Eq. (7.33)) and
width (defined as distance between quartile points), for inversion at r0 = 0.5R.
Results are shown for the MOLA technique ( ), Tikhonov inversion (�) and
asymptotic inversion (	), in each case varying the relevant trade-off parameter
over a wide range. From Christensen-Dalsgaard et al. (1990).

The similarity, in terms of such global measures, between the three conceptu-
ally rather different methods is quite striking.

It is also of interest to consider in detail the way in which the different
methods utilize the data, as expressed in terms of the inversion coefficients.
In the case of the asymptotic technique it may be shown that these depend
on ω/L alone; hence for the purpose of comparison it is sensible to plot the
coefficients as a function of ω/L in all cases. In Fig. 7.22 the coefficients for the
optimally localized averages and the Tikhonov inversions are compared with
those obtained with the asymptotic technique, for r0 = 0.5R. It is evident that
the overall behaviour of the coefficients is quite similar in all three cases; in
particular, the modes dominating the inversion are those whose turning point
rt is in the vicinity of the target radius r0. At a more subtle level, there are
significant differences. In particular, unlike the Tikhonov case, inversion by
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Fig. 7.22. Inversion coefficients ci(r0) for the inversions illustrated in Fig-
ure 7.20, at r0 = 0.5R; they have been plotted against ν/(l + 1/2) which,
according to Eq. (3.189), measures the location rt of the lower turning point;
this is indicated on the upper abscissa. The continuous line in both pan-
els shows coefficients for the asymptotic method which are functions of
ν/(l + 1/2). Panel (a) gives the coefficients obtained with the MOLA tech-
nique, whereas panel (b) shows coefficients for Tikhonov inversion. Adapted
from Christensen-Dalsgaard et al. (1990).

optimally localized averages makes substantial use of modes of high degree.
It may be shown that these are used essentially only to improve the averag-
ing kernels near the surface; in fact, as can be seen in Fig. 7.20 the K(r0, r)
for Tikhonov inversion have quite substantial amplitude at very short wave-
length near the surface, whereas such structure is entirely suppressed by the
minimization in Eq. (7.34) for the optimally localized averages.

The least-squares problem defined in Eq. (7.42) can conveniently be anal-
ysed through singular value decomposition (SVD; e.g., Craig & Brown 1986).
In particular, Hansen (1990) noted that the equivalent problem, but regular-
izing using the norm of the solution, can be solved by means of a truncated
SVD expansion. Although this form of regularization is not preferred, the
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expansion defines the most significant components of the data. As discussed
by Christensen-Dalsgaard & Thompson (1993) this can be used to prepro-
cess the data by extracting those components as input to the inverse analysis,
thus very substantially reducing the computational effort in the inversion.16

Christensen-Dalsgaard et al. (1993b) showed that the more general regulariza-
tion, such as the second-derivative term used in Eq. (7.42), can be analysed by
means of the so-called generalized singular value decomposition. This provides
a natural basis for expressing the inverse problem which can then be used to
study the properties of other inversion methods. In particular, Christensen-
Dalsgaard et al. (1993b) discussed the different behaviour of the inversion
coefficients for the OLA and RLS methods (see Fig. 7.22).

Graphs such as Fig. 7.21 are very useful for the choice of the trade-off
parameter; however, it is evident that this choice depends critically on the
particular application, including the errors in the data. The question of how
to fix the trade-off parameter, or indeed even how to choose the inversion
method, has given rise to a great deal of debate, occasionally of an almost
philosophical (or, dare one say, religious) nature. It has been suggested that
inversion methods should be chosen which aim at fitting the data; this makes
the method of optimally localized averages, whose goal is instead to design
the averaging kernels, less attractive. Also, a great deal of emphasis has been
placed on techniques for objectively determining the trade-off parameters,
based on the errors in the data and possibly the properties of the solution.
In contrast, the approach taken in helioseismology has to a large extent been
pragmatic: in fact, it can be argued that since no method, or choice of trade-
off, can provide the exact solution given the necessarily incomplete data, the
most important aspect of the inversion is to be able to interpret the result
and its significance. In this respect, the averaging kernels which graphically
illustrate the resolution, and the inversion coefficients which allow evaluation
of effects of errors in the data, are clearly very useful. By choosing different
inversion methods, and different values of the trade-off parameters, consid-
ering in each case the properties of the resulting inversion, one can hope to
obtain a more complete impression of the underlying solution. In this process
prior knowledge, or prejudices, about the solution clearly play a significant
role; these should ideally be formulated in a well-defined statistical sense, but
probably often are not.

7.1.5.1 Two-Dimensional Rotational Inversion

So far, we have considered inversion for a function that depends on r alone.
It is evidently desirable, however, to carry out inversion for more general
properties which are functions both of r and θ. Here we concentrate on the case
of determining the angular velocity Ω(r, θ); it should be noticed, however, that
another interesting inverse problem concerns the departure of the structure
from spherical symmetry (cf. Section 7.1.9).
16 A similar analysis was carried out for structure inversion by Basu et al. (1997a).
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As demonstrated by the asymptotic relation (7.27) the latitude dependence
of rotation is reflected in the dependence of the frequencies on azimuthal
order m. Thus in general individual frequencies ωnlm have to be analysed.
This greatly increases the amount of data to be considered, compared with
the simple 1-dimensional case discussed above, and computational efficiency
becomes a crucial consideration. However, it is still generally the case that the
inferred angular velocity Ω̄(r0, θ0) at some location (r0, θ0) is linearly related
to the data; as discussed by Schou et al. (1992) this allows the introduction of
inversion coefficients and generalized averaging kernels K(r0, θ0, r, θ) defined
such that Ω̄(r0, θ0) is related to the true angular velocity Ω(r, θ) through

Ω̄(r0, θ0) =
∫ π

0

∫ R

0

K(r0, θ0, r, θ)Ω(r, θ) rdrdθ . (7.43)

The form of the inverse problem evidently depends on the representation
of the data. The general problem has the form

ωnlm − ωnl0 = δωnlm = m

∫ R

0

∫ π

0

Knlm(r, θ)Ω(r, θ)rdrdθ (7.44)

(cf. Eq. (3.349)). However, it is often the case that the data do not allow
determination of individual frequencies ωnlm. In that case, it is customary to
make fits of the general form shown in Eq. (7.9). Since the fitting procedure is
in general linear, the a coefficients aj(n, l) are linearly related to the frequency
splittings,

2πaj(n, l) =
∑

m

γj(l,m)(ωnlm − ωnl0) , (7.45)

for suitable coefficients γj(l,m). It immediately follows from Eq. (3.349) that
rotation gives rise to odd a coefficients, related to Ω(r, θ) by

2πa2j+1(n, l) =
∫ R

0

∫ π

0

K
(a)
nlj(r, θ)Ω(r, θ)rdrdθ , (7.46)

where the kernels K(a)
nlj(r, θ) can be determined in a straightforward manner

from the kernels Knlm(r, θ).
A further simplification of the inverse analysis results from expanding the

dependence of Ω(r, θ) on θ in the form

Ω(r, θ) =
smax∑

s=0

Ωs(r)ψ(1)
2s (cos θ) , (7.47)

where ψ(1)
2s (x) is a polynomial in x2 of degree s (see, for example, Korzennik

et al. 1988; Brown et al. 1989; Thompson 1990). Such procedures are often
called 1.5-dimensional (or 1.5D) inversions. By chosing the polynomials P(l)

j

as defined after Eq. (7.9) (Ritzwoller & Lavely 1991; Schou et al. 1994), and
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a suitable corresponding expansion of Ω, each a2s+1 is related to a single
Ωs(r) and the inverse problem is reduced to a series of simple one-dimensional
inversions (see also Pijpers 1997).

Such 1.5-dimensional techniques very considerably reduce the computa-
tional efforts required for the inversion. However, the expansion of Ω evidently
imposes a rather special structure on the solution, unless a large number of
terms is included. With current computational resources the alternative of
performing direct two-dimensional inversions, based either on Eqs (7.44) or
Eqs (7.46), is entirely feasible and generally used. Even given the large amount
of data (as many as 200 000 individual frequencies ωnlm, or of order 50 000
a coefficients aj(n, l)), this can be handled by means of a straightforward
regularized least-squares technique (e.g., Schou 1991; Sekii 1991; Schou et
al. 1992, 1994). Here the inferred Ω̄(r, θ) is represented on a suitable grid
(rp, θq) in r and θ, p = 1, . . . , nr, q = 1, . . . , nθ, by expansion coefficients
Ωpq. These expansion coefficients can be determined through a regularized
least-squares fitting technique, analogous to the one described in Eq. (7.42).
Assuming that splittings δωnlm for individual modes are available, related to
Ω(r, θ) by Eq. (7.44), the solution is determined by minimizing

∑

nlm

(∫
r,θ
KnlmΩ̄rdrdθ − δωnlm

σnlm

)2

(7.48)

+μr

∫

r,θ

fr(r, θ)
(
∂2Ω̄

∂r2

)2

dθdr + μθ

∫

r,θ

fθ(r, θ)
(
∂2Ω̄

∂θ2

)2

dθdr ;

here σnlm is the standard deviation of the observed splitting δωnlm. The last
two terms serve to regularize the solution, as before, and depend on the weight
functions fr and fθ and the trade-off parameters μr and μθ. Instead of δωnlm,
expansion coefficients a2j+1 with the corresponding kernels may evidently
also be used. As in the 1-dimensional case, the trade-off parameters must be
determined such as to ensure a balance between resolution and error. However,
here one must also balance the resolution in the radial and latitude directions,
as characterized by the averaging kernels (e.g., Schou et al. 1994).

To illustrate the resolution properties of the inversions, Fig. 7.23 shows ex-
amples of such kernels, both for an inversion using expansions of the splittings
and Ω and for a full, two-dimensional inversion. In the former case, only a1, a3

and a5 were included and the latitude information is consequently relatively
limited; hence the kernels have a substantial extent in latitude. A particu-
larly striking feature is the fact that the attempt to determine the angular
velocity close to the pole results in what contains aspects of extrapolation
from lower latitudes: indeed, it is obvious that the rotation of the region very
near the pole has little effect on the frequency splittings and hence cannot be
determined from the inversion. The inversion based on individual splittings
provides substantially better resolution in latitude, as might have been an-
ticipated. Within the convection zone it is possible to determine the rotation
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Fig. 7.23. Contour plots of two-dimensional averaging kernels
R2K(r0, θ0, r, θ) (cf. Eq. (7.43)). Results are shown at target radii near
r0 = 0.8R and three different target co-latitudes, as indicated. The plots are
in the (r, θ) plane, with the polar axis towards the top of the page. Positive
contours are indicated by solid lines, negative contours by dashed lines; Δ is
the value of the separation between contour levels. The cross shows the target
location (r0, θ0). The top row shows kernels for an inversion based on just a1,
a3 and a5 and using a corresponding expansion of Ω. The bottom row shows
results for a full two-dimensional regularized least-squares inversion, for a
mode set aiming at representing the results of 1 year of observations with
high spatial resolution. Adapted from Schou et al. (1994).

over a region extending only a few per cent of the solar radius in both radial
and latitude directions, for realistic sets of observed frequency splittings.

The MOLA and SOLA techniques (cf. Eqs (7.34) and (7.39)) can obvi-
ously also be generalized to the two-dimensional case. They offer considerable
advantages in terms of the ability to control the resolution, and possibly other
properties of the averaging kernels, although potentially at considerable com-
putational expense. In fact, very substantial improvements of computational
efficiency can be achieved by utilizing the special properties of the kernels
(Sekii 1993; Pijpers & Thompson 1996; Pijpers 1997). Larsen & Hansen (1997)
showed that the linear equations (Eqs (7.40) and (7.41)) arising in the SOLA
technique can be solved efficiently by using explicitly the discretized repre-
sentation of the kernels. Thus Larsen (1997) developed an iterative technique
which allows two-dimensional SOLA inversion to be carried out with fairly
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modest means (see also Larsen et al. 1998). These efficient techniques have
been applied to the very extensive and accurate data obtained with the GONG
and SOHO projects. We present some results of such analyses in Section 7.1.8
below.

Further details on the implementation of rotational inversion, and tests of
the various techniques, were provided by Schou et al. (1998).

7.1.6 Inversion for Solar Structure

7.1.6.1 Linearized Numerical Inversion

In its most general form, the dependence of the oscillation frequencies on solar
structure may be expressed as

ωnl = Fnl[ρ(r), c(r), . . .] , (7.49)

where, as indicated, other properties beyond the “mechanical” structure as
characterized by ρ and c (see also Section 3.3.3.2) may affect the frequencies.
This equation is often approximated by the corresponding equation for the
adiabatic frequencies, i.e.,

ωad
nl = Fad

nl [ρ(r), c(r)] , (7.50)

where the functional Fad
nl is determined through the solution of the equations

of adiabatic oscillation. The inverse problem for solar structure then consists
of inferring properties of the structure by “solving” Eq. (7.49) or Eq. (7.50),
given a set of observed frequencies {ω(obs)

nl }.
A difficulty in this process is that the frequencies depend on solar structure

in a complicated, nonlinear way. As is common for nonlinear equations, the
analysis proceeds through linearization around an initial reference model. Let
(ρ0(r), c0(r)) correspond to the reference model, which has adiabatic oscilla-
tion frequencies ω(0)

nl . We seek to determine corrections δrρ(r) = ρ(r) − ρ0(r)
and δrc

2(r) = c2(r)− c20(r) to match the differences ω(obs)
nl −ω

(0)
nl between the

observed frequencies and those of the reference model. As discussed in Sec-
tions 3.6.2 and 7.1.4.1, linearization of Eq. (7.49), assuming δrρ/ρ and δrc

2/c2

to be small, leads to

δωnl

ωnl
=
∫ R

0

[
Knl

c2,ρ(r)
δrc

2

c2
(r) +Knl

ρ,c2(r)
δrρ

ρ
(r)
]

dr

+Q−1
nl G(ωnl) + εnl , (7.51)

where the kernels Knl
c2,ρ and Knl

ρ,c2 are determined from the eigenfunctions
in the reference model. In Eq. (7.51) we included a contribution from the
uncertainties in the near-surface region, expressed by the term in G (cf. Sec-
tion 7.1.4.1); this may be assumed to contain the difference between the “true”
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function Fnl in Eq. (7.49) and the adiabatic approximation Fad
nl in Eq. (7.50).

Furthermore, we explicitly included the observational errors εnl. An additional
constraint on δrρ is that the mass of the Sun and the reference model be the
same, i.e.,

4π
∫ R

0

δrρ(r)
ρ(r)

ρ(r)r2dr = 0 . (7.52)

In this way the original nonlinear inverse problem is reduced to a linear prob-
lem, which may be analysed by means of techniques similar to those discussed
above.

Unlike the rotational case, the linearized inverse problem given by Eq. (7.51)
involves three unknown functions: δrρ(r), δrc

2(r) and G(ω). These may, af-
ter suitable parametrization, be determined through least-squares fitting with
appropriate regularization (see below). Alternatively, some form of optimally
localized averages may be used, by forming a linear combination of Eqs (7.51),

∑

i

ci(r0)
δωi

ωi
=
∑

i

ci(r0)
∫ R

0

Ki
c2,ρ(r)

δrc
2

c2
(r)dr (7.53)

+
∑

i

ci(r0)
∫ R

0

Ki
ρ,c2(r)

δrρ

ρ
(r)dr

+
∑

i

ci(r0)Q−1
i G(ωi) +

∑

i

ci(r0)εi ,

where, as before, i labels the modes. If the goal is to determine the correction
to c2(r0), the coefficients ci(r0) must be chosen such that the first term on
the right-hand side of Eq. (7.53) provides an average of δrc

2/c2 localized near
r = r0, while minimizing the effect of the remaining terms.

A natural generalization of the SOLA technique is to obtain the coefficients
ci(r0) through minimization of
∫ R

0

[
Kc2,ρ(r0, r) − T (r0, r)

]2 dr + β

∫ R

0

Cρ,c2(r0, r)2dr + μ
∑

i

σ2
i ci(r0)2 ,

(7.54)
where

Kc2,ρ(r0, r) =
∑

i

ci(r0)Ki
c2,ρ(r) (7.55)

is the averaging kernel; the cross-term kernel

Cρ,c2(r0, r) =
∑

i

ci(r0)Ki
ρ,c2(r) (7.56)

measures the influence of the contribution from δrρ/ρ on the inferred δrc
2/c2,

and σi is the standard error of δωi/ωi. The constraint Eq. (7.52) is incorpo-
rated by adding a fictitious data point, with zero value and zero error, and
with zero sound-speed kernel and a density kernel given by ρr2. The term in
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G(ω), where G is assumed to be a slowly varying function of frequency, may
be suppressed by restricting the combinations of the data to those that are
insensitive to a contribution of this form (Däppen et al. 1991; Kosovichev et
al. 1992). Specifically, the coefficients may be constrained to satisfy

∑

i

ci(r0)Q−1
i ψλ(ωi) = 0 , λ = 0, . . . , Λ , (7.57)

for a suitably chosen set of functions ψλ. It was shown by Basu et al. (1996a)
that an equivalent, but potentially more flexible, suppression of the near-
surface terms may be based on the filtering technique considered by Pérez
Hernández & Christensen-Dalsgaard (1994a).

The SOLA inversion is characterized by the trade-off parameters β and μ
controlling the influence of the cross term and the errors, respectively, by the
parameters determining the target function T (r0, r) and by the number Λ of
terms included in the suppression of the surface effects. The considerations
involved in the choice of these parameters were discussed by Rabello-Soares
et al. (1999b).

The form of the surface term in Eq. (7.51) assumed that the local proper-
ties of the eigenfunctions in the near-surface region are independent of degree;
this is what led to the function G being just dependent on frequency. From an
asymptotic point of view this corresponds to assuming that the rays charac-
terizing the modes are nearly vertical in this region. For modes of high degree
this approximation no longer holds. Brodsky & Vorontsov (1993) showed how
the asymptotic relation (7.15) should be modified in this case, by introducing
l-dependent terms in the phase function α. As discussed by Antia (1995) this
has a significant effect on the inversion, at the present level of precision. The
introduction of the corresponding terms in structure inversion by means of
the SOLA or MOLA techniques, generalizing the constraints in Eqs (7.57),
was discussed by Di Mauro et al. (2002); they also applied the techniques to
preliminary observed frequencies of high-degree modes, obtained by Rhodes
et al. (1998) from analysis of observations from the MDI instrument on the
SOHO spacecraft.

In addition to the optimally localized techniques, the linearized Eq. (7.51)
can also be analysed by means of regularized least-squares techniques (e.g.,
Dziembowski et al. 1990; Antia & Basu 1994a; Basu & Thompson 1996).
Here the unknowns, δrc

2/c2, δrρ/ρ as functions of r and G as a function of
ω, are defined in terms of suitable discretized representations, e.g., splines,
and the coefficients in these representations are determined through a least-
squares fit to the observed δω/ω, possibly with appropriate regularization.
An advantage of this technique is that it provides a fit to the data and hence
more effectively allows the identification and elimination of possible outliers.
On the other hand, it is probably less straightforward to control the resolution
and error properties of the inversion than with the OLA techniques.

Formally, the linearization leading to Eq. (7.51) can be regarded as the
first step in an iterative process to infer the solar internal structure. Based
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on the corrections δrc
2 and δrρ a new model can be constructed, imposing

hydrostatic equilibrium but with no additional constraints from the theory of
stellar evolution, and the inversion can be repeated using this as a reference
model (e.g., Antia 1996). The reconstructed model can then be considered as
a “seismic solar model”, providing an inference of solar structure that depends
only on the observational data (and the unavoidable limitations of resolution
in the inverse analysis).

Although the inversion has been discussed in terms of the pair (c2, ρ), other
sets of variables characterizing the equilibrium structure of the Sun may be
used (see also Section 3.3.3). In particular, as discussed in Section 3.6.2, the
frequency changes can be expressed in terms of changes δru and δrY in the
squared isothermal sound speed u = p/ρ and helium abundance, if the equa-
tion of state and the heavy-element abundance are assumed to be known.
From the point of view of inversion, these pairs have the substantial advan-
tage that the kernels corresponding to δrY are relatively small and essentially
confined to the ionization zones of hydrogen and helium (cf. Fig. 3.27). Thus in
the minimization corresponding to Eq. (7.54), it is comparatively easy to sup-
press the cross term Cu,Y (r0, r). Furthermore, inversion can be carried out to
determine the difference δrY between the solar and model helium abundance
(e.g., Kosovichev et al. 1992).

It should be noted that differences between the solar and model equations
of state may introduce systematic errors in the determination of Y . Basu
& Christensen-Dalsgaard (1997) showed how the differences in equation of
state might be taken explicitly into account in the analysis, by including a
possible intrinsic relative difference (δΓ1/Γ1)int in Γ1 between the solar and
model equations of state, i.e., the difference at fixed p, ρ and composition.
The result is that Eq. (3.271) is replaced by

δωi

ωi
=
∫ R

0

[
Ki

u,Y (r)
δru

u
(r) +Ki

Y,u(r)δrY (r) +Ki
c2,ρ

(
δΓ1

Γ1

)

int

]
dr

+Q−1
i G(ωi) + εi , (7.58)

where we also included the surface term and the observational error, and
replaced nl by the index i. Basu & Christensen-Dalsgaard (1997) also noted
that the term in (δΓ1/Γ1)int can be taken into account in the inversion, albeit
at the expense of an increase in the error in the solution, and showed that
the inversion might be carried out to infer (δΓ1/Γ1)int. As noted by Rabello-
Soares et al. (2000) there is degeneracy between the effects of the intrinsic
error in Γ1 and and δrY , since they enter into Eq. (7.58) in the combination17

(
δΓ1

Γ1

)

int

+
(
∂ lnΓ1

∂Y

)
δrY ; (7.59)

17 Obviously, differences in the heavy-element abundances would have a correspond-
ing, although likely much smaller, effect.
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thus the inversion can in practice only provide information about this com-
bination. However, Rabello-Soares et al. found from experiments with model
pairs, assuming the availability of data for high-degree modes, that in much
of the relevant region the influence of probable errors in Y on the determina-
tion of (δΓ1/Γ1)int would be small. It is evident that the relation (7.59) also
explicitly demonstrates the sensitivity of the determination of Y to errors in
the equation of state; this is clearly not restricted to the present linearized
inversion technique but would affect any analysis to infer Y from its effect on
Γ1. On the other hand, the effect of such errors can in part be suppressed by
using the fact that δrY can be assumed to be constant in the convection zone.
Further investigations of these issues are required, however.

By assuming further information about the physics of the solar interior,
the hydrogen-abundance profile can be inferred also in the radiative interior.
This would typically include assumed knowledge of the opacity and possibly
the energy-generation rate as a function of the thermodynamic conditions.

Inversions for solar structure benefit greatly from the availability of modes
over a broad range of degree and hence turning-point location, essentially
resolving the structure of most of the Sun. However, it is of obvious inter-
est to consider the potential for inversion of stellar data, where only low-
degree modes will be observable in the foreseeable future. Gough & Kosovichev
(1993a,b) found that, with a reasonably realistic set of modes and assumed
frequency errors, it was possible to obtain relatively well-localized averaging
kernels in the core of models of solar-like stars, using OLA techniques to infer
differences in the squared isothermal sound speed u = p/ρ or in ρ. Similar
results were obtained by Basu et al. (2002) who furthermore showed that sub-
stantially better localization could be obtained in inversion for δru, using Y
as secondary variable, than for δrc

2 using ρ as secondary variable. Based on
these results there is hope that we can obtain some resolution of the structure
of stellar cores once data of sufficient quality are obtained.

7.1.6.2 Other Techniques for Structure Inversion

As discussed in Section 7.1.4.5, asymptotic inversion techniques can be used
to determine the solar internal sound speed; in particular, it is possible to
estimate the sound speed directly from the data, without the use of lineariza-
tion. Such techniques were originally developed in geophysics (see Brodsky
& Levshin 1979); their application to the helioseismic problem was first con-
sidered by Gough (1984a). As noted above, Vorontsov & Shibahashi (1991)
developed the technique further by taking into account additional asymptotic
terms, while Christensen-Dalsgaard et al. (1989b) found that the differen-
tial form of the technique suppressed some of the systematic errors in the
simple Duvall law. In these techniques, the uncertainties associated with the
near-surface region are contained in the function α(ω) or, for the differential
technique, in the function H2(ω) (cf. Eq. (7.19)).
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Sophisticated techniques for structure inversion have been developed in
several papers by Roxburgh and Vorontsov, starting from the so-called dif-
ferential response technique presented by Vorontsov (1998) and reviewed by
Roxburgh (2002, 2004) and Vorontsov (2004). This is based on the surface
phase function α(ω), defined as did Christensen-Dalsgaard & Pérez Hernández
(1992) (with possible refinements to include some l dependence), and a similar
internal phase function δl(ω) defined by the partial eigenfunction satisfying
the central boundary conditions and a suitable condition on the perturbation
to the gravitational potential in the outer parts of the model. As discussed by
Roxburgh & Vorontsov (2000a) these phase functions define an equation for
the eigenfrequency, in a manner similar to the JWKB matching discussed in
Section E.2, although without using the JWKB approximation for the eigen-
functions. The inverse problem is now formulated in terms of the condition
on the model structure that this property is satisfied for the observed fre-
quencies, possibly obtaining the internal phase from an approximate solution
using the Born approximation (Roxburgh & Vorontsov 1996). This technique
was used by Marchenkov et al. (2000) to determine the sound-speed difference
between then Sun and a solar model, with particular emphasis on the region
around the bottom of the convective envelope. Also, Roxburgh & Vorontsov
have tested it, using just the low-degree modes visible in distant stars, for
several stellar models, with striking success in reconstructing the structure of
the models (for a review, see Roxburgh 2004).

7.1.7 Results on Solar Structure

Here we investigate the solar internal structure through analysis of various
sets of observed oscillation frequencies (cf. Section 7.1.3). Unless otherwise
noted we use the so-called Model S of Christensen-Dalsgaard et al. (1996)
as reference.18 This model has seen extensive use as a helioseismic reference
although in some aspects the model physics is not completely up to date. It
used the OPAL equation of state (Rogers et al. 1996) and the OPAL opacities
of Iglesias et al. (1992). Nuclear reactions were treated, in most cases, with
the parameters given by Bahcall & Pinsonneault (1995), and diffusion and
settling of helium and heavy elements19 were included using the expressions
of Michaud & Proffitt (2003).20 The evolution of the model started from an
assumed chemically homogeneous zero-age main-sequence model, and the age
of the present Sun was taken to be 4.6 Gyr; the model was calibrated to the
present observed properties of the Sun, including the ratio Zs/Xs = 0.0245
between the surface abundances of heavy elements and hydrogen (Grevesse &
Noels 1993).

As a first test of a solar model, Fig. 7.24 shows differences between the
observed frequencies and the frequencies of the model. The observations con-
18 The model is available at http://astro.phys.au.dk/∼jcd/solar models/.
19 treating all heavy elements as fully ionized oxygen.
20 For further details on the physics of stellar interiors, see Section 3.2.2.
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Fig. 7.24. Frequency differences between observed data and frequencies of a
solar model, in the sense (observations) – (model). The observed frequencies
were obtained by combining low-degree data from Chaplin et al. (2007b) with
intermediate-degree (Larson & Schou 2008) and high-degree (J. Reiter, private
communication) data from MDI; the model frequencies are for Model S of
Christensen-Dalsgaard et al. (1996). Crosses indicate modes with l ≤ 200,
diamonds are modes with 200 < l ≤ 500 and triangles are modes with 500 < l.
Panel (a) shows the raw differences. In panel (b) the differences have been
scaled by Qnl, defined in Eq. (7.10). Here ridges corresponding to low radial
orders n are evident; the lowest values have been indicated in the figure.

sist of a suitably combined set of low-degree modes from BiSON observations
(Chaplin et al. 2007b), as well as intermediate-degree (Larson & Schou 2008)
and high-degree modes from the medium-l and dynamics programmes of the
MDI, respectively. The unscaled differences (panel a) show a strong depen-
dence on l. In Section 7.1.1.1 we argued that if the dominant difference between
the Sun and the model is restricted to the near-surface layers, this l depen-
dence can be suppressed by scaling with Qnl, illustrated in Fig. 7.9. In fact,
as illustrated in panel b, the dependence on l is largely (but not completely)
suppressed by scaling. This strongly suggests that most of the errors in the
model are located very near the surface. We note that this is precisely the
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region where, according to the arguments in Section 7.1.1, many of the uncer-
tainties in the physics of the model and the oscillations are located. Thus it
is not surprising that we obtain an effect on the frequencies of this nature.
However, we note also in Fig. 7.24b that there is a significant dependence of
the differences on degree; this must be associated with errors in the model in
deeper layers. We return to the origin of these differences below.

An important part of the simplification in the modelling of the outer layers
of the Sun is the use of the mixing-length treatment to characterize the struc-
ture of the outer superadiabatic part of the convection zone. As discussed in
Section 3.2.1.3, this region has been modelled through hydrodynamical simu-
lations; these extend sufficiently deeply to cover the region where the tempera-
ture gradient is significantly superadiabatic, i.e., the region that is affected by
the details of the mixing-length treatment. Thus the simulations can be used to
determine the average structure of the region most affected by the uncertainty
in the treatment of convection. Rosenthal et al. (1999) considered a model of
the solar convective envelope, matching it to a temporally and spatially av-
eraged simulation. Interestingly, the resulting model essentially matched the
helioseismically inferred convection-zone depth (see below), without any ad-
justment to the parameters of the simulation. Frequencies computed for this
envelope model provided a substantially better match to the observed frequen-
cies than the frequencies of a normal solar model, such as the one illustrated
in Fig. 7.24 (see also Nordlund et al. 2009). Similar results were obtained by
Li et al. (2002) with a parameterized treatment of near-surface convection,
determining the parameters from hydrodynamical simulations. None of these
investigations, however, included the dynamical effects of convection on the
frequencies; such effects likely play an important role in the remaining differ-
ences between the observed and computed frequencies.

For the highest-degree modes the figure shows a clear peeling-off into ridges
for each value of the radial order n. Here the upper turning point is so close to
the surface that the assumptions of nearly vertical propagation and degree-
independent eigenfunctions break down. A similar behaviour was noted in
Fig. 7.11 for differences between model frequencies. Also, we note that the
f modes (with n = 0) represent a special case. As discussed in Section 7.1.4.3,
these essentially have the character of surface gravity waves, with frequencies
given approximately by Eq. (7.12); in particular, computed frequencies of solar
models are essentially independent of the details of the structure of the model,
as is also illustrated by the frequency differences shown in Fig. 7.11. Thus the
errors in the f-mode frequencies in Fig. 7.24b, which are much larger than the
model differences in Fig. 7.11, must arise from effects other than differences
between the hydrostatic structure of the Sun and the model. A likely cause are
dynamical interactions between the modes and the turbulent motion in the
solar convection zone (Murawski et al. 1998; Mȩdrek et al. 1999). However,
the details of such mechanisms, and in particular their effects on the p-mode
frequencies, are still rather uncertain.
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Fig. 7.25. Scaled differences between observed frequencies (see text) and fre-
quencies of Model S of the present Sun, in the sense (observations) – (model),
plotted against ν/(l + 1/2). The upper abscissa shows the location of the
lower turning point, which is related to ν/(l + 1/2) through Eq. (3.189). In
panels (a) and (b) points corresponding to fixed l have been connected. (a)
Original asymptotically scaled frequency differences. (b) Scaled differences,
after subtraction of the function H2(ω) obtained from the spline fit. (c) The
fitted function H1(ω/L). Note the difference in scale between panel (a) and
panels (b) and (c).

The different contributions to the frequency differences in Fig. 7.24 can
be identified through an analysis based on the differential form, Eqs (7.19)–
(7.21), of the Duvall law, as was done for model differences in Fig. 7.17. Fig-
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Fig. 7.26. The frequency-dependent part of the scaled frequency differences
between observations and models. (a) Scaled differences, shown in Fig. 7.25a,
after subtraction of the function H1(ω/L) resulting from the spline fit. (b) The
fitted function H2(ω) for this data set.

ure 7.25a shows scaled differences between the observations and the model
plotted against turning-point position.21 It is evident already from this raw
difference plot that in this case the term in H2 plays the dominant role, in
accordance with Fig. 7.24, as a result of the errors in the treatment of the
near-surface layers. However, there is also weak evidence for a contribution
from H1. This becomes clear if the spline fit is carried out and the contribu-
tion from H2 is subtracted from the scaled differences. The result is shown

21 Recall that the asymptotic scaling by Snl/S0 used here is essentially equivalent
to the scaling by Qnl used in Fig. 7.24; cf. Fig. 7.15.
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Fig. 7.27. Difference in squared sound speed δrc
2/c2 between the Sun and

Model S (cf. Christensen-Dalsgaard et al. 1996) in the sense (Sun) – (model).
This was inferred by applying Eq. (7.25) to a function H1(ω/L) correspond-
ing to Fig. 7.25c, but using only modes with frequencies between 1500 and
3500μHz.

in Fig. 7.25b, while the fitted H1 is shown in Fig. 7.25c. As in the case of the
model comparison there is a sharp step corresponding in position to rt � 0.7R,
i.e., the base of the convection zone. This suggests that there are significant
differences between the Sun and the model in this region although obviously
of far smaller magnitude than between the two models considered in Fig. 7.17.

The residuals after subtraction of the fitted H1 from the scaled differences,
and the fitted H2, are shown in Fig. 7.26. As expected, these are predominantly
a function of frequency and dominated by a slowly varying trend which re-
flects errors very near the surface of the model (see also Pérez Hernández
& Christensen-Dalsgaard 1994a). One can perhaps discern a weak oscillatory
signal showing a remaining difference between the Sun and the model in the
hydrogen abundance in the convective envelope, although it is evidently sub-
stantially smaller than the corresponding difference between the two models
in Fig. 7.18, indicating that the envelope hydrogen abundance is quite similar
in the Sun and the model. We return to the quantitative determination of the
abundance below.

It is striking that even this very simple analysis provides substantial infor-
mation about the magnitude and location of the differences between the Sun
and the model. A more quantitative estimate of the sound-speed error in the
model can be obtained from the frequency differences illustrated in Fig. 7.25
by applying Eq. (7.25) to the resulting H1(ω/L). Figure 7.27 shows the result-
ing δrc

2/c2. The sound-speed differences are small, corresponding to errors
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in T/μ in the models of less than 0.5 per cent. Nonetheless, the differences
are clearly highly systematic. We discuss their possible physical origin after
considering the results of numerical inversions below. Christensen-Dalsgaard
et al. (1993a) used such a differential asymptotic inversion to show that a
solar model without diffusion and settling was in far worse agreement with
the solar sound speed than a model that included helium diffusion.

From a careful analysis of the inversion results it is possible to obtain an
estimate of the convection-zone depth db which is largely independent of other
uncertainties in the model. In this way Christensen-Dalsgaard et al. (1991)
found that db = (0.287 ± 0.003)R. From an analysis of the asymptotically
fitted H1(ω/L) Basu & Antia (1997) obtained the same value for db but with
a substantially smaller error, and the result was further tightened by Basu
(1998) who obtained db = (0.2865 ± 0.0005)R.

The results in Fig. 7.27 are based on the validity of the asymptotic approx-
imations resulting in the Duvall law, Eqs (7.15) and (7.16). Hence the analysis
does not make full use of the information contained in the frequencies. This
is particularly doubtful in the solar core, probed by modes of the lowest de-
gree where departures from the asymptotic behaviour, e.g., resulting from the
perturbation to the gravitational potential, are likely most important. Also,
it is not entirely straightforward to control the properties of the asymptotic
inversion. These problems are avoided, at some computational expense, by
using the numerical inversion techniques discussed in Section 7.1.6, based on
linearizing the relation between structure and frequencies in terms of the ap-
propriate kernels. Such inverse analyses have most often been carried out by
means of optimally localized averages, e.g., using the SOLA technique (see
the discussion around Eq. (7.54)). The implementation of this was discussed
in detail by Rabello-Soares et al. (1999b).

Typical results of the analysis are shown in Fig. 7.28. As before the ref-
erence model is Model S. Here we use the frequencies of the so-called “Best
Set” of Basu et al. (1997b), obtained as a combination of data from BiSON
and LOWL observations. As discussed in Section 7.1.5 the analysis provides
an estimate of the standard error in the inferred sound-speed difference, as
well as a measure of the resolution in terms of the distance between the first
and third quartile points (cf. Eq. (7.31)). The inferred sound-speed difference
is evidently broadly in agreement with the asymptotic results in Fig. 7.27,
although it can now be determined quite close to the solar centre. Also, it
is obvious that the differences are highly significant, compared with the esti-
mated errors, which in most cases are smaller than the size of the symbols.
In much of the Sun the resolution is better than 0.04R, although it deteri-
orates in the core where the sound speed is high and the wavelength of the
eigenfunctions, and hence of the kernels, is large. It is also remarkable that
the inferred differences in c2 are below 0.5% throughout the Sun. As shown
in Fig. 7.28b the density differences are somewhat larger. Also, evidently the
estimated errors are much larger than in the case of the sound-speed inversion.
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Fig. 7.28. Relative differences in squared sound speed δrc
2/c2 (panel a) and

in density δrρ/ρ (panel b) between the Sun and Model S (cf. Christensen-
Dalsgaard et al. 1996) in the sense (Sun) – (model). The differences were
inferred through SOLA inversion of frequencies in the so-called “Best Set”
of Basu et al. (1997b), a combination of BiSON and LOWL data, for modes
of degree l ≤ 99. The vertical bars, plotted at the target location r0, show
the estimated 1−σ error of the inferred differences, while the horizontal bars,
extending between the first and third quartile points of the averaging kernels
(cf. Eq. (7.31)) provide a measure of the resolution of the inversion. Adapted
from Christensen-Dalsgaard & Di Mauro (2007).

This is hardly surprising, given that we are analysing acoustic modes whose
frequencies depend predominantly on the sound speed.
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Other analyses for the solar sound speed show similar results, although
with some dependence on the mode set and analysis method, particularly
in the solar core (e.g., Gough et al. 1996; Kosovichev et al. 1997; Turck-
Chièze et al. 1997; Couvidat et al. 2003a). A detailed comparison of results
based on different sets of GONG and MDI data by Basu et al. (2003) showed
little significant dependence on the observational data for r >∼ 0.25R. The
inferred sound-speed differences obviously depend on the equilibrium model.
However, Basu et al. (2000b) showed that the resulting sound speed, obtained
by correcting the model sound speed with the inferred difference, depended
little on the assumed reference model, within a reasonable range of “standard”
solar models. Thus in this sense the analysis provides a reliable inference of
the sound speed in the solar interior.

Based on the corrections to sound speed and density one can construct a
new model, in terms of its hydrostatic structure, obtaining the pressure by
integrating the equation of hydrostatic support. In this way a true seismic
model of the Sun can be obtained. This process can in principle be iter-
ated although this has rarely been done. As discussed, e.g., by Gough (2004)
additional properties of the Sun, beyond those that are directly probed by
the oscillation frequencies, can be obtained by imposing further assumptions
about the physics of the solar interior.

Given the high significance of the differences shown in Fig. 7.28a it is clearly
of interest to consider how the model should be modified to reduce the differ-
ences. The most distinctive features are probably the relatively small differ-
ences in the outer parts of the Sun, corresponding to the convective envelope,
and the peak immediately beneath this region. Concerning the former point
we note that if the convection zone is assumed to be adiabatically stratified
and the variations of Γ1 are neglected, the sound speed in the convection zone
satisfies

c2 � (Γ1 − 1)
GM

R

(
R

r
− 1

)
, (7.60)

where for simplicity we assumed c = 0 at r = R; this can easily been shown
from Eq. (3.99), if the ideal gas law, Eq. (3.19), is used. Thus to this approxi-
mation we expect the sound speed at fixed r to be independent of the details
of the model, assuming that R is fixed. This is in fact approximately satisfied
by the model differences illustrated in Fig. 7.16. The variation in δrc

2/c2 seen
in Fig. 7.28a is somewhat larger and could reflect inadequate suppression of
the near-surface effects.

To investigate the peak in δrc
2 around r � 0.65R it is instructive to con-

sider the hydrogen-abundance profile in Model S, illustrated in Fig. 7.29. The
dominant variation is obviously in the core, as a result of nuclear fusion. How-
ever, helium settling leads to a relatively sharp gradient in X just beneath the
convection zone, in a region essentially coinciding with the peak in δrc

2/c2. It
is evident that by smoothing this gradient the hydrogen abundance could be
locally increased, leading to a decrease in the mean molecular weight and hence
an increase in the sound speed in the model (cf. Eq. (3.56)). This would result
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Fig. 7.29. The hydrogen abundanceX as a function of the fractional distance
to the centre, in Model S of the present Sun. The inset shows the variation
near the base of the convection zone. Adapted from Christensen-Dalsgaard &
Di Mauro (2007).

from mixing processes below the base of the convection zone, e.g., caused by
convective overshoot or possibly rotational instabilities. Modelled as a turbu-
lent diffusion, appropriately calibrated, such mixing can essentially suppress
the peak (e.g., Brun et al. 1999; Elliott & Gough 1999; Christensen-Dalsgaard
& Di Mauro 2007). Alternatively, the composition profile can be inferred by
solving the equations of stellar structure, under the constraint that the so-
lution match the helioseismically inferred structure; this similarly results in
a shallower gradient in X beneath the convection zone (e.g., Antia & Chitre
1998; Takata & Shibahashi 2003).

Through further modifications to the model physics it is possible to con-
struct a solar model in close agreement with the helioseismic inferences (e.g.,
Couvidat et al. 2003a). Such models are of some interest as indications of
the possible errors in the model physics and as basis for investigating other
aspects of the solar interiors, e.g., the neutrino production rate. However, it
should be kept in mind that, apart from the directly inferred variables such as
sound speed, density and pressure, there may be different ways to achieve the
helioseismic structure, depending on the precise manner in which the model is
modified. As a trivial example, the ideal-gas approximation, Eq. (3.56), shows
that a given sound speed can be obtained by adjusting either the tempera-
ture or the mean molecular weight. Thus, in particular, constraints on the
solar neutrino flux require further assumptions about the physics of the solar
interior.
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As is clear from Fig. 7.16 the ionization of hydrogen and helium has a
significant effect on Γ1 and hence on the sound speed, the magnitude of the
effect depending on the helium abundance. The large variation nearest the
surface is the combined result of the hydrogen and the first helium ionization.
The effect of this on the frequencies and hence the helioseismic inferences
is difficult to distinguish from other near-surface effects (cf. Section 7.1.4.1),
making this less useful for helioseismic diagnostics. However, the smaller dip
at r � 0.98R is sufficiently far below the surface to be largely unaffected by
the near-surface effects and hence is a potentially promising diagnostics of the
envelope helium abundance. This was noted by Gough (1984b) and Däppen
& Gough (1986) who pointed out that the quantity

W ≡ r2

Gm

dc2

dr
(7.61)

is closely related to the thermodynamical state in the convection zone and
proposed to use it in a calibration against the helium abundance.

Vorontsov et al. (1991) obtained a helioseismic estimate of the solar enve-
lope helium abundance Ye from an analysis of the Duvall phase function α(ω)
and its derivatives. They noted that the effect of the second helium ioniza-
tion on Γ1 extended over a region of size comparable to the radial wavelength
and hence gives rise to an oscillatory signature in α, effectively acting as an
acoustic glitch (cf. Section 7.1.4.2). The resulting value, Ye = 0.25 ± 0.01, is
significantly lower than the initial value required to calibrate a model of the
present Sun (cf Section 7.1.1.1); Vorontsov et al. (1991) suggested that this
reflects the settling of helium from the convection zone, as confirmed by more
detailed inverse analyses (see above). A similar result, using also an analysis of
the Duvall phase, was obtained by Christensen-Dalsgaard & Pérez Hernández
(1991).

As discussed in Section 7.1.6.1 (cf. Eq. (7.59)) the determination of the
helium abundance is sensitive to errors in the equation of state. Aspects of
the equation of state were discussion in Section 3.2.2.1. The most commonly
used formulations in helioseismic analyses have been the MHD and OPAL
equations of state, although the simpler CEFF equation of state has also
seen some use. Antia & Basu (1994b) made a careful investigation of the
determination of Ye, based on fits to the asymptotic components H1 and
H2 of the frequency differences relative to reference models and using three
different equations of state. They found Ye = 0.252 ± 0.003. A slightly lower
value, Ye = 0.242 ± 0.003, was obtained by Pérez Hernández & Christensen-
Dalsgaard (1994b), from analysis of H2 using a filtering technique to suppress
the contribution from the near-surface layers; they also found that the MHD
equation of state was strongly preferred by the solar data, relative to CEFF.
Later similar analyses by Basu & Antia (1995) and Basu (1998), using also
H1 and H2, obtained Ye � 0.248 and indicated a preference for the OPAL
equation of state over the MHD formulation.
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Alternatively, as discussed in Section 7.1.6 the helium abundance can be
inferred from a numerical inversion, e.g., based on expressing the frequency
differences in terms of corrections to the pair (u, Y ). An additional constraint,
probably most easily incorporated in a regularized least-squares inversion, is
that δrY is constant in the convection zone. Dziembowski et al. (1991) carried
out a least-squares linearized inversion based on data from Libbrecht et al.
(1990), using the variables u and Y , and found Ye = 0.234 ± 0.005, using the
MHD equation of state. On the other hand, in a MOLA inversion of the same
data and using also MHD, Däppen et al. (1991) inferred Ye = 0.268±0.007. A
careful analysis of this discrepancy was carried out by Kosovichev et al. (1992).
They concluded that the main difference between the analyses by Dziem-
bowski et al. and Däppen et al. was in the use of different versions of the MHD
equation of state. A strong sensitivity to the equation of state was also found
by Kosovichev (1997) who obtained Ye = 0.232±0.006 and 0.254±0.006 using
the MHD and OPAL equations of state, respectively, and analysing a combi-
nation of low-degree IPHIR (InterPlanetary Helioseismology by IRradiance
experiment) data (Toutain & Fröhlich 1992) and data from Libbrecht et al.
(1990). Much more internally consistent results were obtained by Richard et
al. (1998) from analysis of MDI data; they concluded that Ye = 0.248±0.002.
It should be noted that this value is close to the latest results of the differential
asymptotic analysis discussed above.

A closely related issue is the effect of errors in the equation of state on
the sound speed and hence the oscillation frequencies. This has the potential
for testing the, still somewhat uncertain, modelling of the thermodynamic
properties under the extreme conditions in the solar interior. In a simple
comparison between observed and model frequencies, Christensen-Dalsgaard
et al. (1988c) demonstrated that a model using the MHD equation of state was
much closer to the solar properties than was a model based on EFF. This was
confirmed Pamyatnykh et al. (1991) by considering the Duvall phase function
in models of the solar envelope. Their analysis was extended in the careful
investigation by Vorontsov et al. (1992) of the effects of various contributions
to the equation of state on the phase function. Baturin et al. (2000) considered
the quantity W (cf. Eq. (7.61)), determined from an asymptotic sound-speed
inversion, as a diagnostics of the thermodynamical properties of matter in the
solar convection zone. They demonstrated that this was sensitive to subtle
details in the equation of state, including the treatment of pressure ionization,
and to the relative mixture of the heavy elements. Using differential-response
analysis, Vorontsov (2004) determined Γ1 in the convective envelope, finding
a small but significant departure for r <∼ 0.9R from the value obtained in
Model S using the OPAL equation of state.

Using linearized inversion based on Eq. (7.58) Basu et al. (1999) deter-
mined the intrinsic error in Γ1 in the MHD and OPAL equations of state,
concluding that the OPAL values were closer to the Sun except perhaps very
near the surface. In a very interesting analysis using linearized inversion El-
liott & Kosovichev (1998) showed that the Γ1 resulting from both the original
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Fig. 7.30. Gradient of sound speed with respect to the acoustic depth τ (cf.
Eq. (3.228)), plotted against τ (lower axis) and fractional radius r/R (upper
axis). The solid curve shows results for Model S while the dashed curve shows
the effect of including overshoot below the convective envelope. See Monteiro
et al. (2000).

MHD and OPAL equations of state differed significantly from the inferred
solar values in the core where one might naively have expected a relatively
simple thermodynamical state, with full ionization, that should have been
treated correctly in the calculations. They demonstrated that the difference
arose because these equation of state calculations had neglected relativistic
effects on electrons which become relevant, at the level of a few parts per
thousand, at the temperatures near the centre of the Sun.

These examples show, as reviewed by Däppen (2004), that helioseismology
is truly allowing the solar convection zone to be used as a laboratory for
investigating the thermodynamical state of matter under solar conditions.

The analyses to determine the envelope helium abundance on the basis
of the near-surface phase effectively makes use of the fact that this gives
rise to an acoustic glitch (cf. Section 7.1.4.2). Such glitches are clearly seen
in the sound-speed gradient, illustrated in Fig. 7.30 in models of the present
Sun in terms of the acoustic depth τ (cf. Eq. (3.228)). The feature at τ �
700 s is the result of the second helium ionization zone while the base of
the convective envelope gives rise to a sharp variation at τ � 2200 s. As
discussed in Section 7.1.4.2 an acoustic glitch at τ = τg, say, gives rise to a
perturbation to the frequency with a “period” in cyclic frequency of (2τg)−1.
Several such glitches therefore give rise to a superposition of oscillatory signals
which in principle can be isolated through a Fourier analysis of a suitable
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Fig. 7.31. Oscillatory signal extracted from observed MDI frequencies, re-
flecting the acoustic glitch at the base of the convection zone illustrated in
Fig. 7.30; the solid curve shows the fit to the observations (Monteiro et al.
1994). In the abscissa τ̄d is the inferred acoustic depth of the base of the con-
vection zone; the term in γ̄d corrects for the variation in the location of the
lower turning point. From Christensen-Dalsgaard & Thompson (2007).

representation of the frequencies; thus Roxburgh (2002) demonstrated how
the oscillatory signals from the helium ionization zone and the base of the
convective envelope could be extracted from Fourier analysis of a suitably
filtered Duvall phase. Gough (1990a) pointed out that considering the second
difference of the frequencies with respect to mode order n, Δ2νnl = νn l−1 −
2νnl + νn l+1, the leading-order variations of frequency with n are suppressed
and the oscillatory signal as a function of frequency becomes evident. Fourier
analysis of Δ2νnl was used by Ballot et al. (2004) to investigate the potential
for measuring the depth of convective envelopes on the basis of observations
of solar-like oscillations.

The structure at the base of the convection zone is of particular interest, in
analysis of acoustic glitches in the Sun. Although the depth db of the convec-
tive envelope can in principle be determined from the period of the oscillatory
signal, the near-surface effects result in a significant unknown shift which in-
troduces systematic errors in the inference; thus in the solar case, where modes
over a broad range of degrees are observed, db is probably more reliably de-
termined from analysis of H1 or the inferred sound speed, as discussed above.
However, the magnitude and detailed shape of the glitch is reflected in the
amplitude, and its dependence on frequency, of the oscillatory signal (e.g.,
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Monteiro et al. 1994). An example of such an oscillatory signal, from observed
solar frequencies, is illustrated in Fig. 7.31.

A major uncertainty in the modelling of convective envelopes is the extent
and properties of overshoot into the underlying stable region (see also Sec-
tion 3.2.3). Zahn (1991) presented a model of overshoot that resulted in an
extension of the convection zone into a slightly subadiabatic region followed
by a rapid transition to the radiative gradient. The effect of a similar model
on the sound-speed gradient is illustrated by the dashed curve in Fig. 7.30.
This effectively increases the strength of the glitch and hence the amplitude
of the oscillatory signal in the frequencies. From analysis of the observed sig-
nal, limits on the extent of this form of overshoot have been obtained as low
as 0.05Hp, Hp being the pressure scale height at the base of the convection
zone (Basu & Antia 1994; Monteiro et al. 1994; Roxburgh & Vorontsov 1994a;
Christensen-Dalsgaard et al. 1995a; Basu 1997). It should be noted, however,
that these analyses assumed spherically symmetrical and time-independent
overshoot; variations with latitude, or with time over the period of a few
months required to get sufficiently precise frequencies from the observations,
might effectively smooth the transition and hence reduce the amplitude, as
seen in the analysis. Also, other forms of overshoot (e.g., Rempel 2004) give
rise to a less steep transition. It remains to be seen whether such more subtle
details can be probed with helioseismic investigations.

The development of reliable helioseismic diagnostic tools depends crucially
on a good understanding of the dependence on the oscillation frequencies, and
the quantities derived from them, on the properties of the star. This can of-
ten be obtained from asymptotic analysis; a simple but important example is
the small frequency separation. Houdek & Gough (2007) carried out a care-
ful analysis of the effects of the acoustic glitches on low-degree modes, with
particular emphasis on the hydrogen and helium ionization zones. Using the
asymptotic form of the eigenfunctions they obtained an expression for the
signal in Δ2νnl, the parameters of which are expected to be suitable for the
determination of the helium abundance and the depth of the second helium
ionization zone.

The results shown in Fig. 7.28 indicate that the model is in relatively
good agreement with solar structure. This also applies to the depth of the
convection of the model (db = 0.288) and the envelope helium abundance
(Ye = 0.0245) which are close to the helioseismically inferred values. Other
“standard” solar models of the same generation agree similarly well with
the helioseismic results, giving some confidence in our modelling of stellar
evolution. This complacency has been shaken by recent revisions of the de-
termination of the solar surface abundances (e.g., Asplund et al. 2004; see
Asplund 2005, 2008 for reviews). Unlike most other analyses these used time-
dependent three-dimensional models of the solar atmosphere, based on hy-
drodynamical simulations of convection (see also Section 3.2.1.3); also, they
took into account departures from local thermodynamic equilibrium, in so-
called NLTE calculations of the radiative effects. This resulted in substantial
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Fig. 7.32. The open symbols show the inferred relative difference in squared
sound speed between the Sun and Model S, also illustrated in Fig. 7.28a. The
closed symbols show the corresponding results for a model computed with the
revised solar abundances. From Christensen-Dalsgaard et al. (2009).

reductions in the abundances of oxygen, carbon and nitrogen, yielding a ratio
Zs/Xs = 0.0165 and, after model calibration, a present surface heavy-element
abundance Zs = 0.0125, compared with the value Zs = 0.0181 obtained
in Model S. Since the opacity is approximately proportional to the heavy-
element abundance this change in the composition has a strong effect on the
opacity and hence a substantial effect on the structure of solar models. The
consequence for the comparison of the model with the helioseismic inferences
is illustrated in Fig. 7.32, which compares an inversion using as reference a
model with the new composition, but otherwise corresponding to Model S,
with the results for Model S previously shown (cf. Fig. 7.28); it is evident that
the revision has led to a dramatic increase in the discrepancy between the
model and the Sun. Also, the depth of the convection zone and the envelope
helium abundance of the model, db = 0.271R and Ye = 0.229, are inconsis-
tent with the helioseismic inferences. Very similar results were obtained, for
example, by Basu & Antia (2004), Turck-Chièze et al. (2004b) and Bahcall
et al. (2005a). Furthermore, Basu et al. (2007) found that the very accurate
measurements of the small frequency separations between low-degree modes
strongly favoured the old composition. A recent comprehensive review of the
issues related to the solar composition and helioseismology was provided by
Basu & Antia (2008).

This discrepancy represents a potentially serious problem for solar mod-
elling, with likely ramifications also for the modelling of other stars. Thus it
is important to verify the new composition determinations. It is evident that
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the use of three-dimensional atmosphere models and NLTE is preferable to
the simpler treatments commonly used. Also, interestingly, the revised abun-
dances bring the composition of the Sun closer in line with the composition of
other objects in the solar neighbourhood (Turck-Chièze et al. 2004b; Przybilla
et al. 2008, and references therein). An additional attractive feature is that
in the new determinations consistent abundances are obtained from different
spectral lines of the same element. However, they have been questioned by
Ayres et al. (2006) who noted that the temperature profile resulting from
the simulations failed to reproduce the observed continuum limb darkening.
Ayres (2008) made a new determination based on a single timestep in an in-
dependent simulation, and using only one spectral line of of oxygen, blended
with a nickel line; this resulted in an oxygen abundance consistent with the
old values, although at the expense of a perhaps questionable reduction in
the inferred nickel abundance. In an analysis based on independent three-
dimensional simulations Caffau et al. (2008, 2009) found oxygen and nitrogen
abundances intermediate between the old and the revised values; for oxygen
the main difference relative to the analysis of Asplund et al. (2004) was in
the assumed strength of the oxygen lines in the solar spectrum. On this basis
Caffau et al. (2009) recommended Zs/Xs = 0.0213. Thus further adjustments
of the abundances are certainly possible, although it is far from clear whether
the old abundances will be recovered.

If we accept the abundance determinations of Asplund et al. we need to
find ways of recovering a reasonable agreement between the solar models and
the helioseismic inferences. Attempts to do so, which have met with limited
success, were reviewed by Guzik (2006). Bahcall et al. (2005b) noted that
the reduction in the oxygen abundance could be partly compensated, in the
contributions to the opacity, by a substantial increase in the neon abundance,
resulting in models in reasonable agreement with helioseismology; however,
independent evidence for this revised neon abundance is controversial (e.g.,
Drake & Testa 2005; Schmelz et al. 2005). Also, Delahaye & Pinsonneault
(2006) found that models with increased neon abundance could be brought to
agree with the helioseismically determined depth of the convection zone and
envelope helium abundance but not with the detailed sound-speed profile in
the Sun. Changes in the model physics located near the base of the convection
zone, such as changes in the convective overshoot or diffusion and settling, gen-
erally fail to reproduce the sound-speed differences over the required extended
region in the radiative interior. A trivial, although not a priori excluded, solu-
tion comes from noting that since the effect of the heavy-element abundances
on solar structure is almost exclusively through the opacity, the change in
composition can be counteracted by a compensating intrinsic change in the
opacity (Basu & Antia 2004; Montalbán et al. 2004; Bahcall et al. 2005a).
Christensen-Dalsgaard et al. (2009) made a detailed determination of the in-
trinsic opacity change, regarded as a function of temperature, which would be
required to recover the structure of Model S of Christensen-Dalsgaard et al.
(1996) with the new composition. This showed that an increase of nearly 30
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per cent is required at the base of the convection zone, decreasing gradually
to around 5 per cent in the core. Whether or not such an increase is physi-
cally plausible remains uncertain. However, it is perhaps relevant to recall the
somewhat similar situation which led Simon (1982) to propose a large opacity
increase based on serious problems with the understanding of pulsating stars
(cf. Section 3.2.2.2).22

It is clearly highly desirable to have a determination of the heavy-element
abundances that does not depend on the structure of the solar atmosphere
and spectroscopy. As reviewed by Basu & Antia (2008) such a determination
can in principle be based on the effect of the abundances on the thermody-
namics and hence the value of Γ1 in the convection zone. This is similar to
the methods used to determine the envelope helium abundance, as discussed
above, although the effects are of course far smaller. Preliminary results by
Lin et al. (2007) favour the original abundances; however, further investiga-
tions, including also the effect of uncertainties in the equation of state and
ideally involving high-degree modes, are needed to confirm this.

7.1.8 Results for Solar Rotation

Unlike the structure of the solar interior, we have no solid theoretical predic-
tions of the solar internal rotation. As discussed in Section 3.2.4.2 it is likely
that the Sun, as other low-mass stars, started its evolution in a rapidly ro-
tating state and that angular momentum has been lost through the magnetic
solar wind, to lead to the present state of slow rotation of the solar surface lay-
ers. Since convection transports angular momentum effectively this spin-down
is expected to be shared by the convection zone. However, angular-momentum
transport in the radiative interior is far less certain and hence it might a priori
have been expected that the Sun retained a rapidly rotating core.23

Solar surface observations also show a strong variation of the rotation rate
Ω with latitude. This is often represented as a power law in cos2 θ where, as
usual, θ is co-latitude; Ulrich et al. (1988) obtained

Ω

2π
= (451.5 − 65.3 cos2 θ − 66.7 cos4 θ) nHz , (7.62)

from analysis of 21 yr of Mt Wilson data. Thus the angular velocity decreases
from around 452 nHz at the equator to 365 nHz at 60◦ latitude, correspond-
ing to an increase in the rotation period from 25.6 d to 31.7 d. This variation
presumably reflects the redistribution of angular momentum by motion in the

22 It is interesting to note that Magee et al. (1984) deemed this proposal, subse-
quently confirmed by new opacity calculations, to be “incompatible with atomic
physics”.

23 This was suggested by Demarque et al. (1973) as an explanation of the low ob-
served solar neutrino flux; the resulting centrifugal force would reduce the pres-
sure, and hence temperature, of the solar core.
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convection zone. Since the stratification of the convection zone is approxi-
mately adiabatic, so that the gradients of pressure and density are parallel,
one might expect from the Taylor-Proundman theorem (e.g., Pedlosky 1987)
that the angular velocity does not change in the direction of the rotation axis
within the convection zone; this is often described as rotation on cylinders . It
would follow that the angular velocity would decrease with increasing depth
in the convection zone. This was indeed found in early hydrodynamical sim-
ulations of the interaction between convection and rotation (e.g., Glatzmaier
1985; Gilman & Miller 1986).

As a rough summary, therefore, the theoretical predictions of the solar in-
ternal rotation would be that the convection zone should rotate on cylinders
and the core should rotate substantially more rapidly than the surface. Strik-
ingly, the helioseismic inferences of the internal rotation contradict both these
predictions. A review of both the modelling of the solar internal rotation and
the helioseismic investigations of it was given by Thompson et al. (2003); a
recent extensive review of solar rotation was provided by Howe (2009).

As mentioned in Section 7.1.1.2 already the early measurement of the
sectoral-mode splittings by Duvall & Harvey (1984) showed that the equa-
torial rotation rate was close to the surface rate throughout the solar interior
(Duvall et al. 1984). This result has substantial importance beyond the study
of the solar interior. From the inferred internal rotation rate, Duvall et al.
estimated the solar gravitational quadrupole moment and found it to be con-
sistent with the value corresponding to the surface rotation rate. This has
a negligible effect on the precession of the perihelion of Mercury and hence
confirms the tests of general relativity based on the observed precession; these
tests might have been compromised by a rapidly rotating solar interior (Dicke
1964; Dicke & Goldenberg 1967). The determination of the quadrupole and
higher moments has later been refined from more detailed determinations
of the solar internal rotation (Pijpers 1998; Roxburgh 2001), confirming the
conclusion of Duvall et al. (1984).

The observational determination of the dependence of the rotational split-
ting on m very soon showed that rotation in the convection zone was not
constant on cylinders (e.g., Christensen-Dalsgaard & Schou 1988; Brown et
al. 1989; Dziembowski et al. 1989; Rhodes et al. 1990; Goode et al. 1991). In
an interesting analysis, Thompson (1990) carried out inversion for the radial
gradient of the rotation rate in the convection zone, demonstrating that this
was inconsistent with rotation on cylinders. The same conclusion, based on
more extensive data, was reached by Schou & Brown (1994). It was found
that the angular velocity, to this approximation, was independent of the dis-
tance to the centre, at fixed latitude, in what has been termed rotation on
cones . The analyses also showed that there was a relatively sharp transi-
tion between the latitude dependence of rotation in the convection zone and a
nearly latitude-independent rotation rate in the radiative interior. This region
of strong rotational shear near the base of the convection zone, which Spiegel
& Zahn (1992) called the tachocline, remains of very considerable interest in
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Fig. 7.33. Inferred rotation rate Ω/2π (panel a) and the associated error
(panel b) in a quadrant of the Sun, obtained by means of SOLA inversion of
144 d of MDI data. The equator is at the horizontal axis and the pole is at
the vertical axis, both axes being labelled by fractional radius. Some contours
are labelled in nHz, and, for clarity, selected contours are shown as bold. The
dashed circle is at the base of the convection zone and the tick marks at the
edge of the outer circle are at latitudes 15◦, 30◦, 45◦, 60◦, and 75◦. The shaded
area indicates the region in the Sun where no reliable inference can be made
with the present data. Adapted from Schou et al. (1998).

Fig. 7.34. Averaging kernels for the SOLA inversion shown in Fig. 7.33,
targeted at the following radii and latitudes in the Sun: 0.55R, 60◦; 0.7, 0◦;
0.7, 60◦; 0.95R, 60◦. The corresponding locations are indicated with crosses.
Adapted from Schou et al. (1998).

terms of its dynamics and its likely importance for the understanding of the
generation of the solar magnetic cycle (see Tobias & Weiss 2007). Indeed, the
early results on the rotation in and below the convection zone immediately
led to a reconsideration of the models for such dynamo action, based at the
interface between the convection zone and the radiative interior (Gilman et
al. 1989).
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Fig. 7.35. Inferred rotation rate Ω/2π as a function of radius at the latitudes
indicated, obtained from inversion of 144 d of MDI data. The circles with 1-σ
error bars show results of a SOLA inversion, while the dashed lines with 1-σ
error band were obtained with regularized least-squares inversion. The heavy
vertical dashed line marks the base of the convection zone. Adapted from
Schou et al. (1998).

The extensive helioseismic observations allow detailed investigations of the
solar internal rotation. To illustrate this, we present results obtained by Schou
et al. (1998) from analysis of early data from the MDI instrument on the
SOHO spacecraft. The inversion was carried out as a fully two-dimensional
SOLA inversion of a coefficients, extending to a35, to determine Ω̄(r0, θ0).
The resulting Ω̄ and the estimated errors are presented in Fig. 7.33, as con-
tour plots. Strikingly, the error in a substantial part of the Sun is less than
2 nHz. To illustrate the resolution, Fig. 7.34 shows selected averaging kernels.
Further details of the solution are visible in Fig. 7.35, which shows cuts at fixed
latitudes, as functions of distance to the centre; here, in addition to the SOLA
results, solutions obtained from a two-dimensional regularized least-squares
inversion have been included.

The results clearly show the striking change in the behaviour of rotation
near the base of the convection zone, at a depth of about 28 per cent of the
solar radius (as inferred helioseismically; e.g., Christensen-Dalsgaard et al.
1991); this is marked by the heavy dashed circle in Fig. 7.33 and the heavy
dashed line in Fig. 7.35. Within the convection zone the variation with latitude
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in the rotation rate is quite similar to the behaviour observed directly on the
surface; in particular, the values at the outermost points in the solution are
essentially in agreement with the surface values. (It should be noted that the
inversion did not impose continuity with the surface angular velocity.) Near
the base of the convection zone there is a transition in the tachocline such
that the angular velocity in the radiative interior is roughly independent of
position, at a value intermediate between the surface equatorial and polar
values, but substantially closer to the former.

Although the overall features of rotation, as presented above, have been
found using several different data sets and analysis methods, it should be
mentioned that there are problems at the level of finer details, particularly at
higher latitudes. These have become apparent in comparisons between results
based on data from the GONG and MDI projects, in both cases analysed
with the procedures used by both projects (e.g., Schou et al., 2002). Also,
as illustrated by the comparison of the SOLA and least-squares results in
Fig. 7.35, different inversion methods may give different results at high lati-
tude. Clearly, the underlying causes for these various differences, and how to
correct for them, need to be identified.

It is obviously of interest to consider the detailed properties of the inferred
rotation rate. Figure 7.33a shows that rotation is in fact not strictly constant
on cones. Gilman & Howe (2003) showed that the contours of constant rotation
make an angle of around 25◦ with the rotation axis over a broad range of
latitudes; they speculated that this might be the result of the effect on rotation
of the Coriolis force arising from a meridional circulation.

A potentially important feature is the increase in the rotation rate with
depth near the surface, at least at low- and mid-latitudes; evidence for this
was obtained already in the analysis of high-degree Mt Wilson data by Ko-
rzennik et al. (1990), who related it to the observed surface rotation rate of
magnetic features. A careful analysis of the subsurface gradient in angular
velocity was made by Corbard & Thompson (2002), on the basis of observa-
tions of f modes with MDI; as noted in Section 7.1.4.3 the simple properties
of the eigenfunctions of these modes make them particularly suited for the
investigation of near-surface rotation. Corbard & Thompson showed that the
logarithmic gradient d lnΩ/d ln r was close to −1 at latitudes below 30◦, de-
creasing to near zero at a latitude of around 50◦. As a final point concerning
near-surface rotation we note that the helioseismically inferred rotation near
the pole obtained from early MDI data was significantly slower than what
would be inferred from fits such as that given in Eq. (7.62) (Kosovichev &
Schou 1997; Birch & Kosovichev 1998; Schou et al. 1998). As discussed in
Section 7.1.9 this feature shows striking variations with time.

The apparent width of the tachocline in Fig. 7.35 in part reflects the finite
resolution of the inversion, as determined by the radial extent of the averaging
kernels. This must be taken into account in estimating the true width of the
tachocline. Kosovichev (1996) made an analysis of a3, in an expansion similar
to Eq. (7.9) based on data from the Big Bear Solar Observatory (Woodard &
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Libbrecht 1993), to determine the location and width of the tachocline. He
characterized the transition in Ω by the function

Φ(r) =
1
2

[1 + erf [(2(r − rc)/w)] , (7.63)

where erf is the error function and w characterizes the width, obtaining
w = (0.09 ± 0.04)R. Corbard et al. (1999) used a least-squares inversion
with a nonlinear regularization designed to analyse sharp features in the so-
lution, obtaining a likely smaller width, below 0.05R. A detailed analysis,
employing several techniques, was carried out by Charbonneau et al. (1999)
on LOWL data; they obtained a tachocline width, defined as in Eq. (7.63), of
w = (0.039 ± 0.013)R and a distance rc = (0.693 ± 0.002)R from the cen-
tre at the equator, essentially placing the transition beneath the convection
zone. Interestingly, they found that the central location was significantly fur-
ther from the centre at higher latitude, so that the tachocline appears to be
prolate. This was also found by Antia et al. (1998) and Basu & Antia (2001,
2003).

The data used in the inversions presented in Figs 7.33 and 7.35 did not
permit inference of the rotation rate very near the centre. This requires data on
modes of the lowest degree, generally obtained from full-disc observations and
hence with no observational separation between the different m components.
Also, the rotational splitting is comparable to the linewidth, complicating the
separation in the power-spectrum analysis. It was noted by Appourchaux et al.
(2000b) that this tends to overestimate the determined splittings.24 Analysis
of low-degree splittings from the BiSON network provided a tantalizing hint
that the core rotation might be below the general rotation rate of the radiative
interior (Elsworth et al. 1995). On the other hand, Lazrek et al. (1996), from
analysis of IRIS data, found no such tendency. Chaplin et al. (1999) carried out
a more detailed analysis of a combination of LOWL and BiSON frequencies,
using a version of the MOLA technique especially designed to localize the
averaging kernels to the solar core. The results are shown in Fig. 7.36. They
are consistent with constant rotation of the radiative interior, although with
a possible suggestion of a down-turn in the core. Analysis of the averaging
kernels showed that constraining the measure of rotation to the inner 20%
of the solar radius was possible, as indicated by the interquartile range, but
only at the expense of very substantial errors in the inferred rotation rate.
Results consistent with constant rotation in the radiative interior were also
obtained by Eff-Darwich et al. (2002), Couvidat et al. (2003b) and Garćıa
et al. (2004). Eff-Darwich et al. (2008) made a careful combination of the
existing data from the MDI, GONG and GOLF observations and similarly
obtained a constant rotation in the radiative interior, although with some

24 J. Schou (unpublished) has illustrated this with a plot of the published rotational
splittings as a function of time, which shows a dramatic decrease up to around
1998, after which the measurements have largely stabilized. See also Howe (2009).
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Fig. 7.36. The inferred rotation rate Ω/2π as a function of fractional radius,
at five solar latitudes: the equator, 30◦, 45◦, 60◦ and 75◦. The vertical bars
indicate 1−σ errors, based on the quoted errors of the observations, while the
horizontal bars, between the first and third quartile points (cf. Eq. (7.31)), pro-
vide a measure of the width of the averaging kernels and hence the resolution of
the inversion. The vertical dashed line marks the helioseismically determined
base of the convection zone (Christensen-Dalsgaard et al. 1991). The results
are from OLA inversions of MDI data in the outer region, r > 0.45R (from
Schou et al. 1998) and of combined data from the LOWL instrument and the
BiSON network, in the region with r ≤ 0.45R (Chaplin et al. 1999). The large
filled circles show the result of confining the averaging kernels to the core, with
no constraint in latitude. From Christensen-Dalsgaard & Thompson (2007).

evidence for a slight decrease for r ≤ 0.2R. They also noted that present data
provide relatively tight constraints on the latitude dependence of rotation for
r >∼ 0.3R and concluded, in agreement with Fig. 7.36, that the rotation rate
is independent of latitude in the outer parts of the radiative region.

Chaplin et al. (2004a) considered the requirements for a significant detec-
tion of a variation rate with r in the core and concluded, as also suggested
by Fig. 7.36, that with the present data such a variation would have to be of
very substantial magnitude. They also found that to constrain rotation in the
deep interior, modes of relatively low frequency are most important, despite
the fact that their inner turning points are further from the centre and that
therefore formally they are less sensitive to the core rotation; however, this
is compensated by their much longer lifetime, leading to a higher accuracy in
the determination of the frequencies.

It is evident that a substantial improvement in the inferences of the core
rotation, based on extending the observations of the currently detected modes,
is at best a long-term process. Formally, the errors in the determination of
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frequencies of stochastically excited modes decrease as the inverse square root
of the observing time (see Eq. (5.57)); given that the currently used data are
based on observations over more than a decade, several decades are required
for a substantial improvement. The potential improvement resulting from the
addition of data for just a few g modes is huge (Eff-Darwich et al. 2008;
Mathur et al. 2008); however, as discussed in Section 7.1.3.2 the detection of
such modes remains elusive.

7.1.9 Temporal Variations of the Solar Interior

The properties of the Sun change with time. On a human time scale the most
important variations are associated with the magnetic activity, as reflected
in the 11-year sunspot cycle (e.g., Schrijver & Zwaan 2000).25 The variation
in the occurrence of sunspots traces the so-called butterfly diagram, with
spots appearing at latitudes around ±30◦ at the beginning of a cycle and
the spot locations converging towards the equator as the cycle progresses.
The cycle is likely the result of a complex interaction between convection,
rotation, meridional flows and the magnetic field, although the details are
still uncertain (see also Charbonneau 2005). This is often thought to lead
to an accumulation of magnetic flux, in a toroidal equatorial belt, in the
region of the tachocline. The variation in the sunspot number is accompanied
by a variation of around 0.1% in the solar irradiance, with largest average
irradiance at sunspot maxima (Fröhlich & Lean 2004). The possible variation
in the solar radius, as determined from direct radius observations, has been
much debated; in a careful analysis of an extended series of data Brown &
Christensen-Dalsgaard (1998) limited any such variation to be below ±5 ×
10−5R. As discussed by Gough (1990b, 2002b) the ratio between the radius
and luminosity perturbations provides a measure of the depth of the cause
of these variations, a small ratio, as observed, indicating that the variations
arise predominantly in the near-surface region.

A closely related issue is the departure of solar structure from spherical
symmetry. Such asphericity is evident in the distribution of magnetic fields
on the solar surface, with the active regions being predominantly at low and
intermediate latitude. It is plausible that large-scale, probably time-varying,
asphericity is also present in the solar interior, associated with the accumula-
tion of magnetic fields.

It is evident that our understanding of the solar cycle would be greatly im-
proved by helioseismic determination of related changes in the solar interior.
This is clearly a possibility, given the availability of helioseismic data over sev-
eral sunspot cycles, and very detailed data from the GONG and MDI instru-
ments over the last cycle (for recent overviews, see Gizon 2004; Howe 2008). In
addition to studies of the variations with time in the frequencies, analysis of

25 As the magnetic field switches polarity from one sunspot maximum to the next,
the period of the magnetic cycle is 22 yr.
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the even component of the dependence of the frequencies on azimuthal order
m may uncover asphericities in solar structure. This is conveniently done in
terms of the a coefficients of even order (cf. Eq. (7.9)).

Even early results based on irradiance observations from the Solar Max-
imum Mission showed a frequency increase in low-degree modes of 0.42 ±
0.14μHz from sunspot minimum to sunspot maximum (Woodard & Noyes
1985). Duvall et al. (1986) found evidence for asphericity in the lowest-order
even a coefficients; their results were modelled by Gough & Thompson (1988)
in terms of near-surface magnetically induced perturbations. These frequency
variations were analysed in considerable detail by Libbrecht & Woodard
(1990), using resolved observations from the Big Bear Solar Observatory. They
showed that the dependence of the temporal frequency changes on frequency
and degree corresponded to a physical cause confined very near the surface (see
also Section 7.1.4.1). From analysis of the even a coefficients they furthermore
demonstrated that the latitude variation of the sound speed corresponded to
the activity belts where most of the sunspots were found, identified through
the latitude dependence of the limb brightness, and varied with time in the
same manner as activity. The close connection between the temporal varia-
tion of the surface magnetic activity and the frequency changes was further
confirmed by Woodard et al. (1991) and Bachmann & Brown (1993), based on
spatially resolved observations; they showed, by determining the frequencies
in segments of roughly 1 month, that the frequency variation was strongly
correlated in time with indices of solar activity. A similar correlation for low-
degree modes, using full-disc BiSON observations, was found by Chaplin et
al. (2001b). Also, using GONG and MDI observations with high latitude res-
olution Howe et al. (2002) used the m dependence of the frequency shift to
localize the shift in latitude; they found a strong correlation between the fre-
quency variations and the unsigned magnetic flux, as functions of latitude and
time.

Although the correlation between the surface magnetic field and the effects
on the oscillation frequencies is well established, the physical effects that me-
diate this correlation have still not been definitely identified. This has been
reviewed, for example, by Thompson (2001) and Gough (2002b); detailed
analyses of the possible mechanisms were presented by Goldreich et al. (1991)
and Balmforth et al. (1996). These include the direct effect of the changing
magnetic field on the propagation speed of the waves as well as the indirect
effect, through the resulting change in the thermal structure of the outer lay-
ers, which also affects the propagation speed and the location of the upper
turning point. Furthermore, particularly at high frequency, thermal changes
in the chromosphere may be important (e.g., Jain & Roberts 1993).

An interesting aspect of the analysis concerns the attempts to detect varia-
tions in the “helioseismic radius”, mostly from the analysis of f-mode frequen-
cies which, according to Eq. (7.12), depend mainly on the radius (e.g., Schou
et al. 1997; Dziembowski et al. 1998; Antia et al. 2000; Dziembowski et al.
2001b; Antia 2003). Lefebvre & Kosovichev (2005) and Lefebvre et al. (2007)
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noted that, perhaps not surprisingly, the helioseismically inferred changes in
the subsurface layers did not correspond to a simple scaling with a varying sur-
face radius. Dziembowski & Goode (2004) made a careful reconsideration of
the physical effects influencing the frequencies. This was used by Dziembowski
& Goode (2005) to analyse MDI observations of frequency changes; they con-
cluded that the dominant effect on the f-mode frequencies was magnetic, while
the p modes were mainly affected by the changing thermal structure which,
they speculated, could be brought about by a modest change in the convective
velocities in the outer layers. They also found that the resulting change of the
surface radius was very small.

To understand how the solar cycle works it would clearly be very interest-
ing to detect variations in solar structure at greater depth below the surface.
Such effects have been elusive, however. From inversion of the even a coef-
ficients Gough et al. (1996) inferred significant asphericity only in the near-
surface layers. Gough (2002b) found some evidence for a variation with time
in the wave speed roughly at the depth of the second helium ionization, visible
as the result of an acoustic glitch in the frequency changes with activity. This
was confirmed in a more detailed analysis of GONG and MDI data by Basu
& Mandel (2004) who speculated that the effect could arise from the influence
of the magnetic field on the effective equation of state and hence on Γ1. Simi-
lar variations were found by Verner et al. (2006a) in low-degree BiSON data.
At slightly greater depth Antia et al. (2000) and Dziembowski et al. (2000)
found a component of asphericity located at around 0.96R. This was localized
to a latitude of around 60◦ by Antia et al. (2003) who also found evidence
that it might change with the solar cycle; they speculated that it reflected a
time-varying storage of magnetic energy in this region of the convection zone.

According to the dynamo models discussed above, one might expect a
visible signature of the accumulation of magnetic flux in the equatorial part
of the tachocline region. Antia et al. (2000) put an upper limit of 300 kG on
such a field, corresponding to a relative magnetic perturbation to the wave
speed of around 3× 10−5. A similar upper limit was obtained by Eff-Darwich
et al. (2002) on the variation of the wave speed in this region, associated
with the solar cycle. Very interestingly, Baldner & Basu (2008) have found
what seems to be a significant change in the sound speed in the tachocline
region; this is illustrated in Fig. 7.37, based on their analysis of MDI data.
They used principal component analysis to extract the components of the
data varying with solar activity, using the 10.7 cm radio flux as a measure of
activity; this analysis also serves to suppress the noise in the data as well as
known artefacts. From inversion of the result they then inferred the sound-
speed variation associated with activity. Interestingly, the sound speed seems
to decrease with increasing activity at the base of the convection zone while it
increases at slightly greater depth, essentially corresponding to the bulk of the
tachocline. In a similar analysis of GONG data Baldner & Basu obtained a
similar depression at the base of the convection zone but no significant increase
at greater depth. It is evident that further analyses along these lines, as well
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Fig. 7.37. Relative change in the squared sound speed associated with the
solar activity cycle, in the sense (high activity) – (low activity). The symbols
with bars show the results of a SOLA inversion (see also Fig. 7.28); the solid
curve shows results of a regularized least-squares inversion, with 1−σ errors
indicated by the dotted lines. Adapted from Baldner & Basu (2008).

as interpretation in terms of models of the solar-cycle-related dynamics of the
region around the base of the convection, are highly desirable.

Variations in the solar surface rotation with solar activity were detected
by Howard & LaBonte (1980); they found bands of slightly faster and slower
rotation, which they termed “torsional oscillations”, converging towards the
solar equator as the sunspot cycle progresses. Similar bands were inferred
in the subsurface layers in rotational inversions of MDI data from 1996 by
Kosovichev & Schou (1997), Birch & Kosovichev (1998) and Schou et al.
(1998), who in addition found that the polar regions rotated more slowly than
expected from extrapolation of the lower-latitude rotation rate. In an analysis
of f-mode data extending over 2.5 yr, Schou (1999) demonstrated that these
bands showed the same convergence with time towards the equator as did the
surface flows; interestingly, evidence for such zonal flows converging towards
the equator is present already in the results of Woodard & Libbrecht (1993).
Howe et al. (2000a) analysed more extensive sets of MDI and GONG data
and demonstrated that the flows were coherent over a substantial fraction of
the convection zone. Similar results were obtained by Antia & Basu (2000). A
review of the variations in solar rotation associated with the solar cycle was
given by Howe (2009).
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Fig. 7.38. Time evolution of the zonal flows at 0.99R� inferred from regular-
ized least-squares rotational inversion of MDI and GONG data, after subtrac-
tion of the time-averaged rotation rate. The grey scale at the right gives the
residual rotation rate in nHz. The results are shown as a function of time and
latitude; note that the plot is symmetrical around the equator, since global
helioseismic inversions are sensitive only to the symmetrical component of the
rotation rate (cf. Eq. (3.351)). Adapted from Howe et al. (2006).

Properties of the zonal flows, extending up to late 2008, are illustrated in
Fig. 7.38. The low-latitude branch closely follows the evolution of the location
of the sunspots, while there is clearly also a branch extending towards the pole,
resulting in the slow polar rotation in 1996 noted above (see also Antia & Basu
2001). Further analysis by Vorontsov et al. (2002), using inversion through an
adaptive regularization scheme (Strahkov & Vorontsov 2000), showed that
the variation extended through most of the depth of the convection zone,
the higher-latitude changes apparently reaching its base. At low latitudes it
appears that the bands of faster rotation propagate outwards with time (Basu
& Antia 2003; Howe et al. 2005), probably indicating that the zonal flows are
not induced by effects near the solar surface, as had been proposed by Spruit
(2003). A detailed analysis by Howe et al. (2006), based on artificial data
created from numerical models of the solar dynamo, confirmed the sensitivity
to flows near the base of the convection zone and hence supported the finding
that the solar flows involve most of the convection zone.

With the availability of detailed helioseismic data for a full sunspot cycle
(Antia et al. 2008) we are in an excellent position to use the inferred variations
in rotation as constraints on models of the dynamics of the solar convection
zone, including the presumed dynamo action which drives the solar cycle. In
fact, zonal flows similar to the observed flows can be obtained from mean-field
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Fig. 7.39. Residual rotation rates, after subtraction of temporal averages;
results are shown at the equator and distances from the centre of 0.72 R�
(top) and 0.63 R� (bottom). Filled and open symbols were obtained from
RLS and OLA inversions, respectively, of GONG data (circles) and MDI data
(triangles). In the early part of the period evidence may be present for a
periodic variation with a period of around 1.3 yr (Howe et al. 2000b). See
Howe et al. (2007).

dynamo models (e.g., Covas et al. 2000; Covas et al. 2004; Rempel 2007).
Thus the observations provide interesting constraints on such models. It is
evidently important to follow the further development of both the flows and
the magnetic activity in the coming cycle which, at the time of writing (early
2009), promises to be rather different from the previous cycle.

While the detection of deeply penetrating zonal flows followed the sur-
face observations of torsional oscillations, the evidence found by Howe et al.
(2000b) for variations at the base of the convection zone was totally unex-
pected. On the basis of inversions of both GONG and MDI data these varia-
tions appeared as an oscillation, with a period of around 1.3 yr, in the equa-
torial rotation rate at a distance of 0.72R from the centre, with a weaker
equatorial oscillation, with the opposite phase, around 0.63R. The variations
at higher latitude were less well defined. Similar variations were visible in re-
sults obtained by Basu & Antia (2001) who, however, regarded the variation
as statistically insignificant. The subsequent evolution, illustrated in Fig. 7.39,
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was discussed by Howe et al. (2007). As is evident from the figure, the reg-
ular oscillations essentially vanished after 2001, although further potentially
significant variations are found at later times. It cannot be excluded that the
apparently regular oscillations are restricted to the rising phase of the solar
cycle; thus it will be very interesting to follow the evolution in the period 2009
– 2012.

7.2 Solar-Like Pulsators

As discussed in Section 3.7.5 solar oscillations are intrinsically damped and
excited stochastically by the near-surface convection. Thus similar oscillations
are expected in all cool stars with vigorous outer convection zones. This has
been overwhelmingly confirmed by recent observations (see Sections 2.3.1 and
2.5.5). Owing to the rich spectra of modes resulting from stochastic excitation
and the relative ease of mode identification, solar-like oscillations have great
promise for asteroseismology, a promise that is just beginning to be tapped.

Full use of the asteroseismic potential requires the best possible observa-
tions of “classical” observables such as effective temperature, surface compo-
sition and luminosity of the stars. Thus the compilation by Pijpers (2003)
of such data for a number of relatively bright stars likely to show solar-like
oscillations is very useful. We also note that Creevey et al. (2007) stressed the
importance of interferometric determination of stellar radii, which is becoming
possible for near-by solar-like stars.

7.2.1 Observational Aspects

Solar-like oscillations have been observed in a substantial number of stars
as a result of an intensive observational effort over the past decade. This
has been made possible in particular through the development of very stable
spectroscopic techniques for ground-based observations, although intensity
observations from space have also played an important role. Limitations in the
available observing time at the large telescopes that have so far been required
have restricted the duration of the spectroscopic observations to at most 1
– 2 weeks. This is further complicated by the need to organize coordinated
observations to minimize the gaps in the data, an obvious difficulty when
heavily oversubscribed facilities are involved. The most extensive campaign
so far of this nature was organized in December 2006 and January 2007 to
observe Procyon, using 11 telescopes at eight observatories, for observations
spanning in total nearly one month (Arentoft et al. 2008). This resulted in
a data set of high quality which at the time of writing is being analysed to
determine the oscillation frequencies. However, it is evident that campaigns
of this magnitude have to be rare; also, despite the very considerable effort
invested we are still far from reaching the frequency resolution and precision
available for low-degree helioseismic data.
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Fig. 7.40. Amplitudes of solar-like oscillations for a broad variety of stars,
normalized to correspond to the amplitude per radial mode (see Kjeldsen et
al. 2008a for details), as a function of frequency. The solar data, included
for comparison, were obtained by observing the blue sky with a technique
corresponding to the stellar observations and hence are directly comparable.
From Arentoft et al. (2008).

An interesting result of the present observations is the distribution of mode
amplitudes as a function of frequency and stellar parameters. This is illus-
trated in Fig. 7.40, normalized so as to correspond to the amplitude per radial
mode, as described by Kjeldsen et al. (2008a). The location of the maximum
amplitude is approximately given by νmax � 0.6νac, where νac = ω/2π is the
acoustic cut-off frequency in the stellar atmosphere (cf. Eq. (3.202)) as pro-
posed by Brown et al. (1991). Thus the spectrum is shifted towards lower
frequencies for more evolved stars, as already observed in Fig. 2.3. Also, the
amplitude generally increases with increasing L/M , in qualitative accordance
with the results discussed in Section 3.7.5. It is obvious that results such as
those shown in Fig. 7.40 are very important for the understanding of the ex-
citation of solar-like oscillations.

The power spectra of solar-like oscillations are expected to be similar to
the solar spectra and hence characterized by Lorentzian mean envelopes, as in
Eq. (7.7). Thus, in principle similar analysis techniques can be applied as in the
solar case, fitting that equation, with a suitably parameterized background,
to the power spectrum. In practice, this has proven to be somewhat difficult,
probably as a result of the lower signal-to-noise level in the stellar data and
observing runs extending only over a few mode lifetimes. This is illustrated
by the solar power spectra shown in Fig. 7.41, for a single radial mode. With
10 d of observation the intrinsic resolution of 1.16μHz is too close to the
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Fig. 7.41. Observed solar spectra for a radial mode, based on GOLF radial-
velocity data from the early phase of SOHO operations (see Garćıa et al.
2005). The panels show analysis of time series extending over 10 d (a), 31 d
(b), 151 d (c) and 805 d (d); the spectra for the shorter time series have been
over-resolved by extending the data by zeros to a total length of 805 d. Note
that this is the mode that was also illustrated in Fig. 3.33, based on BiSON
data.

damping time of the modes of a few days to resolve the intrinsic line profile,
and even after 31 d this is barely reflected in the line profile. Thus for relatively
short observing runs a commonly used technique has essentially been based
on prewhitening (see Section 5.1.2), successively identifying the highest peak
in the power spectrum and removing the corresponding contribution from the
time series. This may generate spurious frequencies, particularly at relatively
low signal-to-noise ratio, and hence further, unavoidably partially subjective,
analysis is needed to identify what is accepted as the true frequencies; in this,
analysis of the échelle diagram is a very useful tool, at least when dealing with
purely acoustic modes (see also Section 7.2.3.2 below).

In combining data from several sites, likely with rather different charac-
teristics, it is important to assign proper weights to each site, and possibly to
each segment of the data from a given site (see also Section 5.6). A simple pro-
cedure would be to base the weights on the intrinsic quality of the data. This
might, however, often give substantially higher weight to one site compared
with the others, and hence effectively lead to single-site observations. Thus
the minimization of the daily sidelobes (see Section 5.3.3) must also be taken
into account in the assignment of weights (e.g., Bedding et al. 2004; Arentoft
et al. 2008). The effect of this is illustrated in Fig. 7.42, based on two-site ob-
servations of αCen A, involving the UVES spectrograph on the ESO VLT at
Paranal and the UCLES (University College London Echelle Spectrograph)
spectrograph at the AAT (Anglo-Australian Telescope) at Siding Spring Ob-
servatory in Australia. The former has a substantially lower noise level and
hence is given higher weight, if noise in the spectrum is the only consideration;
as shown in the left-hand panel this leads to very substantial daily sidelobes.
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Fig. 7.42. Window functions for two-site observations of αCen A. In the
left-hand panel data weights were chosen to minimize the noise in the power
spectrum, resulting in one site being dominant and hence in strong daily side-
lobes at ±0.0116 mHz. In the remaining two panels the assignment of weights
in addition aimed at suppressing these sidelobes. From Arentoft et al. (2009).

As illustrated by the remaining two panels these can largely be suppressed
by a more appropriate weighting, although at the expense of an increase in
the noise level in the amplitude spectrum of around 50% which in the present
case is entirely acceptable.

For relatively short observing runs, such as those that have mostly been
available so far, a fit to the Lorentzian profile in Eq. (7.7) probably does not
provide a reliable measure of the mode lifetime. However, in such power spec-
tra the lifetime is also reflected in the scatter of the inferred frequencies around
the expected smooth behaviour or the scatter between the height of neighbour-
ing peaks. Kjeldsen et al. (2005) used the frequency scatter, calibrating it by
means of the analysis of a large number of sets of artificial data, to determine
the mode lifetimes in αCen A and B; they also demonstrated that the tech-
nique recovered the lifetimes of solar modes inferred from Lorentzian fitting.
Stello et al. (2004) used the statistics of mode amplitudes, similarly calibrated
with artificial data, to infer a surprisingly short lifetime, only around 2 d, of
the modes in the K giant ξHya, although with substantial uncertainty; this
was confirmed by Stello et al. (2006) based on the scatter in frequencies around
the expected uniformly spaced pattern. It is clear that these techniques are
somewhat less direct, and hence likely less reliable, than the Lorentzian fits to
properly resolved peaks; however, they have provided preliminary results for
several stars covering a range of stellar parameters, of obvious interest to the
understanding of the mode physics and to the planning of future observations.
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It is evident that much work is required to develop optimal techniques
for the analysis of asteroseismic data for solar-like stars. This is the more
urgent as new projects promise large amounts of data (see Chapter 8), such
that reliable and partly automatic techniques would be highly desirable. In
developing and testing such techniques the use of artificial data with known
properties is extremely useful. Particularly illuminating are blind tests, in
the so-called “hare and hounds experiments”, where data are produced by
one participant and analysed by others without any knowledge beyond what
would be available for real data. This has been organized in the solarFLAG26

collaboration to test techniques for analysing disc-integrated helioseismic data
(e.g., Chaplin et al. 2006; Jiménez-Reyes et al. 2008) and has been extended
into the asteroFLAG collaboration27 dealing with the more general case of
solar-like oscillations (Chaplin et al. 2008a). These efforts will undoubtedly
be extremely important for the preparation for, and understanding of, the
results of ongoing and coming asteroseismic projects.

We finally note that Chaplin et al. (2008b) made a detailed analysis of the
expected observable properties of solar-like oscillations as a function of stellar
parameters, to investigate the diagnostic potential of, in particular, the Kepler
mission (see also Chapter 8). This included also the effects of rotation and
possible stellar activity cycles. Such analyses are obviously important in the
planning and interpretation of observations of solar-like oscillations.

7.2.2 Asteroseismic Diagnostics

7.2.2.1 Analysis of Stellar Structure

Stochastic excitation favours high-frequency oscillations, as a combined effect
of the energy spectrum of convection and the properties of the eigenfunctions
(see Goldreich et al. 1994). In unevolved stars such modes are all high-order
acoustic modes; however, in evolved stars the buoyancy frequency becomes so
large in the deep interior that also oscillations with g-mode character reach
frequencies where efficient stochastic excitation is possible. In this case mixed
modes (see Section 3.5.3) must be taken into account, further enriching the
diagnostic potential of the observations. We return to such modes in Sec-
tion 7.2.4.3 below and in this section consider purely acoustic modes.

Such modes approximately satisfy the asymptotic behaviour discussed in
Section 3.4.3.1 (see also Tassoul 1980, 1990; Gough 1993). For the discussion
of the average properties of the modes this can conveniently be approximated
by

νnl � Δν0

(
n+

l

2
+ ε0

)
− l(l + 1)D0 , (7.64)

26 Solar Fitting at Low-Angular degree Group. See
http://bison.ph.bham.ac.uk/∼wjc/Research/FLAG.html.

27 http://www.issi.unibe.ch/teams/Astflag/.
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(Scherrer et al. 1983; see Eq. (3.223)), where

Δν0 �
(

2
∫ R

0

dr
c

)−1

(7.65)

is an average large separation,

D0 = − 1
4π2n0

∫ R

0

dc
dr

dr
r

(7.66)

(cf. Eqs (3.219) and (3.220)), and n0 is a suitable reference order. Thus the
average small separation is given by

δνl = 〈νnl − νn−1 l+2〉n � (4l + 6)D0 , (7.67)

where the average is over radial order. In addition to these small separations
it is also convenient to consider small separations involving adjacent degrees,
such as

δ(1)νnl =
1
2

(νn−1 l + νn l) − νn−1 l+1 , (7.68)

and hence

δ(1)νl = 〈1
2

(νn−1 l + νn l) − νn−1 l+1〉n � 2(l + 1)D0 ; (7.69)

these are particularly useful for analysing intensity observations where the
range of degrees is restricted to 0 − 2.

The integral in Eq. (7.66) is evidently weighted towards the stellar centre
and hence provides a measure of the sound-speed gradient in the core of the
star. Also, the average Δν0 of the large frequency spacing is a measure of the
mean density of the star. Thus it is clear that Δν0 and D0 provide important
diagnostics of stellar properties which can be determined from observations
of low-degree modes.

As a star evolves, the hydrogen abundance in the core decreases and hence
the mean molecular weight increases. For an approximately ideal gas, the
sound speed may be obtained from

c2 � Γ1kBT

μmu
; (7.70)

since the central temperature varies little during hydrogen burning, due to the
strong temperature sensitivity of the nuclear reaction rates, the main effect
on the sound speed in the core comes from the change in the mean molecular
weight μ. Consequently c decreases as the star evolves, the decrease being
most rapid at the centre where hydrogen burning is fastest; this is illustrated
in Fig. 7.43. As a result, c develops a local minimum at the centre, and dc/dr
is positive in the core. This region gives a negative contribution to D0 (cf.
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Fig. 7.43. Evolution of a 1M� model during central hydrogen burning. The
left panel shows the hydrogen abundance X for models of age 1 − 10 Gyr, in
steps of 1Gyr. The right panel shows the dimensionless sound speed (in units
of (GM/R)1/2; cf. Section 3.3.3.1) in these models, with an enlargement in the
inset of the behaviour in the core. Note the rapid variation in the final model,
shown by the triple-dot-dashed curve. Adapted from Christensen-Dalsgaard
(2009).

Eq. (3.221)), of increasing magnitude with increasing age, and hence D0 de-
creases with increasing age (see also Christensen-Dalsgaard 1991a). Hence D0,
which can in principle be observed, is a measure of the evolutionary state of
the star. On the other hand, the overall frequency separation Δν0, defined
in Eq. (7.65), approximately scales as the inverse t−1

dyn of the dynamical time
scale which, for main-sequence stars, is largely determined by the mass.

These considerations motivate presenting the average frequency separa-
tions in a (Δν0, D0) diagram, as illustrated in Fig. 7.44; this is analogous
to the ordinary HR Diagram. It is evident from Fig. 7.44 that on the as-
sumption that the other parameters of the star (such as composition) are
known, a measurement of Δν and D0 may allow determination of the mass
and evolutionary state of the star (Christensen-Dalsgaard 1984b; Ulrich 1986;
Christensen-Dalsgaard 1988). On the other hand, Gough (1987) analysed the
sensitivity of this result to the other stellar parameters, and found that the
uncertainty in the knowledge of the heavy element abundance, in particular,
had a severe effect on the determination of the mass and age. As an example
of such sensitivity, Fig. 7.44(b) shows the consequences of an increase of the
hydrogen abundance by 0.03. A more extensive analysis of the sensitivity to
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Fig. 7.44. Evolution tracks ( ) and curves of constant central
hydrogen abundance ( ) in (Δν0,D0) diagrams. Here Δν0 is the
average separation between modes of the same degree and adjacent radial
order, and D0 is related to the small separation between νnl and νn−1 l+2 (cf.
Eq. (3.221)). The stellar masses, in solar units, and the values of the central
hydrogen abundance, are indicated. Panel (b) shows the effect of increasing
the hydrogen abundance by 0.03 (heavy lines), relative to the case presented in
panel (a) (shown here with thin lines). In panel (c), the frequency separations
have been scaled by (ρ)−1/2, in units of the solar value ρ� (ρ ∝M/R3 being the
mean density), to take out the variation with t−1

dyn. Adapted from Christensen-
Dalsgaard (1993a).
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model parameters was presented by Monteiro et al. (2002). To illustrate the
dependence of the separations on the global stellar parameters panel (c) (note
the different scales) shows the result of scaling them by ρ−1/2, ρ ∝ M/R3

being the mean density which is proportional to t−2
dyn (see Section 3.3.3.1). Ev-

idently most, but not all, of the variation in Δν0 is in fact related to tdyn, such
that Δν0 scales as M1/2/R3/2. A careful analysis of the information content in
measured frequency separations, when combined with more traditional mea-
surements of stellar properties, was given by Brown et al. (1994). In a similar
investigation Creevey et al. (2007) also included interferometric measurements
of the stellar radius, showing that with realistic errors this could substantially
increase the precision of the determination of stellar mass and age.

The solar case, with an independent determination of the age from ra-
dioactive dating, provides an excellent test of the age calibration based on low-
degree modes. The sensitivity of such determinations to other uncertainties in
the model parameters, including the ratio Zs/Xs of the surface heavy-element
to hydrogen abundances, was investigated by Gough & Novotny (1990) and
Gough (2001). Dziembowski et al. (1999) and Bonanno et al. (2002) made
least-squares fits to the observed small frequency separations, fixing Zs/Xs

to the then current spectroscopic value and considering models calibrated to
solar luminosity and radius; they obtained helioseismically inferred ages in
good agreement with the meteoritic value. A similar analysis was carried out
by Christensen-Dalsgaard (2009), using both the Grevesse & Noels (1993) and
the Asplund et al. (2004) values of Zs/Xs. In the former case the result was in
accordance with the meteoritic age; however, using the Asplund et al. compo-
sition resulted in a helioseismic age of around 4.85 Gyr, substantially higher
than the meteoritic value of 4.57 Gyr(see Wasserburg, in Bahcall & Pinson-
neault 1995). This discrepancy is in accordance with the analysis by Basu et
al. (2007) and Chaplin et al. (2007b) of the small frequency separations which
similarly pointed towards the older determinations of the solar surface abun-
dance (see also Section 7.1.7). It should be noticed that since these calibrations
all assumed that at least the solar mass, radius and luminosity were known
they are not directly representative of the results that might be expected from
the less constrained general stellar case.

The accuracy of Eq. (7.66) as representing the average small separation is
questionable; it appears to agree fortuitously with frequencies computed for
models of the present Sun, whereas it is less successful for models of different
ages or masses (Christensen-Dalsgaard 1991a). That there should be depar-
tures from this simple analysis is hardly surprising. The asymptotic analysis is
based on the Cowling approximation, yet the perturbation to the gravitational
potential has a significant effect on low-degree modes, which furthermore de-
creases rapidly with increasing degree, thus affecting the small frequency sep-
aration; a simple analysis of this effect was presented by Vorontsov (1989)
(see also Christensen-Dalsgaard 1991a). Furthermore, a prerequisite for the
JWKB analysis which underlies Eq. (7.64) is that the equilibrium model varies
on a scale much longer than the wavelength of the modes; this is obviously
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Fig. 7.45. Dimensionless squared sound speed, in units of GM/R, for models
of αCen A (solid curve) and αCen B (dashed curve).

not satisfied by the rapid variation of the sound speed in the core of evolved
models (cf. Fig. 7.43). Apparently, these two effects largely cancel in the solar
case.

Some of these issues can be illustrated by considering the dependence of the
small separation on l. From Eqs (7.67) and (7.69) we expect that δνnl/(2l+3)
and δ(1)νnl/(l + 1) are independent of l. To investigate the validity of these
asymptotic dependencies we consider as examples the A and B components of
the αCen system, discussed in Section 7.2.3 below. The dimensionless squared
sound speed of models of these two stars is illustrated in Fig. 7.45. At the in-
ferred age of the system the lower-mass B component is barely evolved whereas
the more massive A component is approaching the end of the central hydro-
gen burning; consequently the sound speed in the latter case shows the rapid
variation already noticed in Fig. 7.43. The effect on the small frequency sepa-
rations is illustrated in Fig. 7.46. For the B component the scaled separations
show modest scatter with degree, as expected asymptotically. On the other
hand, for the A component there is substantial scatter, particularly for the
δ(1)νnl. From the point of view of asteroseismic diagnostics this clearly shows
that the frequencies contain information beyond the parameters character-
izing the simple asymptotic expressions. Furthermore, it should be noticed
that at the highest frequencies δνn0 becomes slightly negative; this is contrast
to Eq. (3.221) which predicts that δνnl has a constant sign. This kind of be-
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Fig. 7.46. Scaled frequency separations for models of αCen A (panel a) and
αCen B (panel b). Open symbols show (νnl − νn−1 l+2)/(2l + 3) and filled
symbols show [(νn−1 l + νnl)/2 − νn−1 l+1]/(l + 1), at the values of l indicated
by the symbol type.

haviour was noted by Soriano & Vauclair (2008) who related it to the sharp
variation of the sound speed in the core of evolved stars.
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A more appropriate treatment of the effect of the core can be obtained by
treating the interaction between the waves and the sound-speed structure in
the Born approximation which does not assume that the scale of the structure
variations is large compared with the wavelength. This has been developed in a
series of papers by Roxburgh & Vorontsov (1994b, 1996, 2000a,b, 2001). As an
interesting concept they characterize the effect of the core by a partial phase
δl, defined such that the asymptotic behaviour of the pressure perturbation
p′ satisfies

(ρc)1/2

r
p′ � Ap sin(ωτ̃ − π

2
l + δl) . (7.71)

Here

τ̃ =
∫ r

0

dr′

c
= τ0 − τ , (7.72)

where τ̃ is the acoustic distance to the centre and τ0 is the acoustic radius of
the star (cf. Eq. (7.22)); the term −πl/2, corresponding to the leading-order
asymptotic behaviour of the solution at the centre, was included explicitly. In
the same way as the surface phase introduced, for example, by Christensen-
Dalsgaard & Perez Hernández (1992) this can be defined as a continuous func-
tion of frequency from a partial solution to the oscillation equations. The full
solution can then be obtained by matching the interior and exterior solutions,
leading to the eigenfrequency equation

ωnlτ0 =
(
n +

l

2

)
π + α̃(ωnl) − δl(ωnl) , (7.73)

where α̃ is a similarly defined surface phase, or

νnl =
1

2τ0

[
n+

l

2
+ π−1(α̃(ωnl) − δl(ωnl))

]
, (7.74)

essentially corresponding to Eq. (3.219), since Δν0 = (2τ0)−1 and the term in
δl contains much of the last correction term in that equation. Thus the small
frequency separation is obtained as

δνnl = νnl − νn−1 l+2 =
1

2πτ0
[δl+2(ωn l+2) − δl(ωn l)] . (7.75)

Roxburgh & Vorontsov (1994b) discussed the asymptotic form of δl. In the
simplest approximation they obtained

δl(ω) � δ0(ω) +
l(l + 1)

2ω

[
c(R)
R

−
∫ R

0

dc
dr

dr
r

]

, (7.76)

and hence, according to Eq. (7.75),

δνnl = (4l + 6)
Δν0

4π2νnl

[
c(R)
R

−
∫ R

0

dc
dr

dr
r

]

, (7.77)
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in accordance with the Tassoul (1980) expression (cf. Eqs (3.220) and (3.221)).
However, it should be noted that the neglected terms include derivatives of
the sound speed and buoyancy frequency which would be large in evolved
models with a rapidly varying structure in the core. Thus the full diagnostic
potential of the analysis by Roxburgh & Vorontsov (1994b) still remains to
be explored.

Popielski & Dziembowski (2005) recalled that the growing convective core
in main-sequence stars of intermediate mass causes problems in the modelling
of the convective-core boundary, including the possible occurrence of “semi-
convection” (see Section 3.2.3). They made an extensive exploration of seismic
diagnostics of models of this nature, including also the possibility of convec-
tive overshoot. They argued that the most sensitive measure of conditions at
the core boundary is the small separation δ(1)νn0 (cf. Eq. (7.69)) and demon-
strated a clear separation between different scenarios in a diagram plotting
the mean value of δ(1)νn0 and its slope as a function of frequency.

An analysis that explicitly took the rapid variation into account was car-
ried out by Cunha & Metcalfe (2007), in the case where a small and growing
convective core leads to a discontinuity in composition and hence sound speed
(cf. Figs 3.6 and 3.7). Through an asymptotic analysis of this specific case they
found that the following combination of frequency separations,

ΔCM ≡ Dn0

Δνn−1 1
− Dn 1

Δνn0
, (7.78)

is sensitive to the properties of the sound-speed discontinuity; here Dnl =
δνnl/(4l + 6) and Δνnl = νn+1 l − νnl. In particular, they demonstrated that
ΔCM provides a measure of stellar age, given observational errors that may
realistically be achieved. The effect on this measure of a steep but not discon-
tinuous change in sound speed, as would result with diffusion (cf. Fig. 3.7),
remains to be explored. A similar diagnostic combination of small separations,
averaged over radial order, was investigated by Mazumdar et al. (2006a), who
applied it to a number of stellar models with varying parameters; they found
that the size of the convective core could be determined with fairly high pre-
cision, if other parameters of the star, including its mass, were known.

As discussed in Section 7.1.4.1 the uncertainties in the modelling of the
near-surface layers introduce errors in the computed frequencies which for
low-degree modes are predominantly functions of frequency. Since these effects
vary rapidly with frequency (see for example Fig. 7.24) they have a significant
effect on the large frequency separation, to which we return below. However,
even the small frequency separations are significantly affected. It was shown
by Roxburgh & Vorontsov (2003) that these effects could largely be suppressed
by considering separation ratios such as

rn0 =
νn0 − νn−1 2

νn1 − νn−1 1
(7.79)
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Fig. 7.47. Effects of a model change on frequency separations and their ratio.
The original model (filled diamonds) is Model S of Christensen-Dalsgaard et
al. (1996). In the modified model (crosses) the convection zone of Model S was
replaced by a polytrope of index 3/2 and with Γ1 = 5/3. Panel a) shows the
large separation Δνnl = νn−1 l − νnl, for l = 0−3. Panel b) shows the small
separation δνn0 = νn0−νn−1 2 and panel c) shows the ratio rn0 (cf. Eq. (7.79)).
Adapted from Ot́ı Floranes et al. (2005).

between a small and large separation. They furthermore demonstrated that
this is directly related to the central phase, by



7.2 Solar-Like Pulsators 549

Fig. 7.48. Evolution tracks (continuous curves) and curves of constant central
hydrogen abundance (dotted curves), in terms of the ratio between the average
small and large separation. See also Fig. 7.44. Adapted from Ot́ı Floranes et
al. (2005).

rn0 =
1
π

(δ2 − δ0) , (7.80)

even given the variation of the large separation with frequency, and illustrated
the effect by means of examples of solar models differing just in the surface
layers. More extensive experiments of this nature were carried out by Ot́ı
Floranes et al. (2005) showing the wide applicability of this scaling. As an
example, Fig. 7.47 compares a standard solar model with the same model but
with the convection zone replaced by a polytrope of index 3/2 and with a
constant Γ1 = 5/3; thus the model does not match the radius of the original
model. As shown in the figure this has a substantial effect on the large and
small separations, whereas the ratio rn0 is unchanged by even this major
model modification. Ot́ı Floranes et al. also developed kernels relating changes
to the model to changes in rnl, demonstrating that the sensitivity of rnl is
indeed localized to the interior of the star, with very small sensitivity to the
surface layers. Additional examples of near-surface modifications for a range
of stellar models were considered by Roxburgh (2005), further demonstrating
the minimal effect of the modifications on the separation ratios.

It is evidently similarly advantageous to use an average separation ratio in
a two-dimensional diagram such as Fig. 7.44; as a similar plot, Fig. 7.48 uses
the ratio between the averages. It is interesting that the curves of fixed mass
and fixed evolutionary state are more nearly orthogonal in this diagram, indi-
cating that it provides a more secure determination of the stellar properties.
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The near-surface errors clearly affect all comparisons between the observed
and model frequencies and hence must be kept in mind when analysing ob-
servations of solar-like oscillations. In the solar case, the availability of modes
over a broad range of degrees allows the effect to be eliminated in, for exam-
ple, inverse analyses for the solar internal structure (cf. Section 7.1.6.1). This
is clearly not possible with just the limited set of low-degree data available
from unresolved stellar observations, although the separation ratios discussed
above provide powerful measures of the stellar core. To obtain a more general
correction of the frequencies, additional assumptions are required. Kjeldsen et
al. (2008b) noted that the solar surface errors are rapidly varying functions of
frequency and hence assumed that they could be represented by a power law,

δ(surf)ν = a(ν/ν0)b , (7.81)

where ν0 is a suitable reference frequency and the amplitude a and exponent
b can be obtained from fitting to solar frequencies.28 They then assumed that
the solar value of b can be applied to other stars and showed how the correction
could be obtained from stellar data and a suitable reference model, on the
assumption that the frequency of the reference and true model are related
by a scaling by the inverse dynamical time scale (see Section 3.3.3.1). This
provides a practical technique for the analysis of the observed frequencies,
although under fairly strong assumptions which clearly need to be tested.
Tests of the effects of near-surface model modifications, such as presented
in Section 7.1.4.1, should clearly be carried out for other stellar parameters
and types of modifications. Also, one may hope that the coming extensive
observations of stellar oscillations (see Chapter 8) will yield data of a quality
that allows a direct test and will provide further insight into the physical
nature of these effects.

The above analysis, including the insensitivity of the ratio rn0 to the near-
surface effects, assumes that these are independent of the degree of the modes
and hence effectively that the star is spherically symmetric. This is probably
a reasonable assumption in the case of the hydrostatic structure, for slowly
rotating stars. However, as discussed in Section 7.1.9, the solar magnetic ac-
tivity has a significant effect on the solar frequencies, and similar effects must
be expected for solar-like stars. In the solar case the frequency changes are
closely correlated with the surface magnetic field (e.g., Howe et al. 2002) which
shows a strong dependence on latitude, with a concentration at low and inter-
mediate latitudes of the magnetically active regions; thus the effects depend
on the spatial structure of the modes, including their degree. Chaplin et al.
(2004b) and Toutain & Kosovichev (2005) did in fact find that the frequency
changes associated with the solar magnetic cycle depended on the degree of
the mode. It is evident that such degree-dependent effects would affect the
small separations, compromising their use as diagnostics of stellar cores. In
28 The analysis by Christensen-Dalsgaard & Gough (1980) of a specific case provides

some support for this functional form.
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the solar case Dziembowski & Goode (1997) argued that the effects could be
suppressed by using observations of higher-degree modes. In the stellar case
less direct methods, probably relying on other diagnostics of stellar activity,
will be required.

The effects of the sharp variation in the sound speed in the core of evolved
stars may be considered as a particular case of an acoustic glitch, i.e., a feature
in the structure of the star varying much more rapidly than the scale of the
eigenfunction. As discussed in Section 7.1.4.2 these give rise to an oscillatory
signature in the frequencies which can be used to characterize the location
and properties of the glitch. The potential of this for the diagnostics of the
solar interior, including the determination of the envelope helium abundance
and the properties of the convection-zone base, was discussed in Section 7.1.7.
This is obviously greatly aided by the availability of modes over a range of
degrees. However, such signatures can also be extracted from just low-degree
modes. Pérez Hernández & Christensen-Dalsgaard (1998) studied the diagnos-
tics of the second helium ionization zone based on a suitably filtered version
of the surface phase function α(ω) and showed that useful information can be
obtained from modes of degree l ≤ 2, such as are observed in unresolved inten-
sity observations. A detailed investigation of the sensitivity of the frequencies,
analysed in terms of the second difference Δ2νnl = νn−1 l − 2νnl + νn+1 l (cf.
Section 7.1.7) was made by Basu et al. (2004), considering models over a range
in mass and age; they concluded that the precision in the determination of
the helium abundance increased with stellar mass.

Monteiro et al. (2000) considered the detectability of the depth of, and pos-
sible overshoot from, convective envelopes in main-sequence stars, restricting
the data again to modes with l ≤ 2. They found that if the error of the
cyclic frequency was 0.1μHz or less a reasonably precise estimate could be
obtained of the depth of the convection zone, and of the amplitude of the
oscillatory signal (cf. Fig. 7.31) which characterizes the stratification near its
base. Signatures of the edges of convective regions, both convective envelopes
and convective cores, were also studied by Mazumdar & Antia (2001). They
pointed out potential problems as a result of “acoustic aliasing” giving rise
to indistinguishable signals from glitches at an acoustic depth τg, say, and
τ0 − τg, at least if only modes of a single degree are considered;29 if data from
several degrees are involved this ambiguity can be avoided, however.

A detailed investigation of the diagnostic potential for determining the
depth of the convection zone, as an acoustic glitch, with low-degree data was
made by Ballot et al. (2004). They considered both realistically simulated
data and low-degree solar data from GOLF and VIRGO. In addition to the
second difference Δ2νnl they investigated the use of lower- and higher-order
differences, concluding that Δ2νnl provided the best compromise between iso-
lating the rapidly varying components of the frequencies without too strongly

29 An illuminating discussion of such effects, with particular emphasis on g-mode
diagnostics of white dwarfs, was presented by Montgomery et al. (2003).
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increasing the error. From analysing artificial and real time series of varying
length they concluded that observations over at least 150 d are required to
obtain a reliable determination of the depth of the convection zone. A similar
analysis was carried out by Verner et al. (2006b), based on solar BiSON data
of degree l = 0−3, but considering the determination of both the signatures
of the second helium ionization zone and the base of the convection zone.
They concluded that the detection of the effect of helium ionization could be
obtained with as little as 82 d of data, whereas a reliable determination of
the envelope helium abundance required at least 300 d. Reasonably reliable
properties of the base of the convective envelope could be found from at least
182 d of data.

To derive optimal procedures for determining, and suppressing, the effects
of acoustic glitches Houdek & Gough (2007) made a careful asymptotic analy-
sis of the effects of the helium ionization zones and the base of the convection
zone on the frequencies. This resulted in an expression with a number of
parameters characterizing the depth, extent and location of the glitches asso-
ciated with the first and second helium ionization, the properties of the base
of the convective envelope and a term corresponding to the effect of the near-
surface layers on the frequencies. The analysis was carried out in terms of the
second difference Δ2νnl. An example is illustrated in Fig. 7.49. It is evident
that just from low-degree modes it is possible to isolate the three components
and hence obtain information about both the helium ionization zones and
the base of the convection zone. It should also be noted that the signals are
strongest at low frequency: here the wavelength of the modes is longest and
hence there is least smearing of the effect of the glitches. This illustrates the
importance of obtaining asteroseismic data for solar-like oscillations at the
lowest possible frequencies.

As pointed out by Houdek & Gough (2008), the frequency modifications
induced by the acoustic glitches also affect those properties of the frequencies
which are used to determine stellar ages. Thus in an analysis of solar data to
test asteroseismic age determination they applied a correction to the observed
frequencies for the effects of the glitches, based on a fitted function such as
the one illustrated in Fig. 7.49; the corrected frequencies were then fitted to
an asymptotic expression extending Eq. (3.219) to higher asymptotic order,
to determine the age and heavy-element abundance of the Sun. As in earlier
attempts, the models were all assumed to have solar mass, radius and lumi-
nosity. They found that the inclusion of the glitches substantially stabilized
the fit, as did the inclusion in the fit of a parameter measuring the depression
in Γ1, resulting from helium ionization. From this they obtained an age of
4.68 Gyr and Z = 0.0169, with some correlation between these two quantities.
Although the age is not entirely consistent with the meteoritic value, and
the assumption of known solar parameters has to be relaxed, these results
are clearly promising for the calibration of stellar ages based on high-quality
asteroseismic data.



7.2 Solar-Like Pulsators 553

Fig. 7.49. Second frequency differences Δ2νnl = νn−1 l − 2νnl + νn+1 l and
an asymptotic fit, based on 11 yr of BiSON data. In the top panel the symbols
show Δ2νnl based on the observed frequencies, for l = 0−3 as indicated, and
the solid curve shows the fitted function; the dashed curve is a slowly varying
component of the fit arising from the near-surface behaviour of the modes. The
lower panel shows the individual components of the fit, from the first (dotted
curve) and second (solid curve) helium ionization zones, as well as from the
base of the convection zone (dot-dashed curve). From Houdek & Gough (2007).

The sensitivity of small separations to the acoustic glitch at the base of the
convection zone, particularly for those, such as δ(1)νnl, that involve a broader
range in frequency, was also noted by Roxburgh (2009). He analysed the effect
for higher-order differences in terms of the inner phases δl (cf. Eq. (7.71)) and
pointed out that this can be used to define a measure of the acoustic radius at
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the base of the convection zone, based just on frequencies of modes of degree
l = 0, 1.

A detailed test of asteroseismic inferences was carried out by Monteiro
et al. (2002). They combined the inference of stellar mass and evolutionary
state, based on the diagram in Fig. 7.44, with an analysis of the oscillatory
signal arising from the base of the convection zone. Furthermore, they noted
that the determination of the appropriate measure of the large separation
should be corrected for the oscillatory feature arising from the acoustic glitch
associated with helium ionization. The analysis was carried out in a blind
fashion, as a so-called “hare and hounds” test, where one of the participants,
the hare, generated artificial data with realistic error properties, and other
participants, the hounds, attempted to infer the properties of the models used
to generate the data. The analysis showed the importance of combining the
asteroseismic data with “classical” data such as information about effective
temperature, luminosity and surface composition. In particular, this is needed
to constrain other parameters of the star, as illustrated by Fig. 7.44b. These
data were also provided by the hare, with realistic errors. The results of the
test showed that mass and evolutionary state could be recovered reasonably
successfully for the three cases considered, with indications also of differences
in the assumptions used in the model calculation. In two of the three cases
the signature of the base of the convection zone was also interpreted with
reasonable success, including the detection of convective overshoot in one case,
whereas in the third case the noise in the oscillation data led to an erroneous
interpretation of the oscillatory signal.

Mazumdar (2005) also made a careful analysis of the diagnostic potential
of combining frequency separations and signatures of acoustic glitches. He
noted that, in addition to the diagram in Fig. 7.44, a diagram involving the
large separation and the acoustic radius of the base of the convective envelope
provided a useful tool for determining the mass and evolutionary state of the
star. He applied these tools to the analysis of artificial data simulating a target
for the CoRoT mission, succeeding remarkably well in recovering the input
parameters of the underlying model.

A first step in any asteroseismic analysis is to determine the overall prop-
erties of the star. This can be formalized as the determination of a set of
parameters P = {pi}, i = 1, . . . , N which are determined from a set of ob-
servables O = {oj}, j = 1, . . . ,M . The observables may be “classical” ob-
servables such as photometric or spectroscopic quantities, quantities obtained
from such observables such as effective temperature or surface gravity, os-
cillation frequencies or quantities obtained from combinations of frequencies,
such as frequency separations or more complex combinations perhaps inspired
by the asymptotic analysis discussed above. It is assumed that the standard
error σj for each observable is known. The observables are related to the pa-
rameters through a model that allows each observable oj to be calculated
as oj = o

(m)
j (pi) as a function of the parameters. The parameters are then
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typically determined in a least-squares sense by minimizing30

χ2(pi) ≡
∑

j

[
oj − o

(m)
j (pi)
σj

]2

. (7.82)

In general, the dependence of the observables on the parameters is quite com-
plicated and hence it may be difficult to find the absolute minimum. One way
is to search in an extensive grid of stellar models, covering the appropriate
ranges of the relevant parameters (e.g., Guenther & Brown 2004); however,
the number of models in such grids increases very rapidly with the number
of parameters. A possibly more efficient technique is the use of nonlinear
optimization techniques, such as genetic algorithms (e.g., Metcalfe & Char-
bonneau 2003), which generally succeed remarkably well in finding the true
optimum. On the other hand, near the true solution where the relation be-
tween observables and parameters can be linearized, singular-value decompo-
sition provides a powerful tool for analysing the statistical properties of the
parameters (see Brown et al. 1994; Creevey et al. 2007).

The model obtained from the χ2 minimization forms the basis for further
analysis of the observed data, in the, likely common, case where the computed
observables differ significantly from the observations. This can involve further
analyses of the observations, for example in terms of additional combinations
of the frequencies, to inspire the required changes in the physics of the models
and hence the insight that is a central goal of asteroseismology. We recall, as
discussed in Section 7.1.6, that with sufficiently good data on just low-degree
modes it may in particular become possible to carry out inverse analyses to
infer the structure of the cores of solar-like stars.

7.2.2.2 Analysis of Stellar Rotation

Information about the internal rotation of solar-like stars would be of obvious
interest. This can in principle be obtained from measurement of the rotational
splitting of the observed frequencies (see Section 3.8). For relatively slow rota-
tion, as is probably relevant for most solar-like stars, this can be approximated
by

ωnlm � ωnl0 +mβnl〈Ω〉nl , (7.83)

as a function of the azimuthal order m, where βnl is close to one for high-order
acoustic modes; 〈Ω〉nl is an average over the stellar interior, weighted by the
rotational kernel, examples of which are shown in Fig. 3.39.31 For low-degree
acoustic modes the kernels are quite similar and all extend throughout most
of the stellar interior. Thus only limited information is available about the
30 Note that this is equivalent to the regularized least-squares inversion (see Sec-

tion 7.1.5, particularly Eq. (7.42)), although without the regularization.
31 Formally Eq. (7.83) is valid only for rotation that depends only on r; see Sec-

tion 3.8.4 for further details.
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Fig. 7.50. Schematic illustration of the observed power spectra for modes
of degree l = 1 and 2, assumed to be excited to the same true amplitude,
as functions of the inclination angle i between the rotation axis and the line
of sight. The plots assume a line width of 1μHz and an angular velocity of
six times the solar value; no background noise was included. From Gizon &
Solanki (2003).

variation of rotation with position in the star from such modes. In many cases
the available information will probably be restricted to a general measure of
the average internal angular velocity; however, if this can be combined with
a measurement of the surface rotation rate, for example from observation of
photometric variations associated with spots, evidence can be found for varia-
tions with position in the angular velocity, including a possible rapidly rotating
interior as might be expected from stellar evolution (see Section 3.2.4.2).

More detailed information is available if the observed oscillations include
mixed modes, with g-mode character and hence higher sensitivity to rotation
in the deep interior (see also Section 7.2.4.3). The potential for inferring the
internal rotation in this case was analysed in detail by Lochard et al. (2005),
based on predicted mode amplitudes and their detectability with the CoRoT
mission, in a 1.5 M� model towards the end of central hydrogen burning (see
also Section 7.2.4.3 below). They demonstrated that reasonable resolution of
the angular velocity could be obtained in the inner 0.3R of the star, in par-
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ticular detecting the presence in the model of a rapidly rotating core, whereas
only an average angular velocity could be obtained in the outer parts of the
star.

Such successful analysis of course assumes that the rotational splitting
can be measured for a suitable mode set. This involves several challenges and
opportunities. The finite width of the stochastically excited modes is a sub-
stantial challenge; in the solar case the width is comparable to the rotational
splitting, making it difficult to separate the components and introducing pos-
sible systematic errors (e.g., Appourchaux et al. 2000b; Chaplin et al. 2001a).
This problem would obviously be less in stars rotating more rapidly than
the Sun; on the other hand, it appears that the mode lifetime is shorter in
stars more massive than the Sun, which would complicate the analysis (e.g.,
Chaplin et al. 2008b).

A second challenge, which hides an opportunity, is the arbitrary orientation
of stellar rotation axes. In the solar case the rotation axis is close to the plane
of the sky and hence disc-integrated observations are essentially sensitive only
to modes with even l − m. In the stellar case, the apparent amplitude of a
mode depends strongly on the inclination i of the rotation axis to the line
of sight (see Section B.2). This must be kept in mind when identifying the
rotationally split components of the multiplet, potentially complicating the
analysis of the observations. On the other hand, for stochastically excited
oscillations it is expected that the modes are excited to an average amplitude
which depends slowly on frequency and is likely independent of m. Thus the
observed average amplitude, as a function of m, reflects the coefficients alm0(i)
defining the transformation of the spherical harmonics to the star’s system
of reference (see Eqs (B.19) and (B.20)). With observations of a sufficient
duration to determine the average amplitude, it is therefore possible to infer
the inclination of the rotation axis of the star. This was pointed out by Gizon
& Solanki (2003); Fig. 7.50 illustrates the observed average power as a function
of frequency and inclination, in a star rotating somewhat more rapidly than
the Sun. From Monte Carlo simulations Gizon & Solanki concluded that it was
possible to determine inclination angles i ≥ 30◦ from observations extending
over six months, assuming solar line widths and an angular velocity Ω of
at least twice the solar value Ω�. In an extension of this analysis Gizon &
Solanki (2004) concluded that some information could be obtained about the
latitudinal differential rotation from observations of modes with l = 1 and 2,
for 30◦ < i < 70◦ and Ω ≥ 4Ω�. More detailed investigations by Ballot et
al. (2006, 2008) highlighted the difficulties in the fit, particularly when the
rotational splitting is comparable with the mode line width. However, the
authors also noted the promise of observations extending over a very long
time, such as expected with the Kepler mission (see Chapter 8).
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7.2.3 The Binary α Centauri A and B

The αCen system is a triple system, consisting of the A and B components in
a fairly close orbit with a period of 79.9 yr, and the third component, Proxima
Centauri, with a mass of around 0.1 M�, in a distant orbit. Proxima Centauri
is the closest known star to the solar system, at a distance of 1.29 pc. The A
and B components have masses that span the solar mass, and the age of the
system is somewhat higher than the solar age, although both components are
still in the core hydrogen burning phase. Also, as a result of the proximity of
the system and the well-observed binary orbit, the overall parameters of the
stars are known with unusually high precision. Finally, solar-like oscillations
have been observed in both the A and B components. These features make
the system an ideal case for asteroseismic investigations, extending the results
that have been obtained for the Sun.

7.2.3.1 The Stars

Here we concentrate on the A and B components, of spectral types G2V
and K1V, respectively. The parallax of the system has been determined as
747.1 ± 1.2 mas (Söderhjelm 1999), corresponding to a distance of 1.339 pc.
From the orbital motion and the parallax the masses of the components were
determined by Pourbaix et al. (2002) as MA = 1.105 ± 0.007 M� and MB =
0.934 ± 0.006 M�. Also, from interferometric measurements of the angular
diameter, and the parallax, Kervella et al. (2003) determined the radii as
RA = 1.224 ± 0.003 R� and RB = 0.863 ± 0.005 R�.

The spectroscopic and photometric properties of the two stars are some-
what more uncertain. A recent analysis and review of earlier results was pro-
vided by Porto de Mello et al. (2008). They obtained Teff,A = 5824±26 K and
Teff,B = 5223 ± 62 K. From the composition analysis they found metallicities
for the two components of [Fe/H]A = 0.24 ± 0.03 and [Fe/H]B = 0.25 ± 0.04.
Here the logarithmic abundance ratio, relative to the Sun, for two elements
A and B is defined as

[A/B] = log
[

NA/NB
NA,�/NB,�

]
, (7.84)

where NA, NB are the abundances of A and B in the star, NA,�, NB,� are the
solar abundances, and log is logarithm to base 10. If the relative composition
of the heavy elements is the same as in the Sun, [Fe/H] is related to the
ratio Zs/Xs between the surface abundances by mass of heavy elements and
hydrogen, by

Zs

Xs
= 10[Fe/H]

(
Zs

Xs

)

�
. (7.85)

In fact, Porto de Mello et al. (2008) found that compared with the Sun, Na,
Mg, Si, Mn and Ni are somewhat overabundant relative to iron. In stellar
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modelling the composition is generally characterized by Zs/Xs; to determine
this from Eq. (7.85) the value of (Zs/Xs)� must be known but, as discussed in
Section 7.1.7, there has been some debate about this value. We return to this
point in Section 7.2.3.4 below. Earlier values of the effective temperature and
[Fe/H] from Neuforge-Verheecke & Magain (1997) have seen extensive use in
modelling of the stars; these results are essentially consistent with the results
of Porto de Mello et al. (2008).

The luminosity can be obtained from the apparent magnitude, the paral-
lax, and the bolometric correction required to relate the observed magnitude
to the total energy output of the stars. In this way Pijpers (2003) obtained
LA = 1.556 ± 0.011 L� and LB = 0.504 ± 0.008 L�, whereas Eggenberger et
al. (2004) found LA = 1.522 ± 0.030 L� and LB = 0.503 ± 0.020 L�. Alter-
natively, the luminosity can be obtained from the effective temperature and
radius; using the values quoted above we obtain LA = 1.547 ± 0.029 L� and
LB = 0.497 ± 0.024 L�, which are consistent with the photometric values.

Saar & Osten (1997) determined the rotational broadening of the lines of
αCen A as vΩ sin i = 2.7±0.7 km s−1; for the B component the broadening was
barely significant. Assuming that the rotation axis is orthogonal to the orbital
plane, whose orientation has been accurately determined (e.g., Pourbaix et al.
1999), i = 79.23◦; using also the measured radius we obtain a rotation period
Prot,A = 22.5 ± 5.8 d (Bazot et al. 2007).

Both components have been observed in X rays (see Ayres et al. 2008),
probably from hot coronae; the X-ray luminosity shows variations which might
be associated with stellar cycles, with possible asteroseismic signatures (Met-
calfe et al. 2007). Boccino & Mauas (2008) found possible evidence for a stellar
cycle in αCen B, from observations of Mg ii h+k emission; this also showed
shorter-term variations, with a period of 35.1 d, which may reflect the rotation
period of the star.

7.2.3.2 The Data

The αCen system was an obviously attractive target for early attempts at the
detection of solar-like oscillations in other stars. These early observations all
concentrated on αCen A as the brighter component. Gelly et al. (1986) used
an instrument based on sodium resonance scattering (see Section 7.1.1.3) on
the ESO 3.6-m telescope and claimed detection of p modes with a large sep-
aration Δν of 165.5μHz. This has not been confirmed by later observations,
however. Pottasch et al. (1992) used a Fabry-Perot-based velocity monitor
on the ESO 3.6-m telescope; they detected an apparent signal from p-mode
oscillations, with Δν = 110 ± 8μHz, and identified several possible oscilla-
tion frequencies. Edmonds & Cram (1995) used the UCLES32 spectrograph
on the Anglo-Australian Telescope (AAT) and detected a possible signal cor-
responding to δν = 106−110μHz, although with no definite identification

32 University College London Echelle Spectrograph.



560 7 Applications of Asteroseismology

of oscillations. Kjeldsen et al. (1999) made two-site observations, using the
ESO 3.6-m telescope and the AAT to measure the equivalent width of Hα.
They also found some indications of p-mode oscillations with two possible
identifications of modes, leading to Δν = 107.0 or 100.8μHz, and presented a
frequencies of a few modes. Schou & Buzasi (2001) analysed 50 d of photomet-
ric data from the WIRE satellite, determining a large separation of around
106μHz, but with no definite identification of individual frequencies. In none
of these cases, however, was the evidence for detection of the oscillations in
αCen A compelling; in particular, there was no clear enhancement of power
in the region where the solar-like oscillations were expected.

Thus the observations of αCen A by Bouchy & Carrier (2001, 2002) were
a major break-through for the study of the αCen system and indeed for as-
teroseismology of solar-like stars. They used the CORALIE fibre-fed spec-
trograph on the 1.2-m Swiss Euler telescope at La Silla. Their data, ob-
tained over 13 nights of observing, showed unambiguous evidence for solar-
like oscillations. Bouchy & Carrier (2002) determined the large separation as
Δν = 105.5±0.1μHz and an average small separation 〈δνn0〉 = 5.6±0.7μHz.
They also presented frequencies of 28 modes, with amplitudes between 12 and
44 cm s−1 and an estimated standard error in the frequencies of 0.46μHz. It
is interesting that the earlier determinations of a possible large separation,
except for the results of Gelly et al. (1986),33 are consistent with the value
obtained by Bouchy & Carrier (2002).

Carrier & Bourban (2003) observed αCen B for thirteen nights with the
CORALIE spectrograph. The data suffered to some extent from the rather
slow 80-s cadence of the observations and the correspondingly low Nyquist
frequency, but the power spectrum clearly showed the power in the p-mode
region. Analysis of the spectra resulted in Δν = 161.1±0.1μHz, 〈δνn0〉 = 8.7±
0.8μHz and the identification of twelve modes, although the frequencies may
have suffered from one-day aliases resulting from the single-site observations.

Very precise measurements of the oscillations of αCen A were obtained by
Butler et al. (2004), from two-site observations using the UVES spectrograph
on the ESO VLT and the UCLES spectrograph on the AAT; out of four allo-
cated nights on the VLT, three produced useful data, while data were obtained
from five of the six nights allocated on the AAT. The observations used io-
dine cells as spectrographic references (see Section 4.4.1); this yielded a noise
level in the combined spectrum of 2.0 cm s−1 at high frequency, which at the
time were the most precise velocity measurements in any star apart from the
Sun. The short segment of the UVES observations shown in Fig. 7.51 clearly
illustrates the low noise of the individual measurements and the presence of
oscillations, with beating caused by the interference of the large number of
modes involved.

33 Although possibly not significant, it is curious that the value of large separation
inferred by Gelly et al. (1986) is close to 3Δν/2 and might have arisen from
mis-interpreting the separation of Δν/2 between modes of even and odd degree.
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Fig. 7.51. A short typical stretch of Doppler-velocity observations of αCen A,
with the UVES spectrograph on the VLT (Butler et al. 2004); the error bars
show 1−σ velocity errors on each measurement, which were taken at a typical
cadence of 30 s. Data courtesy of H. Kjeldsen.

Bedding et al. (2004) made a careful analysis of these data. As discussed
in Section 7.2.1 optimized weights were given to the individual data to opti-
mize the sidelobes while maintaining a good signal-to-noise ratio. The result
is shown in Fig. 7.52, which also illustrates the window function (see Sec-
tion 5.3.3). The highest sidelobes are reduced to only 3.6% in power of the
main peak, although with an increase in the noise level at high frequency
from 2.0 to 2.9 cm s−1. We discuss the detailed analysis of this spectrum in
Section 7.2.3.2 below.

Similar observations, with four nights using UVES on VLT and six nights
using UCLES on AAT, were made by Kjeldsen et al. (2005) for αCen B.
The resulting power spectrum is also shown in Fig. 7.52. The fast cadence,
particularly in the UVES observations, allows the spectrum to include the
full region of significant power. In a noise-optimized spectrum based on these
data, the noise level at high frequency is a remarkable 1.4 cm s−1. The figure
shows a sidelobe optimized spectrum, with sidelobes of at most 13% of the
peak and a high-frequency noise level of 2.4 cm s−1. As argued by Kjeldsen et
al. (2005) this higher noise level, with the improved window function, is still
preferable for the seismic analysis discussed below.

Additional high-quality data were obtained for αCen A by Bazot et al.
(2007), in five nights’ observations with the HARPS34 spectrograph on ESO’s
3.6-m telescope. Also, Fletcher et al. (2006), following Schou & Buzasi (2001),
analysed 50 d of data on the A component from the WIRE satellite. Based on
the frequencies known from previous observations they applied autocovariance

34 High Accuracy Radial Velocity Planet Searcher.
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Fig. 7.52. Power spectra of observations of αCen A (top; Bedding et al. 2004)
and αCen B (bottom; Kjeldsen et al. 2005), obtained from two-site observa-
tions at the VLT and the AAT. The data combination used weights aimed an
suppressing the daily sidelobes in the window functions, which are shown in
insets on an expanded frequency scale. Adapted from Bedding et al. (2004)
and Kjeldsen et al. (2005).

fitting. The long time series allowed the direct fitting of the Lorentz profile
(see Section 7.1.2) and hence a determination of the mode lifetime; also, they
were able to measure the rotational splitting. We discuss these results in the
following section.
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Fig. 7.53. Power spectrum of αCen A folded and superposed with a large
separation of 106.2 μHz; the peaks corresponding to l = 0−3 are indicated.
From Bedding et al. (2004).

7.2.3.3 Mode Identification

To illustrate aspects of the mode identification and frequency analysis we
consider the analysis of the data on αCen A and B by Bedding et al. (2004)
and Kjeldsen et al. (2005), respectively.

A first indication of the modes present in the data can be obtained by
folding the spectrum at the average large separation which was determined as
Δν = 106.2μHz; this technique was applied to early disc-integrated helioseis-
mic data by Grec et al. (1980). The result for αCen A in Fig. 7.53 clearly shows
the presence in the spectrum of modes of degree l = 0−3, with approximately
the expected frequency structure. Also, as expected, the average amplitude
of the l = 3 modes is substantially smaller than for the other modes (see also
Fig. 7.1). A more detailed impression of the structure of the spectrum can be
obtained by plotting the power on a grey scale, in terms of reduced frequency
and frequency in an échelle format, as done in Fig. 7.54. The presence of four
ridges, corresponding to the four values of l, is fairly obvious; also visible is
the curvature of the ridges, corresponding to a variation of the large frequency
separation with frequency, and the decrease in the small separation δνn0 with
increasing frequency.

As discussed in Section 7.2.1 the frequencies were determined with a vari-
ant of the prewhitening technique, using sine-wave fitting successively to de-
termine and eliminate the largest-amplitude contributions. The result is illus-
trated in the échelle diagram in Fig. 7.54. In some cases the procedure found
two closely spaced peaks which most likely resulted from the stochastic ex-
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Fig. 7.54. The grey scale shows the observed power spectrum of αCen A
in échelle format. Peaks extracted with the successive prewhitening analysis
are indicated by squares (l = 0), diamonds (l = 1), triangles (l = 2) and
crosses (l = 3); the plus signs indicate additional peaks. whose degree could
not be identified. The amplitudes of the peaks are reflected in the sizes of the
symbols. The curves show fits to the frequencies (cf. Eq. (7.86)); the numbers
at the right side indicate the radial orders. Adapted from Bedding et al. (2004).

citation of a single mode. In this case Bedding et al. (2004) determined the
“true” frequency as a weighted mean of the two frequencies. Evidently, the
analysis procedure is still far from being fully automated.

Bedding et al. (2004) presented detailed tables of frequencies that will not
be reproduced here. However, the authors noted that the results could be
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represented by polynomial fits for each l (see also Ulrich 1986), as35

νn0 � 2364.09 + 105.71 ñ+ 0.082 ñ2 μHz ,
νn1 � 2414.15 + 106.04 ñ+ 0.082 ñ2 μHz ,
νn2 � 2464.33 + 106.35 ñ+ 0.082 ñ2 μHz ,
νn3 � 2509.75 + 106.61 ñ+ 0.082 ñ2 μHz , (7.86)

where ñ = n− 21. Since the fits average over the frequency scatter resulting
from the excitation they may provide a better basis for comparing with stel-
lar models. However, they should obviously not be used to extrapolate the
observed frequencies beyond the actual ranges of the observations. Bedding
et al. (2004) also determined the average small separations

〈δνn0〉 = 5.46 ± 0.76μHz , 〈δνn1〉 = 10.99 ± 0.77μHz ,
〈δ(1)νn0〉 = 2.41 ± 0.71μHz . (7.87)

A similar analysis of observations of αCen B was made by Kjeldsen et al.
(2005). Again, the power spectrum clearly showed modes of degree l = 0−3
and the frequencies of a total of 37 modes were determined. The average large
separation was determined as Δν = 161.38 ± 0.06μHz and the average small
separations were

〈δνn0〉 = 10.14 ± 0.62μHz , 〈δνn1〉 = 16.73 ± 0.65μHz ,
〈δ(1)νn0〉 = 4.52 ± 0.51μHz . (7.88)

As for αCen A it is convenient to represent the individual frequencies by
power-law fits, as

νn0 � 3950.57 + 161.45 ñ+ 0.101 ñ2 μHz ,
νn1 � 4026.23 + 161.28 ñ+ 0.101 ñ2 μHz ,
νn2 � 4101.41 + 161.63 ñ+ 0.101 ñ2 μHz ,
νn3 � 4171.13 + 161.76 ñ+ 0.101 ñ2 μHz . (7.89)

where now ñ = n− 23.
Kjeldsen et al. (2005) also determined the lifetimes of the modes in αCen

A and B from analysis of the scatter of the frequencies around a smooth curve.
The analysis of αCen B was calibrated on the basis of artificial data corre-
sponding to the observations, at varying mode lifetimes and noise level. Also,
the authors confirmed that application of the calibration to corresponding
segments of GOLF solar data yielded lifetimes consistent with those deter-
mined from the width of Lorentzian profiles (cf. Section 7.1.3.1). For αCen B

35 These expressions were obtained in a one-step fitting procedure, as described by
Kjeldsen et al. (2005), and hence differ slightly from the expressions presented by
Bedding et al. (2004).
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the lifetime was determined as 3.3+1.8
−0.9 d at a frequency of 3.6 mHz, whereas a

similar analysis based on the αCen A observational window yielded a lifetime
of modes of that star of 2.3+1.0

−0.6 d at 2.1 mHz. For both stars there was a ten-
dency towards decreasing lifetime with increasing frequency, as also observed
in the solar case (see Fig. 7.7).

This analysis was repeated by Bazot et al. (2007), on HARPS observations
of αCen A. They found that the frequency scatter increased with the degree
of the modes and noted that this could be the result of rotation, with random
excitation of the individual components of the multiplets. Thus the lifetime
estimate obtained from the frequency scatter, averaging over all degrees, must
be a lower limit to the true lifetime. The data available to Bazot et al. (2007)
were not sufficiently extensive to allow the determination of the rotation rate
or corrected lifetimes. However, the fits by Fletcher et al. (2006) of Lorentzian
profiles to the 50 d of WIRE data yielded an average lifetime of 3.9 ± 1.4 d
for αCen A. Although formally consistent with the results of Kjeldsen et al.
(2005), the somewhat longer inferred lifetime may reflect the effect of rotation
on the frequency-scatter analysis of Kjeldsen et al. Also, the fits by Fletcher et
al. (2006) indicated a rotational splitting of 0.54±0.22μHz, which is consistent
with the rotation period of 22 ± 6 d inferred from the rotational broadening
of spectral lines (see Section 7.2.3.1).

7.2.3.4 Seismic Modelling

The components of a binary such as αCen A and B must be assumed to be
formed at the same time and out of the same interstellar cloud. Thus models of
the system assume that the two stars have the same initial abundances Yi and
Zi by mass of helium and heavy elements, and the same age τ∗. As discussed
in Section 3.2.1.3, the models are also characterized by the mixing-length pa-
rameter αML (or an equivalent parameter in other treatments of convection).
Since this parameter reflects the detailed physical processes in the upper parts
of the convection zone, there is no reason to expect it to be the same for the
two components. However, in the same way as the solar value of αML is often
used for stellar modelling for the lack of a better alternative, early modelling
of αCen A and B often assumed that they shared the same αML, occasionally
taken to be the solar value. An interesting aspect of the asteroseismic data is
the possibility of relaxing this assumption, hence potentially getting precise
observational information about the properties of stellar surface convection.

The results of the modelling of the system obviously also depend on the
details of the physics of the calculation, such as the equation of state, opacity
tables and nuclear parameters, as well as on whether or not diffusion and
settling have been included.

In addition, there is some variation in the assumed “classical” observables.
Thus there are significant variations in the resulting models, at least when
asteroseismic constraints are not included.
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Perhaps the first detailed modelling of the system was made by Flannery
& Ayres (1976). From requiring that the models reached the observed lu-
minosities at the same age they concluded, in agreement with the existing
spectroscopic data, that the system was somewhat more metal-rich than the
Sun; they obtained an age of around 6 Gyr. A similar conclusion was reached
by Demarque et al. (1986) who investigated the sensitivity of the modelling
to the uncertainties in the assumed parameters, including the mass. This was
probably also the first investigation considering asteroseismic aspects, not-
ing that the large separation of 165.5μHz for αCen A claimed by Gelly et
al. (1986) was inconsistent with the models.36 A detailed investigation of the
sensitivity of the models to the parameters of the calculation was made by
Edmonds et al. (1992), who also allowed different values of αML for the two
components. In addition, they considered the effects of helium diffusion and
settling, which for αCen A was found to have some effect on the inferred
αML, bringing it closer to the solar value. The inferred age of the system was
4.6± 0.4 Gyr. Anticipating asteroseismic observations they presented detailed
frequency results for the two components. Noels et al. (1991) used the observed
luminosities and effective temperatures to determine Yi, Zi, αML (assumed to
be the same for the two components) and the age of the system. They again
obtained a metal-rich composition, and the age was found to be 5–6 Gyr. Ly-
don et al. (1993) concentrated on the treatment of near-surface convection in
the modelling. They compared a description based on numerical simulation of
convection (Lydon et al. 1992) with the mixing-length treatment, in fitting the
observed radii and luminosities of the stars; based on matching to these more
sophisticated models they concluded that within the observational and theo-
retical errors the same value of αML can be assumed for the Sun and αCen A
and B. They also noted that the model of the A component may develop a
convective core during its evolution, at sufficiently high heavy-element abun-
dance. The inferred age of the system was around 5 Gyr. The effects of the
convection treatment were also discussed by Fernandes & Neuforge (1995).

Very extensive modelling of the system was carried out by Guenther &
Demarque (2000). They included diffusion and settling of helium and heavy
elements, and allowed different values of αML for the two components. As
did Lydon et al. (1993) they noted the importance of the possible convective
core in αCen A, including the effect on the inferred age. Their best model
did include a convective core and had an age of 7.6 Gyr. They also made
extensive calculations of oscillation frequencies for the two components, to in-
vestigate the potential for asteroseismic analyses. Interestingly, they noticed
that their best model of the A component was sufficiently evolved to show
mixed modes at frequencies below 900μHz and thus the potential to obtain
stronger constraints on the core of the star if such modes could be observed.
Guenther & Demarque (2000) also made a detailed investigation of the sensi-

36 This is in fact rather obvious, given the scaling of Δν as t−1
dyn and the observational

constraints on the star.
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tivity of the results to the uncertainties in the global observed parameters of
the system. A detailed analysis of the αCen system was also carried out by
Morel et al. (2000). They characterized the models by the set of parameters
{τ∗, Yi, [Fe/H]i, αML,A, αML,B}, where [Fe/H]i is the initial metallicity, in terms
of the logarithmic ratio (cf. Eq. (7.84)) and assuming that (Zs/Xs)� = 0.0245.
They carried out a χ2 fit (cf. Eq. (7.82)) of these models to a set of observed
quantities, defined as the effective temperatures, surface gravities and sur-
face metallicities [Fe/H]s of the two components, keeping the masses fixed,
although considering two different pairs of masses, one from Pourbaix et al.
(1999) and one that matched the models of Guenther & Demarque (2000). All
models of αCen A were found to have a convective core; Morel et al. (2000)
considered models both without and with convective core overshoot (of 0.2
pressure scale heights). Near-surface convection was treated both using the
Böhm-Vitense (1958) and the Canuto & Mazzitelli (1992) treatments. The
results of the fits showed a remarkable spread in the inferred age, ranging
from 2.7 to 4.1 Gyr when using the Pourbaix et al. (1999) masses, while the
age obtained using the same masses as Guenther & Demarque (2000) was
5.6 Gyr. Morel et al. (2000) also made an extensive analysis of the astero-
seismic potential of frequency observations of the αCen system, noting the
sensitivity of the second differences to the envelope helium abundance and
depth of the convection zone (see Section 7.2.2.1).

With the availability of the observed frequencies for αCen A from Bouchy
& Carrier (2001, 2002) a proper asteroseismic investigation of the αCen sys-
tem could start. The fits to the observations have generally been made in
terms of the large and small frequency separations, rather than to the in-
dividual frequencies. The argument for this is that the near-surface effects
(see Section 7.1.4.1) give rise to an unknown shift between the observed and
modelled frequencies, even for a model that otherwise matches the structure
of the star; such a shift is often represented as a constant offset between the
observed and the model frequencies, e.g., when presenting the results in an
échelle diagram. It should be noted, however, that this procedure ignores the
strong frequency dependence of the near-surface perturbation to the frequen-
cies, at least as seen in the Sun (cf. Fig. 7.24) and hence expected in solar-like
stars; in particular, the perturbation also has a significant effect on the large
frequency separation.

Thévenin et al. (2002) made a first comparison between observed frequen-
cies determined by Bouchy & Carrier (2001) and stellar models. The mod-
elling was an extension of the work of Morel et al. (2000), in this case using
the Canuto & Mazzitelli (1992) convection formulation, assuming the same
convective parameter for the A and B components. Thévenin et al. found that
to obtain a good match to the observed oscillation parameters, characterized
by the large and small separations, the masses should be considered as param-
eters constrained within the error bars of the astrometric analysis, rather than
as fixed quantities. In this way they obtained models that satisfied the obser-
vational constraints, and an age of the system of 4.85±0.50 Gyr; the model of
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αCen A

Eggenberger et al. Miglio & Montalbán Teixeira et al.

M/M� 1.105 1.105 ± 0.007 1.105 ± 0.007

L/L� 1.522 ± 0.030 1.522 ± 0.030 1.556 ± 0.011

Teff (K) 5810 ± 50 5810 ± 50 5830 ± 30

R/R� 1.224 ± 0.003 1.224 ± 0.003 1.224 ± 0.003

(Z/X)s 0.038 ± 0.004 0.039 ± 0.006 0.037 ± 0.004

ν̄21,0 (μHz) 2364.27 ± 0.28

Δν0 (μHz) 105.5 ± 0.1 105.60 ± 0.65 105.78 ± 0.10

δ02 (μHz) 5.6 ± 0.7 6.04 ± 0.65 6.24 ± 0.63

δ13 (μHz) 10.53 ± 0.75

αCen B

Eggenberger et al. Miglio & Montalbán Teixeira et al.

M/M� 0.934 0.934 ± 0.006 0.934 ± 0.006

L/L� 0.503 ± 0.020 0.503 ± 0.020 0.504 ± 0.008

Teff (K) 5260 ± 50 5260 ± 50 5255 ± 50

R/R� 0.863 ± 0.005 0.863 ± 0.005 0.863 ± 0.005

(Z/X)s 0.040 ± 0.005 0.039 ± 0.006 0.037 ± 0.004

ν̄21,0 (μHz) 3627.80 ± 0.28

Δν0 (μHz) 161.1 ± 0.1 161.20 ± 0.65 160.73 ± 0.10

δ02 (μHz) 8.7 ± 0.8 8.50 ± 0.65 9.99 ± 0.97

δ13 (μHz) 19.94 ± 1.15

Table 7.1. Observational constraints on the αCen system used in the modelling
by Eggenberger et al. (2004), Miglio & Montalbán (2005) and Teixeira et al. (in
preparation). The values of Δν0, δ02 and δ13 are suitable averages of the large
separation and the small separations δνn0 and δνn1, respectively. See text for details.

αCen A had a small convective core. However, the individual frequencies were
around 30μHz higher than the observed values. Thoul et al. (2003) modelled
the system without including diffusion and settling, fixing the masses at the
values of Pourbaix et al. (2002). They obtained a model, at an age of 6.4 Gyr,
which fitted the observational constraints; interestingly, they also found a rea-
sonable fit between the computed and observed frequencies, with a maximum
difference, around 10μHz, which is similar to the differences seen in the solar
case and of the same sign.

Extensive modelling of the αCen system was carried out by Eggenberger
et al. (2004) and Miglio & Montalbán (2005), based on the observations of
Bouchy & Carrier (2002) and Carrier & Bourban (2003). The (slightly dif-
ferent) observational constraints applied in the modelling are summarized in
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Table 7.1.37 The oscillation data were generally represented by frequency sep-
arations or, in some of the calculations by Miglio & Montalbán, by a ratio be-
tween the small and large separation, in the manner of Roxburgh & Vorontsov
(2003) (see Section 7.2.2.1). Only modes of degree l = 0−2 were included.
Eggenberger et al. (2004) kept the masses, as determined by Pourbaix et al.
(2002), fixed in the fit. Their models included diffusion and settling of helium
and heavy elements and treated convection using the mixing-length formalism.
They characterized the present surface compositions by [Fe/H] = 0.22 ± 0.05
and 0.24±0.05 for αCen A and B, respectively, and converted this to (Z/X)s
assuming (Z/X)s,� = 0.0230 (Grevesse & Sauval 1998). Based on a model
grid the agreement between the model and the observations were character-
ized by a departure χ2

tot (see Eq. (7.82)) involving non-seismic observables as
well as the average large and small separations. Once a preliminary solution
had been obtained by minimizing χ2

tot a refined grid was computed and the
final model was obtained by minimizing in addition χ2

astero, obtained from the
difference between the observed and computed frequencies but subtracting a
mean difference, to correct for near-surface effects. The initial application of
the procedure to the observations in Table 7.1 yielded a model with a sub-
stantial discrepancy from the frequency observations. To improve the overall
agreement, Eggenberger et al. redid the analysis increasing by a factor of two
the assumed standard error of the radii for both components. The result-
ing models were essentially consistent with these revised observational con-
straints. Some properties of the solution are given in Table 7.2. The resulting
frequencies were compared with the observations in échelle diagrams. These
show excellent agreement between models and observations, but only if the
computed frequencies were increased by 19μHz for αCen A and decreased by
0.7μHz for αCen B.

Miglio & Montalbán (2005) in most cases chose the same observables as
did Eggenberger et al. (2004), although they preferred the composition given
by Thoul et al. (2003). Also, unlike Eggenberger et al. they did not fix the
masses but instead regarded them both as observables, as given by Pourbaix
et al. (2002) with the associated standard error, and as parameters in the
calculation. In addition to the “classical” observables they included as as-
teroseismic data either the average large and small separations or the ratio
rn0 (cf. Eq. (7.79)) which is insensitive to the near-surface problems in the
model. The models in most cases included diffusion and settling of helium
and heavy elements. The fit was carried out through χ2 minimization, using
the Levenberg-Marquardt method (see Bevington & Robinson 1992); this is
a gradient-expansion technique which in particular guarantees rapid conver-
gence close to the optimal solution. Thus it is far more efficient than techniques
based on extensive grids, although with the risk of finding a local minimum
of χ2 that does not correspond to the true optimal solution. Miglio & Mon-

37 We are grateful to A. Miglio for providing the frequency data used by Miglio &
Montalbán (2005), shown in the table.
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Eggenberger et al. Miglio & Montalbán Teixeira et al.

A B A B A B

M/M� 1.105 0.934 1.104 0.926 1.111 0.928

Yi 0.275 0.275 0.282 0.282 0.261 0.261

(Z/X)i 0.0434 0.0434 0.0476 0.0476 0.0404 0.0404

αML 1.83 1.97 1.96 2.11 2.222 2.142

Age (Gyr) 6.52 6.52 6.4 6.4 6.98 6.98

L/L� 1.497 0.522 1.509 0.520 1.552 0.505

Teff (K) 5769 5270 5782 5259 5823 5228

R/R� 1.227 0.868 1.226 0.870 1.226 0.868

(Z/X)s 0.0386 0.0402 0.039 0.042 0.0342 0.0361

ν21,0 (μHz) 2364.37 3627.84

Δν0 (μHz) 105.9 161.7 106.6 161.0 105.6 160.5

〈δνn0〉 (μHz) 4.6 10.3 5.35 9.72 4.83 9.83

〈δνn1〉 (μHz) 8.09 17.02

Table 7.2. Results of modelling of the αCen system by Eggenberger et al. (2004),
Miglio & Montalbán (2005) and Teixeira et al. (in preparation). For Eggenberger et
al. the case M2 is shown, where the standard errors on R/R� were increased by a
factor two. The results for Miglio & Montalbán are for their case (A2, B2), allowing
variations in the masses and different αML for the two stars, and representing the
oscillation data by average large and small separations.

talbán considered a large number of combinations of observables, parameters
and model physics; an example of their solutions is included in Table 7.2. For
this model the computed frequencies agree with the observed values to within
around 10μHz. The inferred parameters are clearly fairly similar to those
obtained by Eggenberger et al. (2004); as in that case the mixing-length pa-
rameter is slightly higher for αCen B than for αCen A.38 Unlike the analysis
by Morel et al. (2000) the inferred age was largely insensitive to the choice
of convection treatment. Miglio & Montalbán made a detailed investigation
of the effects of various modifications to the physics. In general, comparable
fits although with somewhat different parameters were obtained in models
without diffusion and settling, or with a different equation of state. Thus
the present observational data are not sufficient to test these aspects of the
physics. However, it was noted that the observed small separation δ

(1)
n0 (cf.

Eq. (7.68)) favoured models without a convective core.
As a final example of a detailed fitting of the data on the αCen A system

we consider the so far unpublished analysis by Teixeira et al. (in prepara-

38 The difference in the values of αML might reflect differences in other parameters
characterizing the convection treatment.
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tion).39 Unlike the previous two analyses, they used the observed oscillation
frequencies from Bedding et al. (2004) and Kjeldsen et al. (2005), for the A
and B components, respectively. As discussed in Section 7.2.3.2 these included
modes of degree l = 0−3, and the data on αCen B obtained by Kjeldsen et al.
(2005) were also in other respects rather more extensive than those of Carrier
& Bourban (2003). For the comparison with the models the frequencies were
represented by fits such as those provided in Eqs (7.86) and (7.89);40 oscilla-
tion quantities for the models were obtained through similar fits to precisely
the mode set included in the observations, to ensure full consistency. The
fitted parameters were given by

ν̄21,0 , Δν0 =
1
2

(ν̄22,0 − ν̄20,0) , r̄21,0 = 2
ν̄21,0 − ν̄20,2

ν̄22,0 − ν̄20,0
,

r̄21,1 = 2
ν̄21,1 − ν̄20,3

ν̄22,1 − ν̄20,1
, (7.90)

where ν̄nl is the frequency resulting from the fit. Masses were obtained from
Pourbaix et al. (2002) and were regarded as observables, as did Miglio &
Montalbán (2005). The remaining global properties were generally taken from
Pijpers (2003). The full list of observables is included in Table 7.1; for com-
parison with the other analyses the separation ratios have been replaced by
the corresponding small separations.

As indicated, the fit also included frequency values which are sensitive to
the near-surface effects, as are the large separations. To correct for these effects
Teixeira et al. made the assumption that they are similar to the frequency
modification that has been determined in the solar case, if the frequencies
are measured in terms of the acoustic cut-off frequency νac. Specifically, they
represented the frequency change resulting from the near-surface effects as

δνsurf = λsurfG�(ν/νac) , (7.91)

where λsurf is a scale factor that must be determined. Here the function G� was
obtained from the function H2(ω) resulting from an asymptotic fit to the dif-
ferences between observed and modelled solar frequencies (see Section 7.1.4.4,
in particular Eq. (7.19)), shifted such as to be zero at low frequency. The re-
sulting function, scaled to the case of αCen A with νac = 3827μHz is shown
in Fig. 7.55; this was determined from MDI observations with l ≤ 100 and
frequencies of Model S of Christensen-Dalsgaard et al. (1996). This correction
was incorporated in the frequency calculation before deriving the quantities
that were fitted to the observations.

Teixeira et al. used a simultaneous χ2 fit to the observations of the A and
B components, with the Levenberg-Marquardt technique similar to the fit of
39 The participants in this project are T. C. Teixeira, T. R. Bedding, H. Kjeldsen,

F. P. Pijpers and J. Christensen-Dalsgaard.
40 The analysis by Teixeira et al. used earlier versions of the data and hence slightly

different fitting parameters.
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Fig. 7.55. Surface frequency correction G�; the lower abscissa has been
rescaled to correspond to αCen A, on the assumption that the correction is
a function of ν/νac, shown on the upper abscissa. The vertical dashed line
and the vertical dotted lines indicate ν21,0 and ν21,0 ±Δν21,0, respectively, as
observed for α Cen A (cf. Eq. (7.90) and Table 7.1).

Miglio & Montalbán (2005), for the parameters

{MA,MB, Yi, Zi, αML,A, αML,B, τ∗} . (7.92)

In principle the scaling factor λsurf could also have been included as a param-
eter of the fit, probably allowing different values for the A and B components.
In the present fit, however, λsurf was fixed at the value 0.75, determined from
a separate analysis. The results of the fit are presented in Table 7.2. Interest-
ingly, a slightly higher age was obtained than in the analyses of Eggenberger
et al. (2004) and Miglio & Montalbán (2005). Also, unlike those analyses
the inferred mixing length is slightly larger for αCen A than for αCen B. Fig-
ure 7.56 shows the resulting evolution tracks, compared with the observational
error boxes in Teff and L/L�. As is also clear from Tables 7.1 and 7.2 the fit
successfully reproduced these quantities. The fit to the observed frequencies
is illustrated in the échelle diagrams in Fig. 7.57. There is clearly a reasonable
agreement between the computed frequencies (which include the correction for
the near-surface effects) and the observations, although potentially interesting
differences are visible. In particular, it appears that the small separations δνn1

are somewhat smaller for the models than for the observations. This certainly
requires further investigations.

The best-fitting model of αCen A does not develop a convective core in this
case; however, even a slight change in the parameters may lead to a model
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Fig. 7.56. The solid curves show the evolution tracks corresponding to the
fit of Teixeira et al., indicated in Table 7.2. The stars show the observed values
of Tell and L/L�, surrounded by 1−σ error boxes, and the best-fitting models
are marked by triangles; the insets show a magnified view of the fits. The
dashed curve shows a model of αCen A with slightly modified parameters
which develops a convective core (see text).

with a convective core. This is illustrated by the dashed curve in Fig. 7.56
which was computed with a mass higher by 0.04% than the best-fitting model
and with changes in the remaining parameters below 0.2%. In this case the
model develops a convective core with a maximal mass of 0.03M at an age of
7.296 Gyr. As shown, this is sufficient to lead to a major deterioration in the
fit. Such sensitivity to the parameters clearly complicates the fitting greatly,
since the onset of the convective core corresponds to a discontinuous change
in the model, so that the solution cannot be linearized in the parameters. On
the other hand, it also demonstrates the potential value of the αCen system
in obtaining constraints on core convection.

Additional modelling of the αCen system has been presented by Yıldız
(2007, 2008). Unlike the detailed analyses presented above he found some
discrepancy between the age of the system inferred from the “classical” ob-
servables compared with including the asteroseismic data. The reasons for
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Fig. 7.57. Échelle diagrams for αCen A (with Δν = 106.0 μHz; panel a)
and αCen B (with Δν = 162.6 μHz; panel b). The degree l is indicated by the
symbol type, as shown. The filled symbols show the observed frequencies; the
open symbols show the computed frequencies, based on the Teixeira et al. fit,
corrected for near-surface effects according to Eq. (7.91) with λsurf = 0.75 (see
also Fig. 7.55).

these apparently different conclusions deserve further investigation, including
comparisons of the codes used for the model calculation.

The detailed data available for αCen provide interesting possibilities for
investigating the physics of the models and the oscillations. Following the early
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work of Lydon et al. (1993), Straka et al. (2007) computed hydrodynamical
simulations of convection in the outer layers of αCen A and B and applied
the results to full models of the star. As has been found in the solar case
(Rosenthal et al. 1999; Li et al. 2002) the resulting change to the hydrostatic
structure goes some way towards reducing the frequency differences arising
from the near-surface effects (cf. Section 7.1.7). In an interesting analysis of
the amplitudes of modes in the Sun and αCen B, Chaplin et al. (2009) found
evidence that the computations of mode damping rates, based on the con-
vection treatment of Balmforth (1992a), underestimated the damping rate at
high frequency; this was based on assuming that the stochastic energy input
rate was correctly modelled, allowing a determination of the damping rate in
αCen B which was consistent with the values inferred from frequency scatter
by Kjeldsen et al. (2005). The resulting damping rate was found to correspond
in shape to the solar damping rate, if frequency was measured in units of the
acoustic cut-off frequency. Further investigations along these line, extended to
other stars, will be of obvious value in the understanding of the mode physics
of solar-like oscillations.

7.2.4 The Subgiant η Bootis

7.2.4.1 The Star

ηBoo is a subgiant star of spectral type G0 IV. From the modelling discussed
below it is identified to be just beyond the core hydrogen burning phase.
As discussed in Section 7.2.4.3 below, the resulting compact core gives rise to
mixed modes in the range of frequencies corresponding to solar-like oscillations
and hence makes the star particularly interesting for asteroseismology.

The star is a member of a spectroscopic binary system with a period of
494 d (Bertiau 1957); from extensive interferometric measurements van Belle
et al. (2007) concluded that the companion must be fainter than the primary
by more than 5 magnitudes. From spectral line widths ηBoo is found to
be a moderately rapidly rotating star, with vΩ sin i = 13 km s−1, recently
confirmed by observations by Carrier et al. (2005) (see below). This somewhat
reduces the sensitivity of Doppler-velocity observations to oscillations of the
star. The Hipparcos parallax is 88.17 ± 0.75 mas. The angular diameter was
measured by Thévenin et al. (2005) as 2.20 ± 0.03 mas, corresponding at the
Hipparcos distance to R/R� = 2.68±0.05; independent measurements by van
Belle et al. (2007) yielded very similar results, with a slightly smaller error.
The star is clearly metal-rich, although the abundance determinations show
considerable scatter; Taylor (2003) obtained a value of [Fe/H] = 0.295±0.039,
while Carrier et al. (2005) preferred [Fe/H] = 0.23 ± 0.07. Edvardsson et
al. (1993) found substantial overabundances, relative to Fe, of Na, Mg, Al
and Si, although modelling of ηBoo has generally assumed a solar relative
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Fig. 7.58. Observed power spectrum of ηBoo, based on observations of the
equivalent widths of the hydrogen Balmer lines. The inset shows the window
function, on an expanded frequency scale. From Kjeldsen et al. (1995).

composition.41 The effective temperature was determined as 6058 ± 50 K by
Taylor (2003b) while Carrier et al. (2005) chose a possibly more realistic error,
in setting Teff = 6030±90 K. From the V magnitude, parallax and bolometric
correction Bedding et al. (1998) obtained L/L� = 9.02 ± 0.22, while Pijpers
(2003) found L/L� = 9.2 ± 0.4.

7.2.4.2 The Data

Solar-like oscillations were first detected in ηBoo by Kjeldsen et al. (1995).
This was in fact the first time that definite frequencies of such oscillations
in a distant star had been identified. Kjeldsen et al. used a technique based
on measuring the equivalent widths of the hydrogen Balmer lines, effectively
reflecting the temperature variations in the stellar atmosphere (Bedding et
al. 1996). Since the measurement is made relative to the nearby continua,
effects of the Earth’s atmosphere largely cancel. The observations were made
over 6 nights at the Nordic Optical Telescope on La Palma. The resulting
power spectrum is illustrated in Fig. 7.58; this showed a clear enhancement of
power at the expected location, with peaks with a roughly uniform spacing
corresponding to Δν � 40μHz. The analysis led to the identification of 13
modes with l = 0−2. We discuss the detailed interpretation of these data
below.

Given this remarkable detection an independent confirmation was clearly
highly desirable. Thus it was cause of some concern that radial-velocity obser-
vations of ηBoo by Brown et al. (1997) failed to show the oscillations. They
observed the star over seven nights, with a relatively low duty cycle, using the

41 In a recent analysis, Bruntt (in preparation) obtained [Fe/H] = 0.30± 0.06, with
relative abundances very close to solar. He also obtained Teff = 6130 ± 70 K.
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Fig. 7.59. Observed power spectrum of ηBoo, based on Doppler velocity
observations over 13 nights. The inset shows the window function, on an ex-
panded frequency scale. Adapted from Carrier et al. (2005).

AFOE42 spectrograph at the Whipple Observatory, Mount Hopkins. Their
results indicated an upper limit of 0.5 m s−1 on any solar-like oscillations in
ηBoo; although it is not straightforward to convert the equivalent-width sig-
nal of Kjeldsen et al. (1995) into velocity, this limit is substantially below the
expected velocity amplitude. Not surprisingly, the lack of detection by Brown
et al. (1997) led to questioning of the original detection by Kjeldsen et al.

Additional observations of ηBoo have fully confirmed the presence of solar-
like oscillations and added to the identified modes. Kjeldsen et al. (2003)
reported the results of a substantial programme to observe the star, based
on six nights of measurements of the Balmer-line equivalent width with the
Nordic Optical Telescope and 56 nights of Doppler-velocity observations, al-
though with poor weather, with the Coudé Auxiliary Telescope at the Lick
Observatory. The latter observations showed long-term variations which the
authors identified as likely resulting from stellar activity. The two sets of
data clearly showed consistent solar-like oscillations; interestingly, the ampli-
tudes appeared to be somewhat lower than during the original observations
of Kjeldsen et al. (1995) and consistent with the upper limit determined by
Brown et al. (1997); while such amplitude variations are not unexpected for
stochastically excited modes they clearly provide a plausible explanation for
the non-detection by Brown et al.

Carrier et al. (2005) carried out Doppler-velocity observations with the
CORALIE spectrograph at the Euler telescope at La Silla and the ELODIE
spectrograph at Observatoire Haute-Provence. Fourteen nights of observations
were obtained with CORALIE, whereas only three nights were available on
ELODIE as a result of bad weather. The resulting power spectrum is shown
in Fig. 7.59. The power envelope from the stochastically excited oscillations is
evident; since the ELODIE data made a modest contribution to the spectrum

42 Advanced Fiber Optic Echelle.
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Fig. 7.60. Échelle diagram based on frequencies of ηBoo, with a frequency
separation of Δν = 40.3 μHz (cf. Eq. (3.224)). The filled circles show observed

frequencies from Kjeldsen et al. (1995), with a reference frequency of ν
(obs)
0 =

846μHz. The open symbols show computed frequencies for a model with M =
1.60 M� and Z = 0.03; here the reference frequency was ν

(mod)
0 = 856μHz.

Circles are used for modes with l = 0, triangles for l = 1, squares for l = 2
and diamonds for l = 3. Adapted from Christensen-Dalsgaard et al. (1995b).

the window function, illustrated in the inset, shows large daily sidelobes. From
the power spectrum Carrier et al. identified 22 individual frequencies. The
maximum amplitude was around 80 cm s−1. We discuss the mode identification
from this dataset and the observations of Kjeldsen et al. (2003) in the following
section.

The MOST satellite made photometric observations of ηBoo over 27 d,
with a very high duty cycle (Guenther et al. 2005). The power spectrum
showed little evidence for a power enhancement corresponding to solar-like
oscillations; however, Guenther et al. identified a sequence of peaks as corre-
sponding to radial modes, extending to very low frequency. We also discuss
this identification below.

7.2.4.3 Mode Identification and Seismic Modelling

From the observed power spectrum Kjeldsen et al. (1995) identified modes
of degree l = 0−2. These are illustrated by the filled symbols in the échelle
diagram in Fig. 7.60, with a large separation Δν = 40.3μHz. Christensen-
Dalsgaard et al. (1995b) made model calculations to compare with these ob-
servations. These were based on a somewhat uncertain luminosity, L/L� =
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9.5± 0.7, obtained with a parallax from Harrington et al. (1993); the compo-
sition was characterized by X = 0.7, Z = 0.03. Figure 7.61 shows examples
of evolution tracks in an HR Diagram, compared with the error box in effec-
tive temperature and luminosity. From comparison with the large separation
a model with M = 1.60 M�, marked by a filled circle, was identified; this is in
the early phases of the hydrogen shell-burning phase with a contracting he-
lium core. The frequencies of this model are also shown in Fig. 7.60. To match
the observations the frequencies were shifted by 10μHz; this was identified as
likely resulting from the near-surface effects. Given this shift there is clearly
excellent agreement between the model and the observations for the modes
with l = 0 and 2, including the small separation, observationally determined
as 〈δνn0〉 = 3.1 ± 0.3μHz. The computed frequencies for l = 1 showed an
irregular behaviour which, as discussed in more detail below, is the result of
the presence of mixed modes, with a partial g-mode character. Interestingly,
the observed frequencies had a similar behaviour, leading the authors to spec-
ulate that mixed modes had been detected in ηBoo and to note the potential
importance for the diagnostics of the properties of the stellar core.

To assist the understanding of the behaviour of the oscillations in ηBoo,
Fig. 7.62 shows the dimensionless buoyancy frequency N̂ and characteristic
acoustic frequencies in a model of ηBoo, in units of (GM/R3)1/2, and com-
pare them with the buoyancy frequency in the present Sun (cf. Fig. 3.14).
The dominant difference between the two models is the very large peak in
N̂ near the centre of the ηBoo model. This is caused by two effects: during
the main-sequence phase of central hydrogen burning the retreating convec-
tive core has left behind a steep gradient in the hydrogen abundance (see
also Fig. 3.15 and the discussion in Section 3.4.2) leading to a highly stable
stratification and hence contributing to a large value of N (e.g., Dziembowski
& Pamyatnykh 1991); in addition, the increasing central condensation as the
core contracts after hydrogen exhaustion drives up the gravitational acceler-
ation in the core, further increasing N . As a result, the maximum value of
N exceeds the acoustic cut-off frequency in the stellar atmosphere. Thus all
trapped acoustic modes may in principle be affected by the buoyancy fre-
quency, taking on g-mode character in the core. The effect is similar to the
behaviour discussed in Section 3.5.3, including the presence of mixed modes
and avoided crossings between frequencies of modes with predominantly p-
and g-mode character; but in stars such as ηBoo and in later evolutionary
phases this behaviour affects all nonradial modes. In particular, at the frequen-
cies characteristic for the observations of ηBoo, indicated by the horizontal
line in Fig. 7.62, the modes have extended p-mode regions in the outer parts
of the star and a small g-mode region near the centre. The separation between
these two regions is quite small for l = 1, leading to a substantial coupling
between the two types of behaviour; with increasing l, the separation increases
rapidly and the coupling becomes small.

Based on the original analysis by Christensen-Dalsgaard et al. (1995b)
the best-fitting model in Fig. 7.61 lies at the edge of the 1−σ error box in
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Fig. 7.61. Evolutionary tracks in the HR diagram, for models with Z = 0.03,
X = 0.7 and a mixing-length parameter calibrated to obtain the proper solar
radius. Models are shown with masses of 1.6 M�, 1.63 M� and 1.66 M�. The
thin error box indicates the original observed location of ηBoo, while the
bolder, dotted error box shows the location given the Hipparcos parallax. The
filled circle shows the model identified from fits to the observed large frequency
separation Δν. Adapted from Christensen-Dalsgaard et al. (1995b).

luminosity. However, shortly after this analysis, a determination of the par-
allax of ηBoo with the Hipparcos satellite became available. As discussed
by Bedding et al. (1998) this led to a determination of the luminosity as
L/L� = 9.02 ± 0.22, an improvement in luminosity precision by a factor of
three, and leading to the smaller error box also shown in Fig. 7.61. It was en-
couraging that the previously identified model was fully consistent with this
new determination of the luminosity.

Guenther & Demarque (1996) made a detailed analysis of the observed
frequencies of Kjeldsen et al. (1995), including a systematic survey of the ef-
fects of varying the relevant parameters. From this they obtained a mass of
1.55 ± 0.03 M� and an estimate of the parallax of 89.5 ± 0.5 mas, marginally
consistent with the pre-Hipparcos value of 87.0 ± 3.4 mas that they assumed;
this was based on an assumed Z = 0.03 although they argued that better
agreement with the observed frequencies could have been obtained with a
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Fig. 7.62. Dimensionless buoyancy frequency N̂ ≡ (GM/R3)−1/2N plot-
ted against fractional radius r/R for Model S of the present Sun (dashed
line) and the model of ηBoo marked in Fig. 7.63 below (solid line). The
dot-dashed curves show the dimensionless characteristic acoustic frequency
Ŝl = (GM/R3)−1/2Sl (cf. Eq. (3.153)) in ηBoo, for l = 1 and 2. The heavy
horizontal line indicates the location of a mode in ηBoo of frequency 850μHz,
typical of the observed frequencies.

higher Z. As did Christensen-Dalsgaard et al. (1995b) they noted the ev-
idence for mixed modes (involved in what they termed “mode bumping”);
they emphasized the resulting important asteroseismic potential, particularly
for a precise determination of the stellar age.

Although obtained from two sites, the observations of Kjeldsen et al. (2003)
did not have sufficient time coverage to suppress the daily sidelobes. Thus the
interpretation of the spectrum had to take into account the fact that peaks in
the power spectrum could be shifted by 11.6μHz. Based on the systematics
of the frequencies, as expected from the asymptotic behaviour, Kjeldsen et al.
identified the degrees of the modes and assigned a set of frequencies. These
were modelled by Di Mauro et al. (2003), assuming also that L/L� = 9.02±
0.22, Teff = 6028± 45 K and [Fe/H] = 0.305± 0.051 which, with X = 0.7, led
to Z = 0.04±0.005. They considered both models without and with overshoot
from the convective core during the core hydrogen-burning phase, concluding
that the overshooting could be at most 0.25Hp, Hp being the pressure scale



7.2 Solar-Like Pulsators 583

Fig. 7.63. Evolutionary tracks in the HR diagram, for models of mass 1.7 M�,
Z = 0.04, X = 0.7 and a mixing-length parameter calibrated to obtain the
proper solar radius. The solid curve shows a model without convective core
overshoot, while the dashed curve shows a model with overshoot of 0.2 pressure
scale heights during the central hydrogen-burning phase. The error box indi-
cates the observed location of ηBoo, assuming L/L� = 9.02 ± 0.22 (Bedding
et al. 1998) and Teff = 6130 ± 70 K (Bruntt, in preparation). The filled circle
shows the model, without core overshoot, identified from fits to the observed
frequencies. Adapted from Di Mauro et al. (2003).

height at the edge of the core, in order for the model to reproduce the observed
location in the HR Diagram. Examples of two of their models are illustrated in
Fig. 7.63. The model without overshoot is very similar to the best-fitting model
in Fig. 7.61,43 whereas the model with overshoot is immediately after the
exhaustion of central hydrogen and hence has a somewhat less concentrated
core. Di Mauro et al. (2003) made a detailed comparison of the observed and
computed frequencies, obtaining a reasonable fit, particularly for the model
without overshoot, although still requiring a modest constant shift of the
computed frequencies. They noted that the model with overshoot of 0.2Hp

did not show mixed modes in the frequency range of the observed modes;
thus this model could be excluded if, as it appeared, the observed l = 1

43 The somewhat higher value of Z is compensated by the slightly higher mass.
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modes showed an irregular structure in the échelle diagram indicative of mixed
modes. Additional modelling of the Kjeldsen et al. (2003) observations was
carried out by Di Mauro et al. (2004) who noted that an alternative to the
previous results could be a somewhat more massive model with substantial
core overshoot, close to the end of central hydrogen burning. They were not
able, on the basis of the existing data, to distinguish definitely between these
models, although the main-sequence model clearly did not show mixed modes.

An independent analysis of the Kjeldsen et al. (2003) data was carried
out by Guenther (2004). He used the grid-based χ2 minimization technique of
Guenther & Brown (2004), considering both Z = 0.03 and Z = 0.04, but ob-
taining the best fits with the higher metallicity. Minimizing just the difference
between the observed and model frequencies he obtained two solutions: one,
on the main sequence, with a mass of around 1.88 M� and a second, on the
sub-giant branch, with a mass near 1.71 M�; none of the models included con-
vective core overshoot. The former model was inconsistent with the luminosity
and effective temperature and hence had to be excluded. The sub-giant model
was essentially consistent with the model found by Di Mauro et al. (2003).
However, somewhat surprisingly Guenther noted that his models had “a very
thin convective envelope up to the model that best fits the oscillation data”.
In the models of Di Mauro et al. the convective envelope had an extent of at
least 0.05R except just after the ZAMS; it is obvious that vigorous convection
is required to excite the solar-like oscillations. Interestingly, Guenther (2004)
found that frequency calculations including nonadiabatic effects yielded an
improved agreement with the observed frequencies, presumably by correcting
for part of the near-surface problems in the more usual adiabatic frequency
calculations. As in previous analyses a detailed investigation was made of the
evolution of the frequencies with age, noting the avoided crossings involving
mixed modes and their diagnostic potential.

Given the limited contribution from the ELODIE observations, the results
of Carrier et al. (2005) were also essentially from a single site and the power
spectrum contained substantial sidelobes.44 Thus, as in the case of Kjeld-
sen et al. (2003) the frequency analysis had to deal with a possible 11.6μHz
ambiguity in the frequency determination. Carrier et al. identified 22 modes
with l = 0−2. A comparison with the frequencies of Kjeldsen et al. (2003)
showed good agreement at low frequency, while at high frequency substantial
disagreement was found. We return to this issue below.

Carrier et al. (2005) also compared the observed frequencies with models
computed for ηBoo. Unlike the other modelling efforts they took into account
diffusion and settling, as well as the effects of rotation. Indeed, as noted in
Section 3.2.2.4, settling in relatively massive stars with thin outer convection
zones dramatically changes the surface composition on a timescale short com-
pared with the evolution timescale (see also Fig. 3.2), unless compensated by

44 A contributing factor was the declination of +18◦ of ηBoo, resulting in relatively
short nightly observing periods from the latitude of La Silla.
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mixing processes. Such mixing, resulting from rotational effects, is included
in the Geneva evolution code (e.g., Meynet & Maeder 2000; Eggenberger et
al. 2005b). Thus the computation also followed the evolution of the rotational
velocity, from an assumed initial velocity of around 90 km s−1 to the present
observed velocity which was taken to be 13 km s−1, assuming that sin i � 1.
Carrier et al. (2005) assumed the same value of L/L� as Di Mauro et al.
(2003) and a similar effective temperature, although with a somewhat higher
error. The metallicity was taken to be [Fe/H] = 0.23 ± 0.07, somewhat lower
than the value assumed by Di Mauro et al. As in the analysis of the αCen
system by Eggenberger et al. (2004) (see Section 7.2.3.4) the fit to the ob-
served quantities was carried out as a two-step process, first matching the
observed position in the HR Diagram and subsequently making a χ2 fit to the
frequencies, allowing for a constant offset between the observed and computed
frequencies to account for the near-surface effects. The best-fitting model had
a mass of 1.57 ± 0.07 M�, somewhat lower than the value obtained by Di
Mauro et al. (2003), as a result of the lower metallicity. Carrier et al. also
computed models with Z = 0.04, obtaining results very similar to those of Di
Mauro et al. In addition, they confirmed the possibility, noted by Di Mauro et
al. (2004), of main-sequence models with core overshoot but similarly pointed
out that these models could not account for the apparent presence of mixed
modes in the observed frequencies.

The extensive observations of ηBoo with the MOST satellite by Guenther
et al. (2005) represented a promising possibility for resolving the ambiguity of
the mode identification from single-site observations and improving the fre-
quency determination. Unfortunately, the data showed no clear evidence for
solar-like oscillations. A statistical analysis to estimate the significance level in
the power spectrum (Reegen 2007) isolated a number of apparently significant
peaks, from which the sequence of radial modes was identified; no nonradial
modes were found. At the highest frequencies considered, 600−700μHz, these
generally coincided with the frequencies found by Kjeldsen et al. (2003) and
Carrier et al. (2005); however, the sequence could be followed down to a fre-
quency as low as 127μHz, corresponding roughly to a mode of radial order
n = 2. The determination of such low-order frequencies would undoubtedly be
extremely valuable for the asteroseismic investigation of the star. On the other
hand, their presence goes completely against the observed power distribution
in other stars showing solar-like oscillations and is not consistent with our the-
oretical understanding of the mode excitation. Thus, until further confirmed
they should probably be viewed with scepticism.

Guenther et al. (2005) also carried out a grid-based χ2 fit to the inferred
frequencies, obtaining a model essentially consistent with the model found by
Di Mauro et al. (2003). In an interesting extension of this analysis Straka et
al. (2006) used models of turbulent near-surface convection based on param-
eterized results from hydrodynamical simulations; a nonadiabatic frequency
calculation was carried out, although neglecting the detailed interaction be-
tween convection and the oscillations. Straka et al. demonstrated that the
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resulting frequencies were in substantially better agreement with the observa-
tions, including the data of Kjeldsen et al. (2003), than frequencies of models
based on the usual mixing-length treatment. This is clearly an encouraging
demonstration, following the earlier work on the Sun and αCen A and B
(Rosenthal et al. 1999; Li et al. 2002; Straka et al. 2007), that some aspects
of the near-surface problems can be understood from such more sophisticated
models of the outer layers of the stars.

The two sets of frequencies obtained by Kjeldsen et al. (2003) and Carrier
et al. (2005) represent the best data so far for the asteroseismic analysis of
ηBoo. Thus it is important to understand the discrepancies between the two
sets. In a recent analysis Kjeldsen (private communication) has investigated
the extent to which they can be interpreted simply in terms of different choices
of daily sidelobes and, as a result, has produced a unified set of frequencies
based on the two sets.45 The resulting combined set of observed frequencies is
illustrated in the échelle diagram in Fig. 7.64. It clearly shows the sequences
of peaks corresponding to l = 0, 1 and 2, the sequence for l = 1 having
irregularities strongly suggesting the presence of mixed modes.

In Fig. 7.64 the observations are compared with computed frequencies for
the model marked in Fig. 7.63 (Di Mauro et al. 2003). This is a 1.7 M� model
with Z = 0.04, computed without convective overshoot. Panel a) shows the
original computed frequencies. To give some indication of the likelihood of ob-
serving the modes the size of the symbols is proportional to the expected am-
plitude, under simplified assumptions concerning the mode excitation. Specif-
ically, it follows from the discussion in Section 3.7.5 that for stochastically ex-
cited modes the energy is predominantly a function of frequency and that, con-
sequently, the root-mean-square velocity V nl = 〈V 2

nl〉1/2 ∝ E
−1/2
nl where Enl

is the mode inertia, normalized to the surface displacement (cf. Eq. (3.140)).
Consequently, the ratio between the amplitude V nl of a given mode and of a
radial mode at the same frequency νnl satisfies

V nl

V0(νnl)
�
[

Enl

E0(νnl)

]−1/2

= Q
−1/2
nl , (7.93)

where V0(ν) and E0(ν) are obtained by interpolating to frequency ν in the re-
sults for radial modes. Also, Qnl is the inertia ratio defined by Eq. (7.10). Thus
in Fig. 7.64 the symbol size is proportional to Q−1/2

nl , resulting in smaller sym-
bols for mixed modes of higher inertia than the corresponding radial modes
(see also Fig. 7.65 below); symbols that would otherwise be too small to be
visible are shown as plusses. It should be noted that, as discussed in Sec-
tion 3.7.5, the potential for observing a mode is more closely related to the
peak height which has a more complex dependence on the mode inertia and
the duration of the observations (cf. Eq. (3.310)).

45 We are very grateful to H. Kjeldsen for providing us with these frequencies.



Fig. 7.64. Échelle diagram with a frequency separation of Δν = 40.3μHz
and a reference frequency of ν0 = 866μHz. The filled symbols show observed
frequencies combining results from Kjeldsen et al. (2003) and Carrier et al.
(2005); circles are used for modes with l = 0, triangles for l = 1 and squares
for l = 2. The open symbols show computed frequencies for a model with
M = 1.70 M� and Z = 0.04 (see Di Mauro et al. 2003). The size of the
symbols indicates the expected relative amplitude of the modes (see text);
symbols that would otherwise be too small have been replaced by crosses. For
clarity, the l = 1 sequences are repeated in the right-hand part of the diagram.
Panel a): original model frequencies; panel b) model frequencies including a
surface correction (Kjeldsen et al. 2008b; see text). In panel b) the dotted
line connects the two modes undergoing an avoided crossing at the age of the
present model; they are marked by triangles and squares in Fig. 7.65.
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In panel b) the frequencies have been corrected using the procedure of
Kjeldsen et al. (2008b) (see Section 7.2.2.1, in particular Eq. (7.81)), according
to

δ(surf)νnl = Q−1
nl a(νnl/ν0)b , (7.94)

with a = −2.259μHz, ν0 = 800μHz and b = 4.9. Also Qnl takes into account
the presence of mixed modes; the power-law correction is based on a fit to
the radial modes and, relative to those, the effect on the nonradial modes
is reduced by a factor proportional to the mode inertia (cf. Eq. (3.268)). For
mixed modes, with a partial g-mode character and a higher inertia than for the
radial modes, the near-surface effect on the frequencies is therefore smaller. It
is evident that in most cases the correction successfully brings the computed
frequencies into good agreement with the observations, except for l = 1 modes
of obvious mixed character in the model or the observations.

To gain a better understanding of the properties of the modes it is instruc-
tive to follow their evolution with the age of the star. This is done in Fig. 7.65,
for a model sequence including the model analysed in Fig. 7.64; that model
is marked by the vertical line. The frequencies of the radial modes, shown by
dashed lines in panel (a), decrease approximately as t−1

dyn as a result of the
increasing stellar radius. The same general trend is shared by the l = 1 modes
when they behave like p modes. However, as in the case shown in Fig. 3.25
there is an additional g-mode branch, with frequencies increasing with age
as the maximum value of N increases; as before these interact with the p-
mode branches through a sequence of avoided crossings. The effect on the
normalized mode inertia Enl, defined in Eq. (3.140), is shown in panel (b); for
clarity two modes with l = 1 have been indicated in both panels by triangles
and squares, respectively. Where the l = 1 modes behave as p modes, their
inertia is very close to that of a radial mode of similar frequency. However,
the g-mode behaviour corresponds to an increase in the amplitude in the in-
terior and hence in Enl. At the avoided crossings there is an interchange of
character between the two interacting modes. This is the case, for example,
for the model fitting the observations; here the two modes both have a mixed
character, with very similar mode inertia. These modes are connected by a
dotted line in Fig. 7.64b; it is evident that their frequencies in fact lie roughly
symmetrically around the expected p-mode asymptotic behaviour.

It should be noted in Fig. 7.65 that even when the l = 1 modes have
a predominant g-mode character, at the maxima of Enl, their inertia is only
larger by a moderate factor than for the neighbouring radial modes. Thus they
would be expected to be excited to a comparable amplitude. This is a result of
the rather narrow evanescent region between the p-mode propagation region
in the envelope and the g-mode propagation region in the core for l = 1
(cf. Fig. 7.72), giving rise to a strong coupling between the p- and g-mode
behaviour, also reflected in the rather broad nature of the avoided crossings
in Fig. 7.65. For l = 2 and higher, on the other hand, the evanescent region
is relatively broad and the coupling correspondingly weaker. As a result the
avoided crossings are extremely narrow, and the inertia on the g-mode branch
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Fig. 7.65. (a) Evolution of adiabatic frequencies for a model of mass 1.70 M�.
The lower abscissa shows the effective temperature Teff , the upper abscissa the
age of the model in Gyr. The dashed lines correspond to modes of degree l = 0,
and the solid lines to l = 1. The vertical solid line indicates the location of the
model whose frequencies are illustrated in Fig. 7.64. (b) The change with age
in the normalized mode inertia (cf. Eq. (3.140)). The solid lines show modes
with l = 1, each mode being indicated by triangles or squares as in panel (a),
whereas the dashed line shows the radial mode with approximately the same
frequency.

is higher, for l = 2, by around two orders of magnitude than for the radial
modes. Thus it is very unlikely that such modes can be observed.

The p- and g-mode character of the modes is obviously reflected in
the eigenfunctions (see also Fig. 3.26). From a diagnostic point of view a



590 7 Applications of Asteroseismology

Fig. 7.66. Rotational kernels for spherically symmetric rotation (cf.
Eq. (3.356)) for two modes with l = 1 in the model illustrated in Fig. 7.64.
The dashed line shows the mode with frequency 711 μHz, with a maximum
value of RKnl of 54.7, very near the surface, and the solid line shows the
mode with frequency 744μHz, with a maximum value 39.3.

particularly important aspect are the properties of the kernels relating the an-
gular velocity to the rotational splitting (cf. Section 3.8.4). Examples of such
kernels for l = 1, in the model illustrated in Fig. 7.64, are shown in Fig. 7.66.
The mode with a frequency of 711μHz is predominantly an acoustic mode; as
in the kernels illustrated in Fig. 3.39 the contribution to the rotational split-
ting comes predominantly from the outer regions of the star, with limited
sensitivity to the core rotation. On the other hand, the mode at 744μHz is
one of the modes undergoing an avoided crossing (cf. Fig. 7.65) with a mixed
g- and p-mode character. Here the kernel has a substantial component in the
core of the star; it contributes around 30% to the total integral of the ker-
nel. Thus observation of the rotational splitting of such a mode, combined
with data for the purely acoustic modes, would provide information about
the core rotation. In fact, Lochard et al. (2004) considered the potential for
rotational inversion based on simulated data for a similar model of ηBoo and
demonstrated that with realistic data from observations such as made with
the CoRoT mission it should be possible to determine the angular velocity of
the core of the star.
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7.2.5 The Red Giant ε Ophiuchi

7.2.5.1 The Star

As already emphasized in Section 2.5.5 of Chapter 2, solar-like oscillations have
been firmly established in only a few red giants so far. Here, we present the
results for the star which has been studied most extensively in the published
literature, both from an observational and modelling point of view. It is the
red giant εOph (HD 146791), which is of spectral type G9.5III. Being a very
bright star (V = 3.2), it was included in numerous observational survey-
type studies, leading to various estimates of its fundamental parameters and
chemical composition, a summary of which can be found in De Ridder et al.
(2006). This summary led to a range in effective temperature of 4880± 100 K
and in luminosity of 59 ± 5 L�.

In addition to this, Richichi et al. (2005) provided a radius estimate of
10.5±0.5R�, derived from interferometric data combined with the Hipparcos
parallax. The star was again taken up more recently in a global high-resolution
spectroscopy survey of numerous late G-type giants by Takeda et al. (2008).
The stellar parameters derived by these authors are in excellent agreement
with those deduced earlier and summarized by De Ridder et al. (2006), and
as we will see below, from the seismology.

7.2.5.2 The Data

Given that εOph is an equatorial star (δ � −04◦41′) with very narrow spec-
tral lines due to a projected rotational velocity of only 3.4 ± 0.5 km s−1 (De
Ridder et al. 2006), it was considered to be a good prime target for a two-
site high-precision spectroscopic campaign aimed at the discovery of solar-like
oscillations in red giants. This campaign was set up using the CORALIE
spectrograph attached to the 1.2-m Swiss Euler telescope at La Silla and the
ELODIE spectrograph attached to the 1.9-m telescope at Haute Provence
observatory. It led to the clear detection of solar-like oscillations in the star
(De Ridder et al. 2006). A time series of 839 échelle spectra was gathered
during 54 nights with a total time span of 75 d. The exposure time ranged
from 180 s to 200 s, depending on the air mass. This led to a S/N ratio of at
least 100 near 550 nm. At both telescopes and detectors, the spectrum of a
thorium/argon calibration lamp was recorded simultaneously with the stel-
lar spectrum through a second fibre, in order to guarantee a highly accurate
wavelength calibration. We refer to De Ridder et al. (2006) for the details on
the computation of the radial velocities. The finally adopted radial velocity
values, as well as the power spectrum derived from them, were already shown
in Fig. 2.43 of Chapter 2.

Following up on this detection, the star was taken up for a MOST run of
28 d. The adopted integration time was 7.5 s leading to a sampling time of
10 s. Due to the position of the star and the MOST satellite orbit, part of the
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data was contaminated by scattered Earthshine. These points were deleted
and led, in the end, to a duty cycle of 46% and gaps shorter than 87 min in
the time series. For a description of the photometry data reduction, we refer
to Barban et al. (2007) and to Kallinger et al. (2008b). The MOST data are
shown in Fig. 7.67.

Fig. 7.67. MOST photometry of εOph (grey dots). The overplotted circles repre-
sent averages of the data over 10 min. From Kallinger et al. (2008b).

7.2.5.3 The Detected Modes

The power spectrum obtained by De Ridder et al. (2006, see Fig. 2.43) shows
excess power between 20 and 80μHz, which is a range in agreement with
expectations for solar-like p-mode oscillations for red giants. The amplitudes of
the modes range from 0.9 to 3.5 m s−1, which is compatible with the scaling law
of Samadi et al. (2005) for the stellar parameters of εOph. The radial velocity
power spectrum was used to compute autocorrelation functions and comb
response functions. This led to two options for the large frequency separation
of the star, i.e. � 4.8μHz or � 6.7μHz whose sum corresponds to �11.5μHz,
which represents the daily alias structure prominently present in the data
despite the two-site nature of the data set.
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The power spectrum of the space-based MOST data turned out to be fully
compatible with the one of the ground-based radial velocity data and it is free
from daily aliases (Barban et al. 2007). On the other hand, aliasing also occurs
in that space-based data set due to gaps connected with the satellite orbit.
These aliases occur at frequencies above the p-mode regime expected for the
star and already found in the radial velocity data. The power spectrum of the
MOST light curve is displayed in Fig. 7.68.

The autocorrelation of the power spectrum, computed from all frequency
peaks between 25 and 85μHz with a power above 3400 ppm2, is shown in
Fig. 7.69. It clearly points to two features, near 5μHz and twice that value.
This, along with the shape of the peaks in a smoothed power spectrum, was
considered proof of the occurrence of stochastically-excited p modes. The de-
rived large spacing amounts to 5.3 ± 0.1μHz and is in agreement with one of
the two estimates which were obtained from the ground-based radial velocities
by De Ridder et al. (2006).

The power spectra obtained for three substrings of data indicated that
some mode lifetimes must be shorter than 10 d. Power spectrum fitting led to
seven secure frequencies with Lorentzian shape, with amplitudes ranging from
71 to 124 ppm and with a S/N level between 5.5 and 17.5 (Table 1 in Barban
et al. 2007). Assuming the same mode lifetime for all detected frequencies,
Barban et al. (2007) got a value near 2.7 d from the frequency fitting. This
result is similar to the one obtained by Stello et al. (2004, 2006) for the
pulsating red giant ξHya whose solar-like oscillations were established before
those of εOph, also from CORALIE data (Frandsen et al. 2002) and were also
interpreted in terms of radial modes. Such short mode lifetimes are typically
a factor five to ten below those predicted by theory, e.g., Houdek & Gough
(2002), Houdek (2006, 2007).

7.2.5.4 Seismic Modelling

The detected p-mode oscillations of εOph were modelled by three independent
teams. De Ridder et al. (2006) used the CESAM evolution code (Morel 1997)
to compute equilibrium models of stars in the shell-hydrogen burning phase
that pass through the error box of the star. They adopted a metallicity of
0.012 and an initial hydrogen fraction of 0.72. For the details on the input
physics, we refer to De Ridder et al. (2006). The authors further assumed
that the observed mode frequencies correspond to radial modes following the
theoretical predictions by Dziembowski et al. (2001a), despite the fact that
Hekker et al. (2006) suggested from line profile variations that the dominant
mode of εOph seems to behave as an l = 2 mode rather than a radial mode.
The model frequencies of the radial modes were used to compute the large
separation, which was subsequently compared with the two candidate values
derived from the observations. In this way, two groups of models whose radial
modes fit the observed large separation were retained. Four such models, with
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Fig. 7.68. Power spectrum of the MOST photometry of εOph. The inset in the
upper panel shows the spectral window; note that in this panel the dominant power
concentration around 160μHz results from aliasing of the low-frequency noise. The
frequency region relevant to the expected solar-like oscillations is shown in the lower
panel. From Barban et al. (2007).

initial masses of 1.9, 2.0, 2.7, and 2.8 M�, are shown in Fig. 7.70. The lower-
mass models were computed with a mixing-length parameter αML = 1.8 and
led to a large separation near 5μHz, while the more massive models had a
mixing-length parameter αML = 1.6 and led to a large spacing between 6 and



7.2 Solar-Like Pulsators 595

Fig. 7.69. Autocorrelation of the MOST power spectrum of εOph, computed from
all frequency peaks with a S/N level above three in the interval [25, 85]μHz, corre-
sponding to frequencies with power above 3400 ppm2. From Barban et al. (2007).

8μHz. From the MOST data, Barban et al. (2007) resolved the ambiguity
regarding the large separation and ruled out the more massive stellar models,
resulting in a stellar mass near 2 M�.

An independent frequency determination and seismic analysis was per-
formed by Kallinger et al. (2008b), based on both the radial velocity and
MOST data. They provided a list of 59 frequencies derived from the MOST
data, of which 21 were considered to be reliable enough for the modelling.
Moreover, they derived 25 frequencies from the radial velocity data of De
Ridder et al. (2006), of which 11 are in common with the MOST frequen-
cies. Clearly, these authors were less stringent in their requirements to accept
frequencies to be significant than the authors of the original data papers.

Kallinger et al. (2008b) further computed stellar models in the hydrogen-
shell burning phase with the Yale Rotating Evolutionary Code YREC (Guen-
ther et al. 1992). They adopted slightly different values for the input model
parameters compared with the models by De Ridder et al. (2006), such as a
metallicity of 0.010, an initial hydrogen fraction of 0.71 and a mixing-length
parameter αML = 1.74. Subsequently, an attempt was made to compute the
oscillation modes of these models but this led to numerical instabilities due
to strong fluctuations in the radial displacement of the modes near the dense
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Fig. 7.70. The estimated position of εOph in the HR Diagram is indicated by the
error box (enlarged version indicated in grey in the inset). Four evolutionary tracks
from the ZAMS up to the ascending giant branch, computed with the CESAM
code, are also indicated and labeled with their ZAMS masses. The high-mass models
were computed with a low mixing-length parameter, αML = 1.6, while the lower-
mass models are for αML = 1.8. The four dots in the inset mark the models whose
measured large frequency separation of radial modes are in agreement with the two
values of the large separation identified by De Ridder et al. (2006). Of these, the
two more massive models are excluded by the MOST observations (Barban et al.
2007). From De Ridder et al. (2006).

stellar core. To solve this numerical problem, the authors artificially left out
the stellar core in the models up to the inner 10% in radius and recomputed
the modes and their frequencies, pointing out that this does not alter the
frequency values seriously.

The most important difference with the treatments by De Ridder et al.
(2006) and Barban et al. (2007), besides the treatment of the stellar core in
the model computations, is that they dropped the assumption of dealing only
with radial modes. Moreover, they fitted the frequency values rather than the
large frequency separation, ignoring possible surface effects on the frequencies.
In this way, they came up with a best seismic model which explains 18 of
the 21 selected frequencies in terms of both radial and nonradial modes, with
lifetimes between 10 and 20 d. Their best seismic model has a mass of 2.02 M�,
an effective temperature of 4890 K, a luminosity of 60 L� and a radius of
10.8 R�. The dominant oscillation mode for this model, matching the observed
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Fig. 7.71. Detail of the evolution track shown in Fig. 3.10, for a 2.35 M�
model of εOph in the core helium-burning phase. Plusses are placed at 5Myr
intervals along the evolution track. The star and 1−σ error box indicate the
observed location of the star, and the filled circle marks the model identified
as providing a reasonable fit to the observed large separation.

dominant frequency, is an l = 2 mode which happens to be in agreement with
the empirical mode identification from line profile variations (Hekker et al.
2006).

Liu et al. (2008) subsequently mixed the two previously published studies,
by taking the frequencies from De Ridder et al. (2006) and Barban et al.
(2007), and comparing the large frequency separation with the one of models
computed with the Yale code. Their approach was somewhat different in that
they studied how the variations of the input parameters of the models change
the large frequency separation, again assuming radial modes. In this way, they
arrived at ranges for the metallicity, mixing-length parameter, mass and age
of the star which are basically in agreement with those of De Ridder et al.
(2006).

While the seismic model of Kallinger et al. (2008b) seems to match all
the classical observational constraints perfectly, it is based on a much more
extended list of frequencies than those considered significant by De Ridder et
al. (2006) and by Barban et al. (2007). Moreover, the Kallinger et al. (2008b)
models do not have an appropriate treatment of the stellar interior, which
may or may not be important in the frequency fitting. Also, it is normal that
a better match between the detected and predicted oscillation frequencies is
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found when all the degrees of the modes are left as a free parameter to fit the
observed frequencies, compared with the case where one assumes only radial
modes to fit the large frequency spacing. Exactly the same situation occurs
for the seismic modelling of the pulsating subwarf B stars of which two case
studies will be discussed later in this chapter. The validity of these different
approaches for stellar modelling can in principle be evaluated from the ap-
plication of empirical mode identification methods as described in Chapter 6,
after adapting them to the case of low-amplitude stochastically excited modes
with finite lifetime. The first step in this direction was made by Hekker et al.
(2006), but it is fair to state that their methodology for spectroscopic mode
identification needs to be further understood and developed before its results
can be taken for granted and serve as input for seismic modelling.

The models considered above are all in the hydrogen shell-burning phase
where the star is ascending the red-giant branch. In fact, it is much more likely
that we are observing εOph in the core helium-burning stage, as this phase of
evolution has a much longer time scale than the hydrogen-shell burning phase
(see Fig. 3.10). The oscillation behaviour of a helium-burning model of ξHya
was studied by Christensen-Dalsgaard (2004b). Here we consider a preliminary
attempt at modelling εOph by such a model. Although further work is clearly
required to make a complete fit to the data, the model illustrates the general
properties of evolved stars with solar-like oscillations.

The models were computed with the ASTEC evolution code (Christensen-
Dalsgaard 2008a). We assume the same metallicity, Z = 0.012, as De Ridder et
al. (2006) and a hydrogen abundance X = 0.7. The mixing-length parameter
was taken to be αML = 1.6. The full evolution track was shown in Fig. 3.10,
while Fig. 7.71 shows the last phases of evolution, including the loop associ-
ated with core helium burning. We have identified the model marked by a
filled circle as generally consistent with the observed properties. The effective
temperature and luminosity are within 1σ of the observed values, as is the
average large frequency separation Δν = 5.4μHz. On the other hand, the
radius, 11.5 R� is significantly larger than the interferometrically determined
value. The model is close to the end of core helium burning, with a central
helium abundance Yc = 0.007; consequently the evolution is relatively fast,
as indicated in Fig. 7.71, although still far slower than during the ascending
stage on the giant branch.

To investigate the oscillation properties of the model it is instructive to
consider the characteristic acoustic and buoyancy frequencies, illustrated in
Fig. 7.72. Also shown is a typical frequency for εOph. The most striking fea-
ture is the huge value of the buoyancy frequency in the core of the model.
The convective core grows during central helium burning, leading to a discon-
tinuity in the helium abundance and hence in the density, causing the spike
in N at the edge of the convective core. Also, the very high degree of central
condensation, with 15% of the mass concentrated in 0.3% of the radius, leads
to a large gravitational acceleration in the core of the star and hence to a very
large buoyancy frequency (cf. Eq. (3.180)). Thus nonradial modes at all fre-
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Fig. 7.72. Characteristic frequencies for the model, marked in Fig. 7.71, of
εOph in the core helium-burning phase. The solid curve shows the buoyancy
frequency N/2π and the dashed curves show the characteristic acoustic fre-
quencies Sl (cf. Eq. (3.153)) for l = 1, 2, 3. The bold horizontal line indicates
the trapping regions for a typical mode of εOph, for l = 1. Panel b) shows
the core of the model; note the spike in N at the edge of the convective core,
arising because of the discontinuity of the helium abundance, and the local
maximum at r � 0.05R, corresponding to the strong gradient in the hydrogen
abundance at the outer edge of the helium core and in the hydrogen shell
source.

quencies in the range of stochastically excited modes, up to the atmospheric
acoustic cut-off frequency, have the character of mixed modes, with a rapidly
varying g-mode behaviour of the eigenfunctions in the core. In the outer parts
of the model, where the frequencies are above the acoustic frequency Sl, the
modes obviously behave as acoustic modes.
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Fig. 7.73. Normalized mode inertia (cf. Eq. (3.140)) for the model of εOph
indicated in Fig. 7.71. The modes shown are for l = 0 (crosses connected by a
continuous curve), l = 1 (stars connected by a dotted curve), l = 2 (diamonds
connected by a dashed curve) and l = 3 (triangles connected by a dot-dashed
curve).

To illustrate these oscillation properties, we have computed full spectra
of modes for l = 0−3 in the model of εOph, using ADIPLS (Christensen-
Dalsgaard 2008b). To resolve the rapid variation of the eigenfunctions, 9600
meshpoints were used in the computation, mainly located in the core but
with a sufficient number of points to resolve also the acoustic behaviour in
the outer parts of the model. The dense spectrum of nonradial modes and their
mixed nature are reflected in the behaviour of the normalized mode inertia (cf.
Eq. (3.140)), shown in Fig. 7.73 (see also Dziembowski et al. 2001a). For the
radial modes the inertia decreases with increasing frequency. The nonradial
modes, on the other hand, are in most cases predominantly trapped in the
core, with large inertia; the inertia increases with l as a result of the increasing
width of the evanescent region where the frequency is between N and Sl

(see Fig. 7.72). However, at certain frequencies the mode resonates with the
acoustic cavity in the outer parts of the star, such that the eigenfunction
decreases with increasing depth in the evanescent region. At such frequencies
the eigenfunction is small in the core and the mode inertia approaches the
value for the nearby radial modes. The location of these resonances largely
corresponds to the asymptotic properties of the acoustic modes, giving rise to
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Fig. 7.74. Scaled radial displacement for two modes in the model of εOph
marked in Fig. 7.71. The dashed curve shows a mode with l = 0 , ν =
64.2μHz , E = 1.48 × 10−7 and the solid curve a mode with l = 2 , ν =
63.6μHz , E = 1.80 × 10−7. Panel b) shows a blow-up of the behaviour in the
core.

a spectrum of low-inertia acoustic modes corresponding to the simple p-mode
asymptotic expression for the frequencies, Eq. (3.216).

These properties are further illustrated in Fig. 7.74, showing eigenfunctions
of two neighbouring modes with l = 0 and 2, the latter resonating with the
acoustic cavity outside S2 and with an only slightly higher inertia than for
the radial mode. In the stellar envelope the eigenfunctions are very similar.
However, as shown in panel (b), in the core the eigenfunction of the l = 2 mode
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is rapidly oscillating, to such an extent that the variation is not resolved in
the figure.46

The effects of these properties of the oscillations on the excitation of the
modes are somewhat unclear. The rapidly varying eigenfunctions in the core
of the nonradial modes undoubtedly lead to strong damping, and thus the
damping rates of these modes might be expected to be somewhat larger than
for the radial modes at similar frequency, although the importance of this
effect is not clear. It has led to the assumption that the spectrum would
be dominated by radial modes; this assumption underlies both the model
fit of De Ridder et al. (2006) and the fit presented in Fig. 7.71, since the
observed large separation is taken to correspond to modes of a given degree,
rather than half that value. Assuming the presence in the data of just radial
modes also provided a reasonable interpretation of the observations of ξHya
(Frandsen et al. 2002). On the other hand, the larger inertia leads to a lower
damping rate; as discussed in Section 3.7.5, a result of this may be that the
height of the peaks in the power spectrum, and hence the visibility of the
modes, is independent of the mode inertia, such that a very dense spectrum
of peaks might be expected. This, however, assumes that the observing time
is sufficiently long to resolve the peaks; if not, the peak height is inversely
proportional to the inertia (see also the interpolation formula in Eq. (3.310)).
Dupret et al. (2009) presented a detailed discussion of these issues, which are
clearly crucial for the interpretation of observations of solar-like oscillations
in red giants.

We come to the conclusion that the global properties and pulsation charac-
teristics of pulsating red giants can be explained by present day stellar struc-
ture models along the ascending giant branch or in the core helium-burning
phase. However, a far better understanding of the theory of oscillations in
such objects is needed before precise seismic inferences about their interior
structure parameters can be derived with a high level of confidence. More-
over, the ambiguity in the derived oscillation frequencies of these stars must
be resolved from far better data before real progress can be made in the as-
teroseismology of these evolved stars. Given that the CoRoT mission has red
giant stars among its prime asteroseismology targets, we expect a serious step
forward in the understanding of stellar structure models of evolved stars of
low mass in the very near future.

46 The computation did fully resolve the behaviour in this region, showing that the
eigenfunction has around 160 zeros for r ≤ 0.05R.
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7.3 Heat Driven Main Sequence Stars

7.3.1 The β Cep Star V836Centauri

7.3.1.1 The Star

The star V836 Cen (HD 129929) is of spectral type B3V and has V = 8.1.
It is situated at intermediate galactic latitude (b = 20.21◦, Hill et al. 1974),
which is unusual for such a massive object. This is the reason why Rufener
(1981) included it in the Geneva database as a standard star, which led him
to discover its variability. The parallax of V836 Cen measured by Hipparcos
is π = 1.48 ± 1.03 mas which corresponds to a distance estimate of 676 pc.
This value leads to a distance of 233 pc perpendicular to the Galactic plane,
which is less than half the value derived earlier from multicolour photometry
by Waelkens & Rufener (1983), and requires a mean vertical velocity of only
some 13 km s−1. The spectrum taken by Aerts et al. (2004d) leads to a radial
velocity of 64±1 km s−1, with a velocity component of 22 km s−1 perpendicular
to the Galactic plane. This is largely sufficient to bring the star to its current
position and suggests that it was kicked out of the Galactic plane, rather than
having formed outside of it. It must have been kicked when it was about 10
million years old, if we assume that it has moved with constant speed ever
since.

Waelkens & Rufener (1983) made the first detailed study of the variability
of V836 Cen by means of Geneva photometry and found the star to vary with
three frequencies: 6.460965, 6.979940 and 6.449041d−1. The amplitudes of
these three frequencies were found to range between 10 to 18 mmag. The star
was hence classified as a new β Cep star. Heynderickx (1992) also established
three frequencies in a more extensive dataset that included the one used by
Waelkens & Rufener (1983). Only two of these three are in common with those
found by Waelkens & Rufener (1983) and, moreover, the values he lists are
slightly different: 6.98670, 6.45610 and 6.97697d−1.

With such closely spaced frequencies, V836 Cen was judged to be a very in-
teresting massive pulsating star on which to try to perform seismic modelling,
once the dominant frequencies could be firmly established and the modes well
identified. This goal was achieved by Aerts et al. (2003b) from a single-site,
single-instrument photometric data set covering 21 yr. We discuss here the
extensive study performed for this star and reported in the papers Aerts et
al. (2003b, 2004d), Dupret et al. (2004), and Thoul et al. (2004). V836 Cen
was the first β Cep star for which sufficient independent oscillation frequencies
were detected to exclude stellar models without convective core overshooting.
Moreover, it was the first main sequence star besides the Sun for which non-
rigid internal rotation was established from two rotationally split multiplets.
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7.3.1.2 The Data

In an effort to resolve and understand the discrepant frequency determina-
tions by Heynderickx (1992) and Waelkens & Rufener (1983), V836 Cen was
kept in the long term programme of photometric monitoring of variable B
stars of the Institute of Astronomy of Leuven University. This programme
was performed with the privately owned 0.7-m Swiss telescope at La Silla ob-
servatory in Chile. The telescope was equipped with the 7-passband Geneva
photometer P7, which is a two-channel photometer for quasi-simultaneous
band measurements. The first channel (A) is centred on the star while the
second channel (B) is centred on the sky. The position angle of the sky can
be changed by turning a derotator, while changing the distance between both
channels needs manual interaction. The filter wheel turns at 4 Hz and a chop-
per directs both channels alternatively to the photomultiplier. As such, the
photomultiplier measures both beams A and B through the seven filters four
times each second.

The strategy for performing the observations was oriented towards obtain-
ing high precision photometry. In order to achieve this, stars were measured
within a range of 0.1 in airmass Fz ∈ [1.0; 1.1] for nights of good, but not su-
perb, atmospheric conditions. For the reduction process this type of observing
nights, typically two or three standard stars of different colour were observed
each hour. When the atmospheric conditions were excellent, the strategy of a
so-called “M&D” night (“étoile montante et étoile descendante”) was adopted
(Rufener 1986). The determination of the extinction coefficients was done ac-
cording to the method outlined in Burki et al. (1995).

Many members of the Leuven team gathered multicolour photometry of
V836 Cen during numerous three-week observing runs. This led to 1493 good
quality data 7-colour points with a total time base of 21.2 yr. The telescope
was closed in 1997; after that, all the ∼345000 P7 data points of the more
than 45 000 different stars underwent a global reduction for which a weight was
assigned to all the measurements according to each star’s dispersion in the V
band. This resulted in measurements with a typical individual point-to-point
error between 2 and 5 mmag for V836 Cen.

In order to confirm the important seismic result that the star exhibits non-
rigid rotation with a very low equatorial rotation velocity of some 2 km s−1

(Aerts et al. 2003b), a result based purely on photometry and seismic mod-
elling, Aerts et al. (2004d) assembled one high resolution (wavelength step
of 0.0298Å) échelle spectrum of V836 Cen with the FEROS spectrograph at-
tached to the ESO 2.2-m telescope. The spectrum revealed, indeed, a sharp
lined star, with an upper limit of some 17 km s−1 for the overall (thermal,
pulsational, and rotational) line broadening of the star. Taking into account
the thermal broadening of a B3V star (some 8 km s−1) and the fact that con-
siderable pulsational broadening must occur, this single spectrum provided
independent a posteriori evidence for the slow rotation of the star, which had
already been deduced seismically by Aerts et al. (2003b).
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7.3.1.3 The Detected Modes

Fig. 7.75. Scargle periodogram (bottom) for the Geneva U data of V836Cen
published in Aerts et al. (2003b). The top panel is the Scargle periodogram of a noise
free sinusoid with the observed dominant frequency and its amplitude, sampled at
the times of the observations.

The seemingly discrepant results for the oscillation frequencies obtained
by Waelkens & Rufener (1983) and Heynderickx (1992) were reconciled by
Aerts et al. (2003b) by doubling the data set in number of measurements
and in time span, which gave sufficient frequency resolution to resolve the
modes. The Scargle periodogram of the data, as well as the one of a noise free
sinusoid with the dominant frequency and its amplitude, are represented in
Fig. 7.75. It can easily be seen that we are dealing with a multiperiodic star,
even though the daily alias pattern due to the single site nature of the data
is apparent. A yearly alias pattern was also readily found in the frequency
analysis, as expected for data that cover so many seasons.
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Table 7.3. Detected frequencies for V836 Cen and their significance level in the
U and V bands (denoted as σU and σV ). The precision is better than 10−6 d−1

for all frequencies. The significance levels were computed over the frequency range
[5, 10] d−1 after prewhitening with the frequencies ν1, . . . , ν6. Table produced from
Aerts et al. (2004d).

Oscillation σU σV Frequency

Frequencies Splittings

ν1 = 6.461699 d−1 14.7 16.8

ν2 = 6.978305 d−1 14.9 14.6

ν3 = 6.449590 d−1 11.7 12.9

ν4 = 6.990431 d−1 11.6 10.6 ν1 − ν3 = 0.012109 d−1

ν5 = 6.590940 d−1 9.4 7.0 ν4 − ν2 = 0.012126 d−1

ν6 = 6.966172 d−1 7.6 6.8 ν2 − ν6 = 0.012133 d−1

In total, six oscillation frequencies were retained from the P7 photome-
try. These are listed in Table 7.3, together with their significance level in the
U and V bands. They are shown schematically in Fig. 7.76. The frequency
uncertainty σν computed according to Eqs (5.52) amounts to about 10−6 d−1

for ν6 and is a factor of 10 lower for the higher amplitude modes. The sig-
nificance levels σU and σV were computed from the Scargle periodogram –
over the frequency interval [5, 10] d−1 – of the residuals after prewhitening the
light curves with the six frequencies. V836 Cen was the first pulsating B star
for which more than one multiplet had been found. The differences in spacing
in the two multiplets are also listed in Table 7.3 and will be explored below
to test the rigidity of the rotation.

The full details of the frequency analysis in the seven bands are described in
Aerts et al. (2004d) and are omitted here. We do point out that the authors
were very conservative in that only frequencies with significance levels σU

and σV above 6 in all 7 bands were retained. Other frequencies occurred after
prewhitening with ν1, . . . , ν6, even at significance levels above 4 in the U band,
but these candidate frequencies reached a level of significance only between
3 and 4 in the other wavelength bands. For safety, they were omitted in the
modelling by the authors. The amplitudes of the six frequencies in the seven
bands are listed in Table 7.4. The variance reductions for these fits range from
60% to 66%, indicating the likely presence of additional low amplitude modes.

7.3.1.4 Mode Identification and Seismic Modelling

Stars of spectral type B along the main sequence have a rather simple stel-
lar structure, with a convective core and a radiative envelope. Their simplest
standard models constitute a five dimensional parameter space: the initial
hydrogen abundance X , the core convective overshooting parameter αov ex-
pressed in units of the local pressure scale height Hp and usually based on the



7.3 Heat Driven Main Sequence Stars 607

Fig. 7.76. Schematic amplitude spectrum for the Geneva U data of V836 Cen,
reproduced from Aerts et al. (2004d). The two dotted lines indicate frequency com-
ponents which are present in the data, but at too low of a significance level; they fit
into a quintuplet structure.

time independent mixing-length theory of convection, the metallicity Z, the
mass M and the central hydrogen abundance Xc which is related to the age
and also to the observed Teff . We point out that the mixing-length parame-
ter αMLT is usually fixed to the solar value; for B stars, with their extremely
thin and inefficient outer convection zones, changing αMLT within reasonable
limits does not change the characteristics of the models.

As in the case of V836 Cen, the parallaxes of B stars are in general very
uncertain, implying that the luminosity cannot be derived with appropriate
precision. Moreover, estimates of log g are relatively inaccurate with uncer-
tainties typically as large as 0.5 dex from photometric indices and between
0.1 and 0.2 dex from high-resolution spectroscopy (e.g., Morel et al. 2006).
This is why constraints on these two fundamental parameters are sometimes
ignored when modelling such stars, or the parameters are at least allowed to
vary within the 2σ estimates from photometry.

As a general strategy for the modelling of B stars, one usually fixes X in
the first stage because changing X is equivalent to changing the metallicity
Z for fitting the frequencies (Ausseloos et al. 2004). For each stellar model,
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Table 7.4. Results of harmonic fits to the Geneva light curves of V836 Cen for the
six significant frequencies. Ak stands for the amplitude of the mode with frequency
νk, expressed in mmag, and δk for its phase, expressed in units of 2π radians. The
errors of the amplitudes and phases are given between brackets, in units of the last
decimals. Table reproduced from Aerts et al. (2004d).

ν U B1 B B2 V1 V G

ν1 A1 14.7(6) 12.2(5) 12.1(5) 11.7(5) 11.4(5) 11.8(4) 11.6(5)

δ1 0.538(5) 0.537(4) 0.536(4) 0.534(5) 0.535(4) 0.539(4) 0.536(5)

ν2 A2 14.9(8) 11.0(6) 11.0(6) 10.8(6) 10.3(6) 10.3(5) 10.2(6)

δ2 0.755(7) 0.755(7) 0.757(7) 0.754(7) 0.748(7) 0.754(6) 0.756(7)

ν3 A3 11.7(6) 10.0(5) 9.8(4) 9.8(4) 9.2(4) 9.1(4) 9.0(4)

δ3 0.178(4) 0.180(3) 0.181(3) 0.190(4) 0.185(4) 0.182(3) 0.182(4)

ν4 A4 11.6(8) 8.4(6) 8.5(6) 7.6(6) 7.6(5) 7.5(5) 7.7(6)

δ4 0.207(6) 0.205(6) 0.211(6) 0.206(6) 0.202(6) 0.204(6) 0.207(7)

ν5 A5 9.4(8) 6.0(6) 5.5(6) 5.3(6) 5.2(6) 4.9(5) 4.8(6)

δ5 0.324(13) 0.337(16) 0.340(17) 0.345(18) 0.334(17) 0.346(17) 0.349(20)

ν6 A6 7.6(6) 5.5(5) 5.5(5) 5.0(5) 4.8(4) 4.8(5) 4.8(5)

δ6 0.254(13) 0.248(13) 0.253(13) 0.246(14) 0.249(14) 0.264(15) 0.240(14)

the theoretical frequency spectrum of low order p and g modes is calculated
and compared with the observed values of identified modes. The modelling
is commonly started by fixing values for the stellar parameters (X , αov) and
calculating evolutionary tracks for different masses and metallicity. For each
evolutionary track, one then selects the model, thereby fixing the age, that fits
the dominant oscillation mode, leading to a value for the mass and metallicity
of the star, for the assumed X and αov. One thus performs a mapping between
the 2D (X ,αov) parameter space and the 3D (Z,M , age) space. When fitting
two frequencies, e.g., one can perform a mapping between the 3D (X , αov, Z)
parameter space and the 2D (M , age) space. This yields a mass – metallicity
relation for each considered (X,αov), etc. Depending on whether or not the
detected frequencies probe different regions of the stellar interior, one thus
sets strong constraints on the five parameters (X , αov, Z, Xc, M) from only
a few securely identified modes.

The above approach was applied to V836 Cen by Aerts et al. (2003b) and
Dupret et al. (2004), after the empirical mode identification of the six detected
frequencies. The two frequency multiplets led the authors to suspect that the
modes concerned triplets or quintuplets, but, nevertheless, an independent
identification from the amplitude ratios was done. The results of this are shown
in Fig. 7.77, where the observed amplitude ratios with respect to the Geneva
U band are compared with those derived from the pulsational properties of
evolutionary models that pass through the error box in (log Teff , log g) derived
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Fig. 7.77. The observed amplitude ratios with respect to the U band derived
from the Geneva data of V836 Cen for the six detected frequencies are compared
with those predicted from evolutionary models for appropriate stellar parameters.
Adapted from Dupret et al. (2004).

from the average Geneva colours by Aerts et al. (2004d). The results were the
same irrespective of the model chosen within the error box. It is seen that the
empirical mode identification confirms the results suspected from the multiplet
structure, i.e., we are dealing with three independent m = 0 components and
three other multiplet components. In particular, the identification of the radial
mode was important for the seismic modelling of the star (see Fig. 7.78).

The frequencies ν2 and ν5 belong to an l = 1,m = 0 and a radial mode,
respectively. These were used to derive the mass – metallicity relations for
the star, for each X and αov. The result is shown in Fig. 7.79 for the input
physics adopted by Dupret et al. (2004).

As explained in Chapter 6, multicolour photometry does not allow the
estimation of the m-value of the modes. From Fig. 7.76, we are thus left
with four possibilities for the m-value of the dominant l = 2 component
belonging to ν1. The consequences of this are graphically depicted in Fig. 7.80,
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Fig. 7.78. Evolution of frequencies as a function of age (expressed in million years),
for modes of degree l = 0, 1 and 2, for two evolutionary tracks with M = 9.54 M�,
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(l = 1, p1). The full lines correspond to the unstable modes and the dots to the
stable ones. Adapted from Dupret et al. (2004).
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frequencies ν2 and ν5 of V836Cen, for three families of models with different values
of the core overshooting parameter: αov = 0.0, 0.1 and 0.2. For all these models,
X = 0.70. Adapted from Dupret et al. (2004).

for different values of the core overshooting parameter and for values of Z
which are acceptable according to the observed amplitude ratios and their
errors (see Dupret et al. (2004) for a discussion on how the observed ratios
allow to derive a limitation of the Z-range). Fig. 7.80 leads to the conclusion
that αov cannot be 0.0 nor 0.2, irrespective of the m-value of ν1 and ν3. We
thus come to the conclusion that αov = 0.10±0.05 for V836 Cen. If we assume
that m1 = 0, as is the case if we accept the presence of the low amplitude
peaks indicated as dotted lines in Fig. 7.76, then the fitting of ν1, ν2 and ν5

leads to a narrow acceptable range in mass as shown in the right panel of
Fig. 7.80, i.e., M = 9.3 ± 0.1 M�.

The reason why we can derive the core overshooting (and also the internal
rotation – see below), and provide a quantitative measure of these parame-
ters for V836 Cen, is the different probing ability of the detected oscillation
modes. As explained in Chapter 3, different types of probing kernels are used,
depending on the kind of behaviour under investigation. This is illustrated
in Fig. 7.81, where we show the rotational kernels K(x) as a function of the
radial distance inside the star (x = r/R) for the three modes of V836 Cen. It
can be seen that the kernels of the three modes behave differently near the
boundary of the core region, and thus probe that region in a different way,
allowing the tuning of the core overshoot region as well as the derivation of
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Fig. 7.80. Left panel: frequency of the l = 2, g1 axisymmetric mode, as a function
of metallicity. The theoretical results obtained for models fitting exactly ν2 and ν5
are represented by squares, circles and triangles for models with αov = 0.0, 0.1
and 0.2, respectively. The four possible values for the observed frequency of this
mode are given by horizontal lines. The two vertical lines represent the limits of
the allowed range for the metallicity derived from the confrontation of the observed
amplitude ratios and those predicted by models. Right panel: the relation for the
allowed solution is exported as a mass relation, using the (M,Z)-relations shown in
Fig. 7.79. Adapted from Dupret et al. (2004).

the rotational properties, as will be explained below. It is remarkable that the
frequencies of just three well identified oscillation modes that have sufficiently
different kernels allow one to derive the overshooting parameter with a pre-
cision of typically 0.05 expressed in Hp. Adding just a few better-identified
modes should drastically reduce this error for specific input physics of the
models.

The l = 1, p1 triplet and the two successive frequencies of the l = 2, g1

quintuplet were interpreted as rotational splittings by Dupret et al. (2004),
in the way outlined in Chapter 3. In doing so, the authors ignored rotational
effects higher than order one in the rotational frequency as well as the influence
of a magnetic field. This approach is justified for V836 Cen, in view of its slow
rotation (Aerts et al. 2004d), the quasi-equidistant splitting within the triplet
(see Table 7.3), and the absence of a measurable magnetic field (Hubrig et al.
2006). Given that only two multiplets were available for V836 Cen, Dupret et
al. (2004) assumed a linear rotation law and concluded that the rotational
frequency near the stellar core is 3.6 times higher than at the surface. We
repeat that it was possible to derive this because the g1 and p1 modes have
different probing power near the core of the star, as already illustrated in
Fig. 7.81.

Thoul et al. (2004) showed that the constraints on the mass and on the
internal rotation for V836 Cen are robust against a change in the metal mix-
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Fig. 7.81. The rotational kernels defined in Eq. (3.356) as a function of radial
distance inside the star (x = r/R), for the identified radial fundamental (solid
line), the l = 1, p1 mode (dashed line) and the l = 2, g1 mode (dash-dotted line)
of V836Cen. The vertical dotted line marks the position of the boundary of the
convective core, including the overshoot region. Adapted from Aerts et al. (2003b).

ture, which was assumed to be the standard solar one by Grevesse & Noels
(1993) in all the above. The constraints on the metallicity and on the over-
shooting parameter, however, are dependent on the assumed metal mixture.
In particular, αov increases when the solar mixture by Asplund et al. (2004)
is considered. Morel et al. (2006) meanwhile included V836 Cen in their high
precision abundance study of β Cep stars for asteroseismology and derived the
following fundamental parameters: Teff = 24 500±1 000K, log g = 3.95±0.20,
and Z = 0.0105±0.0022. The abundances they derived for V836 Cen are fully
consistent with those of B stars in the solar neighbourhood and also with those
published for the Sun by Asplund et al. (2004). This implies that αov = 0.1
must be regarded as a lower limit for V836 Cen.
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7.3.2 The β Cep Star ν Eridani

7.3.2.1 The Star

The bright equatorial (δ � −3◦) star ν Eri (HD 29248, HR 1463, V = 3.92,
spectral type B1III, d = 180 pc) was discovered to be a radial velocity vari-
able by Frost & Adams (1903). It was extensively studied in spectroscopy
during almost half a century, with conflicting results on its periodicity (Frost
et al. 1926; Henroteau 1926, 1927; Walker 1951; McNamara 1952; Struve et
al. 1952), until Walker (1952) started to study it in photoelectric photometry.
From then until 2003, it was known to be a multiperiodic β Cep star, with
four pulsation frequencies detected in photometric data and reconciling the
seemingly conflicting results from the radial velocity studies (Lyng̊a 1959; Van
Hoof 1959, 1961, Kubiak 1980, Cuypers & Goossens 1981, Kubiak & Seggewiss
1991).

Modern multicolour photometric and spectroscopic data pointed out that
the dominant frequency belongs to a radial mode, and the triplet is consistent
with a dipole mode identification (Aerts et al. 1994; Heynderickx et al. 1994,
Cugier et al. 1994). The spacing within the triplet (� 0.017 d−1) implies that
the star has a low surface rotation, a conclusion supported by its measured
v sin i = 20 km s−1 (Abt et al. 2002, Levato & Grosso 2002). Dziembowski &
Jerzykiewicz (2003) computed an asymmetry of order 7×10−4 d−1 within the
triplet and interpreted this in terms of possible magnetic field effects on the
oscillations. This interpretation requires a field strength above 5 kG. Schnerr
et al. (2006) monitored the star for more than one year in spectropolarimetry
and rejected the hypothesis of a magnetic field above 0.3 kG in the star.

Given the exciting results for V836 Cen discussed above, and not wanting
to wait another 20 yr to have acquired sufficient single site data for a second
case study, Handler & Aerts (2002) decided to set up a five month multicolour
photometric and high resolution spectroscopic campaign on ν Eri from both
hemispheres, with the goal to make an in-depth asteroseismic study of this
bright multiperiodic β Cep star. In view of several intriguing results that we
discuss below, an additional follow-up photometric multisite campaign was
organized one year later (Jerzykiewicz et al. 2005). This wealth of data led to
very extensive seismic studies of this star by different independent teams, the
results of which we summarize here. They were distilled from the data papers
by Handler et al. (2004), Aerts et al. (2004b), Jerzykiewicz et al. (2005), the
mode identification paper by De Ridder et al. (2004), and the modelling papers
by Pamyatnykh et al. (2004), Ausseloos et al. (2004), Daszyńska-Daszkiewicz
et al. (2005), and Dziembowski & Pamyatnykh (2008).

It turned out that ν Eri has the broadest range in excited mode frequencies
among the β Cep stars so far (closely followed by 12 Lac; see Chapter 2), lead-
ing to problems in explaining them in terms of the mode excitation theory.
Also, it was the third class member for which a low frequency g mode was dis-
covered (Handler et al. 2004). The interpretation of this phenomenon for the
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first two cases (16 Lac, Jerzykiewicz et al. 1993; 19 Mon, Balona et al. 2001)
remains uncertain, but for ν Eri it definitely concerns high order g modes. Its
internal rotational behaviour is very similar to the one of V836 Cen (Pamyat-
nykh et al. 2004).

7.3.2.2 The Data

The photometric observations of the first multisite photometric campaign were
carried out at the end of 2002 and early 2003 with eleven different telescopes
and photometers at ten observatories on five different continents (Handler
et al. 2004). At five observatories, single channel differential photometry was
acquired through the Strömgren uvy filters. Simultaneous uvby photometry
was obtained at one observatory and the remaining four observatories pro-
vided Johnson V measurements. The total time base of the assembled 600 h
of photometry for this campaign was 157.9 d. The second campaign of pho-
tometric multisite observations was carried out in 2003, with five telescopes
on four continents, which were also used in the first campaign (Jerzykiewicz
et al. 2005). These data spanned 158.5 d in total. For both campaigns, the
comparison stars, observing procedures, and data reduction methods were
the same. They included correcting for coincidence losses, for sky background
and for extinction from the computation of nightly extinction coefficients,
as explained in Chapter 4. Differential magnitudes between the comparison
stars were subsequently fitted with low order polynomials and represent the
effects of transparency and detector sensitivity changes. These time series were
binned into intervals to minimize the introduction of noise in the differential
light curve of the target, and were finally subtracted from the measurements
of ν Eri. We refer to Handler et al. (2004) and Jerzykiewicz et al. (2005) for
the full data description and more details on the reduction procedures.

The spectroscopic observations were assembled with eleven different spec-
trographs at telescopes and observatories on five continents. In nine of the
eleven cases, the instrument was an échelle spectrograph and the other two
instruments were linear arrays. The integration times were typically ∼10 min,
depending on the instrument and on the atmospheric conditions. This led to
a temporal resolution less than 5% for the four intrinsic modes of ν Eri which
were known prior to the campaign. Some spectra were taken in advance of
the intensive campaign, and some afterwards as well, to increase the total
time base and achieve better frequency precision. All raw data were subjected
to the usual reduction process as described in Chapter 4, i.e., debiasing, flat
fielding, background subtraction and wavelength calibration were performed.
The latter was done by means of a ThAr or a quartz lamp. The spectra were
subsequently shifted to the barycentre of the solar system and the Helio-
centric Julian Dates of mid-exposure were calculated. The data analysis was
based on the Si iii triplet at 4552.622Å, 4567.840Å, and 4574.757Å as it is
well known that these triplet lines in the spectrum of B0−2 main sequence
stars are the best lines for a study of the pulsational behaviour of such stars,
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because they are only slightly affected by blending, they are strong lines and
they are almost insensitive to temperature variations (De Ridder et al. 2002).
(Re-)Normalization of the continuum flux near this Si triplet was done in an
homogeneous way by calculating the best fitting cubic spline function through
the continuum near these wavelengths and then dividing the local spectrum
by this spline. In total, 2442 spectra with a S/N ratio between 100 and 700,
and spread over a time base of 430 d, were gathered. The radial velocity curve
of this data set exemplifies the beating between multiple heat driven oscilla-
tion modes and was already shown in Fig. 6.17. It allowed Aerts et al. (2004b)
to exclude the possibility of ν Eri being a spectroscopic binary with a period
that would be relevant for the study of its intrinsic line profile behaviour.

Fig. 7.82. Scargle periodogram (bottom) for the Strömgren y data of ν Eri pub-
lished in Handler et al. (2004). The horizontal arrow indicates the frequency triplet
and the vertical arrow twice the dominant frequency. The top panel is the Scargle
periodogram of a noise free sinusoid with the observed dominant frequency and its
amplitude, sampled at the times of the observations. Data taken from Handler et
al. (2004).
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Fig. 7.83. Scargle periodograms of the radial velocities of ν Eri shown in Fig. 6.17.
The uppermost panel shows the Scargle periodogram of a noise free sinusoid with
the observed dominant frequency and its amplitude, sampled at the times of the
observations. The subsequent panels show the periodograms after different stages
of prewhitening (note the different scale of the y-axes). Adapted from Aerts et al.
(2004b).

7.3.2.3 The Detected Modes

A Scargle periodogram for the Strömgren y data of ν Eri assembled by Handler
et al. (2004) is shown in Fig. 7.82. This periodogram clearly reveals ν Eri to
have a very dominant mode with frequency ν1 = 5.763256d−1, in contrast to
V836 Cen whose largest amplitude l = 2 mode amplitude is not very dominant
compared with its l = 1 and radial modes (Fig. 7.75). The triplet frequencies
ν2 = 5.65389d−1, ν3 = 5.619979d−1, and ν4 = 5.637215d−1 are apparent as
well (horizontal arrow in Fig. 7.82). There is also a clear peak at 2ν1 for ν Eri,
as indicated by the vertical arrow in Fig. 7.82 and pointing towards deviations
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Fig. 7.84. Schematic amplitude spectrum for the Strömgren u data of ν Eri re-
produced from Jerzykiewicz et al. (2005). The full lines indicate frequencies that
were detected both in photometry and in spectroscopy. The dotted lines are the
frequencies that have only been found in the photometry. The mode identification
derived by De Ridder et al. (2004) is indicated as well. The two g mode frequencies
at 0.432786 d−1 and 0.61440 d−1 have been omitted to make the plot better visible.
A mode identification for these two frequencies is not available.

from a linear oscillation, while such an effect is absent in V836 Cen. Comparing
the spectral windows in the top panels of Figs 7.75 and 7.82 illustrates the
large gain from multisite to single site data, regarding the disentangling of
alias frequencies from the true ones. For a full derivation of the frequency
spectrum and the adopted methodology, we refer to Handler et al. (2004).

Besides the four frequencies already known before the multisite campaign,
the photometric data in Handler et al. (2004) revealed nineteen additional
frequencies, among which are four new independent ones of p modes, fourteen
combination frequencies and a low g mode frequency of 0.43218d−1 which
occurs consistently in the colours. Until the ν Eri multisite campaign, a g mode
frequency had only been suggested in two other β Cep stars: the slow rotator
16 Lac (Jerzykiewicz et al. 1993) and the rapid rotator 19 Mon (Balona et al.
2001), but its cause was still debated in these papers in terms of rotation or
spots rather than an oscillation mode. With its firm establishment by Handler
et al. (2004) and the impossibility to explain it from the slow rotation of the
star, β Cep stars must be considered as hybrid pulsators with both low order
p and g modes as well as low amplitude, high order g modes. Meanwhile, a
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high order g mode has also been detected for 12 Lac from a multisite campaign
(Handler et al. 2006).

The new data from the second campaign led Jerzykiewicz et al. (2005) to
add four additional independent frequencies, among which another low one at
0.614 d−1. Altogether, the oscillation spectrum derived from photometry con-
sists of twelve p mode and two g mode frequencies. Nine of the twelve p mode
frequencies constitute three triplets. For improved values of these frequencies
compared to those listed in Table 6.1, we refer to Table 2 in Jerzykiewicz et
al. (2005). A schematic frequency diagram of the detected modes detected is
provided in Fig. 7.84.

For the spectroscopy, frequencies were derived from the radial velocity data
shown in Fig. 6.17. The results for subsequent stages of the prewhitening are
graphically depicted in Fig. 7.83. The spectroscopic data suffer somewhat
more from aliasing than the photometric ones. The main frequency ν1 found
in the photometry is even more dominant in the radial velocity variations (see
Table 6.1). After prewhitening, the independent triplet frequencies ν2, ν3, and
ν4 are easily recovered, as well as the combination frequencies ν1 +ν2, ν1 +ν3,
ν1 + ν4, ν1 + ν2 + ν3. The other frequencies derived from the spectroscopy
are consistent with those found in the photometry and the independent ones
among them were already listed with their amplitude in Table 6.1. In total,
nineteen frequencies were found to have amplitudes above 4σ (Aerts et al.
2004b).

7.3.2.4 Mode Identification and Seismic Modelling

A detailed mode identification of ν Eri’s independent frequencies was derived
by De Ridder et al. (2004). They used the combined multisite data of Handler
et al. (2004) and Aerts et al. (2004b) and applied the methodology discussed in
Chapter 6, where the results for ν Eri were already discussed extensively and
used as illustrations (Figs 6.5 and 6.6 and Table 6.1). The new photometric
data by Jerzykiewicz et al. (2005) did not reveal any new identifications. The
mode identification listed in Table 6.1 is indicated in the schematic frequency
diagram in Fig. 7.84.

Seismic models of ν Eri were computed with independent evolution and
pulsation codes by Pamyatnykh et al. (2004) and Ausseloos et al. (2004), both
relying on the OPAL opacities (Iglesias & Rogers 1996). The radial order of
the modes listed in Table 6.1 were found to be the radial fundamental (ν1)
and the g1 (ν2, ν3, ν4), p1 (ν6, ν7, ν8), and p2 (ν5) mode in both studies. The
fitting of ν1 and ν4 led to the mass-metallicity relation shown in Fig. 7.85.
The seismic modelling based on more than these two zonal modes was done
differently in both the studies.

Pamyatnykh et al. (2004) fitted the three m = 0 frequencies ν1, ν4 and ν6 =
6.24384d−1 (updated value from Jerzykiewicz et al. 2005) with the Warsaw-
New Jersey codes. They determined the value of the metallicity Z, the mass M
and the age for the two sets (X = 0.70,αov) with αov = 0.0 and 0.1 from which
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Fig. 7.85. The M -Z relations obtained by fitting zonal mode frequencies ν1 and
ν4 computed by Ausseloos (2005) for three different (X = 0.70,αov) sets: αov = 0.0
(dots), 0.1 (triangles) and 0.2 (squares). Open and filled symbols denote the results
obtained by means of stellar models with, respectively, the Grevesse & Noels (1993)
and the Asplund et al. (2004) solar mixtures. Adapted from Ausseloos (2005).

they obtained two models that fit ν1, ν4 and ν6 with a small core convective
overshooting parameter. These two models show a discrepancy between the
theoretical frequency of the l = 1, p2 mode and the observed frequency ν5 =
7.898200d−1 (updated value from Jerzykiewicz et al. 2005), which cannot be
explained by rotational splitting. Moreover, the authors discovered that the
mode with frequency ν5 was not excited in either of the two models fitting the
three frequencies. Pamyatnykh et al. (2004) “solved” this excitation problem
by following the idea that the excitation of the observed modes in subdwarf
B stars occurs thanks to a local iron enrichment in the driving region due
to diffusion processes such as gravitational settling and radiative levitation
(Charpinet et al. 1996, 1997). More specifically, Pamyatnykh et al. (2004)
derived empirically that an ad hoc local enhancement of iron group elements
in the driving zone, which has a log Teff range [5.1,5.5], with a factor at least
four was needed to excite all the detected p mode frequencies of ν Eri. This
local iron increase also caused a shift in the theoretical frequency of the l = 1,
p2 zonal mode which brought it closer to the observed frequency ν5. This was
the reason why Pamyatnykh et al. (2004) did not want to use the mode with
frequency ν5 in their seismic modelling, because it seemed to be more sensitive



7.3 Heat Driven Main Sequence Stars 621

6.15

6.20

6.25

6.30

7.85 7.90 7.95 8.00 8.05 8.10 8.15

F
re

qu
en

cy
 (

1/
d)

Frequency (1/d)

Z

αov

6.15

6.20

6.25

6.30

7.85 7.90 7.95 8.00 8.05 8.10 8.15

F
re

qu
en

cy
 (

1/
d)

Frequency (1/d)

Z

αov

6.15

6.20

6.25

6.30

7.85 7.90 7.95 8.00 8.05 8.10 8.15

F
re

qu
en

cy
 (

1/
d)

Frequency (1/d)

Z

αov

6.15

6.20

6.25

6.30

7.85 7.90 7.95 8.00 8.05 8.10 8.15

F
re

qu
en

cy
 (

1/
d)

Frequency (1/d)

Z

αov

6.15

6.20

6.25

6.30

7.85 7.90 7.95 8.00 8.05 8.10 8.15

F
re

qu
en

cy
 (

1/
d)

Frequency (1/d)

Z

αov

6.15

6.20

6.25

6.30

7.85 7.90 7.95 8.00 8.05 8.10 8.15

F
re

qu
en

cy
 (

1/
d)

Frequency (1/d)

Z

αov

6.15

6.20

6.25

6.30

7.85 7.90 7.95 8.00 8.05 8.10 8.15

F
re

qu
en

cy
 (

1/
d)

Frequency (1/d)

Z

αov

6.15

6.20

6.25

6.30

7.85 7.90 7.95 8.00 8.05 8.10 8.15

F
re

qu
en

cy
 (

1/
d)

Frequency (1/d)

Z

αov

6.15

6.20

6.25

6.30

7.85 7.90 7.95 8.00 8.05 8.10 8.15

F
re

qu
en

cy
 (

1/
d)

Frequency (1/d)

Z

αov

6.15

6.20

6.25

6.30

7.85 7.90 7.95 8.00 8.05 8.10 8.15

F
re

qu
en

cy
 (

1/
d)

Frequency (1/d)

Z

αov

6.15

6.20

6.25

6.30

7.85 7.90 7.95 8.00 8.05 8.10 8.15

F
re

qu
en

cy
 (

1/
d)

Frequency (1/d)

Z

αov

Fig. 7.86. Frequency -frequency diagram in which the symbols mark the frequency
values of the (l = 1, p2) [x-axis] and (l = 1, p1) [y-axis] zonal mode as predicted
by models that fit ν1 and ν4 for a given (X = 0.70, αov, Z) set. The sequences
correspond to αov = 0.0 (dots), 0.1 (triangles) and 0.2 (squares). In each sequence,
the metallicity of the models ranges from 0.012 to 0.028 with steps of 0.004 in
the indicated direction. Open and filled symbols denote results obtained with the
Grevesse & Noels (1993) and Asplund et al. (2004) solar mixture, respectively. The
detected and suspected observed frequencies from Handler et al. (2004) are given by
full and dashed lines. Adapted from Ausseloos (2005).

to a change in the ad hoc iron enhancement in the outer layers, including the
driving zone, than the other lower frequency p modes.

The approach by Ausseloos et al. (2004) was to fit the four detected os-
cillation frequencies ν1, ν4, ν6, and ν5, irrespective of the excitation problem.
The result is graphically depicted in Fig. 7.86. It can be seen that the fitting
of the four frequencies requires models with a low mass and a high αov. This
fit is shown in Fig. 7.87, together with the results of the excitation compu-
tations. Also Ausseloos et al. (2004) found that the modes of this model are
not excited. Subsequently, a massive data base of non-standard seismic mod-
els was computed, in which X and the iron content were allowed to deviate
unlimitedly globally in the star from physically relevant values, in order to
investigate what combinations of these two input parameters would solve the
excitation problem and still lead to a good fit of the four frequencies. The
results were that either X had to be decreased to an unrealistically low value
below 0.6 or the iron content had to be increased with a factor at least four.
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Fig. 7.87. Evolution of the theoretical frequencies of the observed modes for a
model with X = 0.70,αov = 0.313,Z = 0.0155 and M/M� = 7.83 for the in-
put physics adopted by Ausseloos et al. (2004). Squares, dots and triangles denote
respectively l = 0, 1, 2 zonal modes. Filled (open) symbols correspond to unstable
(stable) modes. The full and dashed horizontal lines mark the detected and suspected
observed frequencies from Handler et al. (2004). The vertical line denotes the model
fitting the four zonal modes for X = 0.70. Adapted from Ausseloos (2005).

Another difference between the two studies was that, unlike Ausseloos et
al. (2004), Pamyatnykh et al. (2004) put an upper limit on the overshooting
parameter at αov = 0.12 because stellar models with higher αov values had an
effective temperature below the observational error box they used, which was
based on photometric calibrations. On the other hand, an updated error box
of ν Eri’s position in the HR diagram was derived by De Ridder et al. (2004)
and by Morel et al. (2006) from high-resolution spectroscopy. These boxes
turn out to be larger and include cooler models than the narrow box used by
Pamyatnykh et al. (2004). This is why Ausseloos et al. (2004) preferred to scan
the model parameter space without a priori confining the search. Rather, they
derived a value for αov by imposing an exact fit of the four m = 0 frequencies
and used the temperature estimate Teff = 22 900 ± 1100K from De Ridder
et al. (2004) to check a posteriori the position of the resulting models in
the HR diagram. It resulted that the models that fit the four frequencies are
cooler than the derived effective temperature of the star, irrespective of the
adopted solar mixture (Ausseloos 2005). On the other hand, these models
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Fig. 7.88. The rotational splitting kernels K(x) for the g1, l = 1 mode (full line)
and the p1, l = 1 mode (dashed line) for a model without core overshooting fitting
ν1, ν4 and ν6 of ν Eri. The vertical dotted line marks the top of the μ-gradient zone,
i.e., the position of the convective core at the ZAMS. Adapted from Pamyatnykh et
al. (2004).

leave no doubt that the new independent frequency ν11 = 6.73223d−1 found
by Jerzykiewicz et al. (2005) (and not listed in Table 6.1) must be an l = 4, g1

mode, while the mode with frequency ν9 = 7.20090d−1 (updated value from
Jerzykiewicz et al. 2005) is the l = 2, f mode.

The main conclusion of both approaches (uniform change of the iron abun-
dance throughout the stellar interior versus a local iron enhancement in the
driving region) was that an increase of the iron abundance by a factor of four
is necessary to explain the observed pulsation modes of ν Eri. Obviously, an
overall change in the iron fraction implies a very different and unrealistic stel-
lar model while the one with only a very local iron increase in the driving zone
does not change the fundamental parameters of the model appreciably. This
conclusion led to a new impetus in the computation of B star models, with
efforts to include the effects of microscopic diffusion and mass loss (Bourge et
al. (2006, 2007). Until now, however, self-consistent evolutionary models with
these effects of diffusion are not yet available.
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Another route to solve the excitation problem for ν Eri was taken by
Daszyńska-Daszkiewicz et al. (2005). They considered, in addition to the opac-
ity data from OPAL, also the OP (Seaton 1999, 2005) opacity computations
for the Grevesse & Noels (1993) solar mixture. Significant differences in the
models were found due to the higher OP opacity values compared to the
OPAL values, but the excitation problem was not solved. This was further in-
vestigated by Dziembowski & Pamyatnykh (2008), who followed the results of
Miglio et al. (2007) that many more modes are excited in β Cep and SPB stars
when adopting the Asplund et al. (2004) solar mixture and the OP opacities,
and re-computed new seismic models for ν Eri. The result remained the same,
i.e., an increase of opacity in the driving zone is still needed to reconcile the
observed and excited model frequencies. Dziembowski & Pamyatnykh (2008)
confirm the mode identification by Ausseloos (2005) that ν11 is an l = 4, g1

mode, but they identified ν9 as an l = 2, p1 mode.
Luckily, the observed rotational splittings, which are determined by the

rotational kernels of the identified modes, are not very dependent on the de-
tails of the input physics of the models, as was already shown by Thoul et
al. (2003) for V836 Cen. The internal rotation of ν Eri can thus be meaning-
fully studied without solving the excitation problem. Both Pamyatnykh et
al. (2004) and Dziembowski & Pamyatnykh (2008) derived the internal ro-
tational behaviour from the splittings of the g1 and p1 triplets. The probing
power of these two mode kernels for a model without overshooting fitting ν1,
ν4, and ν6 is shown in Fig. 7.88. It can be seen that these two kernels differ
more from each other than the two for the multiplet frequencies of V836 Cen
shown in Fig. 7.81. Again, as for V836 Cen, any inference on the internal ro-
tation rate comes from only two multiplets and one must assume a simplified
law to test for any deviation of rigid rotation. Unlike Dupret et al. (2004),
Pamyatnykh et al. (2004) and Dziembowski & Pamyatnykh (2008) relied on
the properties of the solar internal rotation that the rotation frequency is al-
most constant in a radiative zone. Thus, they allowed the rotation frequency
to change only in the μ-gradient zone surrounding the convective core rather
than linearly throughout the entire envelope as was done for V836 Cen. It
is well known that the convective core in β Cep stars shrinks when the star
evolves from the ZAMS to the TAMS, due to the decrease of the hydrogen
opacity. This is shown in Fig. 7.88, where the dotted vertical line indicates the
original boundary of the convective core at the ZAMS. The assumed param-
eterized law describing the change of the internal rotation frequency in the
μ-gradient zone was treated slightly differently by Pamyatnykh et al. (2004)
and by Dziembowski & Pamyatnykh (2008). We refer the reader to these two
papers for details. The important conclusion is that the ratio of the core to
envelope rotation frequency of ν Eri is ∼ 5.5 and the corresponding equatorial
rotational velocity of the star equals 5.9 km s−1 (Dziembowski & Pamyatnykh
2008). This result is very similar to the one obtained for V836 Cen.

It would be very worthwhile to repeat the seismic modelling for ν Eri using
also the observed constraints of the l = 2 and l = 4 modes at frequencies ν9
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and ν11, particularly since the latter mode is very sensitive to the adopted
mixture and hydrogen content (Ausseloos 2005).

7.3.3 The β Cep Binary θ Ophiuchi

7.3.3.1 The Star

The bright (V = 3.27, spectral type B2IV) β Cep star θOph (HD 157056,
HR 6453) is situated in the Galactic plane at a distance of 173 pc. The star is
a slow rotator among the early type stars, as Brown & Verschueren (1997) and
Abt et al. (2002) essentially found the same result of v sin i = 31 ± 3 km s−1

from high-resolution spectroscopy.
θOph was first reported to be a variable star with a period of 0.2862d

from radial velocity measurements (Henroteau 1922). Since that discovery, its
radial velocity variability was further studied by several authors. Van Hoof et
al. (1956) suggested a period of 0.15 d, which corresponds to about half the
period found by Henroteau (1922). These authors also noticed that the mean
velocity at the time of their observations was −8 km s−1, a value distinctly
different from Henroteau’s values from the 1920 and 1922 data, which were
0 and −15 km s−1, respectively. McNamara (1957) and Van Hoof & Blaauw
(1958) confirmed the period found by Van Hoof et al. (1956) and refined it
to 0.1404 d. From their radial velocities measurements of members of the Sco-
Cen association, Levato et al. (1987) suspected θOph to be a single-lined
spectroscopic binary but they could not derive orbital elements. McAlister et
al. (1993) and Shatsky et al. (2002) found θOph to be a binary resolved with
speckle interferometry, with a period near 100 yr, while Handler et al. (2005)
derived this wide companion to be a B5 main sequence star.

Van Hoof (1962) and Heynderickx (1992) studied the brightness variations
of θOph and found the star to be multiperiodic, but their frequency analysis
results only agreed for the dominant frequency of 7.116 d−1 and not for the
other periodicities. Moreover, they did not find any evidence of the 0.14 d or
0.28 d periodicity. Heynderickx et al. (2004) subsequently identified the degree
of the frequency 7.116 d−1 as l = 2 from multicolour Walraven photometry.

Given its similarity with V836 Cen regarding the complexity of its vari-
ations and the seemingly contradictory reports for them in the literature,
Briquet et al. (2005) and Handler et al. (2005) independently considered the
star to be a good target for asteroseismology. The results we report here are a
summary of their two observational studies, as well as of the seismic modelling
performed by Briquet et al. (2007). As it turns out, θOph is almost a twin
star of V 836 Cen, except that it is a multiple star while V836 Cen is a single
object. In contrast to V836 Cen, θOph’s internal rotation was found to be
rigid to a good approximation while its core overshooting parameter is much
larger.
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7.3.3.2 The Data

Spectroscopic data were obtained by Briquet et al. (2005) with the CORALIE
échelle spectrograph attached to the 1.2-m Leonard Euler telescope in La
Silla, Chile, during several 10 d runs spread over the years 2000− 2003. Some
additional spectra were also gathered with the FEROS and GIRAFFE échelle
spectrographs attached to the ESO 2.2-m telescope (La Silla, Chile) and to the
SAAO 1.9-m telescope (South Africa), respectively. In total, 121 spectra were
assembled, with a total time spread of 1024 d. A logbook of the spectroscopy,
as well as a description of the data reduction, are available in Briquet et al.
(2005).
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Fig. 7.89. The radial velocity data of the β Cep star θOph obtained from high
resolution échelle spectroscopy covering 4 yr, revealing the spectroscopic close binary
nature of the star. The full line represents the best orbital solution. Adapted from
Briquet et al. (2005).

Briquet et al. (2005) computed the first three velocity moments < v1 >,
< v2 > and < v3 > of the Si iii 4553 Å line, as defined in Chapter 6. The
integration boundaries for these computations were determined by visual in-
spection of each spectrum in order to avoid noisy continuum and to anticipate
possible velocity shifts due to binarity. A frequency analysis led to the domi-
nant frequency of 0.0175 d−1 in the first moment. Such a long period of some
57/,d does not correspond to a pulsation period for β Cep stars and is too long
to be the rotation period of a star with v sin i � 30 km s−1 and R � 5 R�.
Consequently, Briquet et al. (2005) attributed this variability with a peak-
to-peak amplitude of �25 km s−1 to binarity. The orbital parameters were
derived from the publicly available code FOTEL (Hadrava 1990), leading to
an orbital period of Porb = 56.71±0.05d and an eccentricity e = 0.167±0.043.
The other orbital elements and their standard errors are given in Briquet et
al. (2005). The phase diagram of the data and the orbital solution are shown
in Fig. 7.89. From the mass function and assuming the orbital, pulsational
and rotational inclination to be equal, Briquet et al. (2005) concluded θ Oph
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to be a triple system composed of a B2 primary, a low mass spectroscopic
secondary and a physically bound Speckle B5 star.

Handler et al. (2005) set up a three site photometric campaign from 2003
April to August, independently of the spectroscopic single site campaign per-
formed by Briquet et al. (2005) earlier on. They assembled single channel dif-
ferential photoelectric Strömgren uvy photometry with the 0.75-m, 0.6-m, and
0.5-m telescopes at the Fairborn, Siding Spring, and South African Astronom-
ical Observatories, respectively. Some of the acquired light curves are shown
in Fig. 7.90. A total of 1303 points were gathered during 77 nights, spread
over a total time base of 124 nights. The accuracy per point was 4.8 mmag in
u, 4.3 mmag in v and 3.9 mmag in y. The authors found no sign of the binarity
in the photometric measurements. This is consistent with the ephemeris for
the eclipses computed for the orbital solution by Briquet et al. (2005), as no
photometric coverage was achieved near or during the primary eclipse.

7.3.3.3 The Detected Modes

In the following, we shall still speak of θOph as the pulsating star, even though
we mean θOph A.

Given the sparse sampling rate of the spectroscopy, the oscillation frequen-
cies of θOph are best derived from the photometric data. Handler et al. (2005)
performed frequency analysis combined with simultaneous multifrequency sine
wave fitting, as outlined in Chapter 5. They found the seven significant fre-
quencies shown schematically in Fig. 7.91 and listed in Table 7.5, along with
the amplitudes for the three passbands. Briquet et al. (2005) detected two of
these frequencies (ν1 and ν3) in the velocity moments after correction for the
orbital motion. The phase plots of the first moment for these two frequencies
are shown in Fig. 7.92. A Scargle analysis across the entire Si iii 4553Å line
profile revealed, in addition, the presence of ν2. The amplitudes and phases
across the line profile for the three oscillation modes detected in the spectra
are shown in Fig. 7.93.

7.3.3.4 Mode Identification and Seismic Modelling

Handler et al. (2005) corrected the measured brightness and colours of θOph
for the physical B5 companion before computing the amplitude ratios with
respect to the u passband. They did that by using the K-magnitude dif-
ference reported by Shatsky & Tokovinin (2002) and standard photomet-
ric relations. Their estimates of the effective temperature of the stars are
Teff = 22 900 ± 900 K and 18 400 ± 700 K. Moreover, they used the estimate
of log g = 3.77 (no error provided) derived from low-resolution IUE spectra,
treating the star as a single object, by Niemczura & Daszyńska-Daszkiewicz
(2005) to compute stellar models. These fundamental parameter estimates of
the primary β Cep star are quite different from those obtained from the high
resolution spectroscopy by Briquet et al. (2007), in which the contribution of
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Fig. 7.90. Some of the light curves of θOph obtained during a 5-month three
site campaign. Plus signs represent the data in the u band, filled circles are the
v measurements and open circles the y band data. The full line represents the fit
with the seven frequencies found in the data. The zero point for the time axis is
HJD 2452700. Adapted from Handler et al. (2005).



7.3 Heat Driven Main Sequence Stars 629

Fig. 7.91. The schematic frequency spectrum of the β Cep star θOph for the
Strömgren u filter as derived from a multisite photometric campaign. The measured
photometric amplitude ratios led to an identification of the frequencies ν1, ν2, ν3,
and ν4 as, respectively, l = 2, 2, 0, 1. Adapted from Handler et al. (2005).

Table 7.5. The detected and identified pulsation modes of the β Cep star θOph
derived from multicolour photometric and high resolution spectroscopic data. The
errors of the frequencies are given between brackets, in units of the last decimal.
Table reproduced from Handler et al. (2005) and Briquet et al. (2005, 2007).

ID Frequency u ampl. v ampl. y ampl. σy RV ampl. (l,m)

(d−1) (mmag) (mmag) (mmag) (km s−1)

ν1 7.11600(8) 12.7 9.2 9.4 41.4 2.54 (2,−1)

ν5 7.2881(5) 2.1 1.5 1.4 6.4 – (2,+1)

ν2 7.3697(3) 3.6 2.9 2.4 10.8 – (2,+2)

ν3 7.4677(3) 4.7 2.4 2.3 10.2 2.08 (0, 0)

ν4 7.7659(3) 2.3 2.1 3.4 9.7 – (1,−1)

ν6 7.8742(5) 2.3 1.8 1.3 5.8 – (1, 0)

ν7 7.9734(5) 2.4 1.6 1.2 5.6 – (1,+1)

the B5 companion to the spectrum was taken into account, particularly for
the gravity: Teff = 25 000± 1000 K and log g = 4.10 ± 0.15.

Handler et al. (2005) computed theoretical amplitude ratios for all modes
with frequencies ranging from 6.5 d−1 to 8.5 d−1 and with l = 0, . . . , 4, from
models with a mass range from 8.5 M� to 10 M�, a temperature range from
21 800 K to 24 000 K and for Z = 0.015, with the Warsaw-New Jersey evolution
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Fig. 7.92. Phase diagrams of the first velocity moment of the Si iii4553Å line, after
subtraction of the orbital fit shown in Fig. 7.89, for the frequencies ν1 (top panel)
and for ν3 after subsequent prewhitening with ν1 (bottom panel). Adapted from
Briquet et al. (2005).

and pulsation codes. These theoretical predictions were compared with the
observations. For three of the seven detected modes, it led to an identification
of the mode degree, as illustrated in Fig. 7.94. It was found that ν3 is a radial
mode, ν4 a dipole mode, and ν1 a dipole or quadrupole mode. The other modes
could not be uniquely identified without further independent information, due
to large uncertainties on the observed ratios. We recall that Heynderickx et
al. (1994) identified ν1 as an l = 2 mode from Walraven photometry so that
seems to be the most likely option. Moreover, the probability of dealing with
an l = 3 is far lower than with l = 1, 2 due to the partial cancellation discussed
in Chapter 6 and illustrated in Fig. 6.4. By excluding these options, Handler et
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Fig. 7.93. The observed amplitude and phase distributions across the Si iii4553Å
profile for the frequencies ν1 (left), ν3 (middle), and ν2 (right) are shown as dots.
The amplitudes are unitless and the phases are expressed in π radians. Theoretical
predictions for (l,m) = (2,−1), (1,−1), and (2,−2) are overplotted as full, dashed,
and dash-dotted line, respectively, in the left panel. Adapted from Briquet et al.
(2005).

al. (2005) came to the conclusion that ν4, ν6, ν7 shown in Fig. 7.91 are triplet
modes.

With the l-values for five of the seven modes securely identified from the
photometry, it became evident that the frequency spectrum of θOph shown in
Fig. 7.91 is very similar to the one of V836 Cen shown in Fig. 7.76, except for
larger rotational splitting and somewhat higher frequency values. It was thus
concluded by Briquet et al. (2005) that ν1, ν5, and ν2 must be three of five
quintuplet components. This implies that the m-value of ν1 must be −2 or
−1. Briquet et al. (2005) resolved this ambiguity from the spectroscopic time
series in which both ν1 and ν3 were detected (see Fig. 7.92), by using both the
moment method and the pixel-by-pixel method. Since ν3 was unambiguously
identified as a radial mode, Briquet et al. (2005) imposed this information in
the application of the moment method to identify the dominant mode with
frequency ν1. This gave three possible solutions for (l1,m1) from the moment
variations: (2,−1), (1,−1) or (2,−2), in that order of probability. Subsequently,
the amplitude and phase variations of theoretical line profile variations were
computed for these three solutions, and compared with the data. The outcome
is shown in different line styles in the left panel of Fig. 7.93. It can be seen
that the identification m1 = −1 for the dominant mode is much more likely
than −2. Moreover, the drop in amplitude in the centre of the profile, as
well as the phase change with a value π there, confirm the identification of
ν3 as a radial mode. Finally, ν1 and ν2 have m-values of opposite sign, since
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Fig. 7.94. Observed (dots) and theoretically computed uvy amplitude ratios for
modes with l = 0 (full), 1 (dashed), 2 (dash-dotted), 3 (dotted), 4 (dash-dot-dot-
dotted), normalized with respect to the amplitude in the u passband, for the three
frequencies that allow determination of their mode degree. The small error bars
denote the uncertainty on the theoretical amplitude ratios due to the uncertainty of
the (Teff , log g) values of the star. Figure reproduced from Handler et al. (2005).

their phase curves across the profile have opposite slopes. Briquet et al. (2005)
therefore came to the final secure mode identification listed in Table 7.5. Their
approach is a prototypical example of how multicolour photometric and high
resolution spectroscopic information were appropriately intermingled to arrive
at unambiguous mode identification of a star’s oscillation spectrum, in the
situation where the rotation frequency is too high to recognize the multiplet
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structure from the frequency values. Note that this already occurs for θOph,
despite its low v sin i of only 30 km s−1.

As a side product, the moment method delivered the inclination angle
of θOph to be in the interval [70◦, 90◦]. Assuming this range to apply to
the orbital inclination as well leads to a secondary component mass lower
than 1 M� such that the neglect of this star in the interpretation of the line
profiles was justified. We recall that the duty cycle of the photometric data
was such that the timings of the eclipses were unfortunately not covered with
observations.

Briquet et al. (2007) presented an extensive abundance analysis based
on NLTE atmosphere models and state-of-the-art codes for all the chemical
elements detectable in the average spectrum computed from the time series
gathered by Briquet et al. (2005). We omit their results here, but report
their derivation of Z = 0.0114 ± 0.0028 which is of importance for the mode
excitation and the seismic modelling.

Stellar models for non-rotating stars were computed with the evolutionary
code CLÉS (Code Liégeois d’Évolution Stellaire, Scuflaire et al. 2007), both
with and without microscopic diffusion. Radiative forces and a stellar wind
were ignored in the adopted diffusion formalism (Thoul et al. 1994), while
turbulent mixing was treated according to Talon et al. (1997). The models
with this description of diffusion reproduce the observed surface metallicity
and helium abundances of θOph, for models with initial composition X =
0.7211, Y = 0.264, Z = 0.01485. Those models turned out to be very like
those obtained without diffusion and with the Asplund et al. (2004) solar
mixture, the diffusion only affecting the very superficial layers of the star. In
particular, the models calculated with and without diffusion had the same
frequency spectrum.

Since the adopted description of diffusion did not affect the derived stellar
parameters of the models, and may be inappropriate due to the neglect of per-
haps more important effects such as radiative levitation and a radiation-driven
stellar wind, Briquet et al. (2007) continued their seismic modelling without
diffusion, while considering sufficiently safe ranges for X and Z. They com-
puted models that fit the radial mode with frequency ν3 together with the
zonal l = 1 mode with frequency ν6, and, subsequently, made use of the
quintuplet to add additional constraints. Because the frequency spectra of
β Cep stars are so sparse for low order p and g modes (compared with those
of solar-like pulsators) one does not have many degrees of freedom to fit se-
curely identified modes. This led to the identification of the radial order of
the modes of θOph as g1 for the frequency quintuplet containing ν1, ν5, ν2,
the radial fundamental for ν3 and p1 for the triplet ν4, ν6, ν7. Fitting the three
independent m = 0 frequencies resulted in a relation between the metallic-
ity and the core overshooting parameter, as already explained in the case of
V836 Cen. In this way, Briquet et al. (2007) derived αov = 0.44±0.07. The ac-
companying other physical parameters of the models that match the observed
modes, for X ∈ [0.71, 0.7211] and Z ∈ [0.009, 0.015], are M = 8.2 ± 0.3 M�,
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Teff = 22 260±280K, log g = 3.950±0.006, Xc = 0.38±0.02. As an a posteri-
ori test, it was found that the modes of θOph are well excited by the classical
κ mechanism for a metallicity above 0.011.

Given that the detected modes of θOph are exactly the same than those
explored for V836 Cen to probe the internal rotation, Briquet et al. (2007)
made a similar study. The rotational kernels for the three independent modes
of θOph are indeed very similar to those of V836 Cen (a figure is available in
Briquet et al. 2007). On the other hand, the splittings within the detected mul-
tiplets are slightly asymmetric for θOph. This is why Briquet et al. (2007)
computed adiabatic frequencies with the code FILOU (Tran Minh & Léon
1995, Suárez 2002), which includes the effects of rotation up to the second
order, following Soufi et al. (1998). The input of this code is the spherically
symmetric component of the structure model. The output is the second order
deformation due to rotation. In principle, the gravity must be corrected for the
effect of centrifugal acceleration in the spherically symmetric component of
the model. However, for θOph with its slow rotation, this correction has a neg-
ligible effect on the multiplet asymmetries. Therefore, the best non-rotating
model fitting the three zonal mode frequencies, whose global parameters are
in the ranges listed above, was used as input model for FILOU. As a result,
it was found that the asymmetry observed in the l = 1 triplet can be well
reproduced by taking into account the effects of rotation up to the second
order. For the quintuplet, the agreement is not very good, however. Contrary
to V836 Cen and ν Eri, for which non-rigid rotation was proven, the observed
rotational splittings for θOph are compatible with rigid rotation, i.e. strong
differential internal rotation is excluded.

It is evident that the seismic tuning of the internal rotation is very depen-
dent on the frequency accuracy, as well as on the number of detected modes
and the nature of their probing kernels. The frequency accuracy is of order
10−6 d−1 for both V836 Cen and ν Eri, and 10−4 d−1 for θOph. Long term
monitoring is in any case required to probe the internal rotation of massive
stars in far more details than possible at present.

7.3.4 HR1217 among the roAp Stars

7.3.4.1 The Star

HR 1217 (HD 24712; DO Eri) was the second roAp star discovered (Kurtz
1981, 1982), and it is asteroseismically the best-studied roAp star. It is
a bright, single, southern-equatorial star (V = 5.99, α2000 = 03 55 16,
δ2000 = −12 05 57) accessible from observatories in both the northern and
southern hemispheres, making it a excellent target for multi-site campaigns
(Kurtz & Seeman 1983; Kurtz et al. 1989, 2005). Its spectral type is F0 in the
Henry Draper Catalogue, A5p in the Bright Star Catalogue (Hoffleit 1982)
and Ap SrCr(Eu) in the Michigan Spectral Catalogue (Houk & Smith-Moore
1988). Other spectral classifications place its temperature type near to F0,
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making it one of the coolest known Ap stars; its Hβ index, β = 2.670 (Mar-
tinez 1993), is consistent with this. Strömgren photometry shows the typical
peculiar indices of the roAp stars with a metallicity index of δm1 = −0.023
and a luminosity index of δc1 = −0.074 (Martinez 1993; see Kurtz & Martinez
2000 for a discussion of the interpretation of the Strömgren photometry).

One of the strengths of studying HR 1217 is that there is a wealth of
astrophysical information known about it. Its Hipparcos parallax shows it to
be in the solar neighbourhood at a mere 50 pc with a luminosity of L = 7.8±
0.7 L� (Matthews et al. 1999). As mentioned in Sect. 2.3.5, the atmospheres
of the most peculiar of the roAp stars show a strong core-wing anomaly in
the H lines (Cowley et al. 2001) and a wing-nib anomaly in the Ca ii K-
line (Cowley et al. 2006) indicating an abnormal temperature-depth structure
to their atmospheres. HR 1217 has both of these anomalies. A first attempt
at self-consistent atmospheric models that can account for the H core-wing
anomaly was made by Kochukhov et al. (2002), but it is not yet possible
to model the Balmer lines fully in the roAp stars, much less their entire
spectra. The effective temperatures of the roAp stars are thus notoriously
difficult to determine. Nevertheless, various photometric and spectroscopic
studies conservatively give Teff ≈ 7300 ± 200 K (Ryabchikova et al. 1997;
Lüftinger et al. 2008), consistent with an F0p spectral type and with the Hβ
index.

The magnetic field of HR 1217 has been studied extensively over the years
(Preston 1972; Mathys 1991; Bagnulo et al. 1995; Mathys & Hubrig 1997;
Leone, Cantanzaro & Catalano 2000; Wade et al. 2000). Bagnulo et al. found
from broad-band linear polarimetry a polar field strength of about 3.9 kG,
a rotational inclination of i = 137◦ and a magnetic obliquity of β = 150◦,
with uncertain errors on these values. This geometry of the obliquely rotat-
ing magnetic field means that we can only see one magnetic (hence also one
pulsation) pole over the rotation cycle. There is some controversy about the
precise rotation period with disagreement in the fourth significant figure, but
all determinations are close to Prot = 12.46 d (see, e.g., Ryabchikova et al.
2005; Kurtz et al. 2005).

HR 1217 is strongly spotted with horizontal abundance variations associ-
ated with the magnetic field (Preston 1972; Ryabchikova et al. 1997), making
it a typical α2 CVn star. Light variations with rotation associated with the
horizontal abundance variations are well-known in this star (Wolff & Mor-
rison 1973). It shows significant overabundances of rare earth elements that
vary with rotation, as does Mg. Lüftinger et al. (2008) studied the surface
abundance structures of sixteen elements and the vertical abundance strati-
fication of Fe, as well as the magnetic field structure which they found to be
well-represented by a pure dipole.

HR 1217 is of such interest that it is not only the best-studied of roAp
stars, but is one of the most-studied of all types of asteroseismic targets.
Multi-site campaigns in photometry have been carried out, as well as a month-
long satellite photometry data set from MOST being obtained simultaneously
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with an extensive spectroscopic study. This star has been the driver for much
observational effort and for many of the theoretical discussions of magneto-
acoustic pulsation modes (see the references in Sect. 2.3.5).

7.3.4.2 The Photometric Observations and Results

To obtain the frequencies that are the basic input data for asteroseismology
it is thus necessary to observe roAp stars in multi-site campaigns for ground-
based data, particularly to reduce or eliminate aliases in the frequency spec-
trum (see Chapter 5). Even from single-site observations Kurtz (1982) showed
that HR 1217 has a series of frequencies with nearly equal spacing typical of
alternating even and odd degree modes separated by half the large spacing,
Δν (see Chapter 3), similar to the patterns seen for the Sun and for solar-like
oscillators discussed earlier in this chapter. It is this asymptotic frequency
pattern and its similarity to the solar-like oscillators that makes HR 1217 of
such interest.

HR 1217 was investigated with an extensive global campaign in 1986
(Kurtz et al. 1989). A key result from that data set (which we refer to as
the “1986 data”) was a list of six principal pulsation frequencies, five of which
had alternating spacings of 33.4μHz and 34.5μHz, the sixth of which was
separated by a then-inexplicable 50μHz from the fifth frequency. This was
followed by the Whole Earth Telescope (WET) extended coverage campaign,
Xcov20, on the roAp star HR 1217 (which we refer to as the “2000 data”).
This latter data set is likely to remain the definitive ground-based photomet-
ric data set, since the MOST satellite obtained a month-long data set from
space during 2004 November-December for which a complete analysis has yet
to be published.

As already emphasized in Chapter 3, the large spacing, Δν, is a measure of
the sound-crossing time of the star, which in turn is determined by the star’s
mean density and radius. With a mass of about 2M� that is typical of Ap
stars, Δν reflects the radius of the star, with Δν ∝ R−3/2. In the asymptotic
limit, the number of nodes in the radial direction, n, is much larger than the
spherical degree l. Assuming adiabatic pulsations in spherically symmetric
stars the pulsation frequencies are,

νnl = Δν(n +
l

2
+

1
4

+ α) + δν, (7.95)

where α is a (small) constant (Tassoul 1980, 1990; see Eqs (3.215) and (3.219)
and δν, the “small spacing”, is a measure of the age of the star since it is sen-
sitive to the central condensation, hence the core H mass fraction. Without
precise identification of the degree (l) of the pulsation modes, asymptotic the-
ory allows the frequency spacing to be uncertain by a factor of two, depending
on whether modes of alternating even and odd l are present (producing modes
separated by Δν/2 in frequency), or only modes of the same l with consecutive
values of n.



7.3 Heat Driven Main Sequence Stars 637

The results of the 1986 campaign were inconclusive as to whether δν was
68μHz or 34μHz. Fortunately, the ambiguity could be resolved by a precise
determination of the luminosity of the star. If Δν were 34μHz, then the radius
of HR 1217 would be large enough that it would be far removed from the main
sequence (i.e. more evolved) and therefore more luminous (Heller & Kawaler
1988). Matthews et al. (1999) used the Hipparcos parallax measurement to
place HR 1217 unambiguously close to the main sequence, thus determining
that Δν is indeed 68μHz. This deepened the “mystery of the sixth frequency”,
lying 3

4Δν higher than the fifth frequency. It is easy to see from the above
asymptotic frequency relation that there is no clear theoretical explanation
for this spacing within this relation.

That asymptotic frequency spacing is valid only for linear adiabatic pulsa-
tions in spherically symmetric stars. However, the magnetic field, the chemical
inhomogeneities and rotation all contribute to breaking the spherical symme-
try in roAp stars. It is therefore important to know the effects that these
deviations from spherical symmetry have on the theoretical frequency spectra
of roAp stars, before comparing those with the observed frequency spectra.
The effects of the chemical inhomogeneities were discussed by Balmforth et
al. (2001). The effects of the magnetic field on the oscillations of roAp stars
(Dziembowski & Goode 1996; Bigot et al. 2000; Cunha & Gough 2000; Saio &
Gautschy 2004; Saio 2005; Cunha 2006; Sousa & Cunha 2008), as well as the
joint effect of rotation and magnetic field (Bigot & Dziembowski 2002), have
been studied. While generally the magnetic field effect on the oscillations is
expected to be small, Cunha & Gough (2000) found that at the frequencies
of maximal magneto-acoustic coupling, the latter is expected to become sig-
nificantly large, resulting in an abrupt drop of the separation between mode
frequencies. Cunha (2006) studied this in more detail and found that sudden
drops or increases in the frequency separations can occur that depend on the
geometry and degrees of the modes.

The observational consequence of the results of Cunha & Gough (2000)
suggested that we should see equally spaced modes in roAp stars with an oc-
casional mode much closer to its lower frequency counterparts. Cunha (2001)
suggested that the explanation of the strange separation between the last two
modes observed in HR 1217 in the 1986 data could rest on the occasional
abrupt decrease of the large separations predicted by Cunha & Gough (2000).
For this prediction to hold, she argued that the observations of Kurtz et al.
(1989) must have missed detecting a mode at a frequency 34μHz higher than
that of the fifth mode they observed. She predicted that new, more precise
measurements would find this “missing mode” if the Alfvénic losses were not
large enough to stabilize it. Detailed re-examination of the 1986 data shows
no peak at the key position at the ∼ 0.1 mmag level.

In the preliminary analysis of the 2000 data Kurtz et al. (2002) found the
missing mode predicted by Cunha, giving support to her theory. Kurtz et al.
(2005) analysed the 2000 data in far more detail and found that the new mode
is in fact a pair of modes separated by 2.6μHz, a value that is potentially the
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small spacing, δν. The small spacing has not been unambiguously determined
for any roAp star. One of the pair of new modes fits the alternating 33.4μHz,
34.5μHz spacing of the first five modes, and is now separated by nearly pre-
cisely 1

4δν from the highest detected frequency. Fig. 7.95 shows a section of
the frequency spectrum for the WET 2000 data and Fig. 7.96 shows schematic
amplitude spectra for both the 2000 and 1986 data sets.

Fig. 7.95. The amplitude spectrum of the WET 2000 data set for HR1217. In
spite of the multi-site coverage, the aliases remain a problem, especially the 3 d−1

aliases which are close to half the large spacing for this star (34.7 μHz as opposed to
34.5μHz and 33.4 μHz and 34.6 μHz). Figure reproduced from Kurtz et al. (2005).

As can be seen in Fig. 7.96, there is an alternating frequency spacing of
about 33.4μHz and 34.5μHz, consistent with an interpretation of alternating
even and odd lmodes, although, for HR 1217 the modes cannot be pure spher-
ical harmonic modes. The spacing of the highest two frequencies is, within the
errors, exactly half of the 33.4-μHz spacing, and the spacing of the close dou-
blet of the “new frequencies” is possibly the small spacing.

The rotational sidelobes seen in Fig. 7.96 are not evidence of mmodes,
but rather describe the rotational variation of amplitude seen as the oblique
pulsation modes are viewed from different aspect angles. Within the oblique
pulsator model the amplitudes of the rotational sidelobes can be used to de-
duce the pulsation mode, hence are a method of mode identification unique
to the roAp stars, in addition to those discussed in Chapter 6 for other types
of pulsating stars. Kurtz et al. (2005) show for HR 1217 that all of the modes
are distorted from purely spherical harmonics, as is expected theoretically be-
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Fig. 7.96. Top panel: A schematic amplitude spectrum for the frequencies in the
2000 data for HR1217. The spacing of the rotational sidelobes is exaggerated to
make them easier to see. Bottom panel: The same for the 1986 data, again with ex-
aggerated rotational sidelobe separations to make them easier to see. The frequency
separations are given in μHz. It is easy to see the alternating spacing of even and odd
degree modes, except for the spacing of the highest frequency, discussed in detail in
the text. The amplitude differences for individual mode frequencies in the two data
sets are real. Figures reproduced from Kurtz et al. (2005).

cause of the effects of the magnetic field (see Saio 2005). They show that the
modes are alternating distorted dipole modes and either distorted radial or
quadrupole modes.

Thus the frequency spectrum of HR 1217 bears strong resemblance to those
of the solar-like oscillators discussed earlier in this Chapter, except that the
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strong magnetic field perturbs the frequencies making it more difficult to
interpret them, but simultaneously promising more information about the
magnetic field and its interaction with the pulsations. Further progress de-
pends – as usual for asteroseismic targets – on better frequency sets. These
are best obtained from space – as with the MOST data – or from multisite
spectroscopic ground-based campaigns.

7.3.4.3 Spectroscopic Radial Velocity Studies of roAp Stars

While photometry has been successful for discovering roAp stars and studying
their frequency spectra, it is now clear that high resolution spectroscopy is a
superior tool for these purposes, and for other purposes out of the reach of pho-
tometry. In the 15 years following the announcement of the class (Kurtz 1982)
only a few radial velocity studies were attempted for these stars. Libbrecht
(1988b) detected low-amplitude radial velocity variations of only 21 m s−1 in
the bright roAp star γ Equ (42 m s−1 peak-to-peak). This was done using the
Palomar 5-m telescope, then one of the largest in the world, hence was push-
ing the limit of radial velocity precision. At about the same time Matthews
et al. (1988) detected radial velocity variations of 200 m s−1 in HR 1217 using
the Canada-France-Hawaii telescope. While both of these detections were sig-
nificant, the S/N ratios for the velocity amplitudes and phases were not high,
and it did not appear that much could be extracted from such studies. In
particular, the view was that a pulsating star could be characterized with one
radial velocity at any given time – that is, that the whole of the observable
atmosphere could be treated as a single pulsating layer. While this is a good
approximation for Cepheids, RR Lyrae stars, δ Sct stars – in fact, for most
pulsating stars – it is very much not the case for the roAp stars.

A new view of the radial velocity variations in roAp stars came quickly
in studies by several groups about a decade after the above seminal studies.
Kanaan & Hatzes (1998) found that different sections of the spectrum, and
indeed, different individual lines, give different radial velocities – in their case
with a range of 100 m s−1 up to 1 km s−1 in the roAp star γ Equ. The errors
of their amplitude determinations were as low as 10− 20 m s−1 for individual
lines with S/N as good as 10, in some cases. They pointed out that lines of
different ions form at different atmospheric depths so that studies of the radial
velocities of individual lines were a powerful new tool to test independently
for both surface abundance variations and, for the first time for any star other
than the Sun, the depth distribution of ions, thus providing a new way to check
the predictions of diffusion theory.

Baldry et al. (1998) found similar behaviour in the roAp star αCir
(HD 128898). Hatzes & Kürster (1994) had placed an upper limit of 60 m s−1

to any radial velocity variation in αCir using 45-Å of spectrum with an iodine
cell, while Baldry et al. (1998) found amplitudes up to 1 km s−1 in some 10-Å
wavelength bands. They also thought that the phases suggested the presence
of a radial node in the observable atmosphere of this star. In a follow-up
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study Baldry et al. (1999) studied the line bisector for Hα and found both
amplitude and phase variations as a function of depth in the line, thus as a
function of height in the atmosphere. Their observations indicated a phase
reversal between the bottom and top of the line, hence supported the idea of
an observed radial node.

At this same time the true picture of the radial velocity variations in
roAp stars emerged from studies of γ Equ by Malanushenko et al. (1998)
and Savanov et al. (1999) who showed that lines of the rare earth elements
Pr iii and Nd iii have large amplitudes of up to 400 m s−1 in γ Equ, while
lines of Ba ii and Fe ii show no detectable radial velocity variations at all.
These authors were able to show the radial velocity curves for individual lines
with clearly visible periodic variations without having to resort to Fourier
Transforms to prove the presence of the oscillations.

γ Equ is one of the brightest roAp stars and one of the few known in
the northern hemisphere, hence this star features in many studies. Follow-
ing the discoveries of Malanushenko et al. (1998) and Savanov et al. (1999),
Kochukhov & Ryabchikova (2001) showed the line-by-line variability in γ Equ
spectacularly for a 26-Å section of spectrum, making it abundantly clear that
the amplitudes of the pulsation in roAp stars are very strongly a function of
atmospheric height. Figure 7.98 shows part of their their beautiful spectra,
where the height dependence of the pulsation in γ Equ is abundantly evident.
The 6145 Å line of Nd iii forms high in the atmosphere where the pulsation
amplitude is high, whereas the Ba ii line forms more deeply where the am-
plitude is so low that no variation is seen. For the roAp stars we can resolve
the pulsation behaviour as a function of optical depth over a large range,
−5 ≤ log τ5000 ≤ 0 and possibly even higher.

Figure 7.97 shows the behaviour of the pulsation amplitude and phase as
a function of line depth – hence atmospheric height – for the singly-periodic
roAp star HD 12932 from UVES VLT data. The amplitude increases out-
wardly through the hydrogen line-forming layer, then decreases in the Nd iii
line-forming layer. The outward increase in amplitude is partially caused by
the decrease in density, requiring a larger amplitude to carry the pulsational
energy, and possibly because a radial node lying below the Hα line-forming
layer. We do see such nodes directly in other roAp stars, such as HD 137949
(Mkrtichian et al. 2003; Kurtz et al. 2005). The decrease in amplitude in the
Nd iii line-forming layer, likewise, may be a consequence of another radial
node further out in the atmosphere, or may be caused by energy losses, since
at this atmospheric level the magnetic pressure is much stronger than the gas
pressure and the modes are magneto-acoustic. The pulsation phases indicate
that there is an outwardly travelling component to the pulsation with the
time of pulsation maximum being later in the Nd iii line-forming layer. See
Kurtz et al. (2006) for the variety of behaviour in a set of 10 roAp stars and
for more discussion.

While the theory and observations presented for other types of stars in
this chapter concern global properties of the stars deduced from asteroseis-
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Fig. 7.97. The line profile of the Hα core (top panel) and the Nd iii 6145 Å line
(bottom panel) on the left. Using line bisectors, the middle and right panels show
the pulsation amplitude and phase as a function of line depth, hence atmospheric
height. The Hα line core forms between −4 ≤ log τ5000 ≤ −2, and the 6145 Å line
forms even higher than that, hence these diagrams show the pulsational behaviour
at atmospheric levels that would be chromospheric in the Sun. Adapted from Kurtz
et al. (2006).

mology, the roAp stars uniquely allow detailed inference of upper atmospheric
properties at levels that cannot be observed in any star but the Sun. Much
of the future of roAp star studies will concentrate on this special ability, but
the high precision of modern radial velocity measurements also mean that ex-
tensive frequency sets for use in global asteroseismology will also come from
multi-site spectroscopic studies.

Mkrtichian et al. (2008) have given the first clear demonstration of this for
HD 101065 where they find 15 independent mode frequencies from 4 nights of
HARPS high resolution, high precision spectroscopic radial velocities. They
derived a large spacing of 64.1±0.9μHz for which their models, including the
effects of the magnetic field, give best agreement for M = 1.53 ± 0.03 M�, an
age of 1.5 ± 0.1 Gyr, Teff = 6700 ± 100 K and a polar magnetic field strength
of Bp = 8.7 ± 0.3 kG. These are exciting new results for this most peculiar
of all roAp stars (and arguably the most peculiar of all stars). These results
are consistent with other recent studies, with the exception of the observed
magnetic field strength which is only about 2.2 kG. A Bp = 8.7 kG field would
generate clear Zeeman components in the spectra that manifestly are not
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present. Here is a new puzzle to add to the many that have been encountered
for this star over the decades since its discovery. Whether this is a puzzle for
HD 101065 only, or a more general puzzle for the understanding of roAp stars
is still to be discovered.

Fig. 7.98. A short section of the spectrum of the roAp star γ Equ is shown at the
top, with 1-min difference spectra spanning 1 h below. The bottom curve shows the
intensity standard deviation as a function of wavelength. It is clear that the Nd iii
6145 Å line shows large amplitude pulsation, while the Ba ii 6141 Å line shows none
at all. Adapted from Kochukhov & Ryabchikova (2001).

In recent years many high-resolution spectroscopic studies of roAp stars
have been made. These have succeeded in directly resolving radial nodes in
the observable atmosphere, they have demonstrated the depth structure of
the pulsation and of the stratified abundances of the elements, they have de-
tected new pulsation frequencies high in the atmosphere that are not seen
in photometric observations, and they have made the first steps towards full
three-dimensional views of the pulsation mode geometries and abundance dis-
tributions; all of these determinations are unique to the roAp stars. Some
examples of observational spectroscopic studies of the pulsation in individual
stars where more detail can be found are:

• HD 24712 (HR 1217) (Balona & Zima 2002; Mkrtichian & Hatzes 2005;
Ryabchikova et al. 2007);

• HD 83368 (HR 3831) (Baldry & Bedding 2000; Kochukhov & Ryabchikova
2001; Balona 2002; Kochukhov 2004, 2005);
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• HD 99563 (Elkin, & Mathys 2005);
• HD 101065 (Mkrtichian & Hatzes 2005; Mkrtichian et al. 2008);
• HD 116114 (Elkin et al. 2005);
• HD 122970 (Gamarova et al. 2004);
• HD 128898 (αCir) (Baldry et al. 1998, 1999; Kochukhov & Ryabchikova

2001; Balona & Laney 2003);
• HD 137909 (β CrB) (Kurtz et al. 2007a);
• HD 137949 (33 Lib) (Mkrtichian et al. 2003; Kurtz et al. 2005b);
• HD 166473 (Kurtz et al. 2003; Mathys et al. 2007);
• HD 176232 (10 Aql) (Elkin et al. 2008);
• HD 201601 (γ Equ) (Malanushenko et al. 1998; Savanov et al. 1999;

Kochukhov & Ryabchikova 2001; Ryabchikova et al. 2002; Leone & Kurtz
2003; Kochukhov et al. 2004a,b).

See, also, Kurtz et al. (2005b, 2006a,b; 2007a,b) and Ryabchikova et al.
(2007) for more information about these ten roAp stars: HD 9289, HD 12932,
HD 19918, HD 60435, HD 99563, HD 101065, HD 122970, HD 128898,
HD 134214 and HD 137949, Ryabchikova et al. (2007). See Kurtz et al. (2006,
2007) for more information about the new upper-atmosphere frequencies not
detected in photometric observations.

7.3.4.4 Spectroscopic Radial Velocities for HR1217

HR 1217 is difficult to study observationally for two reasons: 1) Its mode
frequencies are separated by ∼34μHz which is close to 3 d−1. This makes it
mandatory that high duty cycle data sets are obtained to suppress the aliases,
hence the cross-talk in the amplitude spectrum between the window patterns
of the mode frequencies. 2) Its rotation period of 12.46d requires a data set
at least 50% longer than this to resolve the rotational sidelobes that describe
the amplitude modulation of the obliquely pulsating modes.

To deal with these requirements the WET campaign on the star involved
8 observatories and nearly 50 astronomers for a three-week run (Kurtz et al.
2005a). At present the high precision needed for radial velocity studies of roAp
stars requires large telescopes. This is partly because that is where the highest
precision radial velocity spectrographs have been installed, but also because
the need for high S/N spectra, high spectral resolution for precise radial ve-
locity determination, and short time exposure to resolve in time the radial
velocity curves of stars with periods in the 6 − 21-min range requires large
aperture to gather the required photons. A three-week multi-site campaign
on the appropriate telescopes, which are in high demand, has not yet been
possible. Solutions to this problem lie in a dedicated network of asteroseismic
telescopes measuring precise radial velocities (SONG; see Chapter 8), or a
single high precision radial velocity meter in Antarctica (e.g., SIAMOIS; see
Chapter 8).
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Until those instruments are available, Ryabchikova et al. (2007) have
made a great effort and obtained a fine data set for HR 1217 using the
GECKO (Grating EChelle speKtrOgraph) spectrograph on the Canada-
France-Hawaii telescope, the SOFIN spectrograph on the Nordic Optical Tele-
scope, on the ESO 3.6-m telescope, UVES on the Very Large Telescope and
SARG (Spettrografo Alta Risoluzione Telescope Nationale Galileo) on the
TNG (Telescope Nationale Galileo). They gathered a total of 34.5 h of spec-
troscopic observations on 13 nights spanning 3 yr. Some of the data were
taken simultaneously with the MOST month-long photometric run at the end
of 2004. While alias problems precluded them from resolving completely the
individual mode frequencies, they obtained detailed information about the
vertical pulsation behaviour that is consistent with other results for roAp
stars pulsating in single modes. In particular, they show the outwardly run-
ning component to the pulsation modes clearly in Fig. 7.99.
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Fig. 7.99. The radial velocity variations of HR1217 for particular spectral lines
folded on one of the known pulsation periods. The relative amplitudes and phases
are displayed with an arbitrary zero point shift to allowing ease of viewing. From
the bottom upwards the ions represented are: Ca i, Fe i, Eu ii, Nd ii, Nd iii, Pr iii and
Tb iii. The lines are presented in the order that their line-forming layers occur in the
atmosphere. Thus this figure clearly shows the increasing pulsation amplitude with
height and the phase shift to later times of pulsation maximum with height, hence
an outwardly running wave component to the pulsation. Adapted from Ryabchikova
et al. (2007).
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Thus HR 1217 has been studied asteroseismically both photometrically and
spectroscopically in great detail, illustrating the unique information available
from analysis of the pulsation modes in roAp stars. Further observational
advances for the roAp stars will come from multi-site spectroscopic and pho-
tometric campaigns with higher S/N to find larger frequency sets for astero-
seismic inference.

7.4 Compact Pulsators

7.4.1 The GW Vir Star PG 1159−035, GW Vir itself

7.4.1.1 The Star

PG 1159−035 (PG 1159 hereafter; GW Vir; B = 14.9) is the asteroseismic
record-holder, after the Sun. It has the most pulsation frequencies detected,
the most modes identified and was a seminal star in the development and ex-
pansion of the field of asteroseismology. It is the prototype of the hottest class
of pulsating white dwarfs, the GW Vir stars; see Chapter 2 for an explanation
of the white dwarf classification system.

PG 1159 is an equatorial pre-white dwarf star that was noted to have an
ultraviolet excess by Green (1977) in a survey of white dwarfs, hot subdwarfs
and quasars that show such excesses (see Green et al. 1986). Because Green’s
PhD survey was done from Palomar Observatory, it was named the Palomar-
Green Survey, hence the ultraviolet excess objects found have names beginning
with “PG”. PG 1159 is one of the hottest stars known with many temperature
estimates having been made since its discovery. Jahn et al. (2007) give Teff =
140 000 ± 5 000K and log g = 7 (cgs) from ultraviolet spectra obtained with
the Hubble Space Telescope and the Far Ultraviolet Spectroscopic Explorer.

Two years after Green’s thesis McGraw et al. (1979a,b) discovered PG 1159
to be pulsating in at least two modes, using observations from the Multiple
Mirror Telescope (MMT). Winget et al. (1985) analysed data spanning 4 yr,
finding 8 pulsation modes and discussing a period change for the mode of
highest amplitude. This led to the Whole Earth Telescope campaign (Xcov3)
in 1989 March that is seminal for white dwarf asteroseismology and even
asteroseismology in general (Winget et al. 1991). Other observing campaigns
were carried out in 1990, 1993, 200 and 2002 with a meta-analysis of the data
being carried out by Costa et al. (2008). The results given here are based on
those and the original work of Winget et al. (1991).

7.4.1.2 The Data

The third extended coverage campaign of the Whole Earth Telescope (Xcov3)
ran for two weeks during 1989 March 1−13 with PG 1159 as its primary target;
264 h of high-speed photometric data in white light with 10-s integrations were
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Fig. 7.100. This light curve shows the central 6 d of the two-week WET run in
1989 March for PG1159. Note the very high duty cycle. There are many sections of
overlap between telescopes in the network that can be seen as an apparent increase
in the density of the data points. The time axis is labelled in seconds; the intensity
ordinate is in units of fractional intensity. The panels read continuously like lines of
print, from left-to-right, top-to-bottom. From Winget et al. (1991).

obtained by a consortium of 32 astronomers using telescopes at 9 observatories
with a duty cycle of 65%, and a useful overlap between observing sites of 13%.
Fig. 7.100 shows the light curve for 6.5 d of the run when all observatories were
online; note the very high duty cycle. Fig. 7.101 shows the power spectrum of
the entire data set which is a classic in asteroseismology.

A total of 125 frequencies were detected in Fig. 7.101, 101 of which were
identified with individual pulsation modes. This is a record number of modes
– the fundamental data for asteroseismic modelling – that has only been ex-
ceeded by the meta-analysis of this same star by Costa et al. (2008), including
the original WET data set, for which there are now 198 identified pulsation
modes. Costa et al.’s analysis included data from 1979, 1980, 1983, 1984, 1985,
1989, 1990, 1993, 2000 and 2002 totalling 869 h of data; see their Table 1 for
further details on the many observations of this star.

7.4.1.3 Mode Identification and Seismic Modelling

Figure 7.101 shows obvious triplet patterns that are the signature of dipole
modes with (l = 1, m = −1, 0 + 1); there are many of them. Less obvious
at first glance, but clear upon closer inspection, are many quintuplets that
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Fig. 7.101. The power spectrum of the entire WET Xcov3 data set for PG 1159.
The panels read continuously like lines of print, from left-to-right, top-to-bottom.
The abscissa shows frequency in μHz; the ordinate is labelled in units of 10−6 in
intensity power. Note the obvious dipole triplets. Careful inspection shows many
quadrupole quintuplets, also. Figure reproduced from Winget et al. (1991).

are the signature of quadrupole modes; for some of these all members of the
multiplet (l = 2, m = −2,−1, 0,+1,+2) were detected, for others some of the
multiplet components were either not excited, or had amplitudes too low to
detect. Winget et al. (1991) averaged the triplet and quintuplet patterns to
produce clear, measurable patterns for seismic inference. Figure 7.102 shows
these patterns beautifully.

An important characteristic of high-overtone g modes is that the frequency
spacing for dipole triplets and quadrupole quintuplets is not the same. The
asymptotic relation for the period spacing is

Π =
ΔΠ

√
l(l + 1)

(n +
l

2
+ αg) (7.96)

(see Chapter 3, Eqs (3.236) and (3.237)). Since the multiplet spacing de-
pends on l, it is possible to prove that the triplets are dipole triplets (not
quadrupole quintuplets with two modes unexcited) and that the quintuplets
are quadrupole quintuplets. Hence the identification of the degree, l, or the
modes in PG 1159 is secure. From the spacings of the multiplets the rota-
tion period of PG 1159 is precisely determined to be Prot = 1.3935± 0.0008d
(Costa et al. 2008).

The period spacing for consecutive overtones of the dipole modes and sep-
arately for the quadrupole modes gives ΔΠ which is a sensitive measure of
the mass of the star; deviations from uniform period spacing are a signature
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Fig. 7.102. Average of many frequency triplets (left) and quintuplets (right) for
PG1159. Note that the frequency spacing is different for the quintuplets than for
the triplets, an important characteristic of gmode pulsation. Figure reproduced from
Costa et al. (2008).

of mode trapping caused by strong mean molecular weight gradients at the
boundary between the C/O core zone and the helium layer of the gravita-
tionally stratified atmosphere. From all of these the mass of PG 1159 was
determined to be M = 0.586± 0.003 M� (Winget et al. 1991), and more con-
servatively as M = 0.59± 0.02 M� (Costa et al. 2008), where the uncertainty
arises from the models, rather than from the observations. The mass deter-
mination is dependent on the identification of the mode overtones, which are
in the range 14 ≤ n ≤ 42 for the dipole modes and 22 ≤ n ≤ 76 for the
quadrupole modes from model matching (Costa et al. 2008; note that the
white dwarf community uses k for radial overtone, while we use the more
widely used notation n throughout this book). There is some confusion in
identifying some modes because the multiplet structures overlap, but many
confidently identified modes remain, as is shown in Fig. 7.103, giving period
spacings of ΔP1 = 21.43 ± 0.03 s for the axisymmetric, m = 0, dipole modes
and ΔP2 = 12.38 ± 0.01 s for the m = 0 quadrupole modes. This precision of
the resulting mass determination is an astounding accomplishment of astero-
seismology.

The deviations from uniform spacing lead to an estimate of the position
of the transition layer between the core and the helium atmosphere to be at
a fraction radius of 0.83±0.05R where R = 0.025 R� = 2.73±0.16 R⊕. Since
PG 1159 is a rapidly evolving star, it is expected that both the pulsation
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Fig. 7.103. The observed period sequences for confidently identified dipole (circles)
and quadrupole (asterisks) axisymmetric m = 0 modes for PG1159. Some of the
missing quadrupole modes are a consequence of overlap of the frequency multiplets
making it difficult to identify the m = 0 component with certainty. Adapted from
Costa et al. (2008).

periods and their separations should change with time. Future studies will
examine these changes.

Magnetic fields perturb the pulsation frequencies for g modes as well as
p modes, as was discussed in Sect. 2.3.5 above. Because the magnetic field
cannot distinguish the direction of an m �= 0 mode, magnetic perturbations
to the frequencies lead to asymmetry in the spacing of the frequency multi-
plets. The lack of any detectable such asymmetry places an upper limit to
a global magnetic field for PG 1159 of B ≤ 2000 G, a stringent limit given
that white dwarfs can have fields of megagauss. The amplitudes of the vari-
ous components of the frequency multiplets also suggest for PG 1159 that the
rotation inclination is i ∼ 70◦ ± 6◦ (Costa et al. 2008).

Interestingly and importantly, no nonlinear combination frequencies have
been found among the nearly 200 frequencies now detected in this star. Such
combination frequencies are seen in cooler pulsating white dwarfs and are
thought to arise in convection zones for these stars. Models of PG 1159 do not
have a convection zone, thus give support to this hypothesis. We discuss the
interaction of convection and pulsation in more detail in the next section on
the DBV prototype V777 Her.

From extensive observational studies of the prototype hot pre-white dwarf
star PG 1159, its mass, stratification, rotation period and rotational axis in-
clination have been determined, as well as a stringent limit placed on any
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magnetic field that may be present. These are outstanding accomplishments
of asteroseismology. We await the not-so-distant day when space observations
of solar-like oscillators can surpass this success story.

7.4.2 The DB White Dwarf GD358, V777Her

7.4.2.1 The Star

GD 358 (V777 Her itself; B = 13.5) is the bright (for a white dwarf), north-
ern hemisphere (obviously, since it is in Hercules) prototype of the DBV,
V777 Her, stars. It was the first star (and its class of pulsators the first class)
to be predicted to be pulsating before it was discovered to be variable (Winget
1982; Winget et al. 1985). It is also one of the most intensively observed of
all asteroseismic targets, with many multi-site campaigns. Its asteroseismic
(42±3 pc; Winget et al. 1994), spectroscopic (42.7±2.5pc; Castanheira et al.
2005) and astrometric (36± 4 pc) distances agree well, giving confidence that
asteroseismic inference for white dwarf stars is reliable.

GD 358 lies in the middle of the DBV instability strip with Teff = 24 900 K
and log g = 7.9 (cgs) (Beauchamp et al. (1999) with no atmospheric hydrogen.
Castanheira et al. (2005) derived from HST UV spectra similar values: Teff =
24 100 ± 400 K and log g = 7.9 ± 0.3 (cgs).

GD 358 is a spectacularly variable in its variability. That is, its pulsation
amplitude spectrum varies strongly with time, as a consequence of strong non-
linear mode coupling. This in itself is a consequence of the interaction of the
pulsation modes with a convective layer, and that has made this star a prime
target for testing and discussing the important theory of convective driv-
ing and convective interaction with pulsation (Brickhill 1983, 1990, 1991a,b,
1992a,b; Goldreich & Wu 1999; Wu 2001; Wu & Goldreich 2001; Montgomery
2005, 2008).

The GD 358 designation is often still used for this star. This nomenclature
is now arcane; it comes from a survey for high proper motion objects using
photographic plates taken with the Lowell Observatory 13-inch telescope (Gi-
clas et al. 1965), which found many white dwarfs and white dwarf candidates.
This telescope was built for the purpose of discovering a trans-Neptunian
planet, and it succeeded; it was with data from the original programme that
Clyde Tombaugh discovered Pluto. The normal proper motion programme
used a “G” prior to the number designating the star. When lower proper
motion stars (less than 0.′′26 per year) were included, they were differentiated
with the designation “GD”; GD 358 was star number 358 of these lower proper
motion stars. Giclas et al. elaborate no further on the choice of letters, saying
only: “In designating the star number, we have employed the prefix “GD” so
as to differentiate it from our regular program numbers.”
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Fig. 7.104. A 24-h portion of the light curve for GD 358 with a duty cycle ap-
proaching 100% from the 1994 WET campaign. The ordinate is in units of 10−3 of
the intensity (milli-modulation intensity = mmi). From Vuille et al. (2000).

7.4.2.2 The Data

GD 358 is the best-studied of the DBV stars, as we said in Sect. 2.7.2.3.
Following its discovery by Winget et al. (1985), it has been the primary target
of four WET campaigns, Xcov5 in 1990 May (Winget et al. 1994), Xcov10 in
1994 May, Xcov19 in 2000 June (Kepler et al. 2003)47 and Xcov25 in 2006
June (Provencal et al. 2008). Observations in 1996 August and 2000 May-June
were obtained simultaneously from the ground and with the HST.

The time variability of the pulsation amplitudes of GD 358 is one of its
most outstanding characteristics. Fig. 7.104 shows a nearly continuous 24-h
light curve of GD 358 (Vuille et al. 2000) where the large amplitude and mul-
tiperiodic beating are obvious. Figure 7.105 shows the amplitude spectra for
GD 358 for observations obtained in four separate years where the amplitude
variability is utterly clear. An expanded version of that figure covering 8 yr of
data can be found in the preliminary results of WET Xcov25 (Provencal et
al. 2008).

Kepler et al. (2003) even report one observing run on a single night when
the amplitude spectrum consisted almost entirely of a single mode with an
amplitude of 170 mma, identified as the n = 8, l = 1 mode. Importantly, even
though there is spectacular amplitude modulation for this star, the mode
frequencies are not changing with time, hence the structure of the star is
stable.

47 http://www.physics.udel.edu/darc/wet/; http://wet.physics.iastate.edu/.
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Fig. 7.105. Amplitude spectra for GD 358 for observations obtained in four sepa-
rate years where the amplitude variability is demonstrated. The open circles along
the top show the frequencies for the set of equally-spaced periods predicted from a
model with numbers giving the radial overtones of the modes. This star has many
nonlinear cross frequencies, i.e. combination peaks, in addition to the mode fre-
quency multiplets. From Kepler et al. (2003).

7.4.2.3 Mode Identification and Seismic Modelling

The modes of GD 358 are primarily dipole modes with triplets being detected
in many cases; the radial overtones are in the range 7 ≤ n ≤ 20. Kepler et
al. (2003) also identified a single l = 2 mode. From the period spacing of
the l = 1,m = 0 modes and models Winget et al. (1994) derived a mass
for GD 358 of M = 0.61 ± 0.03 M� and luminosity L = 0.050 ± 0.012 L�.
From model fitting of the deviation of the mode periods from equal spacing,
as shown in Fig. 7.106, they found a mass for the helium envelope of MHe =
2.0 ± 1.0 × 10−6M , where M is the mass of the star. As we pointed out in
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Fig. 7.106. The observed deviation of the dipole m = 0 mode periods (open circles)
from the equal spacing that would be expected for a uniform star. The squares show
the best-fitting model with internal discontinuities, from which the mass fraction of
the surface helium layer is derived. The numbers at the top are radial overtones for
the model periods. From Winget et al. (1994).

Sect. 7.4.1, pulsation periods are perturbed by mean molecular weight changes
at the boundary of the degenerate core, as well as by changes at the stratified
layer boundaries. It is the modelling of these deviations from equal period
spacing that allows the measurement of the surface layer mass.

In the last section we discussed the derivation of the rotation period for
PG 1159 to high precision. That was possible because all of the multiplets
for a given degree, l, for PG 1159 have the same spacing – implying uniform
rotation – so it was possible to add the dipole triplets and add the quadrupole
quintuplets to get higher signal-to-noise (see Fig. 7.102). For GD 358 that is
not possible because the frequency triplets do not all have the same spacing –
suggesting differential rotation. Furthermore, the individual frequency triplets
themselves are not exactly equally split, as a consequence of a magnetic field
of B = 1300 ± 300 G. Both m = ±1 sectoral modes are perturbed to higher
frequency by the extra tension of the magnetic field; this does not depend
on the direction of the travelling wave for these modes, as the effect of the
magnetic field is the same in either direction. Figure 7.107 shows the frequency
splittings for the triplets.

Winget et al. (1994) concluded from their results shown in Fig. 7.107
and their models that the outer envelope of GD 358 rotates 1.8 times faster
than the core. Kawaler et al. (1999) examined the possibility of inverting the
frequencies for white dwarfs in general, but with the example of GD 358 ex-
amined in detail, concluding that there is a more rapidly rotating core, but
without a firm derivation of a rotation curve with radius. Goupil et al. (1998),
on the other hand, argue that the unequal spacings seen in Fig. 7.107 are
not a result of differential rotation, but rather nonlinear resonant coupling.
Tassoul & Tassoul (1983) also point out that only mild differential rotation is
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Fig. 7.107. This diagram shows the splittings of the prograde m = +1 (circles)
and retrograde m = −1 (crosses) components with respect to the m = 0 component
for the dipole frequency triplets for GD358. The variation with radial overtone may
be a consequence of differential rotation. The inequality between the m = +1 and
m = −1 splittings is a consequence of a magnetic field. Adapted from Winget et al.
(1994).

expected in white dwarfs, based on examination of expected meridional circu-
lation. Provencal et al. (2008) note that the triplet spacing for one multiplet
was reported to be 6.4μHz in 1990, 6.7μHz in 1994, 6μHz in 2000; in their
preliminary results for WET Xcov25 it is only 5.4μHz. While no errors are
given for these numbers, if the changes are real, it probably points more to
a nonlinear coupling origin for the different triplet spacings than towards dif-
ferential rotation. We expect to hear more about this in future studies of this
star.

While GD 358 has only about 15 pulsation modes detected, many of which
have dipole frequency triplets, Winget et al. (1994) detected 180 significant
peaks in the power spectrum of the light variations. Other studies also show
large numbers of frequencies; which ones are present is variable with time.
Most of these frequencies are combination frequencies – i.e. they are found at
frequencies that are the sums and differences of the eigenmode frequencies.
Such combination frequencies are seen in all DAV stars (Brassard et al. 1995)
and in DBV stars as well, i.e. in white dwarfs with convection zones. This large
number of combination frequencies is arguably the most important result of
the many studies of GD 358.

Brickhill (1992a) found that nonlinear mixing of mode frequencies occurs
naturally in the context of convective driving. This has been examined more
extensively by Wu (2001), Wu & Goldreich (2001), and Montgomery (2005,
2008). The convective turnover time in white dwarfs is very short compared
to the pulsation periods as a consequence of the high gravity and thus thin
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convective layer. The convective time scale is of the order of 1 s, whereas
pulsation periods are many minutes. In GD 358 the mode periods range from
about 420 s to 814 s; the combination frequencies are detected from about
180 s to 976 s – all much longer than the 1-s convective turnover time. Hence
the convection zone reacts “instantaneously” to the pulsation motion.

The thermal time scale of the convective zone is, on average, a few minutes,
but, importantly, this is variable over the pulsation period. The photospheric
flux is retarded and partially absorbed by its passage through the convective
layer by an amount that depends on the thickness of the layer, and this thick-
ness is itself variable with the pulsation. This variable thickness thus distorts
the shape of the light curve, giving rise to the combination frequencies. Note
that these frequencies describe the light curve shape; they are not associated
with physical motion, e.g. radial velocities, of the pulsation modes. Through
the combination frequencies energy is transferred between the eigenmodes so
the amplitudes are time-variable, as seen in Fig. 7.105.

Brickhill (1992a) found he could reproduce amplitudes and combination
frequencies for believable models. Wu (2001) and Montgomery (2005) showed
that the distortion of the light curves can be used for mode identification and
to determine the inclination of the mode axis (both of them assume that the
pulsational flux variation at the base of the convective zone is sinusoidal).
Montgomery (2005) shows excellent fits of his models to the nonlinear light
curves of the DAV star G29-38 and the DBV star PG 1351+489. Fig. 7.108
shows an encouraging fit of his model for GD 358 to data obtained in the WET
Xcov25 campaign, taking advantage of the fact that the modes are known to
be dipolar.

The modes of GD 358 are identified with confidence by their triplet nature
and the fact that quadrupole modes (or higher) are inconsistent with the all
models. Other pulsating white dwarfs, however, do not have mode identifica-
tions, so the new ability to determine these from nonlinear light curve shape
promises a wider selection of stars for which asteroseismic inference is possible.
This technique and its application are likely to develop significantly. It also
promises direct information about the structure and depth of the convection
layer. This will then test the theory of convective driving for the DAV and
DBV stars.

7.4.3 The Subdwarf B Star PG 0014+067

7.4.3.1 The Star

The EHB pulsators were introduced in Sect. 2.7.1: the sdBV stars include
the p-mode pulsators, the EC 14026 stars, also known as V361 Hya variables,
and the g-mode pulsators, the PG 1716 stars. The latter do not yet have
enough detected and identified frequencies for asteroseismic analyses. The for-
mer do, and the star for which the first such analysis was done is PG 0014+067
(EK Psc; B = 15.3; PG 0014 hereafter), an equatorial star (of course, it is in
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Fig. 7.108. Model fit of the nonlinear light curve of GD 358 to the high signal-
to-noise data taken with the 2.7-m NOT during the WET Xcov25 campaign. The
quality of the fit will no doubt be improved with better models, but shows that
the theory is successful in reproducing, hence understanding, the nonlinearities that
arise from the convective zone delays and distortions of the radiative transfer. Figure
reproduced from Montgomery (2008).

Pisces) accessible to observations from both hemispheres, hence a good target
for multi-site campaigns.

PG 0014 was discovered to be an sdBV star by Brassard et al. (2001) who
also made a model atmosphere analysis using a time-average spectrum to
determine Teff = 33 550±190K, log g = 5.77±0.05 (cgs) and N(He)/N(H) =
0.021 ± 0.002, suggesting that twice the formal 1σ errors quoted here on Teff

and log g would be more realistic. This places PG 0014 in the middle of the
instability region for the EC 14026 stars in the log g − Teff plane.

The low helium abundance is typical of the hydrogen-rich envelopes of
these helium-core-burning EHB stars. These stars have masses near to 0.5 M�,
so have lost significant mass prior to arriving on the EHB, but the mechanism
of the mass loss is still to be determined. The mass loss could have occurred
during the red giant stage and/or during the helium flash in a single star,
or it could have occurred during a common envelope stage, or during Roche
lobe overflow in a binary system. The EC 14026 stars are also thought to
be the direct progenitors of low-mass white dwarfs without an intervening
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asymptotic giant branch stage. Asteroseismic investigation of the interiors of
these EC 14026 stars promise to inform the many theoretical discussions of
their fascinating evolutionary history and future.

7.4.3.2 The Data, Mode Identification and Seismic Modelling

Figure 7.109 shows a light curve typical of the discovery observations with
the CFHT by Brassard et al. (2001), who identified 13 pulsation frequencies
with periods in the range 80−170 s. Importantly, they identified three closely
spaced frequency doublets that they tentatively attributed to rotationally split
modes. From two grids, 1470 course and 1350 fine, of theoretical models they
matched the observed frequencies best with the following deduced parameters
for PG 0014: Teff = 34 500±2700K and log g = 5.78±0.01 (cgs) – both in good
agreement with the spectroscopically determined values; a mass of the star of
M = 0.49±0.02M�; and a hydrogen envelope mass of logMenv = −4.3±0.2; a
radius of R = 0.149 ± 0.004 R�. From the determined Teff and stellar radius,
the inferred luminosity is L = 29 ± 10 L� and that leads to a distance of
2000 ± 300 pc. At its galactic latitude of −54◦ that places PG 0014 1600 pc
from the galactic plane.

All of the model modes of Brassard et al. were consecutive radial overtones
with degrees of l = 0, 1, 2, 3. The higher degree modes suggested imply larger
intrinsic amplitudes because of the partial cancellation effects discussed in
Chapters 1 and 6, but the observed amplitudes are only of the order of 1 mmag
for those modes, so the degrees are not unreasonable on grounds of observed
amplitude. From the assumption that the frequency doublets are rotationally
split, a rotation period of 29 h (1.2 d) was inferred. Thus the asteroseismic
analysis of Brassard et al. fulfils two of the prime goals of asteroseismology
for the sdBV stars: that of measuring the mass of the star and the mass of
the hydrogen-rich envelope. The goal of measuring the chemical stratification
that is predicted to be present (Charpinet et al. 1996) to explain driving by
the heat mechanism operating on diffusion-enhanced Fe in the envelope was
not attained. More frequencies and mode identifications are needed for that.

To address the question of mode identification in PG 0014, Jeffery et al.
(2005) obtained multi-colour photometry with ULTRACAM on the 4.2-m
William Herschel Telescope (WHT), supplemented with observations from the
2-m Faulkes telescope to help suppress aliases. The faintness of PG 0014 made
the mode identification using the amplitude ratio method (see Chapter 6)
indeterminate, except for being able to rule out any degree greater than 2
for the two highest amplitude modes. This is consistent with the analysis of
Brassard et al. (2001). Jeffery et al. also confirmed the close doublets, but
suggested a rotational period close to 4 d, rather than the 1.2-d period of
Brassard et al., admitting, however, that the interpretation was confounded
by possible aliasing. They looked forward to a WET campaign on this star.

That came with WET Xcov24 which had PG 0014 as its prime target for
two weeks during 2004 October 5 − 20 (Vučković et al. 2006). Because of the
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Fig. 7.109. A light curve of PG0014 in white light obtained with the CFHT. The
basic time scale of the variability obvious to the eye is around 150 s with beating
among the many pulsation frequencies. The ordinate is in units of fractional intensity.
From Brassard et al. (2001).

relative faintness of PG 0014 telescopes with apertures larger than 2 m were
particularly sought for this campaign. While time was assigned on telescopes
of this size, the weather conditions were not good for them, so that much of the
Xcov24 data comes from smaller telescopes. Figure 7.110 shows an amplitude
spectrum demonstrating that the pulsation frequencies for this star lie in a
narrow range around 7000μHz. A search up to the Nyquist frequency shows
that there are no other significant peaks in other ranges. There are only a
few “high amplitude” (by sdBV standards) peaks with amplitudes of 1 −
3 mma. Other, lower amplitude frequencies were extracted from the data with
sequential prewhitening with good agreement with the previous studies of this
star on the CFHT by Brassard et al. (2001) and on the WHT by Jeffery et al.
(2005). The star does have a set of widely spaced frequencies, some of which
are close doublets, as originally discovered by Brassard et al.

While Vučković et al. found nothing that they could clearly attribute to
rotational splitting in the close doublets, they discovered a phenomenological
relationship in the frequency spacings which seem to be linear multiples of
two small spacings they called δ = 90.37μHz and Δ = 101.22mHz. Along
with a zero-point frequency of f0 = 5923.24μHz, they were able to fit the
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Fig. 7.110. Amplitude spectrum of the WET Xcov24 data for PG0014. The pulsa-
tion frequencies can be seen to lie in a narrow range around 7000 μHz. The ordinate
scale is in mma (milli-modulation amplitude, meaning amplitude in units of 10−3 in
intensity). From Vučković et al. (2006).

entire set of observed frequencies with the relation f(i, j) = f0 + iδ + jΔ
to much better precision than Brassard et al. could fit their asteroseismic
stellar model frequencies to the observed frequencies. Vučković et al. stated
that examination of other sdBV stars showed similar empirical relationships
among the frequencies, and they intriguingly concluded that asteroseismic
secrets might be revealed by these apparent spacings, even though there is no
known physics associated with them at the moment.

Fontaine et al. (2007) took a hard look at the empirical relation of Vučković
et al. for the PG 0014 frequencies and concluded that no physical meaning can
be, or is likely to be, associated with it. They show that the frequency spacings
δ and Δ given above are so small compared to the frequency separations in
PG 0014 that the fit is simply a “least-common-denominator” (loosely speak-
ing) of the observed frequency separations. They show that an equally good
fit can be obtained for the period spacings, as a demonstration that the rela-
tionship is numeric, rather than physical.

Thus, the asteroseismology of PG 0014 by Brassard et al. (2001) is a strong
result for PG 0014, but the explanation of the closely spaced frequency dou-
blets eludes us, or at least is still unproven to be rotational, if that hypothesis
eventually turns out to be correct. It is clear that more frequencies and a
better duty cycle are needed; for this higher S/N is needed, hence larger
aperture telescopes. The sdBV stars are in a fascinating state of evolution;
asteroseismology may have much to say about their current structure with in-
ference possible about their progenitor structures and their future pathways
to white dwarfdom. The answers may come from renewed observational efforts
on PG 0014, or they may come with the discovery of other sdBV stars with
rich frequency spectra, perhaps with higher amplitudes for better S/N.
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7.4.4 The Subdwarf B Eclipsing Binary PG 1336−018, NYVir

7.4.4.1 The Star

PG 1336−018 (NY Vir; hereafter PG 1336) is one of the most exciting of all
asteroseismic target stars. This B = 13.6 equatorial sdBV star has the second
largest number of detected pulsation frequencies of any of the ∼30 known
EC 14026 stars, and additionally is in a short-period eclipsing binary system.
It is one of only 4 known HW Vir stars – short period eclipsing binary stars
with a subdwarf B primary and an M main sequence secondary – and the
only one of the four to have a pulsating primary star. Thus for PG 1336 fun-
damental stellar parameters can be determined spectroscopically, from orbital
solutions to the eclipsing light curve and radial velocity curve, and from aster-
oseismology using the pulsation frequencies. As these methods are partially
or fully independent (depending on the parameter being determined), this
unique system can be used to test the validity of the various solutions for stel-
lar parameters, and – particularly in the context here – to test asteroseismic
modelling techniques.

More specifically, for the EHB stars, asteroseismology of PG 1336 can give
precise values for the thin hydrogen surface layer, independent precise deter-
mination of the mass and deduction of the radius. As discussed in Sect. 2.7.1
and in the previous section on PG 0014, the EHB stars have masses of about
M = 0.5 M� with helium-burning cores and thin hydrogen-rich atmospheres.
Several different models for the formation of these stars have been proposed
which differ in the mass range expected for the sdB star and the mass of the
remnant hydrogen envelope, hence precise determination of values for those
two parameters may provide stringent constraints on the evolutionary history
for sdB stars. For further references on HW Vir stars, theoretical models of
EHB (sdB) stars and more background on PG 1336 itself, see the introductions
of Hu et al. (2007) and Vučković et al. (2007), and the references therein.

PG 1336 pulsates with over 20 identified frequencies – none of which
are combination frequencies – hence with over 20 identified modes, many
of which appear to be components of rotationally split multiplets. The fre-
quencies are concentrated in the range 5000 − 6000μHz, thus the periods
are in the range 170 − 200 s. The orbital period is accurately known to be
Porb = 0.10101599 ± 0.00000002d, or 2 h 25 min 27.7815 ± 0.0002 s (Kilkenny
et al. 2000). The primary eclipse lasts for about 800 s, so encompasses 4 − 5
pulsation cycles.

An extensive study of the orbital characteristics of PG 1336 was made by
Vučković et al. (2007) using ULTRACAM on UT3 of the VLT on one night
in 2005 May for photometry in three colours, and with the high resolution
spectrograph UVES on UT2 of the VLT on one night in 2005 April. Figure 2.61
already showed the beautiful r′ g′ and u′ light curves from Vučković et al.
(2007) while Fig. 7.111 shows their radial velocity curve. The light curve is
a higher precision version of the stunning discovery light curve presented by
Kilkenny et al. (1998) that brought so much deserved attention to this star.
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While Vučković et al. (2007) were unable to discriminate among three
possible orbital solutions for PG 1336, Charpinet et al. (2008) found only
one of those to be consistent with their best asteroseismic model. This or-
bital solution of Vučković et al. gives a mass for the primary component of
PG 1336 of M = 0.466 ± 0.006 M� and a radius of R = 0.15 ± 0.01 R�. Im-
portantly, for all three binary models the inclination is i = 81◦. Their atmo-
spheric analysis of the average UVES spectrum yielded Teff = 31 300± 250 K,
log g = 5.60 ± 0.05 (cgs) and an atmospheric helium to hydrogen abun-
dance of log(NHe/NH) = −2.929 ± 0.009. The preferred asteroseismic model
of Charpinet et al. (2008) is in outstanding agreement with this, giving
Teff = 32 740 ± 400 K, log g = 5.739 ± 0.002 (cgs), M = 0.459 ± 0.005 M�,
R = 0.151 ± 0.001 R� and log(Menv/M) = −4.54 ± 0.07 (where the quoted
errors for the asteroseismic model are internal precision, not external accu-
racy). Of course, the last of these – the mass fraction of the thin hydrogen-rich
envelope that is so important to know for modelling progenitor mass loss –
can only be measured by asteroseismic means.

All three of Vučković et al. ’s three possible orbital solutions give a mass
and radius for the secondary of about 0.12 M� and 0.16 R�, respectively. The
orbital separation is 0.764±0.005R� in the model that matches the preferred
asteroseismic model, so the picture is one of a hot subdwarf B star and a
cool main sequence M star – both with radii of 0.15 R� – separated by only
0.75 R�.

Thus far there is no conclusive evidence of tidal influence on the pulsa-
tion modes of PG 1336, but there remains the possibility, making the system
interesting for this additional reason. Being an eclipsing binary pulsating in
nonradial modes, there is also the possibility to use changes in the pulsation
amplitudes and phases during primary eclipse for mode identification. Again,
this has not yet been realized, but remains a possibility with even more ex-
tensive observational data. The pulsation periods are so short that about 5
cycles occur over the primary eclipse; the problem is to get sufficient data in
this short time to resolve the many mode frequencies.

Finally, since PG 1336 does not have enough residual hydrogen to ignite
for a return to the asymptotic giant branch, it is expected to evolve directly
to be a white dwarf. It is thus a direct progenitor of a cataclysmic variable
and is of yet further interest for that reason.

7.4.4.2 The Data

PG 1336 was discovered to be an sdBV star by Kilkenny et al. (1998) who
obtained a total of 24.2 h of high speed photometry of the star in various filters
in 1996 May – June. As mentioned in the last section, Fig. 2.61 is similar to
Kilkenny et al.’s discovery light curve. The beauty of that light curve and the
importance of the star led to it being the prime target of WET Xcov17 in
1999 April (Kilkenny et al. 2003) and WET Xcov21 in 2001 April48. We only
48 www.physics.udel.edu/darc/wet/XCov21/index.html.
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Fig. 7.111. The radial velocity curve for PG1336 determined from an average of
the radial velocities of the Hβ, Hγ, Hδ and Hε lines. The solid line is a best fitting
orbital solution. Note the occurrence of the Rossiter-McLaughlin effect at phase
zero. From Vučković et al. (2007).

discuss the Xcov17 results here, as the Xcov21 analysis is not published as of
this writing.

The main part of the Xcov17 multisite campaign collected 172 h of high
speed photometry from 14 observatories in both hemispheres. For higher time
resolution 5-s integration were used at most sites, rather than the 10 s that is
standard for WET campaigns. A commendable duty cycle of 47% was attained
over the central 14-d time span; 206 h of data were obtained over the more
extended run with a 43% duty cycle. Additional data were gathered in 1999
March and May at three of the sites. In all, 49 astronomers were involved in
the Xcov17 campaign.

Figure 7.112 shows the amplitude spectrum of the central data set. These
data were divided into two independent data sets. There are various methods
to estimate the significance of peaks in a periodogram (see Chapter 5), but
for confidence that a peak is real, nothing beats independent detection of it
in separate data sets. This reproducibility is particularly important because
of the need for more frequencies for modelling; there is a strong temptation to
use frequencies that are not well determined. Figure 7.113 shows sections of
the amplitude spectra for the two independent data sets in the range of most
of the pulsation frequencies of PG 1336.
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Fig. 7.112. An amplitude spectrum of the WET Xcov21 data for PG1336 showing
the concentration of the pulsation frequencies in the 5000 − 6000μHz range, with
some higher frequencies. The ordinate is amplitude in milli-fractional intensity units.
From Kilkenny et al. (2003).

The two independent data sets produced 14 frequencies that agreed very
well, i.e., within 0.4μHz of each other where the nominal resolution of the data
sets is about 1/T = 2μHz for their T ∼ 6-d time spans. Those 14 frequencies
were fitted to the data and prewhitened, giving another 5 frequencies that
could be identified with some confidence. Prewhitening of the 19 frequencies
left significant amplitude in the two separate amplitude spectra from which
more frequencies were derived with less confidence. The agreement between
the frequencies extracted from the two data sets was in all cases within 0.4μHz
– much less than the width of the peaks of 2μHz. Finally, the entire data set
was analysed, the same frequencies extracted and a few more peaks identified.

PG 1336 suffers from an additional aliasing problem that other astero-
seismic targets do not have. The light curve is modulated with the rotation
frequency, and, in particular, the amplitudes of the pulsation modes decrease
through the eclipse as the primary star is partially covered by the secondary.
Of course, this is a great advantage that should lead to mode identification by
eclipse mapping eventually, but it also means aliases in the spectral window
are generated at the rotational frequency, whether the eclipses are cut out of
the light curve, or not. Only high precision orbital models of the light curve
can partially alleviate this. Aliases at the rotational frequency are a particular
problem in this case where, as we shall see below, there are (apparently) many
rotationally split multiplets. Kilkenny et al. (2003) give a full list of the 24
frequencies they identified in both data sets (their table 3) and 28 frequencies
they found for the whole data set (their Table 4) with good confidence in the
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Fig. 7.113. Amplitude spectra for two independent data subsets of the WET
Xcov21 data for PG1336 in the frequency range of the main pulsation modes. The
vertical lines in the lower panel indicate 27 frequencies identified from the whole
data set. A total of 24 frequencies were found in both data sets. The ordinate is
amplitude in milli-fractional intensity units. From Kilkenny et al. (2003).

first 20 of these. The full frequency range is 4885−10315μHz, or period range
97 − 205 s.

7.4.4.3 Mode Identification and Seismic Modelling

Kilkenny et al. (2003) explored some models of PG 1336 and found rough
agreement with low overtone (0 ≤ n ≤ 3) modes with degrees 0 ≤ l ≤ 2.
The closely spaced frequencies required l up to 2, even though higher degrees
suffer cancellation in photometry that necessarily samples the entire visible
hemisphere of the star. With this effect and under the assumption that the
pulsation axis is inclined by the same angle as the orbital axis, i = 81◦,
Kilkenny et al. admitted that their mode identifications were not all plausi-
ble. They noted the need for extensive search of model parameter space and
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looked forward to an application of the Montréal parameter search method to
PG 1336. That has now been done.

Charpinet et al. (2008) searched a large 4-dimensional parameter space
(the number of models searched was not specified) for sdB models that
matched 25 of the frequencies determined by Kilkenny et al. (2003). Some
closely spaced frequencies that may not have been fully resolved in the WET
data set were not included. The forward modelling technique used was that
of Charpinet et al. (2006) that incorporates a genetic algorithm for opti-
mizing the search in the large parameter space: 30 000 ≤ Teff ≤ 36 000K;
5.6 ≤ log g ≤ 5.9; 0.3 ≤ M ≤ 0.7 M�; and an appropriately selected range
in mass fraction, M(r)/M . Given their new spectroscopic determination of
Teff = 32 780 ± 200 K and log g = 5.76 ± 0.03 (cgs), this parameter space
encompassed a reasonable range of possible models of PG 1336.

Further restrictions were made on the model searches. Following Fig. 1.5,
only modes of degree l = 0, 1, 2, 4 were included while modes of l = 3 were
considered to be of lower visibility in photometry, as are, of course, modes of
higher degree l ≥ 5. The closely spaced frequencies of PG 1336 could not be
matched by any models without the inclusion of l = 4, even though modes of
such high degree have a low amplitude averaged over the visible hemisphere
(typically only 12% of the radial modes – see Fig. 1.5). The rotational in-
clination was assumed to be equal to the orbital inclination, i = 81◦, and
the rotational period was taken to be the orbital period under the reasonable
assumption that the rotation is synchronized.

Within these assumptions and parameter space, several models were found
with good matches to the 25 observed frequencies from the WET data set.
An additional requirement that the average observed amplitude should drop
with increasing degree l then left only one best match. For that model the
theoretical frequencies and the observed frequencies all match within 0.5%.
Remarkably, the model parameters and the observed parameters are in excel-
lent agreement with one of the orbital models of Vučković et al. (2007). This
is a significant achievement for asteroseismology from which Charpinet et al.
(2008) conclude that it is strong evidence in favour of both the model, and
more generally the technique of forward modelling in asteroseismology.

Lots of interesting research remains to be done for this star, however, given
its unique nature. Firstly, Kilkenny et al. (2003) were less confident of some
of the frequencies Charpinet et al. used. Should those turn out to be aliases,
then the best fitting model may change, although the very good fit to the
orbital model would suggest that any such change will be small. The validity
of those lowest amplitude frequencies should be tested by the WET Xcov21
frequencies when they are published.

Secondly, Charpinet et al. find on average that the higher the degree l, the
lower the observed amplitudes, as is expected from visibility considerations
(see Fig. 1.5). It is interesting to note, however, that three of the highest
amplitude modes observed in PG 1336 are matched with model modes of (n =
0, l = 4,m = −1), (n = 0, l = 4,m = −3) and (n = 1, l = 4,m = +3) while
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these are expected to have an observed amplitude of only 12% that of the
radial modes and 10% of the dipole modes for the same intrinsic amplitude.
In addition, the mode with the highest observed amplitude is modelled with
(n = 1, l = 2,m = −2) while these are expected to reach about half of the
intrinsic amplitude of radial and dipole modes. It would therefore be very
interesting to model the frequency spectrum of PG 1336 with independent
evolution and oscillation codes to see if that leads to the same result. In
general, code comparison has been done in much detail for stars on the main
sequence, in the framework of the CoRoT mission (Lebreton et al. 2008; Moya
et al. 2008). Similar exercises have unfortunately not yet been done for evolved
stars. PG 1336 would be an ideal test case to do so. Indeed, if confirmed, the
high amplitudes for PG 1336’s relatively high degree modes must be telling us
something about the mode excitation physics. It would also be important to
make similar tests for other sdBV pulsators.

Thirdly, while the model frequencies and observed frequencies match to
within 0.5%, the rotational splittings do not, since the rotational frequency
is so much lower than the pulsational frequencies. For example, the observed
rotational splitting for the two multiplets identified as dipole triplets have
deviations of 10% and 20% of the rotational frequency compared to their
expected frequencies (for first-order rotational splitting). Charpinet et al. have
a strong discussion of this and look at models including higher order rotational
frequency splitting, which does alter the equal spacing of first-order multiplets.
Their conclusion is that the splittings suggest synchronous rotation with solid
body rotation half way to the core. This is the first and so far only direct
seismic probe of the internal rotation profile of an sdBV pulsator. Whether
this is typical of the whole sdBV class is questionable, given that PG 1336 is
a member of a close binary.

Charpinet et al. (2008) conclude that the amplitudes of the dipole triplets
– which show high amplitude for the m = ±1 sectoral modes, and very low
amplitude for the axisymmetric m = 0 modes, prove that the pulsation axis is
aligned with the orbital axis. While this may be the case, it is premature to rule
out the possibility that the pulsation axis might be the tidal axis as discussed
by Reed et al. (2006) in the context of another sdBV star, KPD 1930+2752.
If the pulsation axis is indeed the tidal axis, then with i = 81◦ dipole triplets
with amplitudes as observed are just what is expected. Moreover, if the modes
have pulsation axes that are along the tidal axis, and they are tidally distorted,
then they cannot be modelled with single spherical harmonics. The distortion
of the modes means that a spherical harmonic series is needed to describe
them, so that lower degree modes may have frequency multiplets with far
more components than expected for a simple normal mode. This is what is
observed in roAp stars where the magnetic field distorts the modes from simple
spherical harmonics (see, e.g., Kurtz 1992; Kochukhov 2006), and it could also
be expected for tidally distorted modes. In that case, high degree modes may
not be needed for PG 1336 and the mode visibility issue would have to be
placed into another perspective.
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Whether the mode axis is the tidal axis with mode distortion, or not,
is an important question of general interest in the context of close binary
evolution. It can be distinguished observationally from the seismic model by
Charpinet et al. (2008) by more precise determination of the mode frequencies.
The model with the pulsation axis equal to the tidal axis, and with mode
distortion, demands that the frequency multiplets be split by exactly the
rotation frequency, and that all components of the multiplet be equally split;
the high degree (l = 0, 1, 2, 4) model will have multiplets split by (1 − Cnl)
times the rotation frequency to first order, and will not be equally split at all to
second order (or higher), as for the model of Charpinet et al. Frequencies need
to be determined precisely enough, therefore, to see whether the splittings are
equal, or not, and if they are equal to see whether the separations are equal
to the rotation frequency, or (1 − Cnl) times the rotation frequency. This is
seriously challenging, but possible.

Eclipse mapping for mode identification as described in Chapter 6 is also
still a promising line of study for PG 1336. Kilkenny et al. (2003) showed
some progress with 40% of the primary eclipses covered during Xcov17; they
suggested that coverage of 80% could lead to progress. We look forward to
that being successfully carried out one day when PG 1336 will then again be
a good test case in this context. Already observers and theoreticians have
had great success in finding a plausible asteroseismic model of this star, in its
important and still partially enigmatic evolutionary stage.

The big advances to come for PG 1336 and for asteroseismology in general
will be from global networks and space missions that can produce continuous
data sets of months, and even years – long enough for frequency sets of un-
precedented precision and with unprecedented (except for the Sun) numbers
of frequencies. In the last chapter of this book, we look to that future.
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The Future

Global helioseismology is a mature field of research. Some models of the Sun
agree with the helioseismic observations of the sound speed to within a frac-
tion of a percent over 90% of the solar radius – a stunning achievement.
Eddington’s longed-for “appliance” to pierce the outer layers of a star and
see within has been discovered; with helioseismology we see the interior of the
Sun. In addition, we understand solar nuclear fusion reactions so well that
we reproduce them both explosively and non-explosively here on Earth, and
we even believe that we now understand solar neutrinos, with cosmic implica-
tions. Thus the standard solar model can be elevated to “understood physics”
– physics that will undergo small modifications in the future, but for which a
revolutionary paradigm is unlikely.

Where do we go from here? It is important to remind ourselves that the
Sun is but one star. Our model of it is exceedingly good, based on the bedrock
of laboratory atomic and nuclear physics, mechanics and electromagnetism.
We have a self-consistent model of one “experiment”: the Sun. As with all
physics experiments, we need to alter the initial conditions and run the ex-
periment again and again, searching parameter space, probing for weaknesses
in the model, probing for new physical understanding, searching for unimag-
ined discoveries.

These experiments are being run, and that has been the subject of this
book: the stars. Within reach of our telescopes now are hundreds of stars
on which we can make asteroseismic investigations. In the near future the
numbers of asteroseismic targets will increase to thousands. Following global
helioseismology the future is asteroseismology. The great variety of physical
conditions of stars allows us to study physics far beyond that of the Sun, as we
have shown throughout this book. New theoretical understanding will come
from asteroseismology: e.g. for pulsation in the presence of strong magnetic
fields, rapid rotation, convection, tidal distortion. Fundamental physics will be
probed by asteroseismology under conditions not possible on Earth: in stellar
cores, white dwarfs, hot subdwarf stars, and perhaps even neutron stars.

C. Aerts et al., Asteroseismology, Astronomy and Astrophysics Library, 669
DOI 10.1007/978-1-4020-5803-5 8, c© Springer Science+Business Media B.V. 2010
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Understanding thus gained will be fed back into helioseismology where, in
spite of the maturity of the field, there is much to do. Internally, the rotation of
the Sun is still to be understood, as are the physics of the magnetic field, solar
cycle, convection, circulation currents and the interactions amongst them. In
the visible atmosphere of the Sun local helioseismology is at the forefront of
studies of solar weather and its direct impact on Earth and life on our planet.
Helioseismology in the future is as important and fundamental as atmospheric
science and geoseismology here on Earth.

Again then, where do we go from here? We need data. In asteroseismology
we have been listening to the Music of the Spheres with earplugs; we have
been listening with distracting noise; we have been leaving the concert at
regular intervals and missing some of the finest melodies. We need to hear the
full symphony without interruption, without background noise, with clarity
and purity never achieved before. We need observations from space, and we
need continuous observations from the ground. As shown by the success of
helioseismology, we need these observations for months and for years.

This is a demand for a Tychonic revolution in asteroseismic observation,
a demand that will be met. Space missions are providing photometric ob-
servations 1 − 2 orders of magnitude more precise than those obtained from
the ground, with continuity for months and years. Ground-based networks
promise continuous spectroscopic data – for which intrinsic stellar noise lev-
els are lower than for photometry for solar-like oscillators – with a precision
similar to that of helioseismology only 20 years ago – cm s−1 in radial veloc-
ity. These new data sets will define asteroseismology; theoretical studies will
expand our understanding of stellar physics from them. Ground-based, single-
site asteroseismology will continue in exploratory studies and niche studies,
but the future is in space and in world-wide networks, as is the case already
for helioseismology.

8.1 Space Missions

NASA’s WIRE mission1, thanks to the clever and motivated suggestion of
D. Buzasi after the failure of its main purpose (Buzasi 2000), performed ex-
cellently as an unplanned pioneer in the field of space asteroseismology. It
tested for the first time the technique of high-precision continuous space pho-
tometry on very bright stars of different nature and evolutionary stage (Buzasi
2004) and led to several interesting new results and discoveries (e.g., Bruntt
2007; Bruntt & Southworth 2007). Quite a few of the asteroseismology re-
sults based on the other – but this time well-planned – pioneer, the Canadian
MOST mission2, have been discussed throughout this book. While WIRE has
been shut down meanwhile, MOST will continue to monitor relatively bright

1 http://www.ipac.caltech.edu/wire/.
2 http://www.astro.ubc.ca/MOST/.
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stars for asteroseismology in the coming years, producing light curves with
time spans of the order of a few weeks.

To end this book, we turn our attention to future space missions and
other projects, after giving a brief status report on the CoRoT mission which
is presently fully operational. Asteroseismic results from CoRoT are eagerly
awaited and will become available in the refereed literature the coming months
and years.

8.1.1 CoRoT

The CoRoT3 (Convection, Rotation & planetary Transits) mission was
launched on 27 December 2006 and began scientific operations on 2 February
2007. It carries a 27-cm telescope with a 4 CCD camera that can measure
stellar brightnesses to μmag precision. It is in a polar circular orbit at an
altitude of 896 km, from which it can observe an equatorial field-of-view away
from the solar direction for up to 150 d. The satellite is then rotated to look in
at an intermediate field for a few weeks, then is pointed again in the anti-solar
direction for another 150-d observing run.

The primary science goals of CoRoT are the detection of planets by the
transit method and asteroseismology. It is easy to see from a rough calculation
that a planet the size of the Earth – which has a radius about 10−2 R� – will
cover a relative area 10−4 of a star the size of the Sun, thus causing a dip
in the light curve of about 100μmag. The duration of such a transit is just
the time it takes the planet to move a solar diameter in its orbit, which for
the Earth at 29.5 km s−1 is about 7 hr. For the purpose of planetary transits
data are collected on two CCDs with initial integration times of 512 s (known
as the observing cadence) for 12 000 targets stars in the magnitude range
11 − 16; when a transit is detected the cadence is shortened to 32 s for that
star. Although these data are being collected to find planets, they are a rich
new source for asteroseismology for longer-period pulsators: β Cep stars, SPB
stars, δ Sct stars, γDor stars, Be stars, pulsating red giants, etc. They are also
a rich source of new eclipsing binary stars for mass determinations across the
HR Diagram. For primary asteroseismic targets CoRoT uses the other two
CCDs to study 10 bright stars between magnitudes 6 − 9 with a cadence of
2 s. These 150-d light curves at μmag precision represent spectacular data sets
for theoretical modelling.

At the time of writing, the reduced data of the first year of CoRoT observa-
tions have been sent to the co-investigators of the mission who have one-year
proprietary data rights. Impressive preliminary results based on the analysis
of these data, already covering large parts of the HR Diagram and proving
the performance of the mission is as expected, have been presented at several
conferences in the summer of 2008 (see Michel et al. 2008 for an overview of
the first results). The data of the seismology and exoplanet programmes have

3 http://corot.oamp.fr/.
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already given rise to the discovery and investigation of hundreds of pulsators,
with tens to hundreds of oscillation frequencies each. It is already clear now
from the preliminary results that present theoretical models will have diffi-
culty explaining the detected frequencies, i.e., we have just reached the desired
stage for the method of asteroseismology to become meaningful: we are ob-
taining data of such quality and quantity that we are forced to improve the
stellar structure models to comply with what is being observed.

8.1.2 The Kepler Mission

Are we alone? The question of life in the Universe is one of the most funda-
mental that can be asked. An important component of answering that ques-
tion is to find planets similar to Earth, i.e. planets with masses in the range
0.5−2 M⊕, in the habitable zone around their stars where liquid water exists.
The Kepler mission4 is a NASA project that intends to find these planets and
to characterize them, their orbits and the parent stars that they orbit.

The Kepler mission was launched successfully on 7 March 2009 and com-
missioning is ongoing at the time of this writing. Its telescope has an aperture
of 0.95-m and 42 CCDs covering a field-of-view of 105 square degrees in the
Cygnus-Lyra region. It is thus a significant advance technologically on the
CoRoT mission. Kepler expects to find dozens of Earth-sized planets by the
transit method with μmag-precision photometry of 170 000 stars in the magni-
tude range 9−16 for at least 3.5 yr, and possibly as much as 6 yr. The satellite
is drifting slowly away from Earth in a solar orbit where it can observe contin-
uously (with occasional short gaps in the observations for data downloading
to Earth and repositioning of the solar panels every three months); there is no
obscuring of the sky by the Earth, no scattered Earth-light, and no passage
through the South Atlantic Anomaly with the increased noise from radiation
that CoRoT has to contend with. The high precision of the white-light pho-
tometry for this mission, the continuity of the observations, and the duration
of the mission will allow planets the size of Earth to be detected in transit,
then confirmed with repeated transits over the years of the mission giving the
orbital periods of the planets. The cadence of the observations is 30 min.

Although Kepler will primarily target solar-like stars for planet finding,
other stars from all over the HR Diagram will be observed, providing a unique
data set for asteroseismology for stars with pulsation periods significantly
longer than 30 min. In addition, a small subset of stars will be observed with
a cadence of 1 min. These will primarily be solar-like oscillators for which
the Kepler data will become the definitive data resource for asteroseismology.
Some other types of pulsating stars that lie within the field-of-view will also
be observed with 1-min cadence, again producing unique data sets. Some stars
may be observed for the entire mission with the 1-min cadence, but there is
the option to change some targets at 90-d intervals.

4 http://www.kepler.arc.nasa.gov/.
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The primary reason for pursuing asteroseismology with the Kepler mission
is to infer the radii, masses and ages of the planet-hosting stars, important for
determining those very parameters for the planets themselves. The secondary
reason is to expand the scientific returns of the mission. To manage the as-
teroseismic part of this mission the Kepler Asteroseismic Science Consortium
(KASC) with more than 250 collaborators has been set up and is managed
by Aarhus University in Denmark5.

We look forward to the data from this mission, which will complement
and is expected to go beyond the CoRoT data in terms of time base for
asteroseismology across the entire HR Diagram.

8.1.3 BRITE

With the success of the MOST satellite, for which examples are given in Chap-
ter 2, the idea of small, relatively inexpensive satellites (also called nanosatel-
lites, where this use of nano is figurative, rather than literal) has led to the
BRIght Target Explorer mission (BRITE)6, an Austrian-Canadian space
mission. BRITE will be composed of two satellites, each a cube only 20-cm on
a side with a 3-cm aperture telescope, an 11-megapixel CCD and a field-of-
view of 25 × 25 square degrees in 800-km-high polar sun-synchronous orbits.
A launch in 2009 and a mission duration of 2 yr are planned.

In our quest in astronomy for ever larger telescopes on the ground and in
space to capture more photons – hence more information – we usually give up
the possibility of studying the brightest stars in the sky. Our telescopes are
too big for such stars; our instruments are either saturated, or even destroyed
if the stars we know by their individual names are put into the field-of-view.
Because of its small size, BRITE overcomes this limitation and will be able
to observe stars brighter than magnitude 4 (434 stars in total) with 15-min
integrations taken once per orbit (100 min) for time spans up to 100 d. At this
brightness μmag precision will be obtainable, giving extended data sets for
the study of longer-period bright pulsating stars: β Cep stars, SPB stars, δ Sct
stars, γDor stars, spotted and active cooler stars. Thus BRITE fills a niche
that the larger missions, CoRoT and Kepler cannot: asteroseismic data for the
brightest stars in the sky. A great advantage of this is that the fundamental
data for these stars – Teff , log g, distance, radius, and in some cases mass –
are among the best known.

8.1.4 PLATO

Looking even farther to the future a European Space Agency “Cosmic Vision
2015–2025” proposal called PLATO (PLAnetary Transits and Oscillations of

5 http://astro.phys.au.dk/KASC/.
6 http://www.brite-constellation.at/.
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stars)7 has been funded for a design study. PLATO’s goal is to study ∼400 000
stars at precisions of 10s of μmag over a very wide field of ∼1800 square degrees
for 3 yr, with a second field observed for 2 yr. The final sixth year of the mis-
sion can be spent on several other fields (including those with detected Earth
analogues, stellar clusters, etc.) for several months in its so-called step-and-
stare phase. PLATO is being designed, not only to extend the observations
of CoRoT and Kepler to find more Earth-like planets, but to characterize the
parent stars with exoplanets through asteroseismology. It is noteworthy that
this is a different strategy to the one chosen for CoRoT and Kepler, whose
asteroseismology and planet hunting programmes are performed on very dif-
ferent stellar samples: PLATO will do these two science cases simultaneously
on one and the same large sample of 20,000 bright stars with V magnitude
below 11.5. This is the only way to achieve a homogeneous seismic description
of stars and their planetary systems, but is at the same time a technological
challenge. Moreover, PLATO will additionally perform asteroseismic investi-
gations of huge numbers of stars across the HR Diagram in its step-and-stare
year. Should PLATO be funded following its present design study, the launch
will be around 2018; it will be the next step in the progression in space as-
teroseismic and planet-finding missions from WIRE and MOST to CoRoT to
Kepler.

8.1.5 Solar Missions

The SOHO mission has been in almost continuous operation since 1996 and
has been of immense value to helioseismology. To continue the successes
of SOHO, NASA is planning to launch the SDO mission (Solar Dynamics
Observatory)8 towards the end of 2009. This includes the HMI instrument
(Helioseismic and Magnetic Imager)9 which is essentially an updated version
of the MDI instrument on SOHO. For helioseismology the main improvement
is the much higher spatial resolution which will yield data superior to the
dynamics programme of MDI throughout the mission. A major goal of this
project is to carry out local helioseismology to study solar variability and
the properties of solar magnetic activity. However, it will also produce data
of great value for global helioseismology, particularly concerning high-degree
modes and hence the properties of the regions near the solar surface. Impor-
tant scientific issues concern the thermodynamics of the hydrogen and helium
ionization zones and the dynamics of rotation in the convection zone. SOHO
will be kept operational for a sufficient period to ensure good overlap and
cross-calibration between the two missions.

Further into the future, ESA may launch the Solar Orbiter mission.10 The
mission will be in an orbit approaching the Sun to within 0.23 AU (48 R�)
7 http://lesia.obspm.fr/cosmicvision/plato/.
8 See http://sdo.gsfc.nasa.gov/.
9 See http://hmi.stanford.edu/.

10 http://sci.esa.int/science-e/www/area/index.cfm?fareaid=45.
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for high-resolution observations of the solar surface and in situ measurements
of the solar wind. Equally important, the inclination of the orbit relative to
the ecliptic will gradually be increased to more than 30◦, hence for the first
time allowing detailed observations of the solar poles. The planned instru-
ment package includes an instrument to carry out high-resolution velocity
measurements, aiming in particular at local helioseismology. This will provide
information about the flows near the solar poles which may play an impor-
tant role in the operation of the dynamo that is likely responsible for the solar
magnetic activity. If finally selected by ESA, Solar Orbiter will be launched
around 2018.

8.2 Ground-Based Networks and Antarctica

While space mission observations are set to dominate asteroseismic studies in
the near future, there is still significant scope for ground-based studies. For
single-site observations and occasional multi-site campaigns these will prob-
ably concentrate on types of stars that CoRoT and Kepler are not able to
observe in large numbers, or at all, because of their rarity or faintness: pulsat-
ing white dwarfs, sdBV stars and roAp stars are examples. In addition, there
is a need for a ground-based network of telescopes similar to the networks that
have become the major source of ground-based data for global helioseismol-
ogy. This is particularly true for spectroscopic radial velocity measurements
for which, as is shown in Fig. 4.1, noise levels are far lower than for photo-
metric measurements. Finally, there is an promising possibility for single-site,
high duty cycle asteroseismic observations for time spans of months from new
observing sites in Antarctica that are being characterized and developed at
the time of this writing.

8.2.1 SONG: A Ground-Based Radial Velocity Network

The Stellar Observations Network Group (SONG)11 project intends to es-
tablish a network of 8 observing sites with a geographical distribution that
will ensure nearly continuous coverage over the entire sky. It follows in the
footsteps of the highly successful BiSON and GONG network projects in he-
lioseismology. The network will be optimized for two scientific goals: aster-
oseismic observations using radial velocity measurements and a search for
extra-solar planets with the gravitational microlensing technique. Since radial
velocity observations of solar-like oscillations are far less affected by the stellar
background noise than are photometric observations, SONG observations of
a few carefully selected stars will allow in-depth investigations of these stars,
complementing the investigations to be carried out by the CoRoT and Ke-
pler missions of large numbers of stars, but with less precision. The radial

11 http://astro.phys.au.dk/SONG/.
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velocity measurements will also allow the detection of low-mass planets in
very close orbits around their stars. Each site in the SONG network will be
equipped with a 1-m telescope with a high-resolution (R ∼ 100 000) spectro-
graph incorporating an iodine cell for velocity reference. As of this writing
one prototype telescope to be installed on Tenerife is funded and is expected
to be operational in 2011.

8.2.2 Antarctic Asteroseismology

During the first decade of the 21st century it has become apparent that the
highest plateaus of the Antarctic continent are potentially some of the finest
astronomical observing sites on Earth. Studies at Dome C by French and
Italian astronomers and their collaborators show that cloud cover is low with
up to 80% photometric weather; wind speeds at all atmospheric levels are
exceptionally low so that scintillation noise is below that of other outstand-
ing observing sites elsewhere on the planet; seeing during the day (summer)
averages 0.5 arcsec and for part of the time drops to less than 0.1 arcsec;
similar seeing is obtained at night, but only for heights of about 30 m and
more above ground level because of a very steep temperature gradient; wa-
ter vapour is very low. See Epchtein (2007) and other papers in the same
conference proceedings volume; see also the ARENA (Antarctic Research, a
European Network for Astrophysics12) website. In addition, Dome A – the
highest point in Antarctica – is being tested as an astronomical site by Chinese
astronomers and their collaborators13.

Neither Dome C nor Dome A is at the pole: Dome A is at latitude −80◦

and Dome C is at −75◦. Even in midwinter at Dome C there is some “midday”
twilight, since the Sun is ≤ 8◦ below the horizon at that time. Nevertheless,
for asteroseismic research the site has the potential for data with duty cycles
of ∼70% for time spans of 3 months (and even up to 88% duty cycle for stars
bright enough to be observed through the noon twilight) for selected targets
using only a single telescope. Even with the extreme environment, it appears
to be cost effective for specialized studies of individual asteroseismic targets
to use a small telescope at Dome C, rather than organize large numbers of
astronomers and obtain telescope time at many observatories simultaneously
around the world. Projects for asteroseismology have been proposed for Dome
C, e.g., the SIAMOIS Fourier Transform Spectrometer proposal by Mosser
et al. (2007) that could produce a radial velocity data set for the solar-like
oscillators αCen AB that would be superior for asteroseismic modelling to any
photometric data set obtainable from space.

12 http://arena.unice.fr/.
13 http://mcba11.phys.unsw.edu.au/∼plato/.
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Technological progress in the fields of asteroseismology and planet hunting has
been immense the past decade. We have moved from millimagnitude to micro-
magnitude precision in photometric data and from several m s−1 to cm s−1 in
velocity measurements – a factor 1000 gain! Moreover, we have evolved from
the monitoring of a handful of selected asteroseismic targets to thousands
of them – yet again a factor thousand improvement. It is to be expected
that this impressive observational progress will lead to an order-of-magnitude
improvement in the physical quantities describing the stellar interior. Aster-
oseismology is at the onset of a golden future. It will revolutionize stellar
evolution theory across the entire HR Diagram, and all topics in astrophysics
that build on it.



A

Summary of the Different Classes of Stellar
Pulsators

A summary of all the classes of pulsating stars and their main properties as
described in Chapter 2 is given in the tables below. This list originated from
a combination of observational discoveries, measured stellar properties, and
theoretical developments. Observers who found a new type of pulsator either
named it after the prototype or gave the class a name according to the ob-
served characteristics of the oscillations. Several pulsators, or even groups of
pulsators, were afterwards found to originate from the same physical mech-
anism and were thus merged into one and the same class. We sort this out
here in Tables A.1 and A.2 in order to avoid further confusion on pulsating
star nomenclature.

The effective temperature and luminosity indicated in Tables A.1 and A.2
should be taken as rough indications only of the borders of instability strips.
Often the theory is not sufficiently refined to consider these boundaries as
final. Moreover, there is overlap between various classes where so-called hy-
brid pulsators, whose oscillations are excited in two different layers and/or
by two different mechanisms, occur. Finally, new discoveries are being made
frequently, which then drive new theoretical developments possibly leading
to new instability regions. The results from the future observing facilities as
described in Chapter 8 will surely lead to new classes and/or subclasses with
lower amplitudes compared to what is presently achievable.

In the tables below, F stands for fundamental radial mode, FO for first
radial overtone and S for strange mode oscillations. Several classes undergo
(quasi-)periodicities with different time scales due to outbursts, cyclic variabil-
ity, rotational modulation, differential rotation, activity, binarity, etc., besides
oscillations. We list here only the period and amplitude ranges for the oscil-
latory behaviour. Exceptions to the listed ranges are possible. The various
names for each class as they occur in the literature are listed; the left column
was the authors’ choice, dominantly based on papers in the literature which
discuss the physical cause of the oscillations. For a full description of the
variability characteristics, we refer to Chapter 2 and the numerous references
listed there.
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B

Properties of Legendre Functions
and Spherical Harmonics

B.1 Properties of Legendre Functions

We provide here some basic properties of the Legendre functions, which are
essential to the understanding of nonradial oscillations. The following expres-
sions are mainly taken from Abramowitz & Stegun (1964) and Whittaker &
Watson (1927).

The Legendre function are solutions of the differential equation:

(1 − x2)
d2Pm

l

dx2
− 2x

dPm
l

dx
+
[
l(l + 1) − m2

1 − x2

]
Pm

l = 0 , (B.1)

or, equivalently,

d
dx

[
(1 − x2)

dPm
l

dx

]
+
[
l(l + 1) − m2

1 − x2

]
Pm

l = 0 . (B.2)

In the special case of m = 0, we are dealing with the Legendre polynomials:
Pl(x) = P 0

l (x).
Explicit expressions for the first few cases are:

P0(x) = 1 ,
P1(x) = x ,

P 1
1 (x) = −(1 − x2)1/2 , (B.3)
P2(x) = 1/2(3x2 − 1) ,
P 1

2 (x) = −3(1 − x2)1/2 ,

P 2
2 (x) = 3(1 − x2) .

General expressions, valid for m > 0, are:

Pl(x) =
1

2ll!
dl(x2 − 1)l

dxl
, (B.4)
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Pm
l (x) = (−1)m(1 − x2)m/2 dmPl(x)

dxm
, (B.5)

Pm
m (x) = (−1)m (2m)!2−m

m!
(1 − x2)m/2 . (B.6)

Note that Eq. (B.4) shows that Pl(x) is a polynomial of degree l. Also,
Eq. (B.6) shows that

Pm
m (cos θ) = (−1)m (2m)!2−m

m!
sinm θ (B.7)

The Legendre function for negative azimuthal order is obtained from the one
for positive m as

P−m
l (cos θ) =

(l −m)!
(l +m)!

Pm
l (cos θ) . (B.8)

The Legendre functions are easily computed from the following recursion re-
lations:

(l −m+ 1)Pm
l+1(x) = (2l + 1)xPm

l (x) − (l +m)Pm
l−1(x) , (B.9)

Pm+1
l (x) = (B.10)

(1 − x2)−1/2
[
(l −m)xPm

l (x) − (l +m)Pm
l−1(x)

]
,

(1 − x2)
dPm

l

dx
= lxPm

l (x) − (l +m)Pm
l−1(x) , (B.11)

x
dPl

dx
− dPl−1

dx
= lPl(x) . (B.12)

The following integral expression defines the orthogonality and normaliza-
tion of the Legendre functions:

∫ 1

−1

Pm
l (x)Pm

l′ (x)dx = δll′
(n +m)!

(l + 1/2)(l−m)!
. (B.13)

The Legendre functions have the following asymptotic expansion, for fixed
m ≥ 0 and large l:

Pm
l (cos θ) =

Γ (l +m + 1)
Γ (l + 3/2)

(π
2

sin θ
)−1/2

cos
[(

l +
1
2

)
θ − π

4
+
mπ

2

]

+O(l−1) (B.14)

For arbitrary, large l,m an approximate asymptotic representation of Pm
l is

Pm
l (cos θ) � Alm

(
cos2Θlm − cos2 θ

)−1/4
cos[Ψlm(θ)] ,

cos θ ∈ [− cosΘlm, cosΘlm] , (B.15)

for a suitable amplitude Alm and a rapidly varying phase function Ψlm; here
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Θlm = sin−1[m/
√
l(l + 1)] (B.16)

(e.g. Gough & Thompson 1990).1 Thus the Legendre function is confined
between turning-point latitudes ±(π/2−Θlm); in particular, as also illustrated
in Fig. B.1, modes with m � ±l are confined very near the equator.

B.2 Properties of Spherical Harmonics

The spherical harmonics are defined as

Y m
l (θ, φ) ≡ (−1)mclmP

m
l (cos θ) exp(imφ) , (B.17)

where clm is a normalization constant, given by

c2lm =
(2l + 1)(l −m)!

4π(l +m)!
, (B.18)

such that the integral of |Y m
l |2 over the unit sphere is unity (cf. Eq. (B.13)).

Examples of spherical harmonics for various degrees and azimuthal orders are
illustrated in Fig. B.1. Note in particular the increasing concentration towards
the equator of the sectoral modes, with m = l (see also Eq. (B.16)).

The transformation formula for spherical harmonics for two different co-
ordinate systems (r, θ, φ) and (r′, θ′, φ′) whose polar axes are inclined with
angle i and whose zero points for the azimuthal angles φ and φ′ are the same,
is given by:

Y m
l (θ, φ) =

l∑

k=−l

al m k(i) Y k
l (θ′, φ′), (B.19)

where

al m k(i) ≡ (l +m)!(l −m)!

×
min{l−m,l−k}∑

r=max{0,−k−m}
(−1)l+k+r sin(i/2)2l−2r−m−k cos(i/2)2r+m+k

r!(m + k + r)!(l −m− r)!(l − k − r)!
(B.20)

(Edmonds 1960, Jeffreys 1965, Condon & Odabasi 1980).
Let us now consider the specific case where the polar axis of the coordinate

system (r, θ, φ) coincides with the rotation axis of the star, which is further
assumed to coincide with the symmetry axis of the spherical harmonics, while
the polar axis of the system (r′, θ′, φ′) points towards the observer. In practice,
the inclination angle i can then take any value between 0◦ and 180◦. From
Eqs (6.58) and (B.20), one derives that the centroid velocity (first moment)
as detected by the observer, or, equivalently, the radial velocity variation, is
1 It is straightforward to demonstrate this by applying the JWKB technique, dis-

cussed below in Section E.2, to Eq. (B.1).
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proportional to al m 0(i) (Aerts et al. 1992). This leads us, in a natural way, to
define the so-called Inclination Angles of Complete Cancellation, IACC, as the
angles i for which al m 0(i) = Pm

l (cos i) = 0 with Pm
l (cos i) the factor occurring

in the variation of the monochromatic visual magnitude defined in Eq. (6.29).
Note that this cancellation is defined for linear quantities, such as the radial
velocity or the brightness variation, but not for, e.g., the second or third
moments. One can thus end up with a complete cancelling in the photometric
data while still detecting variations in the second or third moment of line
profiles.

The cases of complete cancellation of the brightness variations or of the
first moment occur whenever we look upon the star in such a way that the
individual contributions of all the points on the visible stellar disc to these
two quantities add up to zero. The definitions of Pm

l (cos i) and of al m 0(i)
lead us to derive the following properties:

• 180◦ − i is an IACC if i is an IACC;
• the mode with wavenumbers (l,m) has the same IACCs as the mode with

wavenumbers (l,−m);
• i = 0◦ is an IACC for each mode with m �= 0;
• i = 90◦ is an IACC for �−m odd

(Chadid et al. 2001). The IACCs lower than 90◦ for modes with l ≤ 5 and
m ≥ 0 are listed in Table B.1.

For sectoral modes with l > 3, Pm
l (cos i) and al m 0(i) � 0 for quite a

broad range of i near the IACC, so we have an interval of inclination angles
of almost complete cancellation for near pole-on views. For a multiperiodic
star, we may observe incomplete multiplets due to complete cancellation of
the central peak with m = 0, or of couples of side peaks (l,±m).

In analogy with IACCs, we define the Inclination Angle of Least Cancel-
lation (abbreviated IALC) as the inclination angle i for which Pm

l (cos i) and
al m 0(i) attain their maximum value. That is, the IALC is that inclination
angle i under which the star is viewed by the observer so as to maximize the
amplitude of the surface-integrated brightness variation and the radial ve-
locity variation for the mode (l,m) under consideration, for a given intrinsic
mode amplitude. It was first introduced by Buta & Smith (1979) and further
elaborated on by Chadid et al. (2001).

Similarly as for the IACCs, we have the following properties:

• 180◦ − i is an IALC if i is an IALC;
• the mode with wavenumbers (l,m) has the same IALCs as the mode with

wavenumbers (l,−m);
• i = 0◦ is an IALC for a zonal mode;
• i = 90◦ is an IALC for a sectoral mode

(Chadid et al. 2001). Each nonradial mode has exactly one IALC ≤ 90◦. These
are listed in Table B.1 for l ≤ 5 and m ≥ 0.
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(l,m) IACC IALC

(1, 0) 90◦ 0◦

(2, 0) 54.7◦ 0◦

(3, 0) 39.2◦ 90◦ 0◦

(4, 0) 30.6◦ 70.1◦ 0◦

(5, 0) 25.0◦ 57.4◦ 90◦ 0◦

(1, 1) 0◦ 90◦

(2, 2) 0◦ 90◦

(3, 3) 0◦ 90◦

(4, 4) 0◦ 90◦

(5, 5) 0◦ 90◦

(2, 1) 0◦ 90◦ 45.0◦

(3, 1) 0◦ 63.4◦ 31.1◦

(3, 2) 0◦ 90◦ 54.7◦

(4, 1) 0◦ 49.1◦ 90◦ 23.9◦

(4, 2) 0◦ 67.8◦ 40.9◦

(4, 3) 0◦ 90◦ 60.0◦

(5, 1) 0◦ 40.1◦ 73.4◦ 19.4◦

(5, 2) 0◦ 54.7◦ 90◦ 32.9◦

(5, 3) 0◦ 70.5◦ 46.9◦

(5, 4) 0◦ 90◦ 63.4◦

Table B.1. A list of inclination angles of complete (IACC) and of least (IALC)
cancellation for modes with l ≤ 5 and m ≥ 0.
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Fig. B.1. Snapshot of the radial component of various modes as seen by an ob-
server under an inclination angle of 55◦. The white bands represent the positions
of the surface nodes; red and blue represent sections of the star that are moving
in (out) at any given time, then vice versa. Top row: axisymmetric modes with,
from left to right, l = 1, 2, 4; 2nd row: tesseral modes with, from left to right,
(l,m) = (4, 2), (10, 5), (15, 5); 3rd and 4th row: sectoral modes with, from left to
right, l = 1, 2, 4 (3rd row) and l = 6, 10, 25 (bottom row). The higher the degree of
sectoral modes, the more they become confined to the equator of the star.



C

Mathematical Preliminaries

C.1 Formulation of Oscillation Equations in Complex
Form

In the analysis of the equations for perturbations around an equilibrium state
it is convenient to write the solution in complex form; the physically realistic
solution is obtained as the real part of the complex solution. To see that this
is possible, notice that the general equations can be written as

A
∂y

∂t
= B(y) , (C.1)

where the vector y consists of the perturbation variables (δδδr, p′, ρ′, · · ·), A
is a matrix with real coefficients, and B is a linear matrix operator involving
spatial gradients, etc., with real coefficients. Neither A nor B depends on time.
If y is a complex solution to Eq. (C.1) then the complex conjugate y∗ is also
a solution, since

A
∂y∗

∂t
=
(
A
∂y

∂t

)∗
= [B(y)]∗ = B(y∗) , (C.2)

and hence, as the system is linear and homogeneous, the real part �(y) =
1/2(y + y∗) is a solution.

Because of the independence of time of the coefficients in Eq. (C.1), solu-
tions can be found of the form

y(r, t) = ŷ(r) exp(− iω t) . (C.3)

This is a solution if the amplitude function ŷ satisfies the eigenvalue equation

− iωA · ŷ = B(ŷ) . (C.4)

Equations of this form were considered in Section 3.1.4 for simple waves. Note
that in Eqs (C.3) and (C.4) the frequency ω must in general be assumed to
be complex.
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Equation (C.3) is an example of the separability of the solution to a system
of linear partial differential equations, when the equations do not depend on
one of the coordinates. As the equilibrium state is spherically symmetric, the
equations are similarly separable in θ and φ when described in spherical polar
coordinates (r, θ, φ) (see Section 3.1.4.2).

C.2 Vector Operators in Spherical Polar Coordinates

We consider stars with at most modest deviations from spherical symmetry
and hence the description is most naturally made in spherical polar coordi-
nates (cf. Fig. 3.13). Here we present some relations for this case that are
needed in the study of the properties of the pulsations [see also Appendix 2
of Batchelor (1967)]. Let ar, aθ and aφ be unit vectors in the r, θ and φ
directions, let V be a general scalar field, and let

F = Frar + Fθaθ + Fφaφ (C.5)

be a vector field. Then the gradient of V is

∇V =
∂V

∂r
ar +

1
r

∂V

∂θ
aθ +

1
r sin θ

∂V

∂φ
aφ , (C.6)

the divergence of F is

div F =
1
r2

∂

∂r
(r2Fr) +

1
r sin θ

∂

∂θ
(sin θFθ) +

1
r sin θ

∂Fφ

∂φ
, (C.7)

and consequently the Laplacian of V is

∇2V = div (∇V ) (C.8)

=
1
r2

∂

∂r

(
r2
∂V

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
+

1
r2 sin2 θ

∂2V

∂φ2
.

Finally, we need the directional derivatives, in the direction, say, of the vector

n = nrar + nθaθ + nφaφ. (C.9)

The directional derivative n · ∇V of a scalar is obtained, as would be naively
expected, as the scalar product of n with the gradient in equation Eq. (C.6).
However, in the directional derivatives n · ∇F of a vector field, the change in
the unit vectors ar, aθ and aφ must be taken into account. The result is

n · ∇F =
(

n · ∇Fr −
nθFθ

r
− nφFφ

r

)
ar

+
(

n · ∇Fθ −
nφFφ

r
cot θ +

nθFr

r

)
aθ

+
(

n · ∇Fφ +
nφFr

r
+
nφFθ

r
cot θ

)
aφ , (C.10)
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where the directional derivatives of Fr, Fθ and Fφ are the same as for a scalar
field.

As the radial direction has a special status, it is convenient to introduce
the horizontal (or, properly speaking, tangential) component of the vector F :

F h = Fθaθ + Fφaφ , (C.11)

and similarly the horizontal components of the gradient, divergence and Lapla-
cian as

∇hV =
1
r

∂V

∂θ
aθ +

1
r sin θ

∂V

∂φ
aφ , (C.12)

∇h · F =
1

r sin θ
∂

∂θ
(sin θFθ) +

1
r sin θ

∂Fφ

∂φ
, (C.13)

and

∇2
hV =

1
r2 sin θ

∂

∂θ
(sin θ

∂V

∂θ
) +

1
r2 sin2 θ

∂2V

∂φ2
. (C.14)



D

Adiabatic Oscillations in an Isothermal
Atmosphere

As a simple illustration of the properties of oscillations in stellar atmospheres
it is convenient to consider an isothermal atmosphere. This has the significant
advantage of allowing an analytical solution of the oscillation equations. Fur-
thermore, it is a reasonable approximation to a realistic stellar atmosphere
where the temperature variation is substantially slower than the variations
in pressure and density. An early treatment of this problem was given by
Biermann (1947); for a slightly more recent review, see Schatzman & Souffrin
(1967).

D.1 Equilibrium Structure

We neglect effects of ionization and treat the gas in the atmosphere as ideal,
so that the equation of state is given by Eq. (3.19), where the mean molecular
weight μ is taken to be constant. Then Eq. (3.33) of hydrostatic support gives

dp
dr

= −gρ = − p

Hp
, (D.1)

where the pressure and density scale heights Hp and H (which are evidently
the same in this case) are given by

Hp = H =
kBT

gμmu
. (D.2)

As the extent of the atmosphere of at least main-sequence stars is much smaller
than the stellar radius, g can be taken to be constant. Then H is constant,
and the solution to Eq. (D.1) is

p = ps exp
(
− h

H

)
. (D.3)

Thus, from Eq. (3.19),
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ρ = ρs exp
(
− h

H

)
. (D.4)

Here we have introduced the altitude h = r−R, where R is the photospheric
radius (corresponding to the visible surface of the star, e.g. defined as the
point where the temperature equals the effective temperature), and ps and ρs

are the values of p and ρ at h = 0.

D.2 Oscillation Properties

We now consider the oscillations. As argued in Section 3.1.2, the motion be-
comes strongly nonadiabatic near the stellar surface. Nonetheless, for simplic-
ity, we shall here use the adiabatic approximation in the atmosphere. This
preserves the most important features of the atmospheric behaviour of the
oscillations, at least qualitatively. The study of atmospheric waves and oscil-
lations, with full consideration of effects of radiative transfer, is a very complex
and still incompletely developed area (e.g. Christensen-Dalsgaard & Frandsen
1983b; Medupe 2002; Medupe et al. 2002; Phorah 2008). It might be noticed
that the waves are in fact approximately adiabatic in the upper part of the
atmosphere. Here the diffusion approximation (upon which the argument in
Section 3.1.2 was based) is totally inadequate, as the gas is optically thin;
indeed the density is so low that the gas radiates, and hence loses energy,
very inefficiently, and the motion is nearly adiabatic.

We use the Cowling approximation, Eqs (3.174) and (3.175). Due to the
small extent of the atmosphere we neglect the term in 2/r (this is consistent
with assuming g to be constant, and corresponds to regarding the atmosphere
as plane-parallel). Then the equations may be written as

dξr
dh

=
1

Γ1H
ξr −

1
Γ1ps

(
1 − k2

hc
2
s

ω2

)
exp

(
h

H

)
p′ , (D.5)

and
dp′

dh
= −ρs exp(− h

H
)(N2

s − ω2)ξr −
1

Γ1H
p′ . (D.6)

Here the squared sound speed

c2s =
Γ1ps

ρs
(D.7)

and the squared buoyancy frequency

N2
s =

g

H

(
1 − 1

Γ1

)
(D.8)

are constant. In accordance with the plane-parallel approximation we have
introduced the horizontal wavenumber kh instead of the degree l, using
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Eq. (3.143). These equations may be combined into a single, second-order
equation for ξr:

d2ξr
dh2

− 1
H

dξr
dh

+
1
H2

[
1
4
ω2

ω2
a

+
k2
hgH

ω2

(
1 − 1

Γ1

)
− k2

hH
2

]
ξr = 0 . (D.9)

Here
ωa =

cs
2H

(D.10)

is a characteristic frequency for the atmosphere. In the solar atmosphere H is
approximately equal to 120 km, and ωa is about 0.03 s−1, corresponding to a
cyclic frequency of about 5 mHz, or a period of about 3 min.

Equation (D.9) has constant coefficients, and so the solution can be written
down immediately as

ξr(h) = a+ exp
(
λ+

h

H

)
+ a− exp

(
λ−

h

H

)
, (D.11)

where

λ± =
1
2
± 1

2

{
1 − ω2

ω2
a

+ 4k2
hH

2

[
1 − 4

ω2
a

ω2

1
Γ1

(
1 − 1

Γ1

)]}1/2

. (D.12)

These equations have been the subject of extensive studies in connection with
early attempts to interpret observations of solar 5-minute oscillations of high
degree (see e.g. Stein & Leibacher 1974). From the expression for λ± one may
qualitatively expect two regimes: one where the frequency is relatively large,
kh is relatively small and the first two terms in {· · ·} dominate; the second
where the frequency is small, kh is large and the last term in {· · ·} dominates.
These correspond to atmospheric acoustic waves and gravity waves, respec-
tively. From the point of view of global stellar oscillations interest centres on
those waves which have a wavelength much larger than the scale height of the
atmosphere.1 Thus we neglect the last term, reducing Eq. (D.12) to

λ± =
1
2
± 1

2

(
1 − ω2

ω2
a

)1/2

. (D.13)

This is clearly the relation for purely vertical waves.
Equation (D.13) shows the physical meaning of ωa. When ω < ωa, λ± are

real, and the motion behaves exponentially in the atmosphere. When ω > ωa,
λ± are complex, and the motion corresponds to a wave propagating through
the atmosphere. Thus ωa is the minimum frequency of a propagating wave,
and is consequently known as the acoustic cut-off frequency (Lamb 1909).
The exponential behaviour in the former case provides the upper reflection
of p modes. As discussed in Section 3.4.3, and in more detail in Section E.1
below, this can be generalized to the case of a general stellar envelope.
1 A detailed analysis of internal gravity waves in the solar atmosphere was presented

by Mihalas & Toomre (1981, 1982).
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D.3 Boundary Conditions in a Stellar Atmosphere

To study these properties in more detail, we consider the boundary conditions
for an atmosphere of infinite extent, assuming that ω < ωa. Here the energy
density in the motion must be bounded as h tends to infinity. The energy
density is proportional to ρξ2r , which for the two solutions behaves as

ρξ2r ∼ exp(− h

H
) exp(2λ±

h

H
) = exp

[

±
(

1 − ω2

ω2
a

)1/2
h

H

]

. (D.14)

Therefore only the λ− solution is acceptable, and here the energy density de-
creases exponentially. This gives rise to the atmospheric reflection. It should
be noticed that λ− > 0, so that the displacement increases with altitude in
the atmosphere. This increase can in fact be observed by comparing oscil-
lation amplitudes obtained in spectral lines formed at different levels in the
atmosphere. If ω > ωa we can write Eq. (D.13) as λ± = 1/2 ± ikr, where

kr =
(
ω2

ω2
a

− 1
)1/2

, (D.15)

and the corresponding full solution for the displacement, in complex form, is

δr(h) = δr0 exp(1/2 h) exp[ i(±krh− ωt)] , (D.16)

where δr0 is the displacement at h = 0. This corresponds to waves propagat-
ing through the atmosphere; the physically realistic case2 is clearly for the
waves to propagate towards increasing h, i.e., to choose the solution with +kr

in Eq. (D.16). These waves transport energy away from the star, and hence
oscillations at such frequencies would lose energy (such waves, generated in
the convection zone, may contribute to the heating of stellar chromospheres).
Thus only modes with frequencies below ωa are trapped in the stellar inte-
rior. In fact, the observed spectrum of solar oscillations stops at frequencies
of around 5 mHz, corresponding to ωa in the solar case.

From this solution we may obtain a more realistic boundary condition, to
replace the condition (3.160) discussed earlier. The condition of adiabaticity
(3.151) and the continuity equation (3.41) give

δp

p
= Γ1

δρ

ρ
= −Γ1div δδδr � −Γ1

dξr
dh

= −Γ1
λ−
H
ξr , (D.17)

or
p′ = δp− ξr

dp
dh

=
1
H
p(1 − Γ1λ−)ξr , (D.18)

where, for simplicity, we neglected the horizontal part of the divergence of δδδr
(this could, quite simply, be included). This provides a boundary condition

2 assuming that there is no source of waves outside the star.
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that may be used in numerical computations, in place of Eq. (3.160). Typically
it is applied at a suitable point, such as the temperature minimum, in the
atmosphere of the stellar model.

When ω is small compared with ωa, we can approximate λ− by

λ− � 1
2

[
1 −

(
1 − 1

2
ω2

ω2
a

)]
=

1
4
ω2

ω2
a

. (D.19)

Then Γ1λ− can be neglected in Eq. (D.18), compared with 1, and we recover
the boundary condition in (3.160). In this limit the displacement is almost
constant throughout the atmosphere. Also, it follows from Eq. (D.17) that
the Lagrangian perturbations to pressure and density, and consequently also
to temperature, are small. Physically, this means that the atmosphere is just
lifted passively up and down by the oscillation, without changing its structure.
Only when the frequency is quite close to the acoustic cut-off frequency does
the oscillation have a dynamical effect on the atmosphere.

For completeness, we note that a boundary condition can also be obtained
for ω > ωa, by choosing the appropriate outward travelling wave in Eq. (D.16)
and obtaining the corresponding relation for the pressure perturbation. In this
case the energy lost in the wave causes damping, even for adiabatic oscillations,
and hence the eigenfrequency and eigenfunctions are complex.
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Asymptotic Theory of Stellar Oscillations

E.1 A General Asymptotic Expression

An approximate asymptotic description of the oscillations has been derived
by Gough (see Deubner & Gough 1984), on the basis of earlier work by Lamb
(1932). This does not assume that the pressure and density scale heights
are much larger than the wavelength; but it assumes that the oscillations
vary much more rapidly than r and g, so that the problem is locally one of
oscillations of a plane-parallel layer under constant gravity. Also, as usual,
the perturbation to the gravitational potential is neglected. Then the gov-
erning equations are Eqs (3.174) and (3.175), but without the term in 2/r
in the former. When manipulating the equations, we neglect derivatives of r
and g, but keep derivatives of the thermodynamic quantities. We note that
Gough (1993) generalized this treatment to include also sphericity and varying
gravity, although at the expense of obtaining considerably more complicated
expressions.

The trick of the analysis is to write the equations in terms of

χ = div δδδr . (E.1)

By using the equation of continuity and the condition of adiabaticity we may
also write χ as

χ = − 1
Γ1

(
p′

p
− ρg

p
ξr

)
. (E.2)

The oscillation equations can be written as

dξr
dr

= χ +
1
ρ

k2
h

ω2
p′ , (E.3)

and
dp′

dr
= ρ

(
ω2 + g

d lnρ
dr

)
ξr + gρχ . (E.4)
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In keeping with the plane-parallel approximation we have expressed l by kh,
given by Eq. (3.143), and we assume kh to be constant.

By multiplying Eq. (E.2) by Γ1p and differentiating we obtain, on using
Eqs (E.3) and (E.4)

dΓ1

dr
pχ− Γ1gρχ+ Γ1p

dχ
dr

= −ρω2ξr +
gk2

h

ω2
p′ . (E.5)

This equation, together with Eq. (E.2), can be used to express ξr in terms of
χ and its first derivative. The result is

ρ

(
g − ω4

gk2
h

)
ξr = Γ1

[
pχ+

ω2

gk2
h

(
p

dχ
dr

− gρχ+ p
d lnΓ1

dr
χ

)]
. (E.6)

Finally, by differentiating Eq. (E.5) and using Eqs (E.3), (E.4) and (E.6) to
eliminate ξr, p′ and their derivatives, we obtain the following second-order
differential equation for χ:

d2χ

dr2
+
(

2
c2

dc2

dr
+

1
ρ

dρ
dr

)
dχ
dr

(E.7)

+
[

1
Γ1

d2Γ1

dr2
− 2
Γ1

dΓ1

dr
gρ

p
+ k2

h

(
N2

ω2
− 1

)
− 1
ρ

dρ
dr

1
Γ1

dΓ1

dr
+
ρω2

Γ1p

]
χ = 0 .

Here we have introduced the adiabatic sound speed c from Eq. (3.52) and the
buoyancy frequency N from Eq. (3.73).

The differential equation for χ contains no interior singular points. How-
ever, it is clear from Eq. (E.6) that the case where the coefficient of ξr vanishes
is in some sense singular. This occurs when

ω2 = gkh . (E.8)

It is easy to show that then the solution for χ to Eq. (E.6) grows exponentially
towards the interior; as this is clearly unacceptable, χ must be zero. Then
Eq. (E.2) gives

p′ = gρξr , (E.9)

and Eq. (E.3) has the solution

ξr = a exp(khr) , (E.10)

where a is an arbitrary constant. It is easy to show that the resulting p′ satisfies
Eq. (E.4). Thus this is one possible solution to the plane-parallel oscillation
equations. It should be noticed that Eq. (E.8) agrees with Eq. (3.85) for the
frequency of a surface gravity wave. Thus the mode we have found must be
identified with a surface gravity wave; and we have shown that its frequency
is independent of the structure of the model below the surface, if sphericity is
neglected. This result was first obtained by Gough. Note that in accordance
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with the assumption of a plane-parallel structure kh must be taken to be
constant in Eq. (E.10), kh =

√
l(l + 1)/R, where R is the surface radius. It is

obvious from Fig. 3.20 that the mode can be followed to degrees well below
10, although here the correction to the frequency given by Eq. (E.8) becomes
significant (see also Section 7.1.4.3).

To analyse Eq. (E.7) it is convenient to eliminate the term in dχ/dr. Thus
we introduce X by

X = c2ρ1/2χ . (E.11)

After considerable manipulation one then finds that X satisfies the differential
equation

d2X

dr2
+
[
k2
h

(
N2

ω2
− 1

)
+
ω2

c2
− 1

2
d
dr

(H−1) − 1
4
H−2

]
X = 0 , (E.12)

where we have introduced the density scale height H by

H−1 = −d ln ρ
dr

. (E.13)

Finally, we define a characteristic frequency ωc by

ω2
c =

c2

4H2

(
1 − 2

dH
dr

)
, (E.14)

and use Eq. (3.153) for the acoustic frequency Sl, to obtain

d2X

dr2
+

1
c2

[
S2

l

(
N2

ω2
− 1

)
+ ω2 − ω2

c

]
X = 0 . (E.15)

This is the final second-order differential equation. Considering that the only
approximations made in deriving it are the constancy of g and the neglect of
the derivatives of r, it is remarkably simple.

It might be noticed that Eq. (E.15) can also be derived from a careful
analysis of the propagation of waves in stellar interiors. This has been carried
out by Gough (1986a).

E.2 JWKB Analysis

To analyse Eq. (E.15) asymptotically we use the JWKB method (for Jeffreys,
Wentzel, Kramers and Brillouin; in fact the method seems to have been first
used by Liouville). It is widely used in quantum mechanics (see e.g. Schiff
1949, Section 34), and is also described in Unno et al. (1989), Chapter 16. An
excellent description of the technique was provided by Gough (2007). It is
possible to provide a firm mathematical foundation for the method; knowing
that this is so, it is enough here to sketch how it works, without worrying too
much about its convergence properties.
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We write the equation as

d2X

dr2
+K(r)X = 0 , (E.16)

with

K(r) =
1
c2

[
S2

l

(
N2

ω2
− 1

)
+ ω2 − ω2

c

]
. (E.17)

The assumption is that the solution varies rapidly compared with equilibrium
quantities, i.e., compared with K(r). Thus we write the solution as

X(r) = a(r) exp[iΨ(r)] , (E.18)

where Ψ is rapidly varying, so that the local radial wavenumber

kr =
dΨ
dr

(E.19)

has large magnitude; a(r) is a slowly varying amplitude function. Formally, it
is always possible to write the solution in this form. Substituting Eq. (E.18)
into Eq. (E.16) one obtains

(
d2a

dr2
+ 2ikr

da
dr

+ ia
dkr

dr
− k2

ra

)
exp(iΨ) = −K(r)a(r) exp(iΨ) . (E.20)

On the left-hand side the dominant term is the one containing k2
r ; to ensure

that this term cancels with the right-hand side, kr is chosen as

kr(r) = K(r)1/2 . (E.21)

The next-order terms are those in kr which must cancel. Thus

1
a

da
dr

= −1
2

1
kr

dkr

dr
, (E.22)

or, apart from a constant factor,

a(r) = |kr|−1/2 = |K(r)|−1/4
. (E.23)

This leaves in Eq. (E.20) only a term in the second derivative of a. The asymp-
totic approximation consists of neglecting this term, which by the assumption
is small compared with k2

ra. Then the approximate solution is completely
specified by Eqs (E.21) and (E.23). Since the solution may be chosen to be
real, it can be written as

X(r) = A |K(r)|−1/4 cos
(∫ r

r0

K(r′)1/2dr′ + φ

)
, for K(r) > 0 ,

(E.24)
or
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X(r) = |K(r)|−1/4

[
A+ exp

(∫ r

r0

|K(r′)|1/2dr′
)

(E.25)

+A− exp
(
−
∫ r

r0

|K(r′)|1/2dr′
)]

for K(r) < 0 ,

for some suitable r0. Here A and φ, or A+ and A−, are real constants which
must be determined from the boundary conditions.

Notice that this solution has the property of being locally exponential
where K < 0. Thus it is in accordance with the discussion in Section 3.4.2.
On the other hand, it breaks down at the zeros of K; formally this may be
seen from the fact that there a, as obtained in Eq. (E.21), is singular, and its
second derivative cannot be neglected in Eq. (E.20). Thus we need to make
a special analysis of the turning points where K = 0. In particular, this is
required to connect the solution in the exponential and oscillatory regions,
and hence apply the boundary conditions.

We now consider an interval [r1, r2] where K(r) > 0, and such that
K(r) < 0 for r < r1 and r > r2; we wish to find a solution that is trapped in
this interval. If r1 is a simple zero for K, close to r1 we have approximately
that

K(r) � K1(r − r1) , (E.26)

where K1 > 0 is a constant. We introduce the new independent variable x by

x = K
1/3
1 (r − r1) ; (E.27)

then the equation for X can be approximated by

d2X

dx2
= −xX , (E.28)

with the solution
X(r) = C1Ai (−x) + C2Bi (−x) , (E.29)

where C1 and C2 are constants, and Ai and Bi are the Airy functions (e.g.
Abramowitz & Stegun 1964).

To be definite, we consider a solution that is trapped in the oscillatory
region outside r1, and hence we need to choose the constants C1 and C2 such
as to select the solution that decreases exponentially as r decreases beneath
r1. When x < 0, and |x| is large, Ai (−x) and Bi (−x) have the following
asymptotic behaviour:

Ai (−x) � 1
2
√
π
|x|−1/4 exp

(
−2

3
|x|3/2

)
,

Bi (−x) � 1√
π
|x|−1/4 exp

(
2
3
|x|3/2

)
. (E.30)

Thus we must require that C2 = 0, and the solution satisfying the boundary
condition for r < r1 is therefore
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X(r) = C1Ai (−x) . (E.31)

We can use this solution to determine the phase φ in Eq. (E.24). For large
positive x the asymptotic expansion of Ai (−x) is

Ai (−x) � 1√
π
|x|−1/4 cos

(
2
3
x3/2 − π

4

)
. (E.32)

This must agree with what is obtained from Eq. (E.24), assuming that there
is a region where both this equation and the approximation in Eq. (E.32) are
valid. From the expansion of K in Eq. (E.26) we obtain

Ψ =
∫ r

r1

K(r′)1/2dr′ + φ =
2
3
x3/2 + φ , (E.33)

so that Eq. (E.24) gives

X � AK
−1/6
1 x−1/4 cos

(
2
3
x3/2 + φ

)
. (E.34)

This agrees with Eq. (E.32) if φ = −π/4. Sufficiently far from the turning
point r1 the JWKB solution satisfying the boundary conditions at r = r1 is
thus

X(r) = A1|K(r)|−1/4 cos
(∫ r

r1

K(r′)1/2dr′ − π

4

)
. (E.35)

Similarly, if there is an outer turning point at r = r2, so that K(r) > 0 for
r < r2 and K(r) < 0 for r > r2, one finds that the asymptotic solution that
is exponentially decaying for r > r2 is

X(r) = A2|K(r)|−1/4 cos
(∫ r2

r

K(r′)1/2dr′ − π

4

)
. (E.36)

To obtain the full solution we must match the two separate solutions
smoothly at a suitable point between r1 and r2, r = rf , say. We define

Ψ1 ≡ Ψ1(rf) =
∫ rf

r1

K(r)1/2dr − π

4
,

Ψ2 ≡ Ψ2(rf) =
∫ r2

rf

K(r)1/2dr − π

4
. (E.37)

Then the conditions that both X and its first derivative be continuous at
r = rf give

A1K(rf)−1/4 cosΨ1 = A2K(rf)−1/4 cosΨ2 ,

−A1K(rf)−1/4 sinΨ1 = A2K(rf)−1/4 sinΨ2 . (E.38)

Notice that in the derivative we have neglected terms coming from the differ-
entiation of K; these are small compared with the term included. These linear
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equations for A1, A2 only have a non-trivial solution if their determinant van-
ishes. This leads to

sinΨ1 cosΨ2 + cosΨ1 sinΨ2 = sin(Ψ1 + Ψ2) = 0 , (E.39)

or
Ψ1 + Ψ2 = (n− 1)π , (E.40)

where n is an integer. Thus
∫ r2

r1

K(r)1/2dr =
(
n− 1

2

)
π, n = 1, 2, . . . . (E.41)

Here K depends on the frequency ω; thus Eq. (E.41) implicitly determines the
frequencies of the modes trapped between r1 and r2. In addition, we find that
A1 = A2.

The asymptotic behaviour of X(r) in the region where a mode is trapped,
and some distance from the turning points, is given by Eq. (E.35). Asymptotic
eigenfunctions in terms of the displacement for p and g modes are discussed
in more detail in Section E.4.

E.3 The Duvall Law for p-Mode Frequencies

Writing the asymptotic expression (E.41) for the frequency out in full, using
Eq. (E.17) for K(r), we obtain

ω

∫ r2

r1

[
1 − ω2

c

ω2
− S2

l

ω2

(
1 − N2

ω2

)]1/2 dr
c

� π(n− 1/2) , (E.42)

where r1 and r2 are adjacent zeros of K such that K > 0 between them.
Equation (E.42) may be used to justify the approximate relation Eq. (3.196)

for the frequencies of acoustic modes, with α = α(ω) being a function of
frequency (see also Deubner & Gough 1984). Here we present an argument
derived by Christensen-Dalsgaard & Pérez Hernández (1992). Assuming that
the term in N2 can be neglected, we write Eq. (E.42) as

π(n− 1/2)
ω

� F
(ω
L

)
− 1
ω

(I1 + I2 + I3) , (E.43)

where

F (w) =
∫ R

rt

(
1 − c2

w2r2

)1/2 dr
c
, (E.44)

and the dimensionless integrals I1, I2 and I3 are defined by
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I1 = ω

∫ R

r2

(
1 − S2

l

ω2

)1/2 dr
c
, (E.45)

I2 = ω

∫ r2

r1

[(
1 − S2

l

ω2

)1/2

−
(

1 − ω2
c

ω2
− S2

l

ω2

)1/2
]

dr
c
, (E.46)

I3 = ω

∫ r1

rt

(
1 − S2

l

ω2

)1/2 dr
c
. (E.47)

We assume that ω2
c > 0 in the vicinity of the lower turning point, so that

rt < r1 [where rt is given by Eq. (3.189)]; also we have assumed that R > r2
for all modes of interest.

To show that Eq. (3.196) is approximately valid, with α being a function
of ω, we must show that I1 + I2 + I3 is predominantly a function of frequency.
In so doing we make the assumptions:

• S2
l /ω

2 � 1 at the upper turning point.
• ω2

c/ω
2 � 1 at the lower turning point.

Near the upper turning point we may then neglect the term in S2
l /ω

2, and
hence the position of the turning point is approximately given by r2 � Rt,
where Rt is defined by ω = ωc(Rt). Thus r2 is a function of frequency alone;
the same is therefore obviously true for I1. I3 is small; in fact, by expanding S2

l

in the vicinity of rt, neglecting the variation in ωc and c, it is straightforward
to show that

I3 � 1
3

(ωc,t

ω

)3

ω
Hc,t

ct
∼
(ωc,t

ω

)2

, (E.48)

where ωc,t, ct and Hc,t are the values of ωc, c and the sound-speed scale
height at rt. Thus, although I3 depends on rt and hence on ω/L, the term is
O((ωc/ω)2) and hence negligible.

This leaves I2 to be dealt with. To investigate its dependence on l and ω
we rewrite it as

I2 =
1
ω

∫ r2

r1

ω2
c

(
1 − S2

l

ω2

)1/2

+
(

1 − ω2
c

ω2
− S2

l

ω2

)1/2

dr
c
. (E.49)

Since ω2
c/c decreases quite rapidly with increasing depth (cf. Fig. 3.17), this

integral is dominated by the region near the upper turning point r2. It is true
that the integrand is nearly singular, with an integrable singularity, at r = r1;
but the contribution from that is essentially O(ω2

c,t/ω
2) and is therefore small.

Near r2, S2
l /ω

2 is negligible; thus we can approximate I2 as

I2 � 1
ω

∫ r2

r1

ω2
c

1 +
(

1 − ω2
c

ω2

)1/2

dr
c
, (E.50)
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which is obviously a function of frequency alone.
It follows that Eq. (E.43) may finally be written as

∫ R

rt

(
1 − L2c2

ω2r2

)1/2 dr
c

=
[n+ α(ω)]π

ω
, (E.51)

with
α � α(ω) =

1
π

(I1 + I2) − 1/2 . (E.52)

This argument is evidently valid in general for stellar models where ω2
c/c

decreases sufficiently rapidly with increasing depth.
A minor point in these relations concerns the definition of L (which also

enters into Sl = cL/r). In the analysis we have so far taken L =
√
l(l + 1).

In fact, it may be shown from a more careful analysis of the asymptotic
behaviour of the oscillation equations near the centre that a more appropriate
choice would have been L0 = l + 1/2 (note, however, that L = L0 + O(l−1)
and that even for l = 1 they are very similar). In the rest of this appendix we
shall replace L by L0 and, for convenience, suppress the subscript “0”.

E.3.1 Frequencies in Polytropic Envelopes

It is instructive to consider a special case of these relations, which is fur-
thermore a reasonable approximation to stars with extensive outer convection
zones, such as the Sun. The convection zone is approximately adiabatically
stratified, so that

d ln p
dr

= Γ1
d ln ρ

dr
; (E.53)

here we assume Γ1 to be constant (this is evidently not true in the ionization
zones of H and He, but they only occupy the outer few per cent of the star). We
may also assume that g is constant. Finally we take as boundary conditions
on the equilibrium structure that p = ρ = 0 at r = R. With these assumptions
the sound speed is given by

c2 =
g

μp
(R − r) , (E.54)

where μp = 1/(Γ1−1) is an effective polytropic index of the region considered.1

Furthermore,

ω2
c =

gμp

4(R− r)

(
1 +

2
μp

)
, (E.55)

and N is zero. We also treat the layer as plane parallel, so that r can be
replaced by R in the definition of Sl.

1 This can be easily demonstrated from Eq. (3.99) if the ideal gas law, Eq. (3.19),
is used.
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To carry out the analysis leading to the Duvall law in this case we note from
Eq. (E.55) that ωc is small except near the surface, and so it is reasonable to
neglect it in most of the region where the p mode is trapped.2 To approximate
Eq. (E.42) we use a trick similar to that employed to derive Eq. (E.51). Thus
we write Eq. (E.42) as

π(n− 1/2)
ω

=
∫ R

r1

(
1 − S2

l

ω2

)1/2 dr
c

−
∫ R

r2

(
1 − S2

l

ω2

)1/2 dr
c

−
∫ r2

r1

[(
1 − S2

l

ω2

)1/2

−
(

1 − ω2
c

ω2
− S2

l

ω2

)1/2
]

dr
c
. (E.56)

Here, approximately, r2 is given by ωc(r2) = ω, and is therefore close to
the surface. Furthermore, the dominant contribution to the third integral in
question Eq. (E.56) comes from the region near r2. In the last two integrals we
therefore use the approximations Eq. (E.54) and Eq. (E.55) for c and ωc. These
integrals may then, with a little effort, be evaluated analytically. Finally, we
neglect ωc near r = r1. The result is

π(n− 1
2 )

ω
=
∫ R

r1

(
1 − S2

l

ω2

)1/2 dr
c

− 1
2

[μp(μp + 2)]1/2 π

ω
. (E.57)

This may also be written as Eq. (E.51), with

α = 1/2[μp(μp + 2)]1/2 − 1/2 . (E.58)

Thus in this case α is a constant which is related to the effective polytropic
index of the surface layers. The integral F (ω/L) on the right hand side of
Eq. (E.51) may easily be evaluated in this case, to yield

F (w) =
π

2
w
μpR

g
. (E.59)

Thus the Eq. (E.51) gives

ω2 =
2
μp

g

R
(n + α)L . (E.60)

In particular, ω is proportional to L1/2. This property is approximately satis-
fied by the computed (and observed) frequencies at high degree (cf. Fig. 3.20).
Indeed, Eq. (E.60) might be expected to be approximately valid for modes
whose degree is so high that they are entirely trapped within the convection
zone.

If the entire layer is polytropic, with Eqs (E.54) and (E.55) everywhere
valid, Eq. (E.15) may be solved analytically (e.g. Christensen-Dalsgaard 1980).
2 Notice, however, that this becomes questionable for high l, where the trapping

region is confined very close to the surface.
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The condition that the solution decreases exponentially at great depths de-
termines the eigenfrequencies as

ω2 =
2
μp

(
n +

μp

2

)
L
g

R
. (E.61)

This is in accordance with Eq. (E.60) obtained asymptotically, but with a
different α,

α =
μp

2
. (E.62)

It is easy to show that the difference between this exact α and the asymptotic
approximation in Eq. (E.58) is small; it tends to zero for large μp.

E.3.2 Frequencies of Low-Degree Modes

For low-degree modes rt is small and the second term in the bracket in
Eq. (E.51) is much smaller than unity except near the centre. This allows
us again to expand the integral, to obtain a very simple relation for the fre-
quencies. Specifically, we consider the difference

I =
∫ R

0

dr
c

−
∫ R

rt

(
1 − c2

w2r2

)1/2 dr
c

=
∫ rt

0

dr
c

+
∫ R

rt

[

1 −
(

1 − c2

w2r2

)1/2
]

dr
c

≡ I1 + I2 , (E.63)

where w = ω/L. Notice that c is almost constant near the centre (it may be
shown that the first derivative of c is zero at r = 0). Thus we take c to be
constant in the first integral, and obtain

I1 =
rt
c(0)

� L

ω
=

1
w
, (E.64)

by using Eq. (3.189). In the second integral the integrand is only substantially
different from zero for r close to rt, which was assumed to be small. Thus here
we also approximate c by its value at r = 0. Furthermore, the upper limit of
integration may be replaced by ∞. Then we obtain, with the substitution
u = c/(wr),

I2 =
1
w

∫ 1

0

[
1 −

(
1 − u2

)1/2
] du
u2

=
1
w

(π
2
− 1

)
. (E.65)

Thus, finally, I = w−1π/2, and Eq. (E.51) may be approximated by
∫ R

0

dr
c

− L

ω

π

2
=

(n+ α)π
ω

, (E.66)
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or

ω =
(n + L/2 + α)π

∫ R

0

dr
c

. (E.67)

The derivation of Eq. (E.67) clearly lacks rigour. However, it may be shown
from a more careful asymptotic analysis of the central region (e.g. Vandakurov
1967; Tassoul 1980) that the result is correct to leading order, assuming that
L, as discussed above, is taken to be l + 1/2. Equation (E.67) may also be
written as

νnl =
ωnl

2π
� (n +

l

2
+

1
4

+ α)Δν , (E.68)

where

Δν =

[

2
∫ R

0

dr
c

]−1

(E.69)

is the inverse of twice the sound travel time between the centre and the surface.
The deviations from the simple relation Eq. (E.68) have considerable di-

agnostic potential. The expansion of Eq. (3.215), leading to Eq. (E.67), can be
extended to take into account the variation of c in the core (Gough 1986a);
alternatively it is possible to take the JWKB analysis of the oscillation equa-
tions to higher order (Tassoul 1980). The result may be written as

νnl �
(
n+

l

2
+

1
4

+ α

)
Δν − (AL2 − δ)

Δν2

νnl
, (E.70)

where

A =
1

4π2Δν

[
c(R)
R

−
∫ R

0

dc
dr

dr
r

]

. (E.71)

As discussed in detail in Section 7.2.2 the strong sensitivity of this expres-
sion to conditions in stellar cores provides an important diagnostic of stellar
properties.

E.4 Asymptotic Properties of Eigenfunctions

The analysis in Section E.2 yielded the asymptotic expressions (E.24) and
(E.25) for the eigenfunction, expressed in terms of X(r) defined in Eq. (E.11).
This was based on the formulation in Section E.1, however, which was derived
under the assumption that derivatives of r and g could be neglected. Thus,
as is indeed found from numerical applications, these asymptotic expressions
lead to amplitude functions deviating from the correct variation by low powers
of r or g.

As already mentioned a more complete asymptotic description which does
not suffer from this approximation was developed by Gough (1993). In a
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formal sense it is quite similar to the formulation presented here, although with
considerably more complicated expressions for the characteristic frequencies
and eigenfunction scalings. It is likely that an asymptotic analysis based on
these equations would yield the correct behaviour; however, such an analysis
has apparently not been published, and will not be attempted here.

Instead we shall apply a pragmatic, although certainly not rigorous, ap-
proach. As in Section 3.4.2 we base the analysis on the two equations (3.174)
and (3.175) in the Cowling approximation. By differentiating Eq. (3.174), elim-
inating dp′/dr using Eq. (3.175) and expressing p′ in terms of ξr and its deriva-
tive by means of Eq. (3.174) we obtain

d2ξr
dr2

= −
(

2
r
− 1
Γ1
H−1

p

)
dξr
dr

+
[
− 1
Γ1
H−1

p +
d
dr

ln
∣
∣
∣
∣

1
ρc2

(
S2

l

ω2
− 1

)∣∣
∣
∣

]
dξr
dr

+[−Ks(r) + h̃(r)]ξr , (E.72)

where Ks is still given by Eq. (3.182). All other terms in ξr are lumped to-
gether in h̃; these contain derivatives of equilibrium quantities, and so may
be assumed to be negligible compared with Ks (except, as usual, near the
surface). Equation (E.72) may also be written as

d2ξr
dr2

− d ln f
dr

dξr
dr

+ [Ks(r) − h̃(r)]ξr = 0 , (E.73)

where

f(r) =
1

ρr2c2

∣
∣
∣
∣
S2

l

ω2
− 1

∣
∣
∣
∣ . (E.74)

It should be noticed that the principal difference between Eq. (E.73) and
Eq. (3.181) derived previously is the presence of a term in dξr/dr. This occurs
because we have now not neglected the term in ξr on the right-hand side
of Eq. (3.174), and the corresponding term in p′ in Eq. (3.175). These terms
cannot be neglected if ξr and p′ are rapidly varying, as assumed.

To apply JWKB analysis we rewrite this equation in a form without a first
derivative, by introducing ξ̂r by

ξr(r) = f(r)1/2ξ̂r(r) ; (E.75)

ξ̂r satisfies
d2ξ̂r
dr2

+ [Ks(r) − h(r)]ξ̂r = 0 , (E.76)

where

h(r) = h̃(r) − 1
2

d2 ln f
dr2

+
1
4

(
d ln f

dr

)2

. (E.77)

Here h, like h̃, is generally small compared with Ks.
It is obvious that the derivation of Eq. (E.76) fails near points where

ω2 = S2
l , and where consequently f has a singular logarithmic derivative.
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These are the turning points of p modes. This problem can be avoided by
deriving instead a second-order differential equation for p′ (see Unno et al.
1989, Chapter 16); but, hardly surprisingly, this equation has problems at the
turning points for the g modes. Also, h(r) cannot be neglected near the surface
and hence Eq. (E.76) cannot be used for a general asymptotic description of
the oscillations. However, except near the singular points it may still be used
to provide the asymptotic form of the eigenfunctions. By applying JWKB
analysis to Eq. (E.76) we obtain, in mode-trapping regions where Ks(r) > 0,
that

ξr(r) = Ãρ−1/2r−1c−1

∣
∣∣
∣
S2

l

ω2
− 1

∣
∣∣
∣

1/2

|Ks(r)|−1/4 cos
(∫ r

r1

Ks(r′)1/2dr′ − π

4

)

= Aρ−1/2r−1c−1/2

∣
∣∣
∣
S2

l /ω
2 − 1

N2/ω2 − 1

∣
∣∣
∣

1/4

cos
(∫ r

r1

Ks(r′)1/2dr′ − π

4

)
,(E.78)

where A is an arbitrary amplitude factor, and r1 is a turning point, such that
Ks(r1) = 0. This expression is clearly valid only at some distance from the
turning points, where the asymptotic approximation, Eq. (E.32), can be used.
Thus the apparently singular behaviour in | · · · | causes no problems. Although
the oscillatory part of Eq. (E.78), particularly its phase, may be problematic
owing to the singularities and the near-surface behaviour, we expect that it
gives the asymptotically correct variation of the amplitude function, including
its dependence on g and r. We shall assume that this is the case and obtain the
relevant powers of r and/or g in the analysis of Eq. (E.15) such that the final
p- and g-mode expressions have the correct behaviour (the dependence with c
and ρ is included fully in the derivation of Eq. (E.15) and is therefore correctly
represented). What is gained by using Eq. (E.15) is therefore principally the
correct treatment of the phases at the turning points.

For later reference, we note that in the p-mode case, with ω � Sl and
ω � |N |, the amplitude function A(r) multiplying the cosine in Eq. (E.78) is

A(r) � Ap(r) = ρ−1/2r−1c−1/2 . (E.79)

In the opposite case for g modes, with ω � Sl and ω � N , we obtain

A(r) � Ag(r) = ρ−1/2r−3/2N−1/2 . (E.80)

E.4.1 Asymptotic Properties of the p-Mode Eigenfunctions

We neglect the term in N2 in Eq. (E.15), and assume that there is a region
outside rt where ω2

c can be neglected. In that region, except near rt, JWKB
analysis of Eq. (E.15) leads to the following approximate solution for X :

X(r) � AXc
1/2r−1

(
1 − L2c2

ω2r2

)−1/4

cos

[

ω

∫ r

rt

(
1 − L2c2

ω2r′2

)1/2 dr′

c
− π

4

]

,

(E.81)
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where the constant AX is determined by the normalization; the factor r−1

does not follow from the analysis but was, as discussed above, introduced to
obtain the correct final amplitude function, given by Eq. (E.79). An expression
for ξr can be derived from the general Eq. (E.6). We neglect the derivative of
Γ1 and write the equation as

ρg

(
1 − ω4

ω4
f

)
ξr � Γ1p

[
χ+

ω2

gk2
h

(
dχ
dr

− Γ1g

c2
χ

)]
, (E.82)

where ω2
f = gkh is the squared f-mode frequency. For high-order p modes we

can assume that ω � ωf . On the right-hand side we need to estimate the term
in dχ/dr, compared with the terms in χ. To do so, when differentiating here
and in the following we assume that the eigenfunction varies on a scale short
compared with scale heights of equilibrium quantities and only differentiate
through the argument of cos in Eq. (E.81). It follows that the amplitude of
dχ/dr is, to leading order, ω/c times the amplitude of χ. Consequently, the
magnitudes of the coefficients to χ in the three terms in the square bracket
on the right-hand side of Eq. (E.82) are

1 ,
ω3

gck2
h

,
ω2

k2
h

Γ1

c2
. (E.83)

To estimate the magnitude of the second component we write it as

ω2

c2k2
h

ωc

g
=
ω2

S2
l

ωc

g
. (E.84)

In the first factor ω > Sl in regions of p-mode trapping. The second factor
may be estimated from Eq. (3.180), neglecting ∇μ, by writing it as

N2 � Γ1g
2

c2
(∇ad −∇) ; (E.85)

thus ωc/g ∼ (∇ad −∇)1/2ω/N � 1 for typical p modes, at least in radiative
regions where ∇ad − ∇ is of order unity. (Near the surface, in convective
regions where this estimate is not valid, it is typically the case that ω2 � S2

l .)
It follows that the second component in the set Eq. (E.83) is typically much
greater than unity. The ratio between the third and second components is

Γ1g

ωc
� Γ

1/2
1 N

(∇ad −∇)1/2ω
, (E.86)

which by a similar argument is typically much smaller than unity.
Using these estimates, it follows from Eqs (E.82) and (E.81) that

ξr � − c2

ω2

dχ
dr

� −ρ−1/2ω−2 dX
dr

(E.87)

� −AXω
−1(ρc)−1/2r−1

(
1 − L2c2

ω2r2

)1/4

cos

[

ω

∫ r

rt

(
1 − L2c2

ω2r′2

)1/2 dr′

c
+
π

4

]

.
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By using Eq. (E.51) this equation may be written as

ξr(r) � (E.88)

A (ρc)−1/2r−1

(
1 − L2c2

ω2r2

)1/4

cos

[

ω

∫ R

r

(
1 − L2c2

ω2r′2

)1/2 dr′

c
− (α + 1/4)π

]

,

where A is a new constant.
To find the horizontal displacement we note that in Eq. (3.174) the first

term on the right-hand side can be neglected compared with the left-hand
side, so that

dξr
dr

� 1
ρc2

(
S2

l

ω2
− 1

)
p′ � −rω2

c2

(
1 − S2

l

ω2

)
ξh , (E.89)

using Eq. (3.131). Thus

ξh(r) � − c2

rω2

(
1 − S2

l

ω2

)−1 dξr
dr

� −Aρ−1/2c1/2r−2ω−1

(
1 − L2c2

ω2r2

)−1/4

×

× sin

[

ω

∫ R

r

(
1 − L2c2

ω2r′2

)1/2 dr′

c
− (α + 1/4)π

]

. (E.90)

It may be noted that the ratio between the amplitudes of the root-mean-
square lengths of the horizontal and vertical components of the displacement
is ∣∣

∣
∣
Lξh
ξr

∣∣
∣
∣ ∼

Lc

rω

(
1 − L2c2

ω2r2

)−1/2

=
Sl

ω

(
1 − S2

l

ω2

)−1/2

(E.91)

(cf. Eq. 3.137); thus well above the lower turning point, where ω � Sl, the
oscillation is predominantly vertical.

From these expressions, we can finally find the asymptotic form of the
energy integral E (cf. Eq. 3.139), replacing sin2 and cos2 by the average value
1/2:

E � 2πA2

∫ R

rt

[

c−1

(
1 − L2c2

ω2r2

)1/2

+
L2c

ω2r2

(
1 − L2c2

ω2r2

)−1/2
]

dr

� 2πA2

∫ R

rt

(
1 − L2c2

ω2r2

)−1/2 dr
c
. (E.92)

It should be noted, however, that Eqs (E.88) and (E.90) are not valid near
and above the upper turning point of the mode; although this region makes
a negligible contribution to E , it has to be taken into account when relating
E to the photospheric amplitude of the mode, as done, for example, in the
normalized inertia E (cf. Eq. (3.140)). This effect is predominantly a function
of frequency, except for high-degree modes.
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E.4.2 Asymptotic Properties of the g-Mode Eigenfunctions

We consider the region where a g mode is trapped, and assume that ω2 �
S2

l , N
2. Then

K � k2
h

(
N2

ω2
− 1

)
. (E.93)

In the corresponding JWKB expression for the eigenfunction, comparison with
Eq. (E.80) will show that the extra factor gr−3/2 must be included. Thus we
obtain

X(r) � Agr−3/2

(
N2

ω2
− 1

)−1/4

cos

[∫ r

r1

kh

(
N2

ω2
− 1

)1/2

dr′ − π

4

]

,

(E.94)
where k−1/2

h was assumed to be constant and was absorbed in the amplitude
A. To determine ξr we use again Eq. (E.82). On the left-hand side we can
assume that ω � ωf . On the right-hand side, according to Eq. (E.94) the
amplitude of dχ/dr is now, to leading order, khN/ω times the amplitude of
χ. Thus the magnitudes of the three terms on the right-hand side of Eq. (E.82)
scale as

1 ,
ωN

gkh
,

ω2Γ1

k2
hc

2
. (E.95)

Here, using Eq. (E.85), the second component is

ωN

gkh
� ω

ckh
(∇ad −∇)1/2 � ω

Sl
(∇ad −∇)1/2 � 1 , (E.96)

and the third component is

ω2Γ1

k2
hc

2
= Γ1

ω2

S2
l

� 1 . (E.97)

Thus the dominant term is the first. The result finally is

ξr � c2

g
χ = ρ−1/2g−1X (E.98)

� Aρ−1/2r−3/2

(
N2

ω2
− 1

)−1/4

cos

[∫ r

r1

L

r

(
N2

ω2
− 1

)1/2

dr′ − π

4

]

.

To find the horizontal displacement we again use Eq. (E.89), now approx-
imated by

dξr
dr

� L2

r
ξh . (E.99)

Thus we obtain
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ξh � r

L2

dξr
dr

(E.100)

� −Aρ−1/2L−1r−3/2

(
N2

ω2
− 1

)1/4

sin

[∫ r

r1

L

r

(
N2

ω2
− 1

)1/2

dr′ − π

4

]

.

Here the ratio between the amplitudes of the root-mean-square lengths of the
horizontal and vertical components of the displacement is therefore

∣
∣
∣
∣
Lξh
ξr

∣
∣
∣
∣ ∼

(
N2

ω2
− 1

)1/2

, (E.101)

demonstrating that the oscillation is predominantly in the horizontal direc-
tion. It should be noted that this applies to the region where the mode is
trapped; as discussed in Section 3.3.2.2 the surface ratio between the horizon-
tal and vertical displacement is predominantly determined by the frequency
of the mode.
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buchner F., Zhi-Ping L., Shi-Yang J., Zong-Li L., Ai-Ying Z., Pikall H.,
Stankov A., Guzik J. A., Sperl M., Krzesinski J., Ogloza W., Pajdosz G.,
Zola S., Thomassen T., Solheim J.-E., Serkowitsch E., Reegen P., Rumpf
T., Schmalwieser A., Montgomery M. H., 1999a, “30+ frequencies for the
delta Scuti variable 4 Canum Venaticorum: results of the 1996 multisite
campaign”, Astronomy and Astrophysics, 349, 225 – 235

Breger M., Pamyatnykh A. A., Pikall H., Garrido R., 1999b, “The delta Scuti
star FG Virginis. IV. Mode identifications and pulsation modelling”, As-
tronomy and Astrophysics, 341, 151 – 162

Breger M., Pamyatnykh A. A., Zima W., Garrido R., Handler G., Reegen
P., 2002, “Pulsation of the δ Scuti star θ2 Tau: new multisite photometry
and modelling of instability”, Monthly Notices of the Royal Astronomical
Society, 336, 249 – 258

Breger M., Lenz P., Antoci V., Guggenberger E., Shobbrook R. R., Handler
G., Ngwato B., Rodler F., Rodriguez E., López De Coca P., Rolland A.,
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Däppen W., 2004, “Equations of state for solar and stellar modelling”, In
Equation-of-State and Phase-Transition Issues in Models of Ordinary As-
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Chièze S., Ulrich R., Basu S., Baudin F., Bertello L., Boumier P., Charra
M., Christensen-Dalsgaard J., Decaudin M., Dzitko H., Foglizzo T., Fossat
E., Garćıa R. A., Herreros J. M., Lazrek M., Pallé P. L., Pétrou N., Re-
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Kawaler S. D., Potter E. M., Vučković M., Dind Z. E., O’Toole S., Clemens
J. C., O’Brien M. S., Grauer A. D., Nather R. E., Moskalik P. A., Claver
C. F., Fontaine G., Wesemael F., Bergeron P., Vauclair G., Dolez N.,
Chevreton M., Kleinman S. J., Watson T. K., Barstow M. A., Sansom
A. E., Winget D. E., Kepler S. O., Kanaan A., Bradley P. A., Dixson J.,
Provencal J., Bedding T. R., 2004, “Whole Earth Telescope observations
of the pulsating hot white dwarf PG 1707+427”, Astronomy and Astro-
physics, 428, 969 – 981

Kaye A. B., Handler G., Krisciunas K., Poretti E., Zerbi F. M., 1999, “Gamma
Doradus Stars: Defining a New Class of Pulsating Variables”, Publications
of the Astronomical Society of the Pacific, 111, 840 – 844

Kendall M., Ord J. K., 1990, Time series, 3rd edition, London: Hodder Arnold
Kennelly E. J., Walker G. A. H., Merryfield W. J., 1992, “Tau Pegasi - A

Fourier representation of line-profile variations”, Astrophysical Journal,
400, L71 – L74

Kennelly E. J., Walker G. A. H., 1996, “The Line-Profile Variations of
θ2 Tauri”, Publications of the Astronomical Society of the Pacific, 108,
327 – 331

Kennelly E. J., Brown T. M., Kotak R., Sigut T. A. A., Horner S. D., Ko-
rzennik S. G., Nisenson P., Noyes R. W., Walker A., Yang S., 1998, “The
Oscillations of Tau Pegasi”, Astrophysical Journal, 495, 440 – 457

Kepler S. O., 2007, “Observational white dwarf seismology”, Communications
in Asteroseismology, 150, 221 – 226

Kepler S. O., Nather R. E., Winget D. E., Nitta A., Kleinman S. J., Metcalfe
T., Sekiguchi K., Xiaojun J., Sullivan D., Sullivan T., Janulis R., Meistas
E., Kalytis R., Krzesinski J., Ogoza W., Zola S., O’Donoghue D., Romero-
Colmenero E., Martinez P., Dreizler S., Deetjen J., Nagel T., Schuh S. L.,
Vauclair G., Ning F. J., Chevreton M., Solheim J.-E., Gonzalez Perez
J. M., Johannessen F., Kanaan A., Costa J. E., Murillo Costa A. F., Wood
M. A., Silvestri N., Ahrens T. J., Jones A. K., Collins A. E., Boyer M.,
Shaw J. S., Mukadam A., Klumpe E. W., Larrison J., Kawaler S., Riddle
R., Ulla A., Bradley P., 2003, “The everchanging pulsating white dwarf
GD358”, Astronomy and Astrophysics, 401, 639 – 654

Kepler S. O., Castanheira B. G., Saraiva M. F. O., Nitta A., Kleinman S. J.,
Mullally F., Winget D. E., Eisenstein D. J., 2005, “Discovery of fourteen
new ZZ Cetis with SOAR”, Astronomy and Astrophysics, 442, 629 – 634



782 Bibliography

Kepler S. O., Kleinman S. J., Nitta A., Koester D., Castanheira B. G., Giovan-
nini O., Costa A. F. M., Althaus L., 2007, “White dwarf mass distribution
in the SDSS”, Monthly Notices of the Royal Astronomical Society, 375,
1315 – 1324
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Nuspl J., Bı́ró I. B., 2002, “Eclipse Mapping of Non-Radial Pulsation in Binary
Stars”, In IAU Colloquium 185: Radial and Nonradial Pulsations as Probes
of Stellar Physics, Eds C. Aerts, T. R. Bedding, J. Christensen-Dalsgaard,
Publications of the Astronomical Society of the Pacific Conference Series,
San Francisco, 259, 100 – 101

Nuspl J., Biro B. I., Hegedus T., 2004, “Reconstruction of dynamical fea-
tures in eclipsing binaries”, In Spectroscopically and Spatially Resolving
the Components of the Close Binary Stars, Eds R. W. Hilditch, H. Hens-
berge, K. Pavlovski, Publications of the Astronomical Society of the Pacific
Conference Series, San Francisco, 318, 350 – 352

O’Brien M. S., Kawaler S. D., 2000, “The Predicted Signature of Neutrino
Emission in Observations of Pulsating Pre-White Dwarf Stars”, Astro-
physical Journal, 539, 372 – 378

Ohshima O., Narusawa S.-y., Akazawa H., Arai K., Fujii M., Kawabata T.,
Morikawa K., Ohkura N., Takeuti M., 2001, “Short-Period Light Variation
of an Eclipsing Binary System: RZ Cassiopeiae”, Astronomical Journal,
122, 418 – 424

Okazaki A. T., Owocki S. P., Stefl S. (Eds), 2007, Active OB-Stars: Labora-
tories for Stellare and Circumstellar Physics, Astronomical Society of the
Pacific Conference Series, 361

Olech A., Dziembowski W. A., Pamyatnykh A. A., Kaluzny J., Pych W.,
Schwarzenberg-Czerny A., Thompson I. B., 2005, “Cluster Ages Exper-
iment (CASE): SX Phe stars from the globular cluster ω Centauri”,
Monthly Notices of the Royal Astronomical Society, 363, 40 – 48

Olivier E. A., Wood P. R., 2005, “Non-linear pulsation models of red giants”,
Monthly Notices of the Royal Astronomical Society, 362, 1396 – 1412

Oosterhoff P. T., 1944, “Discussion of photographic magnitudes of bright
northern stars, together with new mean values in King’s photographic
system”, Bulletin of the Astronomical Institutes of the Netherlands, 10,
45 – 55



806 Bibliography

Origlia L., Rood R. T., Fabbri S., Ferraro F. R., Fusi Pecci F., Rich R. M.,
2007, “The first empirical mass-loss law for population II giants”, Astro-
physical Journal, 667, L85 – L88

Osaki Y., 1971, “Non-Radial Oscillations and the Beta Canis Majoris Phe-
nomenon”, Publications of the Astronomical Society of Japan, 23, 485 –
502

Osaki Y., 1974, “An excitation mechanism for pulsations in beta Cephei
stars”, Astrophysical Journal, 189, 469 – 477

Osaki Y., 1975, “Nonradial oscillations of a 10 solar mass star in the main-
sequence stage”, Publications of the Astronomical Society of Japan, 27,
237 – 258

Østensen R. H. (Ed.), 2006, The 2nd Meeting on Hot Subdwarf Stars and
Related Objects, Baltic Astronomy, 15

Østensen R., 2008, “DAS User Manual”, Communications in Asteroseismology,
155, 7 – 16

Ostlie D. A., Cox A. N., 1986, “A linear survey of the Mira variable star insta-
bility region of the Hertzsprung-Russell diagram”, Astrophysical Journal,
311, 864 – 872

Ot́ı Floranes H., Christensen-Dalsgaard J., Thompson M. J., 2005, “The use
of frequency-separation ratios for asteroseismology”, Monthly Notices of
the Royal Astronomical Society, 356, 671 – 679

Oudmaijer R. D., van der Veen W. E. C. J., Waters L. B. F. M., Trams N. R.,
Waelkens C., Engelsman E., 1992, “SAO stars with infrared excess in the
IRAS Point Source Catalog”, Astronomy and Astrophysics Supplement
Series, 96, 625 – 643

Paardekooper S. J., Veen P. M., van Genderen A. M., van der Hucht K. A.,
2002, “On the variability of the visual binary WR86. WC7 with a β-Cephei
companion”, Astronomy and Astrophysics, 384, 1012 – 1022
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catalogue of delta Sct stars”, Astronomy and Astrophysics Supplement
Series, 144, 469 – 474
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Söderhjelm S., 1999, “Visual binary orbits and masses post Hipparcos”, As-
tronomy and Astrophysics, 341, 121 – 140
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Turck-Chièze S., Garćıa R. A., Couvidat S., Ulrich R. K., Bertello L., Varadi
F., Kosovichev A. G., Gabriel A. H., Gerthomieu G., Brun A. S., Lopes
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F. J., Casanova V., Rolland A., Olivares I., 2008, “The γ Doradus CoRoT
target HD 49434. I. Results from the ground-based campaign”, Astronomy
and Astrophysics, 489, 1213 – 1224

Vakili F., Mourard D., Stee P., 1994, “Optical Resolution of Be Star En-
velopes”, In Pulsation, Rotation, and Mass Loss in Early-Type Stars, Eds
L. A. Balona, H. F. Henrichs, J.-M. LeContel, Kluwer Academic Publish-
ers, Dordrecht, 162, 435 – 447

van Belle G. T., Ciardi D. R., Boden A. F., 2007, “Measurement of the surface
gravity of η Bootis”, Astrophysical Journal, 657, 1058 – 1063

Vandakurov Y. V., 1967, “On the Resonance Instability in a Radially Pulsat-
ing Star”, Astrophysical Journal, 149, 435 – 439

van den Ancker M. E., de Winter D., Tjin A Djie H. R. E., 1998, “HIPPAR-
COS photometry of Herbig Ae/Be stars”, Astronomy and Astrophysics,
330, 145 – 154

VandenBerg D. A., Bergbusch P. A., Dowler P. D., 2006, “The Victoria-Regina
stellar models: evolutionary tracks and isochrones for a wide range in mass
and metallicity that allow for empirically constrained amounts of convec-
tive core overshoot”, Astrophysical Journal Supplement Series, 162, 375
– 387

van der Hucht K. A., 2001, “The VIIth catalogue of galactic Wolf-Rayet stars”,
New Astronomy Review, 45, 135 – 232

van Genderen A. M., 2001, “S Doradus variables in the Galaxy and the Mag-
ellanic Clouds”, Astronomy and Astrophysics, 366, 508 – 531

van Genderen A. M., Bovenschen H., Engelsman E. C., Goudfrooy P., van
Haarlem M. P., Hartmann D., Latour H. J., Ng Y. K., Prein J. J., van
Roermund F. H. P. M., Roogering H. J. A., Steeman F. W. M., Tijdhof
W., 1989a, “Light variations of massive stars (Alpha Cygni variables). IX”,
Astronomy and Astrophysics Supplement Series, 79, 263 – 282

van Genderen A. M., Steemers W. J. G., van der Hucht K. A., 1987, “A high
precision photometric investigation of the micro-variations of Wolf-Rayet
stars”, Astronomy and Astrophysics, 185, 131 – 146

van Genderen A. M., Breukers R. J. L. H., Houtekamer P., van Roermund
F. H. P. M., Rottgering H. J. A., Steeman F. W. M., 1989b, “An in-
vestigation of the micro variations of highly luminous OBA-type stars



834 Bibliography

(Alpha Cygni variables). VIII - A study of the periodicities in the ra-
dial velocity and light variations of the nitrogen-rich supergiant HD105056
(ON9.7Iae)”, Astronomy and Astrophysics, 213, 161 – 166

van Genderen A. M., Hadiyanto Nitihardjo G., 1989c, “Light variations of
massive stars (Alpha Cygni variables). X - The F type supergiants G266
= HDE271182 = R92 and G322 = HDE269612 in the LMC”, Astronomy
and Astrophysics Supplement Series, 79, 401 – 406

van Hoof A., 1957, “A Request for Photometric Observations of θOphiuchi”,
Publications of the Astronomical Society of the Pacific, 69, 179 – 179

van Hoof A., 1959, “The Multiple Periodicity of ν Eridani”, Publications of
the Astronomical Society of the Pacific, 71, 455 – 460

van Hoof A., 1961a, “The Light Variation of Nu Eridani”, Zeitschrift fur
Astrophysik, 53, 106 – 123

van Hoof A., 1961b, “The Velocity Changes of Nu Eridani”, Zeitschrift fur
Astrophysik, 53, 124 – 129

van Hoof A., 1962, “The Brightness Variation of Theta Ophiuchi”, Zeitschrift
fur Astrophysik, 54, 255 – 259

van Hoof A., Blaauw A., 1958, “The Behavior of Theta Ophiuchi during Four
Cycles in April, 1956”, Astrophysical Journal, 128, 273 – 286

van Hoof A., Bertiau F., Deurinck R., 1956, “The Radial-Velocity Variation
of Theta Ophiuchi”, Astrophysical Journal, 124, 168 – 172

Van Hoolst T., 1995, “Resonances between two stellar oscillation modes with
nearly equal frequencies”, Astronomy and Astrophysics, 295, 371 – 392

Van Hoolst T., Dziembowski W. A., Kawaler S. D., 1998, “Unstable non-radial
modes in radial pulsators: theory and an example”, Monthly Notices of the
Royal Astronomical Society, 297, 536 – 544
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Cambridge University Press, 353 – 358

Zwitter T., Siebert A., Munari U., Freeman K. C., Siviero A., Watson F. G.,
Fulbright J. P., Wyse R. F. G., Campbell R., Seabroke G. M., Williams M.,
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ZZ Cet stars, 113, see white dwarfs

GD 244, 105
ZZ Lep stars, 117
Z bump

eHe stars, 132
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αBoo, 93
αCMi, 43
αCen A, 44, 126, 537

case study, 558
αCen B, 126

case study, 558
αCir, 640
αCyg, 96
αUMa, 93
αVir, 128
β Cen, 333
β Cru, 320
β CMa, 16, 441
β CMi, 71
β Cen, 441
β Cru, 327, 440, 441
βHyi, 44
βOph, 93
δCephei, 80
δCet, 441
ηBoo, 43
η Ser, 94
ηBoo

case study, 576
γDoradus, 45
γ Equ, 640, 641
γ Equ = HD 201601, 644
γ2 Vel, 96
κ Sco, 441
λSco, 441
ν Eri, 66, 398, 427, 441

case study, 614
ωCMa, 69
ωCen, 130
ω1 Sco, 441
ρCas, 88
ρPup, 49, 421
σ Sco, 128
τ Peg, 434
τ PsA = HD 210302, 43
θOph, 441

case study, 625

θ2 Tau, 50
εPer, 321
εOph, 93

case study, 591
ξHya, 93
ξ1 CMa, 65, 316
oCeti, 27, 88
oVel, 61
10 Aql = HD 176232, 644
12 Lac, 65
14 Aur Aa, 128
171 Pup, 43
19 Mon, 65
20 CVn, 401, 429
33 Lib = HD 137949, 644
47 Tuc, 93, 130
4 CVn, 50
51 Peg, 321, 331
9 Aur, 442

AB Cas, 445
AC And, 84
AC Her, 86, 87
AG Car, 99
Altair, 50
AM CVn, 135
Arcturus, 93
AS Eri, 445

binary stars
αCen A, 558
αCen B, 558
ηBoo

case study, 576
BW Vul, 65

DG Leo, 128
DO Eri = HR 1217

case study, 634

EC 14026−2647, 133
EK Psc = PG 0014+067, 656
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exoplanet
51 Peg b, 315, 321
PSR 1257+12, 300, 331
PSR 1829−10, 299
V391 Peg b, 300

FG Vir, 50, 329, 401, 434

G29-38, 122, 123
GD 244, 105
GD 358, 105, 113, 121

case study, 651
GD 358 = V777 Her, 651
GSC 09137−03505, 93
GW Lib, 135
GW Vir, 113, 118

case study, 646

HD 101065, 56, 318, 642, 644
HD 112044, 80
HD 116114, 644
HD 122970, 644
HD 123515, 61, 358
HD 128898, 644
HD 128898 = αCir, 640
HD 12901, 46, 380
HD 12932, 641
HD 129929, 65, 603
HD 137949, 641, 644
HD 139211 = HR 5803, 43
HD 146791 = εOph, 591
HD 157056 = θOph

case study, 625
HD 163830, 61
HD 163868, 70, 293
HD 163899, 98
HD 164515, 45
HD 164615, 442
HD 166473, 644
HD 176232, 644
HD 177863, 129
HD 201601, 644
HD 207651, 128
HD 20884, 95
HD 209295, 47, 129

HD 210302 = τ PsA, 43
HD 24712, 643
HD 24712 = HR 1217

case study, 634
HD 263551, 50
HD 32887, 93
HD 35914, 116
HD 49933 = HR 2530, 43
HD 71913, 380
HD 74195, 358
HD 74195 = oVel, 61
HD 81797, 93
HD 83368, 643
HD 96008, 45
HD 98410, 97
HD 99563, 644
HR 1217

case study, 634
HR 2530 = HD 49933, 43
HR 3831 = HD 83368, 643
HR 5463 = αCir, 640
HR 5803 = HD 139211, 43
HR 5999, 73
HR 6453 = θOph

case study, 625
HR 8799, 442

IC 418, 116
IP Per, 73

KPD 1930+2752, 446
KPD 2109+4401, 105, 400

M31, 99
M33, 99
M67, 130
M 2-54, 116
Mira, 88

NGC 2264, 72
NGC 2474-5, 116
NGC 2506, 130
NY Vir = PG 1336−018, 661

P Cyg, 99
PG 1336−018, 133
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PG 1707+427, 117
PG 0014+067

case study, 656
PG 1159

case study, 646
PG 1159−035, 113, 118
PG 1159−035 = GW Vir, 646
PG 1336−018, 134, 446

case study, 661
PG 1336−018 = NY Vir, 661
PG 1351+489, 120
PG 1456+103, 119
PG 1707+427, 105, 118
PG 1716+426, 105
Proxima Centauri, 558
Przybylski’s star = HD 101065, 644

QW Pup, 442

R 127, 101
R Sct, 87
RU Cen, 316
RZ Cas, 445

S Dor, 99
Sakurai’s object, 105
SDSS J142625.71+575218.3, 135
SN1987A, 303
solar-like oscillators

αCen A
case study, 558

αCen B
case study, 558

ηBoo
case study, 576

εOph, 591
case study, 591

red giants
εOph, 591

Spica, 128
spirograph nebula, 116
SX Cen, 87
SX Phe, 54

V2076 Oph, 132
V391 Peg, 300
V605 Aql, 105
V777 Her, 113

case study, 651
V777 Her = GD 358, 651
V823 Cas, 84
V829 Aql, 84
V836 Cen = HD 129929

case study, 603
V Boo, 88
VV 47, 116

WR 123, 102
WR 134, 102
WR 46, 102
WR 6, 102
WR 86, 126

X Cyg, 81
XX Pyx, 50, 128

Y Cam, 445
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[WCE], 38
2MASS, 41

AAT, 537
AAVSO, 91
ADU, 308
AFOE, 578
AGB, 37
ARENA, 676
ASAS, 41
astroFLAG, see solarFLAG

BiSON, 21, 452
BJD, 299
BJED, 299

CCD, 301
CCF, 329
CEFF, 162
CFHT, 106
CoRoT, 39
CSPN, 115
CV, 134

DAS, 446
DAV, 113
DBV, 113
DOV, 118
DSN, 50

EC, 105
EHB, 106
eHe, 132
EROS, 40
ESO, 316

FAMIAS, 446
FUSE, 108
FWHM, 305

GECKO, 645
GOLF, 21, 295, 454
GONG, 453
GPS, 301

HADS, 49
HARPS, 561
HdC, 131
HELAS, 446
Hipparcos, 38
HJD, 299
HMI, 674
HR Diagram, 31

IACC, 686
IALC, 687
IPHAS, 41
IPHIR, 516
IRAF, 309, 316
IRAS, 131
IRIS, 453

JD, 298
JWKB, 701

KASC, 673

LBV, 99
LOWL, 455
LSD, 330

MACHO, 39
mas, 38
MDI, 455
MHD, 162
MIDAS, 316
MJD, 300
mma, 107
mmi, 652
MOA, 40
MOLA, 491
MOST, 50

OGLE, 40
OLA, 489
OP, 63
OPAL, 63
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PDM, 348
PG, 105
PL, 90, 130
PNNV, 116
PSF, 305
PVSG, 95

RAVE, 41
RLS, 491
roAp, 56

S/N, 302
SARG, 645
sdBV, 105
SDO, 674
SDSS, 41, 111
SIAMOIS, 297
SOHO, 21, 295, 453
SOLA, 490
solarFLAG, 539
SONG, 297, 675
SPB stars, 60

SR, 88
SVD, 495

TAMS, 35
TNG, 645
TON, 454

UCLES, 537, 559
USNO, 298
UT, 300
UTC, 298
UV, 99
UVES, 300

VIRGO, 295, 454
VLT, 133

WET, 118
WIRE, 50
WR, 101

YREC, 595

ZAMS, 35
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