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Preface

The purpose of this 6 ECTS course is to introduce studentstlirt research domain of asteroseismology,
which has become a very popular topic within stellar astysms the last decade. The main goal of the
lecturer is to learn the students how to interprete data ofradially oscillating stars. In order to achieve
this the students will be provided with state-of-the-arilggsis methods and with recent data of stars.

During the lectures, a large emphasis will be put on obsienalt aspects of stellar oscillations. There
are several reasons for that. First of all, this orientatiorresponds to the lecturer’s expertise. Second, the
students of Leuven University have the opportunity to felia parallel 30-hour course on the “Theory of
stellar oscillations”. Third, complete lecture notes uttihg the technical theoretical background of stellar
oscillations written by specialists in that field are avaiéaon the internet and in books (references are
provided in the current notes in Chapter 3) while we belidus s less so for the observational studies,
perhaps because they change and improve rapidly.

The current notes are a revision of those written eight yags The first edition, only available
in Dutch, was limited to observational asteroseismologgtafs with opacity-driven modes. The current
lectures have been extended to stars with stochasticallgrdmodes. The previous version did not include
any theoretical aspects for reasons outlined above. Howigweas felt that a basic introduction into the
theory of stellar oscillations was desirable, because sindents did not follow the parallel course. Also,
the lecturer preferred to put more and more emphasis on eistarpretations of the data in the recent
years and this requires some insight into the mathematroglepties of the oscillations. For this reason,
a brief chapter containing the basic theoretical treatnoémion-radial oscillations has been added in the
current version.

The current lecture notes are divided into three parts. Trise gart constitutes an overview of the
general properties of stellar oscillations and their o@nre across the Hertzsprung-Russell diagram. All
the currently known types of non-radial oscillators areadticed. The current text is only meantmsted
lecture notedor students, not as a book or any official document. As sudhés often not contain the ref-
erences to the original sources of information, or if refiess are quoted, they are not given explicitly. This
is due to the current notes being part of a book on asterostgsnthat is being prepared by the Lecturer
and Professors Jgrgen Christensen-Dalsgaard and Don Khedbook, including the full references, is not
yet finished. For this reason, this current texN®T meant to be copied or distributed to other parties but
only for your personal study. The students know how to useemodstronomical databases and libraries
available from the internet to find the full references todhied papers.



The second part of the notes, consisting of two chaptergrides the analysis methods needed to
derive the basic properties of the observed stellar oioitla. One chapter deals with the time aspect of the
oscillations and is devoted to time series analysis of dadaallating stars. The following chapter concerns
the identification of the wavenumbers of the observed ndiatascillations, once frequencies have been
determined.

The final part of the notes is composed of several chapterstavwo recent applications of astero-
seismology to selected stars. It concerns stars of quiereift type and/or evolutionary state. The text of
these chapters consists of selected refereed papers takethie international literature on asteroseismol-
ogy. A first chapter is devoted to helioseismology and slifaroscillations. Another chapter consists of
seismic studies of compact oscillators, such as white dwaardl sub-dwarf B stars. Finally, the last chapter
highlights some detailed seismic analyses of stars comgitfemore massive than the Sun.

These lecture notes, as well as additional ones and stdle-@irt asteroseismic datasets, can be re-
trieved from the Word Wide Web, at URL htt p: / / ww. eneas. i nf o.

Conny Aerts,
Leuven, September 2007



Evaluation procedure

The students following this course will be evaluated on asgparmanent basis, i.e. during the course. The
students can either work individually or can work in groupsam persons (with at most one group of three
for an odd number of students). They will have to make two reaam projects and will be given additional
tasks during the course as well.

The first exam project concerns time series analysis and mdedéfication based upon datasets pro-
vided by the lecturer. They are expected to make a writtenrteld maximum 10 pages (in Dutch or in
English), describing their results of the analyses. Adddily, they must present their results during a
10-minutes oral presentation (in Dutch or in English) atth by all the students following this course,
followed by a round of questions on their presentation frobmaudience.

For the second exam project, each (group of) student(skigreesd (one of the) papers from the recent
literature available in Part 1l of the current lecture retét concerns a seismic analysis of a particular star
or a group of stars. The students must make a literature gifithyat/these object(s) and summarize the
results of the seismic study by giving an oral presenta@gain of 10 minutes, in front of their class mates,
followed by a round of questions.

All students of each group must give parts of the two presiemis The written report must be handed
over to the lecturer a few days in advance of the oral pregentforactical arrangement to be discussed
with the lecturer during the courses). The use of the leatotes is admitted during each part of the exam.
The data set and the paper(s) they must study will be handadt@¢hem well in advance of the deadline
for the written report.

The course will end with a discussion between students ardrér with the goal to give each other
feedback on all aspects of these lectures. At the end of thesepsuccessful students will have learnt to
analyse modern data of oscillating stars, to report on snelyses before an audience, to summarize the
highlights of recent international papers on stellar ¢etins, to collaborate and discuss among each other,
and to formulate relevant questions on papers in a clear @amzise way so that persons not having read the
paper understand the issue of the question.

Good luck to all of you !!
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Chapter 1

Introducing asteroseismology

The research field of asteroseismology will be introducegbtoby means of a computerpresentation, which
contains many graphical illustrations. These illustratsoare not suitable to be copied on paper, so we refer
you to that introductory presentation in addition to thettekthe current chapter.

The subject of this course is situated in the research doofaitellar astrophysics. More particularly,
it concerns the topic ascillationsthat occur inside stars. The recent research domaastefoseismology
refers to the study of the internal structure of stars thhotlng interpretation of their oscillation frequency
spectra. For one of the early reviews on the topic, we ref@rtavn & Gilliland (1994). Essentially,
asteroseismologists try to make use of the oscillationsrobe the stellar interior, which is not directly
observable. The basic principles of asteroseismologytare,certain extent, similar to those developed
and employed by earth seismologists. Asteroseismologgsreh advanced mathematical descriptions of
oscillations in a three-dimensional body and numerical ellod). It is therefore a prominent example of
interdisciplinary science, more precisely of “integrdtptlysics.

The interiors of the stars are among the most difficult partek@Universe to observe. The reason why
stellar interiors can be probed from the oscillations ig tha behaviour of the oscillations is determined
uniquely by the properties of the overall stellar structviore particularly, the different oscillation modes
of a star penetrate to different depths inside that star arahe is able to study the internal layers from the
frequency differences of the modes. Asteroseismologydsotily available method to derive in a quasi-
direct way the internal structure of the stars with high wieo.

The ultimate goal of asteroseismology is to improve the wi@hary models of the stars. The theory
of stellar evolution is reasonably well established in dglsense. We know that stars are born out of giant

1We remind the students that they have to search for the coemetierence and the paper themselves through electrbréciés
as explained further in the text
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clouds of dust and that they burn hydrogen into helium inrtbhere during 95% of their life. As soon as
the central fuel is exhausted, they become red giants aredlélxpir outer layers. Depending on their mass,
they end their lifes as white dwarfs or supernovae. Thisdmeture is derived from, and in agreement
with, the observations of many different kinds of stars dfiedent ages. However, the current observations
do not allow a very detailed confrontation between the thical models and real physical properties of the
stellar material in the deepest internal layers. Astespseiogy will lead to significant contributions in this
context.

1.1 Basic properties of non-radial oscillations

On the frontcover of these lecture notes, you find a schemagicesentation of the different classes of
oscillating stars in the Hertzsprung-Russell (HR) diag(@amwhich the stellar luminosity, i.e. the energy
released at the stellar surface, is plotted against thasatémperature of the stars) known up to the present
day. The dashed line indicates the “main sequence”. Alsstathis stage of evolution are relatively young
and burn hydrogen in their core. Along the main sequence rdidfgyent classes of non-radial oscillators
occur, from the low-mass solar-like stars up to the massi@ep stars. To the right, we find classes of
oscillating stars along the horizontal and red-giant bihaffhese stars burn helium in their core. All classes
of non-radial oscillators to the lower left of the main seqgeeare evolved stars that have reached the stadium
of (pre-)white dwarfs. They no longer have nuclear burning are condemned to cool. The full lines in the
figure are the evolutionary tracks for stars with differamtiadl masses. It is very fortunate that oscillations
are excited in almost all types of stars and in many stageteltdisevolution.

The simplest oscillation a star can undergo iadial one. In that case, the star expands and contracts
radially and spherical symmetry is preserved during thellason cycle. From a mathematical point of
view, the differential equation describing the radial thspment is of the Sturm-Liouville type and thus
allows eigensolutions that correspond to an infinitely ¢able amount of eigenfrequencies. The smallest
frequency corresponds to the fundamental radial osctathode. The period of this mode is inversely
proportional to the square root of the mean density of the &adial oscillations are characterised by the
radial wavenumbern: the number of nodes of the eigenfunction between the centithe surface of the
star. Well-known radial oscillators are the Cepheids, RRikystars and Red Giants.

If transverse motions occur in addition to radial motionse ases the termon-radial oscillations
The oscillation modes are then not only characterised byd@lravavenumber, but also by non-radial
wavenumberg andm. The latter numbers correspond to the degree and the aamutmber of the
spherical harmonid’;™ (0, ¢) that represents the dependence of the mode on the anguiablgad and
o for a star with a spherically symmetric equilibrium configiion. The degreé represents the number
of surface nodal lines, while the azimuthal numbeidenotes the number of such lines that pass through
the rotation axis of the star. The surface pattern of someradial oscillations is graphically depicted in
Figure 1.1. Thes®oppler mapsshow the radial velocity structure at the stellar surface afon-radial
oscillator at one particular phase of the oscillation cycCldne red parts are moving inwards and cause a
redshift in the observed stellar spectrum while the bluéspaove simultaneously outwards and give rise to
a blueshifted spectrum. Half an oscillation cycle lateg tid parts have become blue and vice versa. The

13



Figure 1.1: Different examples of non-radial oscillatipasen from a different inclination anglé:= 30°
(top row),: = 60° (middle row),i = 90° (bottom row). The velocity field of a non-radial oscillatar i
represented by a spherical harmo#j€'. The meaning of the spherical wavenumbgrsn) is visualised.

In these examples= 3 andm takes values from O (right) to 3 (left). The dot indicates sgnmetry axis

of the oscillation, which corresponds to the rotation axithe star. The colouring denotes the Doppler shift
in an observed spectrum due to the oscillation, i.e. at thiSqular instance in the oscillation cycle, the red
parts are moving towards the stellar center (thus away frenobserver) and therefore shift the spectrum to
longer wavelengths (redshift) while the blue parts are mgpwautwards (towards the observer) and result in
a shift to shorter wavelengths (blueshift).
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white lines in Figure 1.1 represent thaodal lines The mass elements on these lines do not move during
the oscillation cycle.

The modes withn = 0 are standing waves. They are called axisymmetric or zondesid\Non-zonal
modes are running waves. We take the following conventidgh mispect to the rotation: positive—values
denote modes that move opposite to the rotation (retrogremtkes) while negative:—values are associated
to motion in the direction of the rotation (prograde mod&s$)e modes witti = |m| are calledsectoraland
those with0 # |m| < [ aretesseralsee Figure 1.1).

Non-radial oscillations can penetrate deeply inside a §tar each oscillation the surface pattern is a
continuation of the internal oscillatory behaviour and e latter can, to a certain extent, be derived from
measuring the surface variability. For each surface pati@mwhole series of oscillations with different
internal behaviour is possible. This series is charagéiyy the radial wavenumber which represents the
number of nodal surfaces inside the star in the case of aadtiatoscillation. The latter is thus characterised
by three numberén, I, m) and its frequency,, i, .

1.2 Why do stars oscillate ?

The basic properties of oscillation modes are explainetéarptevious section. However, one needs to have
a mechanism thaxcitesthe modes in the stars. Three types of excitation mecharesiss

The Sun oscillates in millions of acoustic modes with ex@niow velocity amplitudes which are of
the order of cm/s. These modes are caused by the motions otiteeconvective cells and have lifetimes
of the order of days to weeks. One speakstothastically excited modeSuch oscillations are expected in
all stars having convective outer layers.

For most of the classes of pulsating stars indicated in thetdover plot, however, the modes agif-
excited This self-excitation is possible because some layersdrstars turn out to have the potential to
act as a heat engine. Such layers are able to trap the eneligiechoutwards by the stellar core in a very
efficient way during a small contraction of the star, and tease the trapped energy during the subsequent
expansion. For this so-calledmechanisnto work, i.e. for it to be able to make the whole star oscill#te
pertinent layer has to be situated at a suitable positiondrstar. As a result, oscillations can only be excited
when a suitable combination of stellar luminosity, temp@e and chemical composition occurs. For this
reason, non-radial oscillations are excited in so-cahethbility stripsin the Hertzsprung-Russell diagram.

Whenever two components of a close binary interact sigmifigadynamic tides will result. Such tides
can give rise to oscillations of one or both components. (uealss offorced oscillations contrary to the
two types offree oscillations mentioned above. Theory predicts that fosallations are characterised by
degred = 2.

15



1.3 Brief description of the mathematics of non-radial osdiations

In the framework of these lectures we consider a self-gating gaseous spherically symmetric star in the
absense of external forces (i.e. no visceous effects nonetiadields). We assume that the axis of symmetry
of the oscillations coincides with the rotation axis of tl@sMoreover, we assume that the rotation of the
star is so slow that it has no effect on the oscillations. &pjgroximation is valid as long as the deformation
of the star due to the centrifugal force can be neglected dmhwhe ratio of the pulsational periods to

the rotational period remains small (typically well belo®@%). In other words, we assume that several
oscillation cycles have taken place on the time span thattdreneeds to turn around its rotation axis.

In the theory of stellar oscillations, which is outlined irore detail in Chapter 3, one studies the reac-
tion of the star to small perturbations which cause devigtiivom the spherical symmetry. The equations
which have to be fulfilled form a system of non-linear partéferential equations: the perturbed equa-
tion of motion, the perturbed continuity equation, the peyéd energy equation and the perturbed Poisson
equation. Assuming that all physical quantities underdy small deviations from their equilibrium value
allows one to linearise the perturbed equations. The emugtare invariant with respect to a translation
in time whenever the evolution of the star is to a good appnation a succession of quasi-static states of
hydrostatic and thermal equilibrium. In that case, sohdiwith a time dependence exp(iwt), with w the
pulsation frequency, can be found. The unknowns in the sysfeequations are the components of the La-
grangian displacement vector, the perturbed pressurgettterbed temperature and the perturbed density,
among others.

We consider a system of cartesian coordingieg, ) of which thez—axis coincides with the rotation
axis of the star. In this system, we introduce spherical@ioates(r, 8, ¢) whose polar axis coincides with
the z-axis. It is convenient to describe any scalar functlofr, 0, ¢) in terms of spherical harmonics, which
are a complete orthogonal set of functions, for any phygicatblem with spherical symmetry:

oo 1
X(?”,Q,(p) = Z Z le(r)}/;m(e’(p)’ (1.1)
=0 m=—1

in which the spherical harmonig™ is defined as

20 +1(I—m)

P/"(cos 0) exp(ime), (1.2)

with P/"(cos #) theassociated Legendre functiovhich is defined as

Py = S (1—at)™ L (a2 ), 13)

We are only interested in time-dependent solutions, whietcall spheroidal modes. In terms of spherical
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harmonics we write the components of the Lagrangian dispi@nt vector as:

& (r,0,0,t) = a(r)Y]™ (0, ¢) exp(—iwt),

6o(r.0,0.1) = by 2 2)

b(r) 0Y;™ (0, ¢)
sin Op

exp(—iwt), (1.4)

5&0(73 97 2 t) =

exp(—iwt).

The functionsa(r) andb(r) are eigensolutions of an eigenvalue-problem of fourth ordiéis eigenvalue
problem is degenerate with respect to the azimuthal numbgsee Chapter 3).

Radial modes are a special case of non-radial modes for which. The system of equations reduces
to one of second order for radial modes. This system is oh$tiipbuville type and so gives rise to an infi-
nite number of eigenvalues?, each of which corresponding to one particular eigenvedtoe eigenvector
belonging tow? has one zero point less than the onevf ;. Each of the eigenvalues is real because the
operator is self-adjoint. We hence obtain two types of smhst A first series for whichv2 > 0. In that case
wy, Is real and the eigenvectors have an oscillatory behavimough theexp(i w,t) dependence. Whenever
w2 < 0 we are dealing with pure imaginary numbers and the oscillations grow or damp exponentially
(we do not consider such solutions in this course). The Hhamityiof the operator also ensures a minimal
eigenvaluev?, which corresponds to the longest oscillation peridd= 27 /wy. Its corresponding eigen-
vector is called theadial fundamental modeAll the eigenvalues are ordered according< w; < wo, .. .,
which corresponds to oscillation periofls > P, > P, > .... The eigenvector with the eigenfrequenay
is called the first harmonic, the one with the second harmonic and so on. Each of these modes are stand-
ing acoustic modes, i.e. sound waves and so the oscillatibasstar are quite similar to those of musical
instruments. The star passes through her equilibriumipogitvice per oscillation cycle.

An important mathematical difference with the non-radialdes is that the system of differential equa-
tions to be solved is no longer of Sturm-Liouville type, theoator is only Hermitic. Hence, the eigenvalues
w? are still real numbers, but they can no longer be orderedrasdial oscillations and the existence of a
smallest eigenvalue is no longer garantueed. However, amstoow (beyond our scope) that the system of
equations evolves towards a Sturm-Liouville problem wkene? — 0 for n — +oco or whenw? — +o0
forn — 4o00. In the latter case we recover again an ordered sequenge ws < ws < ... with corre-
spondingP; > P, > P3 > .... Such modes are called, p-, ps, . . . and one speaks of pressure (acoustic)
or p-modes. The subscript denotes again the number of nddes tadial component of the eigenvector.
The restoring force for p-modes is the perturbed pressurefoln the cases? — 0 for n — +o0 an

ordering also occurs, this time
1 1 1

< —<—<—<...
w1 w2 w3
and such modes are called, g5, g7, ... or gravity modes (g-modes). The buyancy force is the main
restoring force for such non-radial modes. Gravity modexbdave periods that are longer than the period
of the radial fundamental mode. Finally, the limit casevcf 0 belongs to an eigenvector that has no nodes

in the radial direction.This modes is called the non-rafliabamental, or f-mode.

The p-modes mainly attain a large amplitude in the outerrtayé the star while g-modes have a
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large amplitude in the deep layers of the star. Therefommodes are by far the most interesting from
an asteroseismological point of view. However, the cowadng periods of g-modes are one order of
magnitude longer than those of p-modes.

1.4 Contents of this course

We now highlight very briefly the different topics that wikkouched upon in the framework of this course.
Detailed studies will be presented in the subsequent clsaptel are also listed in the references given at
the end of these lecture notes.

1.4.1 Helioseismology

Although very succesful applications of asteroseismolagye already obtained from ground-based data
of the 3-15 minutes oscillations of the Sun, the breakthinomghelioseismologgame from the space data
of the Sun obtained with the ESA/NASA satellite SoHO whichsvaunched in 1995 (for more informa-
tion, seeht t p: / / sohowww. nascom nasa. gov/ ). The solar frequency spectrum (for a definition, see
Chapter 4) derived from SoHO data is shown in Figure 1.2,envdiil enlargment for the highest-amplitude
region is shown in Figure 1.3. The regular pattern in the pesklearly visible. One defines two impor-
tant quantities derived from such a spectrum: llrge frequency separation&v;, which occur between
the frequency peaks belonging to modes with wavenumpery and (n — 1,1), and thesmall frequency
separationsdy; which represent the frequency differences between modéswavenumbergn, () and

(n — 1,1 + 2). The large frequency separation is dependent on the avetellgr density while the small
separation is determined by sharp features in the sound sp@eh as those caused by the core of the star. It
is possible to infer the mass of the star, and also the age #ieccore composition changes as more hydro-
gen is turned into helium by the nuclear burning. The smatidiency separation is, therefore, a measure of
the evolutionary state of the star.

The diagnostic properties of solar-like oscillations hbgen derived in great detail. The seismic studies
based on the SoHO data have revealed for the first time thidedipaoperties of the outer convective layers
of the Sun. The outer convection zone of the Sun turns out ®&emore extended than previously thought.
Moreover, the internal differential rotation and mixingtive Sun could be mapped in full detail at the level
of 0.1%. Finally, the age of the Sun can be derived from thgeland small separations. It turns out that
these quantities lead to an age estimate better than 0.1%afwgquantify this because we know the age of
the Sun from meteorites). We refer to Chapter 6 for more detai

1.4.2 Solar-like stars

The successes of helioseismology have of course led to Hfagtseo obtain the same level of precision in
other oscillators over the whole mass range. As far as thelsed oscillations in other solar-like stars is
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Figure 1.2: The oscillation spectrum of the Sun derived ftamexperiment VIRGO onboard SoHO. The
amplitude of the oscillations, expressed in ppm (parts ghion), is drawn as a function of frequency, for
both blue and red solar light. The highest frequency peaks aaplitudes of a few ppm, which means that
the relative change of the luminosity of the Sun due to thdlasons is only a few parts per million.
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Figure 1.3: Enlargment of the oscillation spectrum of tha Sliown in Figure 1.2 for the frequency range
with the highest amplitudes.

19



concerned, clear detections of stochastically excitecbpes were recently found (see Chapter 6), after more
than 10 years of efforts. For stars with solar-like osditlas, many of the techniques of helioseismology
are immediately applicable once the frequency spectruneikdgtermined, and so we expect quite a bit of
progress in the derivation of the internal structure patarseof these types of stars in the near future now
that firm evidence of acoustic modes exists for a number afaibj

1.4.3 Compact stars

Other concrete in-depth asteroseismological resultshénsense of probing the internal structure, were
obtained for the g-modes in white dwarfs since the early $@3@ady. White dwarfs are the compact end-
products of stars with initial masses below 9 solar masshe.vihite dwarfs oscillate multiperiodically, in
g-modes with periods around 10 minutes. In order to coveotieeall beat-period of all the excited modes,
a network of telescopes around the Earth equator was setthp late 1980s: the WET, which stands for
Whole Earth Telescope. A WET campaign on the DOV PG 1159-@3ilied a breakthrough in white-
dwarf seismology and allowed to derive the mass, rotatite end internal stratification of this object with
unforeseen precision (see Chapter 7). Other succesfulaigngon white dwarfs followed later, up to the
present day.

Oscillation modes were recently found in another group ehpact evolved stars, B-type subdwarfs
(sdB stars). These objects are situated at or just beyondxiineme blue end of the horizontal branch
and are core-helium burning stars surrounded by a thin lggiireenvelope developped during the giant
branch. This envelope is too thin to sustain hydrogen-dheihing. Therefore, sdB stars will not follow
a path to the Asymptotic Giant Branch (AGB) after core-haliexhaustion, but will turn immediately left
in the HR diagram, becoming low-mass white dwarfs. Both mlenand g-mode pulsating sdB stars have
been discovered. These sdB oscillators were, almost simedusly with their observational discovery,
understood theoretically in terms of thenechanism. The exploitation of the asteroseismologictdriial
of the sdB stars is currently ongoing (Chapter 7) and reseiet of attention, as the evolution and structure
of the sdB stars is relatively poorly known.

1.4.4 Massive stars

While the seismological studies of evolved stars have fimed the evolutionary cooling tracks of such
objects, they do not help us to confine the early phases ofvitleteon of the progenitors of these stars.
Such studies thus cannot help us to constrain the intemadtste at the main-sequence stage of the stars
that will eventually become sdBs and white dwarfs, nor ofsththat will explode as a supernova. The
current status of asteroseismology of non-solar-like rsaiuence stars (i.e. of stars with at least twice the
mass of the Sun) is not yet so evolved because the applicattiasteroseismology for such objects is not
straightforward. A prerequisite for such an applicationfisourse the detection of many oscillation modes
and their mode identification, i.e. the knowledge of theiv@aumbergn,i,m). The modes in these stars
are not in the asymptotic frequency regime, only a limitechbar of modes is detected and the selection
mechanism of their excited modes is not known. Hence, maaldifiCation is a serious problem for seismic
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applications.

The best candidates according to the number of modes detartethes Scuti stars, which are sit-
uated in the classical instability strip and which pulsatgpimodes. For some of these stars, more than
30 oscillation frequencies have been detected from migitcsimpaigns, such as WET and the DSN: Delta
Scuti Network. While early attempts of seismology of su@rsivere very promising, it has become clear
that unexplained amplitude and period changes occur iretbiess. Moreover the lack of accurate mode
identifications, due to the incomplete observed frequepegtsa, limits seismic applications.

The rapidly oscillating Ap (roAp) stars are chemically pksnustars in they Scuti instability strip with
a strong magnetic field. Because of this, their oscillatipmmetry axis is probably not aligned with the
rotation axis, but rather with the magnetic axis or even w@hanother axis. Their oscillations are explained
in terms of the so-called modified oblique pulsator modeleyrbscillate in p-modes with periods of the
order of minutes. Seismic applications will be discusseGhapter 8.

For the massive B-type main-sequence oscillators, as wdirathe recently discovereg Doradus
stars, the problem of detecting multiple modes and of ifjgng them is even more severe, since their os-
cillation periods are considerably longer. The only way tkenprogress in asteroseismology of stars with
masses higher than twice that of the Sun is to obtain unuierd time series that cover the overal beat-
periods of the oscillations and to develop better mode ifieation methods (see Chapter 5). The current
state of seismic applications to massive stars is presémtedapter 8.

In the following two chapters we give respectively an ovevwif the occurrence of stellar oscillations
in the HR diagram for the different evolutionary states ancbacise description of the theory of non-
radial oscillations. Subsequent chapters contain metbgaal approaches to disentangle and interprete
observations of non-radial oscillations as well as appbioa of asteroseismology to different types of stars.
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Asteroseismology is a research field that is undergoing gyl changes and progress is considerable
on a short time scale (e.g. the current notes are a revisitimose written 5 years ago, which were very
much out of date). This rapid progress will even increasetiming decade as several worldwide networks
and space missions dedicated to this topic will be in opamadiuring the coming 5 years. We therefore
advise the interested student to keep up-to-date by chgckgularly the two most important astronomical
databases accessible at:

http://adsabs. harvard. edu/ abstract _servi ce. htm
http://cdsweb. u-strasbg. fr/ Si nbad. ht m

The first one of these internet addresses brings you to thead3®act service that allows you to search for
scientific papers by queries, e.g. author names, title westdBar objects, etc. The second address is the one
of the astronomical database held at Strassbourg, in whinferous measurements of stars are available,
as well as basic stellar parameters and references to paff@enever appropriate we also list interesting
internet sites. Detailed searches on the internet stafriimy these mentioned web addresses will lead you
to the most appropriate and up-to-date information.
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Chapter 2

Observations of Stellar Oscillations across
the Hertzsprung-Russell Diagram

This chapter is a journey through the Hertzsprung-Ruski&) ODiagram with stops at all the ellipses shown

in Fig. 2.1. We discuss briefly each of the currently knowrssss of oscillating stars, outlining their most

important properties, such as their fundamental stellearpaters and the general character of their oscilla-
tions, but skipping many of the details. For each class, weige a recent overview paper and/or book to
which we refer for additional information and deeper distms. We provide one prototypical time series

of a class member and sometimes its Fourier transform, ieraodgive the reader a first impression of the

frequency range and the behaviour of the oscillations. \kthdu restrict ourselves to a description of the

basic properties of the stars; details on asteroseismitcappns are postponed to the later chapters in this
book specifically dedicated to them.

An evident conclusion from Fig. 2.1 is that stellar oscatlas occur in almost all phases of stellar
evolution. However, there clearly exists a particular oegin the HR diagram in which the density of
pulsating stars is greater than elsewhere. This regiortuated between the two slanted dashed lines in
Fig. 2.1 and is called thelassical instability strip The oscillations in the stars situated in this strip are
caused by the heat mechanism primarily acting in the secart@bpionization zone of helium,e., the zone
in which both Hal and Heiil occur. The Cepheids, RR Lyrae staf§ct stars and rapidly oscillating Ap
stars are all situated in this strip, along with pre-maiqtsce pulsators. On the other hand, the first partial
ionization zones of hydrogen and helium, combined withregrand efficient convection, are responsible
for the heat-driven oscillations in cool red giants and sgipats, such as the Mira stars and semiregular
variables; hence they are situated along the cool, tha¢ds,side of the classical instability strip. Finally,
opacity features associated with the iron-group elemeamrtsegponsible for oscillations in the hottest stars,
such asg Cep stars, slowly pulsating B stars, B supergiants, and ial$be evolved subdwarf B stars.
Stochastically excited oscillations are expected in atsstwith an outer convective envelope., along
the main sequence up to masses of about 1,5Md anywhere from the end of the main sequence up to
the giant and asymptotic giant branch. The hottest pulsatiaong the compact stars are grouped together
in a class termed GW Vir stars. They are dominantly drivenhmyheat mechanism acting in the partial

23



6 R
\
L \ 4
4 -
B3 Rr
|
.
i L
Q0
2 L
=
-2 —
- DA\% 1
L “““n_‘ [

log T

Figure 2.1: Hertzsprung-Russell Diagram showing differdasses of pulsating stars. Some of these are
named after a particular member of the class. Others arenaos) standing, respectively, for: rapidly
oscillating Ap (roAp); Slowly Pulsating B (SPB); subdwarfvBriables (sdBV). The group labelled GW Vir
includes what has formerly been known as the PNNV stars (fome®ary Nebulae Nuclei Variables), and
the variable hot DO white dwarfs (DOV); the DBV and DAV starg aariable DB (helium-rich) and DA
(hydrogen-rich) white dwarfs. The parallel long-dasheedi indicate the Cepheid instability strip. Figure
courtesy of Jgrgen Christensen-Dalsgaard.
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ionization zones of carbon and oxygen at their surface. $ ovdy recently realized that there is a common
cause of the oscillations for stars in this part of the HR diag which includes the DOV and DBV stars,
as well as the central stars of planetary nebulae and WoleRstars (Quirioret al. 2006). The cooler
DAV stars, on the other hand, are compact pulsators drivea plgenomenon termed convective driving
by Brickhill (1991). A convection-related mechanism, cective blocking, also operates in théor stars
along the main sequence.

Adopting a philosophy similar to the one in the review by Gahy & Saio (1996), we organize the
journey with five main stopping areas to discuss pulsati@®s the main sequence, in pre-main-sequence
stars, in evolved stars of low mass, in evolved stars of higissrand in compact objects. Evolved stars
of high mass (typically above 300} are currently not yet the subject of seismic inference bseahe
observational establishment of their oscillation freqties is much harder than for the stars in all other
categories, due to occurrence of several kinds of instigsilin their atmospheres. Moreover, our theoretical
understanding of their oscillations is far less detaileathtfor lower-mass stars for which radiation-driven
mass loss can be ignored. For this reason we are at presdoié imanake a detailed comparison between
their overall observed variability and in-depth stellausture and oscillation computations; hence we do
not come back to these stars after this chapter. The sams tiakl for the pre-main-sequence pulsators.
While oscillations have clearly been found in several obthave lack good knowledge of their frequency
spectra and mode identification for the moment. Gravitafievave asteroseismology through nonradial
oscillations of interacting white-dwarf binary stars, tren stars and black holes is also a field still under
development lacking strong observational constraints. dileuss it briefly in this chapter. Finally, the
classical large-amplitude monoperiodic radial pulsatstgh as RR Lyrae stars, Cepheids, RV Tauri stars,
Mira stars and semi-regular variables, are not suitabled@mic modelling of interior physics. We discuss
their pulsational characteristics in this chapter, incigdhe seismic potential of double- and triple-mode
classical pulsators, in the section on Cepheids and do notr them further on in the book.

Before beginning our journey into asteroseismology, we grge a brief overview of stellar evolution
and of the impact of large-scale surveys on pulsating staareh.

2.1 Stellar Evolution in a Nutshell

Stars are born in groups, called clusters, when densetieitarsanolecular clouds collapse under the effect
of gravity. Any perturbation within the cloud, due to whatewrigin, will result in a collapse whenever the
mass of the cloud is above a certain threshalfl>> M ~ T3/2p=1/2,,73/2 with T the temperature of the
cloud, p its density and. its molecular weight. This condition for free-fall collap& known as thdeans
criterion. The process will continue as long as the collapse happetigeisnally. As soon as the free-fall
time becomes similar to the thermal relaxation time, howewe adiabatic contraction takes over, and the
process comes to a natural end, leaving behind protostedigments with masses of the order of stellar
masses. Owing to their initially rather low internal terrgtere and consequent high opacity, the entities
that result from the process, calledotostars are initially fully convective and hence are located on the
Hayashi track
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Figure 2.2: HR diagram showing the evolutionary tracks afstvith masses between IMnd 40 M, (full
lines, Schalleet al. 1992). The dashed line is the zero-age main sequence andtted tne symbolizes
the transition phase from the Asymptotic Giant Branch towhé@e-dwarf cooling track.
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After the rapid dynamical contraction, the protostar resdmydrostatic equilibrium and is said to have
entered itgre-main-sequence phasé&he further contraction of the star implies that the stascdads the
Hayashi track, keeping essentially the same effective éeatpre and decreasing in luminosity. As the
internal temperature gradually increases, the opacitsedses and the convective zone starts to recede from
the center of the star. This implies that the star leaves @galshi track and starts radiative contraction
along itsHenyey track As contraction proceeds in a more and more transparenemtiie star reverses its
downward luminosity trend into a rising one.

The increasing core temperature initiates the protoneprogaction, which converts H infdd, and this
fresh deuterium is immediately burnt intble. The less massive the pre-main sequence star, the adker t
Hayashi track occurs this first nuclear burning. The fulltpneproton chain cannot be completed yet since
3He has not yet reached its equilibrium value. As a conse@éhe temperature sensitivity of the nuclear
reactions is high (about three times the sensitivity of@megbroton chain operating at equilibrium) and this
leads to the development of a convective core. In stars lessime than about 1.1 M this convective core
will disappear as soon as the proton-proton chain has attésmediate chemical species at equilibrium.
More massive stars, on the contrary, rapidly switch to hgdroburning through CNO cycle, which is far
more temperature sensitive than the proton-proton chanqutibrium, and they keep their convective core
during the whole central hydrogen burning phase.

The accretion continues during most of the pre-main-segpigase, on a Kelvin-Helmholtz time
scale. Consequently, protostars with masses above aboygtrde so fast from their Hayashi track to the
main sequence that they are unobservable in their pre-se@jnence phase as they keep on being embedded
in a thick circumstellar shell of infalling material. Pream-sequence stars with masses betwe#ré and
9Mg end their accretion phase before they reach the main segueduch pre-main-sequence stars are
termedHerbig Ae/Be starsin pre-main-sequence stars with masses between somed186.,, as soon
as the accretion process stops, the star lights up in the Higadh as an optically bright source hamed
T Tauri star. Observations of both Herbig Ae/Be stars and T Tauri staggesi that they undergo active
surface phenomena such as a stellar wind and differentation.

Once the hydrogen is burning in full equilibrium and comglgtdominates the energy production, the
star reaches a state of thermal equilibrium and is said tolredn thezero-age main sequen2AMS). The
circumstellar remnant material vanishes within a KelviakiHholtz time and the star forgets its formation
history. Protostars with a mass below some 0.08méver reach the ZAMS because they become degenerate
before having reached a high enough central temperaturgrmndiydrogen in equilibrium. Such objects are
calledbrown dwarfs Since oscillations have not yet been found in brown dwadsml not discuss them
further.

The stars spend about 95% of their life on the main sequenceing H into He on a nuclear timescale.
Depending on their mass, the interior structure in termsadfative, convective, diffusive and rotational
energy transport is quite different. The initial chemicamposition is also a determining factor in the
details of the evolution. Once the central hydrogen is egteal) the star has reached thaninal-age main
sequenc€TAMS). At that time the hydrogen shell burning takes ovethesenergy source; the helium core
starts contracting, while the outer parts of the star exgaedtly, causing the star to move back to and up
the Hayashi track as a red giant. The further evolution ostheis now again largely dependent on its mass.
Evolutionary tracks for different masses are indicatedign Z2 and are briefly discussed below.
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The gas in the cores of stars willi > 9 M, does not become degenerate before carbon burning, so
these objects follow subsequent central burning and shatiitg cycles, producing all elements up to iron
and nickel. At that stage, the star encounters a major problecaus€’Fe and’?Ni are the most tightly
bound nuclei. Their fusion into heavier elements would ltasuess tightly bound nuclei and thus would
require an input of energy. The inescapable core contragi@ccompanied by photodissociation of its
heavy nuclei, transforming them into He nuclei and then meatrons, with a catastrophic loss of thermal
energy and pressure causing the core to collapse. The giupenelease of gravitational potential energy
implies that the rest of the star explodes as a supernovejrigoaway a huge fraction of its processed
material which thus enriches the interstellar medium ingheoundings, and leaving a neutron star or a
black hole as a remnant. Rapid neutron capture operateskoefaperiod during supernova explosions,
producing a substantial fraction of the heavy elements g ymn.

The internal mixing processes acting in these stars whilg ¢évolve from the TAMS to the supernova
stage are very uncertain, as are the details of their massdbséch implies we are not able to make accurate
predictions of the properties of the star just before theesupra explosion. Stars of such initial mass have
typical lifetimes less than a few tens of million years.

The evolution of stars with masses above 25 idlsubject to very strong radiatively-driven winds while
on the main sequence and lose a huge amount of mass becaust dfdamatically affecting their evolution.
The radiation pressure is so strong that they are not vebjesteesulting in complex phenomena such as
instabilities and outbursts. Such stars are terlapdnous blue variableand, after their hydrogen envelope
has essentially been blown awayplf-Rayet stars They live less than a few million years, also finishing
their lives in supernovae explosions, and are likely prages of stellar black holes.

At the other end of the mass range, stars with masses below 8t®M; have not yet had time to
evolve off the main sequence, but when they do their core ¢éeatpres will not become high enough to
initiate helium burning, so they will finish their lives as M#énite dwarfs. Stars with an initial mass in the
range0.5 < M < 2.3Mg, the precise cut-off depending on the metallicity, have gederate helium core
after the main sequence. They reach the TAMS after a few terakegigayears, depending on the birth
mass. The shell burning after the TAMS accompanies a slgeké the core until the latter reaches the
temperature at which helium burning through the tripleeaction starts. Since this happens in degenerate
matter, a thermal runaway occurs and the star is said to goddrelium flash The helium flash lifts the
degeneracy in the helium core, and the star settles downedrotizontal branchburning helium in its core
and hydrogen in a shell. In case the metal abundance is lmssatout 10% that of the Sun, the horizontal
branch is very extended, depending on the mass and the extidethydrogen-rich envelope.g, Prialnik
2000, Chapter 8).

Stars with higher metallicity are redder because their ibp& higher, and they cluster near the red-
giant branch in theed clump

At that stage of evolution, the low-mass central helium mgrobjects join the stars with initial birth
mass 2.3M, < M < 9Mg, which started helium burning calmly as their core at the ehthe TAMS
did not reach degeneracy. After the central helium exhamisthe stars are forced to live on helium- and
hydrogen-shell burning. They are said to ascendd@nptotic Giant BrancfAGB). In this phase nuclear
burning involvesthermal pulsesdue to the extinction and re-ignition of the helium shellbng. This
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implies a large amount of internal mixing, leading to compheiclear reactions. The slow-neutron capture
process becomes active and leads to nuclear yields beyenidotirpeak elements. These products are
dredged up for stars with/ > 4 M. Stars with initial masses above some g nd below some 9 M
may experience some stages of carbon burning, leading enith¢o an O, Ne, Mg white dwarf. The lower
limit mentioned of 6 M, in birth mass for which this occurs is rather uncertain argedes heavily on the
mass loss and rotational mixing since the TAMS. It may be dmdy the heaviest stars in this mass range
effectively ignite carbon. Stars on the AGB lose a significamount of their mass through a dust-driven
wind in combination with large-amplitude pulsations. Théew layers are so loosely bound due to the
envelope expansion accompanying the shell burning thgtateeeasily removed by the radiation acting on
dust particles. The dust-driven mass loss stops as sooe Agdhnogen-burning shell is largely extinguished
and the star enters imst-Asymptotic Giant Brandlpost-AGB) phase. The remaining envelope is rapidly
lost and the resulting circumstellar material shines foewa thousand years aspdanetary nebula This
exposes the degenerate core ashite dwarf, which subsequently evolves down along thkite-dwarf
cooling trackover a timescale of billions of years. The coolest, and hefdest, white dwarfs in the solar
neighbourhood have the same age as the Galaxy, around 10 Gyr.

Most of the post-AGB stars start cooling off directly as a twhdwarf,i.e., do not return to the AGB
once they left it. About 25% of the post-AGB stars, howevadergo a so-calledorn-againepisode. Such
episodes are due to a late thermal pulse, re-igniting hetiaar the hot white-dwarf core, either when the
hydrogen shell burning is still active or else shortly afteg hydrogen burning has essentially stopped. In
both cases, the star returns rapidly to the AGB and becomgsdraden-deficient helium-burning object,
consisting of a CO core surrounded by surface layers rictelimiim, carbon and oxygen (Werner & Herwig
2006). They traverse once more the HR diagram towards thesdhiarf phase in less than 200 years.
Depending on the core mass and on the effective temperatsong or a weak radiation-driven wind
occurs in that stage. The star thus shows up as a hydrogaiedéeftompact central star of a planetary
nebula. These stars are almost indistinguishable from tb-R&yet central stars of planetary nebulae,
usually denoted as [WCE], in the sense that their positidgheérHR diagram is the same. Their spectra look
different, though, because the Wolf-Rayet stars have @nidges in their spectra due to a strong wind,
while the luminosity of the post-AGB central stars of plargtnebulae is such that they have only a weak
line-driven wind and thus absorption lines.

2.2 \Variability studies from large-scale surveys

2.2.1 Hipparcos

One of the most important large surveys of variable starscaased out by the satellite Hipparcos of the
European Space Agency. The mission’s name standdlfgih PrecisionPARallax COllecting Satellite. It
was launched in 1989 and has measured the parallax of son@®@20ight stars in the solar neighbourhood.
The satellite’s name is not only an acronym but also refethédGreek astronomer Hipparchus of Nicea,
who was the first to compose a stellar catalogue with theipasitnd brightness of many stars, based upon
personal naked-eye observations. Therefore, Hipparshtanisidered to be the father of astrometry.
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The prime goal of the Hipparcos mission was to measure ttiardiss of stars with unprecedented
precision of 2 milli-arc-seconds for the parallax. The mmomotions of the stars were measured with an
accuracy of 2 milli-arc-seconds per year. This was achidyetheasuring each star on average 100 times
during the 3.3-year lifetime of the mission. The Hipparctisifiwas a broad-band white-light filter sensitive
to wavelengths between 4 080and 8 000A. The Hipparcos data were further complemented with thése o
the Tycho experiment, which determined the parallax anggronotion of a million fainter stars with an
accuracy of 30 milli-arc-seconds (per year).

A very important by-product of the Hipparcos mission wag tharovided us for the first time with an
unbiased view of variable stars with periods longer tham@pmately one hour in the solar neighbourhood.
Indeed, for each star a unique time series was measured,onitiverage, 100 time points that were quasi-
randomly chosen during the 3.3 years. These are time sheeare very different from those obtained with
ground-based instruments. The input catalogue was coefpl@ibiased in the sense that the pre-selection
of the target stars did not take into account any knowledgaaébility.

The Hipparcos mission led to the discovery of a few thousawd periodically variable stars and yet
another few thousand variables without a clear dominaribgieity. These were made publicly available
by means of two catalogues: the “Catalogue of Periodic Y& and the “Catalogue of Unsolved Vari-
ables”. The latter contains stars that are clearly variéboliefor which no obvious periodicity could be
unravelled from the data for different types of reasonsditerm trends, very long uncovered periods, too
low amplitude variabilityetc).

One of the more striking results derived from the mission thasliscovery of numerous new variables
with periods of the order of days. Such variables are indeeglivard to find from (single-site) ground-based
data, which suffer from strong one-day aliasing (see Chapfer a definition of this phenomenon). The
Hipparcos mission particularly had a large impact on thdystf slowly pulsating B stars angDor stars.
The number of such nonradial g-mode oscillators known wereased by a factor more than ten in both
cases (Waelkerst al. 1998, Handler 1999), leading to about one hundred candalletée members for each
of these two classes. As a result, extensive follow-up l@mgy ground-based photometric and spectroscopic
campaigns were organized to study the pulsational behawidhe brightest such class members (Aetts
al. 1999, Mathiaset al. 2001, De Cat & Aerts 2002 and De Cat al. 2006 for the slowly pulsating B
stars and Eyer & Aerts 2002, Handler & Shobbrook 2002, Henfyegel 2004, 2005, Mathiast al. 2005
and Cuyper®t al. 2006 for they Dor stars). These campaigns led to the general propertiggeaftars as
discussed further on in this chapter.

It is also worth noting that the number of known eclipsingarias was about doubled from Hipparcos,
with the discovery of 343 new ones.§, Sonderjhelm 2000).

Surveys of variable stars from space will come from the higietresolution missions CoRéTCon-
vection, Rotation and planetary Transits, launched on 2deBder 2006) and Kepferto be launched at
the end of 2008) as well as from Gjacheduled for launch near the end of 2011). The numbersvof ne
variables to be discovered from these missions will be gewasly large (certainly in the millions), requir-

http://corot.oanp.fr/
2htt p: // ww. kepl er. arc. nasa. gov/
Shttp://wwv. rssd. esa. i nt/ SA-general / Proj ect s/ GAl A/
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ing fully automated variability classification tools baseuArtificial Intelligence methodology (Saret al.
2006, Debosschest al. 2007).

2.2.2 Ground-based surveys

Significant progress on the group properties of large-aog#i oscillators, such as Cepheids, RR Lyrae
stars, and red-giant and supergiant pulsators, was madevbyas large surveys that were initiated in the
early nineties. These surveys were set up with the goal telsdar MA ssive CompactHalo Objects or
MACHOSs. The idea was that such MACHOs, if discovered, coaichpps help explain some of the missing
dark matter in the Universe. The primary aim of the surveys trefore to test the hypothesis that a
significant fraction of the dark matter in the halo of the MilWay is made up of objects such as brown
dwarfs and planets.

It was Paczynski (1986) who suggested that dark matter dmuttiscovered from a microlensing effect.
The idea is that, when a dark compact massive body (the leassep in between us and a background
light source, the latter’s apparent luminosity increasesabise the dark body acts as a gravitational lens,
concentrating the light rays of the source in the line of sigie to light bending according to general
relativity. This implies a magnification of the source luiwgity which is independent of wavelength. One
can therefore use this phenomenon to discover dark compddwithin our galactic hal@.g, using the
stars of the Magellanic Clouds or of the Galactic Bulge astlgpurces. The duration of the magnification
depends on the speed, the position and the mass of the defiadtoanges from half an hour to about two
months for dark masses ranging from a lunar mass to a solas. nfd®e magnification can reach values
from a few to a thousand. The phenomenon is rare and norithepeas it requires a good alignment of
light source, lensing dark body and observer while the lertsabserver move with respect to each other.
Microlensing can also be used to discover exoplanets ngoitround the lens. In that case, the effect of the
planet on the lensing gravitational field causes a briefeiase in the magnification.

The detection of microlensing events thus requires longrtaonitoring of a vast number of light
sources with high precision photometry, since the everdsane. Several large observational initiatives
to discover MACHOSs were set up more than a decade ago andosddibnes were started after 1995 to
search for exoplanets. Important by-products of such gsrage huge inventories of accurate light curves of
stars, among them Cepheids and RR Lyrae stars and longdpedovariables, but also many other periodic
variables.

The best known surveys are MACH@self and OGLE which stands foOptical Gravitationall ensing
Experiment. EROS%is another survey whose acronym standsHEgpérience pour l&Recherche dDbjets
Sombres while MOA, which denotedVlicrolensingObservations imAstrophysics, started somewhat later
than the previous three surveys.

*htt p: // wwwracho. ncrast er . cal
Shttp://bul ge. princeton. edu/ ~ogl e/
Shttp://eros.in2p3.fr/
"http://wwB. vuw. ac. nz/ scps/ noa/
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These surveys, and others that can be found through linkfi@nvebpages mentioned, several of
which specifically designed for exoplanet detection, hageilted in millions of stars in the Galactic Bulge
and Magellanic Clouds being monitored and led to thousahteneing events. Besides these events, tens
of thousands of variable stars were discovered in the GalBalge and Magellanic Clouds, among which
are hundreds of Cepheids, RR Lyrae stars, eclipsing bsarid ellipsoidal variables.

In addition to the microlensing surveys, there are alsslflsurveys specifically designed to find vari-
able stars. They have been carried out with small wide-fiatdaras since the mid-1990s. The best known
and largest of thesed surveys is ASASe All- Sky AutomatedSurvey (Pojmanski 1997). A summary of
the variables found by ASAS is provided in Pojmanhski & Mgmieski (2004, 2005 and references therein.)
The2 Micron All Sky Survey? (2MASS, Beichmanret al. 1998), on the other hand, is a catalogue of over
100 000 000 individual objects, the vast majority of which atars of spectral type K and later. Its monitor-
ing was carried out in three wavebandg1.25um), H (1.65um), andK (2.2m), with limiting sensitivity
(100 detection) of point sources withi' less than 14. The all-sky coverage was selected primargypport
studies of the large-scale structure of the Milky Way andltbeal Universe. Nevertheless, the catalogue
is of much value for variable star research, particularhewhkombined with the microlensing surveys dis-
cussed aboves.g, Fraseret al’s (2005) study of long-period variables to which we willuat later in this
Chapter.

The Sloan Digital Sky Surveyt® (SDSS, Stoughtoet al. 2002) is an imaging survey that covers one
quarter of the celestial sphere while collecting also spesthundreds of thousands of targets. The imaging
data are collected in five bandpassesd, r, ¢, andz) and are complete until magnitudes 22.0, 22.2, 22.2,
21.3, and 20.5, respectively. The SDSS turned out to be aingrgrtant survey for faint (compact) objects
that had been missed in previous surveys with brighter dinsiich as Cataclysmic Variables (CVs, Szkody
et al.2002), cool dwarfs (Hawlegt al. 2002), white dwarfs (Harrist al. 2003), and spectroscopic binaries
(Pourbaixet al. 2005), and of course the pulsating ones among all thesearseg Another important,
more recent survey, specifically designed to find emissimndbjects, is IPHAS, which stands for theaac
Newton TelescopePhotometricH-A Ipha Survey'! of the Northern Galactic Plane (Drest al. 2005). It
spans the latitude range5° < b < +5° and reaches down td = 20. The final catalogue of the IPHAS
point sources is still awaited. It will contain photometrg about 80 million objects, making it a major
future source for the study of stellar populations in thé disthe Milky Way.

The impact of large-scale surveys on pulsating-star rekesas summarized after about ten years of
microlensing monitoring in Szabados & Kurtz (2000). We refethe web pages of the consortia mentioned
above for more up-to-date achievements and recent papewiable star research, as well as on detected
lenses and their interpretation. While the surveys maimdiytb the discovery of new large-amplitude oscil-
lators, some nonradial oscillators such®Sep stars and Sct stars were also found (seeg, Pigulski &
Kotaczkowski 2002, Pigulsket al. 2003, Pigulski 2005), as well as humerous new compact asmid (see
below). As the surveys mainly observe faint members of thesas, and as they do not provide multicolour
photometry of mmag level precision nor high-resolutiomghh&/N spectroscopy, these discoveries have not
yet led to mode identification; hence asteroseismic mauglif the individual targets has so far not been

8http://archive. princet on. edu/ ~asas/

Shttp://ww.ipac. cal t ech. edu/ 2rmass/

Bht t p: / / www. sdss. or g/

Mhttp://astro.ic.ac. uk/ Research/ Hal pha/ Nort h/i ndex. sht m
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Figure 2.3: HR diagram showing the stars in which solar-tikeillations have been detected. Figure cour-
tesy of Fabien Carrier.

possible. Thus massive follow-up projects are requiredifipally dedicated to this task.

2.3 Oscillations near the main sequence

2.3.1 Solar-like oscillations in solar-like stars

The best case of a solar-like star with the clearest sdtardscillations is of course the Sun. Its oscillation
frequency spectrum was already shown in Fig. 1.8 and retealdreds of peaks centred around 3 mHz with
corresponding periods between 3 and 15 minutes. The beaghtwariations have amplitudes near 8 ppm
for the strongest modes and down to the detection threshi@ldaut 1 ppm. These variations correspond to
velocity amplitudes of a few to tens of cm’s

As the oscillations of the Sun are caused by turbulent cdiveemotions near its surface, we expect
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such oscillations to be excited in all stars with outer catiom zones. Solar-like oscillations are indeed
predicted for the lowest-mass main-sequence stars updotshjear the cool edge of the classical instability
strip with masses near some 1.6,Ne.g, Christensen-Dalsgaard 1982; Christensen-Dalsgaarda&dsen
1983; Houdelket al. 1999) as well as in red giants (Dziembowskial. 2001). Such stochastically excited
oscillations have very tiny amplitudes, which makes thend ha detect, particularly for the low-mass stars.
The velocity amplitudes were predicted to scale roughly. A&/ before the first firm discoveries of such
oscillations in stars other than the Sun (Kjeldsen & Beddif§5). This scaling law was later modified
to (L/M)°® from excitation predictions based on 3D computations ofdbter atmosphere of the stars
(Samadéet al. 2005), resulting in lower amplitudes compared with thosetbfor 1D models.

The search for solar-like oscillations in stars in the sokighbourhood has been ongoing since the
early eighties. The first indication of stellar power withracuency dependence similar to that of the Sun
was obtained by Browat al. (1991) ina CMi (Procyon, F51V). The first detection of individual fregjucies
of solar-like oscillation was achieved from high-precisiime-resolved spectroscopic measurements only
in 1995 for the G5IV star Boo (Kjeldsenet al. 1995); Brownet al. (1997) could not establish a confirma-
tion of this detection from independent measurements,thuas subsequently confirmed by Carrégral.
(2003) and Kjeldsemt al. (2003). It took another four years before solar-like oatitins were definitely
established in Procyon (Martit al. 1999). Subsequently, such oscillations were found in twoenstars:
the G2IV starg Hyi (Beddinget al. 2001) and the solar twin:Cen A (Bouchy & Carrier 2001). These
important discoveries opened the floodgates which led teraémore discoveries, a summary of which was
provided by Bedding & Kjeldsen (2003). Meanwhile, sold&elioscillations have been firmly established in
numerous stars. Their position in the HR diagram is displaperig. 2.3. Frequency spectra of a selected
sample, covering the whole range in spectral type, is showkig. 2.4. The detected frequencies and fre-
quency separations for all stars behave as expected fraretiwl predictions and scaling relations based
on extrapolations from helioseismology.

Detailed seismic studies of stars with stochastically teskcmodes are currently still in their infancy
compared with helioseismology. However, given the recetgations and the continuing efforts to improve
them, we expect a real breakthrough in the seismic inteafioet of the targets in the coming years.

The quest for solar-like oscillations in metal-poor stamssiderably less massive than the Sun is an
important goal of asteroseismic space missions. This tecp&rly so because asteroseismology has proven
to be a very successful technique to probe interior stefiactire and derive a high-precision age estimate
(Christensen-Dalsgaard 2002). Indeed, such low-massataamong the oldest in our Galaxy (and hence in
the Universe) and accurate age estimates of such objedtd) wdm in principle be achieved from measuring
their large and small separations as in the Sun, can providg@é age determination of the Universe which
would be completely independent of any method currentlysi u

2.3.2 ~Dor stars

In 1995, a new group of Population | nonradially oscillatstgrs was established near the intersection of
the red edge of the classical instability strip and the matjusnce. This followed from the discovery of
multiperiodic variability with amplitude near 0.1 mag iretRQV star 9 Aur and the realization that the three
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starsy Doradus (F4l11), HD 96008 (FOV), and HD 164515 (F2IV-V) hasienilar behaviour (Krisciunast

al. 1992). This group of stars have early-F spectral type andadled after the prototype, the staDoradus
whose variability was first discovered by Cousgtsal. (1989; Cousins 1992) and extensively studied by
Balonaet al. (1996).

As already mentioned in Sect. 2.2.1, the Hipparcos misseswery important for the discovery of new
class members in view of the intrinsic periodicities heag day and the difficulty to study such variations
from the ground. Some 50 confirmed members are establishewvwywhile more than 100 additional
candidates are being studied observationalg,(Mathiaset al. 2005; Henryet al. 2005; De Caet al. 2006
and references therein), most of them originally found frmaming the Hipparcos database. The stars have
multiperiodic behaviour with individual periods betweem® 0.5 and 3 d, which is an order of magnitude
longer than acoustic modes would have for such stars. Themhility is therefore interpreted in terms of
multiperiodic high-order nonradial g modes.

There are very few long-term multicolour and/or high-retioh spectroscopic datasets available for
~ Dor stars. Such datasets exist only for some selected sta@rsHorettiet al. 2002; Aertset al. 2004),
besides 9 Aur and Dor. The particular case of g modes with long periods of trdeoof a day implies
that the data sets of such oscillators consist of only a famper night, and makes it difficult to illustrate
the periodicity in the time domain. One therefore usuallgsughase diagrams (see Chapter 4 for a formal
definition). The periodograms of the ground-based GenetamafdHD 12901 (F2V) are shown as a repre-
sentative example for the whole class in Fig. 2.5. FiguresBdvs the phase diagrams after identification of
the frequencies. It can be seen from Fig. 2.6 that the vanathave low amplitudes. The three frequencies
indicated are trustworthy only because they occur in indépet datasets (Hipparcos and/or radial-velocity
data), a situation often encountered in frequency anahgsigill be explained in Chapter 4. All existing data
are in agreement with the interpretation in terms of multgmic g modes.

The observational propertiesgDor stars were summarized by Kagtal.(1999). The class members
have masses between 1.5 and 18 NHandler & Shobbrook (2002) made a careful observationalysto
understand the relationship betwe&Bct oscillations (see below) and the behaviour of 4H2or stars.
They found a very clear separation in oscillatory behavilmtiveen the two classes, except for the hybrid
star HD 209295 which has both p and g modes, but this objeatisraber of a very close eccentric binary
and its g modes seem to be tidally driven (Haneteal. 2002, see Sect. 2.8.2).

The earliest proposals for an excitation mechanism cama feuzik et al. (1998), who proposed
driving by convective-flux blocking at the base of the coniecenvelope. This mechanism was treated
in the frozen-convection approximation, in which the peyation to the convective flux is ignored. The
resulting instability strip was studied by Warradral. (2003). As noted bye.g, Loffler (2000) and Dupret
et al. (2005a) these calculations did not appropriately take atiwount the fact that since these stars have
well-developed outer convection zones the pulsation-@ction interaction must be taken into account in a
detailed way in instability calculations. This was recgrthieved by Dupregt al. (2005a) by means of a
time-dependent treatment of the convection. It alloweditk®interpret and predict the g-mode instabilities
observed in they Dor stars and to quantify an appropriate value of the mixamgth parameter between 1.8
and 2.2 local pressure scale heights¥dor stars. Their instability strip is shown in Fig. 2.7. Ir@stingly,
they found that convective blocking was in fact the dominastability mechanism. Moreover, Dupretal.
(2005b) applied their theory to interpret successfullyrthéticolour behaviour of the five best studiedor
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Figure 2.5: Spectral window (top) and frequency spectrer afibsequent stages of prewhitening (second
to fifth panel) for single-site ground-based Genévaata of they Dor star HD 12901. The three detected
frequencies which were derived from independent data setsdicated as dotted lines. (From Aeetsal.
2004.)
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Figure 2.6: Phase diagrams of th®or star HD 12901 for the three frequencies indicated agddithes in
Fig.2.5. (From Aert®t al. 2004.)

stars. A warning is needed, however, since these thedretiogputations ignore the effects of the Coriolis
and centrifugal forces, while most of thdor stars are fast rotators, in the sense that their osoillgeriods
are of similar magnitude to their rotation period. The utberequired investigation of the rotational effects
on current theoretical predictions remains to be carrigd ou

At present, very large observing efforts are being underidly several research teams, including long-
term multicolour photometric monitoring and high-resauatspectroscopic campaigns (De @aal. 2006
and references therein). TheDor stars are very challenging objects in this respect, imxdeat periods
up to years occur. Nevertheless, it seems worthwhile tortmkks such endeavours, because these pulsators
have the potential to undergo at the same time g modes andlikelgp modes. Indeed, they are situated
at the high-mass end where solar-like oscillations areipiesdi (Fig. 1.11). The firm establishment of the
occurrence of both these types of oscillations, which pnabg different inner stellar regions, holds very
large potential for high-precision seismic inference @ithnterior structure. For this reasonDor stars
are among the prime targets of the CoRoT space mission.

2.3.3 4 Sct stars

Theé Sct stars form a well-established group of Population Igtirtg stars with masses in the rangé —
2.5Mg. They are situated at the position where the classicalbiigyastrip crosses the main sequence (see
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Figure 2.7: The instability strip for = 1 modes of they Dor stars for three different values of the mixing
length parametet = oH,, based on the convective blocking mechanism for a time-déperireatment

of the convection (Duprett al. 2005a). The results for the frozen-convection approxiomatiith mixing
length parametelr = 1.87 H,, obtained by Warneet al. (2003) are shown as thin dashed lines for compar-
ison. The open circles are all of the bona fidBor stars known up to 2005. The squares are binddpr
stars. The evolution tracks are for the masses indicatedvanel computed assuming overshoot from the
convective core of 0.2 pressure scale height. (From Dgirait 2005a.)
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Figure 2.8: Radial-velocity curve of the high amplitutiScuti starp Pup derived from high-quality spectra
of which some are shown in Fig. 5.16. Note the slight devisfiom symmetry in this observed curve. Data
taken from Mathiagt al. (1997).

Fig.1.11) and so are in a stage of central hydrogen or sidlieigen burning. The oscillations are driven
by the heat mechanism active in the second partial ionizaiime of helium.

Both radial and nonradial oscillations occuriisct stars. Those are generally low-order p modes with
periods in the range 18 min to 8 hr. The observed amplitudes &darge range, from mmag up to tenths
of a magnitude. The highest-amplitudesct stars (also called HADS, meaning high-amplitudecuti
stars) are usually monoperiodic radial fundamental modéla®rs and so, at first sight, of less interest
for asteroseismology. Nevertheless, Mathiéasl. (1997) have shown convincingly that the very precise
radial velocity curve they obtained for the HARSuppis (Fig. 2.8) yielded the detection of low-amplitude
nonradial modes besides the dominant radial one. More®gtti (2003) found nonradial modes in the
light curves of some HADS. It may very well be that this is agedy of all HADS. In several lower-
amplitude) Sct stars, many nonradial oscillations have been dete€tezimost up-to-date catalogueidbct
stars was provided by Rodriguetal. (2000). It contains a summary of all the observational attarstics
of more than 600 class members that had been studied up 000l 2A comprehensive analysis of the
properties of all these class members was made by Rodrigggreger (2001). Montgomery & Breger
(2000) and Zverket al. (2004) present the proceedings of two international mgetim, respectively Sct
and related stars, and A stars in general, containing a kvefinformation. A fewé Sct stars have been
observed from space.g, 62 Tau and Altair with the star-tracker on the WIRE satelliterdti et al. 2002
and Buzaset al. 2005, respectively; and HD 263551 with the MJ%Satellite).

Within the class of Sct stars one sometimes considers the subclasses of thémpysBoo stars, and
classical and evolved metallic-line A (Am) stars. Theseeypf stars have been defined in geneial, (
irrespective of their pulsational nature) as specific @asgith anomalous surface abundances. The latter
affect the oscillations and, therefore, these subclaszes $lightly different behaviour compared with the
¢ Sct stars with normal abundances (Rodriguez & Breger 200d¢ping this in mind, the pulsatingBoo

2htt p: // www. astro. ubc. ca/ MOST/ i ndex. ht m
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and Am stars are fully compatible with the nornagdct pulsators.

Numerous radial and nonradial modes have been detectedh| selected Sct stars, such as FG Vir
(79 frequencies, Breget al.2005, see Figs 2.9 and 2.10), 4 CVn (34 frequencies, Bred&r, 2@e Fig. 2.11)
and XX Pyx (30 frequencies, Handlet al. 2000). These results were all obtained by the Delta Sct Net-
work®3 (DSN), consisting of several telescopes around the glodéeahby Michel Breger and his research
team at Vienna University in Austria. The frequency speofrthese few, selected, well-studied stars show
that thed Sct stars have complex oscillation patterns, with variaoiglitudes from season to season and
non-linear resonant mode coupling.q, the case of 4 CVn: Bregat al. 2000 and Fig. 2.11; V1162 Ori:
Arentoft et al. 2001; FG Vir: Breger & Pamyatnykh 2006). This complexityrtsiout to lead to a problem
in identifying the modes and hence hampers in-depth seisn@ipretation, despite the large number of de-
tected oscillations. An additional problem in identifyitige modes is that mixed modes occur, particularly
in the more evolved class members. These are modes that maved charactel,e., a g-mode character
in the interior and a p-mode character in the outer layerb@ttar. Mixed modes occur in general in stars
that have evolved off the main sequence and are undergouir@dn-shell burning.

Pamyatnykh (1999) provided an extensive overview of theohisof instability computations in the
upper HR diagram and presented his own computations basgdogress in opacity determinations by
Iglesias & Rogers (1996) and Seaton (1996). His work inalutthe determination of the blue edge of the
classical instability strip which is mainly determined b thelium opacity bump. The unstable modes in the
hottests Sct ZAMS models are found nehrg L /L ~ 2, while instability in the radial fundamental mode
occurs all the way up ttog L /L = 5 for evolved stellar models. In practice, th&ct stars are found on
the main sequence and near the TAMS, with luminosities rgnfyjomlog L /L ~ 0.6 up tolog L /L¢, ~ 2
(Rodriguez & Breger 2001). The heat mechanism is no londectife for the coolest Sct star models.
The red edge could therefore not be determined by Pamyaid@d®). For such cool stars, the damping
and excitation are strongly affected by convection. Hou®€00) included the time-dependent heat and
momentum fluxes following the formulation by Gough (1977)calculations of§ Sct models and found
a return to stability at approximately the correct locatafrthe red edge. The red edge of the instability
strip was also computed by Dupmtal. (2005a, see Fig. 2.12), who included a time-dependent ctiove
treatment also fod Sct star models with different values of the mixing lengthapaeter. They compared
the results obtained from their time-dependent convediieatment with those resulting from a frozen-
convection treatment and found much better agreement vgkreations. Both Houdek’s and Dupet
al.’s treatments approximate the red edge in a satisfactory(Rigy2.12).

Main-sequence stars near 2Mre transition objects as far as the occurrence of a comee@ii <
2 M) versus radiativeX/ > 2 M) outer zone is concerned. On the other hand, stars developvactive
core between 1M and 2M,. The class o#j Sct stars encompasses such transition objects and astero-
seismology could in principle fine tune our knowledge of tle¢aded physics of these transitions from
convective to radiative energy transport and mixing. DXewski & Pamyatnykh (1991) pointed out that
the sensitivity of particular nonradial oscillation modeshe size of the mixed stellar core could provide a
very valuable asteroseismic test of core overshooting iamfg B-type oscillators. At present, this stage is
not yet reached faf Sct stars, however. Another outlook for the future is theudiameous detection of heat-
driven and stochastically-excited acoustic modes. Ind8achadiet al. (2002) predicted the occurrence of

Bhttp://ww. astro. univie. ac. at/ ~dsn/ i ndex. ht n
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Figure 2.9: Some observed light curves for FG Vir obtainedhgyDSN (dots) and a fit including 79 signif-
icant frequencies (full line). (From Breget al. 2005.)
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Figure 2.10: Schematic frequency diagram of df&ct star FG Vir deduced from DSN data, some of which
is shown in Fig. 2.9. (From Breget al. 2005.)

Figure 2.11: Amplitude variability found from season tos@ain DSN data of thé Sct star 4 CVn. (From
Bregeret al. 2000.)
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the latter type of oscillations in this area of the HR diagréfar all these reasoné Sct stars ar¢he prime
targets for CoRoOT.

2.3.4 SXPhe stars

The SXPhe stars have variability behaviour which is veryilginto the large-amplitudé Sct stars known

as HADS (see the previous section), but the SX Phe stars @féagulation 11 stars, while the HADS are
younger Population | stars. For this reason, the SX Phe s proposed as a separate class of pulsators
by Frolov & Irkaev (1984) and have been regarded as such eag.sThey can be recognized by their high
amplitude, low metallicity and large spatial motion. Mo$ttikem are members of globular clusters, but
some occur in galactic discs.

A part of the light curve of the prototype is shown in Fig. 2.Iis star exhibits variations with two
distinct frequencies: 18.19d and 23.39d! and their harmonics, along with sum and beat frequencies
(Fig. 2.14 and Kimet al. 1993). The SXPhe stars indeed have a bimodal period distaibwvhich is
interpreted in terms of the fundamental and first radial mver modes being excited. Those pulsating only
in the first overtone have nearly symmetrical light curvethvgieak-to-peak amplitudes less than 0.15 in
V. The fundamental pulsators, such as SXPhe itself (Fig)2H&/e amplitudes above 0.15 ¥n and
asymmetrical light curves. This period separation profesgento two distinct period-luminosity relations
with an offset of 0.37 mag, in agreement with theoreticatfmtigons (McNamara 1995).

Rodriguez & Lopez-Gonzalez (2000) presented the fitstiague of SX Phe stars containing 149 ob-
jects in 18 globular clusters of our galaxy and in the Carind &agittarius dwarf galaxies. From the
observational characteristics of all these 149 membessdbduced that the metal abundances and mean
periods of these stars show that both parameters are ¢ed@hathe sense that the periods of the variables
are longer as the metallicity is higher.
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bottom panel is for the residuals after prewhitening wittl 98 and its two harmonics. Data taken from
Kim et al. (1993).

Olechet al.(2005) made a dedicated study of the oscillation spectr@ 8%6Phe stars with very diverse
pulsational behaviour, all belonging to the globular aust Centauri. The observations are interpreted in
terms of multiperiodic oscillations with at least some of #xcited modes being nonradial and with the
occurrence of rotationally split triplets in some casese $tellar parameters of the radial mode pulsators
are found to be consistent with standard evolutionary nsoftel stars withZ between 0.002 and 0.0002
and in the mass range 0.9 to 1.1%Mand the observed frequencies are in agreement with pieticior
unstable modes.

A significant fraction of the SX Phe stars are believed to be Btragglers. We come back to this issue
in Sect. 2.8.3.

2.3.5 Rapidly oscillating Ap stars

Largely within the classical instability strip, close teetmain sequence where th&ct stars are situated,
one also encounters the rapidly-oscillating Ap (roAp) stafhese are Population | stars of spectral type
A with a peculiar (hence Ap) chemical surface compositionsea by atomic diffusion, and they are also
strongly magnetic with global fields typically of kilogaussmany kG strengths. They were discovered as
a separate group of pulsators by Kurtz (1982), who repomeglitudes up to about 0.01 mag peak-to-peak
in blue wavelengths for five class members. The roAp starashi¢h there are now 35 known (see Kurtz
et al. 2006, Table 1, for a list), have multiperiodic variationgwindividual oscillation periods between
5.65 and 21 min, which correspond to high-order, low-degre®des. Many of the modes show frequency
multiplets interpreted as being caused by rotational gog#i modulation of modes with pulsation axes that
are oblique to the rotation axes of the stars. For extensieeviews of the photometric observations and
their interpretation see Kurtz (1990) and Kurtz & Martin@2@0).
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Figure 2.16: Frequency spectrum of the roAp star HD 101068 Kurtzet al. 1980.)

In Fig. 2.15 we show part of the light curve of HD 101065, thstfitiscovered roAp star (Kurtz 1978,
1980). Its frequency spectrum is shown in Fig. 2.16 and tewvegrincipal frequency of 1.37 mHz, corre-
sponding to a period of 12.14 min, with an amplitude of somentag. As more such stars were discovered,
and extensive light curves were gathered, it became obulmtsthe observed amplitudes are modulated
according to the time-dependent variation in the effecthagnetic field strength. The timescale of the
modulation is compatible with the rotation periods of therst which are of the order of days to decades.
The average strength of the measured magnetic fields cam teas of kG. It is therefore evident that the
stellar oscillations must be strongly influenced by the netigrfield. In such a situation, we are dealing
with magneto-acoustic oscillations.

During many years the roAp stars were thought to behave dicgpto the so-calledblique pulsator
mode] in which the symmetry axis of the oscillations is alignedhathe magnetic axis, which is inclined
(obligue) to the rotation axis (Kurtz 1982; Dziembowski & @ite 1985; Kurtz & Shibahashi 1986). Such
a configuration gives rise to rotationally-induced frequesplittings such as those observed. The value of
the frequency splittings within a multiplet allows one taide an accurate estimate of the magnetic field
strength and also of the angles between the rotation andetiagixes on the one hand and between the
rotation axis and the line-of-sight on the other hand.

The matter of mode excitation in the roAp stars is difficulstve due to the complexity of the com-
putations caused by the inclusion of the magnetic field &ffedhe complete suppression of convection
near the magnetic poles by the strong magnetic field turnetbaasult in mild net driving in the hydrogen
ionization zone for high-order p modes (Balmfoethal. 2001). However, it is not yet clear if such a driving
mechanism is fully compatible with the effect of diffusiverées, such as gravitational settling, regarding
the existence and character of the surface abundance aesr{f@yabchikoveet al. 2004). Cunha (2002)
attempted to understand the differences between roAp afd siars {.e., Ap stars that do not oscillate, at
least not at the level of current detection thresholds) byctimputation of a theoretical instability strip based
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on this instability mechanism and found good agreement thighobservations, including the spectroscopic
differences between roAp and noAp stars (Ryabchiketval. 2004). Very recently, intermediate-period
roAp stars were found using VLT data (Elkat al. 2005), which will help to detail the instability computa-
tions further.

Over the last few years, the validity of the “classical” ople pulsator model has been questioned
because it remains unclear how an oblique oscillation cabilete during such a long time. Moreover,
some of the excited modes remain present during a long tirhide wthers seem to disappear on relatively
short timescales. This called for a new theoretical magnatidel. A first such model, which is valid
for rapid rotators (in the sense that the ratio of the odmitafrequency to the rotation frequency is high)
with a moderate magnetic field strength, was proposed bytBidgaziembowski (2002). In this model, the
symmetry axis of the oscillations is not aligned with theatmin nor with the magnetic axis. Moreover, the
effects of the centrifugal force are taken into account far first time. This force seems to be the prime
cause of rotational frequency shifts causing amplitudenasgtries,i.e., peaks form and—m are unequal
in amplitude. This new theoretical model seems to be verynmiog to explain the long-term properties
present in the observations of some of the roAp stars, buadt o far not yet applied in full detail to data
of any roAp star. A second model is the one presented by S@@5jzand concerns axisymmetric nonradial
oscillations including a strong magnetic dipole, ignoriatation and envelope convection. The high-order
dipole and quadrupole p modes are excited by the heat mechamthe H ionization zone, while low-order
p modes excited in the Heionization zone are damped by the magnetic field when itagtheraises above
1kG.

From an observational viewpoint, the study of roAp stars ¢fanged drastically over the past few
years, with photometric studies being overtaken by tinsalked high-spectral-resolution spectroscopic
studies. These are being vigorously carried out by seveoalpg who are beginning to resolve the pulsation
structure in roAp stars in 3 dimensions. These novel obfensresolve the pulsation as a function of
atmospheric depth, using the abundance stratificationrtdingons to determine the pulsation amplitude
and phase in the rangeb < 75000 < 0, and even higher into the atmosphere. Some examples ar@gthe h
resolution studies of 33 Lib by Mkrtichiaet al. (2003) and of HD 166473 by Kurtzt al. (2005), the latter
using very precise data from VLT/UVES. Finally, Kochukh®004) made an “image” of the pulsation
velocity field from time series observations of spectra f&t 3831 and showed that the oscillations of this
stardo seem to be aligned with the axis of the global magnetic fieldging strong support to the oblique
pulsator model. Clearly, further confrontation betweeasth splendid new data and the oblique pulsator
model as well as its alternatives, must be undertaken in¢he fature.

2.3.6 Slowly pulsating B stars

The term “slowly pulsating B stars” (SPB stars) was intratlidy Waelkens (1991). With this term he
pointed towards a group of seven young Population | variakitkB stars with spectral type between B3
and B9, for which he had detected multiperiodic brightnessalour variations in photometric data spread
over some 10 years. In Figs2.17 and 2.18, the frequencyrapeicthe GenevaB and Hipparcos light,
and radial-velocity variations of the brightest among tiBSstars,o Vel, and of a bright SB2 SPB star,
HD 123515, are shown. De Cat & Aerts (2002) found respegtifair and five independent frequencies for
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Figure 2.19: The MOST light curve of the SPB HD 163830 (uppergb, dots) and the best fit based on the
21 significant frequencies (upper panel, full line). Thedweals after subtraction of the fit are shown in the
lower panel. (From Aertst al. 2006.)

these two SPB stars after subsequent prewhitening. Thesiatiperiods of SPB stars are similar to those
of the vy Dor stars except a bit longer because the stars are biggeroughly between 0.8 and 3d. Itis
therefore extremely difficult to find such variables, as lbeign planning is needed, just as for th®or
stars. This is readily visible in Figs 2.17 and 2.18 wheredhefusion between frequencigsandl — f is
prominent. Only with multisite data, or with uninterruptddta from space, can one avoid such confusion,
as shown by the MOST light curve of the SPB star HD 163830 chpred in Fig. 2.19 (Aertst al. 2006).

Line-profile variable counterparts of SPB stars were knowior io Waelkens’ discovery of the SPB
star class. Already in the late 1970s Myron Smith and hisaboltators had done a search for line-profile
variability in stars surrounding th@Cep stars (see below for a description of this group of pingadtars).

In this way they had discovered spectroscopic variablel gectral types between O9 and B5. Smith
termed them 53 Per stars after his prototypical target.dtrh@anwhile become clear that the coolest among
Smith’s variables are SPB stars, but the explanation fohditier stars in Smith’s list is different. Indeed, the
hottest among the 53 Per stars have p mode oscillationshiéke €ep stars rather than high-order g modes.
For this reason, the term SPB stars was finally chosen toatele class of stars with common pulsational
properties in terms of g modes and one well-understood aiarit mechanism, in contrast to the group of
Smith’s 53 Per stars. The masses of SPB stars range from 2 g Whereas some of the 53 Per stars have
masses as high as 20M

As already emphasised, the Hipparcos mission led to a teiiotease in the number of class mem-
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bers; huge long-term multicolour photometric and highehatson spectroscopic follow-up campaigns were
undertaken following this discovery (Aemr$ al. 1999, Mathia®t al.2001). Those led to accurate frequency
values and empirical mode identification for some selecsgets (De Cat & Aerts 2002, De Gaital. 2005)
which are in excellent agreement with theoretical prediddiof excited (mainlyJ] = 1 modes (Townsend
2003). All confirmed SPB stars are slow rotators (De Cat 2002)

As shown by Dziembowskét al. (1993) and Gautschy & Saio (1993), the explanation for théimu
periodic variations of SPB stars is the excitation of highes g modes by the heat mechanism, associated
with an opacity enhancement due to iron-group elements,taisned theZ bump These features occur at
a temperature near 200 000 K. This explanation for mode atianit in B stars, both for SPB stars and for
0 Cep stars (see below), had to await sufficiently accurateitypaomputations of elements heavier than
hydrogen and helium, such as those provided by Iglesias 8&Rod.996) in the OPAL* opacity project
at Livermore and Seaton (1996) in the Opacity Project:®Rccurate opacity tables for elements heavier
than hydrogen and helium are only available since the OPALGIR projects were completed in 1992. Any
previous opacity determinations for such elements weneajlp a factor three too low and so did not lead
to mode excitation in B stars. The new opacity projects led tatural explanation of the modes in SPB
stars and irs Cep stars in terms of the heat mechanism at the position viheregpacity bump occurs. We
refer again to Pamyatnykh (1999) for a general overview efgioperties of models with excited modes
and their dependence on metallicity and core overshoot.

The agreement between theoretical predictions and olismrsas excellent in a statistical sense. The
known SPB stars indeed lie entirely within and populateyftille computed theoretical instability strip. As
parallaxes for isolated field B stars are very uncertain,ignet able to provide accurate luminosities either,
which is the reason why in many seismic studies the model atattipns are represented iflag 7., log g)
diagram as in Fig. 2.20.

During the last half century, there has been significantusioh and debate in the literature about the
existence of a specific group of variables with spectral sypetween B7 V-IIl and A2 V-1l and periods
between 2 and 8 h, baptized “Maia stars” by Struve (1955). hatttme when Struve (1955) made his
suggestion, SPB stars were still unknown. These hypo#ietiars would be partly situated within the SPB
instability strip, extending towards theSct strip. There are no oscillations predicted by the atass$ieat
mechanism in this part of the HR diagram (Pamyatnykh 1998)iateed, despite large search campaigns
(see,e.g, Scholzet al. 1998 and references therein) unambiguous detection of-phdod variability was
achieved for only four out of fifteen stars. Each of these fas high rotational velocity (Aerts & Kolenberg
2005). In such a situation, the effects of the Coriolis fanteoduce significant frequency shifts for the low-
frequency g modes (Townsend 2003) so that shorter periods imdeed be observed in an inertial frame.
Such shifts may offer the correct explanation for the reddyi high observed frequencies in these four stars.
Another suggestion was made independently and almosttsinedusly by Savonije (2005) and Townsend
(2005), who found heat-driven retrograde mixed mode ingtalin B stars for spectral types B4 to A0
rotating faster than half of the critical rate. Both theseiipretations lead to the conclusion that the “Maia
stars” are simply rapidly rotating SPB stars.

Yhtt p: // wwe phys. | | nl . gov/ Resear ch/ OPAL/ opal . ht
Bhttp://vizier.u-strasbg.fr/topbase/op. htn
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2.3.7 [ Cep stars

The 8 Cep stars have been known as a group of young Population-hm&iarsequence pulsating stars for
more than a century. They have masses between 8 and about &8#oscillate in low-order p and g
modes with periods between about 2 and 8 h. More than 100 nrerabthis group are known and the class
contains dwarfs up to giants. A recent overview of the prigeof the class was provided by Stankov &
Handler (2005). Most of thg Cep stars show multiperiodic light and line-profile vaoat. Excluding the
four stars BW Vulpeculag,' CMa, HD180642 and Scorpii, which have exceptionally large velocity and/or
light amplitudes, the phase diagrams for individual frawpies are nearly sinusoidal. The light variations
clearly have larger amplitudes at blue than at red wavetsrand have a phase difference of about 0.25 with
the radial-velocity variations. Such a phase lag is expkfcieadiabatic oscillations (Dupret al. 2003). As
for the SPB stars, the majority of ti#eCep stars rotate at only a small fraction of their criticdbegy, two

of the exceptions being 19 Mon (Baloeaal. 2000) and HD 203664 (Aertst al. 2006) whose rotational
velocities approach half of their critical value.

Until 2002, these stars were mainly observed during sisiéeephotometric campaigns lasting typically
one or two weeks. Some stars were monitored during diffeseasons, most often, unfortunately, with
large gaps of several years in the data. An example is theH&ar29929 which was monitored during
21 years in 3-week campaigns from La Silla with one and theeshigh-precision photometer attached
to the 0.70-m Swiss telescope (Aedtsal. 2003). This led to the detection of six independent osaltat
modes, which was at that time the largest number of excitgligncies known in such type of star. The star
12 Lac was also known to have six oscillation modes from muoties photometry (Jerzykiewicz 1978),
and these modes turned out to have very stable amplitudésyduany years as they were recovered in
high-resolution spectroscopy more than a decade latehiitat al. 1994). Starting from the early 1990s,
the 3 Cep stars were indeed also extensively studied from higbhigon spectroscopy (Aerts & De Cat
2003 and references therein).

A new era in@ Cep star research was initiated after the internationadghiain conference held at
Leuven university (Aertet al. 2002), where Mike Jerzykiewicz suggested the consideraiicthis type
of star for multisite observing campaigns similar to thosefgrmed for the Sct stars. Handler & Aerts
(2004) set up the largest such campaign ever performed éostdry Eri, including not only multi-colour
photometry but also simultaneous high-resolution spectpy during five months. This very rich dataset
implied a significant step forward in the detection and imtetation of oscillation modes of&Cep star. A
subsequent campaign was carried out by Haretlet. (2006) on the star 12 Lac. Several additional modes,
besides the six already detected by Jerzykiewicz (1978Maitiaset al. (1994), were discovered. A part
of the light curve of the campaign is shown in Fig. 2.21 andftequency spectrum in Fig. 2.22. While
aliasing still occurs, this figure illustrates the gain ofltisite versus single-site data.

The nonradial oscillations in the Cep stars are caused by the heat mechanism acting througityopa
features associated with elements of the iron group (Dzisvski & Moskalik 1993), as discussed already
for the SPB stars. The short periods of several hours arerggneell explained in terms of heat-driven
low-order p modes, but we stress that low-order g modes atesitinultaneously excited and observed in
several class members. There is a small overlap in the thearenstability strips of the SPB stars and
(3 Cep stars (see Fig. 2.20). This is observationally confirfoednly very few stars, among which isEri.
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Figure 2.21: Stromgren photometry of the&Cep star 12 Lac from a multisite campaign. (From Handter
al. 2006.)

For this best-studied star, however, the most accuratmi&eimodels do not predict all the observed modes
to be excited. The extensive multisite campaigw &fri thus made it clear that not all the details of the mode
excitation mechanism are well understood. Bowtial. (2006) have recently shown that radiative diffusive
processes, which have been ignored so far in such hot staysnnfact enhance significantly the amount of
iron in the driving region. Their computations followed tharlier suggestions by Pamyatnydhal. (2004)
and by Ausseloost al. (2004) that a factor four higher iron abundance in the dgvione, or in the star as
a whole, is necessary to solwveEri’'s excitation problem.

As can be seen on Fig. 2.20, the agreement between obsef#ep stars and the theoretical instability
strip is very satisfactory for the class as a whole, althotighblue part of the strip is not well populated.
Numerous new candidate members were recently found fropedscale surveys, in the LMC and SMC
(Kotaczkowskiet al. 2006) as well as in our own Galaxy (Pigulski 2005, Narwtcal. 2006). Assuming
that all these faint variable stars are indge@ep stars more than doubles the number of class members
to over 200. The occurrence of so mafep stars in environments with very low metallicity demaihde
a new look upon the mode excitation, which relies heavily lmmiton opacity. Miglioet al. (2007) have
shown these results at low metallicity to be fully compaiblith excitation predictions based on the OP
opacities and the solar abundances by Aspletral. (2005).

2.3.8 Pulsating Be stars

Be stars are Population | B stars close to the main sequeatshbw, or have shown in the past, Balmer
line emission in their photospheric spectrum. This excessttiibuted to the presence of a circumstellar
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equatorial disk. See the review on Be stars by Porter & Rigir{fe003) for general information on this
rather inhomogeneous class of stars. Several differergigdlymechanisms are thought to be responsible
for the disk. Numerous Be stars are members of close binatgmsg of very different kinds. Roche-lobe
overflow or mass transfer in general may cause the disk in cashs. For single Be stars, rotation close
to the critical velocity (Townsendt al. 2004), in addition to either multimode beating of oscithatimodes
(Rivinius et al. 2003) or mass loss along magnetic field lines (Townsend & Ging@05) could explain the
disk. However, while magnetic fields (Neiner 2006) and ndialaoscillations (Riviniuset al. 2003) have
been detected in some Be stars, it is not at all clear if thesehamisms suffice to explain a disk for the
whole class of single Be stars. Also, it is at present unchd@ther the occurrence of a disk around single
Be stars can be attributed to a particular evolutionaresianot. The nature and evolution of disks around
hot stars was recently summarized in the proceedings bg¢gaGayley (2005) and by Stedt al. (2006).

Single Be stars show variability on very different time ssabnd with a broad range of amplitudes.
Balona (1995a) studied a subclass of the Be stars which shewd@minant period between 0.5 and 2d in
their photometric variability, with amplitudes of a few seaf a mmag which he termed théeri variables.
He provided extensive evidence of a clear correlation betwtbe photometric period and the rotational
period of theX Eri stars and interpreted that correlation in terms of rotel modulation. When observed
spectroscopically, several of theEri stars turn out to have complex line-profile variationshatravelling
sub-features similar to those observed in the rapidly irmiat Cep stars, except for the much longer peri-
ods (days versus hours). This rather seems to suggestatieod as origin of this complex spectroscopic
variability.

The first claim of nonradial oscillations in a Be star dateskifeom 1982, when Baade (1982) discov-
ered complex line-profile variations for the staCMa, a star listed among theEri variables in Balona’s
(1995a) list. The picture became even more complicated vidsana (1995b) introduced the class of
¢ Oph variables. These are late-O type stars with clear conmpldtiperiodic line-profile variations which
he attributed to high-degree nonradial oscillations. Téreynamed after the prototypical 09.5V s{@ph,
whose rotation is very close to critical and whose photoimetariability was recently firmly established
by the MOST space mission. Walket al. (2005a) disentangled a dozen significant oscillation feegies
in the 24-d photometric light curve assembled from spacess&Hrequencies range from 1 to 10 dand
clearly indicate the star's relationship to th€ep stars.

An extensive summary of the detection of short-period pingfile variations due to oscillations in hot
Be stars was provided by Riviniwet al. (2003). They monitored 27 early-type Be stars spectrosatipi
during six years and found 25 of them to be line-profile vdaalat some level. For several of their targets
the variability was interpreted in terms of nonradial datibns withl = m = +2. Almost all stars in
the sample also show traces of outburst-like variabilitheathan a steady star-to-disk mass transfer. The
authors interpreted the disk formation in terms of multimdeating in combination with fast rotation.

To make the picture complete, multiperiodic oscillationsrevrecently reported in the rapidly rotating
B5Ve star HD 163868 from a 37-d MOST light curve (see Figs 21282.24). Walkeet al. (2005b) derived
a rich frequency spectrum, with more than 60 significant pesdsembling that of an SPB star and termed
the star an SPBe star in view of its Be nature. They intergréite oscillation periods between 7 and 14 h as
high-order prograde sectorial g modes and those of sevayalas Rossby modes.§, Townsend 2005 for
a recent description of such modes). There is remaininggieity above 10 d which cannot be explained
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Figure 2.23: Space photometric light curve of the Be star HBBE8 observed by the MOST satellite. The
lower panel shows a higher time resolution look at a 5-d porof the light curve. (From Walkest al.
2005hb.)
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Figure 2.25: Left: location of the instability strip of thespmain-sequence stars. Right: candidate pre-main-
sequence pulsators known as of 1998. Triangles: UX Ori $tans Nattaet al. (1997), squares: Herbig
Ae/Be stars from Berrilliet al. (1992) and van den Ankeat al. (1998), the error box is for HD 144668
(HR 5999: Kurtz & Marang 1995). (From Marconi & Palla 1998.)

at present. Finally, nonradial oscillations at low ampléuvere also detected in the bright B8Ve statMi
(Saioet al. 2006).

We come to the conclusion that the oscillations detecteddars®rs show a multitude of different
behaviour, which is in full accordance with those®€ep stars and SPB stars. It seems that pulsating Be
stars are complicated analoguesgd€ep stars and SPB stars rotating typically above half of thiea
velocity, and with some rotating very close to critical v@tg. It remains to be studied what the role of the
oscillations is in the disk formation for the class of Be stas a whole.

2.4 Oscillations in pre-main-sequence stars

As newly born protostars contract towards the main sequesitteer radiatively as the Herbig Ae/Be stars
or convectively as the T Tauri stars, the higher-mass states er cross the classical instability strip. Such
pre-main-sequence stars tend to be highly variable, bopghatometry and spectroscopy, on time scales
of minutes to years. Part of this variability is surely dueattivity and interaction with the circumstellar
environment. On the other hand, part of the shorter-perarthliility may be due to oscillations. Since the
interior structure of pre-main-sequence stars is diffefesm that of evolved stars in the instability strip,
their oscillation spectra may allow us to distinguish betwéhe two evolutionary stages for stars with the
same effective temperature and luminosity.
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Figure 2.26: Part of the multisite campaign data obtaine2D3 by Ripepet al. (2006) for the pre-main-
sequence star IP PeAV stands forVip per — Veomp. Crosses and dots indicate data from two different
sites.

Breger (1972) found the first two candidate pre-main-secgiéisct pulsators, while monitoring the
young open cluster NGC 2264 photometrically. He also fousith 2f the member stars of this cluster to
be short-period variables and unravelled a clear corogldietween the variability and shell characteris-
tics. Some time later, Baade & Stahl (1989a,b) detectedadlalroscillations in two pre-main-sequence
stars based on high-resolution spectroscopy. They founedgiofile variability, but were unable to pin-
point clear periodicities from them. Kurtz & Marang (1995ade the next step and disentangled the low-
amplitude (6 mmagp Sct pulsation with the first clear oscillation period of abs&un from the long-term
large-amplitude (0.35 mag) variations caused by variabs dbscuration in the disk of the Herbig Ae star
HD 144668.

Marconi & Palla (1998) investigated the pulsational prapsrof pre-main-sequence stars with masses
in the range 1 to 4 M by means of linear and non-linear calculations and definedristability strip for
these stars in the HR diagram (see Fig. 2.25). They founa@geranging from 1.5 to 7.5 h for the funda-
mental mode. Delta Sct type oscillations have been sughyastbout thirty pre-main-sequence stars so far.
The reported periods are quite uncertain, and range frosithas one hour to several hours, in agreement
with theoretical predictions. For reviews on this topic €egala (2003), Marconi & Palla (2004), Zwingt
al. (2004) and Ripepet al. (2006a).

The most extensive dataset and interpretation of a pre-segjunence Sct pulsator was achieved by
Ripepiet al. (2006b, see Figs 2.26 and 2.27). They monitored the starripitometrically in a multisite
campaign involving ten sites. The total time span of thetadaabout 500 d. IP Per is a low-metallicity UX
Ori type star, which is a class of precursors of the Herbidg&estars surrounded by self-shadowed disks (see

61



f1=22.89 c/d 2 186=23.99 ¢/d

TuWu]‘h\Jﬂ‘ PO I R T R il

Amplitude (mmag)
Amplitude (mmag)

0 20 40 60 0 20 40 60
Frequency (c/d) Frequency (c/d)
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Figure 2.28: Light curve of an RRab star observed by OGLEd@ldccording to the dominant oscillation
period. Data taken from Soszynsial. (2003).

Herbst & Shevchenko 1999 for a photometric catalogue antkeBwindet al. 2003 for a physical model). It
has long-term variations with an amplitude of about 0.3 nratyaduration between 10 and 50 d onto which
the oscillatory variability is superposed. The authorsfbnine frequencies for the star, ranging from 23 to
52 d~!, and with an amplitude range from 1.1 to 3.3 mmag (see Fi@)2A fit of theoretical frequencies
to the observed ones indicates that a maximum five of the naatebe radial modes; thus nonradial modes
occur as well. The frequency matching of the five radial mdddsto an accurate mass, luminosity and
temperature estimate of the star, in agreement with prevspectroscopic derivations. Unfortunately, the
frequencies alone did not allow a discrimination betweenea @nd post-main-sequence star.

2.5 Pulsations in evolved stars with\/ < 9M,

By evolved low-mass stars we mean objects with an initialaretow 9 M, which have evolved off the
main sequence. These stars may, at a certain phase in flestdirt a burning cycle in degenerate matter in
their core. This is surely the case for stars with a mass b2l8W,,. They will undergo a helium flash at
the tip of the red-giant branch. The more massive among thearlass stars avoid ignition in a degenerate
core. In any case, all of these stars are candidate oscillaiaring their post-main-sequence evolution.
As discussed in Sect. 2.3.1, solar-like oscillations atmébin subgiant stars in the hydrogen shell-burning
phase which for stars of mass below around 1./ islrelatively slow. However, only more massive stars
cross the instability strips for heat-driven oscillatiahging this phase, and for such stars the phase is fast
and the probability of catching a star before central hellwming is small. In the present section we
therefore consider only the phases after central heliumihgrhas started.
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Figure 2.29: Light curve of an RRc star observed by OGLE foldecording to the dominant oscillation
period. Data taken from Soszynsial. (2003).

2.5.1 RRLyrae stars

Together with the Cepheids (see below), RR Lyrae stars argidered to be thelassical radial pulsators
Most of them are monoperiodic stars with an oscillationgenear half a day. While their monoperiodicity
implies that they are not suitable for seismic studies, Hreyof great galactic and cosmological importance
and we highlight some of their properties for this reasofgrrang to the monograph by Smith (1995)
for more detailed information on their observational co#gdstics and to Catelan (2007) for an extensive
overview of horizontal branch stars in general.

The first RR Lyrae stars were discovered in globular cludtgrBailey in 1895. Their spherical spatial
distribution and kinematic properties (high velocitieaihdirections) imply that these stars must be extreme
Population Il stars. As they are low-mass stars, their eleseabundances are, to a good approximation,
those at their birthj.e., those of the interstellar cloud from which they were borrheTabundances of
elements heavier than hydrogen and helizmranges from 0.0001 to 0.01. RR Lyrae stars are also used to
estimate the distance and the age of the clusters they bdoRgr these reasons, they are considered to be
standard candles of galactic evolution.

All stars with birth masses between0.5 and~ 2.2 M, start helium burning in a degenerate helium
core and undergo a helium flash, after which they settle ohahiegontal branch. The stars with the thickest
hydrogen envelope are at the red end of the branch and thds¢heithinnest at the blue end. The higher
the envelope mass, the more the hydrogen shell contributae £nergy production and the larger the extent
of the convective zone in the envelope. Blue horizontal thnastars have thin envelopes, weak hydrogen
burning shells and develop a radiative outer zone (Pri@fA®0). As a consequence, the hydrogen envelope
needs to have a particular mass to result in oscillationgeedrby the heat mechanism, which requires a
radiative zone. It turns out that horizontal branch stath wiasses between 0.60 and 0.80 M have the
appropriate regions of hydrogen and helium ionization sanebecome RR Lyrae stars.g, de Santis &
Casisi 1999), the precise mass limits depending on the lieétahnd on the mass lost on the giant branch.
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Figure 2.30: Light curve of an RRd star observed by MACHO éoléccording to the dominant oscillation
period. Data taken from Kovacs (2000).

RR Lyrae stars either have settled immediately on the hot@doranch within the instability strip after the
helium flash or they crossed the strip while evolving on theézomtal branch. The excitation mechanism of
the RR Lyrae stars is well-known as the heat mechanism aictithg partial ionization zone of He— Helli
(seee.qg, Stellingwerf 1984 for an instability strip). Transientgsiomena, such as mode switching, are also
predicted. Boneet al. (1995) made a thorough analysis of the different detailhefrhode excitation and
mode transition within the instability strip.

RR Lyrae stars have been observed for more than a centumnylynraphotometry. They are subdivided
into threeBailey classesRRa, RRb and RRc stars. This classification is based upoantpditude and
the skewness of the light curve and on the oscillation peri®Rab stars are now considered as one class,
pulsating in the radial fundamental mode and having asymeright curves. RRc stars, on the other hand,
oscillate in the first overtone and have sinusoidal vanetioTwo prototypical OGLE light curves, phased
according to the dominant period, are shown in Figs 2.28 a2@l 2

In the mid 1980s, a fourth class of RR Lyrae stars was intreduthe RRd stars. The amplitudes of
these group members change on relatively short time scalesh stars have periods between 0.3 and 0.5d
and their light curves have more scatter than for the RRabrs §6ee Figs 2.30 and 2.31 for a prototypical
case observed within the MACHO project). It turns out thatRRd stars oscillate in both the fundamental
and first overtonei,e., they aredouble-modescillators with a period ratio near 0.74 (Kovacs 2001). RRd
stars are found in both the Galactic plane and in globulatefs. They have the advantage that the excitation
of two oscillation modes allows us to characterize theatglhrameters, such as the mass, with much higher
precision that for RRabc stars.{, Popielskiet al. 2000, Szabé&t al. 2004).

Another old classification for RR Lyrae stars concerns thest clusters. Oosterhoff (1944) pointed out
that some clusters have mainly RRab stars, while othersdmaegual contribution in RRab and RRc stars.
The former are calle@osterhoff Itype clusters and the latt€@osterhoff 1l The average oscillation period
of the RR Lyrae stars in Oosterhoff | clusters is 0.1 d shdhan for those in the Oosterhoff Il clusters. This
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Figure 2.31: Residual MACHO light curve of the RRd star showfig. 2.30 after prewhitening with the
dominant oscillation period and folded according to theogdqeriod. Data taken from Kovacs (2000).
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Figure 2.32: MACHO light curve of a Blazhko star observed bt&@®HO folded according to the dominant
oscillation period. Data taken from the Kueal. (2000).
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phenomenon is called ti@osterhoff-period-dichotomfe.g.Catelan 2007 for a discussion).

The absolute visual magnitudes of RR Lyrae stars have vatuaghly between 0 and 1. Although
less bright than Cepheids (see further on) their large @nggdiand their brightness makes them easy to
recognize and hence suitable to be identified in globulastefs. Just as with Cepheids, they are used as
distance indicators to these clusters. While more accwmadelarger distances can be derived from the
more luminous Cepheids, globular clusters do not have alatipu of the latter stars and so they cannot be
considered for globular cluster distance determinatione RR Lyrae stars are therefore an important and
good alternative.

Finally, we turn to the phenomenon called tB&azhko effect For 25% of the RR Lyrae stars one
observes amplitude modulation in the light curve (see E&R for a prototypical example from the MACHO
database) on a timescale that is typically 100 times lorgan the oscillation period. This modulation is
observed in all three classes RRabc. It was observed forghédiine by Blazhko (1907) for the star EW Dra
and is named after its discoverer. RR Lyrae itself is a Blazbilar €.g, Kolenberget al. 2006), with a
modulation period, also termed Blazhko period, of 40.8 deiQkie Blazhko cycle the maximum brightness
changes considerably, while there is hardly any change mnmim brightness (Fig. 2.32). The Blazhko
effect has also been detected in line-profile variations BfLiRae itself (Chadidet al. 1999). Smolec
(2005) pointed out that the Blazhko effect does not corealdth metallicity.

Jurcsiket al. (2005) proposed a correlation between the oscillationopgesind the modulation period,
which made them conclude that the modulation period musthbaldo the rotation period. However, for
some of the Blazhko stars a third, much longer modulatiofogdéas also well establishe@.g, seven years
for RW Dra and four years for RR Lyrae. The start of a new longluation cycle is accompanied with a
phase jump of several days in the light curve. It is difficalibderstand this in terms of rotation of the star.

For many years now there have been two competing theoretigddnations for the Blazhko effect:

1. Itis caused by the excitation of a nonradial oscillationde of low degree, besides the main radial
mode, through non-linear resonant mode coupling. In thidehthe Blazhko period is interpreted as
the beat period between the radial fundamental and a nahnadide €.g, Van Hoolstet al. 1995;
Dziembowski & Cassisi 1999).

2. ltis caused by a magnetic field which influences the osicitia (similar to the oblique pulsator model
for the roAp stars). In this case the Blazhko period must berpmeted as the rotation period of the
star €.g, Shibahashi & Takata 1995).

There is no consensus about the correct interpretatioredidzhko effect, particularly not in view of
the variety of Blazhko light curve characteristics disaedefrom the MACHO database (Kurtz 2000). The
extensive efforts to search for a magnetic field in the beslistl and brightest Blazhko star, RR Lyrae itself,
and the failure to detect one with modern instruments to oorfirevious claims (Chadieltt al. 2004), have
not resolved the issue. Moskalik & Poretti (2003) rejectesldblique magnetic pulsator model on the basis
of the properties of Blazhko stars discovered from the OGidiegt.
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Figure 2.33: Hipparcos light curve of the Population Il CejohCO Pup folded according to the oscillation
period. Data taken from ESA (1997).

2.5.2 Population Il Cepheids

After central helium burning, stars of Population Il with ssas higher than 0.5Mevolve from the hor-
izontal branch towards the AGB. During their evolution aweym the horizontal branch, or during the
numerous thermal pulses on the AGB, the stars may cross stebility strip and start oscillating. Such
stars are calledype Il Cepheidsor Population Il Cepheids Their periods range from 1d for stars with
luminosities similar to those of the RR Lyrae stars to abag month at higher luminosities. An example
of a light curve is shown in Fig. 2.33.

The oscillations are caused by the heat mechanism activetintbe partial ionization zone of He
— Helnn and of HI — Hil. Theory predicts the excitation of either the radial fundaial mode or the
first overtone (seeg.g, Bonoet al. 1995, 1997). Despite numerous efforts, the derivation efttecise
location of the instability strip of Population 1l Cepheidsmains uncertain. As for all monoperiodic radial
oscillators, the stars are not well suited for seismic gsidi

The longer-period Population Il Cepheids were originaligycdvered by Henrietta Leavitt (Harvard
University) early in the 28 century; they have been called tkéVirginis starsfor a long time. Today,
the Type Il Cepheids are divided in groups by period, suchttie stars with periods between 1 and 5d
(BL Her class), 10 to 20 d (W Virginis class), and longer th@rdZRV Tauri class, see below) have differing
evolutionary histories (Wallerstein 2002). A period gapgioccurs for Population Il Cepheids as there are
no stars with periods between 5 and 10d. It is believed tlaas stith periods shorter than 5d are on their
way to the AGB while stars with periods longer than 10 d mouetards in the HR diagram due to thermal
pulses or because they are on their way to the white-dwadegf\allerstein 2002). For a review on Type Il
Cepheids we refer to Pollard & Evans (1999).
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Figure 2.34: The visual light curve of the RV Tauri star AC Hsrobserved by amateur astronomers of the
American Association of Variable Star Observers (AAVSQOyuFe courtesy of Matthew Templeton.

2.5.3 RV Tauri stars

The longest-period W Virginis seem to merge continuously yret another group of oscillators in that part
of the HR diagram, namely tHeV Tauri starqsee Pollardt al. 2000 for a review). These F to K supergiant
stars could also have been called the longest-period Wiargtars, but are usually considered as a separate
class. For an enlightening discussion on the relation batvirRopulation || Cepheids and RV Tauri stars, and
their evolutionary history, we refer to the review by Wadliin (2002).

The oscillations of the RV Tauri stars are driven by the heattmanism which is active in both the
partial ionization zone of He— Hell and of HI — Hii. A remarkable feature of RV Tauri stars is that their
light curves have alternating deep and less deep minima,venaregular way. In fact, this property is
used to classify an object as an RV Tauri star. An exampleciatl by amateur astronomers is provided in
Fig. 2.34 for the star AC Her. It is evident from this figuretthize light variability follows a double-wave
pattern. The alternations of the minima and maxima do noaydwepeat strictly for all RV Tauri stars as
some of them have cycle-to-cycle changes. RV Tauri starfuatteer divided in RVa and RVb subclasses,
the RVa stars being those without long-term photometricdseand the RVb stars with such trends.

The radial-velocity curves of RV Tauri stars have large amgés, as can be seen from Fig. 2.35. The
shapes of the radial-velocity curves of AC Her and R Sct waterpreted in terms of shock waves in their
atmosphere by Gillet (1990). The spectroscopic study of L Ta&uri stars by Pollaret al. (1997) indeed
confirmed that the data are compatible with two shock wavepawating in the atmosphere per pulsation
period, because the metallic lines show a double-peakéiepvehich is characteristic of an atmospheric
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Figure 2.35: The measured radial-velocity variations fogiecles) and those prewhitened for the dominant
oscillation mode (crosses) of RVb star SX Cen, obtained flamg-term monitoring, folded according to
the orbit. The variability due to the oscillations with a ijperof 16.4 d has an amplitude which is a large
fraction of the orbital amplitude. Figure courtesy of Harm\WVinckel.

shock as already outlined by Schwarzschild (1952).

Infra-red observations of RV Tauri stars clearly reveal éxestence of circumstellar matter (Lloyd
Evans 1985; Oudmaijest al. 1992). This implies that the RV Tauri stars are low-massssiathe early
post-AGB phase (Jura 1986). As this phase has a very shaticlucompared with the lifetime of the star,
it is difficult to catch the objects in this stage.

A definitive interpretation for the alternating minima istn@t available. It may be that a resonant
oscillation pattern is active (Fokin 1994). The oscillatiperiods range from 30 to 150 d which creates
an observational challenge to obtain a good inventory ob#dwllatory behaviour of such stars. A further
complication is that variable circumstellar absorptiosurs, and is, in fact, sometimes sufficient to explain
the photometric variability (Pollarét al. 1996). This led Van Winckeét al. (1999) to propose that the
photometric subclasses RVa and RVb are simply due to a geiorpedjection effect, and not to a physical
difference.

Finally, it is found that a very high fraction of the RV Tautass turn out to be long-period binaries
(Van Winckel 2003, see Fig. 2.35). It may be that the longateariability possessed by the RVb stars is due
to the binarity €.g, Maaset al. 2002).

2.5.4 Cepheids

After the start of central helium burning in their non-degie cores, stars with initial masses above
2.3 Mg decrease in luminosity while they descend the giant brasthrs below 3 M settle on the hori-
zontal branch while their more massive counterparts eixhibps in the HR diagram. For the stars with
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Figure 2.36: Hipparcos light curve of the classical Ceph#iizi112044 folded according to the oscillation
period. Data taken from ESA (1997).

masses below 5 M these loops are too limited to bring them into the instab#itrip. For more massive
stars, however, the loops do extend far enough so that tr@ynmepulsationally unstable and are observed
as Cepheids.

Theclassical Cepheidshamed after the prototypeCephei, are probably the best-known and most ho-
mogeneous group of pulsating stars. The variability 6ephei was discovered in 1784 by John Goodricke,
while Henrietta Leavitt made extensive investigations epfieids early in the 20 century. A Hipparcos
light curve of a classical Cepheid is shown in Fig. 2.36. Inggal, the periods of the Cepheids range from
1 to 50d and their spectral types are between F5 and G5. Theallagiants or supergiants. In our Galaxy,
the Cepheids are situated in the Galactic plane and theyptakén the rotation of the Galaxy. Thus they are
Population | objects and are therefore also called type h€iels. Below, we provide only a brief summary
of the properties of Cepheids, referring to the recent moapyby Szabados (2007) for more details.

The light curves of the Cepheids are skew and extremely gier{see Fig. 2.36). The amplitudes are
on average about one magnitude at visual wavelengths. Sugihtriess variations are accompanied by
changes in the spectral type, colour, temperature and hsityn For the prototypé Cep itself, for example,
the spectral type is F5 at maximum brightness and G2 at mmirnrightness, while the corresponding
change in temperature amounts to some 1500K. In generaldphdids, the luminosity classes change
roughly from IIl at minimal brightness to Ib at maximum brighss for periods below 25d and to la for
longer periods.

Bersieret al. (1991) produced an extensive radial-velocity cataloguwight Cepheids. In Fig. 2.37 we
notice a so-calledtillstandin the radial-velocity curve they obtained for the star X C8gich a phenomenon
occurs whenever a strong shock wave propagates in the dterespf the star in such a way that the downfall
of matter after maximum radius is stopped by rising gas dukdmext shock. This shock is also markedly
present at the same phase in the cycle in the Hipparcos lighecwhich was taken about ten years later
(Fig. 2.37).
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mental mode period of 16.38538 d. The stillstand is inditdte an arrow. Data taken from Bersietr al.
(1991) and from ESA (1997).

In general, maximum brightness occurs near minimal veloditowever, detailed comparison of the
phased light and radial-velocity curves suggests the oecoe of a smalphase lagoetween the photometric
and spectroscopic signatures of the oscillation. Thisyagally amounts to a tenth of the period and can
be spotted for X Cyg in Fig. 2.37. There also occurs a cleaticgl between the colour, @8 — V, of the
Cepheids and their oscillation period. This is called pleeiod-colour relation At a given luminosity, the
stars shift to later spectral types for longer periods.

For several Cepheids a bump occurs in the light curve. Sudteagmenon occurs for Cepheids with
periods between 4 and 20d. It is due to a coincident occueref@ 2:1 ratio between the period of the
fundamental and the second overtone. The bump shifts asadumf oscillation period. This is called the
Hertzsprung progression

As is the case for the RR Lyrae stars, there are Cepheids ichwdoth the fundamental mode and
first overtone, or the first and second overtone, are excitbdse are calledeat Cepheidsr alsodouble-
mode CepheidsPoretti & Pardo (1997) have made a thorough study of galaiuble-mode Cepheids.
The MACHO and OGLE projects revolutionized our knowledgehaf statistical properties of Cepheids in
general. In particular, numerous double-mode Cepheids ¥oemnd in the LMC (Alcocket al. 1998), and
later even more in the SMC (Udalsét al. 1999a). These include both first-overtone/second-overtom
fundamental/first-overtone Cepheids. Only two first-oweefsecond-overtone Cepheids are known in the
Galaxy (Beltrame & Poretti 2002).
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Dalsgaard 1993).
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The double-mode Cepheids may be said to constitute the fiptication of asteroseismology to de-
termine stellar properties. Petersen (1973) showed tkatih periods could be used to infer the mass and
radius of the star. The results were in striking disagreeémath the masses obtained from the position of
the stars in the HR diagram, on the basis of evolutionaryutaiions (for reviews of this and other ‘Cepheid
mass problems’, see for example Cox 1980; Simon 1987), stiggepotential problems with the under-
standing of stellar evolution and pulsations and leadingxtensive efforts to remove the discrepancy. Itis
common to illustrate the problem inReterserdiagram, where the ratid, /11, between the periodd; and
1T, of the first radial overtone and the fundamental is plottegiresilog I1,. The observed location of a star
in such a diagram is given with great precision. An exampikuistrated in Fig. 2.38; the solid curve shows
theoretical results for models along the instability stipsed on the theoretical relation between mass and
luminosity and using pre-1980 opacities, compared witleolzions of double mode HADS and Cepheids.
The discrepancy is obvious. It was suggested by Simon (1982) demonstrated in greater detail by An-
dreasen & Petersen (1988), that the discrepancy could iménalied through a substantial increase of the
opacity in the rangé.2 < log T' < 5.9. Remarkably, such an increase was found in the OPAL calonkt
(e.g, Rogers & Iglesias 1992) through increased contributioasfoound-bound transitions in iron-group
elements; it was the same effect that led to excitation ofesad,e.g, SPB ands Cep starsdf. Sect. 2.3.6).
The effect on the period ratios is shown by the dashed curi#girR.38; obviously, with the revised opaci-
ties there is excellent agreement between the computedtaedved period ratios (see also Moskadilal.
1992; Kanbur & Simon 1994; Christensen-Dalsgaard & Petet995).

Three stars in the galaxy, AC And, V823 Cas and V829 Aq|, ammnknto be triple-mode pulsators,
pulsating in the fundamental, and first and second overtargesi(Jurcsilket al. 2006). The longest-known
of these is AC And which Fitch & Szeidl (1976) and Kovacs & Rilar (1994) thought to be possibly similar
to thed Sct stars. Fernie (1994) argued that this star lies inteilmtetdetween thé Sct stars and Cepheids.
Thanks to the OGLE survey, two more triple-mode Cepheide teen found. Moskalik & Dziembowski
(2005) interpreted their oscillation periods as the firse¢hradial overtones. This interpretation imposed
stringent constraints on their metallicify, which must be in the range 0.004 to 0.007, and on their evolu-
tionary status, indicating that the stars must be crossiagrtstability strip for the first time. The models
also imposed an upper limit of 0.33 times the pressure satfhhto the extent of overshooting from the
convective core during the main-sequence phase. Meantiglgalactic triple-mode Cepheid V823 Cas,
originally discovered by Antipin (1997), was subjected thharough photometric study. The lack of agree-
ment between the observed periods and period ratios and tifavolutionary models led Jurcsét al.
(2006) to propose that this star is in a transient state dusinich its oscillations are probably affected by
resonances.

Finally, we mention the existence of short-period Cepheiitls periods shorter than 7 d and sinusoidal,
low-amplitude light curves. They are calleeCepheid®r overtoneCepheids. They indeed oscillate in the
first overtone, just as the RRc stars do. Their light curvelsradial-velocity curves often show a discontinu-
ity due to a resonance between twice the first overtone anftinth overtone radial mode frequencies. We
refer to Kienzleet al. (1999) for a homogeneous observational study of a samplé o¥@rtone Cepheids.

The importance of Cepheids is not their asteroseismic pateexcept perhaps for the double- and
triple-mode pulsators mentioned above, but their funddatgrower for distance determinations through
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Figure 2.39: The visual light curve of the Mira itseffCeti, as observed by amateur astronomers of the
AAVSO. Figure courtesy of Matthew Templeton.

the well-knownperiod-luminosity relationagain found by Henrietta Leavitt (Leavitt & Pickering 1912
and first calibrated by Ejnar Hertzsprung (1914). By measputine oscillation period of a Cepheid and by
using the period-luminosity relation, one can derive thgoliliie magnitude, hence the distance to the star.
For this reason, Cepheids are also catiestance indicators In principle, the relation could be calibrated
by means of an accurate independent distance determiriatare Cepheid. In practice, however, one tries
to determine accurately the zero-point of the relation lyusion of as many stars as possible for which
accurate distance determinations are available. Givemtpertance of cosmological distance scales, the
derivation of the zero points, including appropriate statal error estimates, remains a matter of intense
debate in the literature (seeg, these conference proceedings: Kurtz & Pollard 2004; K20Q5; Walker

& Bono 2006 for recent compilations). For more informatian@epheids, we refer to Szabados (2007).

2.5.5 Mira stars and semi-regular variables

Population | variable stars with long period8 ¢~ 80 d) which are situated at luminosities between about
10° L, and7x 103 L, and at low effective temperatures between 2500 and 350@kKadied Mira variables
(Miras) when their amplitudes are larger than 2.59/insee Fig. 2.39). Semi-regular (SR) variables with
similar periods but smaller amplitudes are termed SRa (s B0). This term is highly misleading,

18Although the paper is signed by Edward Pickering, its firs¢ lieads, “The following statement regarding the periodhef
25 variable stars in the Small Magellanic Cloud has beengpeepbby Miss Leavitt.” History and Web-site referencingvgesas are
fair and attribute the circular to Leavitt & Pickering (Ral#005).
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Figure 2.40: The visual light curve of the SRa star V Boo aseoled by amateur astronomers of the
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because most of these stars have light curves as regularras ompare Figs 2.39 and 2.40, see also
Lebzelteret al. 2002 for a discussion), but an amplitude below 2.%/inwhich implies a totally arbitrary
division between the Miras and SRa stars. SRb stars, on ke band, have lower amplitudes than the
SRa stars and semi-regularity in their light cunves, their periodicity is poorly defined. They often show
alternating intervals of periodic and slow irregular chegig The SRc stars are periodic supergiants with
an amplitude below 1.0 ifv. A class called the SRd stars has also been introduced. &inisi$ again
misleading, because, unlike the RRd stars which are daublde RR Lyrae stars, the SRd variables are not
double-mode pulsators. Rather, they are weak-lined Vargiants and supergiants of spectral types FGK.
They are considered to be metal-poor shorter-period anafgf the Miras (Lloyd Evans 1975). One of
the best monitored SRd variablesii€as, whose visual light curve is provided in Fig. 2.41. Theddiand
SRa stars are AGB stars with large mass loss and are aboattith&tir way to the planetary nebula phase.
Some of the SRb stars are still on the RGB.

The Miras and SRs are situated to the red of the classicalkitisy strip, at lower temperatures. They
have radial oscillations which, according to modelling bstl@ & Cox (1986), are heat-driven in the partial
ionization zones of H— Hil and Ha — Hell. Although Ostlie & Cox obtained reasonable results for the
location of the instability region, they recognized thatithuse of the ‘frozen-convection’ approximation
for the pulsations was a serious limitation. In fact, cotieectotally dominates the energy transport in the
regions responsible for the driving. Effects of convectivere considered bye.g, Xiong et al. (1998),
Munteanuet al. (2005) and Olivier & Wood (2005) with somewhat conflictingués. It is evident that a
full understanding of the driving of these oscillationslwélquire a more secure treatment of the interaction
between convection and pulsations.

The huge amplitudes seen in visible light in some Mira vaesie.g, Fig. 2.39) do not reflect similar
variations in the total luminosity. As discussed by Reid &ld@ton (2002) the reduction of the visible
magnitude at minimum is dominated by the cooling of the aphese and the conversion of the emitted
radiation to the infrared by the effect of the resulting fatron of metal oxides.

The MACHO and OGLE databases generated a real breakthroulyb study of long period variables.
The MACHO data led to the discovery of five distinct periodainosity (PL) sequences for the low-mass
giant branch, as first suggested by Catlal. (1996) and worked out in detail by Wood (2000). This gave
unambiguous confirmation that the Miras are radial funddatgulsators while SR variables can pulsate
in the 1st, 2nd, 3rd radial overtone, as well as in the funddatenode. Similar results were obtained from
OGLE data in a series of papers (&Bal. 2004; Kiss & Bedding 2004; Soszyhsd al. 2004; Groenewegen
2004). Fraseet al. (2005) made a careful analysis of the full 8-yr MACHO datahasd disentangled six
rather than five PL sequences, which they termed 1, 2, 3, 4dEdree Fig. 2.42). The first four sequences
are interpreted in terms of radial pulsations at risingahdider. Cioniet al. (2001) already showed that
the large-amplitude SRa stars fall on sequence 1 togethbrting Miras, while the low-amplitude SRa
stars fall on sequences 2, 3, 4. The sequences 3 and 4 cor@nstrs as well as oxygen-rich AGB
stars which did not yet undergo the 3rd dredge-up, less evolved stars than those in sequences 1 and
2. The interpretation of the sequences D and E is less clearad suggested by Woaat al. (1999) that
the sequence E is comprised of ellipsoidal or eclipsinggiadt binaries with an invisible companion and
sequence D of stars with a short primary period and a longwkeey period. Later on, however, Woetal.
(2004) considered different physical causes for the logrsg@ary periods of stars in sequence D and came
to the conclusion that a low-degree g-mode oscillation doetbwith large-scale spots of a single red star
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Figure 2.42: Period-Luminosity diagram for MACHO data ofdpperiod variables (grey dots). The ob-
served LMC Mira relation for the fundamental mode by Feastl. (1989) is indicated as dashed line. The
3rd, 2nd and 1st overtone models of Wood & Sebo (1996) arearteli as solid lines (from left to right).
Note that stars with periods near 1yr were removed from ttadyais, due to aliasing problems. (From
Fraseret al. 2005.)

offers the most likely interpretation. Soszyhsltial. (2004), on the other hand, concluded that sequence
D contains a mixture of AGB, RGB, Mira, SRa, SRb and small-éombe pulsators. In a follow-up study,
Soszyhski (2007) noted that sequence D forms a contimuafithe ellipsoidal and eclipsing red giants of
sequence E and therefore argued in favour of the binary hgpis for both sequences D and E.

Given these disagreements, we must conclude that it isiatliear which physical mechanism causes
red pulsators to become a Mira or an SRa/b/c/d. The latteomserather arbitrarily defined categories
introduced by observers to differentiate among the redalsbes from the morphology of their light curves.
One suggestion for the discrimination in the physics of¢hdifferent types of star is a small difference in
chemical compaosition, and hence in molecular grain typesylting in a different mass loss. Another idea
is that the very tenuous envelopes of these stars imply slhacks of different strength in their outer atmo-
spheres and that these cause quasi-periodic cycles. Re€mistensen-Dalsgaaet al. (2001) suggested
stochastically-excited modes as an explanation for the-smgmlarity. Indeed, all these stars have huge
outer convection zones, so one would expect them to undeilgolke oscillations. These of course have
much longer periods in supergiant stars than in main-sexgustars. It may therefore very well be that the
differences between Miras and SRa or SRb stars simply réfle¢act that radial modes are active in the for-
mer, while there is beating with solar-like oscillationgtlire latter. This idea, tested on amateur-astronomer
data from the American Association of Variable Star Obsar(&AVSO), seems to be confirmed by OGLE
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data (Kiss & Bedding 2003). If accurate frequencies of stikaroscillations in AGB stars can be measured,
then these objects will suddenly become very interestiag $tom a seismic point of view. This will indeed
allow us to probe in detail the very complex stellar struetaf stars that are about to end all the phases of
nuclear burning they went through during their completdwdian. It is a major observational challenge to
measure these frequencies for future seismic studies ¢gieelong periods of these stars, hence the long-
term observational commitment needed. However, the stars such large amplitudes that this is an area
of asteroseismology where amateur astronomers can plgyificint role.

2.5.6 Solar-like oscillations in red giants

As already mentioned in Sect. 2.3.1, one expects solapkk#lations to be excited in all stars with an outer
convection zone. Such oscillations are very hard to estalhi red supergiants with large-amplitude heat-
driven modes, such as the Miras or large-amplitude semilaegy However, they have become obvious in
red-giant stars.

The first announcements of short-period variability witmigpgs of the order of hours in a giant star
were made by Smitht al. (1987) and Inni®t al. (1988) for the starv Boo (Arcturus, K1111), on the basis of
radial-velocity observations. Hatzes & Cochran (1994 nfbuadial-velocity variations, with an amplitude
near 50 ms!, for the K2l star3 Oph; no firm periodicity could be derived, although the cdati periods
ranged from 0.25 up to 0.8 d. Also, using the Hubble Spaces@efee Edmonds & Gilliland (1996) found
photometric variations in K giants in the globular clust@riic which appeared to be consistent with solar-
like oscillations. Merline (1999) subsequently reportetaslike oscillations from further long-term radial
velocity monitoring of Arcturus, with periods ranging froin7 to 8.3d. This result was later confirmed
by space photometry taken with the WIRE satellite, from WHRetteret al. (2003) deduced an oscillation
period of 2.3d. The WIRE mission had been used before to dailar-like oscillations in the KOIlll giant
«aUMa (Buzasiket al.2000). The longest among the ten detected periods was 6diti@amplitudes ranged
from 100 to 40Qumag. Although Guenthest al. (2000) interpreted these frequencies as due to low-order
p modes of a 4 M giant, Dziembowsket al. (2001) pointed out that the model predictions for apprderia
stellar masses af UMa and with appropriate input physics disagree with thenedal modes, as far as the
predicted amplitudes, frequencies and excitation areeroed.

The first firm establishment of solar-like oscillations iniarg was made for the G711l stgrHydrae
(Frandseret al. 2002). Nine frequencies were found in the radial-velocitéyadof the star, spanning one
full month. The strongest mode has an amplitude of about 2'mAn average large spacing of 681z
was found, in agreement with radial mode frequencies ofcadjaradial order. Modelling of the pulsations
by Houdek & Gough (2002), using Gough’s (1977) treatmenthef interaction between convection and
pulsations, yielded amplitudes in good agreement with theerved values. Stellet al. (2006) used the
data to estimate the mode lifetimefflydrae and found it to be of the order of 2d. Such a short fefiif
confirmed for other giants, would limit the power of asteisg®logy in this part of the HR diagram. Also,
interestingly, the lifetimes were far shorter than indéchby the calculations by Houdek & Gough.

A subsequent clear detection of solar-like oscillationsrigiant from space-based photometry was
achieved for the Hubble Space Telescope guide star GSC @BE5. Kallingeret al. (2005) found three
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Figure 2.43: Top: radial-velocity data eDph from a two-site campaign (dots: CORALIE data taken with
the 1.2-m Swiss Euler telescope at La Silla, crosses: ELQIatk taken with the 1.9-m telescope at Haute
Provence observatory). Bottom left: two enlarged partbefiataset. Bottom right: power spectrum. (From
De Ridderet al. 2006.)

frequencies ranging from 21 to 7ZHz in the 19 million data points spanning 8 d.

The most recent detections of solar-like oscillations inemgwere achieved from a two-site radial-
velocity campaign spanning 2 full months. De Riddeal. (2006) discovered an excess power neaxid@
for the G9.5lll stare Oph (see Fig.2.43). They derived two possible values fordlge spacing (4.8 or
6.7uHz). The star was subsequently monitored from space by th& Mission during 37 d. The MOST
light curve is in full agreement with the velocity data andyimg no aliasing problems, pointed out that
4.81Hz is the correct value for the spacing (Barbatnal. 2007). Finally, oscillations were also firmly
established for the KOIII staj Ser from the same two-site campaign (Caraeal. 2007, see also Fig. 2.4).

Red giants could potentially show a complicated mixed moedguency structure containing a lot of
information on the interior physics of evolved stars, alitjo the short mode lifetimes obtained by Stello
et al. (2006) may render the predictive power of their observeduescy spectra. Moreover, theoretical
computations by Dziembowski (1977), Dziembowskial. (2001), and Gough & Houdek (2002) predict
the nonradial modes to be damped far more strongly than tli@l raodes, due to the high density contrast
between the core and the extended envelope. This may imatyottily radial modes reach observable
amplitudes. This is consistent with the observed frequepegings detected so far in ground-based radial-
velocity data. On the other hand, Hekledral. (2006) investigated the variability in the cross-corrielat
profiles of four pulsating red giants and came to the conafutiat this variability can only be understood

80



in terms of the presence of nonradial modes. Clearly, moservational and theoretical work is needed to
obtain a better understanding of the oscillations in redtgiaUndoubtedly, observations with CoRoT will
be of much value in this respect.

2.6 Pulsations in evolved stars with\/ > 9M

In the current section we describe the variable nature of stéh initial masses above 9Mwhich are
evolved off the main sequence. These stars never encowgendracy in their core and experience different
burning cycles until they have an iron core, after which theglode as supernova.

Their luminosity-to-mass ratios increase significanthytlasy evolve off the main sequence. Indeed,
during their evolution past the TAMS towards the red sugargphase, and then back in the direction of the
ZAMS, they lose a lot of mass while keeping almost the sameriasity. Because of thid, /M increases
and the stars come close to thEiddington limit the upper value of. /M determined by the requirement
that the inward gravitational acceleration is larger tHandutward acceleration due to the strong radiation
pressure. Any star close to its Eddington limit cannot b wtable. This is particularly relevant for the
lifetimes of stars born witll/ > 40 M. For recent compilations of studies of the most massive star
refer to,e.g, Massey (2003), Heydari-Malayeet al. (2004), Humphreys & Stanek (2005), Ignace & Gayley
(2005). Here, we concentrate on those variability aspddaah stars which may be related to oscillations.

The overall variability of this group of stars in the upper ldRgram occurs at different timescales
and may have very different physical causes. Sometimedowest-amplitude variability is periodic. We
term such starBeriodically Variable Supergiantsrrespective of the cause of the periodic variability. $&e
stars are indicated as such in the grey upper zone in Fig.IRi&.unfortunate that seismic modelling is
not yet reached at these high masses, because stellaustraod evolution models are most uncertain for
such stars, due to badly understood phenomena such asmatatiixing and meridional circulation, semi-
convection, strong core convective overshooting and nasss |We provide an overview of the variable
nature of such massive objects in this chapter but we wilkettrn to them further on in the book.

2.6.1 Periodically variable B and A supergiants
The A-type supergiants

Supergiant stars of spectral type A showing variations ot@metry with amplitudes of tenths to hundredths
of a magnitude were termed Cyg variables, after the All prototypical starCygni. They have been
monitored for decades by different teanesy, Sterken (1977, 1983), Burldt al. (1978), van Genderen
et al. (1989), Lamer=t al. (1998), van Genderen (2001), and references therein. BL8KI8) and van
Leeuwen (1998) focused on a sample of 32 and 24 late-B to Grgiapes, describing the variability of
thesex Cyg variables from ground-based Geneva and Hipparcos mgectively. The periodicities found
by these authors range from 10 to 100 d and are too long to beodbe radial fundamental mode of such
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objects (Loviet al. 1984). It should be pointed out, however, that significartteutainties in the theoretical
oscillation calculations occur for stars of such high luasity, as they undergo all sorts of mixing processes
in their interior as well as instabilities in their atmosphielue to the large radiation pressure. These effects
are usually ignored when predicting p- and g-mode freq@snci

Line-profile variations in supergiant stars were discostdrg Baadeet al. (1990), who studied the O9I
companion of the WR binary? Velorum. An extensive line-profile study based on years ohitaoing
of 6 BA-type supergiants was made by Kauétral. (1997). These authors concluded that the variability
patterns in the line profiles are extremely complicated ag®hsto point towards cyclic variations in the
deduced radial velocities. Besides these cyclic chanbeg,doncluded nonradial oscillations to be present
from travelling sub-features across the line profiles whmesgodicities are not compatible with the rotation
of the stars.

No detailed modelling of the observed periodic variabilitgs achieved so far. Non-linear radial in-
stabilities in so-callegtrange modeswith periods between 10 and 100 d roughly, have been putaiaiw
as an explanation for the variations in stars with massegead M, (Kiriakidis et al. 1993; Glatzekt al.
1999; Dziembowski & Slawinska 2005 and references ther&ogh strange modes are caused by a strong
enhancement in the opacity in the second partial ionizdéiger of helium and of the heavy elements. They
are excited due to strong non-adiabatic conditions in stéhsa high /M ratio, i.e., stars not too far from
their Eddington limit. These strange modes are predictédte amplitudes that are much larger than those
found for the classical radial oscillators. From this, opeaulates that they could perhaps be responsible
for triggering the outbursts accompanying the moderatewwedmplitude periodic variability of the A-type
supergiants and tHauminous Blue Variablesee below). The occurrence of strange modes has not yet been
firmly established observationally in the most massivesstar

The B-type supergiants

Oscillations as in3 Cep stars have not yet been firmly established in luminous stéh log L /Lo > 5
andM > 20 Mg, although they are predicted in that part of the HR diagramveds(Pamyatnykh 1999 and
Fig. 2.20). The reason is probably that the instabilitypstid longer coincides with the entire main sequence,
but is shifted towards more evolved stars. Pamyatnykh (1p8Sicted SPB-type g modes to be unstable
at such high luminosities in pre-TAMS stais(, stars near the end of their central hydrogen-burning stage
see Fig. 2.45). The post-TAMS evolution during the hydregkell burning phase of such objects is so fast
that it is hard to find stars in that evolutionary state in thst fplace. On the other hand, the stars do not
spend long in the red part of the HR diagram, and return guittklthe position of their pre-TAMS stage
(e.g, Maeder & Chiosi 2000 for a thorough review). It is very difficto unravel the evolutionary state of
stars in that part of the HR diagram from classical obsewaati Seismic information could help a great deal
here. However, at that stage in their evolution, significaats loss in the form of a line-driven stellar wind
(e.g, Kudritzki & Puls 2000 for a review) complicates the unamlumgs detection of possible oscillatory
motion at the stellar surface.

Waelkenset al. (1998) discovered a sample of B supergiants to be peridgicatiable with SPB-type
periods from the Hipparcos mission. These stars, and addlitisimilar ones, were subjected to detailed
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Figure 2.44: Hipparcos light curve of the B2/B3Ib/Il HD 984blded according to the dominant period.
Data taken from ESA (1997).

Figure 2.45: The position of the sample of B supergiantsadisied to be periodically variable from the
Hipparcos mission is compared with Pamyatnykh’s (1999T#MBIS instability computations for p modes
(full lines) and g modes (dashed lines). The instabilitypstof post-TAMS g modes computed by Saio
al. (2006) are indicated as dotted lines (gréy: 1 modes, blacki = 2 modes). (From Lefevest al.2007.)
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spectroscopic and frequency analyses by Lefevat. (2007), who found their masses to be below 49 M
and photometric periods between 1 and 2bal, shorter than the periods of the periodic variations found i
the more massive A-type supergiant variables. An examgihé diurve is shown in Fig. 2.44. The stars in the
sample perfectly fulfil the wind-momentum-luminosity e derived for galactic A- and B-supergiants
by Kudritzki et al. (1990). Their line-driven wind thus behaves normally. lefeet al. (2007) found the
sample periodic supergiants to be placed near the hightgtawit of Pamyatnykh’s (1999) heat-driven g-
mode instability strip for evolved stars (see Fig. 2.45)isTimplies that the interpretation of their variability
in terms of nonradial oscillations excited by the heat ma®m, as first suggested by Waelkesisal.
(1998), is plausible. The authors found marginal evidewcefconnection between the wind density and
the photometric amplitude.

A new step ahead in the understanding of such stars was adhigvSaicet al. (2006), who detected
both p and g modes in the B2Ib/ll star HD 163899 from MOST sgased photometry. The authors
deduced 48 frequencies below 2:8'dvith amplitudes below 4 mmag and constructed post-TAMSastel
models that led to g-mode frequencies which are compatilitetive observed frequency spectrum.

Further research is needed to evaluate if seismic modeitirtgrms of internal physics parameter
evaluation of individual periodically variable B-type srgiants is feasible. In order to achieve this, the
current mode identification methods (see Chapter 5) mustii@eted to the case of a dynamical atmosphere
dominated by radiative forces.

Luminous Blue Variables

Some of the most luminous stars undergo sporadic violerduostis, the cause of which is not yet well
understood, but may be due to strange-mode instabilitiees& objects are called Luminous Blue Variables
or LBVs. Their irregular behaviour is comparable to that giestser on earth:

quiet period— moderate activity— heavy dredge-up- violent eruption— quiet period— ...

Half a century ago the existence of some very peculiar, glyorariable massive stars in our Galaxy, such as
P Cygni andy Carinae, was already known. Moreover, a few such stars wsesekaown in the Magellanic
Clouds,e.g, S Doradus. However, it was not clear yet at that time thaifahese very massive objects were
undergoing the same type of instabilities. The newly discest members were called P Cygni or S Doradus
star, depending on their presence in our Galaxy or in the Nage Clouds. Moreover, similar objects
began to be found in nearby galaxies, such as the so-callbtlek$andage variables in M 31 and M 33.

It took until the 1970s before a lot of progress was made iriritexpretation of these objects. Space
observations in the ultraviolet (UV) made it clear that dltlmem are losing significant amounts of mass.
Moreover, they all showed excess fluxes at infrared wavéhand his class of stars was termed “Luminous
Blue Variables” (Conti 1984).

The outbursts of LBVs can take several decades and are gfilarenature, with long periods of qui-
escence in between. The stars are optically faint when treegjuaet as their outer layers have temperatures
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Figure 2.46: Top: Light curve of the LBV AG Car obtained in fr@mework of the Long-Term Photometric
Variables programme of ESO. The bottom panels show two gadlasections. Data taken from Sterlatn
al. (1995).

of typically 12 000 K — 30 000 K and so they mainly emit energyhia UV. During the outbursts, however,
the LBVs can increase their brightness by two or three ordemagnitude because the outer layers cool
significantly, typically to some 8 000K, so they emit much mof their energy in the visual. The stars
eject about a whole solar mass of their material during suwkeary eruption. More regular and less violent
eruptions also occur. In that case they only take about caeared they occur almost periodically.

At present there are several tens of confirmed LBVs and sonsedfecandidates known in our galaxy
and in nearby galaxies. Their luminosities are all more ti&rorders of magnitude above the solar value
and remain almost constant, even during the violent emgtio

Very different timescales and amplitudes are present ifigie curves of LBVs. As an example we
show in Fig. 2.46 the light curve of AG Carinae observed olmioat a decade. These variations are mainly
caused by a change in the temperature of the visible surdgeed of the star, not in its luminosity. We can
subdivide the variations of LBVs in four different kinds:

1. Giant outbursts with brightness changes larger than 2 mhigh are the consequence of eruptions
of large amounts of stellar matter. Examples are the emnptid P Cygni in 1600 and of Carinae in
1841 g.g, de Groot & Sterken 2001 for a compilation). During its giantiption,n Carinae clearly
went past its Eddington limit. The time scale of these gianptons is not well known for the simple
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reason that we have witnessed very few of them so far. For¢ason one assumes that a reasonable
estimate is one eruption every few hundred to thousand years

2. Eruptions accompanied with brightness differences eftoitwo magnitudes. These smaller eruptions
occur on time scales of 10 to 40yr. The visual magnitude bsiradreases by some 2 mag during
a few months and then a very slow brightness decrease oedi) takes several years. The stars
S Doradus and R 127 in the Magellanic Clouds, and AG CarinaeriiGzalaxy experience these types
of eruptions.

3. Smaller variations of about half a magnitude in brigh$nescur on a time scale of several months to
a few years. These variations are superposed on the modenations described in 2.

4. Low-amplitude (below 0.1 mag) variations occur on a tiroale of several days to weeks. These
variations are probably the same as those observed in thedBA-dype supergiants discussed above
and may thus be due to stellar oscillations.

Since the heat mechanism is so successful in explaining ahiability of many types of stars, par-
ticularly B stars on the main sequence, g modes have beeong@dfo be the cause of the low-amplitude
variations of LBVs from observations (Lamestal. 1998). However, any theoretical computations needed
to check the excitation of modes are very dependent on theigdlyparameters, which are very badly con-
strained for LBVs and supergiants in general. Also, one sigedombine the effect of being very close to
the Eddington limit with instability calculations, whiclvidently leads to quite uncertain predictions.

As already mentioned above, it may very well be that strangde instabilities with periods near
100 d are responsible for the observed variations, and pgegen the outbursts, in stars with masses above
40 M. The periodic variations of supergiants with masses beldM4 having stable periods less than
20d are due to the classical heat mechanism, as suggestaahtyathykh (1999), Saiet al. (2006) and
Lefeveret al. (2007).

2.6.2 Wolf-Rayet stars

A star is called aMolf-Rayet (WR) stawhen a hot helium core is left after the evolution of a masstee
that has lost its entire hydrogen envelope due to a radighimen wind. The spectra of WR stars show
strong emission lines caused by the rapidly expanding thinlosphere. WR stars are situated in the HR
diagram at luminosities of.5 < log /Ly < 6 and temperaturéeg T.g¢ > 4.6. They are the remnants of
stars with initial masses above 4QMvhich have lost so much mass that only a helium core of somg 4 M
is left.

The WR stars are subdivided into two groups: the carboni€hstars and the nitrogen-rich WN stars.
These classes are subsequently subdivided into WC5 — WC@W/&IB- WN8 according to the presence of
particular lines in the spectrum. The WN and WC stars reptediéferent evolutionary phases. The WN
stars evolve towards WC stars as more and more stellar mlagets lost through the stellar wind. For a
catalogue of WR stars, we refer to van der Hucht (2001).
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Figure 2.47: The light variations of WR 123 as observed byMI@ST satellite. Data taken from Lefeved
al. (2005).

The fundamental parameters of WR stars are extremely hatetéosmine, because of their high level
of activity in terms of a strong stellar wind and due to the pter surface phenomena.§, Crowther &
Smith 1997 and references therein). The determinationedf general properties constitutes a very active
area of research which we will not review here. Mainly, we ¥dtus on their variable character and even
more specifically on the periodic variability.

The WR stars have quasi-periodic variability with perioaisging from a few hours to a few days. One
of the earliest systematic studies of their variability Wase by van Genderest al. (1987), who interpreted
the data in terms of temperature-induced changes in théncomh emission. Numerous studies done by
the same team followed this initial investigation. Marckeet al. (1998a) presented an extensive study
of WR stars from the Hipparcos data and found a very largersityein these stars’ variability. The three
case studies of the stars WR 6, WR 134, and WR 123, based orstiongs of homogeneous photometry,
did not allow a conclusion about whether their variabilisydue to a gradual restructuring of the stellar
wind or nonradial oscillations (Marchenko & Moffat 1998).okéover, the result of coordinated multisite
photometric and spectroscopic observations of WN8 stark98D and 1994-1995 by Marchenleb al.
(1998b) still did not allow an unravelling of the cause of ttigh level of variability, although the authors
state that it “may be supported/induced by pulsationalabiity”. A good example of the difficulty in
interpreting the variability is in Veeat al. (2002), who did not even manage to discriminate betweetabrbi
and pulsational variability for WR 46 after years of monitor.

An important achievement was made by Lefestal. (2005), who used MOST photometry to analyse
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the light variability of WR 123 with unprecedented precisifvom a 38 d uninterrupted time series (see
Fig.2.47). They found periodic signals with periods belod, but none of them turned out to be stable
for more than several days, except for a stable 9.8 h pergidital superposed on stochastic variability
throughout the whole run. In an attempt to interpret thiseotetion, Townsend & MacDonald (2006)
investigated the stability of WR stars and suggested ulestamodes of intermediate radial orders excited
by a heat mechanism operating on an opacity bump at an eevédopperature near 1.8 million K. The
periods they find range from 11 to 21 h for a WR model contaisimge surface hydrogeX( f.cc = 0.12),
and from 3 to 12 h in a hydrogen-depleted WR model. This sugdbat self-excited g modes may be the
source of the 9.8 h periodic variation of the star disenioh@h the MOST data. Dor#8t al. (2006), on the
other hand, explained the observed variability in terms sifange mode oscillation due to the iron-opacity
bump in a hydrogen-richX = 0.35) stellar model.

We must conclude that strict periodicity has not yet beemdoso far in WR stars except for the
recent case of WR 123’s 9.8 h period derived from uninteadigpace photometry. The physical origin of
the complete observed variability remains unclear, buaasi$ oscillations are concerned, the promising
computations pointing towards the excitation of heatahiy modes or strange modes will hopefully be
continued in the near future and be confronted with more-bjgdlity data.

Some of the LBVs have exactly the same characteristics as $#N9 during their visual minimum.
For this reason, the LBVs are considered to be the immedraigepitors of WR stars and it makes sense
to try to understand the LBV microvariability in terms of g des similar to those found by Townsend &
MacDonald (2006). This has so far not been done.

Once a star has reached the WR phase there is no way bacK:sibaril explode as a supernova, leaving
a compact remnant (neutron star or black hole).

2.6.3 The role of core g modes in supernova explosions

There are several observational facts that demand asyimmapernova explosions. Many pulsaesg,
have high proper motions and a large fraction of neutrors $tave such high velocities that they must have
experienced a large kick at birth. Neutrino-driven conicivas put forward as a viable non-spherical
supernova mechanism (Burrowsal. 1995), although it cannot explain the highest observedciteds of
neutron stars.

In order to solve this problem, Goldreiat al. (1997) proposed the mechanism to be the cause of
the necessary asymmetry before the onset of core collapsghylet al. (2004) have further explored the
viability of g-mode oscillations excited by nuclear reaos to be at the origin of pre-collapse asymmetries
by performing an eigenmode analysis. They indeed foundabtestouter core g modes in all progenitor
models with initial masses between 11 and 4,Mvith oscillation periods between 1 and 10s. These
modes are trapped by discontinuities between the fossibFeeand either the O shell (lower masses) or the
Si burning shell (higher masses). However promising thislraeism was, the growth time scale of the core
modes ranged between 10 and 10000 s, which is far too londnéar inechanism to become effective in
the supernova progenitors. Indeed, the asymmetries muisatly be achieved within one second after the

88



onset of the collapse.

An entirely new view on core-collapse supernova explosisas proposed by Burrowet al. (2005).
They found the agent of the explosion to be the acoustic pgemerated by the excitation and sonic damping
of core g-mode oscillations. Their 2D hydrodynamical cotagians for a 13 M, star show that a proto-
neutron star is a self-excited oscillator in whichlaa- 1 mode with a period of~ 3 ms (besides lower-
amplitude modes) grows and becomes prominent 500 ms aftieicbo The source of the acoustic power is
the gravitational energy of infall and the core oscillatamts like a transducer to convert this accretion energy
into sound, resulting in an asymmetric ejection of the nentWhile neutrinos do not drive the explosion in
this model, they do contribute to the deposition of energhéshock. This mechanism is currently the most
promising one to explain the observed morphologies andegss properties of supernovae. Obviously, itis
very hard to test this model observationally, except fortbleaviour of the ejecta and the predicted neutrino
fluxes.

2.7 Compact oscillators

Stars at the end of the AGB phase leave the red part of the HiRaslrato become white dwarfs. This
happens whenever their dust-driven and pulsation-indwiad comes to an end. During their post-AGB
phase, which lasts typically only 10 000 years, they trawedugh the HR diagram with constant luminosity
towards higher effective temperature because their ouezlepe expands quickly and the hot CO core
becomes better visible. For some stars, the last thermakmauses a very efficient mixing with large
convective overshooting, implying a drastic change inaegfcomposition and a return towards the AGB.
During this very short born-again phase, the star may cresdrtstability strip while moving red- and
blueward in the HR diagram. Examples of such fast-evolviagssare V605 Agl and Sakurai’s objeetd,
Claytonet al. 2006). On their blueward path back from the AGB, they join\Walf-Rayet central stars of
planetary nebulae in the sense that they end up as hydrajeiedt stars whose surface layers are rich in
helium, carbon and oxygen. We will soon turn to the desaiptf the oscillations in such hot (pre-)white
dwarfs.

Some low-mass stars, however, end up in the extreme haaidoreinch and do not become AGB stars
as their hydrogen envelope contains too little hydrogenetepkthe hydrogen-shell burning going. These
objects are situated to the left of the RR Lyrae stars and tmasses below 0.5 M They turn immediately
towards the white-dwarf phase once their central heliunxlimested. Some of these subdwarf B (hereafter
sdB) stars turn out to have oscillations and so we descréa there as well because they are also compact
stars whose oscillations have many similar charactesisti¢hose of white dwarfs.

Some white dwarfs accrete matter in a binary and explodepsisovae of Type la. This extreme form
of white-dwarf variability plays a crucial role as standéigiht sources in cosmologye(g, Perimutteret al.
1999).

Finally, the core-collapse supernovae, originating frofpleding massive single stars, leave behind
very compact stellar remnants, such as neutron stars ok hlsles. We discuss the current status and
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Figure 2.48: The light variations in the prototype of therstpeeriod sdBV stars. The employed unit is mma,
which stands for milli-modulation amplitude. This diffdrg a factor2.5log e = 1.08574 from mmag. Data
taken from Kilkennyet al. (1997).

prospects of asteroseismology of these most compact slgsatell.

We start off with the least evolved of the compact oscillsttut not before pointing out that pulsating
hydrogen-poor carbon stars and extreme helium stars vditiadally be discussed in the last section of this
chapter, since binarity plays a crucial role in our undewditag of this diverse group of stars.

2.7.1 Variable subdwarf B stars

In 1997, a team of South-African astronomers discoveredvectass of pulsating stars among the sdB stars.
Periodic variations with 144 s were discovered in the sdBEBE@14026 (Kilkennyet al. 1997, see Figs 2.48
and 2.49). The “EC” notation stands for the catalogue of thdiriburgh-Cape Blue Object Survey”, which
was the southern extension of the PG (Palomar-Green) survey

The sdB stars are helium-deficient sub-luminous B stardatively high galactic latitude whose spec-
tra show broad Balmer lines and very weak Hel lines. They ledfeetive temperatures between 23 000
and 32 000 K, values dbg g between 5 and 6, and masses below 05 NMhey have lost almost their entire
hydrogen envelope at the tip of the red-giant branch sudhtligér thin hydrogen layer does not contain
enough mass to burn hydrogen. The sdB stars therefore evotwediately from the giant branch towards
the extreme horizontal branch (EHB) and have only centedilsin burning. They all show a deficiency in
helium and chemical anomalies of carbon and silicon, whigbpsrts the idea that they are low-mass old
Population | stars. They are the immediate progenitorswfrttass white dwarfs.

Currently some 30 short-period sdB pulsators are known grtfzg 300 in which variability has been
sought. These 30 all have multiple periods ranging from 860@s and amplitudes between 0.001 and
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Figure 2.49: The amplitude spectrum of the light curve of BG26 shown in Fig. 2.48. Data taken from
Kilkenny et al. (1997).

0.3mag. They are nowadays also termed V361 Hya stars, whitteiofficial variable star name for the
prototype. We will term these objects sdBV stars for siniplic

The existence of pulsating sdB stars was predicted indepeiydof, and simultaneously with, their
observational discovery by a Canadian team (Charghat. 1996). An opacity bump associated with iron
ionization turns out to be an efficient driving mechanisme Tiffusion processes that are at work in sdB
stars, particularly radiative levitation, imply that irbecomes overabundant in the driving zone. Whenever
this overabundance leads to a lo¢alvalue above 0.04 in the partial ionization zone of iron, Jorer
p-mode oscillations are excited (Charpie¢gl. 1997).

During the course of an ongoing monitoring program to ingase light variations in additional sdB
stars in the northern hemisphere, a group of some 20 sdBtataed out to have multiperiodic light vari-
ations with individual periods around one hour and very lonpitude (Greeret al. 2003). These stars
are termed PG 1716+426 stars after the prototype, but they &fiso been called “Betsy” stars as of the
scientific meeting at which the discoverer announced thestence. We term them g-mode sdBV stars.
Their periods are an order of magnitude longer than thoseermpimode sdBV stars (see Fig. 2.50), while
they are located in a similar position in the HR diagram, igthtélly cooler temperatures. This situation is
very similar to the one of thg Cep stars and the SPB stars near the main sequence. It iotbdogical to
interpret these longer periods in terms of high-order g mode

It was indeed found that the same instability mechanism ath& p-mode oscillators predicts such

modes to be unstable whenever the iron abundance in theginieion is sufficiently high (Fontainet
al. 2003). Nevertheless, only modes with degtee 3 or 4 are found to be excited, in contrast to the
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results found for the p modes. This is rather unsatisfacsinge it does not seem evident from a physical
viewpoint to excite only higher-degree modes. In this respihe work by Jeffery & Saio (2006) is very
promising. These authors studied mode excitation usingefsaodgith envelopes having an artificial but
homogeneous iron enhancement and fauadl, 2 g modes to be excited for appropriate temperature ranges
of the observed g-mode sdBV stars. Both different appraadles using a stratified composition with iron
enhanced in the critical layers for excitation (Fontagel. 2003) versus a global iron enhancement in the
envelope (Jeffery & Saio 2006), are precisely the same agthsed by Pamyatnyldt al. (2004, local iron
enhancement) versus Aussela@isal. (2004, global iron enhancement) to explain all the exciteskeoved
modes for thes Cep staw Eri, discussed earlier in this chapter.

A summary of sdB star research is provided in the volume eédite @stensen (2006). There are at
present insufficient frequencies found in any of the g-matR\sstars to perform in-depth seismic studies,
but the observational efforts to obtain more data are omgoirhe best light curve, as far as the sampling
is concerned, was obtained from space with MOST (Rarstadll. 2005). It revealed three frequencies
corresponding to periods of 5227 s, 2650 s, and 7235 s, witllimes of 0.054%, 0.041%, and 0.038%,
respectively, in fractional brightness.

2.7.2 White dwarfs

White dwarfs are the end-products of stars born with iniialsses below some 94V Observationally, as
with main-sequence, giant and supergiant stars, they assified as DO, DB, DA, DF and DG with further
refinements that were introduced as better data becamalaiea(Sionet al. 1983). As with other stars,
these spectral types characterize the apparent chemigadosition of the atmospheres of the stars and
are connected to the effective temperature. In white dwhdwever, the temperature scale is significantly
different from that of main-sequence stars in the sensehieatvhite dwarfs are generally hotter than their
main-sequence counterparts with the same nominal spggtealand the temperature spread for the DA and
DB stars, in particular, is wide and not continuous.

By far most white dwarfs, some 75%, belong to the DA class. Ditsvdwarfs have pure hydrogen
atmospheres, resulting in very strong and broad Balmes lineheir spectrum. About 25% of the white
dwarfs show only neutral helium lines in their spectrum. Séhare called the DB white dwarfs. Finally, a
tiny fraction (less than 1%) shows only ionized helium lin€kese are called the DO white dwarfs. In order
to keep life simple, white dwarfs with helium-rich atmospd®are often also termed non-DA white dwarfs.
Moreover, there are also a few DAB and DAO white dwarfs, whielre both hydrogen and helium lines
in their spectrum. They seem to originate from a variety ofuwhstances, including convective mixing
in single stars, accretion of hydrogen from the interstati@dium onto a helium atmosphere, as well as
interacting compact binaries with white-dwarf or subdwarmponents (Vennest al. 2004 and references
therein).

The hottest hydrogen-rich DA white dwarfs typically haveface temperatures near 80 000K and
the ratio of DA to non-DA white dwarfs increases with decreggemperature. On the other hand, all DO
white dwarfs have temperatures above 45 000 K while DB whitarts have temperatures between 30 000 K
and 12000 K (and perhaps even lower since helium lines bedovistble below this temperature). The
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occurrence of only one dominant chemical species in the gihere is rather well explained by diffusion
processes, as was shown by Fontaine & Michaud (1979).

A remarkable and intriguing fact is that no DB white dwaiitg,, objects with a helium-rich atmo-
sphere, occur in the effective temperature range betwe®A@R and 45 000 K. This exclusion is known as
the DB gap. Fontaine & Wesemael (1997) explained this gapatuaal consequence of the evolution of all
white dwarfs from planetary nebula nuclei, because theradasef turbulent mixing, due to an insufficient
amount of hydrogen, results in only DA white dwarfs in the pemature range of the DB gap. Shibahashi
(2005), on the other hand, gave a slightly different expianan terms of chemical separation due to gravi-
tational settling in a convectively stable atmosphere cvloiccurs exactly in the temperature range between
the Hell/Hen and He/Hell ionization zones. Either explanation implies that DB whiltearfs become
DA for the temperatures in the DB gap, and then return to becDis.

Among each of the three main types of white dwarfs, periodidables occur. These used to be
termed DAV, DBV and DOV white dwarfs. Their multiperiodicnations are due to low-degree, high-order
g modes, excited by the heat mechanism active in differemtadion layers for the two classes DO and DB
and by convective driving for the DA class (see below). Bseanf the tight mass-radius relation of white
dwarfs, their oscillation periods necessarily are sinalad are typically of order a few minutes. Very specific
to white-dwarf oscillations is the occurrence of strong enddhpping caused by the stratified envelopes,
which affects the eigenfrequencies (Winggttal. 1981; Brassarckt al. 1992). A recent compilation of
studies of (pulsating) white dwarfs is available in Koegtévioehler (2005).

A particularly interesting aspect of the pulsating whiteadfs is the possibility to investigate the cooling
mechanisms of white dwarfs, through observations of pestaahges. For the hotter classes (DO and DB)
neutrino emission through plasmon and other processes playmportant and potentially detectable role
(O'Brien & Kawaler 2000; Kimet al. 2005). For cooler white dwarfs effects of crystallizatievhich play
an important and uncertain role for white-dwarf cooling,ynhe detectableg(g, Montgomery & Winget
1999; Corsiceet al. 2005).

We discuss below the oscillations of the three classes diewdwarfs separately. First, however, we
discuss the variable central stars of planetary nebulaesé lwvere historically treated as a separate class,
termed PNNV, but it has recently become clear that severtiasie actually behave as the DOV pulsators.
This had led to the definition of one global class of GW Vir jaiiiss, which is the terminology we adopt
here.

Variable central stars of Planetary Nebulae: oscillationsor stellar winds?

Central stars of planetary nebulae, often abbreviated &NC8onstitute a group of stars of which some
exhibit photometric and spectroscopic variability withripds from several hours to days.§, Handler
1995). This variability has been ascribed to either a végiatellar wind (Hutton & Méndez 1993; Patriarchi
& Perinotto 1997) or stellar oscillations (Zalewski 1993auischy 1995). The periods of order hours are
much longer than those of the g modes detected in the GW \fg atad cooler pulsating white dwarfs, as
discussed below, and thus require a different interpmiati
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Figure 2.51: Top panelv light curve of CSPN HD 35914 from a multisite campaign. Thesigns denote
photoelectric measurements and the open circles CCD dattorB panel:B —V variations. (From Handler
etal.1997.)
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While Méndezet al. (1983) reported the variability of HD 35914 (the CSPN of jgiamy nebula IC 418,
also known as the “Spirograph Nebula” for which there is autigd Hubble Space Telescope picttife
and interpreted it as modulation in the outflow, Lieketral. (1988) found the star VV 47 (CSPN of NGC
2474-5) to exhibit variability similar to the pulsating vthidwarfs. The optical spectrum of VV 47 is also
similar to those of the pulsating GW Vir stars, although seimat broader absorption lines occurred for
VV 47. The similarity to the behaviour of GW Vir made Liebeital. (1988) suggest that some CSPN have
oscillations similar to the white dwarfs. Hence he termegbéhobject®lanetary Nebulae Nuclei Variables
or PNNV in analogy to the naming for the variable white dwaat¢hat time.

Extensive multisite observations of the best studied bériamong the CSPN, HD 35914, led Handler
et al. (1997) to detect irregular light modulation with a time scaf days, as well as cyclic semi-regular
variations with a time scale of 6.5h (see Fig.2.51). Thequkcity of hours was found to be stable over
more than a decade. Unfortunately, it was impossible, esan such an extensive data set, to discriminate
between oscillations and wind variability for the interjatéon of the data, but rotational modulation and
binarity could be excluded as the dominant cause of thehiitja A similar conclusion was reached for
the central star of M 2-54 (Handler 1999).

Besides “normal” CSPNs, which show absorption lines inrtepectra, also Wolf-Rayet stars occur
among the central stars of planetary nebulae. Their spactr&haracterized by emission lines, pointing
towards a strong stellar wind. They are usually denoted a&SHY\tars. Their characteristics were summa-
rized by Gérnyet al. (1995) and Tylenda (1996), and further refined by Gaehwl. (2004). These works
point towards the presence of helium, carbon and oxygen defil@ency of hydrogen at their surface. Their
masses and luminosities are somewhat higher than thosem&hGSPNSs, explaining the stronger wind and
the disappearance of hydrogen. Their evolutionary statssli unclear, but may involve binary evolution
for some stars (De Marcet al. 2003). On the other hand, their characteristics are gdnerat different
from those of normal CSPN stars (Giragtlal. 2007). Their infrared properties even point to the presence
of dust produced during a carbon-rich AGB phase before tmesppheres of these stars became hydrogen
poor (Honyet al. 2001). Werner & Herwig (2006) found a strong evolutionannmection between the
[WCE] and DO white dwarfs. The variability of the [WCE] stargs interpreted in terms of oscillations by
Gautschy (1995).

To make the picture even more complicated, we point out tlzeidter (2003) performed a systematic
study of what he termed variable Central Stars of young Pdapd&lebulae, and baptized thed@ Leporis
starsafter the prototype in his sample. This consisted of 14 mesaerd he found these stars to exhibit
roughly sinusoidal (semi-)regular photometric and/orniabdelocity variations with time scales of several
hours. The sample stars’ temperatures are below 50 000 Kherydall show hydrogen-rich spectra. Al-
though Handler (2003) concluded that stellar pulsatiomésmost likely cause of the variability, he could
not exclude variable mass loss. This group of stars has ot ftedied further, as far as we are aware.
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Figure 2.52: Part of the light curve of the DOV white dwarf PIBI+427 obtained during a WET campaign.
Data taken from Kawalegt al. (2004).
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Figure 2.53: The amplitude spectrum of the light curve of FG7%+427 shown in Fig. 2.52.
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GW Vir stars

Among the DO white dwarfs, theG 1159 star®r, more recently termed tH@W Vir stars constitute a well
established class. The DO white dwarfs are situated at thiigoin the HR diagram where the post-AGB
track stops and turns down towards the white-dwarf coolemusnce. They have extremely high effective
temperatures in the range 70000K to 170000 K. Their spebtrav @ large deficiency in hydrogen and
high helium, carbon and oxygen abundances due to theiasteithd and helium burning, respectively. The
determination of the hydrogen abundance is rather diffatugt to the high temperature. As outlined above,
some GW Vir stars are termed PNNVs because a planetary nstililaccurs around them. DO white
dwarfs are indeed the direct descendents of planetary aeibuiclei.

The DOV pulsators are often named after their prototype, P894035 or GW Vir. This star, GW Vir
itself, was discovered to be an extremely hot pulsating egee star by McGrawt al. (1979). GW Vir's
light variations observed by the Whole Earth Telesé®®VET, Natheret al. 1990) and their interpre-
tation implied a very important step for asteroseismoloBwrt of the WET light curve of the DOV star
PG 1707+427, and its resulting frequency spectrum, aresiowigs 2.52 and 2.53 (Kawalet al. 2004).
These two plots are prototypical for most of the GW Vir pubsat

Kawaleret al. (1985) presented linear, nonradial adiabatic oscillaiomputations for evolutionary
pre-white-dwarf models, leading to predictions for the D&dr frequencies and eigenfunctions. The os-
cillation periods range from about 7 to 30 min. The modes ke by the heat mechanism active in the
partial ionization zones of carbon and/or oxygen, as afreagjgested earlier by Starrfietd al. (1984).
The exact shape of the instability domain near the kink ottlmutionary track was found to depend on the
distribution of helium in the CO-rich envelope.

It is clear that the oscillation periods of several PNNVsaréeast a factor of three longer than those
of the DOV stars. The latter are white dwarfs that are abowtdaot cooling, while the PNNVs are still
increasing their effective temperature while keepingrtheninosity essentially unchangeice., their radius
is still decreasing quite drastically. This different evddnary status is thus reflected in the oscillation
period difference between the DOV stars and the PNNVs andaglieement with the scenario of Werner
& Herwig (2006).

The theoretical instability strip of both the PNNV and DO¥rstwas revisited by Quirioet al. (2004),
Gautschyet al. (2005), Corsiceet al. (2006) and Quirioret al. (2007). From these studies which include
mass loss and diffusion, it became clear that one and the isetadility mechanismi.e., the heat mecha-
nism associated with the opacity bump due to partial ioiimatf the K-shell electrons of partial ionization
zones of carbon and oxygen, leads to an instability domamtaauing both the observed GW Vir stars and
the [WCE] stars (see Fig.6 of Corsiet al. 2006). The instability requires the presence of carbon and
oxygen in the atmosphere. This can only be achieved whentding @wndergo a strong radiation pressure,
causing the carbon and oxygen to remain in the envelope shantadiative levitation while the hydrogen
is blown away in a stellar wind. As the luminosity of the stacdkases, the wind becomes less strong
and gravitational settling causes carbon and oxygen tq sihite helium will start floating to the surface.

Yhtt p:// heritage. stsci.edu/ 2000/ 28/ bi g. ht
Bhtt p: // wwv. i ast at e. edu/ wet
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Figure 2.54: Part of the light curve of the DBV white dwarf P&®+103 obtained with the Nordic Optical
Telescope by Jan-Erik Solheim during a WET campaign (ungioddl); from data provided by the WET
consortium.

This diminishes the excitation of the GW Vir oscillationshig is in complete agreement with the strong
evolutionary connection between the [WCE] and GW Vir staswed by Werner & Herwig (2006). This
scenario also leads to a natural explanation of the DBV paisavhose oscillations are excited by the same
heat mechanism, but this time acting on helium once it is@afitly dominant and in the appropriate partial
ionization stage in the envelope.

The seismic analysis of GW Vir presented in the seminal wgrk\bnget et al. (1991) implied not
only a first test case for the technique of asteroseismolmglyat the same time a real breakthrough in the
derivation of white-dwarf structure models. This study g@the road for many more seismic studies of
compact stars since 1990. White dwarfs thus became the engjets of the WET consortium, although
numerous other types of pulsators have been added since.

Variable DB white dwalrfs

Excitation of g-mode oscillations in DB white dwarfs due he heat mechanism acting in the second partial
ionization zone of helium was predicted by Winget (1982 (akso Wingetet al. 1983). This led to the
discovery of the first suckariable DB white dwarfalso termed DBV star, namely GD 358 (Winggtal.
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Figure 2.55: The amplitude spectrum of the light curve of B&6+103 shown in Fig. 2.54.

1982). Only 13 DBVs are known to date (Kepler 2007 and refezsttherein), probably due to their faintness
(V near 16, except for the prototype GD 358 witlva= 13.6). Their oscillation periods range from 4 to
12 min and their amplitudes are relatively large, from a femang to 0.2 mag. Bradley (1995) reviewed
the properties of these stars. They are situated in a broayge raf effective temperature, from 11000 to
30000 K and the mass of their helium-rich envelope is estithét be betweeh0~% and10~2 times their
total mass. As already mentioned above, this is in full agesg with the excitation computations for hot
compact stars by Quirioat al. (2007). It should be noted that convective driving, introelh by Brickhill
(1991) for variable DA white dwarfs, may also play an impotteole for the DB variables.

The light variations measured by the WET consortium of thmepést among the DBV pulsators,
PG 1351+489, showed the star to have only two modes, witbgenf 489 s and 333 s (Winget al. 1987).
The prototypical DBV star GD 358, on the other hand, has a eemgplex frequency spectrum (Nathetr
al. 1990) with several tens of peaks. These two stars can bedavedito capture the range of complexity
across the DBV class. An intermediate case and its frequepegtrum are shown in Figs 2.54 and 2.55.
This is for the star PG 1456+103 with data obtained during\MHET run XCOV22 (extended coverage
campaign 22, unpublished; see the WET website for morermdtion).

Although the beating effect in GD 358 is prominent, the posibf the frequency peaks in the spectrum
turn out to be quite stable over long timescales while thelidujes clearly vary (Kepleet al. 2003). Since
GD 358 is by far the best studied DBV star, it was thought ustiently that the frequency spectra of all the
class members were stable. Handderl. (2003), however, performed extensive monitoring of two DBV
stars with the WET and found evidence for amplitude and feaqu variability. They suggested non-linear
resonant mode coupling to be the cause of the complex viiyahithese two stars (see,g, Buchleret al.
1997).
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Figure 2.56: Part of the light curve of the DAV white dwarf G29 obtained with the 0.75-m at SAAO by
Retha Pretorius in the framework of a WET campaign (unphbt}; data courtesy of the WET consortium.

The potential of asteroseismology of DBV stars was highéighby Bradleyet al. (1993). Moreover,
extensive seismic models and their oscillation propeffiiesDBV and DAV stars had already been pre-
sented by Tassouwt al. (1990) and Bradley & Winget (1991), pointing out the matunf this branch of
asteroseismology more than a decade ahead of any otherftgfae,@xcept the Sun.

Variable DA white dwarfs

Further along the white-dwarf cooling track one finds therbgen-richvariable DA white dwarfsalso
called DAV or ZZ Ceti stars. The DAV mode excitation resultsnfi convective driving, a mechanism first
proposed by Brickhill (1991) and further developed by Geichn & Wu (1999) and Wu & Goldreich (1999).
The shape of the strip was found to be mainly determined byffleetive temperature and the mass of the
white dwarf, the most uncertain factor in theoretical modedction being the poorly known efficiency of
convection. This is in very good agreement with empiricabdrinations of the instability strip leading to
a very narrow range of less than 1 000 K in effective tempegativtom 10 850 to 11 800 K (Bergerazt al.
2004, Mukadanet al. 2004b).

The DAV stars vary multiperiodically with low amplitudesdfulfil a period-amplitude relation (Clemens
1994). The periods range from less than 100 s to more than 4. 00tkeir frequency spectra also show mul-
tiplets and are, in general, simpler than those of the DBV @WdVir stars. This may be an observational
bias because the DAV pulsators have been less intensivatjtoned than the GW Vir and DBV pulsators.
Indeed, the spectrum of the well-studied DAV star G29-38eapp to be very different, with numerous
harmonics and beat and sum frequencies, from season tog@éasite et al. 2000 and Figs 2.56 and 2.57).
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Figure 2.57: The amplitude spectrum of the light curve of @8%hown in Fig. 2.56.

While empirical mode identification in selected DAV starsigstly achieved from multiplet structures
in the frequency spectrum, or from amplitude ratios basetholicolour photometry, time-resolved spec-
troscopy of G29-38 with the Keck telescope has allowed tlatification of the modes from line-profile
variations as well (Clemeret al. 2000). All these mode identification techniques confirm tive-tlegree
nature of the oscillations. The thickness of the hydrogamlepe governs the mode selection. Typically,
the mass of the hydrogen-rich envelope is estimated to bet abo* times the mass of the white dwarf.

Up to 2004, 39 DAV pulsators were known.(, Bergeronet al. 2004 and references therein), most
of them discovered from photometry but 7 among them from tspgcopy. A remarkable step ahead in
the understanding of the class was achieved by Mukagtaah (2004a), who almost doubled the number
of class members with their discovery of 35 new pulsating B#afs selected from the Sloan Digital Sky
Survey and the Hamburg Quasar Survey. Mullatyal. (2005) subsequently found 11 new DAV stars,
Kepleret al. (2005) another 14, and Castanhegtaal. (2006) yet another 11, almost all again first selected
from the Sloan Digital Sky Survey. This brings the numberlass members to 107. This led Mukadam
al. (2006) to examine changes in the pulsation properties of péigators across the instability strip. They
found a well-established trend of increasing pulsationggewith decreasing effective temperature. Also,
they showed that the pulsation amplitude decreases justébplilsations shut down at the empirical red
edge of the instability strip.
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2.7.3 Neutron stars

Neutron stars are the compact remnants that become giewéthy decoupled from the expanding ejecta
of a supernova explosion, resulting from a core collapsesifigle star with initial mass above 94 The
collapse results either in a compact neutron star with a in@isgeen 1.5 and 3 Mand a diameter of about
12 km, or in a black hole (when the remnant mass is above aldduf)3The precise upper mass limit of a
neutron star is not yet known, since the correct equatioriabé gor a fully degenerate relativistic neutron
gas is still much debated. Hence there is as yet no firm valuthéoanalogue of the Chandrasekhar limit
for the upper mass limit of a neutron star.

At birth, the infall causes a dramatic spin-up of the neutstar and a strengthening of its magnetic
field by factors of millions, leading to a rotation period aflp a few milliseconds to seconds, and likely
causing the star to send out radiation along the magnetitlifreds. As a result, the neutron star is observed
as apulsar, with regular pulses at radio, visible, X-ray or gamma-ravelengths, whenever the magnetic
axis is inclined with respect to the rotation axis and whengbometry of the beam is such that the radiation
passes in our line-of-sight during each rotation periode fddio waves originate from material above the
magnetic poles, while the X- and gamma-rays are caused lactietion of matter on the very hot magnetic
poles of the neutron star.

Straight after the discovery of pulsars by Jocelyn Bell enflamework of her PhD Thesis (Hewishal.
1968), nonradial oscillations were proposed as the expitanaf the pulses (Ruderman 1968). Nevertheless,
the pulsating model was quickly abandoned in favour of armgablrotation model to explain the observed
features of pulsars (Gold 1969). Only many years later,iatiayer (1992) and Strohmayet al. (1992)
re-introduced nonradial oscillations to account for thenetwus complex observed properties of pulsars,
including drifting pulses and stationary sub-pulses, beeahe rotating models failed to explain all these
details in the observed variability. The observational drebretical progress in the understanding of pulsar
beams was summarized by Graham-Smith (2003).

Clemens & Rosen (2004) recently presented an oblique jpulsatdel based on high-overtone nonra-
dial surface g-mode oscillations of very high degreadar a few hundred and near a few tens), aligned
to, and symmetric about, the magnetic axis of the pulsarnaxgplanation of the complex observed phase
behaviour of the pulses and sub-pulses and of the morphabpgulsar beams. Such modes have periods
near 10 s and were shown to have low energy and large surfgdéwade (McDermottet al. 1988), in con-
trast to core g modes. The quasi-periodic changes in theadataxplained as switching between modes
of different! andn, while negative beating is held responsible for null detest occurring in the observed
time series of the flux once in a while. These features of tteslehwere claimed to be similar to mode
changes observed for white dwarfs on the one hand, and tdtlgeie pulsator model explaining the roAp
stars on the other hand.

A relatively new aspect of neutron star physics, in whichradial oscillations play an important role,
are the gravitational waves radiated during the formatimtgss of the neutron star. After the gravitational
collapse, the proto-neutron star radiates its bindinggnarough neutrino emission on a timescale of tens
of seconds before the final neutron star is formed. This ftionarocess is obviously very hard to study,
unless we could detect the gravitational radiation astettisvith the birth of the hot compact remnant.
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Indeed, the oscillation spectrum of a forming neutron stemges quite drastically during the formation.
This is easily understood from the argument that the frecjeenare mainly dependent on the mass and
radius of the object. Typically, the neutrino emission dgrthe formation results in a mass decrease of
0.1 Mg, and a radius decrease from 35 km to 12 km. Such changes wildaignificant effect on the mode
frequency values.

Ferrariet al. (2003) have computed the changing frequency spectra andidgrimes of the oscilla-
tions of forming neutron stars. They found the oscillatipedra of p, g, and f modes of forming neutron
stars to be remarkably different from those of cold old reustars. The frequencies of the modes cluster
typically between 900 and 1500 Hz at the start of the fornmagimocess, but evolve to very distinct values
for these three different types of modes about 5 s after tiradtion. Also, the different modes keep very
different levels of the mechanical energy reservoir to seutdin the form of gravitational waves after the
completion of the formation. The authors ignored the eftéattation, even though a significant amount
of angular momentum is generated during the birth of therpawdtar, and they ignored the bounce and the
first 200 ms after collapse which needs to be studied hydiamjcally; even so, this pioneering study gives
hopeful prospects for the near future. Feredrdl. (2003) also showed that the first-generation gravitational
wave detectors (VIRGH, LIGO?, EURC?) should be able to detect the gravitational signals comuect
to the nonradial oscillations sent out during these diffestages in the life of the neutron star, within much
of the Milky Way Galaxy. This would open up the field of gratiteal-wave asteroseismology. Similarly,
the processes leading to the formation of stellar blackshoiay involve oscillations that can be detected
through observations of gravitational waves.

2.8 Pulsations in binaries

For all the classes considered above, numerous examples wbere the pulsating star resides in a bi-
nary or, more generally, in a multiple system. When this isidewisual binaryj.e., for cases where the
components do not affect each other’s behaviour and ewvaoluthe binarity is of not much importance for
the oscillation study, other than being an asset becau#levitssa more accurate determination of the fun-
damental parameters (such as mass, radius and age) of gaimylcomponent compared with a single
pulsator. A notable example is the visual binargen A (G2V) andx Cen B (K1V), whose components
both show p-mode oscillations. At the upper end of the masgeiathe visual binary WR 86 is worth men-
tioning. It is a variable WC7 Wolf-Rayet star with an initiadass of some 40 M having a 20-M, 5 Cep
companion (Paardekoopet al. 2002). This companion pulsates in p modes with frequendiésdd4 d-!
and 7.236 d'!. Contrary to thex Cen binary, the oscillations of this very massive binaryehawst yet been
exploited seismically, because of lack of mode identifaati

Binarity offers the same advantage of providing accuratelfimental parameters in close unevolved
detached binaries for which the tidal interaction is negleg In general, this is the case for orbital periods
above some 20d for ZAMS components and above some 100d forSTédmponents (Willems 2003).

¥htt p: // wwwcascina. virgo.infn.it/
Dhtt p: // ww. | i go. cal t ech. edu/
Zhttp: // ww. astro. cardi ff.ac. uk/ geo/ eur o/
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In such cases, a complication may, however, occur when kmtiponents have the same spectral type,
implying a merging of their oscillatory signature in the aland hence in the Fourier spectrum. As long
as the contributions of the different components can bevelieal, seismic modelling can be achieved to at
least the same level as for single stars.

Another type of complication occurs when one of the comptseha currently detached close binary
system has already gone through one or more phases of maskitogy its evolution, usually implying that
mass transfer between the components has taken place. Hrasituation, the gainer star is polluted by
material of the donor star. This may have led to differentesie compositions and internal structures of both
the gainer and the donor, depending on whether the outelogevis radiative or convective. Hence, if one of
them is oscillating, the mass transfer will have affectegldhbcillatory behaviour. In fact, asteroseismology
may in this case be a good tool to reconstruct the mass trassfitangular momentum history within the
binary. Unfortunately, we do not know of any example whemghseconstruction of the evolutionary history
from oscillations has been achieved.

Extreme cases of interaction occur when a binary systenrseatsommon-envelope phaséhere a
compact component of the system effectively orbits withiménvelope of a more tenuous component. This
leads to rapid loss of mass and angular momentum, and headgdréstic shrinking of the orbit.

Eclipsing binaries are of special value, because theyeatdihe most stringent constraints on the phys-
ical parameters of the components. For many of the classpslgditing stars discussed above, we know
of components residing in an eclipsing binary. The numbesuzh cases is low, however, ranging from
none for solar-like oscillators, roAp,Dor, RR Lyrae stars and Cepheids, to a few for B-type pulsaad
compact oscillators, to a few tens f@6ct stars, Miras and semi-regulars (Pigulski 2006). Ingypie, the
oscillation modes can be identified from eclipse mappingichsases.

Excellent recent overviews of pulsating stars in multipfstems (including clusters) were provided
by Pigulski (2006) and Lampens (2006). In the following, vesctibe in detail some situations where the
binarity is more than just a happy circumstance that dedibstter fundamental parameters. In doing so,
we do not consider disk oscillations as mg, X-ray or Be binaries; we focus entirely on cases where
the oscillations can, in principle, be used to probe thdastaiteriors rather than focusing on stellar disk
properties.

2.8.1 Tidal perturbations of free oscillations

An extensive recent compilation of studies on the tidal @t®oh and oscillations in binary stars is available
in Claretet al. (2005). Free oscillation modes excited by mechanismasitrito the star (see the following
chapter for a detailed explanation of such excitation meisias) may be altered by tidal effects, in the
sense that their frequencies may undergo shifts. Rigorndgatailed mathematical descriptions of tidal
effects on free oscillation modes can be found in Smeyers i@ 971), Saio (1981), Reyniers & Smeyers
(20034a,b), Willems & Claret (2005), and references in tivegiks.

Detections of tidal effects were first suggested by Fitcl6{19969) in somé Sct ands Cep stars, but
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it became evident later on that these were premature. Thdifirsobservational establishment of tidally
affected oscillation frequencies was achieved by Fitch &mdwski (1979) for theé Sct star 14 Aur Aa.
The authors showed that the departure from equidistand¢eiatiserved frequency triplet can be explained
by tidal splitting of the mode, as was confirmed by Reyniersr&e$ers (2003b). Goossental. (1984)
suggested the variations of the oscillation frequency ef38d circular binary? Cep stars Sco to be due

to modulation by tidal action. Smith (1985a,b) subseqyenthde a thorough study of the line-profile
variability of the binary3 Cep star Spicad(Vir), with period 4.015d and eccentricity = 0.146, and
interpreted the retrograde, toroidal-like oscillationdede detected to be due to tidal shear exerted by the
B2 companion.

There are also a number of pulsating stars in ellipsoidahlbes, in which the tidally deformed com-
ponents cause variability with twice the orbital frequerieyg, Aerts 2007 for a review). A noteworthy
example is the star XX Pyx (Handlet al. 1998) which was long considered as a prototypical you8gt
star suitable for seismic modelling (Pamyatnydhal. 1998) until Arentoftet al. (2001) and Aertst al.
(2002) found it to be 1.15d circular binary with ellipsoidadriations in which tidal effects dominate over
rotational effects. Henret al. (2004) found HD 207651 to be a triple system witsct and ellipsoidal
variations but no g modes triggered by tides. Lampetral. (2005) also found the presence of ellipsoidal
variations in the spectroscopic triple system DG Leo, wligchomposed of three stars of late-A spectral
type. The wide component isdéSct star while the inner binary consists of two Am componentshich at
least one is not yet rotating synchronously although thé @rlsircular. De Catt al. (2006, 2007), finally,
list several ellipsoidal variables among their samplesaoididatey Dor and pulsating B stars.

Numerous other pulsating stars reside in close binarigsthieir detected frequencies, or differences
among them, are not an exact multiple of the orbital frequeAerts & Harmanec (2004) compiled a list of
close binaries with confirmed light and/or line-profile ‘auility, several of which are confirmed pulsators,
so these are all good candidates to continue the searchiédlytaffected and/or induced oscillations. This
list originated from two independent approaches, the search for close binarity among confirmed oscil-
lators and the search for oscillations in confirmed closais. The authors found no obvious relations
between the orbital eccentricity, the orbital frequenbwg, totational frequency and the intrinsic frequencies
of oscillations.

2.8.2 Tidally induced oscillations

It was realized long ago that resonant excitation of fredlaion modes by the tidal action of a companion
can in principle be an effective way to trigger oscillatiansbinary components (Cowling 1941). Tidally
induced oscillations and their effect on evolution and gpelissipation within a binary have been studied
theoretically, for very different types of situations, bymerous authors.g, Kato (1974), Zahn (1975),
Savonije & Papaloizou (1984), Kosovichev & Novikov (199P)jeneret al. (1995), Kumaret al. (1996),
Witte & Savonije (1999, 2001), Savonije & Witte (2002), Withset al. (2003), Rathoret al. (2005) and
references in these works. These authors show that therencerof suitable resonances depends not only
on the properties of the oscillation modes of the stars, aihiy also on the period and the eccentricity
of the orbit, as well as on the component masses and radii. tAdwretical computations show that the
tide-generating potential within an eccentric binary implan infinite number of partial dynamic tides with
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forcing angular frequencies. Whenever one of those foricggencies comes close to an eigenfrequency of
a free oscillation mode of one of the components, it is pbéssitat the tidal action exerted by the companion
is sufficiently enhanced to excite this mode resonantly. dderrence of such resonances between partial
dynamic tides and free oscillation modes is particularlguant for the excitation of g modes, because their
frequencies are similar to those of the orbital frequeniriedose binaries. Moreover, the tide-generating
potential is dominated by spherical harmonics of degree2. Most computations for resonant excitation
are therefore restricted to these modes. As discussed thgxdmple, Kosovichev & Novikov (1992) the
excitation of modes through tidal interaction and the sqbeat dissipation of the pulsation energy may
play an important role in the capture of stars by massivekidtades, through the loss of orbital energy by
the star.

From an observational viewpoint, the detection of a tidatiguced oscillation may seem simple at
first sight. Indeed, whenever variations with an exact mpldtiof the orbital frequency are found, one
may interpret these as due to a resonantly excited modeattige, it turns out to be extremely difficult to
establish proof of tidally induced oscillations, despitenerous long-term efforts to search for a relationship
between the orbital frequency and variability in close bem.g, Aerts & Harmanec 2004; Claret al.
2005, and references therein).

The detection of frequencies which are an exact multiple@firbital frequency has, as far as we know,
been established for only two stars so far: the hybi&tty Dor star HD 209295 (Handlest al. 2002) and
the SPB star HD 177863 (De Cat al. 2000; Willems & Aerts 2002). These two stars reside in short-
period eccentric binaries such that the circumstancesnaexd favourable for tidal resonant excitation.
Seismic modelling has not yet been possible for either fetstars. For HD 209295 the modes could not
be identified, while only one pulsation frequency was firndtablished for HD 177863.

2.8.3 Are the SX Phe stars all blue stragglers?

Blue straggler stars get their name from the fact that thegapclose to the main sequence in stellar clusters,
but substantially hotter and bluer, and hence presumabhe mmassive, than the turn-off in the colour-
magnitude diagram as defined by the bulk of the stars in tletariuThey are believed to be formed from the
evolution and mass exchange of primordial binaries or frinectistellar collisions between main-sequence
stars in dense globular clusters.d, Bailyn 1995; Hurleyet al. 2001; Sandquist 2005; Sikt al. 2005,
and references therein). The blue stragglers have sigmilffcemaller projected rotational velocities, but the
same chemical peculiarities, as ordinary cluster and gealeld stars of the same spectral type (Andrievsky
et al. 2000). Recently, Ferraret al. (2006) detected 300 candidate blue stragglers in the galglobular
clusterw Cen. They used the absence of central concentration intieesblaggler distribution acrossCen

as an argument to rule out a collisional origin for all of tHaebstragglers and suggest a non-collisional
origin for some of these stars. Hurleyal. (2005) used M67 as a test-bed for cluster evolution models an
found different formation paths for the 28 observed bluaggiters in that cluster. In particular, a substantial
population of short-period primordial binaries is neede@xplain the observed blue straggler population
of M67.

Itis a lucky circumstance that many of the SX Phe stars waneddo be blue stragglers. They seem to
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have a relatively high mass (Rodriguez & Lopez-Gonz2l@20). These pulsating blue stragglers are thus
interpreted in terms of binary mergers leading to a glohalitlyed helium-enriched star and their oscillations
may provide clues to the formation scenario. Gillilagtdal. (1998) made an extensive study of six SX Phe
variables in the globular cluster 47 Tuc with the Hubble $paelescope. Two of them oscillate in the
fundamental and first overtone, two others oscillate siamgbusly in the fourth and fifth radial overtones
and two have multiple nonradial oscillations. This allovibd authors to combine evolution and pulsation
constraints, resulting in mass estimates for the four deuatdde SX Phe stars ranging frdn3+0.1 Mg to
1.6+ 0.2 My, and additional stellar parameters which are in excellgréement with the cluster properties.
Zhanget al. (2005) analysed two SX Phe stars in M67. They found these &idrave, respectively, four
and five radial modes. One of them has fundamental parameting with an unevolved late A star. The
other one is the primary of a 4.2-d eccentric spectroscoiary and has subsynchronous rotation. This
SXPhe star was probably formed through stable Roche lobdl@we

The global enrichment of helium in blue stragglers stroraffgcts the temperature and luminosity
of a given star, but the location of the instability strip dladge and the slope of the period-luminosity
(PL) relation are unchanged. This suggests that the PLlioelat not affected by blue straggler formation
provided that blue stragglers are fully mixed stellar mesgdempletoret al. 2002). Nevertheless, Bono
et al. (2002) found that the modal stability and the pulsation dtugés are somehow affected by the He
content. The detailed properties of SX Phe stars could thpplg hints on the He content and on the
formation history of these stars, but we believe it is faistate that this stage has not yet been reached.

2.8.4 Are all dusty RV Tauri stars binaries?

Binaries make up a significant fraction of the post-AGB starswn to date (Van Winckel 2003). It was
suggested by Lloyd Evans (1999) that IRAS infrared coloamply that RV Tauri stars are stars within
the Cepheid instability strip with dusty circumstellarldis By comparing the observational characteristics
of RV Tauri stars and the class of extremely iron-deficierdtffGB objects, Van Winckeét al. (1999)
concluded that binarity is indeed a widespread phenomemumg@ RV Tauri stars.

More recently, Yudinet al. (2003) monitored eight RV Tauri and five R CrB stars (see bgloo+
larimetrically, and established the presence of permadenipy non-spherical dust shells around them.
Moreover, De Ruyteet al. (2006) provided compelling evidence from spectral eneiggridutions extend-
ing to 850um that all six well-studied dusty RV Tauri stars are binavigth a circumbinary disk originating
from the AGB evolutionary stage.

The question naturally arises whether all RV Tauri starsbamaries. In any case, the large-amplitude
oscillations play a key role in the rapid mass-loss phaséneAGB where the stars undergo a dust-driven
stellar wind. Mass transfer between evolving stellar congnds in a binary then leads to a natural explana-
tion of a dusty circumbinary configuration and the observehred properties of the RV Tauri stars. This,
together with the fact that their binary nature is very harddtablish on a case-by-case basis, makes it quite
likely that all dusty RV Tauri stars result from the evolutiof a pulsating AGB binary that managed to avoid
a common-envelope phase. It requires very long-term gpsatipic monitoring to establish firm observa-
tional proof of this, because the pulsations cause radlatirg variations which are of similar magnitude
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Figure 2.58: Top: Light curve of the HAC pulsator R CrB. Thétvm panels show two enlarged sections.
Data taken from Yudiret al. (2002).

to the orbital variations (see Fig. 2.35).

2.8.5 Hydrogen-deficient carbon stars and extreme helium ats

R Coronae Borealis (R CrB) stars are a particular subset @f/es pulsating hydrogen-deficient carbon
(HdC) stars with large amplitudes. They have periods betwi@eand 100 d, amplitudes of a few tenths of
a magnitude in brightness (see Fig. 2.58) and a few kiriis velocity, and they have multiperiodic light
curves €.g, Lawson & Kilkenny 1996). In general, the HAC stars are \@ega with an order of magnitude
lower amplitudes than the R CrB stars. Both the R CrB starsthedHdC stars seem to be fundamental
mode pulsators (Weiss 1987) with semi-regular light andatagtlocity curves. In addition to pulsational
variations, from extensive long-term infrared photomefigastet al. (1997) concluded that the R CrB and
HdC stars in general show variations due to their circuastdlst on timescales of a few hundred to a few
thousand days.

Extreme helium (eHe) stars, on the other hand, are highlivegtduminous starse(g, Jeffery 1996).
Their surfaces are characterized by a mixture consistinfpeofemnant of a H envelope, CNO-processed
helium, and carbon products resulting from He burning. THe stars have higli /M ratios. They are
expected to pulsate, either due to the heat mechanism basé@ @-bump (Saio 1993, 1995; Jeffery &
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Saio 1999) or due to strange-mode instabilities (Saio 8&edgf1988). The variable eHe stars are sometimes
subdivided into categories according to their type of ¢etibiln: V652 Her variables are radial and nonradial
Z-bump pulsators with periods near 0.1d, PV Tel variableshradial strange modes with characteristic
periods near 20 d (Kilkenngt al. 1999) while V2076 Oph variables seem to have nonradial ggramodes
with timescales between 0.5 and 8 d (Jeffery & Heber 1992z8ll& Gautschy 1992). The variations turn
out to be very complex, with quasi-multiperiodicity onlyydaimply an observational challenge in view of
the long periods. In fact, Wrigtet al. (2006) made a very extensive long-term observational stidige
hottest pulsating eHe star, V2076 Oph, and found no coheratnall in its variability. In particular, they did
not manage to recover the periods reported earlier in thetgmetry and spectroscopy of the star. For an
enlightening review on eHe stars we refer to Jeffery (2007).

From an evolutionary point of view, all of the R CrB, HdC andeestars lie on post-AGB evolutionary
tracks. lberet al. (1996) originally considered three scenarios to form Hd@ RrCrB stars, but only two
of them are commonly accepted now. A first one explains the BIGtCR CrB stars as hydrogen deficient
due to a late thermal pulse at the end of the post-AGB phase.r@8ult of this born-again scenario is an
HdC star with chemical surface composition in agreemertt ptibgenitors of WR stars or of hot planetary
nebulae nuclei. De Marcet al. (2002) tested the born-again scenario on four stars bulwded that they
cannot have the same evolutionary history since only twdeftargets are compatible with the proposed
scenario. The second scenario involves the merging of twenh@ss white dwarfs, one CO white dwarf and
one lower-mass He white dwarf, resulting in a luminous He @aio & Jeffery 2002). This is much more
plausible as an explanation for the eHe stars, and as thesershny similarities to the HdC and R CrB
stars, it is probably also an important route to explaineHater objects.

2.8.6 Pulsating sdB primaries

The prototypical pulsating sdB star EC 14026-2647 is a pisgstem, as is the case for about two thirds of
the group members (Maxted al. 2001; Morales-Ruedet al. 2003; Moralez-Rueda 2005). It is very likely
that the binarity is of fundamental importance for the fotioraof all the sdB stars.

The sdB stars are believed to evolve directly to the whitexflstage and so they are the immediate
progenitors of low-mass white dwarfs. Two of the membersrateed found in a post-EHB stage (Morales-
Ruedaet al. 2003). The details of the evolutionary state of the sdB stastill largely unknown. In order
to end up on the EHB they must lose nearly all of their hydrogealmost exactly the same phasge,,
when the helium core has attained the minimum mass requirethé helium flash to occur. Moreover,
many of them have short orbital periods between a few houtsdew days and several known companions
are white dwarfs. These observational facts have led toriy@ogal of three evolutionary channels for the
formation of sdB stars (see Hatal. 2002, 2003 and references therein):

1. common-envelope ejection, leading to short-period ri@sawith periods between 0.1 and 10d and
an sdB star with a very thin hydrogen envelope; these sdB ktare a mass distribution that peaks
sharply at 0.46 M;

2. stable Roche lobe overflow, resulting in similar massés aase 1, but with a rather thick hydrogen-
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Figure 2.59: Top: ULTRACAM/VLT g’ light curve of the eclipsg sdBV star PG 1336-018. The bottom
panels show two enlarged sections of the primary and secpedéipse. Data taken from Vuckovét al.

(2007).
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rich envelope and longer orbital periods between 10 and ;.00 d

3. double helium white-dwarf mergers giving rise to singl® stars with a wide distribution of masses.

An example of case 1 is the eclipsing binary pulsating sdB\L.836-018 whose stunning light curve
was discovered Kilkenngt al. (1997). This star has been intensively studied ever simofyding during
two WET runs (Kilkennyet al.2003). We show its g’ light curve obtained with ULTRACARfon the VLT
in Fig. 2.59. The circular binary orbit has a period of 2.4 kd #me companion is an M dwarf, leading to a
large reflection effect. As can be seen in Fig. 2.59, the latioihs of the primary remain visible during the
primary eclipse.

An important question is the possible role of the binarityriggering the oscillations of sdB stars. This
has been tackled by Fontaiaeal. (2003), who found that, indeed, the work done by the tidatddhrough
the resonant excitation of a g mode becomes significant agrtlee of the mode increases. Thus, it seems
plausible that some of the g modes observed in sdB binangjauts may be tidally excited. It is unlikely
that the p modes are tidally excited, because their fredee@ee too high for that. They may, however, turn
out to be affected by the binarity (seeg, Reedet al. 2005).

2.8.7 Pulsating Cataclysmic Variables

Cataclysmic Variables (CVs) are short-period interactohgse binaries with a white-dwarf component.
The white dwarfs within such systems undergo mass accrétion their companion. The white-dwarf
component itself is quite often invisible, because theetan process dominates the flux we receive from
CVs. The accretion rates vary a lot from one CV to the other.tkose systems with a low mass transfer
rate, the gas of the donor settles in a disc. This stored dgdessento the white dwarf at semi-regular
intervals, leading to a dwarf nova eruption. The white-dwamponents of such systems are detectable in
visible light when the systems are in a low quiet state. Su¢h &e, however, intrinsically faint. Several of
them have been discovered from the Sloan Digital Sky SurSekddyet al. 2004).

Several CVs turn out to have a pulsating DAV primary. The Brsth discovered system was GW Lib
(Warner & van Zyl 1998), a dwarf nova with an orbital period7@f.8 min for which three oscillation modes
with periods of 646 s, 377 s, and 236 s were established iniftewkry paper. Several additional discov-
eries, involving systems with similar orbital periods,lé@ted soon (Warner & Woudt 2005 and references
therein). All of them turn out to have similar oscillationrjmels ranging from 100 s to 1400 s. The present
number of pulsating CV primaries amounts to 11 (Marsh, peie@mmunication).

Townsleyet al. (2004) managed to derive estimates of the white-dwarf ntasgccreted mass and the
mass-transfer rate for GW Lib from seismic modelling. Thiation rate could not be derived, because the
multiplet structure in its Fourier spectrum has not beenlvesl, despite extensive observational effort (van
Zyl et al. 2004). It turns out that the accretion rate of the pulsativMyp@maries is sufficiently low to keep
the white-dwarf component in the DA instability strip, etiough a white dwarf of its age should be much
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too cool to be a DAV star. A natural question of course emerges the accretion rates within CVs with
DO or DB primaries suitable to keep these white dwarfs in threasponding instability strip as well?

AM CVn is the prototype of a class of ultra-short period heltaccreting cataclysmic binaries. It turns
out that the AM CVn stars probably have a mass transfer ratdghoo high for them to remain in the DO
or DB instability strips, so it is unlikely that there will meany discoveries of pulsating primary AM CVn
stars. Nevertheless, Solhe#hal. (1998) monitored AM CVn in photometry over a 12-d time spaniriy
a WET run. While several periodic light modulations with tmanics of the basic frequency near 948z
can be explained as a two-armed spiral structure (Savehgé 1994), the authors also found evidence for
a g-mode pulsation, which indicates that the central whitarfl may in fact be a DO variable. Arras
al. (2006) indeed concluded from theoretical instability coations for a wide range of WD masses that
g-mode oscillations are predicted in a diversity of CVs.

2.8.8 X-ray burst oscillations

Many of the currently known neutron stars reside in closefi@s, as this is a very convenient location to
allow their observational detection. Besides the impaanf surface oscillations in explaining the observed
complex features of neutron stars discussed above, Pirdd&tBn (2006) provided evidence that nonradial
surface g modes are also a good explanation for X-ray buecstat®ns. Such burst oscillations are thought
to be a modulation of the neutron star rotation frequencyo RiBildsten’s model builds further on the
original ideas by Lee (2004) and Heyl (2004) that a retrogragrface mode with an observed frequency
just below the rotation frequency is the cause of the burstiaons.
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Chapter 3

Theory of non-radial oscillations in a
nutshell

In this chapter we describe the basic theory of non-radiailizions and of mode excitation in stars.
We provide only a very concise overview, skipping many ofrththematical details. The reason is that
the students at Leuven University have the option to follo8vEBCTS course entitled “Theory of stellar
oscillations”, which is taught in the same year as the cutreourse on Asteroseismology. It is therefore
evident that a detailed outline of the theoretical aspet&@alar pulsation is beyond the scope of the current
course, in which the applications of asteroseismology heerhain topic. The interested student can find
details on the theory of stellar oscillations in:

e the lecture notes entitled “Theorie van Stertrillingen” @y Van Hoolst (only in Dutch) taught at
Leuven University;

¢ the lecture notes entitled “Stellar Oscillations” by J. Gétiensen-Dalsgaard (2003, Aarhus Univer-
sity, English version) available from
http://astro. phys. au. dk/ ~j cd/ osci | notes/;

¢ the lecture notes entitled “Stellar Stability” by. R. Scirgaand A. Thoul (2002, l&ge University,
English version) available from
http://ww. ast er osei snol ogy. be/activities. htm ;

o the book entitled “Nonradial Oscillations of Stars” by Unedal. (1989).

Our theoretical description is based upon the stellar stnoe equations (outlined in very much detail in the
3-rd year course entitled “Stellar Structure and Evolutiprif you do not have any pre-knowledge thereof,
and/or if mathematics is not your favourite subject, you easily skip large parts of this chapter and limit

yourself to the brief descriptive text on the introductiomoi the theory of oscillations given in Chapter 1

and to the sections 3.7 and 3.8 below. The rest of the coursbefollowed keeping in mind the expression
for the displacement field due to a non-radial oscillatioivem in (1.4).
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Much in this chapter is based upon the course notes “SteltaucBire and Evolution” (C. Aerts,
University of Leuven, 2002) and on the PhD thesis of M.-A.rBufniversity of Leége, 2002). We refer to
these works for more information.

3.1 General equations of hydrodynamics

We consider in the following a star that can be approximated apherically symmetric gaseous sphere
in the absense of visceous effects, magnetic fields andgstamation (i.e. we neglect the Coriolis and
centrifugal forces).

Two types of description are common to study the hydrodynarof stars: thé.agrangianand the
Euleriandescription. In the Lagrangian description, a labé assigned to each infinitesimal mass element
in the star. The local physical quantities, such as the ipositiensity, temperature, etc. are a functior of
and of timet. For any quantityX the time derivative ofX following the movement of a mass element will
be denoted byl X /dt. The Eulerian description, on the other hand, makes useegidkition vector and
the timet to describe the local physical quantities. The time dekigan the Eulerian desciption, which is
valid for a given fixed position in space, will be denotedas/ dt.

The equations of hydrodynamics that apply to stars undeapbeoximations mentioned above are the
following:

1. The equation of mass conservation:

dp . Op o
€ + pV.au= a5 + V.(p?) =0, (3.1)

wherev andp are respectively the local velocity and density.
2. The equation of momentum conservation:
dv  0v vP
S LGV = — _ 3.2
dt 8t + % % V’IJZ) p ) ( )

whereP is the total pressure (gas, radiation and turbulent preysumd is the gravitational potential.
The latter fulfills the equation of Poisson:

A = ArGp. (3.3)
3. The equation of energy conservation:
ds V.F
T— = — —— 3.4
ST, (3.4)

whereT is the local temperature, the entropyg the rate of energy generation ahdhe energy flux.
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The energy transport ina star is either achieved throughlrad or through convection so we note the total
flux asF = FR + FC with FR the radiative flux andfc the convective flux. In the bulk of the star the
diffusion approximations valid because the mean free path of the photons (typisaliye cm in the solar
interior) is much smaller than the distance to overcomedcohdéhe surface. The radiative flux is therefore,
to a good approximation, given by the diffusion equation:

- 4acT?

Fr=-— VT, (3.5
3kp

with x the Rosseland mean opacity. This equation results in tlefiolg value for the radiative temperature
gradient:

dinT B 3 Kkl P

din P~ "™ 7 161acG mTY’
with [ andm the local luminosity and mass respectively, i.e. the lumsityoand mass contained within the
sphere of radius. Whenever this radiative temperature gradient exceedsdiadaticgradient

dlnT_ B (8111T)
dinpP 7 \ompP

the energy transport will no longer be achieved by radiatisininstead by convection. A generally applica-
ble description for the convective flux is difficult to derigad is in fact not available. Usually, one relies on
the mixing-length theoryf convection. This is a local time-independent theory incktone assumes that
the mean free path of a convective eleméntan be well described as

dln P\ !
l:OéHp:_OZ( d?”’ ) )

whereH p is the pressure scale height ant the mixing-length parameter, which is of order unity= 1.8

for the Sun). The precise location of the transformationmfra radiative to a convective region is very
difficult to determine. The reason is that it depends on alpdarown phenomenon calledonvective
overshooting which is a term to express that the convective cells do rayj abruptly once entering a
radiative zone. Convective overshooting is usually patesesl by the so-calledvershooting parameter
oy defined as the fractional length, expressed in unité/gf over which the convective cells still move
while entering the radiative zone. Typical values &Qy, considered in stellar modelling range from 0.0 to
0.3. A very important subject of research in stellar streeeis to find accurate observational constraints on
this poorly known parameter.

(3.6)

(3.7)

(3.8)

In order to solve the equations of hydrodynamics we needitao account the relations between the
different variables. One speaks of #guations of stateP = P(p, T, x:), S = S(p, T, xi), k = (p, T, xs)
wherey; denotes the chemical composition in terms different elements. Moreover, we need to determine
e(p, T, x;) from nuclear physics. Finally, we need to specify a certaimber of well-chosen boundary
conditions. We will not go into details in these matters.

3.2 Perturbation approach

At each given time a pulsating star is not in equilibrium the position, density, pressure and temperature
of a mass element vary periodically around their equilirivalue. The equations presented in the previous
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section are therefore not fulfilled during the oscillatigiele. For any physical quantity( we denote byX
its equilibrium value. Leti be a label assignhed to a mass element/aagarticular position in space. The
Lagrangian perturbation of is defined as

5X(a,t)

X(a,t) — Xo(a). (3.9)
It represents the variation of while following the mass element label@dIts Eulerian perturbation is
X'(7t) = X(7,t) — Xo(7) (3.10)

and represents the variation &fat a given fixed positio®’ in space.

We assume that the amplitude of the variation of each phlygintity remains small. In that case it
is justified to use théinear approximation in which all second and higher order terms in the pertuobati
are neglected. In what follows we present the perturbedtesato solve, while omitting the subscript
“0” for the equilibrium values of the quantitieX¥ for simplicity. In this approximation, the Lagrangian and
Eulerian perturbations relate as follows:

§X = X'+ VX.0r. (3.11)

The perturbed version of the equations given in the previamgdion, which are obtained by taking
either the Lagrangian or the Eulerian perturbation on biolassof the equations, are as follows:

1. mass conservation:

P+ V. (pdr) = 3p+ pV.07 = 0. (3.12)
2. momentum conservation: .

026 0 vP

— =-Vy'+ SVP - : 3.13

3. energy conservation:

dés as’ , o = V.
The perturbed diffusion equation reads:
~ T & PN\ = 4dacT?
Fr=(3=-— -2 ) Fgp— T'. 3.15
= (3 - L) Fa- TV (3.15)

The perturbed equations of state are not outlined here @mildetVe do point out that one usually
assumedocal thermodynamic equilibriunm their derivation. This is a very good approximation in the
stellar interiors of all stars but not necessarily in theeownvelope where the density is low. Also one
usually neglects the perturbation of the chemical comjuwsitThis approximation is valid whenever the
time scales of diffusive and rotational mixing are much lentpan the oscillation periods in parts where no
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nuclear reactions takes place. In the core, however, theedtale of some nuclear reactions is short and we
need to take into account there.

The system of equations has to be closed by adding the pedwsrsions of the chosen boundary
conditions, which we do not outline here for brevity.

3.3 Linear non-radial oscillations

The differential equations obtained in the previous sectite linear and have coefficients which are not
dependent on time. We can therefore find a solution to thesatiens by expressing each of the unknowns
as an infinite linear combination, each term having a timgedédence of the forraxp(iwt). Moreover, the
spherical harmonic¥}" (6, ), | = 0 — 4+o00;m = —[,..., [ are a family of orthogonal functions defined
on the sphere which form a complete basis. It is thereforeompiate to write a general solution of the
system of differential equations (3.12), (3.13), (3.14) as

400 +I +oo
X(Ta 97 ©, t) = Re (Z Z Z Al,m,nXl,m,n (T)lem(ea 90) exp(ial,m,nt)> ; (316)
=0 m=—1n=0

where “Re” denotes the real part ang,, ,, = w; /27 are the complex oscillation frequencies of the
different spheroidal modes of oscillation. The real pagf, ,, is usually called the cyclic frequency and is
also denoted ag = (1/period) while the real part af; ,,, , is called the angular frequency; the opposite of
the imaginary part of; ,,, ,, is called thegrowth rateof the mode. Whenever the imaginary part is positive
the mode is said to bebrationally stable which means that the oscillation is damped and the odoitiat
amplitude decreases exponentially. If the imaginary martagative, however, the mode\vibrationally
unstableand the oscillation is excited.

After some elaborate mathematical manipulations, whiclomé here, one finds the following form
for the differential equations:

1. Conservation of mass:

) ).

2. The three components of the equation of momentum cortg@aTva

o,y Gm 107

2 [ — —_
= G (3.18)
2 _13(/ 5’)
Ufa—rae T,Z)+p ; (3.19)
o= L2 (4 )
7 Y rsinf 0y vt p) (3.20)



3. Conservation of energy:

CAnr2p dr

€ p r2 dr

2
i0T6S L &L +e (—58 + op  Ldlr 5’")>
(3.21)

g (2 (e - ¥) 7]

wherem is the mass contained within the sphere of radiud g and L the radiative and convective
luminosity and where we have used the following expressiottfe Lagrangian displacement vector:

- ay;™ ay;m
51,0, ) = Re{[&(rmm(ﬂ,s@)a () (a—gw,w)@ T i <9,¢>e10)} exp(iaw},
(3.22)
with 1 P’ 1 oP
o, = - (zp’ + 7) = (&p + 7) . (3.23)

Together with the boundary conditions (which we did not #gdor brevity), the system of equations
(3.17),...,(3.21) forms an eigenvalue problem whose peetliquantities are the eigenvectors arate the
eigenvalues (which are both complex).

3.4 The quasi-adiabatic approximation

Throughout most of the star, the thermal relaxation time ugimlonger than the observed oscillation pe-
riods, i.e. the heat capacity is so high that the layers aablerto exchange heat with their environment
in a short time. In such a case the entropy cannot changegdiimenoscillation cycle. One speaks of the
adiabatic approximationfor which §S = 0. In this approximation the energy equation is decouplethfro

the equations of mass and momentum conservation and thgsdio the problem is much easier to find.

This leads to the following relations between the pressilgasity and temperature:

oP op oT op

? = Pl; and ? = (Pg — 1)?, (324)
where dln P OlnT
n n
Moreover, the conservation of energy equation reduces to
i L
768 = = <@ - 5e> (3.26)
o\ .dm
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for a radial mode (we omit the more complex equation for a ramhal mode for the time being). In this
case, the eigenfunctions and eigenvalues of interest laieah(hermitian eigenvalue problem).

Unfortunately, it is impossible to determine whether or aomnode is unstable or not in the adia-
batic approximation. In principle, one needs to solve themmlex system of fully non-adiabatic equations
(3.17),...,(3.21). However, one can also get a good immesabout excitation in the so-callegliasi-
adiabatic approximationin this approximation one proceeds as follows:

1. For any given mode characterised(byn, n), one determines the adiabatic eigenfunctions and eigen-
values.

2. The right-hand side of equation (3.26) is computed bygisiie adiabatic values fafL andde. A
value different from zero is then obtained f66.S.

3. Subsequently, one derives the imaginary part of the eidee. This is done by multiplying the radial
component of the momentum equation (3.18)ky-?p and by the complex conjugate 6f and by
subsequent integration over the radiug he result is:

M 6T (dSL
0o T (m —58) dm

Im(o) =
(@) 202, M e2dm

(3.27)

)

whereo,, is the adiabatic value of the eigenfrequency. One thenisutlest the value of'6.S obtained
in item 2. in the integrand of this equation.

We stress that this procedure is inconsistent as it religh@adiabatic approximation for the first two steps
and no longer for the third step. The approximation is finenanddiabatic regions of the star, i.e. from the
center to the partial ionisation zones. One avoids problgyrisuncating the integral in (3.27) so that only
the valid region is considered in the integration.

3.5 The Cowling approximation

In the approximation introduced by Cowling in 1941, the HFiale perturbation of the gravitational potential
is neglectedz)’ = 0. This approximation is generally good in the outermostatdayers where the local
density is small. The conditiont’ = 0 and the equations (3.18) and (3.24) lead to

dP’
5P = (0 =N, (3.28)

with N andc respectively the Brunt-Vaisala frequency and the saapekd:

and ¢ = (3.29)

~_Gm (1 dnP dlnp
== _

N2 — E
- ry dr dr p
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On the other hand)’ = 0 and the equations (3.17) and (3.24) result in

P L} g 1d /.,
2 (1 - §> ~Sbt 5o (r%) =0, (3.30)
wherelL; is the Lamb frequency
2
2= 1(z+721)c (3.31)

r

In this adiabatic and Cowling approximation one then subsetly introduces new variables to simplify the

equations:
P/
v=fir’ ; w= sz, (3.32)

with

r r N2
fi=exp ( idlmpah‘) >0 and fo =exp —/ N—dr > 0. (3.33)
o I'n dr 0o g

With this change of variables, equations (3.28) and (3.8ky the following form:

o=

dv le T'2f1

—=|—=-1] =5w.

dr o2 2 fy
This system of differential equations is easily simplifiatbione second-order differential equation, either
by eliminatingw which gives

d 1 02f2 dv 2 2\ Jf2 o
ar (71_@2/02@5)*(" V%) g =0 (335

dw (02—N2) f2
(3.34)

or by eliminatingv which gives

d 1 r2f; dw L} r2fi
i ()« (o) o %0

These two equations naturally give rise to two types of modies modes with very high frequencies

L? /o can be neglected in equation (3.35). With this simplificatimd fromf;, fo > 0, equation (3.35)
with appropriate boundary conditions transforms into ar@tuiouville type equation which has an in-
finitely countable number of increasing eigenvalaés— co. These modes are nampakssure modesOn
the other hand, for very low frequencié§® — o> ~ N? and equation (3.36) with appropriate boundary
conditions now takes Sturm-Liouville form, this time witleateasing eigenvalueg — 0. These modes
are calledgravity modes We restrict to the gravity modes that are dynamically stgb? > 0). These
are the g-modes. For > 1 there is one additional mode with a frequency in betweenetludshe p-
and g--modes. This mode is called the f-mode. A schematic reptasen of the eigenvalues is given in
Figure 3.1. Usually, the superscript” is dropped and one simply uses the term g-modes.
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radial
fundamental

Figure 3.1: Schematic representation of the eigenvadtfesf non-radial modes with different degrée
The eigenvalues of modes with the same radial order are ctathby a full line. The dashed-dotted lines
connect the radial modes. The f-modé€ ef 1 has an eigenvalue equal to zero.

The p- and g-modes have an oscillatory behaviour only in tieadled trapping regionsor mode
cavities Outside of these regions they decrease exponentially.|obadisation of the cavities depends on
the frequency of the mode and so is different for differentla® For p-modes, we see from equation (3.35)
that an oscillatory motion occurs fer* > N2 ande? > L?. This denotes the p-mode cavity. Thé-g
modes, on the other hand, are trapped whenevero? < N? ando? < L? — see equation (3.36). These
g-mode cavities are situated much deeper in the star thgmthede cavities. We show the p- and g-mode
cavities (indicated as respectively A and G) for a polyteogiellar model in Figure 3.2.

We finally mention that, during the course of the evolutioraddtar, its modes may becomeroixed

nature i.e. an oscillatory behaviour in an inner g-mode cavityibudn outer p-mode cavity. In such a case
the A and G mode cavities are situated much closer to each thidre in Figure 3.2.

3.6 Driving mechanisms

We now discuss the mathematics behind the two common driviechanisms known so far in asteroseis-
mology. This part of the text is particularly concise forgeas already outlined in the first paragraph of this
chapter.

122



Figure 3.2: The p- and g-mode cavities in a stellar model dftpupic index 3. “A” stands for acoustic
mode cavity and G for gravity mode cavity. The eigenfreqienand node positions of the lowest-order
modes are indicated as dashed lines and bullets.
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3.6.1 Modes excited by the opacity mechanism

As already emphasised above, the growth or damping rate ofde ifi.e. its stability or instability) follows
from the imaginary part of its frequency. We have alreadyegian expression for Ifa) in (3.27) for a
radial mode in the quasi-adiabatic approximation. We weirict to this case here; the same discussion can
be held for the more generalised case of fully non-adialvaticradial oscillations.

We recall that the time-dependence of a modsigiot) with o a complex number. Therefore, driving
is obtained when Iify) < 0 and the growth rate of the mode is given by ém Whenever Info) > 0
damping of the mode occurs with damping ratddm

The two effects that determine the driving of a mode resuoitnfthe Lagrangian perturbation of the
nuclear reactions and of the luminosity. The first one is @ignificant in the central parts where the
fusion takes place and where the adiabatic approximatigarisgood. It is therefore not important for the
driving of the oscillations. The second effect is also @hllee transport effect and is at the origin of the
driving. From (3.27) we see that the regions whé&feis increasing outwards during the hot pha%é> 0
have a driving effect. This case is similar to a heat enginthémmodynamics: energy is taken from the
system during the hot phase of a cycle and is released dumngold phase. Inversely, regions whéreis
decreasing outwards during the hot phase have a dampirg. éffee can shown that, for frozen convection
(i.e. with neglect of the Lagrangian perturbation of thevamtive flux) and a radial mode, the Lagrangian
perturbation of the luminosity is given by

0L _ Lp (& 0T 0 aaT/ar) (3.37)

L /Bl - _ =
L L ( r + T & dT'/dr
In general, the term with the opacity is dominant in this esgion for the determination of the luminosity

variation. In the quasi-adiabatic approximation we carievri

5_/{_ (Fg—l)I{T—FI{p(S_P

K Fl P

(3.38)

In most cases, i.e. in homogeneous stellar lay&Fsjs increasing outwards at the hot phase and so
the contribution ofix to § L implies that the latter is increasing outwards during tliiage so that damping
occurs. However, in partial ionisation zones large opauitsnps occur (see e.g. Figu#@. These bumps
can have a significant driving effect becadsecan increase very steeply outwards and can take positive
values implying that . decreases outwards during the hot phase. Because of th@aldmole of the
Lagrangian perturbation of the opacityin the driving, one speaks of themechanism

3.6.2 Stochastically excited modes

Stars possessing surface convection zones undergo maalalinsby perturbations of their convective flux.
The study of such mode instabilities therefore demandsaytfer convection that includes the interaction
of the turbulent velocity field with the pulsation, which & firom straightforward.
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The power spectrum of acoustic modes caused by convectitmsmplest description consists of an
ensemble of intrinsically damped, stochastically driiearmonic oscillators, provided that the background
equilibrium state of the star is independent of time. If ongHer assumes that mode phase fluctuations
do not contribute to the width of the frequency peaks, thenkrinsic damping rates of the modes can be
determined from the linewidths of the frequency peaks. ddgdeonsider a damped oscillator forced by a
random functionf (¢):

dA dA 9
a2 + 277@ +wiA = f(t). (3.39)
In the case of a free oscillatiorf & 0) one finds as solution:
A(t) o exp(—nt) cos(wt + 9), (3.40)

wherew? = w2 — n?. In the case of a forced oscillation one introduces the Botransforms
Alw) = / At) exp(iwt)dt, f(w) = / F(t) expliwt)dt, (3.41)
which turns the equation (3.39) into
—w?A — 2inwA + w(z][l =7f. (3.42)

The solution of this equation leads to the following expi@s$or the power:

A2 — |f(w)?
Pw)=AWw)* = (g — w2)~2 T dn2u? (3.43)
o1 WP
T 4w (wo —w)2 47?2’
which implies an average power of
(Plo)) ~ Ly L) (3.44)

4w(2] (w — WO)Q + 7727

where P; is called the power of the stochastic forcing. The forcingction f(¢) may be evaluated from
turbulent flow calculations based on the mixing-length thiewr from simulations. It is beyond the scope
of these lectures to describe such details. However, we b poat that the amplitudes of stochastic modes
scale roughly ag,/M.

From (3.44) it follows that the damping rates can be estith&tam the line widths of Lorentzian fits
to the observed peaks in the power spectrum, provided tbaintte series is sufficiently long. Subsequently
one can compare the “observed” damping rates with thosdgteedoy the theoretical simulations using
different stochastic forcing models to better understémadiatter. The observational derivation of damping
rates of stochastically excited modes is still in its infagesen that relatively few firm detections have been
made so far. The current status is discussed in Chapter 6.

125



3.7 Asymptotic behaviour

The asymptotics of oscillation theory allows one to studg Hehaviour of the equations of non-radial
oscillations and their solutions for the extreme case oy Vegh radial orders: — oo. The asymptotic
theory of non-radial oscillations is appropriate for modésigh radial ordern and of low degred. It
was mainly developed in the 1980s when it had become cletittisavery useful and accurate to explain
the acoustic frequency spectrum of the Sun. Moreover, agtio@pproximations turned out to be very
appropriate for the high-order g-modes in white dwarfs en1890s.

An asymptotic analysis of the stellar oscillation equaditmbeyond the scope of this course. We only
report the results for the frequency behaviour for both gt ggmodes:

1. a characteristic period spacing occurs for high-ordenagles of the same low degréeand with
subsequent values of the radial order

AlIl l
with .
. _
AT = (27)2 ( / N (T)dr> . (3.46)
0 T

In this expressiorg is a constant that depends on the surface properties ofahe st

2. acharacteristic frequency spacing occurs for highrgedmodes with the same low degreand with
subsequent values of the radial order

onl = Ao (n + é + 6) (3.47)
with .
R odgr\

Ao = (2 /O %) . (3.48)

This gives rise to théarge frequency separation,,; = o,; — 0,—1, (see Figure 1.3).

In the framework of helioseismology, one has refined theatttaristic frequency spacing by taking
into account an additional term:

l Ao R de dr
~ A = 1 —— 3.49
Onl J<n+2+e)+l(l+ )4772%1  dr (3.49)
which subsequently led to the definition of thmall frequency separation
A R de d
Ol = Onl — o142 = — (4 + 6)—— [ =2 (3.50)

Ar20, Jo dr v

also indicated on Figure 1.3 for the Sun.

The asymptotic relations will be used in Chapters 6 and 7.
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3.8 Rotational splitting

The theoretical approach leading to the asymptotic relatidescribed above were derived under the as-
sumption of a non-rotating star. However, rotation lifte thegeneracy with respect to the azimuthal number
m, which gives rise to different frequency values for modethwie same degrdeand the same radial order
n:

Wnim = wn — mQ(1 — Cpy;) + higher-order terms i, (3.51)

with C,,; a constant depending anand! and on the stellar structure model. The const@ntis called the
Ledoux constanafter its inventor. Expression (3.51) points out thahtional splitting of the frequencies
occurs. One obtainsfeequency tripleiin the casé = 1, aquintupletfor | = 2, aseptuplefor [ = 3 and so
on.

One can shown that, for high-order g-modes, the approxamatj,; ~ 1/[I(I + 1)] is appropriate. For
p-modes(C,,; =~ 0.

Frequency spacings and rotational splitting of course iosicaultaneously. In principle, the frequency
patterns of modes in the asymptotic regime should be eagctgnise in the periodogram of high-quality
data of which the overall time base covers all beat patteHmwyever, rotation can lead to very complex
frequency patterns which are hard to disentangle, evendtaran which only a limited number of modes is
excited. This situation occurs whenever the star’s modesatr really in the asymptotic regime and/or the
star is a fast rotator.
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Chapter 4

Frequency Analysis

As already discussed in Chapter 3, the three component® dfarangian displacement vector of an un-
damped oscillator contain a time-dependent faetor(—iwt), with w = 27 the angular frequency of the
oscillation mode andl = 27/w = 1/v its period. It is therefore clear that stellar oscillatiayige rise to
periodic variations of the physical quantities. Thesediate into periodic variations of observables, such
as the brightness, the colours, the radial velocity and pleetsal line profiles. In this chapter we describe
methodology to derive the oscillation frequencies frometiseries of data of pulsating stars.

Time series analysis a well-developed field in statistics (e.g. Bloomfield 1986ndall & Ord 1990).
Unfortunately, the available classical theory is not appede to analyse data of pulsating stars because this
theory almost always assumes uninterrupted measuremardls are evenly spaced in time. Astronomical
time series usually contain large gaps amgvenly spaced datdoreover, the gaps themselves may have
quasi-periodicities, e.g. daily interruptions of singiee measurements by the sun, monthly interruptions
because of telescope scheduling based on the phases of tireamad annual interruptions because of the
Earth’s orbital motion for the large majority of stars tha¢ aot circumpolar. While techniques to treat
several types of missing data (missing completely at randaoissing at random, missing not at random) are
also well developed in statistics (e.g. Little & Rubin 200&lenberghs & Verbeke 2005), it is not advised
to apply them to astronomical time series because

¢ the oscillation frequencies need to follow a well-knownedlatinistic distribution in order to make an
appropriate reconstruction to fill the gaps, which is noteglgva safe assumption;

¢ the amount of missing data is often larger than the availdale, i.e. one usually deals with low duty
cycles implying uncertain reconstruction by interpolatas well.

The latter concern is particularly relevant for grounddshdata, even those assembled from multi-site cam-
paigns. Itis less of a problem for data assembled from sp#bemissions dedicated to oscillation studies,
where duty cycles above 90% can be achieved. However, hepeowiele methodology which is appropriate
to treat the hardest possible type of time series of pulgatiars, i.e. unevenly spaced data with a low duty
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cycle. The methods will also work for data sets with a higlydycle that are (quasi-)equidistant. In such
cases, additional classical methods, such as those bagembbRourier Transforms (e.g. Press et al. 1992,
Chapter 12; Bracewell 1999), will also be applicable and maply faster computations.

In the present chapter, illustrations of the theory are dh@sesimulated data. The reader is referred
to Chapter 2 and later chapters in these notes for extengpleations of the methodology to real modern
data.

4.1 Harmonic analysis by least squares

With a harmonic analysis we mean the search for a certain $tn@rmonic functions that best describe the
data in the least-squares sense. Least-squares fitting efl-arnewn statistical technique familiar to most

readers, which is why we consider it here as a first easy caagafametric method for frequency search
in time series of stellar oscillations, before treatingestmethods. The particular case of harmonic fitting
described here is equivalent to taking a Fourier transfofithe time series, which will be considered in

Section4.3.

Consider measurements of a quantitgt different times;: x(¢;) = z; with: = 1,..., N. Considering
the time dependence of the oscillation modes, we aim at @simgdel of the following form:

M

x(t;) = Z ay, cos[2mvg(t; — 7)] + b sin[2wv(t; — 7)) + ¢ + €, (4.1)
k=1
describing the variations due fd oscillation modes with frequencieg, k = 1,..., M which are excited

with amplitudes above the detection threshold, witan arbitrary reference epocti, b, andc the free
fitting parameters and; the measurement errors. The latter are usually assumed italépendent and
normally distributed with average zero and constant vagarf,. We come back to this assumption in
Section 4.5. We have to find a way to derive each frequefncgs well as the unknowns,, b, ande, from
the data.

4.1.1 Searching for a single frequency

Let us first assume that the time series is due to one singlenuped oscillation mode whose frequengy
we seek to find, i.eM = 1 anda; = a,b; = b. For each test frequeneywe determine the unknownsb, ¢
by means of a least-squares algorithm. The best estimatesifa: are those that minimise the quadratic
deviations between the observed and calculated values efedhe likelihood functiorl. as:

N

L= Z {; — acos[2nv(t; — 7)] — bsin[27v(t; — 7)] — ¢}, 4.2)

i=1

with 7 a fixed reference epoch. We then fiad, c by solving the set of equations:

oL oL oL
52 =0 5 =05, =0. (4.3)
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After some manipulation this results in the following vaduer the unknowns:

CpC1 SxS1
+ — Tsum
P 52
- C C 02 32 ’
2 2 “1 + °1 N
C2 52
CxC1 SxS1 .
— J4sum
p=S52 51 ¢ 52 (4.4)
- 2 2 )
S92 S92 C_l n i _N
C2 52
Cyg Sz
—C1 + —S81 — Tsum
= C2 52
4 s ’
.3 N
C2 52

in which we have used the following definitions:

N

N
co = Z cos’[2mv(t; — 7)), 82 = ZSiH2 2mv(t; — 7)),
i=1 =1

N N
Cy = sz cos[2mv(t; — 7)], s = Z xisin[2mv(t; — 7)),
N - (4.5)

N N
c = Z cos[2mv(t; — 7)), 81 = Z sin[2wv(t; — 7)],
i=1 1=1

N
Tsum = Z ZT;.
i=1

The solutions fow, b, ¢ allow us to compute the predicted valuexgft;) for the test frequency :

C

z{(v) = acos2mv(t; — 7)] + bsin[2mv(t; — 7)] + c. (4.6)

The difference between the measured valug;) and the predicted values(¢;) is called theresidual at
timet;:
Ri(v) = z; — 25(v). 4.7)

Searching for the most likely frequency comes down to seéagclor the frequency for which the sum of
squares of the residuals is minimal, i.e. searching for amim of the function

N N
Rv) =Y Ri(v) = [z — (). (4.8)
=1 =1

i i

We note that estimating the best valueagb, c for the test frequency is equivalent to searching for
the best value ofi, §, ¢ such that

xf = Acos {2n[v(t; — 7) + 0]} + ¢ (4.9)
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Figure 4.1: Simulated data (dots) representing a peridditas with frequencyr = 0.123456789 d~!.
The dotted line is a harmonic fit for this frequency. The fiiel represents a fit with the frequency
2.123456789 d~ 1.

This is perhaps a more often used harmonic model, aar@itude A and thephases of the frequency
v are readily interpretable observables that result fromddu@, unlikea andb whose meaning is more
complicated. Itis indeed easy to show tht = a? + b and2wd = arctan(—b/a).

After having determined the value df, §, ¢ such that the curve describes as well as possible the data
with the least-squares method for each test frequeneye derive the variance of the data with respect to
the best average curve. Whenever this variance is small wes foand a frequency that explains a large
percentage of the variability in the data. This percentagmiled thevariance reductioror fraction of the
variance(f,) and is defined as:

N
(zi — {Acos {27 [v(t; — 7) + 0]} + ¢})?
fo=1-=1 R :1—%. (4.10)
(i —7)° (7 —7)°
i=1 =1

with z = Y%, 2;/N. The search for a minimum d&?(v) is, in fact, a search for a maximal variance
reduction in the data. We thus assign/othe test frequency with the largest variance reduction and our
procedure at once gives us its amplitudl@nd phaseé.

As the very simple example shown in Fig. 4.1 demonstrates,can easily have equivalent solutions
whenever the observed time series is limited in number aftpand in time coverage. It is important to
keep in mind that almost equivalent solutions occur when#dwe times of measurement cover a limited
number of cycles and are taken with intervals equal to thefes#ods of the occurring frequencies.
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4.1.2 Searching for multiple frequencies

In principle, we could now repeat the previous derivatiomider to find the most likely set of frequencies
vk, k = 1,..., M of the model fit in Eq. (4.1) from the data. Unfortunately, we anable to predict the
amplitude of excited oscillation modes in a star. Thus, wedioknow the numben/ of oscillations that
will be excited with detectable amplitude in the observetktseries. This implies that this discrete unknown
M has to be estimated along with the frequency search itself.

Estimation of discrete parameters is a very poorly develdpd in statistics. This is a mathemati-
cal problem with very important implications for many fiel@gsnong which is asteroseismology. Besides
causing a problem here for frequency determination, a ainsituation will occur in Chapter 5 on mode
identification, where the discrete wavenumbers of eachefi#ftected oscillation modég m, n) have to
be estimated. A consequence of this is that frequency dadtysasteroseismology is unavoidahiata-
driven This is a huge disadvantage from a statistical viewpoimhgared with the situation where we
would be able to estimate simultaneously the number of &Bgies present in the data and their value from
a model description.

We cannot but conclude that the search for multiple osmhafrequencies necessarily must be done
by means of some kind gfrewhiteningprocedure by which we mean that, at each stage of the frequenc
search, a fit with the selected frequency is computed andssatbd from the data values before a subsequent
frequency search is started. The statistical interpmiatif such a data-driven approach is much more
challenging than one based on a model-driven treatmertytunttely.

A prewhitening strategy thus has to be chosen to performréguéncy analysis. The simplest such
strategy is to prewhiten the data according to Eqs (4.9) dri@) @fter the frequency; with the largest
variance reduction was derived and to start a new frequaemalysis to search far, in the residuals, and so
on. One thus determines, at each stage of prewhiteningathessofvy,, Ay, 0.

As pointed out by Vanicek (1971), one can improve this pdure by fitting the original data at each
step with all the frequencies found up to then (he termed therown constituents”), fixing only the fre-
quency values and leaving their amplitudes and phases \ftiilebwn constituents”) free during the whole
procedure. Vanicek showed that these unknown constifulziermine “systematic noise” which is present
in the data, besides the additional random noise, and thargrinciple no need to fix them while searching
for additional frequencies.

A rather evident next step is then to recompute a least-equsniution according to Eqg. (4.1) at every
prewhitening stage, starting each time from the origingh @dad leaving also the frequency valugsfree
in making the fit, using the outcome of one or several diffefeguency search methods described here as
a good starting value. This procedure is most commonly use@days in asteroseismology. It works fine
as a prewhitening strategy and as a method to derive the ikelst Values for the frequencies, amplitudes
and phases, provided that good starting values for the érezgies, already very close to their true values, are
known and that a sufficient number of data points is availalillk respect to the degrees of freedom of the
fit. As a rule of thumb we advise against making such a fit foadats with fewer points than ten times the
number of degrees of freedom. Additional requirements @ fulfilled for such a fit to be meaningful.
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We discuss these in Sects 4.3 and 4.4 and the reader is stramhgbed to take these into account. Error
estimation is treated in Sect. 4.5.

4.2 Non-parametric frequency analysis methods

Non-parametric methods imply that one does a@triori assume a chosen model function to describe the
data. This is in contrast to the search for the maximal vagaeduction described above, as well as to any
method based on Fourier transforms discussed further oerentrarmonic model functions are assumed
from the start.

4.2.1 String length methods

Thestring or rope length methodare also based on the principle of least squares. Lafler & Em(h965)
initially introduced such a method with the purpose to datee periods of RR Lyrae stars from small sam-
ples of visual data. Clarke (2002) presented a clear recahiation of these methods and proposed their
generalisation to the application for multivariate date so-called Rope Length Method. This method-
ology is very suitable to analyse time series of multicolphotometric observations or of radial velocity
variations from different spectral lines. The prime disautage of these methods, the long computation
time needed, has largely been reduced with current speedadémm computers, except for very rich data
sets. Nevertheless, the string and rope length methods @eh lass often applied compared with those
discussed in the following sections. This has to do with thutitade of false peaks compared with Fourier
methods, as we will show below. On the other hand, the noarpetric methods may be preferred to search
for periodicity in strongly non-sinusoidal variations. &3® not only occur for large-amplitude pulsators, but
also for eccentric and/or eclipsing binary lightcurves.

Consider again measurements of a quantitt different timesg;, z(¢;) withi = 1,..., N. Thephase
¢(t;) corresponding to the frequeney or to the periodI = 1/v, with respect to the reference epoclis
defined as follows:

o(t) = Ivtts - 1) = [ 7). @11

where[y] stands for the decimal part ¢f increased by one if is negative. From this definition it follows
that0 < ¢ < 1. A plot of the observations:(¢;) as a function ofs(¢;) is called aphase diagram An
example for the simulated data shown in Fig. 4.1 is providegig. 4.2.

For each trial frequency, taken from a grid of test frequencies, the original dgta) are first assigned
phases(t;), which are then ordered in ascending valug ¢, ...,¢n < 1. For each trial frequency, the
original Lafler-Kinman statistic performs a “string lengjtsummation of the squares of the differences
between the consecutive phase-ordered values. Followarge3(2002), we advise the use of the following
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Normalised Observable

¢t

Figure 4.2: Simulated data from Fig. 4.1 drawn in a phaserdiagvhere the arbitrary reference epach
was chosen such as to place the maximum of the observablasggph- 0.25. The full line is the phased
fit for the frequencyd.123456789 d~! or for 2.123456789 d~! shown as dotted and full line in Fig. 4.1.

modified string length statistic:

OgL(v) = = X , (4.12)

wherez is the mean value of the measurements afihy 1) is taken to be equal to(¢;). The sum in the
denominator of Eq. (4.12) is nothing but the product of theahar of measurements with the variance of the
data set such th&gy, is independent of the noise in the data. Moreover, the fétesults in a normalised
statistic with continuum level unity. If the time series tains periodicity with frequency, then©gy, will
reach a minimum at while fluctuations in®g, due to the noise will result in a levélg, ~ 1.0.

A typical example of a simulated single-site time series stfaa discovered as a new variable is shown
in Fig.4.3. These data represent the following situatiohe @iscovery of the variability is made in one
season. A few follow-up tests are being done some months ¢aefirming the variability, and a dedicated
campaign is then undertaken to derive the periodicity inntivet year. The simulated data have a standard
deviation of 0.696 and a variance of 0.485. The white noiseéatandard deviation of 0.01111 and a
variance of 0.00012.

The string-length statistic of this prototypical time saris shown in Fig. 4.4. One notices clear minima
with a daily repetition, the minimum sy, occurring at the input frequency 5.123456789 dA forest of
peaks also occurs for frequencies below2.dThe occurrence of minima at subharmonics of the frequency
and of theiraliases(see Sect. 4.3 for a definition) is a general property of tagidency analysis methods
based on phase diagrams (see, e.g., Cuypers 1987 for asiegtdiscussion) and is considered as one of
its disadvantages.
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Figure 4.3: Simulated gapped data representing a typioal $eries for a single-site campaign of a pulsating
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Figure 4.4: Statisti®g, according to Eq. (4.12) of the data shown in Fig. 4.3.
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Figure 4.5: Phase diagrams for six minimadg;, found from Fig. 4.4. The phases for the data (dots) and
harmonic fit (full lines) are computed for 5.123d(upper left), 4.121d' (middle left), 7.129d' (lower
left), 2.562 d"! (upper right), 1.021d"' (middle right), 0.244d' (lower right).

137



After having computed®s;, comes the task to try and disentangle which of the minimaeisehl oscil-
lation frequency. In principle, this is the one correspagdio the deepest minimum. In practice, however,
the interaction between the effects of the time sampling(aad-white) noise may imply a minimum g,
deeper than the one for the true oscillation frequency. rtlma helpful to draw phase diagrams of the few
deepest peaks iBg;, to discriminate the true frequency from false ones, besidesparing their variance
reductionf, from a least-squares fit using the peak values of the camditaiuencies as starting values for
the fit. In Fig. 4.5 six such phase diagrams are shown. Thege ihavident, in this prototypical example,
that 5.123 d! is the true frequency. Note, however, that also its aliagueacies near 4.121d (middle
left) and 7.129 d' (lower left) give “good” phase diagrams in the sense thap#redic variability is clearly
present in them. These phase diagrams also make it cleahetsgring-length statistic leads to a minimum
for them. One should therefore not mistakenly belief thatftequency is real as soon as clear variation is
seen in its phase diagram. All apparently significant deapma in the statistic (or high peaks in Fourier
analysis, see further) will produce phase diagrams in whiehcan see the variability, even if the selected
frequency is a noise peak. The right panels are those fooh#tk true frequency, and for frequencies due
to a mixture of effects due to harmonics, the noise and thekagn From the upper right panel it is again
apparent why subharmonics of the true frequency also deil@wv value of the string-length statistic. The
examples for the other two spurious frequencies show tlegbllase diagram can be a very useful tool. The
phase coverage of the data and the amplitude of the fit wiffentdo the peak-to-peak variation is bad for
these diagrams. This would also have been clear from asgastres fit as it would result in an insignificant
amplitude and a low variance reductignfor these cases. If the data are not well-spread in phasierfived
data sets, but cluster narrowly at particular phases attti#orariability occurs mainly at phases where there
are no data points, then one is probably also dealing witlisa faequency. These issues are important to
check for and justify the use of phase diagrams besides datimu of f;,.

The behaviour 0Bg;, was studied extensively from simulations by Clarke (2062yyhom we refer for
more information. He computed cumulative distributiondtions for©gy, in order to develop confidence
levels for it as a function of data sampling and size. His wuaginly focused on small time series, though.
This is also the case for the evaluation of earlier versidngifeerent string length statistics as those by
Lafler & Kinman (1965), Burke, Rolland & Boy (1970), Renso®18) and Dworetsky (1985).

With the goal to perform empirical mode identifications,easseismologists often gather multicolour
observations of their target stars. The measurements fereit filters of a photometric system are usu-
ally taken as close as possible in time, or ideally simulbaisty, as explained in Chapter 5. Most often,
however, the frequency analysis is performed for the diffecolours separately. One then either accepts
the frequency value derived from the filter that delivered tiighestsignal-to-noise ratio(S/N ratio), or
determines a weighted average frequency based on the \aiteesed for the different colours. The same
is true for observables derived from different spectratdinwhich are of course necessarily simultaneous.
Although it is in principle possible to extend most frequeganalysis techniques to multivariate data (see
Sect. 4.6), such an endeavour is usually not undertakerertheless, using a weighted statistic has signifi-
cant advantages in some cases, as we will discuss belowefpatiametric methods. It is a major advantage
of the string length methods that they allow straightfordvgeneralisation to a multivariate treatment.

The brightness variations in different photometric bande tb oscillations are strongly correlated.

Depending on whether or not there are phase differencesebatihe colour curves of the pulsating star,
the measurements plotted in a brightness-brightnessadiiafpr two different filters lie on a straight line or
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an ellipse-like structure. They can hence be connected bype* consisting of various connecting strings,
whose squared length can be added, again after assigningsa pheach measurement and ordering the
data according to increasing phase. The same reasoningeaapdated for all the = 1,..., Z filters in
which a photometric time series has been obtained or foZtlpectral lines from which a radial velocity
has been derived. Clarke (2002) proposes the followingsstator multivariate time series:

NIk]
7 Z [z (Bi41) — 2il(e)]? B
OrL(v) = g = X NZ[J@[I@] - (4.13)

> [zn(¢i) — 7w

i=1

wherezx(¢;) is the magnitude in filtek or radial velocity from line profile: for each of the measurements
taken at timegy, ..., ty after re-arranging the data such that . .., ¢ increases from 0 to 1 for each
of the test frequencies. It is rather cumbersome, however, to interprete the ouécofrthis statistic for
extensive multicolour asteroseismic time series due tmtimeerous false frequency peaks.

4.2.2 Phase dispersion minimisation

The Phase Dispersion Minimisatigror briefly PDM method, is another non-parametric approdtias
introduced as an improved method compared with string lemgithods. One searches for the frequency by
requiring that the spread of the data around an average tutive phase diagram reaches a minimum. The
average curve is determined from average values of the wlalifférent phase intervals. We describe here
the method as developed by Stellingwerf (1978).

For each test frequenay one divides the phase intervél 1] into B equal sub-intervals, calldoins
The bin indexJ; = INT(B¢;) + 1, with INT(z) = = — [z], determines to which bin each observatig; )
belongs. Suppose that thie-th bin containsV; measurements. The average value of the data, the sum of
the quadratic deviations and the variance for this bin are

N

Tij 4.14
; N (4.14)

N; N;
‘/}2 — Z ((L‘U — (L_—])Z = Z — N (L'j , (415)

=1 i=1

V2

s7 = N, L o (4.16)

with z;; the observation:(¢;) with bin index.J; = j. The analogous quantities for all dam,V’? and s?,
are defined as

N

N xT;
fzzﬁ, (4.17)
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V2= (2, -7 =) 2} - N7°, (4.18)

= , 4.19
8= (4.19)

For the B bins we introduce the following quantities:

B
Vi=> V7, (4.20)
j=1
B
V=Y N;(@-7)°. (4.21)
j=1
We hence find that
VZ=V3i+ V2 (4.22)

The differences between the bin averaggsind the average of the entire data set are small whenever
the test frequency is not present in the data. In that &gsis small compared wit’2. In the case where
the true frequency is close to the test frequency, the bireges are very different from the overall average
and V2 is comparable witf/2. The search for the most likely frequency in the data henceesodown to
the search for a maximum &f2, which is equivalent with a search for the minimumiég.

The patrtition of the phase diagram inkbequal bins can have disadvantages. It may very well happen
that some bins are almost emptydfis chosen to be large or if we have only few data points withraquaar
time spread. For this reason one makes use of a more conegligialcover structurg B, C'). The phase
diagram is divided intd3 bins, each of length/B. This partition is then applied' times, such that each
partition is shifted oven /(B.C') with respect to the previous one. The incomplete bin neasgHais
completed with the data of the corresponding phase inteaft¢ = 0. In this way one covers the phase
diagramC' times, and each partition contaifsbins. Such a bin structure allows one to make sure that each
observation belongs to at least one bin. Further on we dehetmtal number of bin®& x C by Be.

We subsequently introduce the statigfigpyi:

Bc Be
(z - 1) si)/(z 5, —Bc)
=1

OppM = — , (4.23)

N
(Z (@i — T)2>/(N -1

i=1

wheres§ is defined as:

2=l (4.24)
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Figure 4.6: Statisti©ppy; according to Eqg. (4.23) of the data shown in Fig. 4.3 usingif &nd 2 covers.

With the notation introduced we can also wridgpy; as:

Be
Vec! (;Nj_Bc) V3. /C(N - B)
Opon = V2/(N —1) T V(N 1)

(4.25)

A minimum in the ©ppy—statistic corresponds to a minimum B, and so this statistic is suitable to
search for frequencies in the data. For each test frequdratyid not present in the data we will find
GPDM ~ 1.

The ©pp\—statistic defined in (4.23) was introduced by Stellingwé@®48) and is a generalisation
of the © statistic used by Jurkevich (1971) which is only based os.bilurkevich’s method is therefore
equivalent to Stellingwerf’s fo€ = 1.

The more covers one uses, the larger the probability of fqhttie true frequency, but the longer the
computation time. In practice one usually takedbetween 5 and 20, so that sufficient data points per bin
occur in order to guarantee a well-determined bin averagpical values for the number of covers is from
1to 10.

In Fig. 4.6 we showOppy for the time series shown in Fig. 4.3. Comparing this siatisith © g7,
shown in Fig. 4.4 highlights a much “cleaner” statistic. Tgaak structure is similar, except for the low
frequency region where we see much less false peaks for tteveBsion of the statistic. This is due to the
far better ability of©ppys to judge the spread of data within the bins with respect tatlezage bin value,
compared witt© g 's evaluation of the string lengths across the phase diageawhole. This comparison
at once makes it clear why users prefer the PDM statistic grif@non-parametric methods. Subharmonics
still occur prominently, though.

Far more in use in asteroseismology these days are, howesgrarametric methods to which we turn
now.
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4.3 Parametric frequency analysis methods

All the methods described in this category are based upornidf@analysis, i.e. one fits a harmonic model

function to the data. One must therefore keep in mind thaetimeethods will do a very good job as long as
the signal consists of a combination of sine (or cosine)tions. Of course, any function that has a more
or less smooth behaviour can always be approximated by adf@eries, such that the applicability of the

parametric methods discussed here is very good, partigdtarfrequency search. The methods are less
suited to analyse time series with strong discontinuousaehr.

In frequency analysis based on Fourier transforms one afoes$ a function of test frequencies in
such a way that it reaches an extremum for the test frequdratyis close to the true frequency present in
the data, just as for the non-parametric methods. The phkhisofunction is usually called theeriodogram
rather than the terminology of a statistic used in the namupetric methods.

We first recall some useful properties of Fourier analyssubsequently introduce different types of
periodograms in use today.

4.3.1 The continuous Fourier transform of an infinite time seies

The Fourier transformof a functionz(¢) that fulfils the necessary conditions of continuity and é&néss is
given by
“+00
F(v) = / x(t) exp(2mivt)dt. (4.26)
—00
Whenever we perform this transformation, we move from theetdomain to the frequency domain. The
Fourier transform of the constant function 1, e.gDisac’s delta function

+oo
i(v) E/ exp(2mivt)dt, (4.27)
which has the following properties:
“+oo “+oo
| swdr =1, [ s - 0g0)dv = g(¢). (4.28)

Frequency determination from Fourier analysis is basedheffict that the Fourier transfori(v) of
a functionz(t), which can be written in terms of a sum of harmonic functionthfvequencies, ..., vy,

and amplitudesiy, ..., Ay :
M

x(t) = Z Ap exp(2mivgt), (4.29)
k=1
is given by
M
F(v) = Z Apd(v — vg). (4.30)
k=1
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Wheneverz(t) is a sinusoidal function with frequeney, the Fourier transform of is only different from

zero forv = v, andv = —vy. The Fourier transform of a multiperiodic functiarit), which is the sum of
M harmonic functions with frequencies, . .., vy, is a sum off—functions which are different from zero
for the frequenciestvy, . .., fvy,.

4.3.2 The continuous Fourier transform of a finite time seris

In practice, we never have the luxury to work with infinite tooous time series. Let us go back to the
definition of the Fourier transform of a signa(t¢) given in Eq. (4.26) and consider the case of a signal
xz(t) = Acos[2m(v1t + 1)] for which we have observations from= 0 until ¢t = 7'. In that case, the
continuous Fourier transform is

T
F(v) = /0 x(t) exp(2rivt)dt
= g /OT exp(2mivt) {exp[2ni (v1 t + 01)] + exp[—27i (11 t + 01)]}

_ A {M [exp[2ni (v +v1)T — 1] +

2 27 (v+1y) (4.31)

exp(—2midy) .

m [eXp[27T1 (l/ — I/l)T — 1]}

sin[Z2m (v + 1))
27T(V + 1/1)

=A {exp[i Tr(v+v1) + 27midq]

expiTn(v —v1) — 2midy]

sin[Z2m (v — 11)] }

27(v —11)

The periodograms are often displayed as power periodiagrae| F(v)|? is plotted as a function of
frequencyv. In this case, their shape is determined by the function

: 2
sinc(z)? = (Slzx) . (4.32)
We strongly prefer to work with amplitude periodograms, kwer, in which caséF'(v)| is displayed. This
will be done throughout the book, except for some figuresrigkem the literature that display power.
For simplicity we omit the notation of absolute values antend(v) on the periodograms. The function
sinc(x) and its square are graphically depicted in Fig. 4.7. Whenéve> 1/v;, the two frequency peaks
following from Eq. (4.31) centred atv; andwv; are well separated such that it is justified to limit displdy o
the transform ta,; > 0 as we will do throughout the book. In this simple case, theima of the sinc or
siné and its centre of gravity occur exactlyat
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Figure 4.7: The sinc function (left) and its square (right).

As afirst roughmeasure of the frequency accuracy, we could consider thianwfdhe sinc peak, i.e.
~ 1/T. This is sometimes termed thRayleigh criterion In practice, however, any observed peak will
have a much more complex shape due to observational noithes fimite number of measurements over the
interval [0, 7], and to multiperiodic beating between oscillation modesiiteng in frequency interference.
As stressed by Schwarzenberg-Czerny (2003), the Rayleitgrion only provides dower limit to the
accuracy reachable. The true accuracy is necessarily depeon the S/N ratio. The realistic case thus
requires a more sophisticated estimate of the frequenoy, @rhich will be treated in Sect. 4.5.

Whenever simultaneous oscillations ocet(t,) will be of a form like Eq. (4.1). In such a situation, the
frequencies/, . .., v can only be well separated provided tiats> 1/|v; — v;| for all pairsi # j. When
this condition is not fulfilled, interference occurs in therjpdogram and the ability to identify the correct
frequency values depends largely on the phase differerteeebe the modes as well as on their amplitude
ratios. Loumos & Deeming (1978) first studied tresolving powerof a periodogram and derived that
the frequencies; andv; are separated whelyT' < |v; — v;| < 1.5/T, butthe maxima do not occur
necessarily at the real frequencieshey also concluded that the difference between two pesjuéncies
in the periodogram and the real frequencies are negligilenaver|v; — v;| > 2.5/T, because the first
sidelobe of one sinc function no longer interferes with thaimmpeak of the other sinc function. This
rule-of-thumb was further elaborated upon by Christeri3alsgaard & Gough (1982), who made a deeper
investigation of the resolving power in a periodogram f@og on solar-like oscillations. They came up
with a similar condition for accurate frequency separatdf; — v;| > 2/T covering all cases of relative
phases of the modes.

Things get more complicated when the time series does narame time interval0, 7], but is a

concatenation of continuous data spread over severatdtifféime intervalq0, 73], [T, T5], [Ty, T5], - - -,
i.e. in the case ofjappeddata. The degradation of the Fourier transform from dreawhit is not even yet
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Figure 4.8: Fourier transforms of an almost infinite noiseléme series with one million points spread over
thousand days for a harmonic signal with frequency: 5.123456789d~! (top), of a noiseles time series
with ten thousand points and a finite time span of 10 days (ijidthd of a gapped finite noiseless time
series with 4472 points and a time span of 10 days (bottom).
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Figure 4.9: Fourier transforms of a noiseles time seriessifa function with frequency 5.123456789'd
generated for a finite time span of 10 days and containing ange Igap from day 4 until day 6 (top) and
from day 2 until day 8 (bottom).

reality in frequency analysis is illustrated in Fig. 4.8.this figure, we compare the Fourier transforms for
an almost infinite noiseless time series (1 000 000 data gspriead over 1 000 days) with one of a finite
noiseless series of 10 000 points spread over 10 days andi@mgngapped finite noiseless series of 4472
points with a total time span of 10 days, all for a simple ndise sinusoidal signal in the approximation
of continuous measurements (i.e. still far too optimistie graph speaks for itself and makes one realise
why frequency analysis of astronomical time series is senaitly difficult even if the data are close to
being noise-free.

In reality, the gaps in data sets are not randomly distrihute the simple case with one interruption
during a timeAT, the sinc function determining the periodogram (see Fif). will be modulated by a
termcos[AT (v — v1)]. This modulation factor introduces fine structure in théqueygram peaks whose
relevance depends mostly on the valueddfandT'. Two examples are provided in Fig. 4.9 where the time
series used in the middle panel of Fig. 4.8 was interruptedefspectively two days from day 4 until day 6
and for six days from day 2 until day 8. These interruptionplyma strong rise in the height of spurious
frequencies that are due to the gap compared with the situathere there is no interruption in the data
(middle panel of Fig. 4.8), particularly when the gap is targ hese spurious frequencies are terrakas
frequenciesand will be defined in the following section. In real data, ¥héue of the modulation factor will
be affected by noise and may differ substantially from a $éngpsine value, even if there is only one large

gap.
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4.3.3 Real life: the discrete Fourier transform

For a real data set, the functiarit) is only known for a discrete number of time poirttsi = 1,..., N.
We are thus unable to determine i$v). Following Deeming (1975), we introduce tkéscrete Fourier

transformof the functionz(t):
N

Fy(v) = Z x(t;) exp(2mivt;). (4.33)
i=1

This transform can be calculated whenever fheneasurements of the functiarit) are available.

It is clear thatFy differs from F, but we can associate them with each other throughwiinelow
functiondefined as

N
wn(t) = % >t~ t). (4.34)

The window function and the properties of the Dirac funciidiow us to transfei’yy to an integral form:

Fy oo :
~ = z(t)wn (t) exp(2mivt)dt. (4.35)

The discrete Fourier transform of the window function idexdithespectral window/y (v) :

W (v) Z exp(2mivt;). (4.36)
1=1

The discrete Fourier transform can be written as the cotieolwf the spectral window and the Fourier
transform:
Fn(v)/N = (F « Wx)(v). (4.37)

If F(v) is ad-function at frequency,, then Fy(v)/N will have the same behaviour as the spectral
window Wy (v) atvy becausd'y (v)/N = Wy (v) % 0(v — 1) = W (v — v1). Comparison of théV ()
with Fy(v)/N near the frequency, thus helps one to conclude if the frequengymay be real or not.
WheneverF'(v) is a sum ofM §—functions we have:

M
Z I/—Vk

(v) *0(v — vy)
1 (4.38)

(v — )

W
"uow
ZZ exp(27i (v — vg)t;).

Fy(v)
N

[
NgE %
5

I
2|H i M:

Hence,Fy(v)/N is the sum ofM spectral windows that are all centred around the differeegfencies
v. Due to the fact thaiVy (v) can differ from zero at frequenciesthat are not necessarily equal to
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v, k=1,..., M, we expect the presence of interference. This will givetesmaxima in the periodogram
that do not correspond to real frequencies. These maximdugréo noise and/or the times of observation,
which introduce spurious frequencies in the periodogranhis phenomenon is calledliasing when it
concerns peaks due to the times of measurement and therisdseficies are termeias frequenciesThe
latter can be recognised as maxima in the window functioreguencies different from zero. This property
of the alias frequencies occurring in the spectral windoghhghts one of the big advantages of Fourier
analysis in frequency searches.

The question of course arises which alias frequencies as¢ common? Let us assume for simplicity
that we are dealing with measurements that are evenly spaged 7 + jAt. In such a case of evenly
spaced data, the spectral window is given by:

N

1 . .
Wn(v) = N ]2 exp(2mivT) exp(2mivjAt)
L e omim) SS exo(2mi AL (4.39)
=% exp(2mivT) ]2::1 exp(2mivjAt)
. . sin(rv N At
= exp(2mivT) exp(mivAt(N + 1))%,
in which we have made use of
b 1N
> = (4.40)
; 1-=2
7=0
with z = exp(2mivAt). ForT = —(N + 1)At/2 we obtain
_ sin(mrNvAt)
The absolute value of this function is periodic with perigd\¢ because
n
‘WN (V + E)’ = ’WN(V)‘ . (4.42)

The functionF (v) hence reaches a maximum in an infinite number of frequengies j/At. Evenly
spaced data therefore give rise to a strong aliasing effect.

The situation of unevenly spaced data does not allow one rivedthe alias frequencies in such a
straightforward analytical way. However, one can show lgusations that certain periodicities in the
observation times, such ast = 1 sidereal day, 1 sidereal year, etc., will also give rise iasdrequencies.
We call these thene-day aliasoccurring with intervals oft:1, &2, ...when the frequency is expressed in
d~! or, equivalently, with intervals of multiples af11.5741;:Hz. Theone-year aliasccurs with intervals
of 0.00274 d* = 0.0317 uHz, etc. Thus also aliases with intervals of 1.00274 &= 11.6225 uHz occur
for data sets spanning more than one year. Such an aliatusrweas already very clearly seen in Figs 4.4
and 4.6.

The total time span of the data, as well as particular gapkamt will give rise to additional alias
frequencies which are due to uncertainties in the numberydes in or between the gaps. Moreover,
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Figure 4.10: Spectral window of the data shown in Fig. 4.3 moated according to Eq. (4.36).
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Figure 4.11: Discrete Fourier transform of an noise-freeusdid with amplitude 1 at frequency
5.123456789d' for the sampling shown in Fig. 4.3.

regularity in the sampling with intervals close to (a mu#ipf) the intrinsic periodicities of the star will
inevitably hamper the discrimination between the true dssgies and their aliases. An example of the
latter situation occurred in Figs2.17 and 2.18, where paaksand1 — v are almost indistinguishable in
the single-site ground-based data of the slowly pulsatirgjags HD 74195 and HD 123515 which exhibit
periodicities near one day.

All these caveats due to aliasing should be checked cayeffulany frequency analysis through a
detailed study of the spectral window. We show in Fig. 4. 0dpectral window according to the definition
in EqQ. (4.36) of the time series shown in Fig. 4.3. Spectraldews computed according to Eqg. (4.36) are
symmetric with respect to zero frequency. The daily andlyeaiasing are apparent in this plot. Other
examples were given in Figs 2.5 and 2.43 in Chapter 2. Nexeth, we advise to take a different approach
in practice. Indeed, for real data it is more informative lat phe discrete Fourier transform of an artificial,
noise-free sinusoid at a determined frequency (or fregashcThe reason is that the negative part of the
discrete Fourier transform may have an effect on the pesfiart of the periodogram. The latter approach
therefore gives the best guidance to discriminate real fiadae frequencies. This approach is represented
in Fig. 4.11 for the data shown in Fig. 4.3, in which the digseréourier transform of an artificial sinusoid
computed at the sampling of the time series is shown. It gigeat once the complete picture of how
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Fx(v) would look like if only this one frequency is present in theadaln the current artificial example
with only one periodic signal, the discrete Fourier transfaf this artificial noise-free sinusoid will be
almost indistinguishable from the one of the observed tiemes, since the latter had white noise with a low
standard deviation of only 0.0111. For another exampleénctise of a multiperiodic pulsator we refer to
Fig. 2.22 in Chapter 2.

All these examples, and numerous others in the literatusgedisas simulations, lead one to the fol-
lowing conclusions. The heights of the alias peaks and ohtige peaks in the spectral window express
the lack of knowledge from the data set. One must realiseltbidi the noise and the true signal have an
amplitude and a phase and that both are convolved in compleasidf space. The noise signal may thus add
to or subtract from a real frequency peak. Noise may also@ddgubtract from an alias peak. Finally noise
may do nothing to real peaks. We therefore advise to studgghetral window in detail in any frequency
analysis before making firm conclusions on frequencies.

So far, we have not discussed the practicalities of thevataf test frequencies one should consider.
This can and should be derived from the data set. It is cusiotoaake zero frequency as a lower limit,
since the limiting case of an infinite oscillation periodhem covered. The highest useful frequency to search
for is the so-calledNyquist frequencyyy,. One can show thaty, = 1/2At, with At the sampling step in
the case of evenly spaced data. Some authors thereforeausartte formula, taking a&t the average of
all the sampling intervals in the case of unevenly spaced. datpractice, however, the Nyquist frequency
can be quite different from this value if numerous large gapd/or serious undersampling or oversampling
occur in the data set. In that case, it was shown by Eyer & BHlitli1999) that a better approach to obtain
the Nyquist frequency is to takey, = 1/2p with p the greatest common divisor of all differences between
consecutive observation times. This is rather cumbersorbe tised as daily approach in practice. A good
and fast way to make a realistic estimatg, in the case of unevenly sampled data, appropriate whenever
the deviation from equidistance is not too severe, is to takanverse of twice the median value of all the
time differences between two consecutive measuremenk®e @fitire data set.

One should not blindly believe that peaks occurring abogeNkiquist frequency in the periodogram
cannot correspond to true frequencies. It may very well bédrparticular frequency occurring as highest
peak in the computed periodogram is, in fact, an alias ofrile frequency which occurs abowg,. This
would still allow the detection of the true frequency, by ifogtion, eventhough it occurs above,. In
any case, such a situation would call for further obsermatiat higher sampling rate to rule out the original
low-frequency aliases. If the type of star is known, one daa accept the frequency outside of the interval
up tovny, on astrophysical arguments.

As we have shown, the irregular sampling of data usuallyies@ complicated response in the Fourier
transform. It can alter the peak frequencies and the andpktwf the signal, besides introducing the occur-
rence of very large false peaks. Several different defimitiof periodograms have been devised to try and
overcome impracticalities in the Fourier transform. Wecdss some of them below.
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4.3.4 The classical periodogram

Assume we have a time series df measurement$t;, z(¢;)). The classical periodogranwas defined
originally in meteorology (Schuster 1898) and is writterf@®ws:

N 2

Z x(t;) exp(2mivt;)

1=1

1

Py(v) = PN = 1

. N 2 N 2 (4.43)
=¥ { (Z x(t;) sin(27wti)> + (Z x(t;) cos(27wti)> } .

i=1 i=1
If the signal we are searching is a pure harmonic one of tha fictt;) = A cos(2m11t;), the periodogram
will have the value

2 2
1 [ 1 [
Pn(11) = N {;Acos(%'ylti) sin(27ﬂ/1ti)} + N {;ACOSZ(QWWQ)} (4.44)
at frequency,. For largeN we have
N N
Z cos(2murt;) sin(2mv1t;) =~ 0, Z cos?(2nvit;) ~ N/2, (4.45)

i=1 =1

and soPy (v1) ~ A2N/4 for N — oco. Forv # vy, positive as well as negative terms occur and these will
largely compensate each other. The overall sum will thust|gor such a test frequency.

The frequency for which Py (v) is maximal is the most likely one present in the data. Foraefiitly
extensive data sets, e.g. those with a couple of hundredpdatts (as in Fig. 4.3, e.g.), the approximation
Py(v1) =~ A2N/4 is reasonably good. This is why we advise to consideratiglitude spectrumather
than the power spectrum, i.e. to plot and analyse

Aw) = |2 i (v) (4.46)

as a function of test frequeney After all, the amplitude of a mode is what we hope to interpréerms of
the physics of the star.

4.3.5 The Lomb-Scargle periodogram

The periodogram introduced by Lomb (1976) and further imedoby Ferraz-Mello (1981) and Scargle
(1982), is defined in a different way than the classical pkrgvam. We present here the formulation by
Scargle (1982) and speak of themb-Scargle periodograms it is often done in the literature:

N 2 N 2
{Zw(ti) cos[2mv(t; — T)]} {Z x(t;) sin[2mv(t; — 7-)]}

L= i
PLS(V):5 1N + 1N . (4.47)

Z cos?[2mv(t; — )] Z sin?[2nv(t; — 7)]

i=1 =1
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Figure 4.12: Lomb-Scargle periodograms according to E47{&or the data shown in Fig. 4.3.

In this expression, the reference epacis chosen in such a way that

N
Z cos[2mv(t; — 7)]sin[27v(t; — 7)] = 0, (4.48)
i=1

or, equivalently
N
Z sin(4mvt;)
tan(4nvT) = Z:Nl— (4.49)
Z cos(4mvt;)
i=1

Using the simplifications in notation introduced in Eqgs j4tbe Lomb-Scargle periodogram is written

2 2
Pus(v) = {Cﬂﬁ n sx} . (4.50)

2 Co S92

as:

It takes the valuei® N/4 for a harmonic signal with frequeney and for sufficiently largeV. The amplitude
spectrum based on the Lomb-Scargle periodogram is therd&imed by Eq. (4.47):

4PLs(I/).

ALs(I/) = N

(4.51)
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We show in Fig. 4.124;s(v) for the simulated data shown in Fig. 4.3. The median valudefsub-
sequent time differences for this data set amounts to 0.042ath that the Nyquist frequency is estimated
to be near 42d'. The whole Lomb-Scargle periodogram up to that value is shiovihe top panel, while
the lower panel is an enlarged section focusing on the rggidn] d—! where significant amplitude occurs.
It can be seen that this lower panel is indeed almost indjsti#mable from Fig. 4.11 as predicted for this
monoperiodic signal with white noise of low standard deerat Compare this with the idealised situation of
having a continuous Fourier transform of an infinite noisglsignal at one frequency with which we started
this section (upper panel of Fig. 4.8)!

One of the reasons to have introduced the Lomb-Scargledmgyiam is that its value does not change
when all time values; are replaced by; + T because of the definition ef Another reason has to do with
hypothesis testing (see Sect. 4.4).

Horne & Baliunas (1986) and Schwarzenberg-Czerny (199v¢ lmoved the Lomb-Scargle peri-
odogram to be equivalent to the variance reductfprobtained from fitting a sinusoid at test frequencies
by least squares, as explained in Sect. 4.1. It is thus gaddipe to fit harmonic series of sinusoids at test
frequencies to data to search for non-sinusoidal signareetls This proof implied that the original moti-
vation for the use of non-parametric methods as more effittmis to detect non-sinusoidal signals than
parametric ones weakened considerably, particularly mmesihey require a lot more computational time
and introduce a complex spectrum with subharmonics andalases.

4.4 Significance criteria

During a frequency analysis, one of course needs to adoppacsterion to decide whether or not a candi-
date frequency is stilignificantor not. For obvious reasons, this aspect of frequency asdigs received

a lot of attention. To derive the significance of a frequenog aneeds to know the distribution function of
the employed frequency statistic. As a consequence of ttaediteven approach of the frequency analysis
methods outlined above, one is unable to construct ap@atepdistribution functions based on theoretical
principles.

Stellingwerf (1978) and Cuypers (1987) derived that thaifitance of©ppy; can be related to an
F—test. However, Schwarzenberg-Czerny (1997) pointed aitttie sensitivity of the significance test
proposed by these authors is poor and he demonstrate®thay rather follows ag distribution. It was
shown by Scargle (1982) that the distribution function tog tomb-Scargle periodogram belongs to the
exponential family, but it has to be kept in mind that thisigdrue for NV — co. Moreover, the author could
not come up with a simple treatment of the statistical prisgerof Aygs. Schwarzenberg-Czerny (1997)
came to the important conclusion that all methods outlimettiis chapter are mathematically equivalent for
a given sampling, binning and weighting pattern.

Schwarzenberg-Czerny (1998) demonstrated that an empyraeriveds distribution is the only valid

approach to derive good significance levels and that thieatetistributions as used in e.g. Scargle (1982)
or Horne & Baliunas (1986, the so-called False-Alarm Prdlvalor FAP) have to be abandoned. It is
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Figure 4.13: Lomb-Scargle periodogram of the residuaky aftibtracting the fit shown as full line from the
data in the upper left panel of Fig.4.5. Note that this peygrdm’sy-axis is enlarged with a factor 300
compared with the one for the original data before prewhigshown in Fig. 4.12.

therefore common practice these days to take a frequengygsesignificant whenever its amplitude in the
periodogram is above a particular empirically determinitical value, i.e. to let the data speak for itself
rather than relying on assumptions about the (uncertaatiststal model distributions.

Depending on the data set and authors, different so-c8idevel significance criteriare considered
appropriate and adopted. The S/N level is computed as thagaramplitude in a well sampled periodogram
of the final residuals and for an appropriate interval in tegdiency region where the candidate frequency is
situated. We denote this level by.;. The S/N level of a particular frequency is then computechagtio
between its amplitude andl.;. Breger et al. (1993) derived empirically, from experiemdgeh numerous
data sets resulting fromi Sct network campaigns, that a frequency can be very safelgidered to be
significant whenever its amplitude, computed either in time tdomain or in the frequency domain, fulfils
A > 4o.. This result was supported from simulations based on datenaded with the Hubble Space
Telescope Fine Guide Sensors and assuming photon-doohivatie noise by Kuschnig et al. (1998). They
concluded that the criteriod > 40, corresponds to a 99.9% confidence level of having found aimsint
peak rather than one due to noise. The confidence levelsspomding toA > 3.60,.s andA > 30,5 are
respectively 95% and 80% for photon-dominated noise. Sioige peaks can reacl3a, level with 20%
probability, we do not consider this to be a sufficiently ssimificance criterion. In reality, the noise is not
photon-dominated for most data sets, particularly thoserabled from the ground. Moreover, the noise is
usually correlated, i.e. non-white. Unfortunately, theetnoise profile may be very hard to compute (see
also Sect. 4.5). This is why this step is often omitted andat@vementioned criterion o > 40, iS
adopted as a very safe one, at least when only one data séiaisdht

For the example of the simulated data shown in Fig. 4.3, wigeléne frequency from Fig. 4.12, com-
pute the residuals from subtracting the least-squaresdwishin the upper left panel of Fig. 4.5 from the
data, recompute the Lomb-Scargle periodogram for thegiuads and derive the noise level of the residuals
in the frequency domain. The periodogram of the residualbasvn in Fig. 4.13 and was computed with the
same sampling as the original periodogram according tordggiéncy accuracy discussed in the following
section. One should not undersample the periodogram fdéAdéevel computation (nor for the frequency
derivation!). The average amplitude in Fig.4.13 amount8.8®11 and is a good estimate @f; in the
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considered frequency interval {tf, 10]d—!. This implies that the frequenay = 5.123456789d~! reaches
a level of 9090, for this example. One can easily derive from Fig. 4.13 thathiyhest noise peaks in
[0,10] d~! reach a level of ,.s. The highest noise peaks in the interjffalvx,] d=! reach 3.67;cs.

Examples of significance level computations for real dateevedready shown graphically in Figs 2.22
and 2.27 for the multisite campaigns of th&€ep star 12 Lac (Handler et al. 2006) and of the pre-main-
sequence star IP Per (Ripepi et al. 2006). We refer to thenafigpapers for the details of the adopted
criteria and their means of computation of the S/N level.

One can take a less conservative attitude than 40, whenever more than one independent data set
is available for analysis (see, e.g. Figs 2.17 and 2.18 anddd& Cuypers (2003) for additional examples).
One is usually also less conservative when it concerns ttepéance of combination frequencies, such as
multiples or linear combinations of frequencies, whichéalready passed the requirementdof> 4os.

In both these cases, i.e. for frequencies present in indigmerdata sets or for combination frequencies
searched in one data set, we advise toAise 3.60,.s as a safe condition of acceptance.

4.5 Error estimation of the derived frequencies

Once the user has reached the stage to have concluded/tiegquencies with determined values are
present in the data, the question of final error estimatioalldhe unknowns needs to be settled. We limit
ourselves here to the case of linear oscillations, with tdlependence- cos[27(vt + §)]. In order to
compute the errors in an appropriate way, one can consigemthdel described in Eq. (4.1), wheté

is assumed to be error-free due to our inability to treatrdiscparameter estimation in the data-driven
frequency analysis. The error estimation is done in the tomeain here, by means of least-squares fitting,
because the periodograms only give a good amplitude estim#te limit of largelV.

In general, error estimation is usually based on derivatiea kind of likelihood function, e.g. the
one defined in Eq. (4.2). The goal should be to make apprepasgsumptions on the character of the data,
on the properties of the noise and on the inter-dependenttee ahodel parameters which are in our case
the frequencies, their amplitudes and phases, and the nadae of the observable;, when deriving the
errors. Appropriate error propagation is a poorly devetdipeld in astronomy in general, and its application
in asteroseismology is, unfortunately, no exception ts thie. We emphasise below the shortcomings
we have to live with in current analyses. The reader is advieekeep these in mind in all the seismic
interpretations based on observed frequencies.

4.5.1 Data without alias problems

As a first approach to the problem of error estimation, we idengdata not suffering from aliasing. This
implies that we assume there to be no ambiguity in selectiegrue frequency values from the methods
outlined above. We discuss the complication introducedliagiag separately further on.
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A first approximation usually adopted is to assume the timessasurement;, as well as the reference
epochr, to be error-free. It is clear that the observers always lshcare about the accuracy of the clocks
they are using during the data gathering, particularly waiteserving short-period oscillators. Even for data
assembled with a carefully calibrated clock, the assumptibhaving instantaneous measurements with
error-free timings is in general not valid. Indeed, the dgttnering is done by adopting a certain integration
time during which photons are detected by the instrumert;ais usually taken to be the error-free time of
mid-exposure. The integration of course implies a smearingf the oscillatory signal over a fraction of the
oscillation cycle for each of the modes. Moreover, the irdgdgn time is sometimes not constant during an
observing run, e.qg. it is continuously adapted to the atinesp conditions for ground-based spectroscopic
data.

All this implies that the timings; cannot be error-free. Moreover, they are not independeetolfi
other. The assumption of instantaneous measurementsmotkfieee timings may be a good approximation
as long as theemporal resolutiorof the data, i.e. the ratio of the integration times to theéllagions periods,
is very small, let’s say below 1%. This will in general not be tase for high-resolution spectroscopic time
series or for ground-based photometric time series of compscillators. A remedy to this problem is
achievable, but it requires a good model description of g@llatory behaviour and it is time consuming.
The user can check posteriorihow much the data set suffered from smearing over the asaillaycles
for each of the modeafter the frequency derivation is finished. This allows a meastitheeffect of this
assumption on the frequency values and their amplitudes.

A second approximation in deriving error estimates is mucheproblematic than the first one: the
assumption of having white uncorrelated noise with avezege and constant varianeg; in time. The
overall noise profile of the data contains, in general, doutions from the instrument performance and
from the environmental conditions, such as the behaviouhefatmosphere for ground-based data and
the effect of stray light, satellite jitter, proton impadt.efor space data. It is clear that the noise profile
must be time dependent and that the different noise facterbyano means uncorrelated. Unfortunately,
it is in general impossible to propagate all the differenisadactors appropriately, due to lack of good
model descriptions for each of them. The conclusion musefbee be that any error estimate ignoring the
correlations among the noise factors and their time depe@deannot be but lower limits of the true errors.

A third approximation is to assume that there is no interfeeebetween the different true frequen-
cies and the noise peaks. This is an additional conditionpamed with the resolution issue described in
Sect. 4.3.2, where interference among intrinsic frequenaias considered. For similar reasons as outlined
there, this approximation is valid whenever the noise peakswell separated from those of the intrinsic
frequencies, a situation seldom encountered.

The three approximations described here are followed oneoéssity to avoid an ill-conditioned sta-
tistical description for the error derivation. Indeed, lie derivation of the error of one particular parameter,
a significant simplification is met when assuming that aleotbarameters are perfectly known. This situa-
tion occurs when adopting the discussed four approximstiemthis case, one ends up with the following
standard error estimate for the derived amplitudes, prasdfrequencies:

s 6oy 2 on 4.52)
v VN AT’ A N O 90 TvV2N A '
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with 7" the total time span of the data aid the number of data points (Bloomfield 1976; Cuypers 1987;
Montgomery & O’'Donoghue 1999). In these formulag, stands for the average error on each of the data
points. Quite often, error estimates are not available fdividual measurements, even in the simplified
assumption of uncorrelated time-independent noise. hda good practice to take the standard deviation
of the residuals after removal of all accepted significamgjfiencies as a realistic and conservative estimate
of op.

We note that the error estimates provided in Eq. (4.52) amrors, i.e. the true values of the frequency,
amplitude and phase belong with 68.3% certainty to thevatef{y — o,,v + 0,], [A — 04, A + 04],
[0 — 05,0 + o5 respectively. Much more common practice in statistics isige the so-calle@o error
estimates, which imply that the true values are with 95.4%ag#y in the interval§v — 20,,v + 20,],
[A—204,A4204],[0 — 205,06 + 205].

Schwarzenberg-Czerny (1991) has shown that the error a&stiof the frequency can also be done in
the frequency domain, leading to the same accuracy as thdistiessed above in the time domain. Since
he proved both methods to be statistically equivalent restmation in the frequency domain suffers from
the same limitation of underestimating the variance dubeddur assumptions outlined above.

For the choice of the interval of test frequencies it doesnmake sense to search for frequencies with
a step much smaller than the valueogf given in Eq. (4.52). A good guideline to start the first freqoye
search, before an estimatexf can be made, is to take a stepof /7. Once the first frequency is found,
one can improve the frequency step by calculatipgand adapting the step to this value for all subsequent
frequency searches.

Another issue in the derivation of the errors is to assumetki®oscillation frequencies are indepen-
dent. As described in Chapter 3, the oscillation spectrui gthr is determined by its stellar structure and
follows a clear pattern dependent on the internal physicaigrties. So, even in the linear approximation,
the oscillation frequencies cannot be independent bedhageare determined by the same stellar structure.
Deviations from linearity even imply complex coupling be®wn oscillation modes and their frequencies
which are also dependent on the stellar model. This is ysigadbred in the error estimation of frequency
analysis.

4.5.2 Data suffering from aliasing

Most data sets have gaps, quite often leading to ambiguityerselection of the true frequency peak from
its aliases when the duty cycle is limited. The situationsgally far more complex than having one simple
modulation factor as in Fig. 4.9, because numerous data glpsith different AT’s, occur. An accurate
study of the spectral window, or the consideration of indeleat data sets of the same star if available,
may help to discriminate between the true frequency peattdteeir aliases. Sometimes, however, this is
impossible and in such a situation one has to take the umtgrtiue to alias confusion into account in the
error estimate of the frequency. As a rule-of-thumb, onetake a peak to be uncertain when the difference
between its amplitude and the one of its aliases is less tl@hdight of the highest noise peaks. Indeed,
noise peaks and real peaks convolve with each other in carapéee, such that they may add in amplitude,
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subtract in amplitude, or anything in between.

The best way to proceed when alias confusion cannot be aneré®to determine the full-width-at-
half-maximum of the envelope of all alias peaks that bringfgsion, and to add this value to the frequency
error given in Eq. (4.52). While the full-width-at-half-ienum of the central peak depends on the total
time span of the data, as shown by Eqgs (4.52), the one of treagge/depends mainly on the duty cycle, as
is clear from Fig. 4.9.

Finally, if the addition of a new frequency implies a modifioa of the derived amplitudes and phases
for previously determined frequencies (say by more th@ndBiring the process of fitting multiple frequen-
cies by least squares, then therénieraction between the spectral window patterns of the frequencies. In
that case, the formal errors on amplitude and phase giveqsr{&52) underestimate the true uncertainties.

4.6 The use of weights in merging different data sets for fregency analysis

Very often, more than one time series is available for thdyaigof a pulsator and the question arises if
one should merge them or simply analyse each of them selyabstiore making final conclusions. The
goal of merging them would be to reach a lower noise level @Rburier transform, or a higher frequency
precision or a cleaner spectral window. In any case, apjatepreights cannot be but data-driven, i.e. based
on the noise properties and the sampling of each of the depdata sets. This is why one cannot provide
one simple theoretical statistical treatment, nor perfathencompassing simultations encapsulating each
of the different circumstances. We therefore limit oursslhere to a brief discussion of some prototypical
situations.

As a first example, we consider the situation of a white-lighbtometric multisite campaign with
different instruments attached to telescopes of diffeapetrtures and data gathered in different atmospheric
conditions. In this case, the data from the smaller telessdyave higher noise level, but, on the other hand,
they usually imply a better duty cycle. In such a situatioe w@nts to investigate what data to include in the
final analysis, and whether weights should be used or noterctimputation of the Fourier transforms. It
was shown in the highly recommended seminal paper by Ha(2d&3), who studied in detail the merging
of such type of data from the different telescopes of the W&sortium and for different targets, that the
use of appropriate weights is indeed advantageous compatiedhe use of unweighted merged sets. He
considered three different weighting schemes and condltite weights proportional to the inverse local
scatter in the light curves produce the best result in Foapace. The advised procedure is as follows. After
having completed the frequency analysis for the unweightedyed data set, one computes the residuals
and their standard deviation Each individual point is then weighted as follows:

w; = (KO'/RZ‘)Q if R; > Ko,

(4.53)

where R; is the residual of data poiritwith respect to the unweighted least-squares solutionfrahd
« are free parameters to be adapted to the merged data set. rigrRpansform of the weighted data is
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then computed to try and improve the result in terms of findhreyfrequencies with amplitudes of better
S/N level and/or to find more significant frequency peaks. Bé& values of{ anda must be derived by
using a few trial values and evaluating the noise level inRberier transform. Typical values turn out to
be K, « € [0,2]. Since this method depends on the frequency solution forord the unweighted merged
data set, a scheme with a few iterations is the best apprédesimilar strategy may be advantages to follow
when new data are merged with archival ones of the same kiederR applications of the methodology
evaluated by Handler (2003) are available in Rodriguez.g28D3) for aj Sct star and in Vuckovic et al.
(2006) for an sdB star.

As a second example, we consider the case of multicolouroptettic data obtained with the same
instrument and having (almost) the same sampling. Thissis ah often encountered situation, because
the identification of the degrdeof the oscillation may be within reach in this circumstante this case,
the duty cycle is not improved by merging the different seds. we will show in the following chapter,
the amplitude of a mode is different in different wavelersgéind it depends also on the geometry of the
mode (i.e. the number and position of the surface nodal lireglm) and on the direction to the line of
sight (inclination angle). For a specific star, the ampltudtios will be shown to be dependent ibonly
(Chapter 5). This implies that the best wavelength to detenbde is dependent on its degree. In addition,
it involves limb-darkening effects, as well as flux, gravdtyd temperature variations and these may be quite
different for different types of oscillations in differetyipes of stars. Pulsating B stars, e.g., have their largest
amplitude in the U filter, while the amplitude of pulsating Afostars peaks at wavelengths of the B filter,
irrespective of the mode geometry. For one and the sametfstdrdependence of the amplitudes implies
that a particular mode may have an amplitude just above tteztilen treshold ofA > 4 S/N in one or a
few of the used filters, but not in all of them. It is thereforegedy necessary to analyse the time series of
the different filters explicitly to decide upon the realitladl the significant oscillation frequencies, and not
just look at the filter where the best S/N is reached. Inddeddifference in detected mode amplitude for
the various filters may be larger than the difference in theenlevel among the filters. Recent examples of
this situation can be found for B pulsators in De Cat et al0fd@nd for A and F pulsators in Cuypers et al.
(2007). The modes that have significant amplitude in allrBltgill pop up better after (weighted) merging
of the data sets because the noise level is proportionaktadmber of data points agN, but those that
are only significant in a subset of the filters may increaseeorahse in significance.

A similar situation to the previous one occurs for radidlegy measurements of different line profiles
from échelle spectra. The amplitudes of the modes may tirmoobe quite different for different spectral
lines because of various reasons, such as a differentsittpnofile (Gaussian broadening due to temperature
versus Stark broadening due to pressure, e.g.), a diffénentlepth, a different skewness due to blending,
different formation depth in the atmosphere, a differentblidarkening effect, etc. It may therefore be
worthwhile to consider merged data sets for the differeatspl lines with the same sampling, in the same
way as outlined for the multicolour photometry.

Finally, we consider the case of having data sets of vergwifft nature, i.e. different quantities ob-
tained for different sampling, for one and the same starniplas are shown in Figs. 2.17 and 2.18 where
Hipparcos, Geneva and radial-velocity data of two SPBs a@ayed. In this case, it is not obvious to
think of an appropriate weighting scheme similar to the on@i53) because of the different physical units.
Usually, the data are analysed separately first. In a sedepdane could simply lower the treshold of ac-
cepting a peak in terms of amplitude, e.g. take- 3.6 S/N as a necessary condition whenever it is met for
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all the available independent time series. Sometimes, VEwescillation frequencies are easier to detect in
spectroscopy than in photometry, depending on the&lue and one would want to give different weights
to the various data sets and lower the detection treshdlldeiurThis holds the danger of taking noise peaks
for real. A simple test in such a case may be to standardide afabe separate Fourier transforms, i.e. to
rescale them t{, 1] by dividing through the amplitude of the highest peak, amahtmultiply them with the
idea that, if additional frequencies at S/N below 4 would kespnt in each of the periodograms, they would
have an improved S/N in the multiplied periodogram whileyth@uld reduce in amplitude if the frequency
was a spurious peak present in only one of the independeatsdid. This method was employed by Aerts
et al. (2006) to unravel low-amplitude frequencies from MOBipparcos and radial-velocity data of the
5 Cep star Ceti.

4.7 Damped oscillations

The descriptions in the preceding parts were valid undeafisamption that the oscillation amplitude
and phasé are constant in time, i.e. that the modes under considerdi&ve an infinite lifetime or a
lifetime several orders of magnitudes longer than the tierées and that phase coherence is preserved
over the entire observing run. This assumption is not vali@rever growth and/or decay of modes occur
during the obtained time series. The best known example df susituation is, of course, the one of
stochastically excited solar-like oscillations. Also read high-precision radial-velocity measurements of
roAp stars contain evidence of growing and damping of modglitides.

We recall that, whenever an oscillation with frequemngys damped, one has, instead of Eq. (4.9):
x(t;) = Acos [2m(v1t; + d)] exp(—nt) + ¢, (4.54)

with n the damping rate which is also the inverse of the mode lifetirBuppose such a signal would be
observed continuously over an infinite amount of time. Irt d&se, it is easy to show that the power at a
test frequency equals

AZ
Adv—11)2 +n?
The power spectrum thus takes a Lorentzian profile aroundréugiencyr;, with a half-width-at-half-
maximum equal tg). If the signal is continuously observed during a finite tifiethen the resulting peak
in the power spectrum is intermediate between the’dumaction and the Lorentzian, tending to the former
for nT' < 1, and towards the latter fofl" >> 1.

P(v) = (4.55)

Even Eq. (4.54) is an idealisation in that it implicitly asses a sudden excitation of the mode, followed
by an exponential decay. The modes are stochasticallyegxbit random fluctuations due to the turbulent
motions in the convection zone. In this case, one has

_ by (v)
PO = W ol (4.56)

with P (v) the average power spectrum of the forcing function. Giver the forcing function is a slowly
varying function of frequency, the result is a Lorentziarapum with a width determined by the linear
damping rate of the mode.
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Whenever the observed time series is a single realisatitimeaspectrum, the result is only a random
function with a Lorentzian envelope. In that case, the oleskprofiles are asymmetric in this case and
representing them by a Lorentzian cannot be but an appréimaNeglecting such asymmetries in the
fitting of the frequency peak causes systematic errors itnfieered frequencies. The best way to proceed
in the case of damped oscillations is, therefore, to perfsimulations and fit the Fourier transforms of the
observed time series with Lorentzian profiles to determoteptable ranges for the frequency, amplitude,
and the mode lifetime. Such simulations have been perfoarthsively for the solar oscillation spectrum.
It was found that the stochastic nature of the excitatiorginse to a number of sharp frequency peaks,
with a distribution around the Lorentzian envelope. It thasnot be assumed that the maximum observed
amplitude corresponds to the true frequency of the modest8ntial care is required in analysing data of
this nature and the simulations have to be designed on ebgasase basis.

4.8 Eliminating aliases

Several methods designed to “remove” false peaks from agegram have been devised. The widest used
one among them is the so-called CLEAN method. The origindE &N algorithm was written by Hogbom
(1974) in the context of aperture synthesis. It was develdpdelp radio astronomers in their interpretation
of interferometric data by cleaning up tispatial window pattern. This algorithm was later adapted by
Roberts et al. (1987) to clean up the spectral window pafterfrequency analysis.

CLEANIng implies that one first constructs tdéty spectrum, which is the Fourier transform of the
data. Subsequently, one deconvolves this observed spesatith the window function shifted to the highest
peak of the dirty spectrum (cf. Figs 4.10 and 4.11). This dectution is done by first applying a particular
scaling to the window function according to the gain faggowith 0 < g < 2. Thus, one subtracts
the scaled spectral window from the dirty spectrum to predacaesidual spectrum. This deconvolution
process is repeated until the strongest residual peakasvtzespecified cutoff level or for a chosen number
of iterations. At that point, the CLEAN algorithm restordw tremoved frequency to the spectrum by
convolving it with the CLEANed residual spectrum. This pgss can be repeated at each prewhitening
stage.

The first application of the adapted CLEAN version by Robettal. (1987) in pulsating star research
was made by Gies & Kullvanijaya (1988), who used it to tre&irtidata of line-profile variations of the
B2lIl star € Per, an archetypical line-profile variable without clearigdic photometric variations due to
high-{ modes. Numerous applications have followed since.

Foster (1996) developed the CLEANest frequency spectrum.nbming is quite unfortunate, because
CLEANest has not much to do with CLEAN. The CLEANest spectigrthe sum of a discrete amplitude
spectrum and the residual spectrum. The discrete spectuterived from a model fit of the bedtl
frequencies to the data according to Eq.(4.1). This is doneohe frequency at a time, i.e. one starts
with one frequency, tests the significance of its amplitutext one makes a fit to find the best pair of
frequencies, tests their amplitudes, continues with a fittie best triple of frequencies, etc. At a certain
point, the fit for the bestM + 1) frequency set does no longer lead to a significant peak fof et
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1)th frequency. At that stage, one constructs a compositehgraprepresentation of the optimal discrete
amplitude representation of thg accepted frequencies and the amplitude spectrum of thduedsiafter
prewhitening the best fit fak/ frequencies. This CLEANest spectrum thus is not a true Eaqy spectrum,
but merely a convenient graphic that captures the diffestages of a least-squares fitting procedure and its
resulting residual spectrum.

Following Kurtz (2002), we issue some warnings in the uséhe$¢ two methods that were designed
to eliminate aliases. It is in fact a crucial mistake in fregay analysis to think that methods capable of
eliminating aliases exist. Alias confusion in a data set @aly be overcome by additional data. All the
two methods described above do, ishide the aliases for the user, seemingly easying the interpratat
terms of intrinsic frequency detection. One must keep indhtirat the final result obtained by CLEANIng
depends crucially on the choices of highest peaks madeditinn deconvolution, while the CLEANest
spectrum assumes that frequencies are not confused withatiases in the least-squares fitting. So both
the CLEAN and CLEANest methods are ambiguous.

The main danger of CLEANIng occurs in situations where thiseno the data set under analysis has
added amplitude to an alias or subtracted amplitude frontrtieepeak. If this is the case in such a way that
the alias peak has become the highest one in the periodoginamthis false peak will be selected as the
true frequency by the algorithm. The subsequent iteratitiermes of CLEAN will take away an amount of
amplitude of the true frequency according to the gain andbeirof iterations.

CLEANest will consider the least-squares fit at the aliagdency if the noise has boosted its amplitude
above the one of the true peak. It will then start or continudterative least-squares fitting scheme based
on one or more alias frequencies rather than on true fregegnc

The user is thus easily fooled by these algorithms if theyused as a black boxes without making
a careful analysis of the spectral window at each step of teelgtening. We disadvice their use for this
reason, particularly for unexperienced frequency angalyst

4.9 Conclusions

We provided the most commonly used methods to treat frequanalysis of unevenly spaced data with
large gaps of observables of variable stars. All methodsudied here in detail are suitable to determine
the oscillation frequencies of stars whose modes have tigfiifétime. The string length methods and the
phase dispersion minimisation methods are of broadercgtigh than stellar oscillations because they can
handle non-sinusoidal signals or signals with variable laog®e without loss of accuracy. On the other
hand, the approximation of having sinusoidal signals, gmdassumption of the methods based on Fourier
transformes, is usually very good in the study of stellar ketdns.

The reader has hopefully learned that frequency analysime¥enly spaced gapped data with noise

is an inherently difficult mathematical problem to solve. tht&s based on Fourier analysis are best suited
to apply significance criteria and to obtain frequency eestimation. One should never forget to make a
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detailed inspection of the spectral window before comingjrial conclusions on the detected significant
frequencies.

Frequency analysis of data resulting from stars with dampedes is much more cumbersome and

requires a specific treatment, whose basic ingredients s pointed out here but whose detailed appli-
cation will be omitted here.
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Chapter 5

Mode identification

The basic data for asteroseismology are the pulsationdrazies, and we have just shown in Chapter 4 how
those are derived from the observations. But before theuéecjes can be used for detailed modelling, it
is imperative to know what pulsation mode gives rise to eaefjufency. Determining this is calledode
identification The reason it is so important can easily be understood fooges (the situation is similar
for g modes). The frequency of pulsation is a measure of tiadsdravel time along the ray path for
p modes, and that is determined by the variable sound spekthamength of the ray path itself. It is thus
critical to know the ray path, and that is specified by the gid® mode geometry. Mode-identification
techniques assign values to the discrete spherical hacrqaantum numberd, m) of each of the detected
oscillation modes. The amount of astrophysical informratimt can be derived from the observed pulsations
depends directly on the number of successfully identifiedeso Therefore, great effort is put into mode
identification in any seismic analysis.

For oscillations in the asymptotic frequency regime, thevdéon of frequency or period spacings
often suffices to identify the modes. This can be achievedHerSun, for solar-like oscillators and for
white dwarfs. However, when only a limited number of modegsited to observable amplitudes, or
when the modes do not follow particular frequency patteonsyhenever a very dense frequency spectrum
is predicted, the frequency values alone are insufficierdetdve the(l,m,n). In this case, one cannot
proceed with seismic modelling considerialy values for(l, m,n) for any of the detected frequencies. In
order to limit the computation time of such forward modglithe values of the degréare usually limited
from arguments of partial cancellation. As we will show tata in this chapter (see Fig. 5.5), the observed
photometric amplitude of modes with> 3 are a factor five to ten less than those of modes ivth3 having
the same intrinsic amplitude (Dziembowski 1977). It is tloestomary to consider modes with< 2 and
to assumen = 0 when no obvious evidence for rotational splitting is foundhe Fourier transform of the
time series.

This procedure is not very satisfactory, though, becaus#ioa can easily result in non-equidistant

splitting and imply merging of frequency multiplets in suechwvay that they cannot be unravelled. Moreover,
quite a number of classical pulsators show evidence for swadlt degred > 3 from spectroscopy, where
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the partial cancellation has a different effect than in phadtry (see Figs5.5 and 5.15). In these cases,
the assumption of < 2 or m = 0 is unjustified. Within asteroseismology the questédanpirical mode
identificationhas therefore become an extended topic by itself. By this tge mean the assignment of
values of the spherical harmonic quantum numibérs:) to each of the frequencies derived from the data,
without relying on the (unknown) details of the model prdjesy of the star. To obtain a correct mode
identification for each detected oscillation frequencyssally impossible. However, even only one correct
(I,m) identification, e.g, the one for the dominant mode, can imply a significant redoodf the free
parameter space in the modelling, and is therefore wortbwhiattempt.

Empirical mode identification is a sophisticated and timmasuming task. It requires a detailed con-
frontation between oscillation theory applied to the ostetlar atmosphere and observational characteris-
tics different from the frequencies, such as observed anda@s and phases. All the methods we present
in this chapter were developed for the identification of feraten nonradial modes whose lifetimes can
be assumed infinite for their application. The reason isithatrelatively easy to establish a value for the
large frequency separation of damped stochasticallytek@scillations and this usually suffices to start the
process of forward modelling efficiently. Numerous exaragé&mode identification from pattern recogni-
tion of solar-like oscillation frequencies will be treatedChapters 7, 8, and 9. The current chapter is thus
restricted to mode identification of heat-driven modes. hatfollows, we will speak of thatmospheref
the star as the regions with negatieg 7, 7 being the optical depth, while the parts whésg 7 is positive
will be termed thestellar envelope

Essentially two types of diagnostics are in use to identif/modes. One of them is based on time se-
ries of multicolour photometry, and the other relies on tgeees of line-profile variations detectable from
high-resolution spectroscopy. The introduction of higealution spectrographs with sensitive detectors in
the 1980s, as outlined in Chapter 4, had a large impact oneatiedi empirical mode identification. Spec-
troscopic data indeed offer a very detailed picture of theaiion velocity field, as will be outlined below.
On the other hand, it requires moderate to large telescapepped with sophisticated instrumentation to
be available for extended observing time spans. It remaiisbenge to obtain spectra covering the overall
beat period of the multiperiodic oscillation, with a higlsoéving power and with a high signal-to-noise ratio
for a good temporal resolutiong., for a ratio of the integration time to the oscillation pe&isaoelow a few
percent. The latter condition is necessary in order to asmeéaring out the oscillations during the cycle.
Also, the methodology to derive the full details of the ptitsaal velocity field (at least six unknowns — see
Sect. 5.2) is complicated. For this reason, multicolourtpim®tric observations, which can only lead to an
estimatel, but which can be obtained from small telescopes, are $tiltraost importance for mode iden-
tification. These kinds of data are especially more suitéblstudy long-period pulsations because small
telescopes are available on longer time scales. The maableelesults are obtained from the exploitation
of simultaneous multicolour photometry and line-profiléada

One remark we wish to repeat here was already made in Chapseeking mode identification from
observables implies the estimation of the discrete numfders). However, while doing so, one also must
estimate real-valued unknowns, such as amplitudes anéplEibservable quantities. This mixture of
real and discrete unknowns cannot be treated simultanewithl standard statistical techniques to estimate
(I,m). Therefore, any of the discriminating functions that wié defined below will be computed for
each set ofl/, m) separately, and its minimal value for the best choice of th&inuous parameters will
subsequently be compared among then) couples to decide about the most likely one.
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In the following, we describe the methods for empirical mabhntification. We divided the chapter ac-
cording to the observational data available to apply thehis @lso corresponds to the historical progression
in this field of research.

5.1 Mode identification from multicolour photometry

A pulsating star changes in temperature and in geometriogkesection over its pulsation cycle, both of
these contributing to variations in its bolometric lumiitgs As we discussed in Chapter 4, photometric
observations measure the intensity of the starlight re@chs — usually through various filters, and never
bolometrically; no photometer can measure the entire rele@ignetic spectrum! So in all observational

cases we are measuring the starlight and its variations smrae wavelength range. The wavelength de-
pendence of the effect of the temperature variation on fte {rariability in a pulsating star can be easily

seen in Fig. 5.1 which shows some schematic black-body sdorestars of different temperatures. Notice

how much greater the intensity change is in the blue thaniiit ike red — just because of the shape of the
black-body curves. That effect alone means that most [dsatars will have larger photometric variations

in the blue than in the red.

In addition to this basic effect, the light variations affelient wavelengths depend on the geometry of
the temperature variations — hence on the spherical hacnodiine pulsation mode — and on the change in
geometrical cross-section, also dependent on the putsatarle. Both the pulsation amplitude and phase
as a function of wavelength are affected by the geometryeteémperature changes and the cross-section
changes; thus observations of the pulsation amplitudegphases in different photometric passbands can
constrain mode identification. In the best cases the s@iategreel can be uniquely determined — an
important step for asteroseismology.

The mode-identification method that uses photometric aogas and phases is based on the time vari-
ations of the stellar magnitude measured with differergrsliof a photometric system. One considers only
the oscillation frequencies that are found in all the déferfilters for the mode identification; when the am-
plitude is too small in one or more filters of the system beisgd) then there is too little information for that
mode. For reasons given above the amplitudes of a mode camatyedty different in the different filters.
This is illustrated for two main-sequence stars in Fig. B.2will be explained below, this amplitude differ-
ence depends on the kind of oscillation mode — more partigute the degreé of the mode as illustrated
in Fig. 5.3. Similarly, the difference in phase behavioutha light curves in the different photometric bands
is connected to the degree of the mode. This implies that fmertain oscillation mode whose frequency
is detected with sufficient signal-to-noise in all the fitef the photometric system, the comparison of the
amplitude and phase values for the different filters allows  derive the mode degree. This can be seen
for the case of the amplitude ratios by comparing Figs 5.2%8d
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Figure 5.1: Black-body curves for stars of various tempeest. Top: temperatures range from 5000 K
(lower line) to 9000 K (upper line) in steps of 1000 K; bottormperatures range from 9000 K (lower line)
to 25000 K (upper line) in steps of 4000 K.
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Figure 5.2: Observed amplitude ratios from long-term mainig of thel = 0 mode of the B25 Cep star
HD 71913 (left, Aerts 2000) and for tHe= 1 mode of the F2y Dor star HD12901 (right, Aertst al. 2004)
in the Geneva 7-band photometric system with filteesU8,BB,V 1 VG.
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Figure 5.3: Theoretically predicted amplitude ratios farisus degree&of a typical B2 star for the dom-
inant p-mode frequency of HD 71913 (left) and of a typical E& $or the dominant g-mode frequency of
HD 12901 (right). The computations were done in the adiatsgiproximation and assumed= 0.02. The
line style coding is as follows: full fof = 0 (not applicable in the right panel), dashed fet 1, dashed-dot
for [ = 2, dotted forl = 3 and dashed-dot-dot-dot fér= 4. Comparison of these predictions with the
observations shown in Fig. 5.2 allows the identificationhs thode degreé In the current examples we
find! = 0 for HD 71913 and = 1 for HD 12901.
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5.1.1 General considerations

Different versions of the photometric mode-identificatimethod are present in the literature. It was orig-
inally proposed by Watson (1981), relying on the work by Damwski (1977), Balona & Stobie (1979)
and Buta & Smith (1979). A specific treatment for the case wlemperature variations dominate the light
variations was provided in Robinsa al. (1982), with an application to white dwarfs. Watson (1988) i
proved the Balona & Stobie (1979) method by bringing it inpplecable form, while Garridet al. (1990)
and Heynderickret al. (1994) included the perturbation of the limb darkening asubsequently, of the
surface normal, respectively, in a proper way. All thesesiosis are based on adiabatic oscillation theory,
and treat the non-adiabaticity of the oscillatory behaviouthe outer atmosphere by means of an ad-hoc
parameter. For an extensive review of the methods in thisoappation, we refer to Garrido (2000).

The theoretical expressions of the amplitude and phaseedight curve in the different filterd.€., as

a function of wavelength) depend on, among other thingsgéwemetrical configuration of the nodal lines
with respect to the observere., on the values ofl, m, i), wherei is the inclination angle between the
symmetry axis of the oscillation and the line-of-sight, afinked in Eq. (5.1) further on. The symmetry axis
of the oscillation is usually taken to be the rotation axigept for stars with a strong magnetic field, such
as the rapidly oscillating Ap stars, where the magnetic axobably a more natural and better choice,
and possibly for some close binaries where the pulsatian@ld be the tidal axis. It was already realised
by Watson (1988) that the functional dependence of the amdjgliand phase on the mode geometry allows
one to group the terms depending mnand: into one single factor which is independent of wavelength.
One can thus make this factor disappear, and with it the vistyrting and unknown inclination angle, by
considering amplitude ratios and phase differences antenditferent filters. This is the procedure that is
usually adopted. The disadvantage is that one loses theriafmn on then-value and one can thus only
identify the degreé of the mode.

A big step forward was achieved by the new versions of the atetieveloped by Cugiet al. (1994)
and Cugier & Daszyhska (2001) fo¥Cep stars, by Brassagt al. (1995) for ZZ Ceti stars, by Balona &
Evers (1999) fow Sct stars, by Townsend (2002) for slowly pulsating B stamgl, lay Dupretet al. (2003)
for all main-sequence oscillators. In these works, a ndaakedic treatment of the oscillations was included,
with different levels of sophistication, through which tineknown ad-hoc factor was eliminated. Dupeét
al. (2003) included for the first time a detailed non-adiabagatment of the oscillations in the optically-
thin atmosphere of main-sequence stars. They illustrdiedpplicability of their method t@ Cep stars,
slowly pulsating B starsj Sct stars, aneg Dor stars. A non-adiabatic treatment similar to the one bgrdu
et al. (2003) was presented by Randetllal. (2005) in the context of pulsating subdwarf B stars. It doas n
contain an equally detailed treatment of the oscillationthé outer atmosphere, however.

In order to achieve identification @f the theoretical expressions for amplitude ratios and gllés
ferences must be computed, and this requires the computgtibie perturbed version of the adopted limb
darkening and of the perturbed stellar flux as a function efdffective temperature and the gravity, which
are also affected by the oscillations. This brings us to #edrfor good atmosphere models and an appropri-
ate limb-darkening description. In particular, it turnd that this identification method is rather sensitive to
the adopted treatment of convection when constructing tinesphere models for stars with outer convec-
tion zones, such asSct andy Dor stars (Garrido 2000; Dupret al. 2005). This treatment of convection is
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not a problem in the application of the method to stars withdaative envelope, but here, the results of the
identification turn out to depend on the adopted metallifdypretet al. 2003). These two dependencies
must always be kept in mind when making conclusions about-tiadue.

The theoretical amplitude ratios and phase differencedepwendent on the stellar flux, which is deter-
mined by the metallicity, the effective temperature, are@rtass and radius, or, equivalently the gravity, of
the star. These parameters are often not known with highgioac Their uncertainties must be propagated
into the final selection of the best value fofrom the observed amplitude ratios. This was often ignored
in the past, but is accounted for in modern applications igftirethod, following Balona & Evers (1999).
Examples of such applications were provided by Hanellexl. (2003, 2005, 2006), De Riddet al. (2004)
and Shobbroolet al. (2006) for3 Cep stars, by De Cat al. (2005, 2007) for slowly pulsating B stars, by
Dupretet al. (2005a,b) fow Sct andy Dor stars, and, finally, by Jeffest al. (2004, 2005) and Tremblast
al. (2006) for subdwarf B stars. We refer the reader to theserpdpemore detailed information.

5.1.2 Detailed description

In the following, we provide a detailed mathematical dgstasn of the photometric mode-identification
method. In doing so, we use two reference frames: a first otte @artesian coordinates;, y, z) and
spherical coordinateér, 6, ¢) such that the unit vectaf, coincides with the symmetnj.€., polar) axis
of the star and the origin at the stellar centre; and a secordnith Cartesian coordinatés’, v/, 2’) and
spherical coordinateg”, ¢, ¢'), also with origin at the centre of the star but with pointing towards the
observer. As origin for the angular coordinateand¢’, we take the meridian passing through tiieand
a, axes. We define thiaclination angleof the star as the angle betwe€handa,, such that

ay = —sini dy + cosi day (5.1)

and we adopt the usual definitionsofind '

uw = cosf =d,-ay, (5.2)

~

W= cosl =ay-ay. (5.3)

Treatment of the atmosphere

The equations valid in the interior of the star, as describé&thapter 3, are no longer valid in the outer stellar
atmosphere. First of all, the diffusion approximation, gfhconnects the radiative flux to the temperature
gradient, does not hold when the density is very liosy, when the mean free path of the photons becomes a
considerable fraction of the remaining distance to theaserf Secondly, the approximation that the radiation
field is isotropic is no longer appropriate, implying thae thomentum equation must be modified. The
approximations made in Chapter 3 are fine for the computaifahe oscillation frequencies, which are
determined by the interior structure of the star, as wellbadHe instability computations, but they are not
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sufficient for the description of the photometric amplita@dad line-profile variations. In the following, we
adopt the approach outlined in detail in Dupret (2002) amdrearised in Dupregt al. (2003).

It is assumed that the local atmosphere characterised byotirelinates) and ¢ remains in radiative
equilibrium during the oscillation. This approximatiorvalid because the heat capacity in the atmosphere is
very low, such that its thermal relaxation time is far shottt@n any of the relevant oscillation periods. In that
case, a plane-parallel atmosphere in hydrostatic equitibis fully described by its effective temperature
Tww, its gravity g and its chemical composition. For a given chemical commusitve write the temperature
of the local atmosphere as

T=T(r,Teg,9), (5.4)

with 7 the Rosseland mean optical depth, and we assume that ttpeitature law does not change during
the oscillation cycle. Hence, the temperature of the lotabaphere at positiofrr, 8, ¢) varies according
to

T(Tv 97 (b) = TO + (5T(97 (b)
= T(TO + 67(97 ¢)7 TOIT,O + 6Toﬁ(97 ¢)7 90 + 596(97 ¢))7 (55)

wheredg, is the Lagrangian perturbation of the gravity correctedtfar pulsational acceleration. In the
linear approximation, Eq. (5.5) can be written as

oT OInT 6T.g OInT dge alnTé_T

— = - . 5.6
TO Z?lnTCff TOH’O 81nge go + alnT T0 ( )

From the definition of the Rosseland mean optical depth we find

gor _on o O (5.7)
87’0 vy L0 or

Asin Egs @?), (??), etc.the Lagrangian perturbations again contain a common faétary;™ (6, ¢) exp (—iwt).
Elimination of §7 between Eqgs (5.6) and (5.7), and division by this commorofdetds to
d(6T /Tp) dlnT <5g 5 ag})

Olny ~ Olnr
. ?InT/dIn72\ (6T  OnT 6Ty OInT 7.
OlnT/0InT To OlnTywgTwo Olnge go
PInT T N T 5ge
Oln7T0InTeg Tego OlnTdIlnge go

(5.8)

kKo po Or

This equation, rather than EQ) is used as energy equation in the atmosphere. The deégativE(g. (5.9)
must be estimated numerically from a set of atmosphere mauéh effective temperatures and gravities
surrounding those of the star.

While the temperature variation in the atmosphere can bepuated locally, as just explained, the
variation of the density, pressure and Lagrangian disph@cé must come from the solution of the mass and
momentum equation considering the entire outer atmosphegeneral, the momentum equation contains
a pressure gradient with a contribution from the gas pressnd one from the radiation pressure. The latter
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implies a radiative acceleration vector, which is, in theecaf continuum radiation, given ly,q = npf/c
with kr the flux weighted mean opacitg.g, Lamers & Cassinelli 2001). It is in general safe to ignot th
line radiation, except for the hottest main-sequence &fags> 25 000 K) and for supergiantddg g < 3.0),
which suffer from a line-driven stellar wina (g, Kudritzki & Puls 2000). In that case, one is dealing with
a dynamical atmosphere and the treatment we present haressintly valid (but a better approximation is
not available).

While solving the continuity and momentum equations oneags tha'6|ﬁ| remains constant from
the base of the atmosphere to the outermost Iayerﬁhlamains parallel to the temperature gradient during
the oscillation cycle and that the relative variation~gf equals the relative variation of the Rosseland
opacity: dxr/kr ~ dr/k. The first two assumptions are again related to the shornteelaxation time in
the very thin outer layer, which allows the plane-paralf@@ximation. The validity of the third assumption
was checked numerically by Dupret (2002). The first asswnpinplies, through Stefan’s law, that

5\?\ _ oF, _ 45chf (5.9)
F() Fr,O TOH,O
and leads to the radial componentégf.4:
. ok 0T,
(6grad)r = Orad <_ +4 i )7 (510)
Ko Tesr0

whereg,.q4 is the equilibrium value of the radial componentgf;. This leads to the following expression
for the radial component of the equation of motion:

W = 9(6pg/Pg) Pg,0 (5.11)
or £0
a(i)/ 8(9057“) 5ﬁ 5ﬁg
+ +|{———— — Gra
(97' 87“ Lo pg70 (90 9 d)

Ok 5Teﬂ‘ 857«
— Grad | —+4 .
Yrad (FLQ + chf,O + 87“ )

This equation is used in the atmosphere, instead of 2}}. The horizontal component of the momentum
equation becomes, through the assumption thegmains parallel to the temperature gradient:

-1 (6p. - - 6T
2¢ _ | ZF8 (I)/ r— Orad =—— |- 5.12
wEn 74<p0 + @+ goér — g T o (5.12)
This equation replaces EQ?). And, finally, the continuity equation Eq29) is replaced by its version valid
in the outer atmosphere:

55 10 7,201 U0+1) (65 = = graadT
2K, =Y (.2 _ g /
¢ {PO r2 Oor (T &)] 2 ( Po 't ot aT/or |- (5.13)

Following Dupretet al. (2002), appropriate boundary conditions are imposed abtitermost layer
of the star. This requires a little more attention than thecwalsion in Chapter 3. Contrary to several
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other versions of the method, it is preferable to choose éharecal boundary condition that is valid for
application to all starsi.e., for the case where both the gas and radiation-pressuréeeaitens may be
significant. Therefore, Dupreit al. (2002) considered as boundary condition the version of Efj1j in
which the contribution of the gas pressure at the surfacgriered, but not the radiation pressure, thus
deleting the first term of the right-hand side of Eq.(5.11)s Boundary condition for the gravitational
potential, we impose, as usual, continuityd@fand its first derivative between the inner solution given by
the Poisson equation and the outer solution given by thealcaptquation:

-, ~
0% + R —47Gpoks. (5.14)
or r
As boundary condition for the energy equation, Eq. (5.9),(E®) is evaluated in the outermost layer by

computinglim,_,o é7/7 from Eq. (5.7), resulting in

(5.15)

6T  OlnT 6T N OlnT 6Ggo OInT (5_5 @jﬁg})

?0 " 9 T Terp Olnge E Olnt \ kg pg Or

(Dupret 2002).

In order to solve for the unknown quantitiés &, 7', . . ., we must require continuity of these variables
at a so-called connecting layer, bridging the stellar inteand the outer atmosphere. As explained in
Dupret (2002) and for the reasons outlined below, this cotimg layer must be chosen carefullye., at
a position where the flux is predominantly radiative. In tbase, Dupret (2002) derived the following
matching conditions for the connecting layer:

0T 6k 6p  doT/dr d& 45T05

S = 5.16
TO RO Po dT/d?” dr chf,O ( )
and ~ - ) ~
~O q), 4 r T
09 _ 0%'/0r 7Tp(]rg——(erﬂ)g— (5.17)
go go m T go r
which reduces to the simpler condition
~ 2 ng
99e _ _ <2 + ﬂ) & (5.18)
90 go r

in the Cowling approximation, if one ignores the surfacesityndivided by the mean density of the star.
By means of Eqs (5.16) and (5.17), Dupret (2002) showed Hetontinuity of the derivatives o, /R
anddps /pe.o is guaranteed. Following Dupret al. (2002), the continuity oﬁT/TO should be checked
posteriori These authors achieved this condition by placing the adimgglayer atlog 7 = 1 for main-
sequence B stars andlag = = 0 for § Sct stars, confirming the validity of their treatment.

The theory presented here is more sophisticated than windteis used in the literature, where the
Eddington approximation with temperature distribution

T(r) = ZTéH (T - g) (5.19)

173



80

T(1) (10%K)

Figure 5.4: Temperature distributions in the envelope am@roatmosphere of a hot star withg =
24 000K andlog g = 4.5 for different approximations. Dotted line: grey atmosghas in Eq. (5.19), dot-
dashed line: NLTE plane-parallel line-blanketed statmn@phere model without wind (Lanz & Hubeny
2006), full/dashed line: NLTE spherical unified atmosphaedel with weak/strong wind (Lefeveat al.

2006).

is regularly adopted for the stellar atmosphere rather th@general form given by Eq. (5.4) for a non-grey
atmosphere. The advantage of the treatment presented isbraainly important for hot stars as it includes
the radiative acceleration due to continuum radiation. direent treatment also allows one to use any type
of equilibrium atmosphere model, as long as it is statec, whenever the acceleration due to line-driving
can be ignored. When the atmosphere is perturbed due to tilatiens, it is, in fact, no longer strictly
static. Duprett al.(2002) checked for the difference between the perturbedshere due to an oscillation
and the static one in the LTE approximation with correspogdemperature and gravity, and found relative
differences less than 20% in the quantities, depending erotter of the oscillation mode. This slight
inconsistency is negligible compared with the gain of usmgch better equilibrium atmosphere models.

We compare in Fig. 5.4 the temperature structure of an Etlingtmosphere with state-of-the-art
NLTE line-blanketed atmosphere models with and withouteliriven wind, for a star witli,z = 24 000 K
andlog g = 4.5. It can be seen that significant deviations from the Eddimgimdel are encountered for
the atmosphere region whelkez = < 0, even for the static plane-parallel non-grey atmosphetbout
mass loss (dashed-dot line). This discrepancy'(n) for log T < 0 is a general property for all effective
temperatures of relevance for mode identification. The gidn approximation is thus only appropriate for
the connecting layer, provided that it can be positionethéregime ofog = > 0. We therefore advise that
any user of the methodology checks for the validity of theiggtbn approximation for the connecting layer
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and for the outer atmosphere. In any case, when computingnipitude ratios and phase differences it
can easily be replaced by the treatment provided here, lmasadon-grey static plane-parallel atmosphere
model.

Coming back to Fig. 5.4, the discrepancy between the grepshere and more realistic models is
particularly significant for hot stars and supergiants. Caue see from Fig. 5.4 that even a state-of-the-art
NLTE plane-parallel model (Lanz & Hubeny 2006) does not givgood description of the temperature
distribution in the atmosphere where a temperature bumpreatearog = < —2 in the case of a unified
spherical NLTE line-blanketed atmosphere with a line-ghmiwind. This bump is generally understood
in terms of line-heatingg.g, Mihalas 1978) but its exact position and height depend enptiesence of
particular ions in the wind (see,g, Pauldractet al. 2001; Pulset al. 2005 for discussions of this effect).
As can be derived from Fig. 5.4, the current treatment of titercatmosphere in mode identification should
be improved by also considering the line acceleration indyreamical atmospheres of OB-type stars and
supergiants, but this has not yet been done to our knowledge.

Finally, we come back to the prerequisite that the conngdfaiger must be situated in a part of the
atmosphere where the flux is predominantly radiative. Theor is that the assumptions made about the
link between the temperature structure and the flux are rgelovalid when the convective flux dominates.

It is therefore important to position the connecting layethie very outer part of the envelope for stars with
envelope convection zones, suchi&ct andy Dor stars along the main sequences and any type of evolved
pulsator.

Non-adiabatic observables

In what follows, we adopt the single-layer approximationhas always been done so far in photometric
mode identification. This means we assume there to be a stejlar photosphere, whose distance to the
stellar centre is characterised by the stellar raddid whose temperature equals the effective temperature
of the star. Moreover, it is assumed that the outward flux dagsdepend on the optical depth in the
atmosphere. The deformation of the photosphere is thusedefiom the evaluation of the displacement
vectorfatr = R in the linear approximation.

We seek to determine the monochromatic amount of energwateatlby the star as measured by a
distant observerE (), t). In doing so, we again recall the short thermal relaxatioretdf the atmosphere
which has led us to assume that, at each moment in the ostillatcle, the atmosphere remains in radiative
equilibrium and the temperature distribution in the atniesp7’(7) remains the same as in the equilibrium
model. We also use the same argument now to keep a fixed ptésTor the monochromatic outgoing

flux of the local atmospherE;r and limb-darkening law (¢) during the oscillation cycle. Moreover, we

assume that the local atmosphere’s chemical compositays sbnstant and thﬂt;r remains perpendicular
to the local photosphere. Under these assumptions, thechmmatic flux variation in the local atmosphere
is given by

F)—:O + 5F)—\’_(97 ¢> t) = F)—\’_ [Teff,O + 5Teff(07 ¢7 t)v go + 590(97 ¢> t)] ’ (520)
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where we have introduced the notatiBfi = |F,|. In the linear approximation, this can be written as

SFY dlnFyT\ 0T, Ol Fy\ 6ge
DU 0oy £, (2R ) %% (5.21)
Y OInTey ) Tegp dlnge | go
5Teff 5§0
= ara—— +ag ) —. 5.22
T Tt 9, % ( )
Similarly, the variation of the limb-darkening laky (¢) in the linear approximation is written as
8 hy Olnhy \ 0Teg <81nh)\) 83e <81nh)\) Lo
= _— 57‘ . Z/ 5 523
ho (81nTefF> Teft 0 dlnge ) go o’ (- az) (523)

wherer is the normal to the stellar photosphere dndtands for theadial Lagrangian perturbatiordefined
by

0, X =0X (5.24)
for a scalar quantity’, and
S o, dY,
5Y =Y+ 3 &an (5.25)
T

for a vector quantityt7 . With Eqg. (5.23) we thus assunagf = 4,.¢ = 0. It is noteworthy that Heynderickx
et al. (1994) and De Riddegt al. (2002) did not make this approximation and considered theergeneral
classical Lagrangian perturbation in their descriptidnwas, however, shown explicitly by Dupret (2002)
and by Townsend (2003) that these treatments are matheatthatéquivalent in the linear approximation for
the perturbations. Hence, we limit ourselves to the simplatment here, which comes down to the ap-
proximation that the geometrical distortion is not affeldby the horizontal components of the displacement
field.

As we have shown in Eqg. (5.18)g./go is to a very good approximation in antiphase with the radial
displacement. The phase&f.s/T.r o can in principle take any value, depending on the kind ofliasicin
mode and on the stellar model. Therefore, it is customamttoduce the coefficientr, 17 and f, defined
as

oT, < (R :
T;)(R, 0,0) = fTiR) exp (—itr) (5.26)
and : (R)
6ge & (R
(R0.0) = —f7 (627

We recall that these amplitude functions are the true augsg divided by the common factor
VATY,™ (0, ¢) exp (—iwt).

The coefficientsfr, 17 and f, are termechon-adiabatic observablesn particular, the coefficientr is
called thephase lag They follow directly from the integration of the basic etjaas in the stellar interior
and in the atmosphere through the connecting layer, witlréla¢ément of the atmosphere as discussed above.
In models with an outer convection zone, their values dememthe treatment of convection, including
the choice of mixing-length parameter and the possibleugich of modelling of the coupling between
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degree |

Figure 5.5: The integral; , defined in Eq. (5.30) is shown for different mode degres a linear limb-
darkening law taken from Claret (2000). The lower three esrare for a star of .,z = 6000 K and
log g = 4.0 at the wavelengts of the U (full line), B (dotted line) and \a¢tied-dot line) filters. The two
upper curves are for a star @ty = 25000 K andlogg = 4.0 at U and B (indistinguishable, shown as
dashed line) and V (dashed-dot-dot-dot line) wavelengths.

convection and pulsations; thus, inferring them obsemnatly provides a possibly diagnostic of the physics
of convection in the outer layersf( Sect. 5.1.3).

For the equilibrium model, we have

2 1 r2rn
BN =5 [ [ B, (5.28)
with d the distance to the observer, so we must deterinig\, t). We omit this long derivation here, as it
is readily available in several papers in the literaturehsas Cugier & Daszyfska (2001), Dupret (2002),
Townsend (2002), Dupret al. (2003), Daszyhska-Daszkiewiet al. (2003), and Randadt al. (2005). The
outcome, written in terms of the observed variation of thenaotiromatic visual magnitude at wavelength
A, can be written as

dmy = —1121‘150 Var 5";3) P (cos iYbx [—(1 — 1)(1 — 2) cos(wt) (5.29)
+  freos(Yr 4+ wt)(ar + Bra) — fgcos(wt)(agx + Bgx)],
with o D1n by D1n by
by = [ () Py, Brp = SR By = S (5.30

The terms proportional t@ — 1)(I — 2), fr and f, correspond to the variation of the surface, of the local
effective temperature and of the gravity, respectively. Shew the value of the integréa) , for different
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[ in Fig. 5.5, for two different types of stars and for the wavejths of the U, B, V filters. It can be seen
that there is a steep decrease in valuéiasreases from 0 to 3, and fluctuating values converging tto ze
as! raises above 9. While Eq. (5.29) makes it clear that the ctetipn of the decrease in the observed
amplitude of the brightness variations as a function isffar more complex than simply considerihg,,
this dependence di; , on [ forms the basis of the so-callgurtial cancellation effect We can see from
Fig. 5.5 thath; , is a factor~ 4 smaller forl = 2 than forl = 0. The factor is even larger fér= 5, 6, while
bz x» ~ 0. This is the reason why one often assurhes2 in the modelling of the photometrically detected
oscillation frequencies.

Another point of attention in Eq. (5.29) is the factBf"(cos ). For each(l,m), there exists at least
one inclination angle for whict?"(cosi) = 0. Such angles are termeéudclination Angles of Complete
Cancellation abbreviated as IACC. You can easily compute them!

Observations usually do not provide us with the monochramaagnitude, but rather magnitudes for
particular filtersj with transmission curves;(\) and a wavelength range froA} pjue 10 A eqa. One thus
computes

>\j,red
/A " by wj(n) A
G = Lhibtue (5.31)

)‘j,rcd
/ w;(\)dA
A

j,blue

for comparisons with observations. It is readily seen fram(g.29) that one eliminates the common factor
—(2.5/1n10)Vv4r (& (R)/R)P™(cos i), which is independent of wavelength, by considering amgétra-

tios for different photometric bands. With it, the deperzieon the inclination angle and on the position of
the nodal lines on the stellar surface (by means:.ptlisappears. This is an asset of the method, because the
inclination angle is often not, or only very poorly, knownitlit is also a disadvantage as it cannot deliver
an estimate ofn.

Finally, we wish to emphasize that, in the early developnpématse of this method, some less accurate
approximations have been proposed for the computatiofy-pff, anddp,. These were mainly based on
adiabatic approximations or an ad-hoc generalizationetifeland/or the assumption that the Lagrangian
perturbation of the local temperature equals that of thectffe temperature. These assumptions are not
appropriate for the outer stellar atmosphere. We advisssigasage of the treatments published before
2000. Cugier & Daszynska (2001) first came up with an imptiowemputation off, in terms of the
dimensionless frequency of a mode:

w?R3
GM -~
This result is equivalent to the one we encountered in Eg8j5which was a special case of the more general

Eq. (5.17) in the Cowling approximation and ignoring theface density divided by the mean density of the
star in the outer atmosphere.

=240 =2+

(5.32)

We point out that the inverse of?, i.e., the ratio between the horizontal and radial components of
the displacement evaluated at the stellar surface, is tetheeK -value of the mode by observers. They
introduced this concept df while interpreting data of stellar oscillations. One thas@unters both terms
in the literature these days, depending on the backgroutiteauthors.
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5.1.3 Mode identification schemes

Even though the oscillations always behave highly nonkadieally in the outer atmosphere, some stars
haver-values close to the adiabatic values. This is, for exanpkecase for main-sequence B stars and
is understood in terms of their excitation by the heat meighamcting on an opacity feature resulting from
iron-like elements, near a temperaturelef ' ~ 5.3. This is rather deep in the star where the quasi-
adiabatic approximation is still quite good. Therefores thhase difference between the variation of the
luminosity and the radial displacement amounts to almasattiabatic valud,e., 180° for the p modes in

[ Cep stars an@°® for the high-order g modes in SPB stars. In such cases, isi®mary to exploit only the
amplitudes in the different photometric bands, and not tresp differences, when identifying the degree of
the modes. The same holds true for the pulsating sdB staner @alsators, such asSct stars and all other
pulsators in the classical instability strip, are predamity driven by the partial ionization zone of once
ionized helium. This layer is positioned ndag T ~ 4.6, i.e.,, much further out where the non-adiabatic
effects are stronger. Non-adiabatic theoretical comjmutatindeed predict large phase differences in the
magnitude variations for different filters for such stargislis confirmed by the observations. In that case,
it is advantageous to exploit also these phase differemceentifying [, besides the amplitude ratios. We
treat these two situations below.

Mode identification schemes using only amplitudes

When using only the amplitudes, the following scheme is setyj after Dupregt al. (2003):

1. Compute stellar models with appropriate effective terajpees and gravities. One must make sure to
cover the observational error box (i, log g) with models for a safe propagation of the uncertainty
of these fundamental parameters on the mode identifica@al . andlog g follow readily from
an interpretation of the stellar spectrum, it is best to hesé as constraints to construct the models.
Observational values for the luminosity (or the absoluteymitade) require additional information,
such as the distance which is often poorly known, or rely dibiions which can suffer from
unknown systematic uncertainties.

2. Perform non-adiabatic computations to derje 7, f, for modes with frequencies close to the
observed ones, for different degréefor all the models that pass through the observationalr erro
box computed in 1. Usually, one restricts the search+00, ... ,4 by arguments of observational
cancellation for higher degree modes.

3. For each filtefj and for each degrde compute the theoretical amplitude while omitting the casnm
factor—(2.5/1n10)v4n (&-(R)/R)P™ (cos i), i.e., compute the amplitude factor:

)‘red
/ i |11 + To + T wj(A)dA
Ay = Pl : (5.33)

Arcd
/ w;(\)dA
A

blue
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with

T o= (1-1)(+2) (5.34)
Ty = fr exp(—iyr) (arx+ Bry), (5.35)
T3 = _fg (ag,A + ﬁg)\)' (5.36)

4. Choose a reference filtet,.; 11, to compute the amplitude ratios. The best choice is to take th
particular filter for which the relative uncertainty of theeasured amplitude is smallest. Quite often,
this is the filter in which the highest intrinsic amplitudeésached, but not always as this also depends
on the instrumental noise.

5. Compare the theoretical amplitude ratibs;y, /At tn With the observed oned; s/ Axet obs, for all
the stellar models that pass through the error beX7.g, log g). This comparison can be made by
visual inspection, as is often done, as it makes it possibleet the confusion regions due to the
uncertainty in(T.g, log ¢). It can also be done by computing thé function defined as:

#filters 2
A; Are _A'osAreos
=3 < jith/ f,tho-‘ b], bs/ Aref ob ) 7 (5.37)
7j=1 J,0bs

whereo; 1,5 is the properly propagated standard error of the observegitate ratio for filter;j and

the reference filter,e.,
2 2
A' b SA. SA
1,008 j,0bs ref,obs
Ojobs = + (5.38)
7P Aref,obs \l < Aj,obs ) <Aref,obs> ’
with s4; . the standard error of the observed amplitude in fijterAlso in this case, one must
consider different stellar models across the entire olasemnal error box.

While performing step 3, one needs to derive the coefficients andjr », which are derivatives of the
monochromatic flux at wavelengt from appropriate stellar atmosphere models. Severas gfidtate-of-
the-art models are available in the literature, well suttegarticular kinds of pulsating stars.g, the LTE
plane-parallel models by Kurucz (1993) or Smalley & Kupk891) for main-sequence stars cooler than
spectral type B and the NLTE plane-parallel line-blanketextiels for B stars (Lanz & Hubeny 2006) and O
stars (Lanz & Hubeny 2002) without wind. As already discdssethe context of the connecting layer and
Fig. 5.4, one should in principle adapt the theory presehtrd to NLTE unified spherical line-blanketed
models including winds, such as those computed by Lefewvat. (2006), for O and B stars. For the time
being, such generalization is not available, but Dutbal. (2005) made a comparison between the NLTE
static plane-parallel models without wind and the dynaisgénerical models with wind and concluded
that most of the atmospheric parameters and chemical catigpgsare quite similar. One may thus hope
that the current description and the use of static NLTE nsde sufficient to compute appropriate values
for ar y and 37 \. Nevertheless, it would be very useful if the current treatrof the atmosphere were
generalised to a dynamical spherical unified atmospheteanihe-driven wind for the identification of the
oscillations of O and the hottest B stars.

One also needs good values for the limb darkeriing.’) to perform step 3. In a series of papers,
Claret (2000, 2003, 2004) has computed several limb-dargdaws for a very broad range of effective

180



temperatures, gravities and metallicities, and for séygratometric systems. These are ideally suited to be
used for mode identification. In the approaches by Ramachaetial. (2004) and Randa#t al. (2005), on

the other hand, the use of a perturbed atmosphere modelssracied in such a way that it automatically
incorporates the wavelength-dependence of the limb dargeso that approximate parameterised limb-
darkening coefficients are not needed for the computatigirgfand 3, ».

In all of the applications of the method so far, steps 1 andeZdane for non-rotating stellar models.
For each evolutionary stage of each track through the ewgr bne selects, for eadh the mode with
frequency closest to the observed one and considers itstadgfor comparison with the observed ones.
This implicitly assumes that the observed frequency cpards to the central peak of a multiplegiven
that the Ledoux constant is usually substantially smahantl, the assumption thus becomes that 0
or Q) ~ 0. This is invalid for many pulsators. For stars with rapidatain, the first-order approximation of
the rotational splitting breaks down, and even the centakp of the multiplets are shifted (Goupti al.
2000). Rotational mode coupling also occurs between modhesevdegreé differs by 2 when they have
the same azimuthal ordet (Daszyhska-Daszkiewiozt al. 2002). All these effects are ignored in the mode
identification. It is very important for readers to realibe timitation of assuming the measured frequency
to be equal to the central peak of the excited moddss is, in fact, quite a weak point of the photometric
mode-identification method, except when the star is a very sdtator in the sense that its rotation period
is far shorter than the pulsation periods in the corotatimgnie Indeed, in many cases, we have clear
spectroscopic evidence that the observed moderhas0 (see Sect. 5.2), even for moderate rotators. This
is particularly the case for the high-order g modes in SPBsdad~y Dor stars with their long pulsation
periods, but also for some of the p modessi@ep stars and Sct stars. One should, therefore, not expect
perfect agreement between the theoretical and observeituegatios. It should also be kept in mind that
deviations from linearity may occur, and that non-linedeef can also be the cause of a departure from the
theoretical predictions based on the linear approximation

While performing step 2, one can take two attitudes. Eitimergives full confidence to excitation com-
putations, and one considers only the modes that are peddizte excited when computing the theoretical
amplitude ratios. Or, a more conservative approach is teket one does not restrict the search by using
predicted theoretical amplitudes, but rather considdrsatles with frequencies close the observed ones,
irrespective of their excitation predictions. As we willoshin Chapter 10, we have a good, but not perfect,
view of mode excitation in main sequence stars. Thus we adkies conservative approach.

The most likely mode degrdes, obviously, the one with the best agreement between yheaat ob-
servations. Discrimination among thealues is achieved by comparing the results for the angaditatios,
either by visual inspection or from comparison of t#!)-values. These two approaches are illustrated in
Figs 5.6 and 5.7 for nine of the ten independent oscillatiequencies detected for tleCep staw Eri, the
values of which are available from De Riddsral. (2004) and are repeated here in Table 5.1. As can be seen
in Table 5.1, the frequenay, is only detected in the spectroscopy and could thus not lrifidel from the
photometry. In Fig. 5.6, all the modes of numerous modelkiwithe error box with frequencies close to
the observed ones are considered for the theoretical pieediof the amplitude ratios (indicated as the grey
zones).With this way of working, one assumes that the theory is drem, and that the uncertainty in the
theoretical prediction of the amplitude ratios comes frdra errors of the fundamental stellar parameters
It can be seen that the first four dominant modgs . . , v4 are safely identified as a radial mode on the one
hand and ah = 1 triplet on the other hand, given the similar frequency valok,, v3, v4. The modes with
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Figure 5.6: Amplitude ratios with respect to the Stromguefilter for the 5 Cep staw Eri, resulting from

a 5-month multisite campaign. The dots are the observeceksalith their errors, and the full lines are the
predicted values as a function lpffor a model in the centre of the observatio(@lg, log g) box. The grey
zones indicate the uncertainty of the theoretical preafictiue to the observational error @, log g). All
modes close in frequency to the observed ones were corgittaréhe theoretical prediction, irrespective
of their excitation. For a description of the data and thévedrfrequencies, we refer to Chapter 10. Figure
taken from De Riddeet al. (2004).
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Figure 5.7:x2(l) as defined in Eq. (5.37) for the excited modes closest to thergbd frequencies of one
model in the observational error bd¥.«, log g) of the 5 Cep staw Eri. Compare this figure with Fig. 5.6.
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Table 5.1: The ten independent frequencies forilep star Eri, and their amplitude in the radial velocity
derived from the Silll 455.3nm line as well as in the Stroerge filter (from De Ridderet al. (2004).

ID | Frequency| Amplitude | Amplitude | Degree
(d=h (kms™1) (mmag) l
171 5.7633 22.4 73.5 0
2 5.6539 8.9 37.9 1
V3 5.6201 8.1 34.6 1
vy 5.6372 7.9 32.2 1
Vs 7.898 1.0 4.3 1
Vg 6.244 1.0 3.9 1
vy 6.223 0.3 - -
U8 6.262 0.8 2.8 1
vy 7.200 - 1.4 -
V10 0.432 - 55 -

frequenciesss, g and g are also still safely identified ds= 1 modes. The identification afy and g

is impossible. Fory this due to the uncertainties on the observed amplitude vfgemwhich corresponds
to a high-order g mode, numerous such modes with diffdregmidn-values have almost similar frequency
values which makes a discrimination among the possilslitiepossible, as is reflected by the large grey
area in the bottom panel of Fig. 5.6. The reader will havecedtihat the theoretical predictions of the 3
modes do not occur in Fig. 5.6. This is due to the authors’ahtm omit them in order to keep the graphs
clear, because odd modes with- 1 have a very specific wavelength dependence crossing thefdahe o
even modes for B stars (see Fig. 5.2) which was not compatittkethe observed ones. From Fig.5.7 one
would get the impression that all modes but the one with feaguvy can be safely identified. We use this
example to illustrate the importance of propagating thersmon(7.¢, log ¢) into the theoretical predictions,
as is done in Fig. 5.6, before making firm conclusions on thdertegree.

In principle, one could take one step further and use stamlaality-of-fit measures of the? approach
(e.g, Presst al. 1986) to decide if a model is acceptable or not in an absokrises.e., as a deterministic
tool to decide when to accept a mode identification as welbadetide which of the solutiong?(l) are
statistically equivalent/different. However, we refréiom using such a cut-off value foy? as a decision
criterion to decide if we can accept the mode identificationat, because it assumes that the complicated
non-adiabatic oscillation theory, the construction ofriedel atmospheres, the treatment of the oscillations
in the atmosphere, and the input physics of the models @imduthe metal mixture, the description of
convection and the ignorance of rotation) are error-fresides the assumption that the determination of
the fundamental parameters of the star does not suffer fy@termatic uncertainties. While all of this
may be true, it is rather optimistic, to say the least. In,factliscrepancy between the theoretical and
observed amplitude ratios, translating into a high valuefd!), was exploited by Duprest al. (2003), by
Daszyhska-Daszkiewiaz al.(2003) and by Daszyhska-Daszkiewitzal. (2005) to improve the metallicity
of main-sequence B stars, the treatment of convectidrSat stars, and the values for the opacities Qfep
stars, respectively, after securely identifying the defgkof the mode(s). Dupret al. (2003) termed this
non-adiabatic asteroseismolag$uch fine-tuning can only be applied when there is no ovenapng the
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amplitude ratios of differentvalues, after consideration of the propagated unceigsion the ratios due to
the observational error box and after making sure that tta teglect of rotation and non-linear effects in
the models and oscillations is justified.

A final remark on the amplitude-ratio method concerns trghdlly different treatment of the deviation
parameter by Randadit al. (2005). Instead of Eq. (5.37), they preferred to minimize

*A . X 2
#filters MA A #filters 2
2 Aretn *10th ™ £jiobs JiAj o — Ajobs
()= = |/ (5.39)
j=1 04,0bs j=1 04,0bs

where f* and f, are free parameters that are solved for by minimizingthe The main difference with
Eqg. (5.37) is thus the introduction of the factfit In this way, one still uses amplitude ratios, but one
does not give preference any longer to the amplitude of omeifsp reference filter to compute the ratios.
This is more objective in the sense that all filters are tabatgually, but, on the other hand, introduces an
additional free parameter that is adapted for dasdparately. This is done in such a way that the shape of
the amplitude-ratio distribution across the wavelengtigeais matched with the observed shape. This is a
valid treatment within the? approach, where the number of degrees of freedom is simpigased by one.
An example of thisy?, as an application to identify the dominant mode of the sdB¥ KPD 2109+4401,

is shown in Fig.5.8. The data have a very high S/N level ancevigten with ULTRACAM by Jefferyet

al. (2004). These authors also tentatively identified this modee adiabatic approximation and found it to
be radial, albeit that confusion among the: 0, 1, 2 solutions occurred. The results in the figure contain a
non-adiabatic treatment and leave no doubt that the dommade is radial (Randaéit al. 2005), thanks to
the small error bars on the observed amplitudes.

Mode identification schemes also using phase differences

For the case of Sct oscillations, information is also encapsulated in th&eoved phase differences. Typical
wr-values for such oscillators range frat° to 200°, depending on the mixing-length parameter, the mass
and the degree of the mode. This strong dependenge oh the mode degree has led to a slightly different
mode-identification method for such stars. Pioneering workhis respect was done by Garridd al.
(1990), who defined so-calledgions of interestor the Stromgren system. These are areas in diagrams of,
e.g,v/y versusi(v) —d(y) (whered(z) is the phase of time serie$ as a function of the degréeThe level

of non-adiabaticity and)r were rather arbitrarily treated as free parameters in thges{0.25, 1] (where
adiabatic equals 1) an@0°, 135°], respectively, for the computation of these areas. Seeswahples of
such regions are shown in Fig.5.9, where a confrontatioh thie¢ modes detected in seveféct stars is
also shown. It can be seen that the identification of the @edigreasiest to achieve by considering dtféter

in combination with one of the three other filters. For an wiew of applications of this method we refer
to Garrido (2000). In particular, this method was appliedBoggeret al. (1999) to identify several modes
of the prototypical multiperiodié Sct star FG Vir.

A higher level of sophistication i Sct oscillation mode identification was reached by Duptedl.

(2003), following the scheme outlined above, and subsdtyjuby Daszyhska-Daszkiewicet al. (2003).
These authors developed a method based on non-adiabatputaiions similar to those described here, but
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Figure 5.8: Identification of the dominant mode of the sdB&r 9(PD 2109+4401 from ULTRACAM
photometry according to Eq. (5.39). The data are taken freffiery et al. (2004) while the identification
was done by Randadt al. (2005).
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Figure 5.10:y? for the observed photometric data of #h&ct star 20 CVn for four models in the observa-
tional error box in the HR diagram (Daszyhska-Daszkievetal. 2003).

considering the amplitudes and phases themselves in fleeettif passbands by re-arranging the equations.
While doing so, they defined a different typepf, which they minimized as a function of the coefficients
(& (R)/R] P/™(cosi) and fr [&-(R)/R] P"(cosi). In this way, one does not need to know a value for the
unknown factorP™ (cos i) because this factor is considered together with the unkraowplitudes, (R)/R

of the mode. In fact, seeking the best solution for the twosenounknowns by means of a minimum in
their x2 for models with different parameters allowed them to caistthese parameters. The identification
of [ then comes as a by-product, excluding thalues whenever thejg?(1) turned out to be too high and
discriminating amond whenever possible. We show in Fig.5.10 the application eirtmethod to the
low-amplituded Sct star 20 CVn, which was already known to have a radial meeke élso Sect. 5.2 below).
There is no ambiguity in the mode identification for this séarall modes witfh > 0 have much higheg?2-
values than the radial mode. The main goal of the authors avearistrain the properties of the convection
treatment by comparing the value 6f resulting from the fit with theoretically computed valuessitg

a simplified treatment of the convection-pulsation intéoacby assuming ‘frozen convection’ they noted
a preference for very small values of the mixing-length peiera, although in all cases the agreement
between the observationally inferred and computed valtfiegrovas rather poor; this clearly indicates
inadequacies in the convection modelling.

Daszyhska-Daszkiewioet al. (2005) applied a similar method, in which the radial velpamplitude
and phase is included and which will be discussed furthereict.S.3, to the data of FG Vir; this led to
the same result for the eight dominant modes as the one eltaineady by Viskunet al. (1998) and
Bregeret al. (1999). We display these results in Fig.5.11 and compama thigh the spectroscopic mode
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Figure 5.11:y? for the twelve dominant modes in the photometry of #tfct star FG Vir, for three dif-
ferent stellar models characterised by the given effe¢éweperature. The full horizontal line indicates a
confidence level of 80% (Daszyhska-Daszkiewétal. 2005).
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identification in Sect. 5.2 by means of Table 5.4. Here agamagr goal was to investigate the treatment
of convection. Using a time-dependent formulation of mixlangth theory originally proposed by Gough
(1977) resulted in a somewhat better agreement betweemadfand computed than for the frozen-
convection approximation, without requiring a possiblyeaiistically low value ofx.

Even though the method by Daszyhska-Daszkiewical. (2003) is a significant improvement to the
one by Garrideet al. (1990), it suffers from the same limitation as Dupe¢tal's (2003) amplitude-ratio
scheme outlined abovee.,, it uses model and oscillation computations for non-rotastars and assumes
the theory to be well enough developed so that the discrimigaalues of the ? are mainly due to different
[-values and not to limitations of the theoretical models.

The application of the above theory to the case of the higirtome p modes of the roAp stars was
used with a different goal. As explained in Chapter 2, somthe$e stars are known to have a dominant
dipole (I = 1) mode from frequency splitting in terms of the oblique puwsahodel. This information can
thus be used to derive observational information on theybldbwn limb darkening, and from it of the
temperature structurg(r) of the atmosphere, from a confrontation between observeditactes in differ-
ent filters and Eq. (5.29). This idea was put forward by Matthet al. (1990, 1996) who derived such an
empirical7'() relation for the star HR 3831 in the approximation of a greyagphere as in Eq. (5.19) and
assuming the steep amplitude decrease with increasingemayb to be dominated by the limb-darkening
variations. Kurtz & Medupe (1996), on the other hand, shofwech an analytical derivation that the limb-
darkening could not account for the observed steep dedithe@mplitudes towards red wavelengths. They
suggested instead that this is a consequence of a depthiaftee atmosphere, and settled the ambiguity
between these two different interpretations by showingttt@factor two difference between the theoretical
predictions according to Eqg. (5.29) and the observationaaabe due to limb-darkening variations alone.
They re-affirmed the failure of the theory outlined above thuihne basic assumption adopted at the start of
Sect. 5.1.2i.e,, the single-layer approximation. This is inappropriaterftAp stars, given that depth effects
are clearly visible in the line-profile variations of suchrstg.g, Mkrtichian et al. 2003; Elkinet al. 2005;
Kurtz et al. 2007; Ryabchikovat al.2007). The generalization of the method of photometric &onges to
a multi-layer approach is still awaited.

To conclude this section, we stress that the photometriceridehtification methodology, in whichever
of the modern formulations, has to be treated with care. likgeather heavily on the theoretical models
and assumes the input physics to be free of errors. In thisesdris not reallyempirical Nevertheless, it
works well for the large-amplitude p-mode oscillationsdi€ep and’ Sct stars, provided that they are not
fast rotators. The performance of the method has not yet teséed properly for the very dense frequency
spectra of high-order g modes in SPB stars abr stars, and it needs to be madified to include better
atmosphere models and depth effects for the applicatiooAp stars. Despite these limitations, we stress
once more that even the secure identification ofitkialue of only one or two of the dominant modes is a
huge step forward in the seismic modelling.
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5.2 Mode identification from high-resolution spectroscopy

As already explained in Chapter 4, the velocity field causgethb non-radial oscillation(s) leads, through
Doppler displacement, to periodic variations in the prefité spectral lines. The introduction of high-
resolution spectrographs with sensitive detectors in 8894 thus had a large impact on the field of empirical
mode identification. Spectroscopic data offer a very dedailicture of the pulsational velocity field. As we
will show below, its interpretation in terms o¢f, m) is far less dependent on the details of the oscillation
theory in the outer atmosphere than multicolour photométigeed, it basically relies on the interpretation
of the data in terms of the oscillation velocity vector, ded fromg, and not so much on the Lagrangian
variation of the temperature and of the flux.

From an observational point of view, it remains a challergyelitain spectra covering the overall beat
period of the multiperiodic oscillations, with a high redaly power (typically above 40 000) and with a
high signal-to-noise ratio (typically above 200 and pralidy much higher than that), for a good temporal
resolution (typically below a few percent) in the sense eftfitio of the integration time to the oscillation
period. The latter condition is necessary in order to avomearing out of the oscillations during the cycle.

The methodology to derive the full details of the pulsatlomdocity field at the stellar surface contains
at least six unknowns, as will be shown below, and therefeneld to be complicated. For this reason,
multicolour photometric observations, which can only léaen estimate of the but which can be obtained
from small telescopes, are still of utmost importance fodmalentification. These kinds of data are in
particular more suitable to study long-period pulsatioasduse small telescopes are available on longer
time scales. Ideally, one combines both types of data, irswaylined in Sect. 5.3. In the current section we
first explain how theoretical line-profile variations candadculated. Subsequently we describe two modern
mode-identification methods based on line-profile vanietio

5.2.1 Calculation of theoretical line-profile variations

Osaki (1971) published a pioneering paper including a sehemhow to compute theoretical line-profile
variations for non-radial oscillations. This is remarleabince, at the time Osaki published his work, high-
resolution spectroscopy was not yet available. His schemnttldherefore not be tested on real data. We
follow below the basic ingredients of a modern line-profi@ngration code based on Osaki’s description.

In the case of one linear spheroidal mode with infinite lifeti the surface pulsation velocity vector
expressed in the coordinate systény, ¢) is given by

17050(R797¢7t) = (U,»,U@,’U(z),t) (540)

= % {_wgr(}z) <1, K%, %a%) Y/"(0,¢) exp (—iwt)},

in the approximation where one can ignore the effects of ¢ketion in the computation of the oscillation
eigenfunctions. To this, we add the rotational surfacecrsiwvector in the approximation of uniform time-
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Figure 5.12: The stellar surface is subdivided into a finitenher of surface elements determined by a

step-size ir¥ and¢ for the computation of theoretical line-profile variations
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independent rotation:
Urot (R, 0, ¢,t) = QRay (5.41)

to obtain the total velocity vectar(R, 6, ¢,t) = tosc(R, 0, ¢,t) + U0t (R, 0, ¢, t) at the stellar surface for
the surface element with coordinatds, 6, ¢).

In order to compute the observed line-profile shape corretipg to this velocity vector field, denoted
asp(\, t), we have to determine the velocity vector component, asagdthe normalised flux of a particular
stellar surface element with coordinatd®, 6’, ¢'), in the line-of-sight:

/2
/ / (dA(R,0',¢',1) - @) (R0, ¢/, t,)

/m/ (dAR.0, ¢ 1)-a) I (R0, & 1)

where dA is the local surface normall,(R, ', ¢',t,@.,) is the intensity of the point with coordinates
(R,0',¢') at timet in the line-of-sight and’s°™ is the continuous intensity,e., the intensity that would
be observed if the spectral line were absent. In practice,sbdivides the visible stellar surface into a
large number of elements with central coording#s¢’),i = 1,...,N;j = 1,..., M for the computa-
tion of the integrals in Eq. (5.42) (see Fig. 5.12). For pnésiay computational power, one usually takes a
step of1° in the angle®’ and¢’, leading toV = 180 and M = 360. In order to get reliable result®y and

M must be at least 45 and 90, respectively.

We now consider all the ingredients necessary for the coatiputof p(\, ¢) through Eq. (5.42). The
velocity field due to the rotation and the pulsation leadsBmppler shift at a pointR, 6’, ¢’) on the visible
equilibrium surface of the star. The local contribution gfant (R, ¢’, ¢') to the line profile is proportional
to the flux at that point. We assume that the intengjtyf’, ¢') is the same for all points of the considered
surface element. The flux through the surface element sudling the poin{ R, ¢’, ¢’) thus is the product of
the intensityl(6’, ¢’) and the projection on the line-of-sight of the surface elemagound the considered
point:

I,(0',¢') R? sin@’ cos#’' do’ dg'. (5.43)

An important effect that changes the flux over the visibldam is the limb darkening. The flux of a surface
element centred around the poitR, #’, ¢') of the equilibrium surface with siz&2 sin 6’ d¢’ d¢' is

F\(R,0',¢") = Iy hy(0') R* sin@’ cos@’ df’ d¢/, (5.44)

wherely is the continuum intensity & = 0. For line-profile variation calculations, a linear approgiion

of the limb darkening largely suffices, because the profilkatians are dominated by the Doppler shifts
due to the surface velocity. One therefore often encouniteréimb darkening in terms of one coefficient
ux(Tegt,log g, Z) because this saves an order of magnitude in computationfmgpectroscopic mode
identification, where numerous parameter combinationg brisonsidered.

Perturbations of the intensity and of the surface due to sieélations change the line profile. Usually,

however, these effects are far less important than the igleffect for classical pulsators, and one often
assumes F\(#', ¢') = 0 during the oscillation cycle. However, one can easily gelie any line-profile
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generation code to include the non-adiabatic perturbaifahe intensity,d[Iphy(6")], as well as the per-
turbed surface due to the oscillation, according to thermmeat in the outer atmosphere discussed above.
This has been tested for the spectroscopic identificatioimade we discuss below and has been found to
be an unnecessary complication.

A spectral line with central wavelengtky is subject to different broadening mechanisms, which we
also have to take into account in the computatiop(of, ¢):

1. Atomic broadeningesults in a Lorentz profile, which is caused by the finitetilife of the energy
levels of the ions responsible for the line.

2. Neighbouring particles disturb the energy levels of tdmsj causing a small change in the wavelength
of the spectral line. Thipressure broadeningesults in a Lorentz profile. The higher the pressure the
larger this broadening becomes.

3. All ions move on a microscopic scale due to thermal agitatiThisthermal broadenindeads to a
Gaussian profile as the particles follow a Maxwellian vdiptaw with a temperature dependence

~ VT.

4. The stellar rotation causestational broadening We assume the rotation to be uniform across the
stellar disk, and time independent. The resulting line [@adi then symmetrically broadened by the
rotation.

5. Stellar oscillations give rise to periodic broadenindhaf line profile. The shape of the line profile is
completely determined by the parameters occurring in tipeession of the pulsation velocity given
in Eq. (5.40). In particular, it is dependent on {tiem) of all the oscillation modes.

In order to take into account such intrinsic broadeningot$fethe local line profile is convolved with an
intrinsic profile, which, in the simplest approximation betmal broadening, is taken to be Gaussian with
variancev?,, wherev?, is an unknown parameter that depends on the spectral liridesad. Generalisa-
tions to an intrinsic Voigt profile or a profile derived from telar atmosphere model are easily performed,
but are not necessary for mode identification (see belowlewmiplying much longer computation times.
In principle, if the theory of model atmospheres and the {intependent broadening mechanisms were
well enough understood, we would not need this free paramgiebut we could simply take the intrinsic
shape of the considered spectral line. In practice, howewer is always faced with the need to introduce
some unknown level of microturbulence, of up to several ki svhen fitting spectral line profiles. For
this reason, we may as well omit the computation of the isitifine profile from atmosphere models and
estimate a Gaussian with variancg along with the pulsational and rotational parameters tffattathe
line profiles.

We have now considered all the ingredients for the computadf the observed line profilg \, t). We
represent by;; the Doppler-corrected wavelength for a point on the stan adrdinateg R, ¢;, gb;-, t),i.e,

Nj— Ao ARGLGD o ANROLt) (R, 04 6),1)

Ao Ao Ao ¢

. (5.45)
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An explicit expression foo(R, 6/, qs;., t) can be found ine.g, Aertset al. (1992):

U(Rv 927 ;'775) =— Vg4 Sin@'sinqﬁ’
d k
. dP;
+ v kzz_laz,m,k(z) (cos H’Pl Ksinf' T )
X sin((w —mt + k'), (5.46)

where the velocity amplitude is definedgs= \/Gclmér(R)w with the normalization constaat,,, intro-
duced in Chapter 3 and where we use= 2R sin 4, usually denoted assin ¢, for the projected rotation
velocity for convenience of shorter notation. Equatiod@.is based on the transformation formula for
spherical harmonics for two different coordinate systerhese polar axes are inclined with angle

l

Y™M0,0) = Y apmi(i)YF(O,¢), (5.47)

k=—1
where

am k(i) = (L +m)!(l —m)!
Ly SIN(i/2)2 72 7mk cog (i /2)2r Hmtk

XZT: B rim+k+r)(l—m—r)1—k—r)’ (5-48)
withr > 0,r > -k —m,r <l —m,r <l — k (Jeffreys 1965, Condon & Odabasi 1980).
The line profile is then approximated by
/ L 2
Z Toha(6:) (—M) R?sin 6] cos 0 A0; Ag);
210 2vg,
p(At) = ; (5.49)

ZIOhA (0)R? sin 0 cos 0 B, A

where the sum is taken over the visible stellar surfaee, 8’ € [0°,90°], ¢’ € [0°,360°] and where
we have assumed a constant Gaussian intrinsic profile anch-&am@ble surface normal for simplicity.
Equation (5.49) essentially represents the line-profitafmatation suggested by Osaki (1971).

We show in Figs5.13 and 5.14 sets of theoretically calcdlgi®files forl = 2 and/ = 6 modes
computed from Eq. (5.49). The profiles in Fig. 5.13 are prdgrahose in Fig. 5.14 retrograde.

It is obvious that the pulsational broadening is easiesthtavel from the intrinsic broadening for the
sharpest lines in the spectrum, provided that they are webllved. Indeed, for sharp lines with narrow
wings, the deformation of the line is detectable across thelevprofile and not only in the line center.
This is why we want to avoid hydrogen lines, which suffer higafrom Stark broadening in their wings,
and helium lines for mode identification whenever possitevertheless, Viskunet al. (1998) used the
equivalent-width variations of Balmer and metal lines iwleesolution R = 4 000) spectra to identify the
dominant modes of FG Vir. They discriminated among difféessibilities forl from a plot of the ratio of
the amplitude of the equivalent-width variation of tha Bind an Fe | line versus the ratio of the amplitude for
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Figure 5.13: Theoretically determined line-profile vddas calculated by means of the basic formalism
described in the text considering &&= 2 mode andn = 0 (left panel),,m = —1 (middle panel), anan =

—2 (right panel) respectively. The other velocity parameéees pulsation amplitude, = 5 km/s, projected
rotational velocityvsin ¢ = v, = 30km/s, thermal velocityy, = 4km/s, and inclination = 55°. The
line-of-sight velocity is given on the-axis while the normalised flux (unitless, with values besaw@.7 and
1.0) is drawn on thej-axis. The profiles are stacked according to increasingdlasoh phase, from 0.00
(lowest profile) to 0.95 (uppermost profile) in steps of 0.05.
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Figure 5.14: Same as in Figure 5.13, butfet 6 with m = 42 (left panel),m = 44 (middle panel), and
m = +6 (right panel).
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Ha and an average photometric amplitude for the four Stromglters. In this way, they noticed “different
observational regions” in their plot, similar to those ubgd>arridoet al. (1990) for multicolour photometry

of § Sct stars. The application by Viskuet al. (1998) concerned a purely observational diagram. In fact,
the amplitude ratios in photometry are replaced here by itudpl ratios of the equivalent-width variations
of lines that are strongly affected BY’/T. On this basis they identifiedfor the eight dominant modes;
this identification was later confirmed by Bregetral. (1999) and Daszyhska-Daszkiewiet al. (2005)
(see Table 5.4 below). With the advent of high-resolutioecsmscopy and the coupling between pulsation
theory and observations in the quantitative methods adlinelow, this Balmer-line application was not
pursued for other stars.

As explained, the time dependence of the spectral line dausthe temperature eigenfunctiéi’ may
be important for the computation of the intrinsic line prefibr lines that are sensitive to small temperature
variations. This is particularly the case for metal linewgignificant equivalent-width changes because the
0T /T is such that it brings the ion into a higher/lower ionizatgiage at compression/expansion compared
with equilibrium. For this reason, one carefully selects tiest spectral line for mode identification. It is
advantageous to use an unblended, deep line which is itigertsi small temperature changes in the line-
forming region in the atmosphere, so that one can avoid gawaiincludeéT’/T in the computations. This
has been thoroughly investigated by De Rideleal. (2002) for pulsating B stars. The choice of the best line
depends, of course, on the effective temperature and grafvihe star. Foig Cep starse.g, the best line
is the Silll 456G triplet (Aerts & De Cat 2003), while for slowly pulsating Bass the Sill 4138 doublet
is ideally suited (Aertet al. 1999). For very fast B-type rotators, these multiplet liaes unfortunately
blended and one has little choice but to consider the isbleel 6678 line (e.g, Balonaet al. 1997) or
other helium lines (Riviniugt al. 2003). Temperature effects on line-profile variation® &kct andy Dor
stars have not been studied in the same detail as for B stars.

As discussed above, Eq. (5.49) for the computation of lirdip variations can be generalised in order
to take into account the following additional time-depamntdeffects: a perturbed surface, a perturbed flux
through non-adiabatic temperature and gravity variatiartime-dependent intrinsic profile. For fast rota-
tors, Coriolis and centrifugal correction terms to the ptitn velocity expression should also be included.
The most up-to-date line-profile generation codes take astmunt several of these effects, except those
due to the centrifugal force. We refer the reader to ekal. (1992), Aerts & Waelkens (1993), Townsend
(1997), Schrijverst al. (1997), De Riddeet al. (2002), and Zima (2006) for a detailed description of such
codes.

The complication due to the centrifugal force is not incldidespectroscopic mode-identification meth-
ods at present. It would thus be necessary to adapt the nudtlgydoresented below in the case of oscilla-
tions in rapid rotatorg,e., for stars that rotate at a considerable fraction of thdiiicat velocity (say above
50%). In such a case, the expression for the velocity fieldims of one spherical harmonic as in Eq. (5.40)
is inaccurate. Itis clear that the applicability of the nzetblogy breaks down in such a situation. As already
emphasized in Chapter 3, we have no good theory of stelldfatiemns for fast rotators. Thus, one cannot
hope to build a good mode-identification method for suchsasgresent.

The improved stability of spectrographs, some of which Haeen developed for exoplanet searches

since the beginning of this century, has allowed radiabe#y measurements with a precision of order
ms~!. This led Hekkeret al. (2006) to generalise the computation of line-profile vaoias to the case of
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solar-like damped oscillations. This revealed that lingebtors, as defined in Chapter 4, are not a good
diagnostic to investigate such oscillations, as was algndandependently by Dalet al. (2006). Hekkeet

al. (2006) compared their simulations with the variations ckeig in the cross-correlation functions (CCF)
of three red giants in which such damped oscillations weralfirestablished from radial-velocity mea-
surements. This led to the surprising result that non-tad@des seem to explain the CCF far better than
radial modes. This is at present not understood in termseahignory outlined briefly in Chapter 3 and more
thoroughly in Chapter 7.

5.2.2 Line profile fitting

It is clear that the velocity expression based on the noraradcillation theory contains many free param-
eters, even in the simple formulation in which rotationadl mon-adiabatic effects are neglected. The very
large number of candidate modes is especially a problem whestructing identification techniques and
it often keeps the predictive power low. This is particylatie case for the methods that are based on a
trial-and-error principle. Quantitative methods are éxetb obtain a reliable mode identification. This need
for quantitative methods has become apparent since morenangl detailed spectroscopic analyses have
revealed that multimode pulsations are more the rule theeption. Below, we treat two such methods, but
first we mention trial-and-error line-profile fitting as a nesdientification method for historical reasons.

This rather subjective method was pioneered by M. Smith asnddllaborators. They obtained for
the first time high-resolution spectroscopic observationsarious types of pulsating stars along the main
sequence and implemented Osaki's (1971) scheme to conipme data with theoretical predictioresd,
Campos & Smith 1980; Smith 1983; Smithal. 1984,1985a,b,c, 1986). The idea to identify modes is the
following: one generates theoretical line profiles p(\)) over the oscillation cycle from Eqgs (5.45) and
(5.49), or their more sophisticated version including temapure and Coriolis effects, and one compares
them with the observed ones to select the best set of lindegparameters. These are the velocity amplitude
v, of each of the modes, the projected rotation velogjfy the inclination anglé, and the intrinsic profile
width vy, This selection ofl, m, vy, i, v, v4n) iS either done by simple visual inspection (early days) or
by defining a criterion that includes the deviation of theotietical profiles from the observed ones in each
wavelength pixel. In order to do this objectively, one mustistruct a fine grid of theoretical profiles for
different values of/, m) and for realistic ranges of the other line-profile paranseter

This method is relatively easy and straightforward to applya monoperiodic oscillator. Assume
we have M observed normalised profiles of a spectral lidg, pobs(Aj,tx)) with j = 1,..., N and
k =1,...,M. We can then compute theoretical line profil@s, pineo(Aj, tx)) as explained above us-
ing Eq. (5.49) for different input parameters, i, v, andvy,. Subsequently, we derive thi@e deviation
parameterbased on the classical statistical techniquetahdardised residual@.g, McCullagh & Nelder
1989):

1 M N Thobs i 1) — Peneo (M 1))
> [Pobs (Aj, tk) — Deheo (Aj, ti)] (5.50)

Em v 7i7v ’1) = AT N 1 .
1" (Up, 1, Vg, Vin) $ (M-N)-1&=4 Ptheo(Aj, tk)[1 — Deheo (Aj, tr)]

The optimal choice of the continuous parametefs, v,,, v,) leads to a minimum of}” for each(l, m).
By carefully screening a four-dimensional parameter spaiceach(l, m), and by subsequently comparing
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the Xj"-values, one can thus identify the most likely mode.

Whenever more than one mode is present, however, the meduminies unrealistic in computation
time because one cannot search a large enough parameter splae latter has six dimensions for one
mode and increases by 3 for any additional mode, in the appation where one neglects temperature and
Coriolis effects as well as mode coupling. Also, this meti®mdensitive to the neglect of low-amplitude
modes that do affect the profiles slightly, because the tenies of line profiles is used in an absolute sense.
Quite often one constructs theoretical line profiles after tnode identification has been achieved with
quantitative methods for direct comparison with the datasTs of course no longer line-profile fitting, but
serves as an empirical goodness-of-fit test to check ideatiifins resulting from other methods.

5.2.3 The moment method

To overcome the computational obstacle of line-profilenfiffiand to make the identification more objective,
guantitative mode-identification methods have been dpeelgince the second part of the 1980s. With each
of these, one replaces the observed line profiles by cayeftldied diagnostics derived from the data. One
such method is based on the moment variations of the spdicieal and was first introduced by Balona
(19864a,b, 1987) and further developed by Aettsl. (1992), De Pauvet al. (1993), Aerts (1996), Cugier
& Daszyhska (2001) and Briquet & Aerts (2003). This metheseatially relies on the statistical property
that a line profile is fully characterised by all of its veliycmoments. Given this, one derives information
about the velocity of the non-radial oscillations from thed series of the moments of the line profiles. The
moment method has meanwhile been applied to many diffeypestof classical pulsators along the main
sequence. It is very powerful for low-degree modks<(4) in slow rotators {sini < 50kms™!). We
discuss now the basic ingredients of this method and regergder to the papers listed above for details.

Definition of the moments

As discussed above, a line profi,..(v) = (f * g)(v) is the convolution of an intrinsic profile denoted
here asy(v) for brevity, with the flux in the direction of the observer,nd¢ed for convenience a§v),
integrated over the visible stellar surface. The functfdn) corresponds to the one defined in Eqg. (5.44)
while the velocityv is a function of the angular coordinaté’sand¢’ and of timet: v = v(R, ', ¢',t). The
functiong(v) is a Gaussian with varianeg, .

We define theith moment of the line profile as follows:

[ oimeteyan [ g do

(V) g = 72— =2 (5.51)
’ /_J;O Dtheo (V) dv /_J;O (f*g)(v)dv

with v the component of the total (pulsation + rotation) velocigldiin the line-of-sight.
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All the information contained in the line profile can be reswacted from the entire series of moments
of orderj. In practice, we consider the first three moments, those forj = 1,2,3. There are several
reasons for that, the major one being that each of thesehfiest thoments is connected to a specific property
of the line profile:

1. the first momentv) is the centroid of the line profile in a reference frame with origin at the Istel
centre;

2. the second momeiit?) is a measure of the width of the line profile;

3. the third momentv3) is a measure of the skewness of the line profile.

All higher-order moments can be written in terms of the finsee moments for profiles whose wings do not
deviate much from a Gaussian. For the practical applicatiombserved line-profile variations one easily

shows that the noise level in the observed moments incregifesncreasing moment order and that the

noise is higher for even moments than for odd moments. Astré (1992) and Aerts (1996) showed that

the use of the three lowest-order moments is the optimahbalaetween having a clear signal and adding
independent information. Thus, each measured line prafileglaced by its first three normalised moments
(v), (v?) and(v3).

Theoretical expression of the moments for a monoperiodic adlation

In Eq. (5.51) we considanormalisedmoments,.e., each moment is divided by teoment of order zero
My. The latter is the equivalent width of the line profile (seea@tier 4). The division by the equivalent
width is very convenient because small temperature and #tatons during the oscillation are more or less
averaged out in this way, as they occur in the same way in theerator and denominator in the definition of
the moments. De Paugt al.(1993) tested the robustness of the mode identificatiomagsinall equivalent-
width variations and found the assumption of a consldnto be acceptable up to equivalent-width changes
of 5% in amplitude.

We subsequently make use of the property that the integralcohvolution equals the product of the
integrals of the functions to be convolved. Hence it is gltHbrward to show that the first three moments
can be written as:

<U>f*g = <U>f + <U>g7 (5.52)
<v2>f*g = <212>f + 2(v) ;{v), + v2>g, (5.53)
(W), = 3(?),(v), +3(v), (), (5.54)

+(0%), + (v°)

g9°

The odd moments of a Gaussian with average 0 km/s and varigpeee zero. The second moment of
the intrinsic Gaussian equal§,. Thanks to these simple properties of a Gaussian, the agimolwith the
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Gaussian intrinsic profile can be written as follows:

V) = )y, (5.55)
<v2>f*g = <v2>f + U‘?h? (5.56)
<v3>f*g = <v3>f + 3vtzh<v>f. (5.57)

By considering the component of the total velocity veatet v, + vro; and by transforming the ex-
pression forf (v) given by (5.44) to the reference frarfe 6, ¢) connected with the stellar rotation axis, we
obtain the following expressions for the three normalisexdmants of a monoperiodic non-radial oscillator
with infinite lifetime, after integration over the visibléeflar surface:

(V);., = vpA(l,m,i)sin(wt +4), (5.58)
v?),,, = viC(l,m,i)sin(2wt + 26 + 37/2) (5.59)
+  wpu, D(l,m, i)sin(wt + § + 37/2)
+ ’U%E(l, m, i) + vd, + bgvi

(v*),,, = v3F(l,m,i)sin(3wt + 35) (5.60)
vngG(l, m, i)sin(2wt + 20 4 37/2)

[ng(l,m,i) + Upvis(l,m,i) + vpvghT(l,m,i)}

sin(wt + 9).

x o+ o+

In these expressionsg,is a phase constant depending on the chosen reference ambéh ia a constant
that depends only on the limb-darkening law. The functidné’, D, E, F, G, R, S, T depend on thél, m)
of the oscillation mode and on the inclination angle. Togethith the pulsation velocity amplituds,,
these dimensionless and normalised functions containdhwlete physical information connected with
the theoretical expression of the non-radial oscillatiooden The derivation of the expressions for these
(complicated) functions was presented by Aettal. (1992) to which we refer the reader for further infor-
mation. We only consider the case of the first moment in soraemlore detail here. The functiof(l, m, i)
can be decomposed as

A(l,m, i) = am,0(7) - a(l, K, hy). (5.61)

An explicit expression for(l, K, h) ) is available in Aertet al. (1992) and in De Riddeet al. (2002) and

is omitted here. From this decomposition, we encounter imtaral way again the same IACCs as for
a photometric lightcurve, as the angletor which a; ,,,0(¢) = 0. Moreover, we can estimate the partial
cancellation effect for spectroscopy frarfl, K, hy). Some values are graphically depicted in Fig.5.15 for
two main-sequence stars with different spectral types (@ @hand for a typical p mode (upper panel)
and g mode (lower panel). First of all, a comparison of Fi§gsdnd 5.15 shows at once that the partial
cancellation effect is very different for a photometric ¢éirseries compared with a spectroscopic one. While
the decrease in detectability of modes with increagirggapparent for photometry, this is not the case for
spectroscopy. This explains why a larger variety of modeekg)is detected in spectroscopic data. It can be
seen from Fig. 5.15 that, for p modes with the same intringipldude, those witli = 2 are easiest to detect
in spectroscopy if we ignore the projection effect, pafdy for hot stars. Modes with = 1 and 3 have
equal probability of being detected if they have the samensit amplitude and similar projection effect.
This explains why such modes have been derived from speopgdor some stars, while= 3 modes are
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Figure 5.15: The function(l, K, h) ) is shown for different mode degre&for a linear limb-darkening law
taken from Claret (2000). We considered a stdf gf = 6000 K andlog g = 4.0 at the wavelengts of the U
(full line), B (dotted line) and V (dashed-dot line) filteess well as a star df.g = 25000 K andlog g = 4.0

at U and B (indistinguishable, shown as dashed line) and ¥hld-dot-dot-dot line) wavelengths. Upper
panel: results for a typical p mode wifki = 0.1; lower panel: results for a g mode with K=10.
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usually absent in photometry (seeg, the example of thg Cep starg Cru, Aertset al. 1998). In general,
the detected heat-driven p modes in individual target stetshave been studied do not follow the patterns
predicted from Figs 5.5 and 5.15. This probably means tleintininsic amplitudes of the excited p modes
are clearly different, although the inclination effect nago partly be the cause of this.

The situation is quite different for g modes, which havetfafsall, smallera(l, K, hy) values than
p modes. They are thus harder to detect. In this case, theswdgttel = 1 and 2 are equally probable of
being detected and the bottom panel of Fig. 5.15 shows tiggésier to achieve this for B stars than for G
stars. Modes with higher degree are very hard to detect. iHiigly compatible with the observations of
g modes in SPBs (Townsend 2003, De €gal. 2005) and iny Dor stars (Aertset al. 2004, Dupret et al.
2005).

Computation of the observational moments

In practice we have sets of numbéss, F;) withi = 1,..., N at our disposal for each measured line profile.
Here, F; stands for the normalised flux value measured at wavelekgtbr pixel i. These profiles are
considered to be barycentrice., their observation time and wavelengths have been shiftdtetbarycentre

of the solar system in order to take into account the motiothefEarth around the Sun. The star under
consideration exhibits ara(priori unknown) radial velocity with respect to the Sun caused bysjiace
motion and any binary orbital motion. These space motioesnat of interest to us here and are not
contained in the theoretical expressions of the momentghadre valid for a reference frame connected to
the stellar centre. We therefore have to correct the obddinve profile (\;, F;) for the radial velocity shift

of this space motion, before we can study the intrinsic vslatue to the oscillation of the star as it occurs
in the theoretical expressions (5.58), (5.59), (5.60) efrttoments. This implies that we have to determine
the observed moment variations in three different stages:

1. First we determine themall unnormalised momends follows:

N
mo = Y (1-F)Ax, (5.62)
=1
N
mi = Y (1-F)zAz;, (5.63)
i—1
N
my = > (1—F)z}Ax, (5.64)
i—1
N
mg = Y (1—F)z}Ax, (5.65)

i=1

with Az; = x; — x;_1 wherex; is the velocity corresponding t&; with respect to the laboratory
wavelength of the spectral line. One has to make a clevercehor the velocity (or wavelength)
range[z1, z]: not too narrow a range in order to have all the informatioth@line profile contained
in the moment values and not too broad to limit the noise irctleulated higher-order moments.
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2. The reduction of the small moments to average zero is\aathiey correcting for the relative motion
of the star with respect to the Sun. This motion is given byatrerage radial velocity of the star, which
is the average value affi; /mg (unit kms-!). We denote this average by. Thelarge unnormalised
momentsre obtained by using, as a reference value:

N

My = > (1—-F)Au, (5.66)
Z]:Vl

My = > (1- F)(x; — xo)Az;, (5.67)
Z]:Vl

My = > (1— F)(x; — o)’ A, (5.68)
Z;l

My = Y (1 - Fj)(x; — x0)’ A, (5.69)

.
Il
—

This leads to odd moments with average zero.

3. Finally, we obtain the observed normalised momeénts for j = 1,...,3 asM;/M,. These mo-
ments now have velocity units (km$)’ and can be compared with the theoretical expressions (5.58)
—(5.60).

Interpretation of the moments

The periodograms of the three moments are immediatelypirdtble in terms of the oscillation frequencies
of the detected modes. The variations of the moménitsin time are thus a very suitable diagnostic that
allows one to derive the temporal behaviour of the osailtaiin full detail. It usually suffices to search the
frequencies of the modes in the observed first moment vamstibut some modes may show up easier in

(v?).

As soon as the oscillation frequencies have been derivedis@ble to construct phase diagrams of the
moment variations from a harmonic analysis as explainechiap@r 5. The results of such a harmonic anal-
ysis are observational values for the different amplitutias occur in the theoretical expressions Egs (5.58),
(5.59), (5.60) of the moments. We are therefore able to dénformation about the six oscillation parame-
ters(l,m,i,vp, v, , ven). We explain how to do that, by means of an example.

In Figs 5.16 and 5.17 we show some observed profile variaiadshe three normalised moments of
thed Sct star Puppis. The full lines in Fig. 5.17 correspond to the resiét lsarmonic analysis according to
the Eqgs (5.58), (5.59) and (5.60). The peak-to-peak valtleedfirst moment gives an idea about the overall
velocity range due to the oscillation with that particulseguency, although it is an integrated quantity. For
linear oscillations (an assumption we adopted for the #temal description of the moment method) we
expect this range to be well below the sound speed in thddimeing region within the stellar atmosphere.
If not, shock waves occur and the description of the modesrimg of a sine function is no longer valid.
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Figure 5.16: Some observed line-profile variations ofitSet stap Puppis obtained in 1995 with the Coudé
Auxiliary Telescope of the European Southern Observatohile phased with the dominant frequency of
7.098d!. Data taken from Mathiast al. (1997).
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Figure 5.17: Phase diagrams of the normalised moments of $loe starp Puppis for the dominant fre-
quency 7.098d!. The dots are the observations and the lines are the reswdiraionic analyses according
to expressions (5.58), (5.59) and (5.60). Data taken frorthMset al. (1997). The analysis shows that this
mode is radial. Part of the scatter in the diagrams arises fhe presence of other, weaker modes.
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For a linear oscillation, the first moment is expected to kelswnusoidally as is the case fpPuppis (see
Figure 5.17).

The second moment turns out to be a very good diagnostic éoatiimuthal numbem. Indeed,
as shown in Aertet al. (1992), the functionD(l, m, ) equals zero forn = 0. This allows us readily
to distinguish betweem» = 0 andm # 0 from a harmonic analysis afv?). Whenever the temporal
behaviour of(v?) can be described by a single sine function with frequehgyve are sure that, = 0.
The middle panel of Figure 5.17 therefore implies that itlisly thatm = 0 for the main mode op Puppis,
although there is clearly a small sinusoidal contributiathvirequencyw since the shape d@#?) is not fully
symmetric. On the other hand, Aedsal. (1992) have shown that(l, [,7) = 0. This implies thatv?) will
behave purely sinusoidally with frequengyin the case of a sectoral mode. Any intermediate situatien,

a second moment in which both a term wittand one witl2w occur with equal amplitudes, points towards
a tesseral mode.

In order to obtain a complete identification of the mode frdra three moments, one proceeds as
follows. The idea is to compare the observed variations @hlloments with their theoretical expectations
and to select the most likely set of paramet@rsn, i, vy, v,, ven ). This comparison is done objectively by
means of the calculation of the so-calldgcriminant This is a function based on the observed amplitudes
of the moments for all terms that occur in the moment vaniatioe., one term in(v), three terms inv?)
and three terms ifw?). The discriminant is defined as follows:

+

2
I (Umivvmvth) = [ Aobs — Up|A(l7m>i)| f/21
12 \2
+<Cobs_vg|0(lvmai)| fC>
12 \2
+< Dape — vy, | D(1, m, ) fD>
12 \2
+<Eobs_vg|E(l7m>i)| _Ugh_b?[)g fE)
(5.70)
13 \2
+( Fops — fug]F(l,m,i)] fF)
/3 \2
+< Gobs — vgfuﬂ\G(l,m,z’)\ fg)

Tobs — US‘R(l7m7i)’ - vp’ug‘S(l,m,i)‘

13 \2]11/2
—vpvfh]T(l,m,z')\ fT) ‘|
(Aerts 1996). Hered,ps, Cobs, - - -, Tons are the observed values of the functiotd, m, i), C(l,m,1), ...
etc. occurring in Eqgs (5.58), (5.59) and (5.60) of the theorétizadictions of the moments. These can be
found from a harmonic least-squares fit to the observed mbtimea series. The quantitie, ..., fr are
normalised weights that take into account the quality ohsadit to the observed moments. An amplitude
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that has a smaller standard error will receive a larger wieigkthe discrimination among the candiddte
values because it is more dominant in the discrimiightompared with an amplitude with a large standard
error. The discriminant is constructed in such a way that éxpressed in knts. From its definition, it is
unable to distinguish between positive and negativéHowever, a greyscale representation of the observed
line profiles or the phase behaviour across the line profde felow) provides this additional information
on the sign ofn.

The adopted criterion for mode identification works as folo the functionl;” (v, ¢, v, , v¢n) IS Min-
imized for each setl, m):

m

v'= min I (vp,1,v,, V). (5.71)
Up727UQ7vth
As “overall best solution” fol andm we retain the one with the lowesf". This solution also provides us
the most likely values for the continuous unknowns in th@e#y expression, namely,, i, v, anduvy,.

De Pauwet al.(1993) and Aerts (1996) each made an extensive simulatioly $b test the performance
of the discriminant, taking into account realistic gappetetseries with an appropriate noise level. In these
papers, one also finds numerous examples of the behaviobe tfitee moments as a function(éfm, i),
and of the radial and horizontal amplitudes and Kv,. We advise a new user of the method to study
these two simulation papers carefully and we refer to thephap Aerts (1996) for more information on the
performance of the discriminant defined in Eqg. (5.70). Irtipalar we warn the user not to accept solutions
with i close to an IACC. Viewing in the direction of a nodal line of @de is an easy way to get small
amplitudes for the moment terms. Thus, stars with low monaemplitudes are easily explained by any
(I,m) for inclinations equal to their IACC. The predictive powéitloe discriminant cannot be large in such
a case. This must be kept in mind whenever interpreting timenmai;”. An example of such a situation is
discussed in detail in Sect. 5.2.3.

A robustness test was done by De Paetval. (1993) to assess the assumption of constant equivalent
width despite the occurrence &'/T'. It turned out that the discriminant defined in Eq. (5.70)deeper-
forming well in identifying the correct input mode as longthe peak-to-peak variations @fl; remain
below 10% (De Pauwt al. 1993). This good performance occurs thanks to the use ofalm®d moments.

It would not hold if we would work withAy, Ms, M3 without dividing them byM,. Since most of the
pulsating stars fulfil the criterion of having equivalendit variations below 10% (see,g, De Ridderet

al. 2002 for B pulsators), it is indeed not necessary to inclheéecbnsequences &f'/T" in the discriminant

of the moment method, as already anticipated above. Thivé&yacomforting situation, as we are thus
not dependent on the details of the non-adiabatic osaifiatieory in the outer atmosphere to identify the
modes. All one relies on is the velocity expression in Ed@k. This is significant advantage over pho-
tometric mode identificationOf course, the condition of the relative amplitudef, being below 10%
should be tested in any application of the discriminant.

The moment method as presented here is a good identificatadhooh particularly for low-degree
modes { < 4). It is complementary to the Pixel-by-Pixel method outtifeelow. Modes with high degree
(I > 5) have very small moment amplitudes with large standard grwhich limits the application of the
discriminant for such cases.

The application of the discriminant defined in Eq. (5.70) tfee moments op Puppis shown in Fig-
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Table 5.2: The minima of the discriminant for the main modéhefs Sct starp Puppis.~;", vp, Kvp, v,
anduy, are expressed in knTs.

Im| v, Kv, i v, v
0.08 56 0218 - 153 65
0.13 10.0 0.39038° 14.8 5.9
0.17 121 0.47264° 164 2.2
0.18 50 0.195 7 196 1.7

0.23 15.0 0.58553° 10.3 4.8

N P N P O~
N O - = O

ure5.17 is given in Table 5.2.

One finds a radial main mode for this star, as was already stegjey Campos & Smith (1980). The
finding thatm = 0 could be anticipated from the behaviour(ef). The latter, however, does deviate from
a pure double sine (see Fig.5.17). Such a deviation is exgp@chenever additional modes, besides the
dominant one, are present. Math&tsal. (1997) indeed found with two additional candidate low-aitople
modes inp Puppis. Due to their beating with the dominant mo@€,) is not perfectly symmetric. The
same situation occurs for the line-profile variations arirtfv?) of the 3 Cep staw Ceti (Aertset al. 1992),
whose low-amplitude modes were revealed in MOST space piaity (Aertset al. 2006). The second
moment is thus a suitable diagnostic to detect low-ampditonddes.

The largest shortcoming of the discriminant is that it laglkstatistical significance test. In other words,
we have no means to decide if the mode with the lowgsin the list of best candidates in Table 5.2 is truly
better than the following solutions, or if it is acceptalbeatcertain significance level. This was elaborated
upon by De Riddeet al. (2005), but the complexity of the theoretical expressiamgtie moments, and the
mixture of discrete and continuous unknowns, preventedid goodness-of-fit test. The best procedure
to adopt, as already mentioned above, is to generate tiedridbe-profile variations for the top listed
solutions and compare them with the data. In this way, onediiminates a sufficient number of unlikely
combinations ofl, m, vy, ¢, v, andwvy, from the moment variations before starting a line-profilénfy
method, fixingl andm combinations from a list like the one in Table 5.2 and allayvfar slight changes
in the continuous parameters to minimize the deviation beiwthe observed and theoretically computed
profiles. Even after such atest, it may still be impossibldisariminate among severgl m) combinations
and one should not do so in such a situation. In fact, confubrtween differentl, m) is inherent to
the mode-identification problem. A radial modeg, will resemble &1, 1) mode looked upon from the
equator and is indistinguishable frontiia 0) mode viewed from the pole. There are several combinations of
(I,m,vp, 1) that have closely resembling profiles, and thus momenttian& There are also cases where
the profiles are not very similar, but the moment values aegeabse of the integration over the surface.
Such cases can still be distinguished by applying the Rixetixel method discussed in Sect.5.2.4. To
unravel similar profiles resulting from different combiioais of (I, m, vy, i), one needs a strong constraint
on the inclination angle. Multiperiodicity helps in thisspect, as will be shown below, but independent
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Figure 5.18: Time series of the first velocity moment of thdtiperiodic 5 Cep staw Eridani derived from
a five-month dedicated multisite campaign (Aertsl. 2004).

observational information is needed as well. This will hesirated for the case of theSct star 20 CVn in
Sect.5.2.3.

Generalisation to multiperiodic oscillations and to a numeical version of the discriminant

A generalization of the mode-identification method desatibove for a multiperiodic star was provided
by Mathiaset al. (1994). Whenever more than one mode is excited to measuaaipditude, the moment
variations become more complicated. The first moment willdy consist of a linear superposition of all the
separate modes. However, this is no longer the case for t@deand third moments, as they will contain
coupling terms from taking the square and the third powehefwtelocity expression in the integrand of
Eq. (5.51). For example, a biperiodic oscillation with fuegciesv; andw- will give rise to six frequencies
in the second momentyy, 2w, ws, 2wy, w1 — wy andw; + wy. The third moment will in that case have to
be fitted with twelve frequencies: those(@f) and in additiorBwy, 3wa, 2w1 + ws, 2w1 — wa, 2wy + w; and
2wy — w1. The number of frequencies occurring in the moment exprasdncreases very rapidly with the
number of modesThis is a disadvantage of this method

In order for the harmonic analysis to be accurate for a metiiigic oscillation,i.e., to lead to ampli-
tudes with a small standard error as input for the discrimtinais necessary to cover all the beat frequencies
with line-profile observations. The sampling of the data dias to be of high temporal resolution in order
to estimate the amplitudes of the sum frequencies in an aiecuray. This fact implies large observational
challenges. An example in which a beat phenomenon occung itime series of centroid velocities derived
from spectra of theg Cep star Eri, which was the target of a multisite campaign, is showifrign 5.18.
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A beat pattern is clearly visible in this figure. Several otthme series including beating phenomena were
already shown in Chapter 2, such asin Figs 2.9, 2.13, 2.29, 2.23, 2.50. The challenges are most promi-
nent for stars with multiperiodic g-mode oscillations, Isws slowly pulsating B starg; Doradus stars,
pulsating Be stars and pulsating supergiants. In all ofehtise beat periods can be of the order of months
to years.

Solving the mode identification for multiperiodic osciltats is, of course, more complex than for
a single mode. Three unknowits m,v,) are added for each additional oscillation mode. On the other
hand, having more than one mode helps significantly to disodte among almost equivalent solutions
with different inclination angles. From the very complicated analytical expressions (fgh) and (v?)
available in Mathia®t al. (1994), one sees that almost all of the terms contain cayplietween different
frequencies. As a consequence, identification of the madesst performed simultaneously, and not mode
by mode as was originally done by Mathktsal. (1994). With the advent of faster computers, the option of
simultaneous identification of all detected frequencighénmoments was implemented by Briquet & Aerts
(2003). With this technique, the authors did not used théytioal expressions of the moments to identify
the modes as Aerts (1996) did. Instead, they computed liofgovariations for various combinations of the
parameters, derived their moments numerically as in S&:8,5and compared them with the corresponding
values derived from the observations, in a similar way asdn(k70). Given that many of the factors
occurring in the moments can be separated, one only needsijoute them once and stack them into huge
tables. In that way, the moment method of Briquet & Aerts @08 more than a factor of ten faster than
the version of Mathiast al. (1994).

Application to cross-correlation or least-squares-decovolved profiles

The requirements on the quality of the spectra to apply thememd method successfully are stringent. The
same is true for the Pixel-by-Pixel method, as will be disedsbelow. This limits the applicability of the
methods to very bright stars (typically witi < 6 for telescopes with diameter below 4m) with not too
short oscillation periods (typically longer than 15 minhécan overcome this obstacle, to a certain extent,
by combining the information present in different spectiaés, such that fainter stars can be considered
as well, or the integration times can be limited, or lowerpéitnde modes can be searched for. Although
of interest, one will seldom gain information on the corr@cin) when repeating an analysis on additional
different individual lines, because the best line will h&demn picked to start with in the first place.

While one can in principle combine tHe) values of different lines, this is certainly not true far)

and (v3). Indeed, each of the lines has its own thermal broaderiegjts own value ofvy,. This leads

to a different constant teriv E for (v2) and different amplitudes fofv) for each of the lines, as can be
seen from Egs (5.59) and (5.60). One could still merge thergemomentgv?) of different lines, after
shifting them to a common constant tef®~ = 0 and by avoiding using that term in Eq. (5.70) for the
mode identification. However, the amplitudes are also @iffefor different lines, because there is always
some level of blending and this is different for differemds (seee.g, Mathiaset al. (1994) for a thorough
discussion and illustrations)Yhe conclusion is that a simple line-by-line treatment ishedpful, from the
viewpoint of improving the mode identificatioSuch an analysis is very useful, however, to detect small
shock phenomena and details of wave propagation in the eteltar atmospheree(g, Crowe & Gillet
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Figure 5.19: Phase diagrams of the observed normalised nmismerived from cross-correlation functions
of the § Sct star 20 CVn for the frequency 8.2168'dChadidet al. 2000).

1989; Mathiaset al. 1991; Mathias & Gillet 1993).

We thus must search for a different way to combine the inféionan different spectral line variations.
Whenever the different line-forming regions do not enclosdal surfaces and are situated not too far from
each other, one expects the moments to vary perfectly ireplidl each other. This can easily be tested in
practice. In that case, one may combine them to increase/thé&@el. This can be done by computing a
cross-correlation function (CCF) of each spectrum, or lgtlesquares deconvolution (LSD), as outlined in
Chapter 4. One finds numerous examples of oscillation gigesitin the CCFs of Dor stars in De Cagt
al. (2006). It is very clear from that paper that the oscillasidarn up in the CCFs. How to use them for
mode identification, is, however, another issue to that tdating the modes.

While computing the CCF or LSD, the same requirement as @intttividual lines should be respected,
i.e, the study must be restricted to unblended thermally-goed metal lines. This usually reduces the
number of spectral lines considerably compared with the easere computation of the most accurate
radial-velocity value is the goal. The S/N level in the CCR.8D will increase by a factoy/ N, with N the
number of lines used for the CCF or LSD, so even using only lioes for a mask to derive the CCF or for
the computation of the LSD will imply doubling the S/N level.

One should not be fooled by thinking that the applicatiorhef noment method to such type of varia-

tions is exactly the same as for the individual spectrakKliréhis is not the case, because the second moment
(v?) of the CCF or LSD is again affected by the merging of lines wlifferentv,;, and by slight differences
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Table 5.3: The minima of the discriminant according to Eq/@% (left) and of the deviation parameter from
line-profile fitting following Eq. (5.50) (right) for the maperiodicd Sct star 20 CVn (Chadidt al. 2000).

L m| " v, Kvp, i v, vgp|l m X" v, Kv, 1 v, v
3 2 0.09 450 0.27 /B 6 5.002 0 0.0022 250 0.15 454.0 5.5
0O 0 012 0.75 - - 5 6.8 0 0.0022 2.00 0.12 254.0 5.7
3 0 012 400 0.24 556.0 4.000 O 0.0023 0.85 - - 7.0 5.0
1 1 0.13 1.00 0.06 806.0 5.003 +1 0.0024 2.50 0.15 856.0 5.5
1 0 0.15 2.00 0.12 706.0 5.004 +4 0.0026 1.50 0.09 706.0 5.5
3 1 0.15 5.00 0.30 555.0 5.003 +2 0.0026 3.00 0.18 256.0 5.5
2 0 017 150 0.09 357.0 553 -2 0.0027 3.00 0.18 254.0 5.5
2 1 0.17 3,50 0.21 804.0 5.5/2 +1 0.0029 2.00 0.12 904.0 5.5
10 b 10 b 10 b
08 T 0 20 30 Y20 0 0 a0 w0 T2 0 0 10 20 30
v (km/s) v (km/s) v (km/s)

Figure 5.20: Theoretically determined line-profile vadas (full lines) are compared with the observed
cross-correlation functions (open circles) of th8ct star 20 CVn. The input modes diem) equal to
(2,0) (left), (4,+4) (middle), (0,0) (right). The continuous input parameters are listed in ttlet part of
Table 5.3 (Chadiet al. 2000).
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Figure 5.21: Theoretically determined moment variatiang# m) equal to(0, 0) (full line), (2,0) (dashed
line) and(4, +4) (dotted line) for the parameters listed in the right part @bl€ 5.3. These moments corre-
spond to the theoretical line-profile variations shown ig. Bi20 and should be compared with the observed
ones shown in Fig. 5.19.
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Figure 5.22: Simulated line-profile variations due to nadial oscillations of differenti, m). From top

to bottom we show: a representation of the real part of thekadmponent of the eigenfunction, the
line profile due to the mode at a particular phase in the cytleomparison with the profile without an
oscillation, the difference between the two profiles, a ggesgle representation of the profiles with respect
to the mean during three cycles, the distribution of the #omg# across the pulsation-induced line-profile
variations (thick line) and its first harmonic (thin line)tivithe maximum values indicated, the distribution
of the phase across the pulsation-induced line-profileatiaris (thick line) and its first harmonic (thin line)
in units of = radians with the blue-to-red phase differences, and Ay used in Egs (5.72) and (5.73)
indicated. The projected equatorial rotation velocityngicated by the outer vertical lines in the top panel.
(From Telting & Schrijvers 1997.)
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in the line blending of the different lines. ThEE value is therefore affected, and, if computed without
giving this thought, also the discriminant defined in Eq7 (9.

Athorough discussion of such a situation is presented ird{de al. (2000) for the F3I1l monoperiodic
6 Sct star 20 CVn. The purpose of their paper was to investidat@ppropriateness of using CCF and the
moment method to identify low-amplitude modes, becausegphetric mode-identification efforts for this
star in the literature, before the one done by Daszyhsksfiewiczet al. (2003) discussed above, led to
a large discrepancy between the theoretical predictiodstamobserved values. We show in Fig.5.19 the
moment values derived from a CCF computed from a mask for gypé&-star including some 2000 lines
using the ELODIE spectrograph. The curves are phased angduithe frequency 8.2168d known from
photometric light curves. It can be seen that the second mbheedly varies, while the first and third
moments have clear observed variations. This means thabtigtant tern E dominates infv?). This is
a case where one has to be careful with the mode identifichBoause solutions withclose to the IACC
risk being favoured. The discriminant was subsequentlypeded, leaving out the constant terms(of)
and(v3) following the careful analysis of all the terms occurringlie observed moments by Chaditial.
(2000). The values of this modified discriminant are proglidethe left part of Table 5.3. It turns out that
several solutions with closer tharl 5° to an IACC occur (rows 1, 3, 6 and 8). These cannot be trusted. T
minima~;" are very close to each other, such that a unique solutionotdrenderived without additional
effort.

In order to check for the power of the modified discriminant tftis monoperiodic star, the spectral
deviation parameter in Eqg. (5.50) through line-profile digtivas computed for all modes with< 4. The
results are listed in the right part of Table 5.3. It can bendbat the discriminating power of this method
is lower than the one of the moment method for this star. $¢&w@etutions of almost equal quality occur.
Three of those are compared with the observed CCFs in Fig. ®2e with an inclination angle close to
an IACC (left), one withi far from an IACC (middle) and the radial mode. This is a cleasecwhere line-
profile fitting, even when using an objective deviation pagten does not work, but where the addition of
the moment variations allows the selection of one uniquetswl for (I, m). Indeed, a choice among the
solutions in Table 5.3 can be made, by considering the thiealenoments belonging to the best solutions
from ;" and comparing them with the observed ones shown in Fig. 3.i8se are plotted in Fig. 5.21. It
is clear that only one set ¢f?) is in agreement with the observed ones and that 20 CVn is al @stillator.
This is the second-best solution of the modified discriminte first one having ~ IACC.

This example shows that, indeed, it is valid to work with C@Hslentifying modes, provided that one
makes a very careful analysis. The moment method has noegettested on LSDs, but we expect similar
performance. The performance of the Pixel-by-Pixel metimdhich we turn next, has not yet been tested
for CCFs or LSDs.

5.2.4 The Pixel-by-Pixel method

A second quantitative identification method was first introet by Gies & Kullavanijaya (1988) and further
developed by Kennelly & Walker (1996), Telting & Schrijvgi®997), Mantegazza (2000) and Zima (2006).
Its use is illustrated and explained in Fig.5.22. It is basadhe properties of the amplitude and phase
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Table 5.4: Comparison of the results for the mode identificabf the thirteen dominant modes of the
multiperiodicd Sct star FG Vir, as available from the literature. Wheneveratithan one value fdror m is

given in a column, discrimination among them was impossible

Frequency Viskum Breger Daszyhska—Daszkiewiq:z Zima
d-! |etal.(1998)et al. (1999 et al. (2005) et al. (2006)
9.199 =2 l= =2 1=1,2,3] m=+1
9.656 =2 [=1,2 =2 1=0,1,2| m=0
12.154 =0 =0 =0 1=0,1,2lm =0,+1
12.716 =1 =1 =1 =1 m =10
12.794 - =21 1=2,3,4 m=—-2
16.071 — - =0 - -
19.227 - - 1=2,1,0 =12 | m=+1
19.867 =2 =2 =21 1=0,1,2| m=
20.287 1=0,1 1=1,2,3] m=-1
20.834 - 1=2,3,4 m=+1
21.051 =2 =2 1=1,0 1=0,1,2| m=
23.403 =0 =01 =21 =2 m =10
24.227 =1 [=1,2 = I=0,1] m=

distribution of each oscillation frequency and its firstrhanic across the entire line profile. These properties
are linked to thdl, m)-value of the mode, and to the inclination angle, as can befsem Fig. 5.22.

The computation of the amplitude and phase behaviour atitegzrofile is particularly suited to anal-
yse line-profile variations in moderate to rapid rotatarsig: > 50kms™1), because we need a high
resolving power within the lines to interpret small changethe skewness of the line, and/or moving sub-
features. The method can also be applied to slow rotatolslait-degree modes, however, when combined
with the moment method (see Teltiegjal. 1997 for the first such application).

A particularly promising idea related to this method wag#éms$form the line profile variations into 2D
Fourier space, where power is sought for appropriate caatibims of time and spatial frequency, in analogy
to what had been done for the solar oscillations. This ides pua forward by Kennellet al. (1992) and
was further developed by Kennelgt al. (1998), who applied it to thé Sct starr Pegasi (see Fig. 5.24). In
order to obtain the amplitude of the frequency as a functfdntwwever, one must perform a deconvolution
of the original data into a time-dependent and a time-inddpet broadening function, and this relies on
particular assumptions. Kennelét al. (1998) assumed to be dealing with p modes havihg~ 0, with
profiles having a constant intrinsic width which can be digegled from the constant rotationally broadened
profile ignoring pulsational broadening, and with spediras which can all be well described by one and
the same linear limb darkening law. Based on these assumsptibe authors developed a deconvolution
scheme that connects the two-dimensional Fourier tramstdrthe line profile with the time and spatial
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Figure 5.23: Line-profile computations (full lines) for twdifferent biperiodic models are compared with
data (dots) for the sta# Cephei. The double full line has a slightly lower rotatiomalocity and amplitude
for the radial mode (labelled &%), but a somewhat larger intrinsic width (differences of 2&rh) than the
single thin full line. The amplitude of the non-radial motibglled asf,) was adopted to fit the observations
after having fixed the parameters of the dominant radial ek varies between 1 and 2 km'sdepending
onits(l,m) assignment. The top panel shows the average profile, thdenpddels the amplitude and phase
across the profile for the dominant radial mode and the loweefs the amplitude and phase of the three
most likely identifications of the small-amplitude non-ednode (f>). Discrimination among these three
possibilities is not possible. (From Teltirg al. 1997.)
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Figure 5.24: The observed line profile variations of #f&ct starr Pegasi were Fourier transformed and
displayed as a function of the degrieley relying on particular assumptions (see text). The irs#té same
transform representing the pattern due to the window fanaind gives an idea about the uncertainty in the
identification of the mode degree due to the sampling. (Fremriellyet al. 1998.)
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Figure 5.25: Fit of the amplitude and phase across the pioiilehe twelve dominant oscillation modes
in the spectroscopy of th&Sct star FG Vir. The top panels show the average, also termied profile
(indicated as “Z”). For every single frequency, the obsdramplitude (label “A’) in units of the continuum
and the phase distribution (label “P”) in radians are shovgether with the two best fitting models (Zima
et al. 2006).
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frequency, where the latter is assumed to be a particulasuneaf the mode degréevhich is valid in the
case ofK = 0. The example shown in Fig. 5.24 shows this two-dimensionakier transform visually for

7 Pegasi. While this idea was very attractive at first sighg, tilany assumptions underlying this method
and the iterative manipulations of the data to end up withrésalt displayed in Fig. 5.24 leave a rather high
level of uncertainty for the identification of the mode degri@ additional to the limitations of the predictive
power introduced by the window function. This is due to theesdze of a rigorous mathematical derivation
of theoretical expressions for for the amplitude and phas&tions across the profile, as a function! of
andm. Hao (1998) tried to achieve such expressions, but did ratesd. This is thus the main difference
between this method and the moment method, for which sualessipns are readily available in Egs (5.58),
(5.59) and (5.60).

In order to remedy this situation and to understand the betawef the amplitude and phase variation
across the profiles, without having to rely too much on assiom® and omitting deconvolution opera-
tions, Telting & Schrijvers (1997) performed an extensivewation study to exploit the method visualised
in Fig.5.22 in terms of mode identification. Their simulasowere restricted to p modes and low-order
g modes, and included the effects of the Coriolis force invislecity eigenfunctions. They computed more
than 15 000 time series of line-profile variations for diéfiet combinations ofl, m, vy, 7, v, , vy, ) coOnsider-
ing ! < 15 and all corresponding:-valuesm € [—[, ], realistic amplitudes for the modes, with or without
the effects of the Coriolis force, with or without parameéted equivalent-width variations. For each of these
time series, they subsequently computed the amplitude laskpacross the profile for the input frequency
and its first harmonic, in the way visualised in the lower pamd Fig. 5.22. The differences in phase be-
tween the bluest and reddest point in the line profile were thegived, for the frequencyNy) and for its
first harmonic Q1)). The authors then compared these valuegXgy and A, with the input values for
(I,m) for all these simulated time series and reached the follpwonclusions:

e there exists a strong correlation between the phase differA at the blue and red edge of the
profile for the oscillation frequency and the degree of the mode. A good estimaté o&n be
derived from the empirical relation

I ~ (0.10 4+ 1.09 |Agy|/m) + 1; (5.72)

e there exists a clear, but less strong correlation betweeptiase differencA+; from blue to red for
the first harmonic of the oscillation frequen@y and the azimuthal number of the mode. A good
estimate ofn can be derived from the empirical relation

12

m

(—1.33 + 0.54 |Ady|/7) + 2. (5.73)

The simulations of Telting & Schrijvers (1997) clearly shemhthat the original suggestion by Gies & Kulla-
vanijaya (1988) to associate the phase differedceg with a measure of thei-value of the mode, assuming
only sectoral modes to occur, is too limited for appropriatede identification. This was also concluded
by Kennellyet al. (1998). In a generalisation of their work, Schrijvers & T (1999) took into account
the effects of intrinsic profile variations and equivalerititty changes as well. This resulted in very similar
fitting formulae than those given in Eqs (5.72) and (5.73).rAilar simulation study to the one by Telting
& Schrijvers (1997), but for stars with g modes, is not avdéa
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The fitting formulae in Eqs (5.72) and (5.73) are easy to ajmplge the oscillation frequencies are
determined. However, they provide only a crude estimatdefdegree and azimuthal order with a large
uncertainty, particularly for low-degree modes. It is #fere necessary to model the amplitude and phase
across the profile in full detail to achieve a reliable idicrition. In order to do that, one computes theoret-
ical line-profile variations from Eqgs (5.45) and (5.49), ides their amplitude and phase across the profile
as in Fig.5.22 and compares them with those derived from lbisergations. The earliest such application
was made for the stat Cep by Teltinget al. (1997) and is depicted in Fig. 5.23 for a biperiodic modehwit
a dominant radial mode and with the three best solutiondhfordentification of the second, low-amplitude
mode.

Slightly different versions of the method by Telting & Sgheirs (1997) have been presentedg(
Mantegazza 2000). The most important and recent one is by Z&906), who introduced a statistical
significance test into the method. In this way, he was abladcorichinate more easily between different
mode identification solutions. He tuned and applied his otivhich he termed thixel-by-Pixel Method
or PPM, after Mantegazza (2000), to observed line-profilgatians of thed Sct star FG Vir (Zimeet al.
2006). Zimaet al. (2006) found eleven modes in the line-profile variationsdmmon with those detected
with significant amplitude in the multicolour photometry.hd fits to the amplitude and phase variation
across FG Vir's profile for the best two identifications of theslve dominant modes in spectroscopy, are
shown in Fig.5.25. This shows at once the big advantage sftlgthod over the moment method: each
mode can be treated separately without having to worry aboupling between the modes, at least in the
linear approximation. The drawback, however, is that isediminating power starts to fail whenewvesin i
drops below, say typically, 20 knT$.

The spectroscopic mode identification for FG Vir is in goodeagnent with previous identifications.
In particular, Fig.5.25 illustrates the power to identify from spectroscopy. In Table 5.4 we show the
evolution of the ability to identify the dominant modes fairst star from the literature. It can be seen that it
is more difficult to find a uniqué-value from the high-resolution spectroscopy. It is evideom this table
that the ideal way to proceed with mode identification of ipeltiodic stars is to use multicolour photometry
to find thel-values, and line-profile variations to fix. Depending orv sin 4, a moment or PPM analysis
should be preferred, but there is no reason not to do botle sy are complementary. This brings us in a
natural way to the following section.

5.3 Mode identification from combined photometry and spectoscopy

Numerous applications of the mode-identification methoallireed above are available in the literature.
The successful applications mainly concern p modes@ep ord Sct stars, but also the dominant g modes
in SPB stars (De Catt al. 2005). Given the complementarity between the photometrit spectroscopic
methods in terms of observational requirements and abditerivel versusm, it is only natural to check
whether consistency in the identifications is reached. Was already shown to be the case for the complex
oscillations of FG Vir, besides the “simple” cases of 20 Cvil @ Puppis, allé Sct stars discussed above.
Agreement between photometric and spectroscopic moddifidations was also achieved for thieCep
stars, such as for the dominant moded@¥eti (Aertset al. 1992; Cugieret al. 1994), all three modes of
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16 Lac (Cugieret al. 1994; Aertset al. 2004), and most (but not all) of the modesdEridani (De Riddeet

al. 2004). There are, however, also cases with differenceseimibde-identification results. One example
is the famouss Cep starg Crucis, which was found to be a monoperiodlie: 2 pulsator from photometric
data (Cugieret al. 1994), while Aertset al. (1998) found it to have two low-amplitude modesiof 3 or

4, besides a dominaiht= 1 mode for the frequency detected in the photometry. The thredes found in
the spectroscopy were later also detected in WIRE space-witt photometry (Cuyperst al. 2002). The
misidentification from the multicolour photometry is praibadue to the presence of the companion, which
was ignored in that analysis but which is of similar spedygpk to the oscillating component, and/or due
to the neglect of the low-amplitude modes that are invisibléhe ground-based photometry. Consistency
was also reached between the most likely 1 mode identification of SPB stars as a group by Townsend
(2002) and the mode identification from multicolour phottmp@&nd high-resolution spectroscopy of seven
selected SPB stars by De Gatal. (2005).

The case of3 Crucis brings us to the fact that sevefdCep stars and some SPB stars have modes
that are invisible in ground-based photometry, while they @dearly present in the line-profile variations.
The example of? Crucis shows that this may occur for slow rotators, but, nfresuently, such finding is
obtained for moderate to rapid rotatoesg, w' Scorpii (Telting & Schrijvers 1998)\ Scorpii (Uytterhoeven
et al.2004),x Scorpii (Uytterhoevemrt al. 2005),5 Centauri (Ausseloost al.2006) and numerous pulsating
Be stars (Riviniuset al. 2003), all of which haves sini above 60 kms!. Of course, in such cases, one
cannot rely on photometry to help in the mode identificatiexgept that one can teatposterioriif the
solutions found are compatible with the absence of photaenedriations. The many B stars found to be
oscillating from WIRE (Bruntet al.2007) and MOST (Matthewst al.2007) space photometry, while being
essentially constant in ground-based photometry, praaenthimerous low-amplitude modes are excited by
the heat mechanism.

With the occurrence of low-amplitude modes in spectroscopyy some of which are detectable in
multicolour photometry in some cases, the idea arose tdrobimultaneous observations of these kinds.
This is particularly the case fgt Cep stars, for which extensive multisite, multi-technigaenpaigns were
initiated by G. Handler from Vienna since 2002, as alreadyjiread in Chapter 2. Cases where the multi-
colour photometry allowed the derivation lpfvhile the spectroscopy did not, occurred for the sta@anis
Majoris (Handleret al. 2005) and? Ophiuchi (Shobbroolket al. 2006). The spectroscopists then were able
to find them-values, by fixing the photometric values fioand applying the moment method and evaluat-
ing the phase and amplitude across the profile for the badi@es as in Fig. 5.23 (Mazumdat al. 2006,
Briguetet al. 2005). We come back to these twdCep stars in Chapter 10, where we discuss their seismic
modelling based on the detected frequencies and the mouldfiickion.

Whenever modes are detected in quasi-simultaneous maitigghotometry and high-resolution spec-
troscopy, one can do better than simply compare the modeéifidation results by exploiting the data
simultaneously. This was first done by Daszyhska-Daszkieet al. (2005) for thes Cep stars Ceti and
v Eridani. These authors added the amplitude and phase ofshenfbment to the multicolour amplitudes
and phases, and upgraded fftecriterion as in Eq. (5.37) accordingly. This led them to a msafer mode
identification, and also an estimate of the paraméierprovided that the different types of data are not
obtained too far apart in time to avoid different beat patieto occur in the two types of data. From the
derived fr values for models with different opacities, the authorsfba way to derive information on the
most appropriate opacities to explain the modes. It is tislined method that also led to the identification
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of twelve modes for FG Vir discussed in the previous sectioth lssted in Table 5.4. A natural extension
of this method would be to include also the second and thirchemd variations to obtain an even more
powerful discriminant, but this has not yet been done so far.

Finally, we point out that the empirical identification oktti, m) values for the multiperiodie; Dor
stars remains problematic. There are hardly any simultanmg-term multi-technique data sets available
for such g-mode oscillators. The mode-identification nssbly De Catet al. (2005) for some selected
SPB stars show that the modes can be successfully identifiedided that one assembles multicolour
photometry and high-resolution spectroscopy with a timenspf a few years. Multicolour photometry
with such a time span has been assembled from multisite dgngpdedicated to specific targets such as
9 Aurigae (Zerbiet al. 1997a), HD 164615 (Zerlst al. 1997b), QW Puppis (Poretdt al. 1997), HR 8799
(Zerbi et al. 1999), and from single-site campaigns dedicated to sangfleDor stars (Henry & Fekel
2004, 2005; Cuyperst al. 2007). Long-term spectroscopic campaigns for large sasnpége also carried
out (Mathiaset al. 2005; De Catet al. 2006). Unfortunately, these extensive data have not ledddem
identification. The modes of only fivgDor stars have been identified so far from multicolour phatygn
(Aertset al. 2005b). This seems to point towards the excitation of drdy 1 modes, but this conclusion
must be considered as preliminary. Very likely, groundakieg results for g-mode oscillators will come
from the CoRoT and Kepler photometry, in combination witbhugrd-based spectroscopy.

5.4 Towards mode identification from combined interferomety and spec-
troscopy?

In an extensive review, Cunhet al. (2007) have discussed the synergies and cross-fertirsdtetween
interferometry and asteroseismology. Interferometriasneements can help a lot in asteroseismic analyses
in several different ways. Direct radius estimates withlatree precision better than a few perceety,

can be obtained for several hundred stars in the solar neighbod with VLTI/AMBER. The masses of
binary stars with a pulsating component can be derived iedgntly from asteroseismology by interfer-
ometry, with precision of only a few percent. As far as modmidfication is concerned, the combination of
interferometric and spectroscopic data allows, in prilegithe identification of the oscillation modes.

The PPM method described above exploits the amplitude aadephcross the profile as a mode-
identification diagnostic by relying, through Egs (5.4504dB.49), on the expression for the pulsational
velocity in terms ofl andm. The Doppler effect is considered to be the dominant soufdefarmation
in identifying [ andm from the variations through Eq. (5.49). A new interestingadvas put forward by
Berdyuginaet al. (2003a). They inverted a time series of line-profile vapiasi, in this way turning the
data into a stellar surface brightness distribution. Tlisies down to an image reconstruction method,
also termed Doppler Imaging in the context of spotted stingy applied this inversion without assuming
any prior knowledge of the physical cause of the variatiohthe line profiles. After having performed
the inversion, the authors assumed that the most imporgargecof the line-profile variations are surface
brightness variations superposed onto a time-indepermeatiened Doppler profile. Rather than focusing
onu(R,0;, ¢}, t) in the interpretation through Eq. (5.49), they thus congdé[F) (¢, ¢')] to be the dom-
inant information for the mode identification. Such a sit@timay occur for rapidly rotating stars, whose
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velocity perturbation due to the oscillations is very sntalnpared with its rotational broadening. In such
a case, the pulsation-induced intensity perturbations igaportance with respect to the velocity perturba-
tions. Berdyuginat al.(2003b) applied their method to ti#eCep statw' Scorpii and found it to be capable
of recovering andm of the oscillation, which had been derived before from a PiRiglapplication by Telt-
ing & Schrijvers (1998). This brings us to the capability ofmbining surface brightness variatioresg,
derived from interferometry, with surface velocity vaiteits derived from high-resolution spectroscopy.

Long before the availability of appropriate instrumeranti Vakili (1992) had already suggested the
study of surface variations due to non-radial oscillatiohsapidly rotating stars from long-baseline differ-
ential interferometry (see Cunted al. 2007 for the technicalities of how this can be achieved). A
by Jankowet al. (2001), such a combined technique can be successful infidagtoscillation modes with
[ > 2 in rapid rotators, providing information on the modes thaih perhaps not be obtained from each
of the two types of observations, interferometry and spscopy, separately. The flux variations due to
the non-radial modes introduce a complex pattern in theafleecinterferometrid/V plane (Cunhaet al.
2007). This pattern can be disentangled by comparing theopéotre displacements in this plane due to
the oscillations with predicted monochromatic intensitgp®s of a constant star. In practice, one simulates
photocentre displacements as a functiorflofn, 7). Such a simulation defines a kind of “spatial filter” for
each(l,m,i). Applying one-by-one all these spatial filters to the dataved one to identify the true nature
of the mode. This is illustrated in Fig. 5.26, in which thegimal signal in panel (a) is compared with a
map (b) recovered from spectra alone with a method similtdreé@ne of Berdyuginat al. (2003a), as well
as with the map based on the photocentre shifts alone dexgplanypanel (c), and a combination of both
shown in panel (d). The limitations of panels (b) and (c) adipularly apparent in the reconstruction of
the features below the equator, where a loss of contrast@céusignificant improvement with respect to
these separate reconstructions is obtained using botlra@etw photocentre shifts simultaneously, as in
panel (d).

Domiciano de Souzat al. (2002, 2003) and Jankaet al. (2004) showed that measurements of the dis-
placement of the photocentre across the stellar disk altoaysping of the surface brightness, but requires
a minimum of three telescopes in an interferometric arraguch a way that fringes are collected for all
three baselines. The simulation study by Jan&bal. (2004) anticipates that the interferometric measure-
ments are sufficiently sensitive to detect a mode of (éwn). In general, however, numerous modes are
simultaneously excited. In such more realistic cases, lloéggentre displacements are ‘washed out’ by the
averaging effect of the mary, m)-values. In that case, one can still obtain identificatiareféixed number
of oscillation frequencies which have been derived frometigeries analysis of observables of any kind.
When carrying out the interferometric measurements, atelescillation frequency is used to phase-lock
the data to this frequency. In this way, all surface streduhat are not associated with this frequency are
assumed to be removed, greatly improving the signal stnefogtthe frequency under consideration. Such
frequency filtering can be done as a post-processing step bparopriate weighting procedure. It is pos-
sible to design the appropriate weights for each of the mredsuscillation frequencies separately, and use
the same set of interferometric observations to consthamdentification of all the oscillation modes whose
frequencies are known from other diagnostics.

Concrete applications of this promising mode-identifimatmethod are still awaited.
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Figure 5.26: (a) Simulation of the pole-on projection of stlar surface brightness perturbations due to an
[ = 5,m = 4 mode on a star with an inclination angleiof 45°. The equator and the latitudg8°® and60°

are presented by full and dashed circles, respectivelyom&aiction based on (b) simulated flux spectra,
(c) photocentre shifts, and (d) combined flux spectra andogleotre shifts. (From Jankat al. 2001.)
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5.5 Towards mode identification from eclipse mapping?

Unnoet al. (1989, p.22) pointed out the possibility to observe phasisstiue to non-radial oscillations
during the eclipse of a pulsating star by a companion, andéahis as a mode-identification method. No
applications of this technique existed yet at the time thegtevthe second edition of their monograph on
non-radial oscillations of stars. Unrat al. (1989) realised that the earlier interpretation of phaseps

of 360" in the nova-like binary UXUMa in terms of non-radial osdiitm modes off = 2 by Nather &
Robinson (1974) was premature, and that the observed phasemenon could be far better explained in
terms of an oblique rotator model.

Current versions of the eclipse-mapping method for casacily variables are based on the original
development by Horne (1985). He introduced the method wghgioal of mapping the surface brightness
distributions in eclipsing cataclysmic variables. Edfiprapping allows a test of accretion theory because
the spatial structure of the disks can be derived from the-kgirve behaviour. Moreover, the spot structure,
including the hot spot originating from the collision of thigeam of the donor onto the disk of the gainer,
can be derived. For early applications to interacting ésawe refer toge.g, Ruttenet al. (1993), Collier
Cameron & Hilditch (1997) and Hilditckt al. (1998).

In the case of mode identification of a non-radially pulgatstar in an eclipsing binary, one needs
to reconstruct a time-dependent intensity map from the, datd subsequently infer the amplitude and
phase behaviour of the pulsation mode. Nuspl & Bird (208¥&) Nusplet al. (2004) modified Horne's
method for mode identification from photometric data, as@amaroveet al. (2003) who baptised their
method the Spatial Filtration method. Unfortunately, theidies were only published in short proceedings
papers and there is as yet no extensive simulation studyeah#thodology, highlighting its applicability to
multiperiodic oscillations and an evaluation of the uniggess of solutions.

While severab Sct stars in eclipsing binaries are known (Pigulski 200&,mode identifications per-
formed for them are almost all based on the out-of-eclipse, 8ag, RZ Cassiopeia (Ohshinet al. 2001;
Rodriguezet al. 2004) and Y Cam (Kinet al. 2002). The next step towards application of mode iden-
tification through eclipse mapping was performed by Mkitichet al. (2004) for the Algol-type eclips-
ing binary star ASEridani. They did not use the eclipse-nrappnethod, but they excluded the odd
I + m combinations of(l,m) from the fact that their disk-integrated amplitude disagpeduring the
eclipse. Gamarovat al. (2004) made preliminary estimates @fm) for the Algol-type eclipsing bina-
ries AB Cassiopeia and RZ Cassiopeia from Spatial FilnatRodriguezt al. (2004) also applied Spatial
Filtration to AB Cassiopeia. Both studies provided a radiade for the star, in agreement with the out-of-
eclipse identification. This result was recently confirmgdRiazi & Abedi (2006), who considered only
radial modes in their methodology. As far as we are awarecdlse of AB Cassiopeia, a radial pulsator, is
the only application they made so far.

By far the best documented version of mode identificatiomfpotometric data using eclipse mapping
was provided by Reedt al. (2005). While their primary goal was to search for evidentadally tipped
pulsation axes in close binaries, they also made simukafiomthe very specific case of eclipse mapping of
pulsating subdwarf B star binarieisg., assuming that the secondary has more or less the same i as
primary and does not contribute to the light. They assumatttie pulsation axis can take any value and
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is not necessarily aligned with the rotation or orbital axitey investigated how the visibility of different
types of modes varies between the out-of-eclipse and ipsecphase. In particular, they found that 2
modes become visible during an eclipse while they are d@sfigrdbsent outside of eclipse. Their tools
have so far only been applied to concrete cases of KPD 1932+Reeckt al. 2006a) and of PG 1336-018
(Reedet al. 2006b; see also Fig. 2.59) but without clear results.

We must conclude that, still today, more than 30 years dfterotriginal idea of Nather & Robinson

(1974), eclipse mapping has hardly been evaluated chitiaala mode-identification method, nor has it been
applied successfully in practice for binary stars that Hzeen subjected to seismic modelling afterwards.
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Part Il

Applications of asteroseismology
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In this part of the notes you find selected papers on apptinatof asteroseismology to different kinds
of stars. Inevitably, this selection is a personal one byléaurer and it is biased towards her own research
interests. It is by no means the intention to give a complegeview of applications. Rather, the lecturer
has opted to choose some specific papers which she finds viltirweind accessible to students while
containing state-of-the-art seismic analyses and promtinesults. Very likely, the choice of the papers will
change during the forthcoming years as new analyses withinecavailable in the international literature.

It is very important for the students to realise what the s of this last part of the course is: to
provide them with a selection of papers from the modernditee on asteroseismology and to make them
understand the role of asteroseismology in the generalectrdf stellar astrophysics. The goal is that
the students get a flavour of the major achievements of astisrmology and, equally importantly, of what
remains to be done in the future. As outlined in the Evaluagiart of the notes, the material in this part of
the course will be studied by the students themselves, raivthity have received the basic introduction on
stellar oscillations and tools to analyse data thereof alioed in Parts | and 1l of these lecture notes. That
preparation should suffice for them to understand large paftthe papers selected here and report on the
results described in them.

The students must make a summary of the most importants@sat(some of the) scientific paper(s)
and present this summary to their fellow students, aftesitmmable interaction with the lecturer. | stress
that the goal cannot be for the students to understand alldétails of all of those papers. In fact, the
lecturer herself does not understand all these details. durpose is that the students learn to select the
highlights in these works and to place them in perspectitethme global context of asteroseismology.
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Chapter 6

Helioseismology and solar-like oscillators

6.1 Helioseismology

The oscillations discovered in the Sun in the early 1960 lpmavided astrophysicists with a unique op-

portunity to investigate the interior of a star with unprdeeted precision. The Sun’s oscillations have been
observed extensively since their discovery up to the ptegagn both from ground-based networks and from
space.

Many of the techniques used in asteroseismology have bestoged in order to interprete the solar
frequency spectrum in full detail. In this sense, heliaseilogy has clearly paved the road for applications
of seismology to more distant stars with stochasticallgitex modes. Itis therefore evident that an overview
of the results obtained from helioseismology cannot be techiin the current course. A very extensive,
recent review paper on helioseismology is available from

Christensen-Dalsgaard, J., 2002, Helioseismology,
Reviews of Modern Physicgolume 74, pages 1073 — 1129.

Helioseismology is certainly not the specialisation of ldgaurer. It is therefore evident that she would not
have been able to provide so many details in such an excellgniso we prefer to provide the students with
the review paper mentioned above.
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6.2 Solar-like oscillations in distant stars

In 2003, a review paper on solar-like oscillations in dis&tars was published by two world-leading experts
in this research field. We include it here instead of tryingiake our own summary:

Bedding, T.R., Kjeldsen, H., 2003, Solar-like Oscillason
Publications of the Astronomical Society of Australalume 20, pages 203 — 212.

The discovery of solar-like oscillations in nearby stars domain that undergoes a real boom, so by the time
you read these lecture notes new discoveries (among whielCin B!) will undoubtedly have occurred, as
well as more refined observational studies of the stars owediin the review. Keep yourself informed and
updated by checking the World Wide Web!
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Chapter 7

Seismology of compact stars

7.1 White dwarf seismology

As already mentioned in the first introductory chapter of gtourse, the WET observing run of the white
dwarf PG 1159-035 implied a real break-through in white-dwgaismology. Although this result was ob-
tained more than a decade ago, the same level of precisioneaelsed for only a very limited number of
stars so far. Moreover the paper on the WET run of PG 1159-935very nice example of a goashd-to-
end seismic analysis which one starts from the observations and ends withgerit constraints on the
internal structure of the star. We therefore certainlyudel this important paper here:

Winget, D.E., Nather, R.E., Clemens, J.C., etal., 1991,
Asteroseismology of the DOV star PG 1159-035 with the Wh@elETelescope,
The Astrophysical Journalolume 378, pages 326 — 346.
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A recent interesting aspect of white dwarf seismology isitea that it can constrain the nuclear
reaction rate”>C(a, v)'60. This result is a very nice example of the implications rasteismology could
have for other fields in physics. However, there is no genaakensus on this result in the international
literature. We point out four papers in this respect:

Metcalfe, T.S., Salaris, M., Winget, D.E., 2002,
Measuring*2C(«a, v)'60 from white dwarf asteroseismology,
The Astrophysical Journalolume 573, pages 803 — 811.

Handler, G., Metcalfe, T.S., Wood, M.A., 2002,
The asteroseismological potential of the pulsating DB /bivarf stars
CBS 114 and PG 1456+103,
Monthly Notices of the Royal Astronomical Sociétylume 335, pages 698 — 706.

Fontaine, G., Brassard, P., 2002,
Can white dwarf asteroseismology really constrain'#f@«, v)'6O reaction rate?,
The Astrophysical JournaVolume 581, pages L33 — L37.

Metcalfe, T.S., 2003,
White dwarf asteroseismology and tHeC(«, v)¢O rate,
The Astrophysical JournaMolume 587, pages L43 — L46.
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7.2 Seismic studies of sdB stars

Ever since their discovery in 1997, the pulsating sdB stdss termed EC 14026 or V 361 Hya stars, have
been observed intensively. However, it took several yesen for the sdB stars with short-period pressure
modes, before the observations reached the level of deietl that seismic inference could be achieved.
The first such detailed seismic study is summarised in therpap

Brassard, P., Fontaine, G., 2001,
Discovery and asteroseismological analysis of the pulgatiB star PG 0014+067,
The Astrophysical JournaVolume 563, pages 1013 — 1030,

which we regard to be a reference work in this area of astismséogy. The need of modes with degree
[ > 2to model the frequency spectrum of PG 0014+067 as explam#ipaper is, however, not supported
by all asteroseismologists. Therefore, the same star im#ie target of a WET run and of a multicolour
study with the instrument ULTRACAM attached to the Willianetdchel Telescope at La Palma in the sec-
ond part of 2004. We will therefore hopefully be able to rémer more detailed seismic results for this star
in the version of these Lecture Notes next year.

In-depth seismic analyses are currently not yet possiblthéomuch more recently discovered gravity-
mode oscillators among the sdB stars. Many more obseratigfforts are needed to firmly establish
numerous frequencies and mode identifications for the gravbdes in such objects.
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Chapter 8

Seismology of massive stars

8.1 Delta Scuti star seismology

The first attempts to perform detailed seismic studies @ steore massive than the Sun, i.e. for stars with
a considerable convective core, were made for selecBaliti stars which had been the targets of multisite
campaigns (mainly organised by the Vienna team led by M. &ded\ reference work in this matter is:

Pamyatnykh, A.A., Dziembowski, W.A., Handler, G., Pikadl, 1998,
Towards a seismic model of tleScuti star XX Pyxidis,
Astronomy & Astrophysi¢cd/lume 333, pages 141 — 150.

While the conclusions from this study on the potentiab &cuti star seismology were rather worrisome at
the time of publication of that paper, a possible explamatar the limitations of the seismic modelling of
XX Pyxidis was proposed recently:

Aerts, C., Handler, G., Arentoft, T., Vandenbussche, B.diee, R., Sterken, C., 2002,
Thed Scuti star XX Pyx is an ellipsoidal variable,
Monthly Notices of the Royal Astronomical Sociétylume 333, pages L35 — L39.

A secondj Scuti star in which many oscillation modes have been detemtel that was therefore the
subject of seismic modelling is FG Virginis. An example otk study is:

Templeton, M., Basu, S., Demarque, P., 2001,
Asteroseismology of Scuti stars: a parameter study and application to seismabgG Virginis,
The Astrophysical Journavolume 563, pages 999 — 1012.
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8.2 Seismic studies of roAp stars

A considerable amount of data of roAp stars has been gathlkeeepast two decades. Frequency analyses
of their light curves have yielded quite rich asteroseisinformation in general, and in particular on the
interaction of the oscillations with the magnetic field. Hmgr, many questions still remain unsolved today.

One of the best studied roAp stars is HR 1217, of which weWst tecent remarkable and important
publications:

Cunha, M.S., 2001, The sixth frequency of roAp star HR 1217,
Monthly Notices of the Royal Astronomical Sociétylume 325, pages 373 — 378.

Kurtz, D.W., Kawaler, S.D., Riddle, R.L., et al., 2002,
Discovery of the ‘missing’ mode in HR 1217 by the Whole EaréteEcope,
Monthly Notices of the Royal Astronomical Sociéylume 330, pages L57 — L61.
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8.3 B-star seismology

It is always the privilige of the lecturer to put more emplasn his/her favourite topic in lectures. While
your lecturer's main research domain is asteroseismold@ystars, she has tried not to exaggerate and to
limit to the most recent results also for this type of stars féx the oscillating sdB stars, we are still awaiting
the detection and mode identification of numerous gravitgesan the SPBs (up to some five modes have
been detected in some stars).

At present, significant progress in the detailed seismicetliod of the p-mode oscillators among the
B stars, i.e. thed Cep stars, is occurring. While attempts of such modellingaaly started in 1996 by our
Polish colleagues W. Dziembowski and M. Jerzykiewicz far fitars 12 and 16 Lacertae, it was only in
2003 that a significant step forward has been achieved. Otieeakasons for this is that we have finally
obtained good mode identifications for the modes in sometsele Cep stars. This has led to inferences
on internal properties of the convective core and the mgbrofile in some cases. A second reason is that
[ Cep stars have become the targets of multisite campaigtisglaseveral months and involving dozens
of instruments around the globe. The campaigns have beamisegl under the leadership of G. Handler
from Vienna University. At the time of writing of these lectunotes, such a campaign has finished for the
starsv Eridani, 12 Lacertae, 16 Lacertae and V 2052 Ophiuchi. pmé&tation of such network campaigns is
a tedious job which takes a long time, even if tackled by adaepm of researchers. In these notes, we
include the final results of the campaign m&ridani, the analyses for the other targets are still orgyaimd
will be reported upon in the coming years.

The number of modes that are excited to detectable ampditurd@ Cep star is small, typically less
than ten. The examples for the 6 stars studied below showntizziag power of asteroseismology, even
with very few well-identified oscillation modes at hand:

Handler, G., Shobbrook, R.R., Vuthela, F.F., et al., 2003,
Asteroseismological studies of the thig€ephei stars: IL Vel, V433 Car and KZ Mus,
Monthly Notices of the Royal Astronomical Sociéylume 341, pages 1005 — 1019.

Thoul, A., Aerts, C., Dupret, M.-A., et al., 2003,
Seismic modelling of thg Cephei star EN (16) Lacertae,
Astronomy & Astrophysi¢cd/lume 406, pages 287 — 292.

Aerts, C., Waelkens, C., Daszyhska-Daszkiewicz, J.,.e2@03,
Asteroseismology of thg Cep star HD 129929.
I. Observations, oscillation frequencies and stellar patars,
Astronomy & Astrophysi¢cd/olume 415, pages 241 — 249.
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Dupret, M.-A., Thoul, A., Scuflaire, R., et al., 2003,
Asteroseismology of thg Cep star HD 129929.
Il. Seismic constraints on core overshooting, internatioh and stellar parameters,
Astronomy & Astrophysi¢cd/lume 415, pages 251 — 257.

Handler, G., Shobbrook, R.R., Jerzykiewicz, M., et al.,£00
Asteroseismology of thg Cephei star Eridani
I. Photometric observations and pulsational frequencyyaisa
Montly Notices of the Royal Astronomical Socjatglume 347, pages 454 — 462.

Aerts, C., De Cat, P., Handler, G., et al., 2004,
Asteroseismology of thg Cephei star Eridani
Il. Spectroscopic observations and pulsational frequamajysis,
Montly Notices of the Royal Astronomical Socjatglume 347, pages 463 — 470.

De Ridder, J., Telting, J.H., Balona, L.A., et al., 2004,
Asteroseismology of thg Cephei star Eridani
lll. Extended frequency analysis and mode identification,
Montly Notices of the Royal Astronomical Socjatglume 351, pages 324 — 332.

Pamyatnykh, A.A., Handler, G., Dziembowski, W.A., 2004,
Asteroseismology of thg Cephei star Eridani:
interpretation and applications of the oscillation spatiy
Montly Notices of the Royal Astronomical Socjatglume 350, pages 1022 — 1028.

Ausseloos, M., Scuflaire, R., Thoul, A., Aerts, C., 2004,
Asteroseismology of thg Cephei star Eridani:
massive exploration of standard and non-standard stetidefs to fit the oscillation data,
Montly Notices of the Royal Astronomical Socjatglume 355, 352 — 358.
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