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Preface

The purpose of this 6 ECTS course is to introduce students into the research domain of asteroseismology,
which has become a very popular topic within stellar astrophysics the last decade. The main goal of the
lecturer is to learn the students how to interprete data of non-radially oscillating stars. In order to achieve
this the students will be provided with state-of-the-art analysis methods and with recent data of stars.

During the lectures, a large emphasis will be put on observational aspects of stellar oscillations. There
are several reasons for that. First of all, this orientationcorresponds to the lecturer’s expertise. Second, the
students of Leuven University have the opportunity to follow a parallel 30-hour course on the “Theory of
stellar oscillations”. Third, complete lecture notes including the technical theoretical background of stellar
oscillations written by specialists in that field are available on the internet and in books (references are
provided in the current notes in Chapter 3) while we believe this is less so for the observational studies,
perhaps because they change and improve rapidly.

The current notes are a revision of those written eight yearsago. The first edition, only available
in Dutch, was limited to observational asteroseismology ofstars with opacity-driven modes. The current
lectures have been extended to stars with stochastically driven modes. The previous version did not include
any theoretical aspects for reasons outlined above. However, it was felt that a basic introduction into the
theory of stellar oscillations was desirable, because somestudents did not follow the parallel course. Also,
the lecturer preferred to put more and more emphasis on seismic interpretations of the data in the recent
years and this requires some insight into the mathematical properties of the oscillations. For this reason,
a brief chapter containing the basic theoretical treatmentof non-radial oscillations has been added in the
current version.

The current lecture notes are divided into three parts. The first part constitutes an overview of the
general properties of stellar oscillations and their occurrence across the Hertzsprung-Russell diagram. All
the currently known types of non-radial oscillators are introduced. The current text is only meant asprinted
lecture notesfor students, not as a book or any official document. As such itdoes often not contain the ref-
erences to the original sources of information, or if references are quoted, they are not given explicitly. This
is due to the current notes being part of a book on asteroseismology that is being prepared by the Lecturer
and Professors Jørgen Christensen-Dalsgaard and Don Kurtz. The book, including the full references, is not
yet finished. For this reason, this current text isNOT meant to be copied or distributed to other parties but
only for your personal study. The students know how to use modern astronomical databases and libraries
available from the internet to find the full references to thecited papers.
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The second part of the notes, consisting of two chapters, describes the analysis methods needed to
derive the basic properties of the observed stellar oscillations. One chapter deals with the time aspect of the
oscillations and is devoted to time series analysis of data of oscillating stars. The following chapter concerns
the identification of the wavenumbers of the observed non-radial oscillations, once frequencies have been
determined.

The final part of the notes is composed of several chapters devoted to recent applications of astero-
seismology to selected stars. It concerns stars of quite different type and/or evolutionary state. The text of
these chapters consists of selected refereed papers taken from the international literature on asteroseismol-
ogy. A first chapter is devoted to helioseismology and solar-like oscillations. Another chapter consists of
seismic studies of compact oscillators, such as white dwarfs and sub-dwarf B stars. Finally, the last chapter
highlights some detailed seismic analyses of stars considerably more massive than the Sun.

These lecture notes, as well as additional ones and state-of-the-art asteroseismic datasets, can be re-
trieved from the Word Wide Web, at URL http://www.eneas.info.

Conny Aerts,

Leuven, September 2007
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Evaluation procedure

The students following this course will be evaluated on a quasi-permanent basis, i.e. during the course. The
students can either work individually or can work in groups of two persons (with at most one group of three
for an odd number of students). They will have to make two mainexam projects and will be given additional
tasks during the course as well.

The first exam project concerns time series analysis and modeidentification based upon datasets pro-
vided by the lecturer. They are expected to make a written report of maximum 10 pages (in Dutch or in
English), describing their results of the analyses. Additionally, they must present their results during a
10-minutes oral presentation (in Dutch or in English) attended by all the students following this course,
followed by a round of questions on their presentation from the audience.

For the second exam project, each (group of) student(s) is assigned (one of the) papers from the recent
literature available in Part III of the current lecture notes. It concerns a seismic analysis of a particular star
or a group of stars. The students must make a literature studyof that/these object(s) and summarize the
results of the seismic study by giving an oral presentation,again of 10 minutes, in front of their class mates,
followed by a round of questions.

All students of each group must give parts of the two presentations. The written report must be handed
over to the lecturer a few days in advance of the oral presentation (practical arrangement to be discussed
with the lecturer during the courses). The use of the lecturenotes is admitted during each part of the exam.
The data set and the paper(s) they must study will be handed over to them well in advance of the deadline
for the written report.

The course will end with a discussion between students and lecturer with the goal to give each other
feedback on all aspects of these lectures. At the end of the course, successful students will have learnt to
analyse modern data of oscillating stars, to report on such analyses before an audience, to summarize the
highlights of recent international papers on stellar oscillations, to collaborate and discuss among each other,
and to formulate relevant questions on papers in a clear and concise way so that persons not having read the
paper understand the issue of the question.

Good luck to all of you !!
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Part I

General properties of stellar oscillations
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Chapter 1

Introducing asteroseismology

The research field of asteroseismology will be introduced toyou by means of a computerpresentation, which
contains many graphical illustrations. These illustrations are not suitable to be copied on paper, so we refer
you to that introductory presentation in addition to the text of the current chapter.

The subject of this course is situated in the research domainof stellar astrophysics. More particularly,
it concerns the topic ofoscillationsthat occur inside stars. The recent research domain ofasteroseismology
refers to the study of the internal structure of stars through the interpretation of their oscillation frequency
spectra. For one of the early reviews on the topic, we refer toBrown & Gilliland (1994)1. Essentially,
asteroseismologists try to make use of the oscillations to probe the stellar interior, which is not directly
observable. The basic principles of asteroseismology are,to a certain extent, similar to those developed
and employed by earth seismologists. Asteroseismology relies on advanced mathematical descriptions of
oscillations in a three-dimensional body and numerical modelling. It is therefore a prominent example of
interdisciplinary science, more precisely of “integrated” physics.

The interiors of the stars are among the most difficult parts of the Universe to observe. The reason why
stellar interiors can be probed from the oscillations is that the behaviour of the oscillations is determined
uniquely by the properties of the overall stellar structure. More particularly, the different oscillation modes
of a star penetrate to different depths inside that star and so one is able to study the internal layers from the
frequency differences of the modes. Asteroseismology is the only available method to derive in a quasi-
direct way the internal structure of the stars with high precision.

The ultimate goal of asteroseismology is to improve the evolutionary models of the stars. The theory
of stellar evolution is reasonably well established in a global sense. We know that stars are born out of giant

1We remind the students that they have to search for the complete reference and the paper themselves through electronic libraries
as explained further in the text

12



clouds of dust and that they burn hydrogen into helium in their core during 95% of their life. As soon as
the central fuel is exhausted, they become red giants and expell their outer layers. Depending on their mass,
they end their lifes as white dwarfs or supernovae. This broad picture is derived from, and in agreement
with, the observations of many different kinds of stars of different ages. However, the current observations
do not allow a very detailed confrontation between the theoretical models and real physical properties of the
stellar material in the deepest internal layers. Asteroseismology will lead to significant contributions in this
context.

1.1 Basic properties of non-radial oscillations

On the frontcover of these lecture notes, you find a schematicrepresentation of the different classes of
oscillating stars in the Hertzsprung-Russell (HR) diagram(in which the stellar luminosity, i.e. the energy
released at the stellar surface, is plotted against the surface temperature of the stars) known up to the present
day. The dashed line indicates the “main sequence”. All stars in this stage of evolution are relatively young
and burn hydrogen in their core. Along the main sequence manydifferent classes of non-radial oscillators
occur, from the low-mass solar-like stars up to the massiveβCep stars. To the right, we find classes of
oscillating stars along the horizontal and red-giant branch. These stars burn helium in their core. All classes
of non-radial oscillators to the lower left of the main sequence are evolved stars that have reached the stadium
of (pre-)white dwarfs. They no longer have nuclear burning and are condemned to cool. The full lines in the
figure are the evolutionary tracks for stars with different initial masses. It is very fortunate that oscillations
are excited in almost all types of stars and in many stages of stellar evolution.

The simplest oscillation a star can undergo is aradial one. In that case, the star expands and contracts
radially and spherical symmetry is preserved during the oscillation cycle. From a mathematical point of
view, the differential equation describing the radial displacement is of the Sturm-Liouville type and thus
allows eigensolutions that correspond to an infinitely countable amount of eigenfrequencies. The smallest
frequency corresponds to the fundamental radial oscillation mode. The period of this mode is inversely
proportional to the square root of the mean density of the star. Radial oscillations are characterised by the
radial wavenumbern: the number of nodes of the eigenfunction between the centerand the surface of the
star. Well-known radial oscillators are the Cepheids, RR Lyrae stars and Red Giants.

If transverse motions occur in addition to radial motions, one uses the termnon-radial oscillations.
The oscillation modes are then not only characterised by a radial wavenumbern, but also by non-radial
wavenumbersl andm. The latter numbers correspond to the degree and the azimuthal number of the
spherical harmonicY m

l (θ, ϕ) that represents the dependence of the mode on the angular variablesθ and
ϕ for a star with a spherically symmetric equilibrium configuration. The degreel represents the number
of surface nodal lines, while the azimuthal numberm denotes the number of such lines that pass through
the rotation axis of the star. The surface pattern of some non-radial oscillations is graphically depicted in
Figure 1.1. TheseDoppler mapsshow the radial velocity structure at the stellar surface ofa non-radial
oscillator at one particular phase of the oscillation cycle. The red parts are moving inwards and cause a
redshift in the observed stellar spectrum while the blue parts move simultaneously outwards and give rise to
a blueshifted spectrum. Half an oscillation cycle later, the red parts have become blue and vice versa. The

13



Figure 1.1: Different examples of non-radial oscillations, seen from a different inclination angle:i = 30◦

(top row), i = 60◦ (middle row), i = 90◦ (bottom row). The velocity field of a non-radial oscillator is
represented by a spherical harmonicY m

l . The meaning of the spherical wavenumbers(l,m) is visualised.
In these examplesl = 3 andm takes values from 0 (right) to 3 (left). The dot indicates thesymmetry axis
of the oscillation, which corresponds to the rotation axis of the star. The colouring denotes the Doppler shift
in an observed spectrum due to the oscillation, i.e. at this particular instance in the oscillation cycle, the red
parts are moving towards the stellar center (thus away from the observer) and therefore shift the spectrum to
longer wavelengths (redshift) while the blue parts are moving outwards (towards the observer) and result in
a shift to shorter wavelengths (blueshift).
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white lines in Figure 1.1 represent thel nodal lines. The mass elements on these lines do not move during
the oscillation cycle.

The modes withm = 0 are standing waves. They are called axisymmetric or zonal modes. Non-zonal
modes are running waves. We take the following convention with respect to the rotation: positivem−values
denote modes that move opposite to the rotation (retrogrademodes) while negativem−values are associated
to motion in the direction of the rotation (prograde modes).The modes withl = |m| are calledsectoraland
those with0 6= |m| < l aretesseral(see Figure 1.1).

Non-radial oscillations can penetrate deeply inside a star. For each oscillation the surface pattern is a
continuation of the internal oscillatory behaviour and so the latter can, to a certain extent, be derived from
measuring the surface variability. For each surface pattern, a whole series of oscillations with different
internal behaviour is possible. This series is characterised by the radial wavenumbern, which represents the
number of nodal surfaces inside the star in the case of a non-radial oscillation. The latter is thus characterised
by three numbers(n, l,m) and its frequencyωnlm.

1.2 Why do stars oscillate ?

The basic properties of oscillation modes are explained in the previous section. However, one needs to have
a mechanism thatexcitesthe modes in the stars. Three types of excitation mechanismsexist.

The Sun oscillates in millions of acoustic modes with extremely low velocity amplitudes which are of
the order of cm/s. These modes are caused by the motions of theouter convective cells and have lifetimes
of the order of days to weeks. One speaks ofstochastically excited modes. Such oscillations are expected in
all stars having convective outer layers.

For most of the classes of pulsating stars indicated in the frontcover plot, however, the modes areself-
excited. This self-excitation is possible because some layers in the stars turn out to have the potential to
act as a heat engine. Such layers are able to trap the energy radiated outwards by the stellar core in a very
efficient way during a small contraction of the star, and to release the trapped energy during the subsequent
expansion. For this so-calledκ mechanismto work, i.e. for it to be able to make the whole star oscillate, the
pertinent layer has to be situated at a suitable position in the star. As a result, oscillations can only be excited
when a suitable combination of stellar luminosity, temperature, and chemical composition occurs. For this
reason, non-radial oscillations are excited in so-calledinstability stripsin the Hertzsprung-Russell diagram.

Whenever two components of a close binary interact significantly, dynamic tides will result. Such tides
can give rise to oscillations of one or both components. One speaks offorced oscillations, contrary to the
two types offreeoscillations mentioned above. Theory predicts that forcedoscillations are characterised by
degreel = 2.
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1.3 Brief description of the mathematics of non-radial oscillations

In the framework of these lectures we consider a self-gravitating gaseous spherically symmetric star in the
absense of external forces (i.e. no visceous effects nor magnetic fields). We assume that the axis of symmetry
of the oscillations coincides with the rotation axis of the star. Moreover, we assume that the rotation of the
star is so slow that it has no effect on the oscillations. Thisapproximation is valid as long as the deformation
of the star due to the centrifugal force can be neglected and when the ratio of the pulsational periods to
the rotational period remains small (typically well below 10%). In other words, we assume that several
oscillation cycles have taken place on the time span that thestar needs to turn around its rotation axis.

In the theory of stellar oscillations, which is outlined in more detail in Chapter 3, one studies the reac-
tion of the star to small perturbations which cause deviations from the spherical symmetry. The equations
which have to be fulfilled form a system of non-linear partialdifferential equations: the perturbed equa-
tion of motion, the perturbed continuity equation, the perturbed energy equation and the perturbed Poisson
equation. Assuming that all physical quantities undergo only small deviations from their equilibrium value
allows one to linearise the perturbed equations. The equations are invariant with respect to a translation
in time whenever the evolution of the star is to a good approximation a succession of quasi-static states of
hydrostatic and thermal equilibrium. In that case, solutions with a time dependence∼ exp(iωt), with ω the
pulsation frequency, can be found. The unknowns in the system of equations are the components of the La-
grangian displacement vector, the perturbed pressure, theperturbed temperature and the perturbed density,
among others.

We consider a system of cartesian coordinates(x, y, z) of which thez−axis coincides with the rotation
axis of the star. In this system, we introduce spherical coordinates(r, θ, ϕ) whose polar axis coincides with
thez-axis. It is convenient to describe any scalar functionX(r, θ, ϕ) in terms of spherical harmonics, which
are a complete orthogonal set of functions, for any physicalproblem with spherical symmetry:

X(r, θ, ϕ) =
+∞
∑

l=0

l
∑

m=−l

Xlm(r)Y m
l (θ, ϕ), (1.1)

in which the spherical harmonicY m
l is defined as

Y m
l (θ, ϕ) ≡

√

2l + 1

4π

(l −m)!

(l +m)!
Pm

l (cos θ) exp(imϕ), (1.2)

with Pm
l (cos θ) theassociated Legendre functionwhich is defined as

Pm
l (x) ≡ (−1)m

2ll!

(

1 − x2
)m/2 dl+m

dxl+m

(

x2 − 1
)l
. (1.3)

We are only interested in time-dependent solutions, which we call spheroidal modes. In terms of spherical
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harmonics we write the components of the Lagrangian displacement vector as:
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

ξr(r, θ, ϕ, t) = a(r)Y m
l (θ, ϕ) exp(−iωt),

ξθ(r, θ, ϕ, t) = b(r)
∂Y m

l (θ, ϕ)

∂θ
exp(−iωt),

ξϕ(r, θ, ϕ, t) =
b(r)

sin θ

∂Y m
l (θ, ϕ)

∂ϕ
exp(−iωt).

(1.4)

The functionsa(r) andb(r) are eigensolutions of an eigenvalue-problem of fourth order. This eigenvalue
problem is degenerate with respect to the azimuthal numberm (see Chapter 3).

Radial modes are a special case of non-radial modes for whichl = 0. The system of equations reduces
to one of second order for radial modes. This system is of Sturm-Liouville type and so gives rise to an infi-
nite number of eigenvaluesω2

n, each of which corresponding to one particular eigenvector. The eigenvector
belonging toω2

n has one zero point less than the one ofω2
n+1. Each of the eigenvalues is real because the

operator is self-adjoint. We hence obtain two types of solutions. A first series for whichω2
n > 0. In that case

ωn is real and the eigenvectors have an oscillatory behaviour through theexp(iωnt) dependence. Whenever
ω2

n < 0 we are dealing with pure imaginary numbersωn and the oscillations grow or damp exponentially
(we do not consider such solutions in this course). The hermiticity of the operator also ensures a minimal
eigenvalueω2

0, which corresponds to the longest oscillation periodP = 2π/ω0. Its corresponding eigen-
vector is called theradial fundamental mode. All the eigenvalues are ordered accordingω0 < ω1 < ω2, . . .,
which corresponds to oscillation periodsP0 > P1 > P2 > . . .. The eigenvector with the eigenfrequencyω1

is called the first harmonic, the one withω2 the second harmonic and so on. Each of these modes are stand-
ing acoustic modes, i.e. sound waves and so the oscillationsof a star are quite similar to those of musical
instruments. The star passes through her equilibrium position twice per oscillation cycle.

An important mathematical difference with the non-radial modes is that the system of differential equa-
tions to be solved is no longer of Sturm-Liouville type, the operator is only Hermitic. Hence, the eigenvalues
ω2

n are still real numbers, but they can no longer be ordered as for radial oscillations and the existence of a
smallest eigenvalue is no longer garantueed. However, one can show (beyond our scope) that the system of
equations evolves towards a Sturm-Liouville problem wheneverω2

n → 0 for n → +∞ or whenω2
n → +∞

for n → +∞. In the latter case we recover again an ordered sequenceω1 < ω2 < ω3 < . . . with corre-
spondingP1 > P2 > P3 > . . .. Such modes are calledp1, p2, p3, . . . and one speaks of pressure (acoustic)
or p-modes. The subscript denotes again the number of nodes of the radial component of the eigenvector.
The restoring force for p-modes is the perturbed pressure force. In the caseω2

n → 0 for n → +∞ an
ordering also occurs, this time

0 <
1

ω1
<

1

ω2
<

1

ω3
< . . .

and such modes are calledg+
1 , g

+
2 , g

+
3 , . . . or gravity modes (g-modes). The buyancy force is the main

restoring force for such non-radial modes. Gravity modes hence have periods that are longer than the period
of the radial fundamental mode. Finally, the limit case ofω = 0 belongs to an eigenvector that has no nodes
in the radial direction.This modes is called the non-radialfundamental, or f-mode.

The p-modes mainly attain a large amplitude in the outer layers of the star while g-modes have a
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large amplitude in the deep layers of the star. Therefore, g-modes are by far the most interesting from
an asteroseismological point of view. However, the corresponding periods of g-modes are one order of
magnitude longer than those of p-modes.

1.4 Contents of this course

We now highlight very briefly the different topics that will be touched upon in the framework of this course.
Detailed studies will be presented in the subsequent chapters and are also listed in the references given at
the end of these lecture notes.

1.4.1 Helioseismology

Although very succesful applications of asteroseismologywere already obtained from ground-based data
of the 3-15 minutes oscillations of the Sun, the breakthrough in helioseismologycame from the space data
of the Sun obtained with the ESA/NASA satellite SoHO which was launched in 1995 (for more informa-
tion, seehttp://sohowww.nascom.nasa.gov/). The solar frequency spectrum (for a definition, see
Chapter 4) derived from SoHO data is shown in Figure 1.2, while an enlargment for the highest-amplitude
region is shown in Figure 1.3. The regular pattern in the peaks is clearly visible. One defines two impor-
tant quantities derived from such a spectrum: thelarge frequency separations△νl, which occur between
the frequency peaks belonging to modes with wavenumbers(n, l) and(n − 1, l), and thesmall frequency
separationsδνl which represent the frequency differences between modes with wavenumbers(n, l) and
(n − 1, l + 2). The large frequency separation is dependent on the averagestellar density while the small
separation is determined by sharp features in the sound speed, such as those caused by the core of the star. It
is possible to infer the mass of the star, and also the age since the core composition changes as more hydro-
gen is turned into helium by the nuclear burning. The small frequency separation is, therefore, a measure of
the evolutionary state of the star.

The diagnostic properties of solar-like oscillations havebeen derived in great detail. The seismic studies
based on the SoHO data have revealed for the first time the detailed properties of the outer convective layers
of the Sun. The outer convection zone of the Sun turns out to be50% more extended than previously thought.
Moreover, the internal differential rotation and mixing inthe Sun could be mapped in full detail at the level
of 0.1%. Finally, the age of the Sun can be derived from the large and small separations. It turns out that
these quantities lead to an age estimate better than 0.1% (wecan quantify this because we know the age of
the Sun from meteorites). We refer to Chapter 6 for more details.

1.4.2 Solar-like stars

The successes of helioseismology have of course led to huge efforts to obtain the same level of precision in
other oscillators over the whole mass range. As far as the search of oscillations in other solar-like stars is
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Figure 1.2: The oscillation spectrum of the Sun derived fromthe experiment VIRGO onboard SoHO. The
amplitude of the oscillations, expressed in ppm (parts per million), is drawn as a function of frequency, for
both blue and red solar light. The highest frequency peaks have amplitudes of a few ppm, which means that
the relative change of the luminosity of the Sun due to the oscillations is only a few parts per million.

Figure 1.3: Enlargment of the oscillation spectrum of the Sun shown in Figure 1.2 for the frequency range
with the highest amplitudes.
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concerned, clear detections of stochastically excited p-modes were recently found (see Chapter 6), after more
than 10 years of efforts. For stars with solar-like oscillations, many of the techniques of helioseismology
are immediately applicable once the frequency spectrum is well determined, and so we expect quite a bit of
progress in the derivation of the internal structure parameters of these types of stars in the near future now
that firm evidence of acoustic modes exists for a number of objects.

1.4.3 Compact stars

Other concrete in-depth asteroseismological results, in the sense of probing the internal structure, were
obtained for the g-modes in white dwarfs since the early 1990s already. White dwarfs are the compact end-
products of stars with initial masses below 9 solar masses. The white dwarfs oscillate multiperiodically, in
g-modes with periods around 10 minutes. In order to cover theoverall beat-period of all the excited modes,
a network of telescopes around the Earth equator was set up inthe late 1980s: the WET, which stands for
Whole Earth Telescope. A WET campaign on the DOV PG 1159-035 implied a breakthrough in white-
dwarf seismology and allowed to derive the mass, rotation rate, and internal stratification of this object with
unforeseen precision (see Chapter 7). Other succesful campaigns on white dwarfs followed later, up to the
present day.

Oscillation modes were recently found in another group of compact evolved stars, B-type subdwarfs
(sdB stars). These objects are situated at or just beyond theextreme blue end of the horizontal branch
and are core-helium burning stars surrounded by a thin hydrogen envelope developped during the giant
branch. This envelope is too thin to sustain hydrogen-shellburning. Therefore, sdB stars will not follow
a path to the Asymptotic Giant Branch (AGB) after core-helium exhaustion, but will turn immediately left
in the HR diagram, becoming low-mass white dwarfs. Both p-mode and g-mode pulsating sdB stars have
been discovered. These sdB oscillators were, almost simultaneously with their observational discovery,
understood theoretically in terms of theκmechanism. The exploitation of the asteroseismological potential
of the sdB stars is currently ongoing (Chapter 7) and receives a lot of attention, as the evolution and structure
of the sdB stars is relatively poorly known.

1.4.4 Massive stars

While the seismological studies of evolved stars have fine-tuned the evolutionary cooling tracks of such
objects, they do not help us to confine the early phases of the evolution of the progenitors of these stars.
Such studies thus cannot help us to constrain the internal structure at the main-sequence stage of the stars
that will eventually become sdBs and white dwarfs, nor of those that will explode as a supernova. The
current status of asteroseismology of non-solar-like main-sequence stars (i.e. of stars with at least twice the
mass of the Sun) is not yet so evolved because the applicationof asteroseismology for such objects is not
straightforward. A prerequisite for such an application isof course the detection of many oscillation modes
and their mode identification, i.e. the knowledge of their wavenumbers(n, l,m). The modes in these stars
are not in the asymptotic frequency regime, only a limited number of modes is detected and the selection
mechanism of their excited modes is not known. Hence, mode identification is a serious problem for seismic
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applications.

The best candidates according to the number of modes detected are theδ Scuti stars, which are sit-
uated in the classical instability strip and which pulsate in p-modes. For some of these stars, more than
30 oscillation frequencies have been detected from multisite campaigns, such as WET and the DSN: Delta
Scuti Network. While early attempts of seismology of such stars were very promising, it has become clear
that unexplained amplitude and period changes occur in these stars. Moreover the lack of accurate mode
identifications, due to the incomplete observed frequency spectra, limits seismic applications.

The rapidly oscillating Ap (roAp) stars are chemically peculiar stars in theδ Scuti instability strip with
a strong magnetic field. Because of this, their oscillation symmetry axis is probably not aligned with the
rotation axis, but rather with the magnetic axis or even withyet another axis. Their oscillations are explained
in terms of the so-called modified oblique pulsator model. They oscillate in p-modes with periods of the
order of minutes. Seismic applications will be discussed inChapter 8.

For the massive B-type main-sequence oscillators, as well as for the recently discoveredγ Doradus
stars, the problem of detecting multiple modes and of identifying them is even more severe, since their os-
cillation periods are considerably longer. The only way to make progress in asteroseismology of stars with
masses higher than twice that of the Sun is to obtain uninterrupted time series that cover the overal beat-
periods of the oscillations and to develop better mode identification methods (see Chapter 5). The current
state of seismic applications to massive stars is presentedin Chapter 8.

In the following two chapters we give respectively an overview of the occurrence of stellar oscillations
in the HR diagram for the different evolutionary states and aconcise description of the theory of non-
radial oscillations. Subsequent chapters contain methodological approaches to disentangle and interprete
observations of non-radial oscillations as well as applications of asteroseismology to different types of stars.
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Asteroseismology is a research field that is undergoing veryrapid changes and progress is considerable
on a short time scale (e.g. the current notes are a revision ofthose written 5 years ago, which were very
much out of date). This rapid progress will even increase thecoming decade as several worldwide networks
and space missions dedicated to this topic will be in operation during the coming 5 years. We therefore
advise the interested student to keep up-to-date by checking regularly the two most important astronomical
databases accessible at:

http://adsabs.harvard.edu/abstract−service.html
http://cdsweb.u-strasbg.fr/Simbad.html

The first one of these internet addresses brings you to the ADSabstract service that allows you to search for
scientific papers by queries, e.g. author names, title words, stellar objects, etc. The second address is the one
of the astronomical database held at Strassbourg, in which numerous measurements of stars are available,
as well as basic stellar parameters and references to papers. Whenever appropriate we also list interesting
internet sites. Detailed searches on the internet startingfrom these mentioned web addresses will lead you
to the most appropriate and up-to-date information.
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Chapter 2

Observations of Stellar Oscillations across
the Hertzsprung-Russell Diagram

This chapter is a journey through the Hertzsprung-Russell (HR) Diagram with stops at all the ellipses shown
in Fig. 2.1. We discuss briefly each of the currently known classes of oscillating stars, outlining their most
important properties, such as their fundamental stellar parameters and the general character of their oscilla-
tions, but skipping many of the details. For each class, we provide a recent overview paper and/or book to
which we refer for additional information and deeper discussion. We provide one prototypical time series
of a class member and sometimes its Fourier transform, in order to give the reader a first impression of the
frequency range and the behaviour of the oscillations. We further restrict ourselves to a description of the
basic properties of the stars; details on asteroseismic applications are postponed to the later chapters in this
book specifically dedicated to them.

An evident conclusion from Fig. 2.1 is that stellar oscillations occur in almost all phases of stellar
evolution. However, there clearly exists a particular region in the HR diagram in which the density of
pulsating stars is greater than elsewhere. This region is situated between the two slanted dashed lines in
Fig. 2.1 and is called theclassical instability strip. The oscillations in the stars situated in this strip are
caused by the heat mechanism primarily acting in the second partial ionization zone of helium,i.e., the zone
in which both HeII and HeIII occur. The Cepheids, RR Lyrae stars,δ Sct stars and rapidly oscillating Ap
stars are all situated in this strip, along with pre-main-sequence pulsators. On the other hand, the first partial
ionization zones of hydrogen and helium, combined with strong and efficient convection, are responsible
for the heat-driven oscillations in cool red giants and supergiants, such as the Mira stars and semiregular
variables; hence they are situated along the cool, that is, red, side of the classical instability strip. Finally,
opacity features associated with the iron-group elements are responsible for oscillations in the hottest stars,
such asβCep stars, slowly pulsating B stars, B supergiants, and alsoin the evolved subdwarf B stars.
Stochastically excited oscillations are expected in all stars with an outer convective envelope,i.e., along
the main sequence up to masses of about 1.5 M⊙ and anywhere from the end of the main sequence up to
the giant and asymptotic giant branch. The hottest pulsators among the compact stars are grouped together
in a class termed GW Vir stars. They are dominantly driven by the heat mechanism acting in the partial
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Figure 2.1: Hertzsprung-Russell Diagram showing different classes of pulsating stars. Some of these are
named after a particular member of the class. Others are acronyms, standing, respectively, for: rapidly
oscillating Ap (roAp); Slowly Pulsating B (SPB); subdwarf Bvariables (sdBV). The group labelled GW Vir
includes what has formerly been known as the PNNV stars (for Planetary Nebulae Nuclei Variables), and
the variable hot DO white dwarfs (DOV); the DBV and DAV stars are variable DB (helium-rich) and DA
(hydrogen-rich) white dwarfs. The parallel long-dashed lines indicate the Cepheid instability strip. Figure
courtesy of Jørgen Christensen-Dalsgaard.
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ionization zones of carbon and oxygen at their surface. It was only recently realized that there is a common
cause of the oscillations for stars in this part of the HR diagram, which includes the DOV and DBV stars,
as well as the central stars of planetary nebulae and Wolf-Rayet stars (Quirionet al. 2006). The cooler
DAV stars, on the other hand, are compact pulsators driven bya phenomenon termed convective driving
by Brickhill (1991). A convection-related mechanism, convective blocking, also operates in theγ Dor stars
along the main sequence.

Adopting a philosophy similar to the one in the review by Gautschy & Saio (1996), we organize the
journey with five main stopping areas to discuss pulsations near the main sequence, in pre-main-sequence
stars, in evolved stars of low mass, in evolved stars of high mass and in compact objects. Evolved stars
of high mass (typically above 30 M⊙) are currently not yet the subject of seismic inference because the
observational establishment of their oscillation frequencies is much harder than for the stars in all other
categories, due to occurrence of several kinds of instabilities in their atmospheres. Moreover, our theoretical
understanding of their oscillations is far less detailed than for lower-mass stars for which radiation-driven
mass loss can be ignored. For this reason we are at present unable to make a detailed comparison between
their overall observed variability and in-depth stellar structure and oscillation computations; hence we do
not come back to these stars after this chapter. The same holds true for the pre-main-sequence pulsators.
While oscillations have clearly been found in several of these, we lack good knowledge of their frequency
spectra and mode identification for the moment. Gravitational-wave asteroseismology through nonradial
oscillations of interacting white-dwarf binary stars, neutron stars and black holes is also a field still under
development lacking strong observational constraints. Wediscuss it briefly in this chapter. Finally, the
classical large-amplitude monoperiodic radial pulsators, such as RR Lyrae stars, Cepheids, RV Tauri stars,
Mira stars and semi-regular variables, are not suitable forseismic modelling of interior physics. We discuss
their pulsational characteristics in this chapter, including the seismic potential of double- and triple-mode
classical pulsators, in the section on Cepheids and do not return to them further on in the book.

Before beginning our journey into asteroseismology, we first give a brief overview of stellar evolution
and of the impact of large-scale surveys on pulsating star research.

2.1 Stellar Evolution in a Nutshell

Stars are born in groups, called clusters, when dense interstellar molecular clouds collapse under the effect
of gravity. Any perturbation within the cloud, due to whatever origin, will result in a collapse whenever the
mass of the cloud is above a certain threshold:M > MJ ∼ T 3/2ρ−1/2µ−3/2, with T the temperature of the
cloud,ρ its density andµ its molecular weight. This condition for free-fall collapse is known as theJeans
criterion. The process will continue as long as the collapse happens isothermally. As soon as the free-fall
time becomes similar to the thermal relaxation time, however, an adiabatic contraction takes over, and the
process comes to a natural end, leaving behind protostellarfragments with masses of the order of stellar
masses. Owing to their initially rather low internal temperature and consequent high opacity, the entities
that result from the process, calledprotostars, are initially fully convective and hence are located on the
Hayashi track.
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Figure 2.2: HR diagram showing the evolutionary tracks of stars with masses between 1 M⊙ and 40 M⊙ (full
lines, Schalleret al. 1992). The dashed line is the zero-age main sequence and the dotted line symbolizes
the transition phase from the Asymptotic Giant Branch to thewhite-dwarf cooling track.
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After the rapid dynamical contraction, the protostar reaches hydrostatic equilibrium and is said to have
entered itspre-main-sequence phase. The further contraction of the star implies that the star descends the
Hayashi track, keeping essentially the same effective temperature and decreasing in luminosity. As the
internal temperature gradually increases, the opacity decreases and the convective zone starts to recede from
the center of the star. This implies that the star leaves its Hayashi track and starts radiative contraction
along itsHenyey track. As contraction proceeds in a more and more transparent matter, the star reverses its
downward luminosity trend into a rising one.

The increasing core temperature initiates the proton-proton reaction, which converts H into2H, and this
fresh deuterium is immediately burnt into3He. The less massive the pre-main sequence star, the closer to the
Hayashi track occurs this first nuclear burning. The full proton-proton chain cannot be completed yet since
3He has not yet reached its equilibrium value. As a consequence, the temperature sensitivity of the nuclear
reactions is high (about three times the sensitivity of proton-proton chain operating at equilibrium) and this
leads to the development of a convective core. In stars less massive than about 1.1 M⊙, this convective core
will disappear as soon as the proton-proton chain has all itsintermediate chemical species at equilibrium.
More massive stars, on the contrary, rapidly switch to hydrogen burning through CNO cycle, which is far
more temperature sensitive than the proton-proton chain atequilibrium, and they keep their convective core
during the whole central hydrogen burning phase.

The accretion continues during most of the pre-main-sequence phase, on a Kelvin-Helmholtz time
scale. Consequently, protostars with masses above about 9 M⊙ move so fast from their Hayashi track to the
main sequence that they are unobservable in their pre-main-sequence phase as they keep on being embedded
in a thick circumstellar shell of infalling material. Pre-main-sequence stars with masses between∼1.6 and
9 M⊙ end their accretion phase before they reach the main sequence. Such pre-main-sequence stars are
termedHerbig Ae/Be stars. In pre-main-sequence stars with masses between some 0.8 and 1.6 M⊙, as soon
as the accretion process stops, the star lights up in the HR diagram as an optically bright source named
T Tauri star. Observations of both Herbig Ae/Be stars and T Tauri stars suggest that they undergo active
surface phenomena such as a stellar wind and differential rotation.

Once the hydrogen is burning in full equilibrium and completely dominates the energy production, the
star reaches a state of thermal equilibrium and is said to be born on thezero-age main sequence(ZAMS). The
circumstellar remnant material vanishes within a Kelvin-Helmholtz time and the star forgets its formation
history. Protostars with a mass below some 0.08 M⊙ never reach the ZAMS because they become degenerate
before having reached a high enough central temperature to burn hydrogen in equilibrium. Such objects are
calledbrown dwarfs. Since oscillations have not yet been found in brown dwarfs we will not discuss them
further.

The stars spend about 95% of their life on the main sequence, burning H into He on a nuclear timescale.
Depending on their mass, the interior structure in terms of radiative, convective, diffusive and rotational
energy transport is quite different. The initial chemical composition is also a determining factor in the
details of the evolution. Once the central hydrogen is exhausted, the star has reached theterminal-age main
sequence(TAMS). At that time the hydrogen shell burning takes over asthe energy source; the helium core
starts contracting, while the outer parts of the star expandgreatly, causing the star to move back to and up
the Hayashi track as a red giant. The further evolution of thestar is now again largely dependent on its mass.
Evolutionary tracks for different masses are indicated in Fig. 2.2 and are briefly discussed below.
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The gas in the cores of stars withM ≥ 9 M⊙ does not become degenerate before carbon burning, so
these objects follow subsequent central burning and shell burning cycles, producing all elements up to iron
and nickel. At that stage, the star encounters a major problem because56Fe and62Ni are the most tightly
bound nuclei. Their fusion into heavier elements would result in less tightly bound nuclei and thus would
require an input of energy. The inescapable core contraction is accompanied by photodissociation of its
heavy nuclei, transforming them into He nuclei and then intoneutrons, with a catastrophic loss of thermal
energy and pressure causing the core to collapse. The stupendous release of gravitational potential energy
implies that the rest of the star explodes as a supernova, blowing away a huge fraction of its processed
material which thus enriches the interstellar medium in thesurroundings, and leaving a neutron star or a
black hole as a remnant. Rapid neutron capture operates for abrief period during supernova explosions,
producing a substantial fraction of the heavy elements beyond iron.

The internal mixing processes acting in these stars while they evolve from the TAMS to the supernova
stage are very uncertain, as are the details of their mass loss, which implies we are not able to make accurate
predictions of the properties of the star just before the supernova explosion. Stars of such initial mass have
typical lifetimes less than a few tens of million years.

The evolution of stars with masses above 25 M⊙ is subject to very strong radiatively-driven winds while
on the main sequence and lose a huge amount of mass because of that, dramatically affecting their evolution.
The radiation pressure is so strong that they are not very stable, resulting in complex phenomena such as
instabilities and outbursts. Such stars are termedluminous blue variablesand, after their hydrogen envelope
has essentially been blown away,Wolf-Rayet stars. They live less than a few million years, also finishing
their lives in supernovae explosions, and are likely progenitors of stellar black holes.

At the other end of the mass range, stars with masses below about 0.5 M⊙ have not yet had time to
evolve off the main sequence, but when they do their core temperatures will not become high enough to
initiate helium burning, so they will finish their lives as Hewhite dwarfs. Stars with an initial mass in the
range0.5 ≤ M ≤ 2.3 M⊙, the precise cut-off depending on the metallicity, have a degenerate helium core
after the main sequence. They reach the TAMS after a few to several gigayears, depending on the birth
mass. The shell burning after the TAMS accompanies a shrinkage of the core until the latter reaches the
temperature at which helium burning through the triple-α reaction starts. Since this happens in degenerate
matter, a thermal runaway occurs and the star is said to undergo ahelium flash. The helium flash lifts the
degeneracy in the helium core, and the star settles down on thehorizontal branchburning helium in its core
and hydrogen in a shell. In case the metal abundance is less than about 10% that of the Sun, the horizontal
branch is very extended, depending on the mass and the extentof the hydrogen-rich envelope (e.g., Prialnik
2000, Chapter 8).

Stars with higher metallicity are redder because their opacity is higher, and they cluster near the red-
giant branch in thered clump.

At that stage of evolution, the low-mass central helium burning objects join the stars with initial birth
mass 2.3 M⊙ ≤ M ≤ 9 M⊙, which started helium burning calmly as their core at the endof the TAMS
did not reach degeneracy. After the central helium exhaustion, the stars are forced to live on helium- and
hydrogen-shell burning. They are said to ascend theAsymptotic Giant Branch(AGB). In this phase nuclear
burning involvesthermal pulsesdue to the extinction and re-ignition of the helium shell burning. This
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implies a large amount of internal mixing, leading to complex nuclear reactions. The slow-neutron capture
process becomes active and leads to nuclear yields beyond the iron-peak elements. These products are
dredged up for stars withM ≥ 4 M⊙. Stars with initial masses above some 6 M⊙ and below some 9 M⊙
may experience some stages of carbon burning, leading in theend to an O, Ne, Mg white dwarf. The lower
limit mentioned of 6 M⊙ in birth mass for which this occurs is rather uncertain and depends heavily on the
mass loss and rotational mixing since the TAMS. It may be thatonly the heaviest stars in this mass range
effectively ignite carbon. Stars on the AGB lose a significant amount of their mass through a dust-driven
wind in combination with large-amplitude pulsations. The outer layers are so loosely bound due to the
envelope expansion accompanying the shell burning that they are easily removed by the radiation acting on
dust particles. The dust-driven mass loss stops as soon as the hydrogen-burning shell is largely extinguished
and the star enters itspost-Asymptotic Giant Branch(post-AGB) phase. The remaining envelope is rapidly
lost and the resulting circumstellar material shines for a few thousand years as aplanetary nebula. This
exposes the degenerate core as awhite dwarf, which subsequently evolves down along thewhite-dwarf
cooling trackover a timescale of billions of years. The coolest, and henceoldest, white dwarfs in the solar
neighbourhood have the same age as the Galaxy, around 10 Gyr.

Most of the post-AGB stars start cooling off directly as a white dwarf, i.e., do not return to the AGB
once they left it. About 25% of the post-AGB stars, however, undergo a so-calledborn-againepisode. Such
episodes are due to a late thermal pulse, re-igniting heliumnear the hot white-dwarf core, either when the
hydrogen shell burning is still active or else shortly afterthe hydrogen burning has essentially stopped. In
both cases, the star returns rapidly to the AGB and becomes a hydrogen-deficient helium-burning object,
consisting of a CO core surrounded by surface layers rich in helium, carbon and oxygen (Werner & Herwig
2006). They traverse once more the HR diagram towards the white-dwarf phase in less than 200 years.
Depending on the core mass and on the effective temperature,a strong or a weak radiation-driven wind
occurs in that stage. The star thus shows up as a hydrogen-deficient compact central star of a planetary
nebula. These stars are almost indistinguishable from the Wolf-Rayet central stars of planetary nebulae,
usually denoted as [WCE], in the sense that their position inthe HR diagram is the same. Their spectra look
different, though, because the Wolf-Rayet stars have emission lines in their spectra due to a strong wind,
while the luminosity of the post-AGB central stars of planetary nebulae is such that they have only a weak
line-driven wind and thus absorption lines.

2.2 Variability studies from large-scale surveys

2.2.1 Hipparcos

One of the most important large surveys of variable stars wascarried out by the satellite Hipparcos of the
European Space Agency. The mission’s name stands forHI gh PrecisionPARallax COllecting Satellite. It
was launched in 1989 and has measured the parallax of some 120000 bright stars in the solar neighbourhood.
The satellite’s name is not only an acronym but also refers tothe Greek astronomer Hipparchus of Nicea,
who was the first to compose a stellar catalogue with the position and brightness of many stars, based upon
personal naked-eye observations. Therefore, Hipparchus is considered to be the father of astrometry.
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The prime goal of the Hipparcos mission was to measure the distances of stars with unprecedented
precision of 2 milli-arc-seconds for the parallax. The proper motions of the stars were measured with an
accuracy of 2 milli-arc-seconds per year. This was achievedby measuring each star on average 100 times
during the 3.3-year lifetime of the mission. The Hipparcos filter was a broad-band white-light filter sensitive
to wavelengths between 4 000Å and 8 000Å. The Hipparcos data were further complemented with those of
the Tycho experiment, which determined the parallax and proper motion of a million fainter stars with an
accuracy of 30 milli-arc-seconds (per year).

A very important by-product of the Hipparcos mission was that it provided us for the first time with an
unbiased view of variable stars with periods longer than approximately one hour in the solar neighbourhood.
Indeed, for each star a unique time series was measured, with, on average, 100 time points that were quasi-
randomly chosen during the 3.3 years. These are time series that are very different from those obtained with
ground-based instruments. The input catalogue was completely unbiased in the sense that the pre-selection
of the target stars did not take into account any knowledge ofvariability.

The Hipparcos mission led to the discovery of a few thousand new periodically variable stars and yet
another few thousand variables without a clear dominant periodicity. These were made publicly available
by means of two catalogues: the “Catalogue of Periodic Variables” and the “Catalogue of Unsolved Vari-
ables”. The latter contains stars that are clearly variablebut for which no obvious periodicity could be
unravelled from the data for different types of reasons (long-term trends, very long uncovered periods, too
low amplitude variability,etc.).

One of the more striking results derived from the mission wasthe discovery of numerous new variables
with periods of the order of days. Such variables are indeed very hard to find from (single-site) ground-based
data, which suffer from strong one-day aliasing (see Chapter 4 for a definition of this phenomenon). The
Hipparcos mission particularly had a large impact on the study of slowly pulsating B stars andγ Dor stars.
The number of such nonradial g-mode oscillators known was increased by a factor more than ten in both
cases (Waelkenset al.1998, Handler 1999), leading to about one hundred candidateclass members for each
of these two classes. As a result, extensive follow-up long-term ground-based photometric and spectroscopic
campaigns were organized to study the pulsational behaviour of the brightest such class members (Aertset
al. 1999, Mathiaset al. 2001, De Cat & Aerts 2002 and De Catet al. 2006 for the slowly pulsating B
stars and Eyer & Aerts 2002, Handler & Shobbrook 2002, Henry &Fekel 2004, 2005, Mathiaset al. 2005
and Cuyperset al. 2006 for theγ Dor stars). These campaigns led to the general properties ofthe stars as
discussed further on in this chapter.

It is also worth noting that the number of known eclipsing binaries was about doubled from Hipparcos,
with the discovery of 343 new ones (e.g., Sönderjhelm 2000).

Surveys of variable stars from space will come from the high time-resolution missions CoRoT1 (Con-
vection, Rotation and planetary Transits, launched on 27 December 2006) and Kepler2, to be launched at
the end of 2008) as well as from Gaia3, scheduled for launch near the end of 2011). The numbers of new
variables to be discovered from these missions will be outrageously large (certainly in the millions), requir-

1http://corot.oamp.fr/
2http://www.kepler.arc.nasa.gov/
3http://www.rssd.esa.int/SA-general/Projects/GAIA/
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ing fully automated variability classification tools basedon Artificial Intelligence methodology (Sarroet al.
2006, Debosscheret al.2007).

2.2.2 Ground-based surveys

Significant progress on the group properties of large-amplitude oscillators, such as Cepheids, RR Lyrae
stars, and red-giant and supergiant pulsators, was made by several large surveys that were initiated in the
early nineties. These surveys were set up with the goal to search for MA ssiveCompactHalo Objects or
MACHOs. The idea was that such MACHOs, if discovered, could perhaps help explain some of the missing
dark matter in the Universe. The primary aim of the surveys was therefore to test the hypothesis that a
significant fraction of the dark matter in the halo of the Milky Way is made up of objects such as brown
dwarfs and planets.

It was Paczynski (1986) who suggested that dark matter couldbe discovered from a microlensing effect.
The idea is that, when a dark compact massive body (the lens) passes in between us and a background
light source, the latter’s apparent luminosity increases because the dark body acts as a gravitational lens,
concentrating the light rays of the source in the line of sight due to light bending according to general
relativity. This implies a magnification of the source luminosity which is independent of wavelength. One
can therefore use this phenomenon to discover dark compact bodies within our galactic halo,e.g., using the
stars of the Magellanic Clouds or of the Galactic Bulge as light sources. The duration of the magnification
depends on the speed, the position and the mass of the deflector and ranges from half an hour to about two
months for dark masses ranging from a lunar mass to a solar mass. The magnification can reach values
from a few to a thousand. The phenomenon is rare and non-repetitive, as it requires a good alignment of
light source, lensing dark body and observer while the lens and observer move with respect to each other.
Microlensing can also be used to discover exoplanets orbiting around the lens. In that case, the effect of the
planet on the lensing gravitational field causes a brief increase in the magnification.

The detection of microlensing events thus requires long-term monitoring of a vast number of light
sources with high precision photometry, since the events are rare. Several large observational initiatives
to discover MACHOs were set up more than a decade ago and additional ones were started after 1995 to
search for exoplanets. Important by-products of such surveys are huge inventories of accurate light curves of
stars, among them Cepheids and RR Lyrae stars and long-period red variables, but also many other periodic
variables.

The best known surveys are MACHO4 itself and OGLE5 which stands forOpticalGravitationalLensing
Experiment. EROS6 is another survey whose acronym stands forExpérience pour laRecherche d’Objets
Sombres while MOA7, which denotesM icrolensingObservations inAstrophysics, started somewhat later
than the previous three surveys.

4http://wwwmacho.mcmaster.ca/
5http://bulge.princeton.edu/∼ogle/
6http://eros.in2p3.fr/
7http://www3.vuw.ac.nz/scps/moa/
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These surveys, and others that can be found through links on the webpages mentioned, several of
which specifically designed for exoplanet detection, have resulted in millions of stars in the Galactic Bulge
and Magellanic Clouds being monitored and led to thousands of lensing events. Besides these events, tens
of thousands of variable stars were discovered in the Galactic Bulge and Magellanic Clouds, among which
are hundreds of Cepheids, RR Lyrae stars, eclipsing binaries and ellipsoidal variables.

In addition to the microlensing surveys, there are also all-sky surveys specifically designed to find vari-
able stars. They have been carried out with small wide-field cameras since the mid-1990s. The best known
and largest of thesed surveys is ASAS8, theAll-Sky AutomatedSurvey (Pojmański 1997). A summary of
the variables found by ASAS is provided in Pojmański & Maciejewski (2004, 2005 and references therein.)
The2 Micron All Sky Survey9 (2MASS, Beichmannet al.1998), on the other hand, is a catalogue of over
100 000 000 individual objects, the vast majority of which are stars of spectral type K and later. Its monitor-
ing was carried out in three wavebands,J (1.25µm),H (1.65µm), andK (2.2µm), with limiting sensitivity
(10σ detection) of point sources withK less than 14. The all-sky coverage was selected primarily tosupport
studies of the large-scale structure of the Milky Way and theLocal Universe. Nevertheless, the catalogue
is of much value for variable star research, particularly when combined with the microlensing surveys dis-
cussed above,e.g., Fraseret al.’s (2005) study of long-period variables to which we will return later in this
Chapter.

TheSloan Digital Sky Survey10 (SDSS, Stoughtonet al. 2002) is an imaging survey that covers one
quarter of the celestial sphere while collecting also spectra of hundreds of thousands of targets. The imaging
data are collected in five bandpasses (u, g, r, i, andz) and are complete until magnitudes 22.0, 22.2, 22.2,
21.3, and 20.5, respectively. The SDSS turned out to be a veryimportant survey for faint (compact) objects
that had been missed in previous surveys with brighter limits, such as Cataclysmic Variables (CVs, Szkody
et al.2002), cool dwarfs (Hawleyet al.2002), white dwarfs (Harriset al.2003), and spectroscopic binaries
(Pourbaixet al. 2005), and of course the pulsating ones among all these categories. Another important,
more recent survey, specifically designed to find emission-line objects, is IPHAS, which stands for theIsaac
NewtonTelescopePhotometricH-A lpha Survey11 of the Northern Galactic Plane (Drewet al. 2005). It
spans the latitude range−5◦ < b < +5◦ and reaches down tor′ = 20. The final catalogue of the IPHAS
point sources is still awaited. It will contain photometry on about 80 million objects, making it a major
future source for the study of stellar populations in the disk of the Milky Way.

The impact of large-scale surveys on pulsating-star research was summarized after about ten years of
microlensing monitoring in Szabados & Kurtz (2000). We refer to the web pages of the consortia mentioned
above for more up-to-date achievements and recent papers onvariable star research, as well as on detected
lenses and their interpretation. While the surveys mainly led to the discovery of new large-amplitude oscil-
lators, some nonradial oscillators such asβCep stars andδ Sct stars were also found (see,e.g., Pigulski &
Kołaczkowski 2002, Pigulskiet al.2003, Pigulski 2005), as well as numerous new compact oscillators (see
below). As the surveys mainly observe faint members of the classes, and as they do not provide multicolour
photometry of mmag level precision nor high-resolution, high S/N spectroscopy, these discoveries have not
yet led to mode identification; hence asteroseismic modelling of the individual targets has so far not been

8http://archive.princeton.edu/∼asas/
9http://www.ipac.caltech.edu/2mass/

10http://www.sdss.org/
11http://astro.ic.ac.uk/Research/Halpha/North/index.shtml
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Figure 2.3: HR diagram showing the stars in which solar-likeoscillations have been detected. Figure cour-
tesy of Fabien Carrier.

possible. Thus massive follow-up projects are required specifically dedicated to this task.

2.3 Oscillations near the main sequence

2.3.1 Solar-like oscillations in solar-like stars

The best case of a solar-like star with the clearest solar-like oscillations is of course the Sun. Its oscillation
frequency spectrum was already shown in Fig. 1.8 and revealshundreds of peaks centred around 3 mHz with
corresponding periods between 3 and 15 minutes. The brightness variations have amplitudes near 8 ppm
for the strongest modes and down to the detection threshold of about 1 ppm. These variations correspond to
velocity amplitudes of a few to tens of cm s−1.

As the oscillations of the Sun are caused by turbulent convective motions near its surface, we expect
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Figure 2.4: Frequency spectra of a sample of solar-like oscillators covering the entire range in spectral type.
Figure courtesy of Fabien Carrier.
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such oscillations to be excited in all stars with outer convection zones. Solar-like oscillations are indeed
predicted for the lowest-mass main-sequence stars up to objects near the cool edge of the classical instability
strip with masses near some 1.6 M⊙ (e.g., Christensen-Dalsgaard 1982; Christensen-Dalsgaard & Frandsen
1983; Houdeket al. 1999) as well as in red giants (Dziembowskiet al. 2001). Such stochastically excited
oscillations have very tiny amplitudes, which makes them hard to detect, particularly for the low-mass stars.
The velocity amplitudes were predicted to scale roughly asL/M before the first firm discoveries of such
oscillations in stars other than the Sun (Kjeldsen & Bedding1995). This scaling law was later modified
to (L/M)0.8 from excitation predictions based on 3D computations of theouter atmosphere of the stars
(Samadiet al.2005), resulting in lower amplitudes compared with those found for 1D models.

The search for solar-like oscillations in stars in the solarneighbourhood has been ongoing since the
early eighties. The first indication of stellar power with a frequency dependence similar to that of the Sun
was obtained by Brownet al.(1991) inαCMi (Procyon, F5IV). The first detection of individual frequencies
of solar-like oscillation was achieved from high-precision time-resolved spectroscopic measurements only
in 1995 for the G5IV starηBoo (Kjeldsenet al.1995); Brownet al. (1997) could not establish a confirma-
tion of this detection from independent measurements, but it was subsequently confirmed by Carrieret al.
(2003) and Kjeldsenet al. (2003). It took another four years before solar-like oscillations were definitely
established in Procyon (Martićet al. 1999). Subsequently, such oscillations were found in two more stars:
the G2IV starβHyi (Bedding et al. 2001) and the solar twinαCen A (Bouchy & Carrier 2001). These
important discoveries opened the floodgates which led to several more discoveries, a summary of which was
provided by Bedding & Kjeldsen (2003). Meanwhile, solar-like oscillations have been firmly established in
numerous stars. Their position in the HR diagram is displayed in Fig. 2.3. Frequency spectra of a selected
sample, covering the whole range in spectral type, is shown in Fig. 2.4. The detected frequencies and fre-
quency separations for all stars behave as expected from theoretical predictions and scaling relations based
on extrapolations from helioseismology.

Detailed seismic studies of stars with stochastically excited modes are currently still in their infancy
compared with helioseismology. However, given the recent detections and the continuing efforts to improve
them, we expect a real breakthrough in the seismic interpretation of the targets in the coming years.

The quest for solar-like oscillations in metal-poor stars considerably less massive than the Sun is an
important goal of asteroseismic space missions. This is particularly so because asteroseismology has proven
to be a very successful technique to probe interior stellar structure and derive a high-precision age estimate
(Christensen-Dalsgaard 2002). Indeed, such low-mass stars are among the oldest in our Galaxy (and hence in
the Universe) and accurate age estimates of such objects, which can in principle be achieved from measuring
their large and small separations as in the Sun, can provide agood age determination of the Universe which
would be completely independent of any method currently in use.

2.3.2 γ Dor stars

In 1995, a new group of Population I nonradially oscillatingstars was established near the intersection of
the red edge of the classical instability strip and the main sequence. This followed from the discovery of
multiperiodic variability with amplitude near 0.1 mag in the F0V star 9 Aur and the realization that the three
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starsγ Doradus (F4III), HD 96008 (F0V), and HD 164515 (F2IV-V) havesimilar behaviour (Krisciunaset
al. 1992). This group of stars have early-F spectral type and arecalled after the prototype, the starγ Doradus
whose variability was first discovered by Cousinset al. (1989; Cousins 1992) and extensively studied by
Balonaet al. (1996).

As already mentioned in Sect. 2.2.1, the Hipparcos mission was very important for the discovery of new
class members in view of the intrinsic periodicities near one day and the difficulty to study such variations
from the ground. Some 50 confirmed members are established bynow, while more than 100 additional
candidates are being studied observationally (e.g., Mathiaset al.2005; Henryet al.2005; De Catet al.2006
and references therein), most of them originally found frommining the Hipparcos database. The stars have
multiperiodic behaviour with individual periods between some 0.5 and 3 d, which is an order of magnitude
longer than acoustic modes would have for such stars. Their variability is therefore interpreted in terms of
multiperiodic high-order nonradial g modes.

There are very few long-term multicolour and/or high-resolution spectroscopic datasets available for
γ Dor stars. Such datasets exist only for some selected stars (e.g., Porettiet al. 2002; Aertset al. 2004),
besides 9 Aur andγ Dor. The particular case of g modes with long periods of the order of a day implies
that the data sets of such oscillators consist of only a few points per night, and makes it difficult to illustrate
the periodicity in the time domain. One therefore usually uses phase diagrams (see Chapter 4 for a formal
definition). The periodograms of the ground-based Geneva data of HD 12901 (F2V) are shown as a repre-
sentative example for the whole class in Fig. 2.5. Figure 2.6shows the phase diagrams after identification of
the frequencies. It can be seen from Fig. 2.6 that the variations have low amplitudes. The three frequencies
indicated are trustworthy only because they occur in independent datasets (Hipparcos and/or radial-velocity
data), a situation often encountered in frequency analysisas will be explained in Chapter 4. All existing data
are in agreement with the interpretation in terms of multiperiodic g modes.

The observational properties ofγ Dor stars were summarized by Kayeet al.(1999). The class members
have masses between 1.5 and 1.8 M⊙. Handler & Shobbrook (2002) made a careful observational study to
understand the relationship betweenδ Sct oscillations (see below) and the behaviour of theγ Dor stars.
They found a very clear separation in oscillatory behaviourbetween the two classes, except for the hybrid
star HD 209295 which has both p and g modes, but this object is amember of a very close eccentric binary
and its g modes seem to be tidally driven (Handleret al.2002, see Sect. 2.8.2).

The earliest proposals for an excitation mechanism came from Guzik et al. (1998), who proposed
driving by convective-flux blocking at the base of the convective envelope. This mechanism was treated
in the frozen-convection approximation, in which the perturbation to the convective flux is ignored. The
resulting instability strip was studied by Warneret al. (2003). As noted by,e.g., Löffler (2000) and Dupret
et al. (2005a) these calculations did not appropriately take intoaccount the fact that since these stars have
well-developed outer convection zones the pulsation–convection interaction must be taken into account in a
detailed way in instability calculations. This was recently achieved by Dupretet al. (2005a) by means of a
time-dependent treatment of the convection. It allowed them to interpret and predict the g-mode instabilities
observed in theγ Dor stars and to quantify an appropriate value of the mixing length parameter between 1.8
and 2.2 local pressure scale heights forγ Dor stars. Their instability strip is shown in Fig. 2.7. Interestingly,
they found that convective blocking was in fact the dominantinstability mechanism. Moreover, Dupretet al.
(2005b) applied their theory to interpret successfully themulticolour behaviour of the five best studiedγ Dor
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Figure 2.5: Spectral window (top) and frequency spectra after subsequent stages of prewhitening (second
to fifth panel) for single-site ground-based GenevaB data of theγ Dor star HD 12901. The three detected
frequencies which were derived from independent data sets are indicated as dotted lines. (From Aertset al.
2004.)
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Figure 2.6: Phase diagrams of theγ Dor star HD 12901 for the three frequencies indicated as dotted lines in
Fig. 2.5. (From Aertset al.2004.)

stars. A warning is needed, however, since these theoretical computations ignore the effects of the Coriolis
and centrifugal forces, while most of theγ Dor stars are fast rotators, in the sense that their oscillation periods
are of similar magnitude to their rotation period. The urgently required investigation of the rotational effects
on current theoretical predictions remains to be carried out.

At present, very large observing efforts are being undertaken by several research teams, including long-
term multicolour photometric monitoring and high-resolution spectroscopic campaigns (De Catet al.2006
and references therein). Theγ Dor stars are very challenging objects in this respect, because beat periods
up to years occur. Nevertheless, it seems worthwhile to undertake such endeavours, because these pulsators
have the potential to undergo at the same time g modes and solar-like p modes. Indeed, they are situated
at the high-mass end where solar-like oscillations are predicted (Fig. 1.11). The firm establishment of the
occurrence of both these types of oscillations, which probevery different inner stellar regions, holds very
large potential for high-precision seismic inference of their interior structure. For this reason,γ Dor stars
are among the prime targets of the CoRoT space mission.

2.3.3 δ Sct stars

Theδ Sct stars form a well-established group of Population I pulsating stars with masses in the range1.5 −
2.5 M⊙. They are situated at the position where the classical instability strip crosses the main sequence (see
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Figure 2.7: The instability strip forl = 1 modes of theγ Dor stars for three different values of the mixing
length parameterl = αHp based on the convective blocking mechanism for a time-dependent treatment
of the convection (Dupretet al. 2005a). The results for the frozen-convection approximation with mixing
length parameterl = 1.87Hp obtained by Warneret al. (2003) are shown as thin dashed lines for compar-
ison. The open circles are all of the bona fideγ Dor stars known up to 2005. The squares are binaryγ Dor
stars. The evolution tracks are for the masses indicated andwere computed assuming overshoot from the
convective core of 0.2 pressure scale height. (From Dupretet al.2005a.)
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Figure 2.8: Radial-velocity curve of the high amplitudeδ Scuti starρPup derived from high-quality spectra
of which some are shown in Fig. 5.16. Note the slight deviation from symmetry in this observed curve. Data
taken from Mathiaset al. (1997).

Fig. 1.11) and so are in a stage of central hydrogen or shell-hydrogen burning. The oscillations are driven
by the heat mechanism active in the second partial ionization zone of helium.

Both radial and nonradial oscillations occur inδ Sct stars. Those are generally low-order p modes with
periods in the range 18 min to 8 hr. The observed amplitudes have a large range, from mmag up to tenths
of a magnitude. The highest-amplitudeδ Sct stars (also called HADS, meaning high-amplitudeδ Scuti
stars) are usually monoperiodic radial fundamental mode oscillators and so, at first sight, of less interest
for asteroseismology. Nevertheless, Mathiaset al. (1997) have shown convincingly that the very precise
radial velocity curve they obtained for the HADSρPuppis (Fig. 2.8) yielded the detection of low-amplitude
nonradial modes besides the dominant radial one. Moreover,Poretti (2003) found nonradial modes in the
light curves of some HADS. It may very well be that this is a property of all HADS. In several lower-
amplitudeδ Sct stars, many nonradial oscillations have been detected.The most up-to-date catalogue ofδ Sct
stars was provided by Rodrı́guezet al. (2000). It contains a summary of all the observational characteristics
of more than 600 class members that had been studied up until 2000. A comprehensive analysis of the
properties of all these class members was made by Rodrı́guez& Breger (2001). Montgomery & Breger
(2000) and Zverkoet al.(2004) present the proceedings of two international meetings on, respectively,δ Sct
and related stars, and A stars in general, containing a wealth of information. A fewδ Sct stars have been
observed from space (e.g., θ2 Tau and Altair with the star-tracker on the WIRE satellite, Poretti et al. 2002
and Buzasiet al.2005, respectively; and HD 263551 with the MOST12 satellite).

Within the class ofδ Sct stars one sometimes considers the subclasses of the pulsatingλBoo stars, and
classical and evolved metallic-line A (Am) stars. These types of stars have been defined in general (i.e.,
irrespective of their pulsational nature) as specific classes with anomalous surface abundances. The latter
affect the oscillations and, therefore, these subclasses have slightly different behaviour compared with the
δ Sct stars with normal abundances (Rodrı́guez & Breger 2001). Keeping this in mind, the pulsatingλBoo

12http://www.astro.ubc.ca/MOST/index.html
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and Am stars are fully compatible with the normalδ Sct pulsators.

Numerous radial and nonradial modes have been detected in some selectedδ Sct stars, such as FG Vir
(79 frequencies, Bregeret al.2005, see Figs 2.9 and 2.10), 4 CVn (34 frequencies, Breger 2000, see Fig. 2.11)
and XX Pyx (30 frequencies, Handleret al. 2000). These results were all obtained by the Delta Sct Net-
work13 (DSN), consisting of several telescopes around the globe and led by Michel Breger and his research
team at Vienna University in Austria. The frequency spectraof these few, selected, well-studied stars show
that theδ Sct stars have complex oscillation patterns, with variableamplitudes from season to season and
non-linear resonant mode coupling (e.g., the case of 4 CVn: Bregeret al. 2000 and Fig. 2.11; V1162 Ori:
Arentoft et al. 2001; FG Vir: Breger & Pamyatnykh 2006). This complexity turns out to lead to a problem
in identifying the modes and hence hampers in-depth seismicinterpretation, despite the large number of de-
tected oscillations. An additional problem in identifyingthe modes is that mixed modes occur, particularly
in the more evolved class members. These are modes that have amixed character,i.e., a g-mode character
in the interior and a p-mode character in the outer layers of the star. Mixed modes occur in general in stars
that have evolved off the main sequence and are undergoing hydrogen-shell burning.

Pamyatnykh (1999) provided an extensive overview of the history of instability computations in the
upper HR diagram and presented his own computations based onprogress in opacity determinations by
Iglesias & Rogers (1996) and Seaton (1996). His work included the determination of the blue edge of the
classical instability strip which is mainly determined by the helium opacity bump. The unstable modes in the
hottestδ Sct ZAMS models are found nearlogL/L⊙ ≈ 2, while instability in the radial fundamental mode
occurs all the way up tologL/L⊙ = 5 for evolved stellar models. In practice, theδ Sct stars are found on
the main sequence and near the TAMS, with luminosities ranging fromlogL/L⊙ ≈ 0.6 up tologL/L⊙ ≈ 2
(Rodriguez & Breger 2001). The heat mechanism is no longer effective for the coolestδ Sct star models.
The red edge could therefore not be determined by Pamyatnykh(1999). For such cool stars, the damping
and excitation are strongly affected by convection. Houdek(2000) included the time-dependent heat and
momentum fluxes following the formulation by Gough (1977) incalculations ofδ Sct models and found
a return to stability at approximately the correct locationof the red edge. The red edge of the instability
strip was also computed by Dupretet al. (2005a, see Fig. 2.12), who included a time-dependent convection
treatment also forδ Sct star models with different values of the mixing length parameter. They compared
the results obtained from their time-dependent convectiontreatment with those resulting from a frozen-
convection treatment and found much better agreement with observations. Both Houdek’s and Dupretet
al.’s treatments approximate the red edge in a satisfactory way(Fig. 2.12).

Main-sequence stars near 2 M⊙ are transition objects as far as the occurrence of a convective (M <
2 M⊙) versus radiative (M > 2 M⊙) outer zone is concerned. On the other hand, stars develop a convective
core between 1 M⊙ and 2 M⊙. The class ofδ Sct stars encompasses such transition objects and astero-
seismology could in principle fine tune our knowledge of the detailed physics of these transitions from
convective to radiative energy transport and mixing. Dziembowski & Pamyatnykh (1991) pointed out that
the sensitivity of particular nonradial oscillation modesto the size of the mixed stellar core could provide a
very valuable asteroseismic test of core overshooting in A-and B-type oscillators. At present, this stage is
not yet reached forδ Sct stars, however. Another outlook for the future is the simultaneous detection of heat-
driven and stochastically-excited acoustic modes. Indeed, Samadiet al. (2002) predicted the occurrence of

13http://www.astro.univie.ac.at/∼dsn/index.html
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Figure 2.9: Some observed light curves for FG Vir obtained bythe DSN (dots) and a fit including 79 signif-
icant frequencies (full line). (From Bregeret al.2005.)
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Figure 2.10: Schematic frequency diagram of theδ Sct star FG Vir deduced from DSN data, some of which
is shown in Fig. 2.9. (From Bregeret al.2005.)

Figure 2.11: Amplitude variability found from season to season in DSN data of theδ Sct star 4 CVn. (From
Bregeret al.2000.)
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Figure 2.12: Blue and red edges of the instability strip of the δ Sct stars obtained by Dupretet al. (2005a).
The lines are for radial modes p1 to p7 taking a mixing length parameterl = 1.8HP . The red edge of the
radial fundamental mode computed by Houdek (2000,•) and by Xionget al.(2001,⊙) are also indicated for
comparison. The small dots correspond to all theδ Sct stars in the catalogue of Rodriguezet al.(2000). The
evolution tracks are for the masses indicated and were computed assuming overshoot from the convective
core of 0.2 pressure scale height. (From Dupretet al.2005a.)
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Figure 2.13: Part of the Strömgreny light curve of SX Phe produced from the data in Kimet al. (1993).

the latter type of oscillations in this area of the HR diagram. For all these reasons,δ Sct stars aretheprime
targets for CoRoT.

2.3.4 SX Phe stars

The SX Phe stars have variability behaviour which is very similar to the large-amplitudeδ Sct stars known
as HADS (see the previous section), but the SX Phe stars are old Population II stars, while the HADS are
younger Population I stars. For this reason, the SX Phe starswere proposed as a separate class of pulsators
by Frolov & Irkaev (1984) and have been regarded as such ever since. They can be recognized by their high
amplitude, low metallicity and large spatial motion. Most of them are members of globular clusters, but
some occur in galactic discs.

A part of the light curve of the prototype is shown in Fig. 2.13. This star exhibits variations with two
distinct frequencies: 18.19 d−1 and 23.39 d−1 and their harmonics, along with sum and beat frequencies
(Fig. 2.14 and Kimet al. 1993). The SX Phe stars indeed have a bimodal period distribution which is
interpreted in terms of the fundamental and first radial overtone modes being excited. Those pulsating only
in the first overtone have nearly symmetrical light curves with peak-to-peak amplitudes less than 0.15 in
V . The fundamental pulsators, such as SX Phe itself (Fig. 2.13), have amplitudes above 0.15 inV and
asymmetrical light curves. This period separation propagates into two distinct period-luminosity relations
with an offset of 0.37 mag, in agreement with theoretical predictions (McNamara 1995).

Rodrı́guez & López-González (2000) presented the first catalogue of SX Phe stars containing 149 ob-
jects in 18 globular clusters of our galaxy and in the Carina and Sagittarius dwarf galaxies. From the
observational characteristics of all these 149 members they deduced that the metal abundances and mean
periods of these stars show that both parameters are correlated in the sense that the periods of the variables
are longer as the metallicity is higher.
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Figure 2.14: Frequency spectrum of SX Phe. The dotted lines indicate the significant frequencies. The
bottom panel is for the residuals after prewhitening with 18.19 d−1 and its two harmonics. Data taken from
Kim et al. (1993).

Olechet al.(2005) made a dedicated study of the oscillation spectra of 69 SX Phe stars with very diverse
pulsational behaviour, all belonging to the globular cluster ωCentauri. The observations are interpreted in
terms of multiperiodic oscillations with at least some of the excited modes being nonradial and with the
occurrence of rotationally split triplets in some cases. The stellar parameters of the radial mode pulsators
are found to be consistent with standard evolutionary models for stars withZ between 0.002 and 0.0002
and in the mass range 0.9 to 1.15 M⊙, and the observed frequencies are in agreement with predictions for
unstable modes.

A significant fraction of the SX Phe stars are believed to be blue stragglers. We come back to this issue
in Sect. 2.8.3.

2.3.5 Rapidly oscillating Ap stars

Largely within the classical instability strip, close to the main sequence where theδ Sct stars are situated,
one also encounters the rapidly-oscillating Ap (roAp) stars. These are Population I stars of spectral type
A with a peculiar (hence Ap) chemical surface composition caused by atomic diffusion, and they are also
strongly magnetic with global fields typically of kilogaussto many kG strengths. They were discovered as
a separate group of pulsators by Kurtz (1982), who reported amplitudes up to about 0.01 mag peak-to-peak
in blue wavelengths for five class members. The roAp stars, ofwhich there are now 35 known (see Kurtz
et al. 2006, Table 1, for a list), have multiperiodic variations with individual oscillation periods between
5.65 and 21 min, which correspond to high-order, low-degreep modes. Many of the modes show frequency
multiplets interpreted as being caused by rotational amplitude modulation of modes with pulsation axes that
are oblique to the rotation axes of the stars. For extensive overviews of the photometric observations and
their interpretation see Kurtz (1990) and Kurtz & Martinez (2000).
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Figure 2.15: Part of the JohnsonV light curve of the roAp star HD 101065 obtained by Kurtzet al. (1980).
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Figure 2.16: Frequency spectrum of the roAp star HD 101065. (From Kurtzet al.1980.)

In Fig. 2.15 we show part of the light curve of HD 101065, the first discovered roAp star (Kurtz 1978,
1980). Its frequency spectrum is shown in Fig. 2.16 and reveals a principal frequency of 1.37 mHz, corre-
sponding to a period of 12.14 min, with an amplitude of some 6 mmag. As more such stars were discovered,
and extensive light curves were gathered, it became obviousthat the observed amplitudes are modulated
according to the time-dependent variation in the effectivemagnetic field strength. The timescale of the
modulation is compatible with the rotation periods of the stars, which are of the order of days to decades.
The average strength of the measured magnetic fields can reach tens of kG. It is therefore evident that the
stellar oscillations must be strongly influenced by the magnetic field. In such a situation, we are dealing
with magneto-acoustic oscillations.

During many years the roAp stars were thought to behave according to the so-calledoblique pulsator
model, in which the symmetry axis of the oscillations is aligned with the magnetic axis, which is inclined
(oblique) to the rotation axis (Kurtz 1982; Dziembowski & Goode 1985; Kurtz & Shibahashi 1986). Such
a configuration gives rise to rotationally-induced frequency splittings such as those observed. The value of
the frequency splittings within a multiplet allows one to derive an accurate estimate of the magnetic field
strength and also of the angles between the rotation and magnetic axes on the one hand and between the
rotation axis and the line-of-sight on the other hand.

The matter of mode excitation in the roAp stars is difficult tosolve due to the complexity of the com-
putations caused by the inclusion of the magnetic field effects. The complete suppression of convection
near the magnetic poles by the strong magnetic field turned out to result in mild net driving in the hydrogen
ionization zone for high-order p modes (Balmforthet al.2001). However, it is not yet clear if such a driving
mechanism is fully compatible with the effect of diffusive forces, such as gravitational settling, regarding
the existence and character of the surface abundance anomalies (Ryabchikovaet al. 2004). Cunha (2002)
attempted to understand the differences between roAp and noAp stars (i.e., Ap stars that do not oscillate, at
least not at the level of current detection thresholds) by the computation of a theoretical instability strip based
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on this instability mechanism and found good agreement withthe observations, including the spectroscopic
differences between roAp and noAp stars (Ryabchikovaet al. 2004). Very recently, intermediate-period
roAp stars were found using VLT data (Elkinet al.2005), which will help to detail the instability computa-
tions further.

Over the last few years, the validity of the “classical” oblique pulsator model has been questioned
because it remains unclear how an oblique oscillation can stabilize during such a long time. Moreover,
some of the excited modes remain present during a long time, while others seem to disappear on relatively
short timescales. This called for a new theoretical magnetic model. A first such model, which is valid
for rapid rotators (in the sense that the ratio of the oscillation frequency to the rotation frequency is high)
with a moderate magnetic field strength, was proposed by Bigot & Dziembowski (2002). In this model, the
symmetry axis of the oscillations is not aligned with the rotation nor with the magnetic axis. Moreover, the
effects of the centrifugal force are taken into account for the first time. This force seems to be the prime
cause of rotational frequency shifts causing amplitude asymmetries,i.e., peaks form and−m are unequal
in amplitude. This new theoretical model seems to be very promising to explain the long-term properties
present in the observations of some of the roAp stars, but it was so far not yet applied in full detail to data
of any roAp star. A second model is the one presented by Saio (2005) and concerns axisymmetric nonradial
oscillations including a strong magnetic dipole, ignoringrotation and envelope convection. The high-order
dipole and quadrupole p modes are excited by the heat mechanism in the H ionization zone, while low-order
p modes excited in the HeII ionization zone are damped by the magnetic field when its strength raises above
1 kG.

From an observational viewpoint, the study of roAp stars haschanged drastically over the past few
years, with photometric studies being overtaken by time-resolved high-spectral-resolution spectroscopic
studies. These are being vigorously carried out by several groups who are beginning to resolve the pulsation
structure in roAp stars in 3 dimensions. These novel observations resolve the pulsation as a function of
atmospheric depth, using the abundance stratification of certain ions to determine the pulsation amplitude
and phase in the range−5 ≤ τ5000 ≤ 0, and even higher into the atmosphere. Some examples are the high-
resolution studies of 33 Lib by Mkrtichianet al. (2003) and of HD 166473 by Kurtzet al. (2005), the latter
using very precise data from VLT/UVES. Finally, Kochukhov (2004) made an “image” of the pulsation
velocity field from time series observations of spectra for HR 3831 and showed that the oscillations of this
stardo seem to be aligned with the axis of the global magnetic field, lending strong support to the oblique
pulsator model. Clearly, further confrontation between these splendid new data and the oblique pulsator
model as well as its alternatives, must be undertaken in the near future.

2.3.6 Slowly pulsating B stars

The term “slowly pulsating B stars” (SPB stars) was introduced by Waelkens (1991). With this term he
pointed towards a group of seven young Population I variablemid-B stars with spectral type between B3
and B9, for which he had detected multiperiodic brightness and colour variations in photometric data spread
over some 10 years. In Figs 2.17 and 2.18, the frequency spectra of the GenevaB and Hipparcos light,
and radial-velocity variations of the brightest among the SPB stars,oVel, and of a bright SB2 SPB star,
HD 123515, are shown. De Cat & Aerts (2002) found respectively four and five independent frequencies for
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Figure 2.17: The frequency spectra of GenevaB, Hipparcos, and radial-velocity data derived from the SiII

4128Å line of the single SPB star HD 74195. The horizontal dashed line indicates the 1% false-alarm
probability and the dotted one the 3.7 S/N ratio level (see Chapter 4). (From De Cat & Aerts 2002.)

Figure 2.18: The frequency spectra of GenevaB, Hipparcos, and radial-velocity data derived from the SiII

4128Å line of the SB2 SPB HD 123515. The horizontal dashed line indicates the 1% false-alarm probability
and the dotted one the 3.7 S/N ratio level (see Chapter 4). (From De Cat & Aerts 2002.)
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Figure 2.19: The MOST light curve of the SPB HD 163830 (upper panel, dots) and the best fit based on the
21 significant frequencies (upper panel, full line). The residuals after subtraction of the fit are shown in the
lower panel. (From Aertset al.2006.)

these two SPB stars after subsequent prewhitening. The intrinsic periods of SPB stars are similar to those
of the γ Dor stars except a bit longer because the stars are bigger,i.e., roughly between 0.8 and 3 d. It is
therefore extremely difficult to find such variables, as long-term planning is needed, just as for theγ Dor
stars. This is readily visible in Figs 2.17 and 2.18 where theconfusion between frequenciesf and1 − f is
prominent. Only with multisite data, or with uninterrupteddata from space, can one avoid such confusion,
as shown by the MOST light curve of the SPB star HD 163830 reproduced in Fig. 2.19 (Aertset al.2006).

Line-profile variable counterparts of SPB stars were known prior to Waelkens’ discovery of the SPB
star class. Already in the late 1970s Myron Smith and his collaborators had done a search for line-profile
variability in stars surrounding theβCep stars (see below for a description of this group of pulsating stars).
In this way they had discovered spectroscopic variables with spectral types between O9 and B5. Smith
termed them 53 Per stars after his prototypical target. It has meanwhile become clear that the coolest among
Smith’s variables are SPB stars, but the explanation for thehotter stars in Smith’s list is different. Indeed, the
hottest among the 53 Per stars have p mode oscillations like theβCep stars rather than high-order g modes.
For this reason, the term SPB stars was finally chosen to indicate a class of stars with common pulsational
properties in terms of g modes and one well-understood excitation mechanism, in contrast to the group of
Smith’s 53 Per stars. The masses of SPB stars range from 2 to 7 M⊙, whereas some of the 53 Per stars have
masses as high as 20 M⊙.

As already emphasised, the Hipparcos mission led to a tenfold increase in the number of class mem-
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bers; huge long-term multicolour photometric and high-resolution spectroscopic follow-up campaigns were
undertaken following this discovery (Aertset al.1999, Mathiaset al.2001). Those led to accurate frequency
values and empirical mode identification for some selected targets (De Cat & Aerts 2002, De Catet al.2005)
which are in excellent agreement with theoretical predictions of excited (mainly)l = 1 modes (Townsend
2003). All confirmed SPB stars are slow rotators (De Cat 2002).

As shown by Dziembowskiet al. (1993) and Gautschy & Saio (1993), the explanation for the multi-
periodic variations of SPB stars is the excitation of high-order g modes by the heat mechanism, associated
with an opacity enhancement due to iron-group elements, also termed theZ bump. These features occur at
a temperature near 200 000 K. This explanation for mode excitation in B stars, both for SPB stars and for
βCep stars (see below), had to await sufficiently accurate opacity computations of elements heavier than
hydrogen and helium, such as those provided by Iglesias & Rogers (1996) in the OPAL14 opacity project
at Livermore and Seaton (1996) in the Opacity Project, OP15. Accurate opacity tables for elements heavier
than hydrogen and helium are only available since the OPAL and OP projects were completed in 1992. Any
previous opacity determinations for such elements were typically a factor three too low and so did not lead
to mode excitation in B stars. The new opacity projects led toa natural explanation of the modes in SPB
stars and inβCep stars in terms of the heat mechanism at the position wherethe opacity bump occurs. We
refer again to Pamyatnykh (1999) for a general overview of the properties of models with excited modes
and their dependence on metallicity and core overshoot.

The agreement between theoretical predictions and observations is excellent in a statistical sense. The
known SPB stars indeed lie entirely within and populate fully the computed theoretical instability strip. As
parallaxes for isolated field B stars are very uncertain, oneis not able to provide accurate luminosities either,
which is the reason why in many seismic studies the model computations are represented in a(log Teff , log g)
diagram as in Fig. 2.20.

During the last half century, there has been significant confusion and debate in the literature about the
existence of a specific group of variables with spectral types between B7 V–III and A2 V–II and periods
between 2 and 8 h, baptized “Maia stars” by Struve (1955). At the time when Struve (1955) made his
suggestion, SPB stars were still unknown. These hypothetical stars would be partly situated within the SPB
instability strip, extending towards theδ Sct strip. There are no oscillations predicted by the classical heat
mechanism in this part of the HR diagram (Pamyatnykh 1999) and indeed, despite large search campaigns
(see,e.g., Scholzet al. 1998 and references therein) unambiguous detection of short-period variability was
achieved for only four out of fifteen stars. Each of these fourhas high rotational velocity (Aerts & Kolenberg
2005). In such a situation, the effects of the Coriolis forceintroduce significant frequency shifts for the low-
frequency g modes (Townsend 2003) so that shorter periods must indeed be observed in an inertial frame.
Such shifts may offer the correct explanation for the relatively high observed frequencies in these four stars.
Another suggestion was made independently and almost simultaneously by Savonije (2005) and Townsend
(2005), who found heat-driven retrograde mixed mode instability in B stars for spectral types B4 to A0
rotating faster than half of the critical rate. Both these interpretations lead to the conclusion that the “Maia
stars” are simply rapidly rotating SPB stars.

14http://www-phys.llnl.gov/Research/OPAL/opal.html
15http://vizier.u-strasbg.fr/topbase/op.html
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Figure 2.20: The theoretical instability domains predicted by the heat mechanism for B stars of metal
abundanceZ = 0.02 (thick lines, upper panel). The lower panel shows the oscillation periods as a function
of effective temperature, pointing out the clear separation between the low-order p modes in theβCep stars
and the high-order g modes in the SPB stars. (From Pamyatnykh1999.)
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2.3.7 β Cep stars

TheβCep stars have been known as a group of young Population I near-main-sequence pulsating stars for
more than a century. They have masses between 8 and about 18 M⊙ and oscillate in low-order p and g
modes with periods between about 2 and 8 h. More than 100 members of this group are known and the class
contains dwarfs up to giants. A recent overview of the properties of the class was provided by Stankov &
Handler (2005). Most of theβCep stars show multiperiodic light and line-profile variations. Excluding the
four stars BW Vulpeculae,ξ1 CMa, HD180642 andσScorpii, which have exceptionally large velocity and/or
light amplitudes, the phase diagrams for individual frequencies are nearly sinusoidal. The light variations
clearly have larger amplitudes at blue than at red wavelengths and have a phase difference of about 0.25 with
the radial-velocity variations. Such a phase lag is expected for adiabatic oscillations (Dupretet al.2003). As
for the SPB stars, the majority of theβ Cep stars rotate at only a small fraction of their critical velocity, two
of the exceptions being 19 Mon (Balonaet al. 2000) and HD 203664 (Aertset al. 2006) whose rotational
velocities approach half of their critical value.

Until 2002, these stars were mainly observed during single-site photometric campaigns lasting typically
one or two weeks. Some stars were monitored during differentseasons, most often, unfortunately, with
large gaps of several years in the data. An example is the starHD 129929 which was monitored during
21 years in 3-week campaigns from La Silla with one and the same high-precision photometer attached
to the 0.70-m Swiss telescope (Aertset al. 2003). This led to the detection of six independent oscillation
modes, which was at that time the largest number of excited frequencies known in such type of star. The star
12 Lac was also known to have six oscillation modes from much earlier photometry (Jerzykiewicz 1978),
and these modes turned out to have very stable amplitudes during many years as they were recovered in
high-resolution spectroscopy more than a decade later (Mathiaset al.1994). Starting from the early 1990s,
theβ Cep stars were indeed also extensively studied from high-resolution spectroscopy (Aerts & De Cat
2003 and references therein).

A new era inβCep star research was initiated after the international pulsation conference held at
Leuven university (Aertset al. 2002), where Mike Jerzykiewicz suggested the consideration of this type
of star for multisite observing campaigns similar to those performed for theδ Sct stars. Handler & Aerts
(2004) set up the largest such campaign ever performed for the starν Eri, including not only multi-colour
photometry but also simultaneous high-resolution spectroscopy during five months. This very rich dataset
implied a significant step forward in the detection and interpretation of oscillation modes of aβCep star. A
subsequent campaign was carried out by Handleret al. (2006) on the star 12 Lac. Several additional modes,
besides the six already detected by Jerzykiewicz (1978) andMathiaset al. (1994), were discovered. A part
of the light curve of the campaign is shown in Fig. 2.21 and thefrequency spectrum in Fig. 2.22. While
aliasing still occurs, this figure illustrates the gain of multisite versus single-site data.

The nonradial oscillations in theβCep stars are caused by the heat mechanism acting through opacity
features associated with elements of the iron group (Dziembowski & Moskalik 1993), as discussed already
for the SPB stars. The short periods of several hours are generally well explained in terms of heat-driven
low-order p modes, but we stress that low-order g modes are also simultaneously excited and observed in
several class members. There is a small overlap in the theoretical instability strips of the SPB stars and
βCep stars (see Fig. 2.20). This is observationally confirmedfor only very few stars, among which isν Eri.
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Figure 2.21: Strömgren photometry of theβCep star 12 Lac from a multisite campaign. (From Handleret
al. 2006.)

For this best-studied star, however, the most accurate seismic models do not predict all the observed modes
to be excited. The extensive multisite campaign ofν Eri thus made it clear that not all the details of the mode
excitation mechanism are well understood. Bourgeet al. (2006) have recently shown that radiative diffusive
processes, which have been ignored so far in such hot stars, may in fact enhance significantly the amount of
iron in the driving region. Their computations followed theearlier suggestions by Pamyatnykhet al. (2004)
and by Ausselooset al. (2004) that a factor four higher iron abundance in the driving zone, or in the star as
a whole, is necessary to solveν Eri’s excitation problem.

As can be seen on Fig. 2.20, the agreement between observedβCep stars and the theoretical instability
strip is very satisfactory for the class as a whole, althoughthe blue part of the strip is not well populated.
Numerous new candidate members were recently found from large-scale surveys, in the LMC and SMC
(Kołaczkowskiet al. 2006) as well as in our own Galaxy (Pigulski 2005, Narwidet al. 2006). Assuming
that all these faint variable stars are indeedβCep stars more than doubles the number of class members
to over 200. The occurrence of so manyβ Cep stars in environments with very low metallicity demanded
a new look upon the mode excitation, which relies heavily on the iron opacity. Miglioet al. (2007) have
shown these results at low metallicity to be fully compatible with excitation predictions based on the OP
opacities and the solar abundances by Asplundet al. (2005).

2.3.8 Pulsating Be stars

Be stars are Population I B stars close to the main sequence that show, or have shown in the past, Balmer
line emission in their photospheric spectrum. This excess is attributed to the presence of a circumstellar
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Figure 2.22: Frequency spectrum of the data for 12 Lac, some of which is shown in Fig. 2.21. (From Handler
et al.2006.)
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equatorial disk. See the review on Be stars by Porter & Rivinius (2003) for general information on this
rather inhomogeneous class of stars. Several different physical mechanisms are thought to be responsible
for the disk. Numerous Be stars are members of close binary systems of very different kinds. Roche-lobe
overflow or mass transfer in general may cause the disk in suchcases. For single Be stars, rotation close
to the critical velocity (Townsendet al.2004), in addition to either multimode beating of oscillation modes
(Rivinius et al.2003) or mass loss along magnetic field lines (Townsend & Owocki 2005) could explain the
disk. However, while magnetic fields (Neiner 2006) and nonradial oscillations (Riviniuset al. 2003) have
been detected in some Be stars, it is not at all clear if these mechanisms suffice to explain a disk for the
whole class of single Be stars. Also, it is at present unclearwhether the occurrence of a disk around single
Be stars can be attributed to a particular evolutionary state or not. The nature and evolution of disks around
hot stars was recently summarized in the proceedings by Ignace & Gayley (2005) and by Steflet al. (2006).

Single Be stars show variability on very different time scales and with a broad range of amplitudes.
Balona (1995a) studied a subclass of the Be stars which show one dominant period between 0.5 and 2 d in
their photometric variability, with amplitudes of a few tens of a mmag which he termed theλEri variables.
He provided extensive evidence of a clear correlation between the photometric period and the rotational
period of theλEri stars and interpreted that correlation in terms of rotational modulation. When observed
spectroscopically, several of theλEri stars turn out to have complex line-profile variations with travelling
sub-features similar to those observed in the rapidly rotating βCep stars, except for the much longer peri-
ods (days versus hours). This rather seems to suggest oscillations as origin of this complex spectroscopic
variability.

The first claim of nonradial oscillations in a Be star dates back from 1982, when Baade (1982) discov-
ered complex line-profile variations for the starωCMa, a star listed among theλEri variables in Balona’s
(1995a) list. The picture became even more complicated whenBalona (1995b) introduced the class of
ζ Oph variables. These are late-O type stars with clear complex multiperiodic line-profile variations which
he attributed to high-degree nonradial oscillations. Theyare named after the prototypical O9.5V starζ Oph,
whose rotation is very close to critical and whose photometric variability was recently firmly established
by the MOST space mission. Walkeret al. (2005a) disentangled a dozen significant oscillation frequencies
in the 24-d photometric light curve assembled from space. These frequencies range from 1 to 10 d−1 and
clearly indicate the star’s relationship to theβCep stars.

An extensive summary of the detection of short-period line-profile variations due to oscillations in hot
Be stars was provided by Riviniuset al. (2003). They monitored 27 early-type Be stars spectroscopically
during six years and found 25 of them to be line-profile variables at some level. For several of their targets
the variability was interpreted in terms of nonradial oscillations with l = m = +2. Almost all stars in
the sample also show traces of outburst-like variability rather than a steady star-to-disk mass transfer. The
authors interpreted the disk formation in terms of multimode beating in combination with fast rotation.

To make the picture complete, multiperiodic oscillations were recently reported in the rapidly rotating
B5Ve star HD 163868 from a 37-d MOST light curve (see Figs 2.23and 2.24). Walkeret al.(2005b) derived
a rich frequency spectrum, with more than 60 significant peaks, resembling that of an SPB star and termed
the star an SPBe star in view of its Be nature. They interpreted the oscillation periods between 7 and 14 h as
high-order prograde sectorial g modes and those of several days as Rossby modes (e.g., Townsend 2005 for
a recent description of such modes). There is remaining periodicity above 10 d which cannot be explained
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Figure 2.23: Space photometric light curve of the Be star HD 163868 observed by the MOST satellite. The
lower panel shows a higher time resolution look at a 5-d portion of the light curve. (From Walkeret al.
2005b.)
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Figure 2.24: Model frequency spectrum resembling the observed one for the Be star HD 163868. (From
Walkeret al.2005b.)
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Figure 2.25: Left: location of the instability strip of the pre-main-sequence stars. Right: candidate pre-main-
sequence pulsators known as of 1998. Triangles: UX Ori starsfrom Nattaet al. (1997), squares: Herbig
Ae/Be stars from Berrilliet al. (1992) and van den Ankeret al. (1998), the error box is for HD 144668
(HR 5999: Kurtz & Marang 1995). (From Marconi & Palla 1998.)

at present. Finally, nonradial oscillations at low amplitude were also detected in the bright B8Ve starβCMi
(Saioet al.2006).

We come to the conclusion that the oscillations detected in Be stars show a multitude of different
behaviour, which is in full accordance with those ofβCep stars and SPB stars. It seems that pulsating Be
stars are complicated analogues ofβCep stars and SPB stars rotating typically above half of the critical
velocity, and with some rotating very close to critical velocity. It remains to be studied what the role of the
oscillations is in the disk formation for the class of Be stars as a whole.

2.4 Oscillations in pre-main-sequence stars

As newly born protostars contract towards the main sequence, either radiatively as the Herbig Ae/Be stars
or convectively as the T Tauri stars, the higher-mass stars enter or cross the classical instability strip. Such
pre-main-sequence stars tend to be highly variable, both inphotometry and spectroscopy, on time scales
of minutes to years. Part of this variability is surely due toactivity and interaction with the circumstellar
environment. On the other hand, part of the shorter-period variability may be due to oscillations. Since the
interior structure of pre-main-sequence stars is different from that of evolved stars in the instability strip,
their oscillation spectra may allow us to distinguish between the two evolutionary stages for stars with the
same effective temperature and luminosity.
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Figure 2.26: Part of the multisite campaign data obtained in2003 by Ripepiet al. (2006) for the pre-main-
sequence star IP Per.∆V stands forVIP Per − Vcomp. Crosses and dots indicate data from two different
sites.

Breger (1972) found the first two candidate pre-main-sequence δ Sct pulsators, while monitoring the
young open cluster NGC 2264 photometrically. He also found 25% of the member stars of this cluster to
be short-period variables and unravelled a clear correlation between the variability and shell characteris-
tics. Some time later, Baade & Stahl (1989a,b) detected nonradial oscillations in two pre-main-sequence
stars based on high-resolution spectroscopy. They found line-profile variability, but were unable to pin-
point clear periodicities from them. Kurtz & Marang (1995) made the next step and disentangled the low-
amplitude (6 mmag)δ Sct pulsation with the first clear oscillation period of about 5 h from the long-term
large-amplitude (0.35 mag) variations caused by variable dust obscuration in the disk of the Herbig Ae star
HD 144668.

Marconi & Palla (1998) investigated the pulsational properties of pre-main-sequence stars with masses
in the range 1 to 4 M⊙ by means of linear and non-linear calculations and defined the instability strip for
these stars in the HR diagram (see Fig. 2.25). They found periods ranging from 1.5 to 7.5 h for the funda-
mental mode. Delta Sct type oscillations have been suggested in about thirty pre-main-sequence stars so far.
The reported periods are quite uncertain, and range from less than one hour to several hours, in agreement
with theoretical predictions. For reviews on this topic seeCatala (2003), Marconi & Palla (2004), Zwintzet
al. (2004) and Ripepiet al. (2006a).

The most extensive dataset and interpretation of a pre-main-sequenceδ Sct pulsator was achieved by
Ripepiet al. (2006b, see Figs 2.26 and 2.27). They monitored the star IP Per photometrically in a multisite
campaign involving ten sites. The total time span of their data is about 500 d. IP Per is a low-metallicity UX
Ori type star, which is a class of precursors of the Herbig Ae/Be stars surrounded by self-shadowed disks (see
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Figure 2.27: Frequency spectra for theV data of IP Per of which some were shown in Fig. 2.26. (From
Ripepiet al.2006.)
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Figure 2.28: Light curve of an RRab star observed by OGLE folded according to the dominant oscillation
period. Data taken from Soszynskiet al. (2003).

Herbst & Shevchenko 1999 for a photometric catalogue and Dullemondet al.2003 for a physical model). It
has long-term variations with an amplitude of about 0.3 mag and a duration between 10 and 50 d onto which
the oscillatory variability is superposed. The authors found nine frequencies for the star, ranging from 23 to
52 d−1, and with an amplitude range from 1.1 to 3.3 mmag (see Fig. 2.27). A fit of theoretical frequencies
to the observed ones indicates that a maximum five of the modescan be radial modes; thus nonradial modes
occur as well. The frequency matching of the five radial modesled to an accurate mass, luminosity and
temperature estimate of the star, in agreement with previous spectroscopic derivations. Unfortunately, the
frequencies alone did not allow a discrimination between a pre- and post-main-sequence star.

2.5 Pulsations in evolved stars withM ≤ 9 M⊙

By evolved low-mass stars we mean objects with an initial mass below 9 M⊙, which have evolved off the
main sequence. These stars may, at a certain phase in their life, start a burning cycle in degenerate matter in
their core. This is surely the case for stars with a mass below2.3 M⊙. They will undergo a helium flash at
the tip of the red-giant branch. The more massive among the low-mass stars avoid ignition in a degenerate
core. In any case, all of these stars are candidate oscillators during their post-main-sequence evolution.
As discussed in Sect. 2.3.1, solar-like oscillations are found in subgiant stars in the hydrogen shell-burning
phase which for stars of mass below around 1.7 M⊙ is relatively slow. However, only more massive stars
cross the instability strips for heat-driven oscillationsduring this phase, and for such stars the phase is fast
and the probability of catching a star before central heliumburning is small. In the present section we
therefore consider only the phases after central helium burning has started.
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Figure 2.29: Light curve of an RRc star observed by OGLE folded according to the dominant oscillation
period. Data taken from Soszynskiet al. (2003).

2.5.1 RR Lyrae stars

Together with the Cepheids (see below), RR Lyrae stars are considered to be theclassical radial pulsators.
Most of them are monoperiodic stars with an oscillation period near half a day. While their monoperiodicity
implies that they are not suitable for seismic studies, theyare of great galactic and cosmological importance
and we highlight some of their properties for this reason, referring to the monograph by Smith (1995)
for more detailed information on their observational characteristics and to Catelan (2007) for an extensive
overview of horizontal branch stars in general.

The first RR Lyrae stars were discovered in globular clustersby Bailey in 1895. Their spherical spatial
distribution and kinematic properties (high velocities inall directions) imply that these stars must be extreme
Population II stars. As they are low-mass stars, their observed abundances are, to a good approximation,
those at their birth,i.e., those of the interstellar cloud from which they were born. The abundances of
elements heavier than hydrogen and helium,Z, ranges from 0.0001 to 0.01. RR Lyrae stars are also used to
estimate the distance and the age of the clusters they belongto. For these reasons, they are considered to be
standard candles of galactic evolution.

All stars with birth masses between≃ 0.5 and≃ 2.2 M⊙ start helium burning in a degenerate helium
core and undergo a helium flash, after which they settle on thehorizontal branch. The stars with the thickest
hydrogen envelope are at the red end of the branch and those with the thinnest at the blue end. The higher
the envelope mass, the more the hydrogen shell contributes to the energy production and the larger the extent
of the convective zone in the envelope. Blue horizontal branch stars have thin envelopes, weak hydrogen
burning shells and develop a radiative outer zone (Prialnik2000). As a consequence, the hydrogen envelope
needs to have a particular mass to result in oscillations driven by the heat mechanism, which requires a
radiative zone. It turns out that horizontal branch stars with masses between≃ 0.60 and 0.80 M⊙ have the
appropriate regions of hydrogen and helium ionization zones to become RR Lyrae stars (e.g., de Santis &
Casisi 1999), the precise mass limits depending on the metallicity and on the mass lost on the giant branch.
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Figure 2.30: Light curve of an RRd star observed by MACHO folded according to the dominant oscillation
period. Data taken from Kovacs (2000).

RR Lyrae stars either have settled immediately on the horizontal branch within the instability strip after the
helium flash or they crossed the strip while evolving on the horizontal branch. The excitation mechanism of
the RR Lyrae stars is well-known as the heat mechanism actingin the partial ionization zone of HeII – HeIII

(see,e.g., Stellingwerf 1984 for an instability strip). Transient phenomena, such as mode switching, are also
predicted. Bonoet al. (1995) made a thorough analysis of the different details of the mode excitation and
mode transition within the instability strip.

RR Lyrae stars have been observed for more than a century, mainly in photometry. They are subdivided
into threeBailey classes: RRa, RRb and RRc stars. This classification is based upon theamplitude and
the skewness of the light curve and on the oscillation period. RRab stars are now considered as one class,
pulsating in the radial fundamental mode and having asymmetric light curves. RRc stars, on the other hand,
oscillate in the first overtone and have sinusoidal variations. Two prototypical OGLE light curves, phased
according to the dominant period, are shown in Figs 2.28 and 2.29.

In the mid 1980s, a fourth class of RR Lyrae stars was introduced: the RRd stars. The amplitudes of
these group members change on relatively short time scales.Such stars have periods between 0.3 and 0.5 d
and their light curves have more scatter than for the RRabc stars (see Figs 2.30 and 2.31 for a prototypical
case observed within the MACHO project). It turns out that the RRd stars oscillate in both the fundamental
and first overtone,i.e., they aredouble-modeoscillators with a period ratio near 0.74 (Kovacs 2001). RRd
stars are found in both the Galactic plane and in globular clusters. They have the advantage that the excitation
of two oscillation modes allows us to characterize the stellar parameters, such as the mass, with much higher
precision that for RRabc stars (e.g., Popielskiet al.2000, Szabóet al.2004).

Another old classification for RR Lyrae stars concerns theirhost clusters. Oosterhoff (1944) pointed out
that some clusters have mainly RRab stars, while others havean equal contribution in RRab and RRc stars.
The former are calledOosterhoff Itype clusters and the latterOosterhoff II. The average oscillation period
of the RR Lyrae stars in Oosterhoff I clusters is 0.1 d shorterthan for those in the Oosterhoff II clusters. This
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Figure 2.31: Residual MACHO light curve of the RRd star shownin Fig. 2.30 after prewhitening with the
dominant oscillation period and folded according to the second period. Data taken from Kovacs (2000).

Figure 2.32: MACHO light curve of a Blazhko star observed by MACHO folded according to the dominant
oscillation period. Data taken from the Kurtzet al. (2000).
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phenomenon is called theOosterhoff-period-dichotomy(e.g.Catelan 2007 for a discussion).

The absolute visual magnitudes of RR Lyrae stars have valuesroughly between 0 and 1. Although
less bright than Cepheids (see further on) their large amplitude and their brightness makes them easy to
recognize and hence suitable to be identified in globular clusters. Just as with Cepheids, they are used as
distance indicators to these clusters. While more accurateand larger distances can be derived from the
more luminous Cepheids, globular clusters do not have a population of the latter stars and so they cannot be
considered for globular cluster distance determination. The RR Lyrae stars are therefore an important and
good alternative.

Finally, we turn to the phenomenon called theBlazhko effect. For 25% of the RR Lyrae stars one
observes amplitude modulation in the light curve (see Fig. 2.32 for a prototypical example from the MACHO
database) on a timescale that is typically 100 times longer than the oscillation period. This modulation is
observed in all three classes RRabc. It was observed for the first time by Blazhko (1907) for the star EW Dra
and is named after its discoverer. RR Lyrae itself is a Blazhko star (e.g., Kolenberget al. 2006), with a
modulation period, also termed Blazhko period, of 40.8 d. Over the Blazhko cycle the maximum brightness
changes considerably, while there is hardly any change in minimum brightness (Fig. 2.32). The Blazhko
effect has also been detected in line-profile variations of RR Lyrae itself (Chadidet al. 1999). Smolec
(2005) pointed out that the Blazhko effect does not correlate with metallicity.

Jurcsiket al. (2005) proposed a correlation between the oscillation period and the modulation period,
which made them conclude that the modulation period must be equal to the rotation period. However, for
some of the Blazhko stars a third, much longer modulation period is also well established,e.g., seven years
for RW Dra and four years for RR Lyrae. The start of a new long modulation cycle is accompanied with a
phase jump of several days in the light curve. It is difficult to understand this in terms of rotation of the star.

For many years now there have been two competing theoreticalexplanations for the Blazhko effect:

1. It is caused by the excitation of a nonradial oscillation mode of low degree, besides the main radial
mode, through non-linear resonant mode coupling. In this model the Blazhko period is interpreted as
the beat period between the radial fundamental and a nonradial mode (e.g., Van Hoolstet al. 1995;
Dziembowski & Cassisi 1999).

2. It is caused by a magnetic field which influences the oscillations (similar to the oblique pulsator model
for the roAp stars). In this case the Blazhko period must be interpreted as the rotation period of the
star (e.g., Shibahashi & Takata 1995).

There is no consensus about the correct interpretation of the Blazhko effect, particularly not in view of
the variety of Blazhko light curve characteristics discovered from the MACHO database (Kurtz 2000). The
extensive efforts to search for a magnetic field in the best studied and brightest Blazhko star, RR Lyrae itself,
and the failure to detect one with modern instruments to confirm previous claims (Chadidet al.2004), have
not resolved the issue. Moskalik & Poretti (2003) rejected the oblique magnetic pulsator model on the basis
of the properties of Blazhko stars discovered from the OGLE project.
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Figure 2.33: Hipparcos light curve of the Population II Cepheid CO Pup folded according to the oscillation
period. Data taken from ESA (1997).

2.5.2 Population II Cepheids

After central helium burning, stars of Population II with masses higher than 0.5 M⊙ evolve from the hor-
izontal branch towards the AGB. During their evolution awayfrom the horizontal branch, or during the
numerous thermal pulses on the AGB, the stars may cross the instability strip and start oscillating. Such
stars are calledtype II Cepheidsor Population II Cepheids. Their periods range from 1 d for stars with
luminosities similar to those of the RR Lyrae stars to about one month at higher luminosities. An example
of a light curve is shown in Fig. 2.33.

The oscillations are caused by the heat mechanism active in both the partial ionization zone of HeII
– HeIII and of HI – H II . Theory predicts the excitation of either the radial fundamental mode or the
first overtone (see,e.g., Bono et al. 1995, 1997). Despite numerous efforts, the derivation of the precise
location of the instability strip of Population II Cepheidsremains uncertain. As for all monoperiodic radial
oscillators, the stars are not well suited for seismic studies.

The longer-period Population II Cepheids were originally discovered by Henrietta Leavitt (Harvard
University) early in the 20th century; they have been called theW Virginis starsfor a long time. Today,
the Type II Cepheids are divided in groups by period, such that the stars with periods between 1 and 5 d
(BL Her class), 10 to 20 d (W Virginis class), and longer than 20 d (RV Tauri class, see below) have differing
evolutionary histories (Wallerstein 2002). A period gap thus occurs for Population II Cepheids as there are
no stars with periods between 5 and 10 d. It is believed that stars with periods shorter than 5 d are on their
way to the AGB while stars with periods longer than 10 d move bluewards in the HR diagram due to thermal
pulses or because they are on their way to the white-dwarf phase (Wallerstein 2002). For a review on Type II
Cepheids we refer to Pollard & Evans (1999).
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Figure 2.34: The visual light curve of the RV Tauri star AC Heras observed by amateur astronomers of the
American Association of Variable Star Observers (AAVSO). Figure courtesy of Matthew Templeton.

2.5.3 RV Tauri stars

The longest-period W Virginis seem to merge continuously into yet another group of oscillators in that part
of the HR diagram, namely theRV Tauri stars(see Pollardet al.2000 for a review). These F to K supergiant
stars could also have been called the longest-period W Virginis stars, but are usually considered as a separate
class. For an enlightening discussion on the relation between Population II Cepheids and RV Tauri stars, and
their evolutionary history, we refer to the review by Wallerstein (2002).

The oscillations of the RV Tauri stars are driven by the heat mechanism which is active in both the
partial ionization zone of HeI – HeII and of HI – H II . A remarkable feature of RV Tauri stars is that their
light curves have alternating deep and less deep minima, in avery regular way. In fact, this property is
used to classify an object as an RV Tauri star. An example collected by amateur astronomers is provided in
Fig. 2.34 for the star AC Her. It is evident from this figure that the light variability follows a double-wave
pattern. The alternations of the minima and maxima do not always repeat strictly for all RV Tauri stars as
some of them have cycle-to-cycle changes. RV Tauri stars arefurther divided in RVa and RVb subclasses,
the RVa stars being those without long-term photometric trends and the RVb stars with such trends.

The radial-velocity curves of RV Tauri stars have large amplitudes, as can be seen from Fig. 2.35. The
shapes of the radial-velocity curves of AC Her and R Sct were interpreted in terms of shock waves in their
atmosphere by Gillet (1990). The spectroscopic study of 11 RV Tauri stars by Pollardet al. (1997) indeed
confirmed that the data are compatible with two shock waves propagating in the atmosphere per pulsation
period, because the metallic lines show a double-peaked profile which is characteristic of an atmospheric
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Figure 2.35: The measured radial-velocity variations (open circles) and those prewhitened for the dominant
oscillation mode (crosses) of RVb star SX Cen, obtained fromlong-term monitoring, folded according to
the orbit. The variability due to the oscillations with a period of 16.4 d has an amplitude which is a large
fraction of the orbital amplitude. Figure courtesy of Hans Van Winckel.

shock as already outlined by Schwarzschild (1952).

Infra-red observations of RV Tauri stars clearly reveal theexistence of circumstellar matter (Lloyd
Evans 1985; Oudmaijeret al. 1992). This implies that the RV Tauri stars are low-mass stars in the early
post-AGB phase (Jura 1986). As this phase has a very short duration compared with the lifetime of the star,
it is difficult to catch the objects in this stage.

A definitive interpretation for the alternating minima is not yet available. It may be that a resonant
oscillation pattern is active (Fokin 1994). The oscillation periods range from 30 to 150 d which creates
an observational challenge to obtain a good inventory of theoscillatory behaviour of such stars. A further
complication is that variable circumstellar absorption occurs, and is, in fact, sometimes sufficient to explain
the photometric variability (Pollardet al. 1996). This led Van Winckelet al. (1999) to propose that the
photometric subclasses RVa and RVb are simply due to a geometric projection effect, and not to a physical
difference.

Finally, it is found that a very high fraction of the RV Tauri stars turn out to be long-period binaries
(Van Winckel 2003, see Fig. 2.35). It may be that the long-term variability possessed by the RVb stars is due
to the binarity (e.g., Maaset al.2002).

2.5.4 Cepheids

After the start of central helium burning in their non-degenerate cores, stars with initial masses above≃
2.3 M⊙ decrease in luminosity while they descend the giant branch.Stars below 3 M⊙ settle on the hori-
zontal branch while their more massive counterparts exhibit loops in the HR diagram. For the stars with
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Figure 2.36: Hipparcos light curve of the classical CepheidHD 112044 folded according to the oscillation
period. Data taken from ESA (1997).

masses below 5 M⊙ these loops are too limited to bring them into the instability strip. For more massive
stars, however, the loops do extend far enough so that they become pulsationally unstable and are observed
as Cepheids.

Theclassical Cepheids, named after the prototypeδCephei, are probably the best-known and most ho-
mogeneous group of pulsating stars. The variability ofδCephei was discovered in 1784 by John Goodricke,
while Henrietta Leavitt made extensive investigations of Cepheids early in the 20th century. A Hipparcos
light curve of a classical Cepheid is shown in Fig. 2.36. In general, the periods of the Cepheids range from
1 to 50 d and their spectral types are between F5 and G5. They are all giants or supergiants. In our Galaxy,
the Cepheids are situated in the Galactic plane and they takepart in the rotation of the Galaxy. Thus they are
Population I objects and are therefore also called type I Cepheids. Below, we provide only a brief summary
of the properties of Cepheids, referring to the recent monograph by Szabados (2007) for more details.

The light curves of the Cepheids are skew and extremely periodic (see Fig. 2.36). The amplitudes are
on average about one magnitude at visual wavelengths. Such brightness variations are accompanied by
changes in the spectral type, colour, temperature and luminosity. For the prototypeδCep itself, for example,
the spectral type is F5 at maximum brightness and G2 at minimum brightness, while the corresponding
change in temperature amounts to some 1 500 K. In general for Cepheids, the luminosity classes change
roughly from III at minimal brightness to Ib at maximum brightness for periods below 25 d and to Ia for
longer periods.

Bersieret al.(1991) produced an extensive radial-velocity catalogue ofbright Cepheids. In Fig. 2.37 we
notice a so-calledstillstandin the radial-velocity curve they obtained for the star X Cyg. Such a phenomenon
occurs whenever a strong shock wave propagates in the atmosphere of the star in such a way that the downfall
of matter after maximum radius is stopped by rising gas due tothe next shock. This shock is also markedly
present at the same phase in the cycle in the Hipparcos light curve, which was taken about ten years later
(Fig. 2.37).
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Figure 2.37: The radial-velocity and Hipparcos light curveof X Cyg folded according to the radial funda-
mental mode period of 16.38538 d. The stillstand is indicated by an arrow. Data taken from Bersieret al.
(1991) and from ESA (1997).

In general, maximum brightness occurs near minimal velocity. However, detailed comparison of the
phased light and radial-velocity curves suggests the occurrence of a smallphase lagbetween the photometric
and spectroscopic signatures of the oscillation. This lag typically amounts to a tenth of the period and can
be spotted for X Cyg in Fig. 2.37. There also occurs a clear relation between the colour, orB − V , of the
Cepheids and their oscillation period. This is called theperiod-colour relation. At a given luminosity, the
stars shift to later spectral types for longer periods.

For several Cepheids a bump occurs in the light curve. Such a phenomenon occurs for Cepheids with
periods between 4 and 20 d. It is due to a coincident occurrence of a 2:1 ratio between the period of the
fundamental and the second overtone. The bump shifts as a function of oscillation period. This is called the
Hertzsprung progression.

As is the case for the RR Lyrae stars, there are Cepheids in which both the fundamental mode and
first overtone, or the first and second overtone, are excited.These are calledbeat Cepheidsor alsodouble-
mode Cepheids. Poretti & Pardo (1997) have made a thorough study of galactic double-mode Cepheids.
The MACHO and OGLE projects revolutionized our knowledge ofthe statistical properties of Cepheids in
general. In particular, numerous double-mode Cepheids were found in the LMC (Alcocket al. 1998), and
later even more in the SMC (Udalskiet al. 1999a). These include both first-overtone/second-overtone and
fundamental/first-overtone Cepheids. Only two first-overtone/second-overtone Cepheids are known in the
Galaxy (Beltrame & Poretti 2002).

72



Figure 2.38: Petersen diagram, plotting the ratio between the first overtone and fundamental radial period
against the logarithm of the latter. The observed values areshown by crosses. The curves show the variation
along the instability strip; the solid curve was based on models computed with the Cox & Tabor (1976)
opacities, whereas the dashed curve used OPAL tables from Rogers & Iglesias (1992). (From Christensen-
Dalsgaard 1993).
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The double-mode Cepheids may be said to constitute the first application of asteroseismology to de-
termine stellar properties. Petersen (1973) showed that the two periods could be used to infer the mass and
radius of the star. The results were in striking disagreement with the masses obtained from the position of
the stars in the HR diagram, on the basis of evolutionary calculations (for reviews of this and other ‘Cepheid
mass problems’, see for example Cox 1980; Simon 1987), suggesting potential problems with the under-
standing of stellar evolution and pulsations and leading toextensive efforts to remove the discrepancy. It is
common to illustrate the problem in aPetersendiagram, where the ratioΠ1/Π0 between the periodsΠ1 and
Π0 of the first radial overtone and the fundamental is plotted againstlog Π0. The observed location of a star
in such a diagram is given with great precision. An example isillustrated in Fig. 2.38; the solid curve shows
theoretical results for models along the instability strip, based on the theoretical relation between mass and
luminosity and using pre-1980 opacities, compared with observations of double mode HADS and Cepheids.
The discrepancy is obvious. It was suggested by Simon (1982), and demonstrated in greater detail by An-
dreasen & Petersen (1988), that the discrepancy could be eliminated through a substantial increase of the
opacity in the range5.2 < log T < 5.9. Remarkably, such an increase was found in the OPAL calculations
(e.g., Rogers & Iglesias 1992) through increased contributions from bound-bound transitions in iron-group
elements; it was the same effect that led to excitation of modes in,e.g., SPB andβ Cep stars (cf. Sect. 2.3.6).
The effect on the period ratios is shown by the dashed curve inFig. 2.38; obviously, with the revised opaci-
ties there is excellent agreement between the computed and observed period ratios (see also Moskaliket al.
1992; Kanbur & Simon 1994; Christensen-Dalsgaard & Petersen 1995).

Three stars in the galaxy, AC And, V823 Cas and V829 Aql, are known to be triple-mode pulsators,
pulsating in the fundamental, and first and second overtone modes (Jurcsiket al.2006). The longest-known
of these is AC And which Fitch & Szeidl (1976) and Kovács & Buchler (1994) thought to be possibly similar
to theδ Sct stars. Fernie (1994) argued that this star lies intermediate between theδ Sct stars and Cepheids.
Thanks to the OGLE survey, two more triple-mode Cepheids have been found. Moskalik & Dziembowski
(2005) interpreted their oscillation periods as the first three radial overtones. This interpretation imposed
stringent constraints on their metallicityZ, which must be in the range 0.004 to 0.007, and on their evolu-
tionary status, indicating that the stars must be crossing the instability strip for the first time. The models
also imposed an upper limit of 0.33 times the pressure scale height to the extent of overshooting from the
convective core during the main-sequence phase. Meanwhilethe galactic triple-mode Cepheid V823 Cas,
originally discovered by Antipin (1997), was subjected to athorough photometric study. The lack of agree-
ment between the observed periods and period ratios and those of evolutionary models led Jurcsiket al.
(2006) to propose that this star is in a transient state during which its oscillations are probably affected by
resonances.

Finally, we mention the existence of short-period Cepheidswith periods shorter than 7 d and sinusoidal,
low-amplitude light curves. They are calleds-Cepheidsor overtoneCepheids. They indeed oscillate in the
first overtone, just as the RRc stars do. Their light curves and radial-velocity curves often show a discontinu-
ity due to a resonance between twice the first overtone and thefourth overtone radial mode frequencies. We
refer to Kienzleet al. (1999) for a homogeneous observational study of a sample of 24 overtone Cepheids.

The importance of Cepheids is not their asteroseismic potential, except perhaps for the double- and
triple-mode pulsators mentioned above, but their fundamental power for distance determinations through
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Figure 2.39: The visual light curve of the Mira itself,oCeti, as observed by amateur astronomers of the
AAVSO. Figure courtesy of Matthew Templeton.

the well-knownperiod-luminosity relation, again found by Henrietta Leavitt (Leavitt & Pickering 1912)16

and first calibrated by Ejnar Hertzsprung (1914). By measuring the oscillation period of a Cepheid and by
using the period-luminosity relation, one can derive the absolute magnitude, hence the distance to the star.
For this reason, Cepheids are also calleddistance indicators. In principle, the relation could be calibrated
by means of an accurate independent distance determinationto one Cepheid. In practice, however, one tries
to determine accurately the zero-point of the relation by inclusion of as many stars as possible for which
accurate distance determinations are available. Given theimportance of cosmological distance scales, the
derivation of the zero points, including appropriate statistical error estimates, remains a matter of intense
debate in the literature (see,e.g., these conference proceedings: Kurtz & Pollard 2004; Kurtz2005; Walker
& Bono 2006 for recent compilations). For more information on Cepheids, we refer to Szabados (2007).

2.5.5 Mira stars and semi-regular variables

Population I variable stars with long periods (P > 80 d) which are situated at luminosities between about
103 L⊙ and7×103 L⊙, and at low effective temperatures between 2500 and 3500 K, are called Mira variables
(Miras) when their amplitudes are larger than 2.5 inV (see Fig. 2.39). Semi-regular (SR) variables with
similar periods but smaller amplitudes are termed SRa (see Fig. 2.40). This term is highly misleading,

16Although the paper is signed by Edward Pickering, its first line reads, “The following statement regarding the periods ofthe
25 variable stars in the Small Magellanic Cloud has been prepared by Miss Leavitt.” History and Web-site referencing services are
fair and attribute the circular to Leavitt & Pickering (Rubin 2005).
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Figure 2.40: The visual light curve of the SRa star V Boo as observed by amateur astronomers of the
AAVSO. Figure courtesy of Matthew Templeton.

Figure 2.41: The visual light curve of the SRd starρCas as observed by amateur astronomers of the AAVSO.
Figure courtesy of Matthew Templeton.
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because most of these stars have light curves as regular as Miras (compare Figs 2.39 and 2.40, see also
Lebzelteret al. 2002 for a discussion), but an amplitude below 2.5 inV , which implies a totally arbitrary
division between the Miras and SRa stars. SRb stars, on the other hand, have lower amplitudes than the
SRa stars and semi-regularity in their light curves,i.e., their periodicity is poorly defined. They often show
alternating intervals of periodic and slow irregular changes. The SRc stars are periodic supergiants with
an amplitude below 1.0 inV . A class called the SRd stars has also been introduced. This term is again
misleading, because, unlike the RRd stars which are double-mode RR Lyrae stars, the SRd variables are not
double-mode pulsators. Rather, they are weak-lined variable giants and supergiants of spectral types FGK.
They are considered to be metal-poor shorter-period analogues of the Miras (Lloyd Evans 1975). One of
the best monitored SRd variables isρCas, whose visual light curve is provided in Fig. 2.41. The Miras and
SRa stars are AGB stars with large mass loss and are about to start their way to the planetary nebula phase.
Some of the SRb stars are still on the RGB.

The Miras and SRs are situated to the red of the classical instability strip, at lower temperatures. They
have radial oscillations which, according to modelling by Ostlie & Cox (1986), are heat-driven in the partial
ionization zones of HI – H II and HeI – HeII . Although Ostlie & Cox obtained reasonable results for the
location of the instability region, they recognized that their use of the ‘frozen-convection’ approximation
for the pulsations was a serious limitation. In fact, convection totally dominates the energy transport in the
regions responsible for the driving. Effects of convectionwere considered by,e.g., Xiong et al. (1998),
Munteanuet al. (2005) and Olivier & Wood (2005) with somewhat conflicting results. It is evident that a
full understanding of the driving of these oscillations will require a more secure treatment of the interaction
between convection and pulsations.

The huge amplitudes seen in visible light in some Mira variables (e.g., Fig. 2.39) do not reflect similar
variations in the total luminosity. As discussed by Reid & Goldston (2002) the reduction of the visible
magnitude at minimum is dominated by the cooling of the atmosphere and the conversion of the emitted
radiation to the infrared by the effect of the resulting formation of metal oxides.

The MACHO and OGLE databases generated a real breakthrough in the study of long period variables.
The MACHO data led to the discovery of five distinct period-luminosity (PL) sequences for the low-mass
giant branch, as first suggested by Cooket al. (1996) and worked out in detail by Wood (2000). This gave
unambiguous confirmation that the Miras are radial fundamental pulsators while SR variables can pulsate
in the 1st, 2nd, 3rd radial overtone, as well as in the fundamental mode. Similar results were obtained from
OGLE data in a series of papers (Itaet al.2004; Kiss & Bedding 2004; Soszyńskiet al.2004; Groenewegen
2004). Fraseret al. (2005) made a careful analysis of the full 8-yr MACHO database, and disentangled six
rather than five PL sequences, which they termed 1, 2, 3, 4, D and E (see Fig. 2.42). The first four sequences
are interpreted in terms of radial pulsations at rising radial order. Cioniet al. (2001) already showed that
the large-amplitude SRa stars fall on sequence 1 together with the Miras, while the low-amplitude SRa
stars fall on sequences 2, 3, 4. The sequences 3 and 4 contain RGB stars as well as oxygen-rich AGB
stars which did not yet undergo the 3rd dredge-up,i.e., less evolved stars than those in sequences 1 and
2. The interpretation of the sequences D and E is less clear. It was suggested by Woodet al. (1999) that
the sequence E is comprised of ellipsoidal or eclipsing red-giant binaries with an invisible companion and
sequence D of stars with a short primary period and a long secondary period. Later on, however, Woodet al.
(2004) considered different physical causes for the long secondary periods of stars in sequence D and came
to the conclusion that a low-degree g-mode oscillation combined with large-scale spots of a single red star
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Figure 2.42: Period-Luminosity diagram for MACHO data of long-period variables (grey dots). The ob-
served LMC Mira relation for the fundamental mode by Feastet al. (1989) is indicated as dashed line. The
3rd, 2nd and 1st overtone models of Wood & Sebo (1996) are indicated as solid lines (from left to right).
Note that stars with periods near 1 yr were removed from the analysis, due to aliasing problems. (From
Fraseret al.2005.)

offers the most likely interpretation. Soszyńskiet al. (2004), on the other hand, concluded that sequence
D contains a mixture of AGB, RGB, Mira, SRa, SRb and small-amplitude pulsators. In a follow-up study,
Soszyński (2007) noted that sequence D forms a continuation of the ellipsoidal and eclipsing red giants of
sequence E and therefore argued in favour of the binary hypothesis for both sequences D and E.

Given these disagreements, we must conclude that it is stillunclear which physical mechanism causes
red pulsators to become a Mira or an SRa/b/c/d. The latter areonly rather arbitrarily defined categories
introduced by observers to differentiate among the red variables from the morphology of their light curves.
One suggestion for the discrimination in the physics of these different types of star is a small difference in
chemical composition, and hence in molecular grain types, resulting in a different mass loss. Another idea
is that the very tenuous envelopes of these stars imply shockwaves of different strength in their outer atmo-
spheres and that these cause quasi-periodic cycles. Recently, Christensen-Dalsgaardet al. (2001) suggested
stochastically-excited modes as an explanation for the semi-regularity. Indeed, all these stars have huge
outer convection zones, so one would expect them to undergo solar-like oscillations. These of course have
much longer periods in supergiant stars than in main-sequence stars. It may therefore very well be that the
differences between Miras and SRa or SRb stars simply reflectthe fact that radial modes are active in the for-
mer, while there is beating with solar-like oscillations inthe latter. This idea, tested on amateur-astronomer
data from the American Association of Variable Star Observers (AAVSO), seems to be confirmed by OGLE
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data (Kiss & Bedding 2003). If accurate frequencies of solar-like oscillations in AGB stars can be measured,
then these objects will suddenly become very interesting stars from a seismic point of view. This will indeed
allow us to probe in detail the very complex stellar structure of stars that are about to end all the phases of
nuclear burning they went through during their complete evolution. It is a major observational challenge to
measure these frequencies for future seismic studies, given the long periods of these stars, hence the long-
term observational commitment needed. However, the stars have such large amplitudes that this is an area
of asteroseismology where amateur astronomers can play a significant role.

2.5.6 Solar-like oscillations in red giants

As already mentioned in Sect. 2.3.1, one expects solar-likeoscillations to be excited in all stars with an outer
convection zone. Such oscillations are very hard to establish in red supergiants with large-amplitude heat-
driven modes, such as the Miras or large-amplitude semi-regulars. However, they have become obvious in
red-giant stars.

The first announcements of short-period variability with periods of the order of hours in a giant star
were made by Smithet al. (1987) and Inniset al. (1988) for the starαBoo (Arcturus, K1III), on the basis of
radial-velocity observations. Hatzes & Cochran (1994) found radial-velocity variations, with an amplitude
near 50 m s−1, for the K2III starβOph; no firm periodicity could be derived, although the candidate periods
ranged from 0.25 up to 0.8 d. Also, using the Hubble Space Telescope Edmonds & Gilliland (1996) found
photometric variations in K giants in the globular cluster 47 Tuc which appeared to be consistent with solar-
like oscillations. Merline (1999) subsequently reported solar-like oscillations from further long-term radial
velocity monitoring of Arcturus, with periods ranging from1.7 to 8.3 d. This result was later confirmed
by space photometry taken with the WIRE satellite, from which Retteret al. (2003) deduced an oscillation
period of 2.3 d. The WIRE mission had been used before to claimsolar-like oscillations in the K0III giant
αUMa (Buzasiet al.2000). The longest among the ten detected periods was 6.4 d and the amplitudes ranged
from 100 to 400µmag. Although Guentheret al. (2000) interpreted these frequencies as due to low-order
p modes of a 4 M⊙ giant, Dziembowskiet al. (2001) pointed out that the model predictions for appropriate
stellar masses ofαUMa and with appropriate input physics disagree with the claimed modes, as far as the
predicted amplitudes, frequencies and excitation are concerned.

The first firm establishment of solar-like oscillations in a giant was made for the G7III starξHydrae
(Frandsenet al. 2002). Nine frequencies were found in the radial-velocity data of the star, spanning one
full month. The strongest mode has an amplitude of about 2 m s−1. An average large spacing of 6.8µHz
was found, in agreement with radial mode frequencies of adjacent radial order. Modelling of the pulsations
by Houdek & Gough (2002), using Gough’s (1977) treatment of the interaction between convection and
pulsations, yielded amplitudes in good agreement with the observed values. Stelloet al. (2006) used the
data to estimate the mode lifetime ofξHydrae and found it to be of the order of 2 d. Such a short lifetime, if
confirmed for other giants, would limit the power of asteroseismology in this part of the HR diagram. Also,
interestingly, the lifetimes were far shorter than indicated by the calculations by Houdek & Gough.

A subsequent clear detection of solar-like oscillations ina giant from space-based photometry was
achieved for the Hubble Space Telescope guide star GSC 09137-03505. Kallingeret al. (2005) found three
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Figure 2.43: Top: radial-velocity data ofǫOph from a two-site campaign (dots: CORALIE data taken with
the 1.2-m Swiss Euler telescope at La Silla, crosses: ELODIEdata taken with the 1.9-m telescope at Haute
Provence observatory). Bottom left: two enlarged parts of the dataset. Bottom right: power spectrum. (From
De Ridderet al.2006.)

frequencies ranging from 21 to 71µHz in the 19 million data points spanning 8 d.

The most recent detections of solar-like oscillations in a giant were achieved from a two-site radial-
velocity campaign spanning 2 full months. De Ridderet al. (2006) discovered an excess power near 60µHz
for the G9.5III starǫOph (see Fig. 2.43). They derived two possible values for thelarge spacing (4.8 or
6.7µHz). The star was subsequently monitored from space by the MOST mission during 37 d. The MOST
light curve is in full agreement with the velocity data and, having no aliasing problems, pointed out that
4.8µHz is the correct value for the spacing (Barbanet al. 2007). Finally, oscillations were also firmly
established for the K0III starη Ser from the same two-site campaign (Carrieret al.2007, see also Fig. 2.4).

Red giants could potentially show a complicated mixed mode frequency structure containing a lot of
information on the interior physics of evolved stars, although the short mode lifetimes obtained by Stello
et al. (2006) may render the predictive power of their observed frequency spectra. Moreover, theoretical
computations by Dziembowski (1977), Dziembowskiet al. (2001), and Gough & Houdek (2002) predict
the nonradial modes to be damped far more strongly than the radial modes, due to the high density contrast
between the core and the extended envelope. This may imply that only radial modes reach observable
amplitudes. This is consistent with the observed frequencyspacings detected so far in ground-based radial-
velocity data. On the other hand, Hekkeret al. (2006) investigated the variability in the cross-correlation
profiles of four pulsating red giants and came to the conclusion that this variability can only be understood
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in terms of the presence of nonradial modes. Clearly, more observational and theoretical work is needed to
obtain a better understanding of the oscillations in red giants. Undoubtedly, observations with CoRoT will
be of much value in this respect.

2.6 Pulsations in evolved stars withM ≥ 9 M⊙

In the current section we describe the variable nature of stars with initial masses above 9 M⊙ which are
evolved off the main sequence. These stars never encounter degeneracy in their core and experience different
burning cycles until they have an iron core, after which theyexplode as supernova.

Their luminosity-to-mass ratios increase significantly asthey evolve off the main sequence. Indeed,
during their evolution past the TAMS towards the red supergiant phase, and then back in the direction of the
ZAMS, they lose a lot of mass while keeping almost the same luminosity. Because of this,L/M increases
and the stars come close to theirEddington limit, the upper value ofL/M determined by the requirement
that the inward gravitational acceleration is larger than the outward acceleration due to the strong radiation
pressure. Any star close to its Eddington limit cannot be very stable. This is particularly relevant for the
lifetimes of stars born withM > 40 M⊙. For recent compilations of studies of the most massive stars we
refer to,e.g., Massey (2003), Heydari-Malayeriet al.(2004), Humphreys & Stanek (2005), Ignace & Gayley
(2005). Here, we concentrate on those variability aspects of such stars which may be related to oscillations.

The overall variability of this group of stars in the upper HRdiagram occurs at different timescales
and may have very different physical causes. Sometimes, thelowest-amplitude variability is periodic. We
term such starsPeriodically Variable Supergiants, irrespective of the cause of the periodic variability. These
stars are indicated as such in the grey upper zone in Fig. 2.2.It is unfortunate that seismic modelling is
not yet reached at these high masses, because stellar structure and evolution models are most uncertain for
such stars, due to badly understood phenomena such as rotational mixing and meridional circulation, semi-
convection, strong core convective overshooting and mass loss. We provide an overview of the variable
nature of such massive objects in this chapter but we will notreturn to them further on in the book.

2.6.1 Periodically variable B and A supergiants

The A-type supergiants

Supergiant stars of spectral type A showing variations in photometry with amplitudes of tenths to hundredths
of a magnitude were termedαCyg variables, after the A1I prototypical starαCygni. They have been
monitored for decades by different teams,e.g., Sterken (1977, 1983), Burkiet al. (1978), van Genderen
et al. (1989), Lamerset al. (1998), van Genderen (2001), and references therein. Burki(1978) and van
Leeuwen (1998) focused on a sample of 32 and 24 late-B to G supergiants, describing the variability of
theseαCyg variables from ground-based Geneva and Hipparcos data,respectively. The periodicities found
by these authors range from 10 to 100 d and are too long to be dueto the radial fundamental mode of such
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objects (Loviet al.1984). It should be pointed out, however, that significant uncertainties in the theoretical
oscillation calculations occur for stars of such high luminosity, as they undergo all sorts of mixing processes
in their interior as well as instabilities in their atmosphere due to the large radiation pressure. These effects
are usually ignored when predicting p- and g-mode frequencies.

Line-profile variations in supergiant stars were discovered by Baadeet al. (1990), who studied the O9I
companion of the WR binaryγ2 Velorum. An extensive line-profile study based on years of monitoring
of 6 BA-type supergiants was made by Kauferet al. (1997). These authors concluded that the variability
patterns in the line profiles are extremely complicated and seem to point towards cyclic variations in the
deduced radial velocities. Besides these cyclic changes, they concluded nonradial oscillations to be present
from travelling sub-features across the line profiles whoseperiodicities are not compatible with the rotation
of the stars.

No detailed modelling of the observed periodic variabilitywas achieved so far. Non-linear radial in-
stabilities in so-calledstrange modes, with periods between 10 and 100 d roughly, have been put forward
as an explanation for the variations in stars with masses above 40 M⊙ (Kiriakidis et al.1993; Glatzelet al.
1999; Dziembowski & Slawinska 2005 and references therein). Such strange modes are caused by a strong
enhancement in the opacity in the second partial ionizationlayer of helium and of the heavy elements. They
are excited due to strong non-adiabatic conditions in starswith a highL/M ratio, i.e., stars not too far from
their Eddington limit. These strange modes are predicted tohave amplitudes that are much larger than those
found for the classical radial oscillators. From this, one speculates that they could perhaps be responsible
for triggering the outbursts accompanying the moderate to low-amplitude periodic variability of the A-type
supergiants and theLuminous Blue Variables(see below). The occurrence of strange modes has not yet been
firmly established observationally in the most massive stars.

The B-type supergiants

Oscillations as inβCep stars have not yet been firmly established in luminous stars with logL/L⊙ > 5
andM > 20 M⊙, although they are predicted in that part of the HR diagram aswell (Pamyatnykh 1999 and
Fig. 2.20). The reason is probably that the instability strip no longer coincides with the entire main sequence,
but is shifted towards more evolved stars. Pamyatnykh (1999) predicted SPB-type g modes to be unstable
at such high luminosities in pre-TAMS stars (i.e., stars near the end of their central hydrogen-burning stage,
see Fig. 2.45). The post-TAMS evolution during the hydrogen-shell burning phase of such objects is so fast
that it is hard to find stars in that evolutionary state in the first place. On the other hand, the stars do not
spend long in the red part of the HR diagram, and return quickly to the position of their pre-TAMS stage
(e.g., Maeder & Chiosi 2000 for a thorough review). It is very difficult to unravel the evolutionary state of
stars in that part of the HR diagram from classical observations. Seismic information could help a great deal
here. However, at that stage in their evolution, significantmass loss in the form of a line-driven stellar wind
(e.g., Kudritzki & Puls 2000 for a review) complicates the unambiguous detection of possible oscillatory
motion at the stellar surface.

Waelkenset al. (1998) discovered a sample of B supergiants to be periodically variable with SPB-type
periods from the Hipparcos mission. These stars, and additional similar ones, were subjected to detailed
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Figure 2.44: Hipparcos light curve of the B2/B3Ib/II HD 98410 folded according to the dominant period.
Data taken from ESA (1997).

Figure 2.45: The position of the sample of B supergiants discovered to be periodically variable from the
Hipparcos mission is compared with Pamyatnykh’s (1999) pre-TAMS instability computations for p modes
(full lines) and g modes (dashed lines). The instability strips of post-TAMS g modes computed by Saioet
al. (2006) are indicated as dotted lines (grey:l = 1 modes, black:l = 2 modes). (From Lefeveret al.2007.)
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spectroscopic and frequency analyses by Lefeveret al. (2007), who found their masses to be below 40 M⊙

and photometric periods between 1 and 25 d,i.e., shorter than the periods of the periodic variations found in
the more massive A-type supergiant variables. An example light curve is shown in Fig. 2.44. The stars in the
sample perfectly fulfil the wind-momentum-luminosity relation derived for galactic A- and B-supergiants
by Kudritzki et al. (1990). Their line-driven wind thus behaves normally. Lefever et al. (2007) found the
sample periodic supergiants to be placed near the high-gravity limit of Pamyatnykh’s (1999) heat-driven g-
mode instability strip for evolved stars (see Fig. 2.45). This implies that the interpretation of their variability
in terms of nonradial oscillations excited by the heat mechanism, as first suggested by Waelkenset al.
(1998), is plausible. The authors found marginal evidence for a connection between the wind density and
the photometric amplitude.

A new step ahead in the understanding of such stars was achieved by Saioet al. (2006), who detected
both p and g modes in the B2Ib/II star HD 163899 from MOST space-based photometry. The authors
deduced 48 frequencies below 2.8 d−1 with amplitudes below 4 mmag and constructed post-TAMS stellar
models that led to g-mode frequencies which are compatible with the observed frequency spectrum.

Further research is needed to evaluate if seismic modellingin terms of internal physics parameter
evaluation of individual periodically variable B-type supergiants is feasible. In order to achieve this, the
current mode identification methods (see Chapter 5) must be adapted to the case of a dynamical atmosphere
dominated by radiative forces.

Luminous Blue Variables

Some of the most luminous stars undergo sporadic violent outbursts, the cause of which is not yet well
understood, but may be due to strange-mode instabilities. These objects are called Luminous Blue Variables
or LBVs. Their irregular behaviour is comparable to that of ageyser on earth:

quiet period→ moderate activity→ heavy dredge-up→ violent eruption→ quiet period→ . . .

Half a century ago the existence of some very peculiar, strongly variable massive stars in our Galaxy, such as
P Cygni andηCarinae, was already known. Moreover, a few such stars were also known in the Magellanic
Clouds,e.g., S Doradus. However, it was not clear yet at that time that allof these very massive objects were
undergoing the same type of instabilities. The newly discovered members were called P Cygni or S Doradus
star, depending on their presence in our Galaxy or in the Magellanic Clouds. Moreover, similar objects
began to be found in nearby galaxies, such as the so-called Hubble-Sandage variables in M 31 and M 33.

It took until the 1970s before a lot of progress was made in theinterpretation of these objects. Space
observations in the ultraviolet (UV) made it clear that all of them are losing significant amounts of mass.
Moreover, they all showed excess fluxes at infrared wavelengths. This class of stars was termed “Luminous
Blue Variables” (Conti 1984).

The outbursts of LBVs can take several decades and are of irregular nature, with long periods of qui-
escence in between. The stars are optically faint when they are quiet as their outer layers have temperatures
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Figure 2.46: Top: Light curve of the LBV AG Car obtained in theframework of the Long-Term Photometric
Variables programme of ESO. The bottom panels show two enlarged sections. Data taken from Sterkenet
al. (1995).

of typically 12 000 K – 30 000 K and so they mainly emit energy inthe UV. During the outbursts, however,
the LBVs can increase their brightness by two or three ordersof magnitude because the outer layers cool
significantly, typically to some 8 000 K, so they emit much more of their energy in the visual. The stars
eject about a whole solar mass of their material during such aheavy eruption. More regular and less violent
eruptions also occur. In that case they only take about one year and they occur almost periodically.

At present there are several tens of confirmed LBVs and some tens of candidates known in our galaxy
and in nearby galaxies. Their luminosities are all more thansix orders of magnitude above the solar value
and remain almost constant, even during the violent eruptions.

Very different timescales and amplitudes are present in thelight curves of LBVs. As an example we
show in Fig. 2.46 the light curve of AG Carinae observed over almost a decade. These variations are mainly
caused by a change in the temperature of the visible surface layers of the star, not in its luminosity. We can
subdivide the variations of LBVs in four different kinds:

1. Giant outbursts with brightness changes larger than 2 mag, which are the consequence of eruptions
of large amounts of stellar matter. Examples are the eruptions of P Cygni in 1600 and ofηCarinae in
1841 (e.g., de Groot & Sterken 2001 for a compilation). During its gianteruption,ηCarinae clearly
went past its Eddington limit. The time scale of these giant eruptions is not well known for the simple
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reason that we have witnessed very few of them so far. For thisreason one assumes that a reasonable
estimate is one eruption every few hundred to thousand years.

2. Eruptions accompanied with brightness differences of one to two magnitudes. These smaller eruptions
occur on time scales of 10 to 40 yr. The visual magnitude usually increases by some 2 mag during
a few months and then a very slow brightness decrease occurs,which takes several years. The stars
S Doradus and R 127 in the Magellanic Clouds, and AG Carinae inour Galaxy experience these types
of eruptions.

3. Smaller variations of about half a magnitude in brightness occur on a time scale of several months to
a few years. These variations are superposed on the moderateeruptions described in 2.

4. Low-amplitude (below 0.1 mag) variations occur on a time scale of several days to weeks. These
variations are probably the same as those observed in the B- and A-type supergiants discussed above
and may thus be due to stellar oscillations.

Since the heat mechanism is so successful in explaining the variability of many types of stars, par-
ticularly B stars on the main sequence, g modes have been proposed to be the cause of the low-amplitude
variations of LBVs from observations (Lamerset al.1998). However, any theoretical computations needed
to check the excitation of modes are very dependent on the physical parameters, which are very badly con-
strained for LBVs and supergiants in general. Also, one needs to combine the effect of being very close to
the Eddington limit with instability calculations, which evidently leads to quite uncertain predictions.

As already mentioned above, it may very well be that strange-mode instabilities with periods near
100 d are responsible for the observed variations, and perhaps even the outbursts, in stars with masses above
40 M⊙. The periodic variations of supergiants with masses below 40 M⊙ having stable periods less than
20 d are due to the classical heat mechanism, as suggested by Pamyatnykh (1999), Saioet al. (2006) and
Lefeveret al. (2007).

2.6.2 Wolf-Rayet stars

A star is called aWolf-Rayet (WR) starwhen a hot helium core is left after the evolution of a massivestar
that has lost its entire hydrogen envelope due to a radiation-driven wind. The spectra of WR stars show
strong emission lines caused by the rapidly expanding thickatmosphere. WR stars are situated in the HR
diagram at luminosities of4.5 ≤ logL/L⊙ ≤ 6 and temperatureslog Teff ≥ 4.6. They are the remnants of
stars with initial masses above 40 M⊙ which have lost so much mass that only a helium core of some 4 M⊙

is left.

The WR stars are subdivided into two groups: the carbon-richWC stars and the nitrogen-rich WN stars.
These classes are subsequently subdivided into WC5 – WC9 andWN3 – WN8 according to the presence of
particular lines in the spectrum. The WN and WC stars represent different evolutionary phases. The WN
stars evolve towards WC stars as more and more stellar material gets lost through the stellar wind. For a
catalogue of WR stars, we refer to van der Hucht (2001).
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Figure 2.47: The light variations of WR 123 as observed by theMOST satellite. Data taken from Lefèvreet
al. (2005).

The fundamental parameters of WR stars are extremely hard todetermine, because of their high level
of activity in terms of a strong stellar wind and due to the complex surface phenomena (e.g., Crowther &
Smith 1997 and references therein). The determination of their general properties constitutes a very active
area of research which we will not review here. Mainly, we will focus on their variable character and even
more specifically on the periodic variability.

The WR stars have quasi-periodic variability with periods ranging from a few hours to a few days. One
of the earliest systematic studies of their variability wasdone by van Genderenet al.(1987), who interpreted
the data in terms of temperature-induced changes in the continuum emission. Numerous studies done by
the same team followed this initial investigation. Marchenko et al. (1998a) presented an extensive study
of WR stars from the Hipparcos data and found a very large diversity in these stars’ variability. The three
case studies of the stars WR 6, WR 134, and WR 123, based on longstrings of homogeneous photometry,
did not allow a conclusion about whether their variability is due to a gradual restructuring of the stellar
wind or nonradial oscillations (Marchenko & Moffat 1998). Moreover, the result of coordinated multisite
photometric and spectroscopic observations of WN8 stars in1989 and 1994-1995 by Marchenkoet al.
(1998b) still did not allow an unravelling of the cause of thehigh level of variability, although the authors
state that it “may be supported/induced by pulsational instability”. A good example of the difficulty in
interpreting the variability is in Veenet al. (2002), who did not even manage to discriminate between orbital
and pulsational variability for WR 46 after years of monitoring.

An important achievement was made by Lefèvreet al. (2005), who used MOST photometry to analyse
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the light variability of WR 123 with unprecedented precision from a 38 d uninterrupted time series (see
Fig. 2.47). They found periodic signals with periods below 1d, but none of them turned out to be stable
for more than several days, except for a stable 9.8 h periodicsignal superposed on stochastic variability
throughout the whole run. In an attempt to interpret this observation, Townsend & MacDonald (2006)
investigated the stability of WR stars and suggested unstable g modes of intermediate radial orders excited
by a heat mechanism operating on an opacity bump at an envelope temperature near 1.8 million K. The
periods they find range from 11 to 21 h for a WR model containingsome surface hydrogen (Xsurface = 0.12),
and from 3 to 12 h in a hydrogen-depleted WR model. This suggests that self-excited g modes may be the
source of the 9.8 h periodic variation of the star disentangled in the MOST data. Dorfiet al. (2006), on the
other hand, explained the observed variability in terms of astrange mode oscillation due to the iron-opacity
bump in a hydrogen-rich (X = 0.35) stellar model.

We must conclude that strict periodicity has not yet been found so far in WR stars except for the
recent case of WR 123’s 9.8 h period derived from uninterrupted space photometry. The physical origin of
the complete observed variability remains unclear, but as far as oscillations are concerned, the promising
computations pointing towards the excitation of heat-driven g modes or strange modes will hopefully be
continued in the near future and be confronted with more high-quality data.

Some of the LBVs have exactly the same characteristics as WN9stars during their visual minimum.
For this reason, the LBVs are considered to be the immediate progenitors of WR stars and it makes sense
to try to understand the LBV microvariability in terms of g modes similar to those found by Townsend &
MacDonald (2006). This has so far not been done.

Once a star has reached the WR phase there is no way back: it will soon explode as a supernova, leaving
a compact remnant (neutron star or black hole).

2.6.3 The role of core g modes in supernova explosions

There are several observational facts that demand asymmetric supernova explosions. Many pulsars,e.g.,
have high proper motions and a large fraction of neutron stars have such high velocities that they must have
experienced a large kick at birth. Neutrino-driven convection was put forward as a viable non-spherical
supernova mechanism (Burrowset al. 1995), although it cannot explain the highest observed velocities of
neutron stars.

In order to solve this problem, Goldreichet al. (1997) proposed theǫ mechanism to be the cause of
the necessary asymmetry before the onset of core collapse. Murphyet al. (2004) have further explored the
viability of g-mode oscillations excited by nuclear reactions to be at the origin of pre-collapse asymmetries
by performing an eigenmode analysis. They indeed found unstable outer core g modes in all progenitor
models with initial masses between 11 and 40 M⊙, with oscillation periods between 1 and 10 s. These
modes are trapped by discontinuities between the fossil Fe core and either the O shell (lower masses) or the
Si burning shell (higher masses). However promising this mechanism was, the growth time scale of the core
modes ranged between 10 and 10 000 s, which is far too long for the ǫ mechanism to become effective in
the supernova progenitors. Indeed, the asymmetries must typically be achieved within one second after the
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onset of the collapse.

An entirely new view on core-collapse supernova explosionswas proposed by Burrowset al. (2005).
They found the agent of the explosion to be the acoustic powergenerated by the excitation and sonic damping
of core g-mode oscillations. Their 2D hydrodynamical computations for a 13 M⊙ star show that a proto-
neutron star is a self-excited oscillator in which anl = 1 mode with a period of∼ 3 ms (besides lower-
amplitude modes) grows and becomes prominent 500 ms after bounce. The source of the acoustic power is
the gravitational energy of infall and the core oscillationacts like a transducer to convert this accretion energy
into sound, resulting in an asymmetric ejection of the mantle. While neutrinos do not drive the explosion in
this model, they do contribute to the deposition of energy inthe shock. This mechanism is currently the most
promising one to explain the observed morphologies and r-process properties of supernovae. Obviously, it is
very hard to test this model observationally, except for thebehaviour of the ejecta and the predicted neutrino
fluxes.

2.7 Compact oscillators

Stars at the end of the AGB phase leave the red part of the HR diagram to become white dwarfs. This
happens whenever their dust-driven and pulsation-inducedwind comes to an end. During their post-AGB
phase, which lasts typically only 10 000 years, they travel through the HR diagram with constant luminosity
towards higher effective temperature because their outer envelope expands quickly and the hot CO core
becomes better visible. For some stars, the last thermal pulse causes a very efficient mixing with large
convective overshooting, implying a drastic change in surface composition and a return towards the AGB.
During this very short born-again phase, the star may cross the instability strip while moving red- and
blueward in the HR diagram. Examples of such fast-evolving stars are V605 Aql and Sakurai’s object (e.g.,
Claytonet al.2006). On their blueward path back from the AGB, they join theWolf-Rayet central stars of
planetary nebulae in the sense that they end up as hydrogen-deficient stars whose surface layers are rich in
helium, carbon and oxygen. We will soon turn to the description of the oscillations in such hot (pre-)white
dwarfs.

Some low-mass stars, however, end up in the extreme horizontal branch and do not become AGB stars
as their hydrogen envelope contains too little hydrogen to keep the hydrogen-shell burning going. These
objects are situated to the left of the RR Lyrae stars and havemasses below 0.5 M⊙. They turn immediately
towards the white-dwarf phase once their central helium is exhausted. Some of these subdwarf B (hereafter
sdB) stars turn out to have oscillations and so we describe them here as well because they are also compact
stars whose oscillations have many similar characteristics to those of white dwarfs.

Some white dwarfs accrete matter in a binary and explode as supernovae of Type Ia. This extreme form
of white-dwarf variability plays a crucial role as standardlight sources in cosmology (e.g., Perlmutteret al.
1999).

Finally, the core-collapse supernovae, originating from exploding massive single stars, leave behind
very compact stellar remnants, such as neutron stars or black holes. We discuss the current status and
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Figure 2.48: The light variations in the prototype of the short-period sdBV stars. The employed unit is mma,
which stands for milli-modulation amplitude. This differsby a factor2.5 log e = 1.08574 from mmag. Data
taken from Kilkennyet al. (1997).

prospects of asteroseismology of these most compact objects as well.

We start off with the least evolved of the compact oscillators, but not before pointing out that pulsating
hydrogen-poor carbon stars and extreme helium stars will additionally be discussed in the last section of this
chapter, since binarity plays a crucial role in our understanding of this diverse group of stars.

2.7.1 Variable subdwarf B stars

In 1997, a team of South-African astronomers discovered a new class of pulsating stars among the sdB stars.
Periodic variations with 144 s were discovered in the sdB star EC 14026 (Kilkennyet al.1997, see Figs 2.48
and 2.49). The “EC” notation stands for the catalogue of the “Edinburgh-Cape Blue Object Survey”, which
was the southern extension of the PG (Palomar-Green) survey.

The sdB stars are helium-deficient sub-luminous B stars at relatively high galactic latitude whose spec-
tra show broad Balmer lines and very weak He I lines. They haveeffective temperatures between 23 000
and 32 000 K, values oflog g between 5 and 6, and masses below 0.5 M⊙. They have lost almost their entire
hydrogen envelope at the tip of the red-giant branch such that their thin hydrogen layer does not contain
enough mass to burn hydrogen. The sdB stars therefore evolveimmediately from the giant branch towards
the extreme horizontal branch (EHB) and have only central-helium burning. They all show a deficiency in
helium and chemical anomalies of carbon and silicon, which supports the idea that they are low-mass old
Population I stars. They are the immediate progenitors of low-mass white dwarfs.

Currently some 30 short-period sdB pulsators are known among the 300 in which variability has been
sought. These 30 all have multiple periods ranging from 80 to600 s and amplitudes between 0.001 and
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Figure 2.49: The amplitude spectrum of the light curve of EC 14026 shown in Fig. 2.48. Data taken from
Kilkenny et al. (1997).

0.3 mag. They are nowadays also termed V361 Hya stars, which is the official variable star name for the
prototype. We will term these objects sdBV stars for simplicity.

The existence of pulsating sdB stars was predicted independently of, and simultaneously with, their
observational discovery by a Canadian team (Charpinetet al.1996). An opacity bump associated with iron
ionization turns out to be an efficient driving mechanism. The diffusion processes that are at work in sdB
stars, particularly radiative levitation, imply that ironbecomes overabundant in the driving zone. Whenever
this overabundance leads to a localZ-value above 0.04 in the partial ionization zone of iron, low-order
p-mode oscillations are excited (Charpinetet al.1997).

During the course of an ongoing monitoring program to investigate light variations in additional sdB
stars in the northern hemisphere, a group of some 20 sdB starsturned out to have multiperiodic light vari-
ations with individual periods around one hour and very low amplitude (Greenet al. 2003). These stars
are termed PG 1716+426 stars after the prototype, but they have also been called “Betsy” stars as of the
scientific meeting at which the discoverer announced their existence. We term them g-mode sdBV stars.
Their periods are an order of magnitude longer than those in the p-mode sdBV stars (see Fig. 2.50), while
they are located in a similar position in the HR diagram, at slightly cooler temperatures. This situation is
very similar to the one of theβCep stars and the SPB stars near the main sequence. It is therefore logical to
interpret these longer periods in terms of high-order g modes.

It was indeed found that the same instability mechanism as for the p-mode oscillators predicts such
modes to be unstable whenever the iron abundance in the driving region is sufficiently high (Fontaineet
al. 2003). Nevertheless, only modes with degreel = 3 or 4 are found to be excited, in contrast to the
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Figure 2.50: Comparison between the light variations of four sdB p-mode oscillators (upper panel) and four
sdB g-mode oscillators (lower panel). The time axis refers to the top half of the figure; the light curves in
the bottom half have been compressed by a factor two for visual purposes. (From Fontaineet al.2003.)
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results found for the p modes. This is rather unsatisfactory, since it does not seem evident from a physical
viewpoint to excite only higher-degree modes. In this respect, the work by Jeffery & Saio (2006) is very
promising. These authors studied mode excitation using models with envelopes having an artificial but
homogeneous iron enhancement and foundl = 1, 2 g modes to be excited for appropriate temperature ranges
of the observed g-mode sdBV stars. Both different approaches, i.e., using a stratified composition with iron
enhanced in the critical layers for excitation (Fontaineet al.2003) versus a global iron enhancement in the
envelope (Jeffery & Saio 2006), are precisely the same as those used by Pamyatnykhet al. (2004, local iron
enhancement) versus Ausselooset al. (2004, global iron enhancement) to explain all the excited observed
modes for theβ Cep starν Eri, discussed earlier in this chapter.

A summary of sdB star research is provided in the volume edited by Østensen (2006). There are at
present insufficient frequencies found in any of the g-mode sdBV stars to perform in-depth seismic studies,
but the observational efforts to obtain more data are ongoing. The best light curve, as far as the sampling
is concerned, was obtained from space with MOST (Randallet al. 2005). It revealed three frequencies
corresponding to periods of 5227 s, 2650 s, and 7235 s, with amplitudes of 0.054%, 0.041%, and 0.038%,
respectively, in fractional brightness.

2.7.2 White dwarfs

White dwarfs are the end-products of stars born with initialmasses below some 9 M⊙. Observationally, as
with main-sequence, giant and supergiant stars, they are classified as DO, DB, DA, DF and DG with further
refinements that were introduced as better data became available (Sionet al. 1983). As with other stars,
these spectral types characterize the apparent chemical composition of the atmospheres of the stars and
are connected to the effective temperature. In white dwarfs, however, the temperature scale is significantly
different from that of main-sequence stars in the sense thatthe white dwarfs are generally hotter than their
main-sequence counterparts with the same nominal spectraltype, and the temperature spread for the DA and
DB stars, in particular, is wide and not continuous.

By far most white dwarfs, some 75%, belong to the DA class. DA white dwarfs have pure hydrogen
atmospheres, resulting in very strong and broad Balmer lines in their spectrum. About 25% of the white
dwarfs show only neutral helium lines in their spectrum. These are called the DB white dwarfs. Finally, a
tiny fraction (less than 1%) shows only ionized helium lines. These are called the DO white dwarfs. In order
to keep life simple, white dwarfs with helium-rich atmospheres are often also termed non-DA white dwarfs.
Moreover, there are also a few DAB and DAO white dwarfs, whichhave both hydrogen and helium lines
in their spectrum. They seem to originate from a variety of circumstances, including convective mixing
in single stars, accretion of hydrogen from the interstellar medium onto a helium atmosphere, as well as
interacting compact binaries with white-dwarf or subdwarfcomponents (Venneset al.2004 and references
therein).

The hottest hydrogen-rich DA white dwarfs typically have surface temperatures near 80 000 K and
the ratio of DA to non-DA white dwarfs increases with decreasing temperature. On the other hand, all DO
white dwarfs have temperatures above 45 000 K while DB white dwarfs have temperatures between 30 000 K
and 12 000 K (and perhaps even lower since helium lines becomeinvisible below this temperature). The

93



occurrence of only one dominant chemical species in the atmosphere is rather well explained by diffusion
processes, as was shown by Fontaine & Michaud (1979).

A remarkable and intriguing fact is that no DB white dwarfs,i.e., objects with a helium-rich atmo-
sphere, occur in the effective temperature range between 30000 K and 45 000 K. This exclusion is known as
the DB gap. Fontaine & Wesemael (1997) explained this gap as anatural consequence of the evolution of all
white dwarfs from planetary nebula nuclei, because the absence of turbulent mixing, due to an insufficient
amount of hydrogen, results in only DA white dwarfs in the temperature range of the DB gap. Shibahashi
(2005), on the other hand, gave a slightly different explanation in terms of chemical separation due to gravi-
tational settling in a convectively stable atmosphere, which occurs exactly in the temperature range between
the HeII /He III and HeI/He II ionization zones. Either explanation implies that DB whitedwarfs become
DA for the temperatures in the DB gap, and then return to become DBs.

Among each of the three main types of white dwarfs, periodic variables occur. These used to be
termed DAV, DBV and DOV white dwarfs. Their multiperiodic variations are due to low-degree, high-order
g modes, excited by the heat mechanism active in different ionization layers for the two classes DO and DB
and by convective driving for the DA class (see below). Because of the tight mass-radius relation of white
dwarfs, their oscillation periods necessarily are similarand are typically of order a few minutes. Very specific
to white-dwarf oscillations is the occurrence of strong mode trapping caused by the stratified envelopes,
which affects the eigenfrequencies (Wingetet al. 1981; Brassardet al. 1992). A recent compilation of
studies of (pulsating) white dwarfs is available in Koester& Moehler (2005).

A particularly interesting aspect of the pulsating white dwarfs is the possibility to investigate the cooling
mechanisms of white dwarfs, through observations of periodchanges. For the hotter classes (DO and DB)
neutrino emission through plasmon and other processes plays an important and potentially detectable role
(O’Brien & Kawaler 2000; Kimet al.2005). For cooler white dwarfs effects of crystallization,which play
an important and uncertain role for white-dwarf cooling, may be detectable (e.g., Montgomery & Winget
1999; Córsicoet al.2005).

We discuss below the oscillations of the three classes of white dwarfs separately. First, however, we
discuss the variable central stars of planetary nebulae. These were historically treated as a separate class,
termed PNNV, but it has recently become clear that several ofthese actually behave as the DOV pulsators.
This had led to the definition of one global class of GW Vir pulsators, which is the terminology we adopt
here.

Variable central stars of Planetary Nebulae: oscillationsor stellar winds?

Central stars of planetary nebulae, often abbreviated as CSPN, constitute a group of stars of which some
exhibit photometric and spectroscopic variability with periods from several hours to days (e.g., Handler
1995). This variability has been ascribed to either a variable stellar wind (Hutton & Méndez 1993; Patriarchi
& Perinotto 1997) or stellar oscillations (Zalewski 1993; Gautschy 1995). The periods of order hours are
much longer than those of the g modes detected in the GW Vir stars and cooler pulsating white dwarfs, as
discussed below, and thus require a different interpretation.
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Figure 2.51: Top panel:V light curve of CSPN HD 35914 from a multisite campaign. The plus signs denote
photoelectric measurements and the open circles CCD data. Bottom panel:B−V variations. (From Handler
et al.1997.)
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While Méndezet al.(1983) reported the variability of HD 35914 (the CSPN of planetary nebula IC 418,
also known as the “Spirograph Nebula” for which there is a beautiful Hubble Space Telescope picture17)
and interpreted it as modulation in the outflow, Liebertet al. (1988) found the star VV 47 (CSPN of NGC
2474-5) to exhibit variability similar to the pulsating white dwarfs. The optical spectrum of VV 47 is also
similar to those of the pulsating GW Vir stars, although somewhat broader absorption lines occurred for
VV 47. The similarity to the behaviour of GW Vir made Liebertet al. (1988) suggest that some CSPN have
oscillations similar to the white dwarfs. Hence he termed these objectsPlanetary Nebulae Nuclei Variables
or PNNV in analogy to the naming for the variable white dwarfsat that time.

Extensive multisite observations of the best studied variable among the CSPN, HD 35914, led Handler
et al. (1997) to detect irregular light modulation with a time scale of days, as well as cyclic semi-regular
variations with a time scale of 6.5 h (see Fig. 2.51). The periodicity of hours was found to be stable over
more than a decade. Unfortunately, it was impossible, even from such an extensive data set, to discriminate
between oscillations and wind variability for the interpretation of the data, but rotational modulation and
binarity could be excluded as the dominant cause of the variability. A similar conclusion was reached for
the central star of M 2-54 (Handler 1999).

Besides “normal” CSPNs, which show absorption lines in their spectra, also Wolf-Rayet stars occur
among the central stars of planetary nebulae. Their spectraare characterized by emission lines, pointing
towards a strong stellar wind. They are usually denoted as [WCE] stars. Their characteristics were summa-
rized by Górnyet al. (1995) and Tylenda (1996), and further refined by Górnyet al. (2004). These works
point towards the presence of helium, carbon and oxygen and adeficiency of hydrogen at their surface. Their
masses and luminosities are somewhat higher than those of normal CSPNs, explaining the stronger wind and
the disappearance of hydrogen. Their evolutionary status is still unclear, but may involve binary evolution
for some stars (De Marcoet al. 2003). On the other hand, their characteristics are generally not different
from those of normal CSPN stars (Girardet al.2007). Their infrared properties even point to the presence
of dust produced during a carbon-rich AGB phase before the atmospheres of these stars became hydrogen
poor (Honyet al. 2001). Werner & Herwig (2006) found a strong evolutionary connection between the
[WCE] and DO white dwarfs. The variability of the [WCE] starswas interpreted in terms of oscillations by
Gautschy (1995).

To make the picture even more complicated, we point out that Handler (2003) performed a systematic
study of what he termed variable Central Stars of young Planetary Nebulae, and baptized themZZ Leporis
starsafter the prototype in his sample. This consisted of 14 members and he found these stars to exhibit
roughly sinusoidal (semi-)regular photometric and/or radial velocity variations with time scales of several
hours. The sample stars’ temperatures are below 50 000 K and they all show hydrogen-rich spectra. Al-
though Handler (2003) concluded that stellar pulsation is the most likely cause of the variability, he could
not exclude variable mass loss. This group of stars has not been studied further, as far as we are aware.
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Figure 2.52: Part of the light curve of the DOV white dwarf PG 1707+427 obtained during a WET campaign.
Data taken from Kawaleret al. (2004).

Figure 2.53: The amplitude spectrum of the light curve of PG 1707+427 shown in Fig. 2.52.
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GW Vir stars

Among the DO white dwarfs, thePG 1159 starsor, more recently termed theGW Vir stars, constitute a well
established class. The DO white dwarfs are situated at the position in the HR diagram where the post-AGB
track stops and turns down towards the white-dwarf cooling sequence. They have extremely high effective
temperatures in the range 70 000 K to 170 000 K. Their spectra show a large deficiency in hydrogen and
high helium, carbon and oxygen abundances due to their stellar wind and helium burning, respectively. The
determination of the hydrogen abundance is rather difficultdue to the high temperature. As outlined above,
some GW Vir stars are termed PNNVs because a planetary nebulastill occurs around them. DO white
dwarfs are indeed the direct descendents of planetary nebulae nuclei.

The DOV pulsators are often named after their prototype, PG 1159-035 or GW Vir. This star, GW Vir
itself, was discovered to be an extremely hot pulsating degenerate star by McGrawet al. (1979). GW Vir’s
light variations observed by the Whole Earth Telescope18 (WET, Natheret al. 1990) and their interpre-
tation implied a very important step for asteroseismology.Part of the WET light curve of the DOV star
PG 1707+427, and its resulting frequency spectrum, are shown in Figs 2.52 and 2.53 (Kawaleret al.2004).
These two plots are prototypical for most of the GW Vir pulsators.

Kawaleret al. (1985) presented linear, nonradial adiabatic oscillationcomputations for evolutionary
pre-white-dwarf models, leading to predictions for the DOVstar frequencies and eigenfunctions. The os-
cillation periods range from about 7 to 30 min. The modes are driven by the heat mechanism active in the
partial ionization zones of carbon and/or oxygen, as already suggested earlier by Starrfieldet al. (1984).
The exact shape of the instability domain near the kink of theevolutionary track was found to depend on the
distribution of helium in the CO-rich envelope.

It is clear that the oscillation periods of several PNNVs areat least a factor of three longer than those
of the DOV stars. The latter are white dwarfs that are about tostart cooling, while the PNNVs are still
increasing their effective temperature while keeping their luminosity essentially unchanged,i.e., their radius
is still decreasing quite drastically. This different evolutionary status is thus reflected in the oscillation
period difference between the DOV stars and the PNNVs and is in agreement with the scenario of Werner
& Herwig (2006).

The theoretical instability strip of both the PNNV and DOV stars was revisited by Quirionet al.(2004),
Gautschyet al. (2005), Córsicoet al. (2006) and Quirionet al. (2007). From these studies which include
mass loss and diffusion, it became clear that one and the sameinstability mechanism,i.e., the heat mecha-
nism associated with the opacity bump due to partial ionization of the K-shell electrons of partial ionization
zones of carbon and oxygen, leads to an instability domain containing both the observed GW Vir stars and
the [WCE] stars (see Fig. 6 of Córsicoet al. 2006). The instability requires the presence of carbon and
oxygen in the atmosphere. This can only be achieved when the stars undergo a strong radiation pressure,
causing the carbon and oxygen to remain in the envelope thanks to radiative levitation while the hydrogen
is blown away in a stellar wind. As the luminosity of the star decreases, the wind becomes less strong
and gravitational settling causes carbon and oxygen to sink, while helium will start floating to the surface.

17http://heritage.stsci.edu/2000/28/big.html
18http://www.iastate.edu/wet
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Figure 2.54: Part of the light curve of the DBV white dwarf PG 1456+103 obtained with the Nordic Optical
Telescope by Jan-Erik Solheim during a WET campaign (unpublished); from data provided by the WET
consortium.

This diminishes the excitation of the GW Vir oscillations. This is in complete agreement with the strong
evolutionary connection between the [WCE] and GW Vir stars derived by Werner & Herwig (2006). This
scenario also leads to a natural explanation of the DBV pulsators whose oscillations are excited by the same
heat mechanism, but this time acting on helium once it is sufficiently dominant and in the appropriate partial
ionization stage in the envelope.

The seismic analysis of GW Vir presented in the seminal work by Winget et al. (1991) implied not
only a first test case for the technique of asteroseismology,but at the same time a real breakthrough in the
derivation of white-dwarf structure models. This study paved the road for many more seismic studies of
compact stars since 1990. White dwarfs thus became the main targets of the WET consortium, although
numerous other types of pulsators have been added since.

Variable DB white dwarfs

Excitation of g-mode oscillations in DB white dwarfs due to the heat mechanism acting in the second partial
ionization zone of helium was predicted by Winget (1982) (see also Wingetet al. 1983). This led to the
discovery of the first suchvariable DB white dwarf, also termed DBV star, namely GD 358 (Wingetet al.
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Figure 2.55: The amplitude spectrum of the light curve of PG 1456+103 shown in Fig. 2.54.

1982). Only 13 DBVs are known to date (Kepler 2007 and references therein), probably due to their faintness
(V near 16, except for the prototype GD 358 with aV = 13.6). Their oscillation periods range from 4 to
12 min and their amplitudes are relatively large, from a few mmag to 0.2 mag. Bradley (1995) reviewed
the properties of these stars. They are situated in a broad range of effective temperature, from 11 000 to
30 000 K and the mass of their helium-rich envelope is estimated to be between10−6 and10−2 times their
total mass. As already mentioned above, this is in full agreement with the excitation computations for hot
compact stars by Quirionet al. (2007). It should be noted that convective driving, introduced by Brickhill
(1991) for variable DA white dwarfs, may also play an important role for the DB variables.

The light variations measured by the WET consortium of the simplest among the DBV pulsators,
PG 1351+489, showed the star to have only two modes, with periods of 489 s and 333 s (Wingetet al.1987).
The prototypical DBV star GD 358, on the other hand, has a verycomplex frequency spectrum (Natheret
al. 1990) with several tens of peaks. These two stars can be considered to capture the range of complexity
across the DBV class. An intermediate case and its frequencyspectrum are shown in Figs 2.54 and 2.55.
This is for the star PG 1456+103 with data obtained during theWET run XCOV22 (extended coverage
campaign 22, unpublished; see the WET website for more information).

Although the beating effect in GD 358 is prominent, the position of the frequency peaks in the spectrum
turn out to be quite stable over long timescales while the amplitudes clearly vary (Kepleret al.2003). Since
GD 358 is by far the best studied DBV star, it was thought untilrecently that the frequency spectra of all the
class members were stable. Handleret al. (2003), however, performed extensive monitoring of two DBV
stars with the WET and found evidence for amplitude and frequency variability. They suggested non-linear
resonant mode coupling to be the cause of the complex variability in these two stars (see,e.g., Buchleret al.
1997).
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Figure 2.56: Part of the light curve of the DAV white dwarf G29-38 obtained with the 0.75-m at SAAO by
Retha Pretorius in the framework of a WET campaign (unpublished); data courtesy of the WET consortium.

The potential of asteroseismology of DBV stars was highlighted by Bradleyet al. (1993). Moreover,
extensive seismic models and their oscillation propertiesfor DBV and DAV stars had already been pre-
sented by Tassoulet al. (1990) and Bradley & Winget (1991), pointing out the maturity of this branch of
asteroseismology more than a decade ahead of any other type of star, except the Sun.

Variable DA white dwarfs

Further along the white-dwarf cooling track one finds the hydrogen-richvariable DA white dwarfs, also
called DAV or ZZ Ceti stars. The DAV mode excitation results from convective driving, a mechanism first
proposed by Brickhill (1991) and further developed by Goldreich & Wu (1999) and Wu & Goldreich (1999).
The shape of the strip was found to be mainly determined by theeffective temperature and the mass of the
white dwarf, the most uncertain factor in theoretical mode prediction being the poorly known efficiency of
convection. This is in very good agreement with empirical determinations of the instability strip leading to
a very narrow range of less than 1 000 K in effective temperature, from 10 850 to 11 800 K (Bergeronet al.
2004, Mukadamet al.2004b).

The DAV stars vary multiperiodically with low amplitudes and fulfil a period-amplitude relation (Clemens
1994). The periods range from less than 100 s to more than 1 000s. Their frequency spectra also show mul-
tiplets and are, in general, simpler than those of the DBV andGW Vir stars. This may be an observational
bias because the DAV pulsators have been less intensively monitored than the GW Vir and DBV pulsators.
Indeed, the spectrum of the well-studied DAV star G29-38 appears to be very different, with numerous
harmonics and beat and sum frequencies, from season to season (Vuille et al.2000 and Figs 2.56 and 2.57).
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Figure 2.57: The amplitude spectrum of the light curve of G29-38 shown in Fig. 2.56.

While empirical mode identification in selected DAV stars ismostly achieved from multiplet structures
in the frequency spectrum, or from amplitude ratios based onmulticolour photometry, time-resolved spec-
troscopy of G29-38 with the Keck telescope has allowed the identification of the modes from line-profile
variations as well (Clemenset al. 2000). All these mode identification techniques confirm the low-degree
nature of the oscillations. The thickness of the hydrogen envelope governs the mode selection. Typically,
the mass of the hydrogen-rich envelope is estimated to be about 10−4 times the mass of the white dwarf.

Up to 2004, 39 DAV pulsators were known (e.g., Bergeronet al. 2004 and references therein), most
of them discovered from photometry but 7 among them from spectroscopy. A remarkable step ahead in
the understanding of the class was achieved by Mukadamet al. (2004a), who almost doubled the number
of class members with their discovery of 35 new pulsating DAVstars selected from the Sloan Digital Sky
Survey and the Hamburg Quasar Survey. Mullallyet al. (2005) subsequently found 11 new DAV stars,
Kepleret al. (2005) another 14, and Castanheiraet al. (2006) yet another 11, almost all again first selected
from the Sloan Digital Sky Survey. This brings the number of class members to 107. This led Mukadamet
al. (2006) to examine changes in the pulsation properties of DAVpulsators across the instability strip. They
found a well-established trend of increasing pulsation period with decreasing effective temperature. Also,
they showed that the pulsation amplitude decreases just before pulsations shut down at the empirical red
edge of the instability strip.
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2.7.3 Neutron stars

Neutron stars are the compact remnants that become gravitationally decoupled from the expanding ejecta
of a supernova explosion, resulting from a core collapse of asingle star with initial mass above 9 M⊙. The
collapse results either in a compact neutron star with a massbetween 1.5 and 3 M⊙ and a diameter of about
12 km, or in a black hole (when the remnant mass is above about 3M⊙). The precise upper mass limit of a
neutron star is not yet known, since the correct equation of state for a fully degenerate relativistic neutron
gas is still much debated. Hence there is as yet no firm value for the analogue of the Chandrasekhar limit
for the upper mass limit of a neutron star.

At birth, the infall causes a dramatic spin-up of the neutronstar and a strengthening of its magnetic
field by factors of millions, leading to a rotation period of only a few milliseconds to seconds, and likely
causing the star to send out radiation along the magnetic field lines. As a result, the neutron star is observed
as apulsar, with regular pulses at radio, visible, X-ray or gamma-ray wavelengths, whenever the magnetic
axis is inclined with respect to the rotation axis and when the geometry of the beam is such that the radiation
passes in our line-of-sight during each rotation period. The radio waves originate from material above the
magnetic poles, while the X- and gamma-rays are caused by theaccretion of matter on the very hot magnetic
poles of the neutron star.

Straight after the discovery of pulsars by Jocelyn Bell in the framework of her PhD Thesis (Hewishet al.
1968), nonradial oscillations were proposed as the explanation of the pulses (Ruderman 1968). Nevertheless,
the pulsating model was quickly abandoned in favour of an oblique rotation model to explain the observed
features of pulsars (Gold 1969). Only many years later, Strohmayer (1992) and Strohmayeret al. (1992)
re-introduced nonradial oscillations to account for the numerous complex observed properties of pulsars,
including drifting pulses and stationary sub-pulses, because the rotating models failed to explain all these
details in the observed variability. The observational andtheoretical progress in the understanding of pulsar
beams was summarized by Graham-Smith (2003).

Clemens & Rosen (2004) recently presented an oblique pulsator model based on high-overtone nonra-
dial surface g-mode oscillations of very high degree (l near a few hundred andn near a few tens), aligned
to, and symmetric about, the magnetic axis of the pulsar, as an explanation of the complex observed phase
behaviour of the pulses and sub-pulses and of the morphologyof pulsar beams. Such modes have periods
near 10 s and were shown to have low energy and large surface amplitude (McDermottet al.1988), in con-
trast to core g modes. The quasi-periodic changes in the dataare explained as switching between modes
of different l andn, while negative beating is held responsible for null detections occurring in the observed
time series of the flux once in a while. These features of this model were claimed to be similar to mode
changes observed for white dwarfs on the one hand, and to the oblique pulsator model explaining the roAp
stars on the other hand.

A relatively new aspect of neutron star physics, in which nonradial oscillations play an important role,
are the gravitational waves radiated during the formation process of the neutron star. After the gravitational
collapse, the proto-neutron star radiates its binding energy through neutrino emission on a timescale of tens
of seconds before the final neutron star is formed. This formation process is obviously very hard to study,
unless we could detect the gravitational radiation associated with the birth of the hot compact remnant.
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Indeed, the oscillation spectrum of a forming neutron star changes quite drastically during the formation.
This is easily understood from the argument that the frequencies are mainly dependent on the mass and
radius of the object. Typically, the neutrino emission during the formation results in a mass decrease of
0.1 M⊙ and a radius decrease from 35 km to 12 km. Such changes will have a significant effect on the mode
frequency values.

Ferrariet al. (2003) have computed the changing frequency spectra and damping times of the oscilla-
tions of forming neutron stars. They found the oscillation spectra of p, g, and f modes of forming neutron
stars to be remarkably different from those of cold old neutron stars. The frequencies of the modes cluster
typically between 900 and 1500 Hz at the start of the formation process, but evolve to very distinct values
for these three different types of modes about 5 s after the formation. Also, the different modes keep very
different levels of the mechanical energy reservoir to sendout in the form of gravitational waves after the
completion of the formation. The authors ignored the effectof rotation, even though a significant amount
of angular momentum is generated during the birth of the neutron star, and they ignored the bounce and the
first 200 ms after collapse which needs to be studied hydrodynamically; even so, this pioneering study gives
hopeful prospects for the near future. Ferrariet al.(2003) also showed that the first-generation gravitational-
wave detectors (VIRGO19, LIGO20, EURO21) should be able to detect the gravitational signals connected
to the nonradial oscillations sent out during these different stages in the life of the neutron star, within much
of the Milky Way Galaxy. This would open up the field of gravitational-wave asteroseismology. Similarly,
the processes leading to the formation of stellar black holes may involve oscillations that can be detected
through observations of gravitational waves.

2.8 Pulsations in binaries

For all the classes considered above, numerous examples occur where the pulsating star resides in a bi-
nary or, more generally, in a multiple system. When this is a wide visual binary,i.e., for cases where the
components do not affect each other’s behaviour and evolution, the binarity is of not much importance for
the oscillation study, other than being an asset because it allows a more accurate determination of the fun-
damental parameters (such as mass, radius and age) of the pulsating component compared with a single
pulsator. A notable example is the visual binaryαCen A (G2V) andαCen B (K1V), whose components
both show p-mode oscillations. At the upper end of the mass range, the visual binary WR 86 is worth men-
tioning. It is a variable WC7 Wolf-Rayet star with an initialmass of some 40 M⊙ having a 20-M⊙ βCep
companion (Paardekooperet al.2002). This companion pulsates in p modes with frequencies of 6.914 d−1

and 7.236 d−1. Contrary to theαCen binary, the oscillations of this very massive binary have not yet been
exploited seismically, because of lack of mode identification.

Binarity offers the same advantage of providing accurate fundamental parameters in close unevolved
detached binaries for which the tidal interaction is negligible. In general, this is the case for orbital periods
above some 20 d for ZAMS components and above some 100 d for TAMS components (Willems 2003).

19http://wwwcascina.virgo.infn.it/
20http://www.ligo.caltech.edu/
21http://www.astro.cardiff.ac.uk/geo/euro/
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In such cases, a complication may, however, occur when both components have the same spectral type,
implying a merging of their oscillatory signature in the data and hence in the Fourier spectrum. As long
as the contributions of the different components can be unravelled, seismic modelling can be achieved to at
least the same level as for single stars.

Another type of complication occurs when one of the components of a currently detached close binary
system has already gone through one or more phases of mass loss during its evolution, usually implying that
mass transfer between the components has taken place. In such a situation, the gainer star is polluted by
material of the donor star. This may have led to different surface compositions and internal structures of both
the gainer and the donor, depending on whether the outer envelope is radiative or convective. Hence, if one of
them is oscillating, the mass transfer will have affected the oscillatory behaviour. In fact, asteroseismology
may in this case be a good tool to reconstruct the mass transfer and angular momentum history within the
binary. Unfortunately, we do not know of any example where such reconstruction of the evolutionary history
from oscillations has been achieved.

Extreme cases of interaction occur when a binary system enters acommon-envelope phasewhere a
compact component of the system effectively orbits within the envelope of a more tenuous component. This
leads to rapid loss of mass and angular momentum, and hence toa drastic shrinking of the orbit.

Eclipsing binaries are of special value, because they deliver the most stringent constraints on the phys-
ical parameters of the components. For many of the classes ofpulsating stars discussed above, we know
of components residing in an eclipsing binary. The number ofsuch cases is low, however, ranging from
none for solar-like oscillators, roAp,γ Dor, RR Lyrae stars and Cepheids, to a few for B-type pulsators and
compact oscillators, to a few tens forδ Sct stars, Miras and semi-regulars (Pigulski 2006). In principle, the
oscillation modes can be identified from eclipse mapping in such cases.

Excellent recent overviews of pulsating stars in multiple systems (including clusters) were provided
by Pigulski (2006) and Lampens (2006). In the following, we describe in detail some situations where the
binarity is more than just a happy circumstance that delivers better fundamental parameters. In doing so,
we do not consider disk oscillations as in,e.g., X-ray or Be binaries; we focus entirely on cases where
the oscillations can, in principle, be used to probe the stellar interiors rather than focusing on stellar disk
properties.

2.8.1 Tidal perturbations of free oscillations

An extensive recent compilation of studies on the tidal evolution and oscillations in binary stars is available
in Claretet al. (2005). Free oscillation modes excited by mechanisms intrinsic to the star (see the following
chapter for a detailed explanation of such excitation mechanisms) may be altered by tidal effects, in the
sense that their frequencies may undergo shifts. Rigorous and detailed mathematical descriptions of tidal
effects on free oscillation modes can be found in Smeyers & Denis (1971), Saio (1981), Reyniers & Smeyers
(2003a,b), Willems & Claret (2005), and references in theseworks.

Detections of tidal effects were first suggested by Fitch (1967, 1969) in someδ Sct andβ Cep stars, but
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it became evident later on that these were premature. The first firm observational establishment of tidally
affected oscillation frequencies was achieved by Fitch & Wisniewski (1979) for theδ Sct star 14 Aur Aa.
The authors showed that the departure from equidistance in the observed frequency triplet can be explained
by tidal splitting of the mode, as was confirmed by Reyniers & Smeyers (2003b). Goossenset al. (1984)
suggested the variations of the oscillation frequency of the 33 d circular binaryβ Cep starσSco to be due
to modulation by tidal action. Smith (1985a,b) subsequently made a thorough study of the line-profile
variability of the binaryβ Cep star Spica (αVir), with period 4.015 d and eccentricitye = 0.146, and
interpreted the retrograde, toroidal-like oscillation mode he detected to be due to tidal shear exerted by the
B2 companion.

There are also a number of pulsating stars in ellipsoidal variables, in which the tidally deformed com-
ponents cause variability with twice the orbital frequency(e.g., Aerts 2007 for a review). A noteworthy
example is the star XX Pyx (Handleret al. 1998) which was long considered as a prototypical youngδ Sct
star suitable for seismic modelling (Pamyatnykhet al. 1998) until Arentoftet al. (2001) and Aertset al.
(2002) found it to be 1.15 d circular binary with ellipsoidalvariations in which tidal effects dominate over
rotational effects. Henryet al. (2004) found HD 207651 to be a triple system withδ Sct and ellipsoidal
variations but no g modes triggered by tides. Lampenset al. (2005) also found the presence of ellipsoidal
variations in the spectroscopic triple system DG Leo, whichis composed of three stars of late-A spectral
type. The wide component is aδ Sct star while the inner binary consists of two Am componentsof which at
least one is not yet rotating synchronously although the orbit is circular. De Catet al. (2006, 2007), finally,
list several ellipsoidal variables among their samples of candidateγ Dor and pulsating B stars.

Numerous other pulsating stars reside in close binaries, but their detected frequencies, or differences
among them, are not an exact multiple of the orbital frequency. Aerts & Harmanec (2004) compiled a list of
close binaries with confirmed light and/or line-profile variability, several of which are confirmed pulsators,
so these are all good candidates to continue the search for tidally affected and/or induced oscillations. This
list originated from two independent approaches,i.e., the search for close binarity among confirmed oscil-
lators and the search for oscillations in confirmed close binaries. The authors found no obvious relations
between the orbital eccentricity, the orbital frequency, the rotational frequency and the intrinsic frequencies
of oscillations.

2.8.2 Tidally induced oscillations

It was realized long ago that resonant excitation of free oscillation modes by the tidal action of a companion
can in principle be an effective way to trigger oscillationsin binary components (Cowling 1941). Tidally
induced oscillations and their effect on evolution and energy dissipation within a binary have been studied
theoretically, for very different types of situations, by numerous authors,e.g., Kato (1974), Zahn (1975),
Savonije & Papaloizou (1984), Kosovichev & Novikov (1992),Dieneret al. (1995), Kumaret al. (1996),
Witte & Savonije (1999, 2001), Savonije & Witte (2002), Willemset al. (2003), Rathoreet al. (2005) and
references in these works. These authors show that the occurrence of suitable resonances depends not only
on the properties of the oscillation modes of the stars, but mainly also on the period and the eccentricity
of the orbit, as well as on the component masses and radii. Thetheoretical computations show that the
tide-generating potential within an eccentric binary implies an infinite number of partial dynamic tides with
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forcing angular frequencies. Whenever one of those forcingfrequencies comes close to an eigenfrequency of
a free oscillation mode of one of the components, it is possible that the tidal action exerted by the companion
is sufficiently enhanced to excite this mode resonantly. Theoccurrence of such resonances between partial
dynamic tides and free oscillation modes is particularly relevant for the excitation of g modes, because their
frequencies are similar to those of the orbital frequenciesin close binaries. Moreover, the tide-generating
potential is dominated by spherical harmonics of degreel = 2. Most computations for resonant excitation
are therefore restricted to these modes. As discussed by, for example, Kosovichev & Novikov (1992) the
excitation of modes through tidal interaction and the subsequent dissipation of the pulsation energy may
play an important role in the capture of stars by massive black holes, through the loss of orbital energy by
the star.

From an observational viewpoint, the detection of a tidallyinduced oscillation may seem simple at
first sight. Indeed, whenever variations with an exact multiple of the orbital frequency are found, one
may interpret these as due to a resonantly excited mode. In practice, it turns out to be extremely difficult to
establish proof of tidally induced oscillations, despite numerous long-term efforts to search for a relationship
between the orbital frequency and variability in close binaries (e.g., Aerts & Harmanec 2004; Claretet al.
2005, and references therein).

The detection of frequencies which are an exact multiple of the orbital frequency has, as far as we know,
been established for only two stars so far: the hybridδ Sct/γ Dor star HD 209295 (Handleret al.2002) and
the SPB star HD 177863 (De Catet al. 2000; Willems & Aerts 2002). These two stars reside in short-
period eccentric binaries such that the circumstances are indeed favourable for tidal resonant excitation.
Seismic modelling has not yet been possible for either of these stars. For HD 209295 the modes could not
be identified, while only one pulsation frequency was firmly established for HD 177863.

2.8.3 Are the SX Phe stars all blue stragglers?

Blue straggler stars get their name from the fact that they appear close to the main sequence in stellar clusters,
but substantially hotter and bluer, and hence presumably more massive, than the turn-off in the colour-
magnitude diagram as defined by the bulk of the stars in the cluster. They are believed to be formed from the
evolution and mass exchange of primordial binaries or from direct stellar collisions between main-sequence
stars in dense globular clusters (e.g., Bailyn 1995; Hurleyet al. 2001; Sandquist 2005; Silset al. 2005,
and references therein). The blue stragglers have significantly smaller projected rotational velocities, but the
same chemical peculiarities, as ordinary cluster and galactic field stars of the same spectral type (Andrievsky
et al. 2000). Recently, Ferraroet al. (2006) detected 300 candidate blue stragglers in the galactic globular
clusterωCen. They used the absence of central concentration in the blue straggler distribution acrossωCen
as an argument to rule out a collisional origin for all of the blue stragglers and suggest a non-collisional
origin for some of these stars. Hurleyet al. (2005) used M67 as a test-bed for cluster evolution models and
found different formation paths for the 28 observed blue stragglers in that cluster. In particular, a substantial
population of short-period primordial binaries is needed to explain the observed blue straggler population
of M67.

It is a lucky circumstance that many of the SX Phe stars were found to be blue stragglers. They seem to
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have a relatively high mass (Rodrı́guez & López-González2000). These pulsating blue stragglers are thus
interpreted in terms of binary mergers leading to a globallymixed helium-enriched star and their oscillations
may provide clues to the formation scenario. Gillilandet al. (1998) made an extensive study of six SX Phe
variables in the globular cluster 47 Tuc with the Hubble Space Telescope. Two of them oscillate in the
fundamental and first overtone, two others oscillate simultaneously in the fourth and fifth radial overtones
and two have multiple nonradial oscillations. This allowedthe authors to combine evolution and pulsation
constraints, resulting in mass estimates for the four double-mode SX Phe stars ranging from1.3±0.1 M⊙ to
1.6±0.2 M⊙, and additional stellar parameters which are in excellent agreement with the cluster properties.
Zhanget al. (2005) analysed two SX Phe stars in M 67. They found these stars to have, respectively, four
and five radial modes. One of them has fundamental parametersin line with an unevolved late A star. The
other one is the primary of a 4.2-d eccentric spectroscopic binary and has subsynchronous rotation. This
SX Phe star was probably formed through stable Roche lobe overflow.

The global enrichment of helium in blue stragglers stronglyaffects the temperature and luminosity
of a given star, but the location of the instability strip blue edge and the slope of the period-luminosity
(PL) relation are unchanged. This suggests that the PL relation is not affected by blue straggler formation
provided that blue stragglers are fully mixed stellar mergers (Templetonet al. 2002). Nevertheless, Bono
et al. (2002) found that the modal stability and the pulsation amplitudes are somehow affected by the He
content. The detailed properties of SX Phe stars could thus supply hints on the He content and on the
formation history of these stars, but we believe it is fair tostate that this stage has not yet been reached.

2.8.4 Are all dusty RV Tauri stars binaries?

Binaries make up a significant fraction of the post-AGB starsknown to date (Van Winckel 2003). It was
suggested by Lloyd Evans (1999) that IRAS infrared colours imply that RV Tauri stars are stars within
the Cepheid instability strip with dusty circumstellar disks. By comparing the observational characteristics
of RV Tauri stars and the class of extremely iron-deficient post-AGB objects, Van Winckelet al. (1999)
concluded that binarity is indeed a widespread phenomenon among RV Tauri stars.

More recently, Yudinet al. (2003) monitored eight RV Tauri and five R CrB stars (see below) po-
larimetrically, and established the presence of permanentclumpy non-spherical dust shells around them.
Moreover, De Ruyteret al. (2006) provided compelling evidence from spectral energy distributions extend-
ing to 850µm that all six well-studied dusty RV Tauri stars are binarieswith a circumbinary disk originating
from the AGB evolutionary stage.

The question naturally arises whether all RV Tauri stars arebinaries. In any case, the large-amplitude
oscillations play a key role in the rapid mass-loss phase on the AGB where the stars undergo a dust-driven
stellar wind. Mass transfer between evolving stellar components in a binary then leads to a natural explana-
tion of a dusty circumbinary configuration and the observed infrared properties of the RV Tauri stars. This,
together with the fact that their binary nature is very hard to establish on a case-by-case basis, makes it quite
likely that all dusty RV Tauri stars result from the evolution of a pulsating AGB binary that managed to avoid
a common-envelope phase. It requires very long-term spectroscopic monitoring to establish firm observa-
tional proof of this, because the pulsations cause radial velocity variations which are of similar magnitude
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Figure 2.58: Top: Light curve of the HdC pulsator R CrB. The bottom panels show two enlarged sections.
Data taken from Yudinet al. (2002).

to the orbital variations (see Fig. 2.35).

2.8.5 Hydrogen-deficient carbon stars and extreme helium stars

R Coronae Borealis (R CrB) stars are a particular subset of evolved pulsating hydrogen-deficient carbon
(HdC) stars with large amplitudes. They have periods between 40 and 100 d, amplitudes of a few tenths of
a magnitude in brightness (see Fig. 2.58) and a few km s−1 in velocity, and they have multiperiodic light
curves (e.g., Lawson & Kilkenny 1996). In general, the HdC stars are variables with an order of magnitude
lower amplitudes than the R CrB stars. Both the R CrB stars andthe HdC stars seem to be fundamental
mode pulsators (Weiss 1987) with semi-regular light and radial-velocity curves. In addition to pulsational
variations, from extensive long-term infrared photometry, Feastet al. (1997) concluded that the R CrB and
HdC stars in general show variations due to their circumstellar dust on timescales of a few hundred to a few
thousand days.

Extreme helium (eHe) stars, on the other hand, are highly evolved luminous stars (e.g., Jeffery 1996).
Their surfaces are characterized by a mixture consisting ofthe remnant of a H envelope, CNO-processed
helium, and carbon products resulting from He burning. The eHe stars have highL/M ratios. They are
expected to pulsate, either due to the heat mechanism based on theZ-bump (Saio 1993, 1995; Jeffery &
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Saio 1999) or due to strange-mode instabilities (Saio & Jeffery 1988). The variable eHe stars are sometimes
subdivided into categories according to their type of oscillation: V652 Her variables are radial and nonradial
Z-bump pulsators with periods near 0.1 d, PV Tel variables have radial strange modes with characteristic
periods near 20 d (Kilkennyet al.1999) while V2076 Oph variables seem to have nonradial strange modes
with timescales between 0.5 and 8 d (Jeffery & Heber 1992, Glatzel & Gautschy 1992). The variations turn
out to be very complex, with quasi-multiperiodicity only, and imply an observational challenge in view of
the long periods. In fact, Wrightet al. (2006) made a very extensive long-term observational studyof the
hottest pulsating eHe star, V2076 Oph, and found no coherence at all in its variability. In particular, they did
not manage to recover the periods reported earlier in their photometry and spectroscopy of the star. For an
enlightening review on eHe stars we refer to Jeffery (2007).

From an evolutionary point of view, all of the R CrB, HdC and eHe stars lie on post-AGB evolutionary
tracks. Ibenet al. (1996) originally considered three scenarios to form HdC and R CrB stars, but only two
of them are commonly accepted now. A first one explains the HdCand R CrB stars as hydrogen deficient
due to a late thermal pulse at the end of the post-AGB phase. The result of this born-again scenario is an
HdC star with chemical surface composition in agreement with progenitors of WR stars or of hot planetary
nebulae nuclei. De Marcoet al. (2002) tested the born-again scenario on four stars but concluded that they
cannot have the same evolutionary history since only two of the targets are compatible with the proposed
scenario. The second scenario involves the merging of two low-mass white dwarfs, one CO white dwarf and
one lower-mass He white dwarf, resulting in a luminous He star (Saio & Jeffery 2002). This is much more
plausible as an explanation for the eHe stars, and as these show many similarities to the HdC and R CrB
stars, it is probably also an important route to explain these latter objects.

2.8.6 Pulsating sdB primaries

The prototypical pulsating sdB star EC 14026-2647 is a binary system, as is the case for about two thirds of
the group members (Maxtedet al.2001; Morales-Ruedaet al.2003; Moralez-Rueda 2005). It is very likely
that the binarity is of fundamental importance for the formation of all the sdB stars.

The sdB stars are believed to evolve directly to the white-dwarf stage and so they are the immediate
progenitors of low-mass white dwarfs. Two of the members areindeed found in a post-EHB stage (Morales-
Ruedaet al. 2003). The details of the evolutionary state of the sdB starsis still largely unknown. In order
to end up on the EHB they must lose nearly all of their hydrogenat almost exactly the same phase,i.e.,
when the helium core has attained the minimum mass required for the helium flash to occur. Moreover,
many of them have short orbital periods between a few hours and a few days and several known companions
are white dwarfs. These observational facts have led to the proposal of three evolutionary channels for the
formation of sdB stars (see Hanet al.2002, 2003 and references therein):

1. common-envelope ejection, leading to short-period binaries with periods between 0.1 and 10 d and
an sdB star with a very thin hydrogen envelope; these sdB stars have a mass distribution that peaks
sharply at 0.46 M⊙;

2. stable Roche lobe overflow, resulting in similar masses asin case 1, but with a rather thick hydrogen-
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Figure 2.59: Top: ULTRACAM/VLT g’ light curve of the eclipsing sdBV star PG 1336-018. The bottom
panels show two enlarged sections of the primary and secondary eclipse. Data taken from Vučkovićet al.
(2007).
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rich envelope and longer orbital periods between 10 and 100 d;

3. double helium white-dwarf mergers giving rise to single sdB stars with a wide distribution of masses.

An example of case 1 is the eclipsing binary pulsating sdBV PG1336-018 whose stunning light curve
was discovered Kilkennyet al. (1997). This star has been intensively studied ever since, including during
two WET runs (Kilkennyet al.2003). We show its g’ light curve obtained with ULTRACAM22 on the VLT
in Fig. 2.59. The circular binary orbit has a period of 2.4 h and the companion is an M dwarf, leading to a
large reflection effect. As can be seen in Fig. 2.59, the oscillations of the primary remain visible during the
primary eclipse.

An important question is the possible role of the binarity intriggering the oscillations of sdB stars. This
has been tackled by Fontaineet al. (2003), who found that, indeed, the work done by the tidal force through
the resonant excitation of a g mode becomes significant as theorder of the mode increases. Thus, it seems
plausible that some of the g modes observed in sdB binary pulsators may be tidally excited. It is unlikely
that the p modes are tidally excited, because their frequencies are too high for that. They may, however, turn
out to be affected by the binarity (see,e.g., Reedet al.2005).

2.8.7 Pulsating Cataclysmic Variables

Cataclysmic Variables (CVs) are short-period interactingclose binaries with a white-dwarf component.
The white dwarfs within such systems undergo mass accretionfrom their companion. The white-dwarf
component itself is quite often invisible, because the accretion process dominates the flux we receive from
CVs. The accretion rates vary a lot from one CV to the other. For those systems with a low mass transfer
rate, the gas of the donor settles in a disc. This stored gas settles onto the white dwarf at semi-regular
intervals, leading to a dwarf nova eruption. The white-dwarf components of such systems are detectable in
visible light when the systems are in a low quiet state. Such CVs are, however, intrinsically faint. Several of
them have been discovered from the Sloan Digital Sky Survey (Szkodyet al.2004).

Several CVs turn out to have a pulsating DAV primary. The firstsuch discovered system was GW Lib
(Warner & van Zyl 1998), a dwarf nova with an orbital period of76.8 min for which three oscillation modes
with periods of 646 s, 377 s, and 236 s were established in the discovery paper. Several additional discov-
eries, involving systems with similar orbital periods, followed soon (Warner & Woudt 2005 and references
therein). All of them turn out to have similar oscillation periods ranging from 100 s to 1 400 s. The present
number of pulsating CV primaries amounts to 11 (Marsh, private communication).

Townsleyet al. (2004) managed to derive estimates of the white-dwarf mass,the accreted mass and the
mass-transfer rate for GW Lib from seismic modelling. The rotation rate could not be derived, because the
multiplet structure in its Fourier spectrum has not been resolved, despite extensive observational effort (van
Zyl et al.2004). It turns out that the accretion rate of the pulsating CV primaries is sufficiently low to keep
the white-dwarf component in the DA instability strip, eventhough a white dwarf of its age should be much

22http://www.shef.ac.uk/physics/people/vdhillon/ultracam/
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too cool to be a DAV star. A natural question of course emerges: are the accretion rates within CVs with
DO or DB primaries suitable to keep these white dwarfs in the corresponding instability strip as well?

AM CVn is the prototype of a class of ultra-short period helium-accreting cataclysmic binaries. It turns
out that the AM CVn stars probably have a mass transfer rate that is too high for them to remain in the DO
or DB instability strips, so it is unlikely that there will bemany discoveries of pulsating primary AM CVn
stars. Nevertheless, Solheimet al. (1998) monitored AM CVn in photometry over a 12-d time span during
a WET run. While several periodic light modulations with harmonics of the basic frequency near 950µHz
can be explained as a two-armed spiral structure (Savonijeet al.1994), the authors also found evidence for
a g-mode pulsation, which indicates that the central white dwarf may in fact be a DO variable. Arraset
al. (2006) indeed concluded from theoretical instability computations for a wide range of WD masses that
g-mode oscillations are predicted in a diversity of CVs.

2.8.8 X-ray burst oscillations

Many of the currently known neutron stars reside in close binaries, as this is a very convenient location to
allow their observational detection. Besides the importance of surface oscillations in explaining the observed
complex features of neutron stars discussed above, Piro & Bildsten (2006) provided evidence that nonradial
surface g modes are also a good explanation for X-ray burst oscillations. Such burst oscillations are thought
to be a modulation of the neutron star rotation frequency. Piro & Bildsten’s model builds further on the
original ideas by Lee (2004) and Heyl (2004) that a retrograde surface mode with an observed frequency
just below the rotation frequency is the cause of the burst oscillations.
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Chapter 3

Theory of non-radial oscillations in a
nutshell

In this chapter we describe the basic theory of non-radial oscillations and of mode excitation in stars.
We provide only a very concise overview, skipping many of themathematical details. The reason is that
the students at Leuven University have the option to follow a6 ECTS course entitled “Theory of stellar
oscillations”, which is taught in the same year as the current course on Asteroseismology. It is therefore
evident that a detailed outline of the theoretical aspects of stellar pulsation is beyond the scope of the current
course, in which the applications of asteroseismology are the main topic. The interested student can find
details on the theory of stellar oscillations in:

• the lecture notes entitled “Theorie van Stertrillingen” byT. Van Hoolst (only in Dutch) taught at
Leuven University;

• the lecture notes entitled “Stellar Oscillations” by J. Christensen-Dalsgaard (2003, Aarhus Univer-
sity, English version) available from
http://astro.phys.au.dk/∼jcd/oscilnotes/;

• the lecture notes entitled “Stellar Stability” by. R. Scuflaire and A. Thoul (2002, Liège University,
English version) available from
http://www.asteroseismology.be/activities.html;

• the book entitled “Nonradial Oscillations of Stars” by Unnoet al. (1989).

Our theoretical description is based upon the stellar structure equations (outlined in very much detail in the
3-rd year course entitled “Stellar Structure and Evolution”). If you do not have any pre-knowledge thereof,
and/or if mathematics is not your favourite subject, you caneasily skip large parts of this chapter and limit
yourself to the brief descriptive text on the introduction into the theory of oscillations given in Chapter 1
and to the sections 3.7 and 3.8 below. The rest of the course can be followed keeping in mind the expression
for the displacement field due to a non-radial oscillation, given in (1.4).

114



Much in this chapter is based upon the course notes “Stellar Structure and Evolution” (C. Aerts,
University of Leuven, 2002) and on the PhD thesis of M.-A. Dupret (University of Lìege, 2002). We refer to
these works for more information.

3.1 General equations of hydrodynamics

We consider in the following a star that can be approximated as a spherically symmetric gaseous sphere
in the absense of visceous effects, magnetic fields and strong rotation (i.e. we neglect the Coriolis and
centrifugal forces).

Two types of description are common to study the hydrodynamics of stars: theLagrangianand the
Euleriandescription. In the Lagrangian description, a label~a is assigned to each infinitesimal mass element
in the star. The local physical quantities, such as the position, density, temperature, etc. are a function of~a
and of timet. For any quantityX the time derivative ofX following the movement of a mass element will
be denoted bydX/dt. The Eulerian description, on the other hand, makes use of the position vector~r and
the timet to describe the local physical quantities. The time derivative in the Eulerian desciption, which is
valid for a given fixed position in space, will be denoted as∂X/∂t.

The equations of hydrodynamics that apply to stars under theapproximations mentioned above are the
following:

1. The equation of mass conservation:

dρ

dt
+ ρ∇.~v =

∂ρ

∂t
+ ∇.(ρ~v) = 0, (3.1)

where~v andρ are respectively the local velocity and density.

2. The equation of momentum conservation:

d~v

dt
=
∂~v

∂t
+ ~v.∇~v = −∇ψ − ∇P

ρ
, (3.2)

whereP is the total pressure (gas, radiation and turbulent pressure) andψ is the gravitational potential.
The latter fulfills the equation of Poisson:

△ψ = 4πGρ. (3.3)

3. The equation of energy conservation:

T
dS

dt
= ε− ∇. ~F

ρ
, (3.4)

whereT is the local temperature,S the entropy,ε the rate of energy generation and~F the energy flux.
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The energy transport in a star is either achieved through radiation or through convection so we note the total
flux as ~F = ~FR + ~FC with ~FR the radiative flux and~FC the convective flux. In the bulk of the star the
diffusion approximationis valid because the mean free path of the photons (typicallysome cm in the solar
interior) is much smaller than the distance to overcome to reach the surface. The radiative flux is therefore,
to a good approximation, given by the diffusion equation:

~FR = −4acT 3

3κρ
∇T, (3.5)

with κ the Rosseland mean opacity. This equation results in the following value for the radiative temperature
gradient:

d ln T

d lnP
= ∇rad =

3

16πacG

κlP

mT 4
, (3.6)

with l andm the local luminosity and mass respectively, i.e. the luminosity and mass contained within the
sphere of radiusr. Whenever this radiative temperature gradient exceeds theadiabaticgradient

d lnT

d lnP
= ∇ad =

(

∂ lnT

∂ lnP

)

S
, (3.7)

the energy transport will no longer be achieved by radiationbut instead by convection. A generally applica-
ble description for the convective flux is difficult to deriveand is in fact not available. Usually, one relies on
themixing-length theoryof convection. This is a local time-independent theory in which one assumes that
the mean free path of a convective element,l, can be well described as

l = αHp = −α
(

d lnP

dr

)−1

, (3.8)

whereHP is the pressure scale height andα is the mixing-length parameter, which is of order unity (α ≈ 1.8
for the Sun). The precise location of the transformation from a radiative to a convective region is very
difficult to determine. The reason is that it depends on a poorly known phenomenon calledconvective
overshooting, which is a term to express that the convective cells do not stop abruptly once entering a
radiative zone. Convective overshooting is usually parametrised by the so-calledovershooting parameter
αov defined as the fractional length, expressed in units ofHP , over which the convective cells still move
while entering the radiative zone. Typical values forαov considered in stellar modelling range from 0.0 to
0.3. A very important subject of research in stellar structure is to find accurate observational constraints on
this poorly known parameter.

In order to solve the equations of hydrodynamics we need to take into account the relations between the
different variables. One speaks of theequations of state: P = P (ρ, T, χi), S = S(ρ, T, χi), κ = κ(ρ, T, χi)
whereχi denotes the chemical composition in terms ofi different elements. Moreover, we need to determine
ε(ρ, T, χi) from nuclear physics. Finally, we need to specify a certain number of well-chosen boundary
conditions. We will not go into details in these matters.

3.2 Perturbation approach

At each given time a pulsating star is not in equilibrium but the position, density, pressure and temperature
of a mass element vary periodically around their equilibrium value. The equations presented in the previous
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section are therefore not fulfilled during the oscillation cycle. For any physical quantityX we denote byX0

its equilibrium value. Let~a be a label assigned to a mass element and~r a particular position in space. The
Lagrangian perturbation ofX is defined as

δX(~a, t) ≡ X(~a, t) −X0(~a ). (3.9)

It represents the variation ofX while following the mass element labeled~a. Its Eulerian perturbation is

X ′(~r, t) ≡ X(~r, t) −X0(~r ) (3.10)

and represents the variation ofX at a given fixed position~r in space.

We assume that the amplitude of the variation of each physical quantity remains small. In that case it
is justified to use thelinear approximation, in which all second and higher order terms in the perturbations
are neglected. In what follows we present the perturbed equations to solve, while omitting the subscript
“0” for the equilibrium values of the quantitiesX for simplicity. In this approximation, the Lagrangian and
Eulerian perturbations relate as follows:

δX = X ′ + ∇X0. ~δr. (3.11)

The perturbed version of the equations given in the previoussection, which are obtained by taking
either the Lagrangian or the Eulerian perturbation on both sides of the equations, are as follows:

1. mass conservation:
ρ′ + ∇.

(

ρ ~δr
)

= δρ+ ρ∇. ~δr = 0. (3.12)

2. momentum conservation:
∂2 ~δr

∂t2
= −∇ψ′ +

ρ′

ρ2
∇P − ∇P ′

ρ
. (3.13)

3. energy conservation:

T
dδS

dt
= T

(

∂S′

∂t
+ ~v.∇S

)

= ε′ +
ρ′

ρ2
∇. ~F − ∇. ~F ′

ρ
. (3.14)

The perturbed diffusion equation reads:

~F ′

R =

(

3
T ′

T
− κ′

κ
− ρ′

ρ

)

~FR − 4acT 3

3κρ
∇T ′. (3.15)

The perturbed equations of state are not outlined here in detail. We do point out that one usually
assumeslocal thermodynamic equilibriumin their derivation. This is a very good approximation in the
stellar interiors of all stars but not necessarily in the outer envelope where the density is low. Also one
usually neglects the perturbation of the chemical composition. This approximation is valid whenever the
time scales of diffusive and rotational mixing are much longer than the oscillation periods in parts where no
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nuclear reactions takes place. In the core, however, the time scale of some nuclear reactions is short and we
need to take into accountδε there.

The system of equations has to be closed by adding the perturbed versions of the chosen boundary
conditions, which we do not outline here for brevity.

3.3 Linear non-radial oscillations

The differential equations obtained in the previous section are linear and have coefficients which are not
dependent on time. We can therefore find a solution to these equations by expressing each of the unknowns
as an infinite linear combination, each term having a time-dependence of the formexp(iωt). Moreover, the
spherical harmonicsY m

l (θ, ϕ), l = 0 → +∞;m = −l, . . . , l are a family of orthogonal functions defined
on the sphere which form a complete basis. It is therefore appropriate to write a general solution of the
system of differential equations (3.12), (3.13), (3.14) as

~X(r, θ, ϕ, t) = Re





+∞
∑

l=0

+l
∑

m=−l

+∞
∑

n=0

Al,m,n
~Xl,m,n(r)Y m

l (θ, ϕ) exp(iσl,m,nt)



 , (3.16)

where “Re” denotes the real part andσl,m,n = ωl,m,n/2π are the complex oscillation frequencies of the
different spheroidal modes of oscillation. The real part ofσl,m,n is usually called the cyclic frequency and is
also denoted asf = (1/period) while the real part ofωl,m,n is called the angular frequency; the opposite of
the imaginary part ofσl,m,n is called thegrowth rateof the mode. Whenever the imaginary part is positive
the mode is said to bevibrationally stable, which means that the oscillation is damped and the oscillation
amplitude decreases exponentially. If the imaginary part is negative, however, the mode isvibrationally
unstableand the oscillation is excited.

After some elaborate mathematical manipulations, which weomit here, one finds the following form
for the differential equations:

1. Conservation of mass:
δρ

ρ
+

1

r2
d

dr

(

r2ξr
)

− l(l + 1)

σ2r2

(

δψ +
δP

ρ

)

. (3.17)

2. The three components of the equation of momentum conservation:

σ2ξr =
∂ψ′

∂r
+
ρ′

ρ

Gm

r2
+

1

ρ

∂P ′

∂r
, (3.18)

σ2ξθ =
1

r

∂

∂θ

(

ψ′ +
P ′

ρ

)

, (3.19)

σ2ξϕ =
1

r sin θ

∂

∂ϕ

(

ψ′ +
P ′

ρ

)

. (3.20)
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3. Conservation of energy:

i σTδS = − 1

4πr2ρ

dδL

dr
+ ε

(

δε

ǫ
+
δρ

ρ
+

1

r2
d(r2ξr)

dr

)

+
l(l + 1)

4πρr3

[

LR

(

δT

r(dT/dr)
− ξr
r

)

− LC
ξh
r

]

.

(3.21)

wherem is the mass contained within the sphere of radiusr, LR andLC the radiative and convective
luminosity and where we have used the following expression for the Lagrangian displacement vector:

~δr(r, θ, ϕ) = Re

{[

ξr(r)Y
m
l (θ, ϕ)~er + ξh(r)

(

∂Y m
l

∂θ
(θ, ϕ)~eθ +

1

sin θ

∂Y m
l

∂ϕ
(θ, ϕ)~eϕ

)]

exp(i σt)

}

,

(3.22)
with

σ2ξh =
1

r

(

ψ′ +
P ′

ρ

)

=
1

r

(

δψ +
δP

ρ

)

. (3.23)

Together with the boundary conditions (which we did not specify for brevity), the system of equations
(3.17),. . . ,(3.21) forms an eigenvalue problem whose perturbed quantities are the eigenvectors andσ are the
eigenvalues (which are both complex).

3.4 The quasi-adiabatic approximation

Throughout most of the star, the thermal relaxation time is much longer than the observed oscillation pe-
riods, i.e. the heat capacity is so high that the layers are unable to exchange heat with their environment
in a short time. In such a case the entropy cannot change during the oscillation cycle. One speaks of the
adiabatic approximation, for which δS = 0. In this approximation the energy equation is decoupled from
the equations of mass and momentum conservation and the solution to the problem is much easier to find.
This leads to the following relations between the pressure,density and temperature:

∂P

P
= Γ1

δρ

ρ
and

δT

T
= (Γ3 − 1)

δρ

ρ
, (3.24)

where

Γ1 ≡
(

∂ lnP

∂ ln ρ

)

S

and (Γ3 − 1) ≡
(

∂ lnT

∂ ln ρ

)

S

. (3.25)

Moreover, the conservation of energy equation reduces to

TδS =
i

σ

(

dδL

dm
− δε

)

(3.26)
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for a radial mode (we omit the more complex equation for a non-radial mode for the time being). In this
case, the eigenfunctions and eigenvalues of interest are all real (hermitian eigenvalue problem).

Unfortunately, it is impossible to determine whether or nota mode is unstable or not in the adia-
batic approximation. In principle, one needs to solve the complex system of fully non-adiabatic equations
(3.17),. . . ,(3.21). However, one can also get a good impression about excitation in the so-calledquasi-
adiabatic approximation. In this approximation one proceeds as follows:

1. For any given mode characterised by(l,m, n), one determines the adiabatic eigenfunctions and eigen-
values.

2. The right-hand side of equation (3.26) is computed by using the adiabatic values forδL andδε. A
value different from zero is then obtained forTδS.

3. Subsequently, one derives the imaginary part of the eigenvalue. This is done by multiplying the radial
component of the momentum equation (3.18) by4πr2ρ and by the complex conjugate ofξr and by
subsequent integration over the radiusr. The result is:

Im(σ) =
1

2σ2
ad

∫M
0

δT
T

(

dδL
dm − δε

)

dm
∫M
0 ξ2rdm

, (3.27)

whereσad is the adiabatic value of the eigenfrequency. One then substitutes the value ofTδS obtained
in item 2. in the integrand of this equation.

We stress that this procedure is inconsistent as it relies onthe adiabatic approximation for the first two steps
and no longer for the third step. The approximation is fine in the adiabatic regions of the star, i.e. from the
center to the partial ionisation zones. One avoids problemsby truncating the integral in (3.27) so that only
the valid region is considered in the integration.

3.5 The Cowling approximation

In the approximation introduced by Cowling in 1941, the Eulerian perturbation of the gravitational potential
is neglected:ψ′ = 0. This approximation is generally good in the outermost stellar layers where the local
density is small. The conditionψ′ = 0 and the equations (3.18) and (3.24) lead to

dP ′

dr
+
g

c2
P ′ = (σ2 −N2)ρ ξr, (3.28)

with N andc respectively the Brunt-Väisälä frequency and the soundspeed:

N2 ≡ Gm

r2

(

1

Γ1

d lnP

dr
− d ln ρ

dr

)

and c2 ≡ Γ1P

ρ
. (3.29)
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On the other hand,ψ′ = 0 and the equations (3.17) and (3.24) result in

P ′

ρc2

(

1 − L2
l

σ2

)

− g

c2
ξr +

1

r2
d

dr

(

r2ξr
)

= 0, (3.30)

whereLl is the Lamb frequency

L2
l ≡ l(l + 1)c2

r2
. (3.31)

In this adiabatic and Cowling approximation one then subsequently introduces new variables to simplify the
equations:

v = f1r
2ξr ; w = f2

P ′

ρ
, (3.32)

with

f1 ≡ exp

(∫ r

0

1

Γ1

d lnP

dr
dr

)

> 0 and f2 ≡ exp

(

−
∫ r

0

N2

g
dr

)

> 0. (3.33)

With this change of variables, equations (3.28) and (3.30) take the following form:

dw

dr
=
(

σ2 −N2
) f2

r2f1
v,

dv

dr
=

(

L2
l

σ2
− 1

)

r2f1

c2f2
w.

(3.34)

This system of differential equations is easily simplified into one second-order differential equation, either
by eliminatingw which gives

d

dr

(

1

1 − L2
l /σ

2

c2f2

r2f1

dv

dr

)

+
(

σ2 −N2
) f2

r2f1
= 0, (3.35)

or by eliminatingv which gives

d

dr

(

1

N2 − σ2

r2f1

f2

dw

dr

)

+

(

L2
l

σ2
− 1

)

r2f1

c2f2
w = 0. (3.36)

These two equations naturally give rise to two types of modes. For modes with very high frequenciesσ,
L2

l /σ
2 can be neglected in equation (3.35). With this simplification and fromf1, f2 > 0, equation (3.35)

with appropriate boundary conditions transforms into a Sturm-Liouville type equation which has an in-
finitely countable number of increasing eigenvaluesσ2 → ∞. These modes are namedpressure modes. On
the other hand, for very low frequenciesN2 − σ2 ≈ N2 and equation (3.36) with appropriate boundary
conditions now takes Sturm-Liouville form, this time with decreasing eigenvaluesσ2 → 0. These modes
are calledgravity modes. We restrict to the gravity modes that are dynamically stable (σ2 > 0). These
are the g+-modes. Forl ≥ 1 there is one additional mode with a frequency in between those of the p-
and g+-modes. This mode is called the f-mode. A schematic representation of the eigenvalues is given in
Figure 3.1. Usually, the superscript “+” is dropped and one simply uses the term g-modes.
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Figure 3.1: Schematic representation of the eigenvaluesσ2 of non-radial modes with different degreel.
The eigenvalues of modes with the same radial order are connected by a full line. The dashed-dotted lines
connect the radial modes. The f-mode ofl = 1 has an eigenvalue equal to zero.

The p- and g-modes have an oscillatory behaviour only in the so-called trapping regionsor mode
cavities. Outside of these regions they decrease exponentially. Thelocalisation of the cavities depends on
the frequency of the mode and so is different for different modes. For p-modes, we see from equation (3.35)
that an oscillatory motion occurs forσ2 > N2 andσ2 > L2

l . This denotes the p-mode cavity. The g+-
modes, on the other hand, are trapped whenever0 < σ2 < N2 andσ2 < L2

l – see equation (3.36). These
g-mode cavities are situated much deeper in the star than thep-mode cavities. We show the p- and g-mode
cavities (indicated as respectively A and G) for a polytropic stellar model in Figure 3.2.

We finally mention that, during the course of the evolution ofa star, its modes may become ofmixed
nature, i.e. an oscillatory behaviour in an inner g-mode cavity butin an outer p-mode cavity. In such a case
the A and G mode cavities are situated much closer to each other than in Figure 3.2.

3.6 Driving mechanisms

We now discuss the mathematics behind the two common drivingmechanisms known so far in asteroseis-
mology. This part of the text is particularly concise for reasons already outlined in the first paragraph of this
chapter.
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Figure 3.2: The p- and g-mode cavities in a stellar model of polytropic index 3. “A” stands for acoustic
mode cavity and G for gravity mode cavity. The eigenfrequencies and node positions of the lowest-order
modes are indicated as dashed lines and bullets.
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3.6.1 Modes excited by the opacity mechanism

As already emphasised above, the growth or damping rate of a mode (i.e. its stability or instability) follows
from the imaginary part of its frequency. We have already given an expression for Im(σ) in (3.27) for a
radial mode in the quasi-adiabatic approximation. We will restrict to this case here; the same discussion can
be held for the more generalised case of fully non-adiabaticnon-radial oscillations.

We recall that the time-dependence of a mode isexp(iσt) with σ a complex number. Therefore, driving
is obtained when Im(σ) < 0 and the growth rate of the mode is given by –Im(σ). Whenever Im(σ) > 0
damping of the mode occurs with damping rate Im(σ).

The two effects that determine the driving of a mode result from the Lagrangian perturbation of the
nuclear reactions and of the luminosity. The first one is onlysignificant in the central parts where the
fusion takes place and where the adiabatic approximation isvery good. It is therefore not important for the
driving of the oscillations. The second effect is also called the transport effect and is at the origin of the
driving. From (3.27) we see that the regions whereδL is increasing outwards during the hot phaseδT > 0
have a driving effect. This case is similar to a heat engine inthermodynamics: energy is taken from the
system during the hot phase of a cycle and is released during the cold phase. Inversely, regions whereδL is
decreasing outwards during the hot phase have a damping effect. One can shown that, for frozen convection
(i.e. with neglect of the Lagrangian perturbation of the convective flux) and a radial mode, the Lagrangian
perturbation of the luminosity is given by

δL

L
=
LR

L

(

4
ξr
r

+ 3
δT

T
− δκ

κ
+
∂δT/∂r

dT/dr

)

. (3.37)

In general, the term with the opacity is dominant in this expression for the determination of the luminosity
variation. In the quasi-adiabatic approximation we can write

δκ

κ
=

(Γ3 − 1)κT + κρ

Γ1

δP

P
. (3.38)

In most cases, i.e. in homogeneous stellar layers,δP is increasing outwards at the hot phase and so
the contribution ofδκ to δL implies that the latter is increasing outwards during this phase so that damping
occurs. However, in partial ionisation zones large opacitybumps occur (see e.g. Figure??). These bumps
can have a significant driving effect becauseδκ can increase very steeply outwards and can take positive
values implying thatδL decreases outwards during the hot phase. Because of the dominant role of the
Lagrangian perturbation of the opacityκ in the driving, one speaks of theκmechanism.

3.6.2 Stochastically excited modes

Stars possessing surface convection zones undergo mode instability by perturbations of their convective flux.
The study of such mode instabilities therefore demands a theory for convection that includes the interaction
of the turbulent velocity field with the pulsation, which is far from straightforward.
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The power spectrum of acoustic modes caused by convection inits simplest description consists of an
ensemble of intrinsically damped, stochastically driven,harmonic oscillators, provided that the background
equilibrium state of the star is independent of time. If one further assumes that mode phase fluctuations
do not contribute to the width of the frequency peaks, then the intrinsic damping rates of the modes can be
determined from the linewidths of the frequency peaks. Indeed, consider a damped oscillator forced by a
random functionf(t):

d2A

dt2
+ 2η

dA

dt
+ ω2

0A = f(t). (3.39)

In the case of a free oscillation (f = 0) one finds as solution:

A(t) ∝ exp(−ηt) cos(ωt + δ), (3.40)

whereω2 = ω2
0 − η2. In the case of a forced oscillation one introduces the Fourier transforms

Ã(ω) =

∫

A(t) exp(iωt)dt, f̃(ω) =

∫

f(t) exp(iωt)dt, (3.41)

which turns the equation (3.39) into

−ω2Ã− 2iηωÃ + ω2
0Ã = f̃ . (3.42)

The solution of this equation leads to the following expression for the power:

P (ω) = |Ã(ω)|2 =
|f̃(ω)|2

(ω2
0 − ω2)2 + 4η2ω2

≃ 1

4ω2
0

|f̃(ω)|2
(ω0 − ω)2 + η2

,

(3.43)

which implies an average power of

〈P (ω)〉 ≃ 1

4ω2
0

〈Pf (ω)〉
(ω − ω0)2 + η2

, (3.44)

wherePf is called the power of the stochastic forcing. The forcing function f(t) may be evaluated from
turbulent flow calculations based on the mixing-length theory or from simulations. It is beyond the scope
of these lectures to describe such details. However, we do point out that the amplitudes of stochastic modes
scale roughly asL/M .

From (3.44) it follows that the damping rates can be estimated from the line widths of Lorentzian fits
to the observed peaks in the power spectrum, provided that the time series is sufficiently long. Subsequently
one can compare the “observed” damping rates with those predicted by the theoretical simulations using
different stochastic forcing models to better understand the latter. The observational derivation of damping
rates of stochastically excited modes is still in its infancy given that relatively few firm detections have been
made so far. The current status is discussed in Chapter 6.
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3.7 Asymptotic behaviour

The asymptotics of oscillation theory allows one to study the behaviour of the equations of non-radial
oscillations and their solutions for the extreme case of very high radial ordersn → ∞. The asymptotic
theory of non-radial oscillations is appropriate for modesof high radial ordern and of low degreel. It
was mainly developed in the 1980s when it had become clear that it is very useful and accurate to explain
the acoustic frequency spectrum of the Sun. Moreover, asymptotic approximations turned out to be very
appropriate for the high-order g-modes in white dwarfs in the 1990s.

An asymptotic analysis of the stellar oscillation equations is beyond the scope of this course. We only
report the results for the frequency behaviour for both p- and g-modes:

1. a characteristic period spacing occurs for high-order g-modes of the same low degreel and with
subsequent values of the radial ordern:

Πnl ≃
∆Π

√

l(l + 1)

(

n+
l

2
+ ǫ

)

(3.45)

with

∆Π = (2π)2
(

∫ R

0

N(r)

r
dr

)−1

. (3.46)

In this expression,ǫ is a constant that depends on the surface properties of the star.

2. a characteristic frequency spacing occurs for high-order p-modes with the same low degreel and with
subsequent values of the radial ordern:

σnl ≃ ∆σ

(

n+
l

2
+ ǫ

)

(3.47)

with

∆σ =

(

2

∫ R

0

dr

c(r)

)−1

. (3.48)

This gives rise to thelarge frequency separation∆nl ≡ σnl − σn−1,l (see Figure 1.3).

In the framework of helioseismology, one has refined the characteristic frequency spacing by taking
into account an additional term:

σnl ≃ ∆σ

(

n+
l

2
+ ǫ

)

+ l(l + 1)
∆σ

4π2σnl

∫ R

0

dc

dr

dr

r
, (3.49)

which subsequently led to the definition of thesmall frequency separation:

δnl ≡ σnl − σn−1,l+2 ≃ −(4l + 6)
∆σ

4π2σnl

∫ R

0

dc

dr

dr

r
(3.50)

also indicated on Figure 1.3 for the Sun.

The asymptotic relations will be used in Chapters 6 and 7.
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3.8 Rotational splitting

The theoretical approach leading to the asymptotic relations described above were derived under the as-
sumption of a non-rotating star. However, rotation lifts the degeneracy with respect to the azimuthal number
m, which gives rise to different frequency values for modes with the same degreel and the same radial order
n:

ωnlm = ωnl −mΩ(1 −Cnl) + higher-order terms inΩ, (3.51)

with Cnl a constant depending onn andl and on the stellar structure model. The constantCnl is called the
Ledoux constantafter its inventor. Expression (3.51) points out thatrotational splittingof the frequencies
occurs. One obtains afrequency tripletin the casel = 1, aquintupletfor l = 2, aseptupletfor l = 3 and so
on.

One can shown that, for high-order g-modes, the approximationCnl ≈ 1/[l(l+ 1)] is appropriate. For
p-modes,Cnl ≈ 0.

Frequency spacings and rotational splitting of course occur simultaneously. In principle, the frequency
patterns of modes in the asymptotic regime should be easy to recognise in the periodogram of high-quality
data of which the overall time base covers all beat patterns.However, rotation can lead to very complex
frequency patterns which are hard to disentangle, even for astar in which only a limited number of modes is
excited. This situation occurs whenever the star’s modes are not really in the asymptotic regime and/or the
star is a fast rotator.
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Part II

Methodology

128



Chapter 4

Frequency Analysis

As already discussed in Chapter 3, the three components of the Lagrangian displacement vector of an un-
damped oscillator contain a time-dependent factorexp(−iωt), with ω = 2πν the angular frequency of the
oscillation mode andΠ = 2π/ω = 1/ν its period. It is therefore clear that stellar oscillationsgive rise to
periodic variations of the physical quantities. These translate into periodic variations of observables, such
as the brightness, the colours, the radial velocity and the spectral line profiles. In this chapter we describe
methodology to derive the oscillation frequencies from time series of data of pulsating stars.

Time series analysisis a well-developed field in statistics (e.g. Bloomfield 1976; Kendall & Ord 1990).
Unfortunately, the available classical theory is not appropriate to analyse data of pulsating stars because this
theory almost always assumes uninterrupted measurements which are evenly spaced in time. Astronomical
time series usually contain large gaps andunevenly spaced data. Moreover, the gaps themselves may have
quasi-periodicities, e.g. daily interruptions of single-site measurements by the sun, monthly interruptions
because of telescope scheduling based on the phases of the moon and annual interruptions because of the
Earth’s orbital motion for the large majority of stars that are not circumpolar. While techniques to treat
several types of missing data (missing completely at random, missing at random, missing not at random) are
also well developed in statistics (e.g. Little & Rubin 2002;Molenberghs & Verbeke 2005), it is not advised
to apply them to astronomical time series because

• the oscillation frequencies need to follow a well-known deterministic distribution in order to make an
appropriate reconstruction to fill the gaps, which is not always a safe assumption;

• the amount of missing data is often larger than the availabledata, i.e. one usually deals with low duty
cycles implying uncertain reconstruction by interpolation as well.

The latter concern is particularly relevant for ground-based data, even those assembled from multi-site cam-
paigns. It is less of a problem for data assembled from space with missions dedicated to oscillation studies,
where duty cycles above 90% can be achieved. However, here weprovide methodology which is appropriate
to treat the hardest possible type of time series of pulsating stars, i.e. unevenly spaced data with a low duty
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cycle. The methods will also work for data sets with a high-duty cycle that are (quasi-)equidistant. In such
cases, additional classical methods, such as those based onFast Fourier Transforms (e.g. Press et al. 1992,
Chapter 12; Bracewell 1999), will also be applicable and mayimply faster computations.

In the present chapter, illustrations of the theory are based on simulated data. The reader is referred
to Chapter 2 and later chapters in these notes for extensive applications of the methodology to real modern
data.

4.1 Harmonic analysis by least squares

With a harmonic analysis we mean the search for a certain sum of harmonic functions that best describe the
data in the least-squares sense. Least-squares fitting is a well-known statistical technique familiar to most
readers, which is why we consider it here as a first easy case ofa parametric method for frequency search
in time series of stellar oscillations, before treating other methods. The particular case of harmonic fitting
described here is equivalent to taking a Fourier transform of the time series, which will be considered in
Section 4.3.

Consider measurements of a quantityx at different timesti: x(ti) ≡ xi with i = 1, . . . ,N . Considering
the time dependence of the oscillation modes, we aim at usinga model of the following form:

x(ti) =
M
∑

k=1

ak cos[2πνk(ti − τ)] + bk sin[2πνk(ti − τ)] + c+ ǫi, (4.1)

describing the variations due toM oscillation modes with frequenciesνk, k = 1, . . . ,M which are excited
with amplitudes above the detection threshold, withτ an arbitrary reference epoch,ak, bk andc the free
fitting parameters andǫi the measurement errors. The latter are usually assumed to beindependent and
normally distributed with average zero and constant variance σ2

N . We come back to this assumption in
Section 4.5. We have to find a way to derive each frequencyνk, as well as the unknownsak, bk andc, from
the data.

4.1.1 Searching for a single frequency

Let us first assume that the time series is due to one single undamped oscillation mode whose frequencyν1

we seek to find, i.e.M = 1 anda1 = a, b1 = b. For each test frequencyν we determine the unknownsa, b, c
by means of a least-squares algorithm. The best estimates for a, b, c are those that minimise the quadratic
deviations between the observed and calculated values. We define the likelihood functionL as:

L ≡
N
∑

i=1

{xi − a cos[2πν(ti − τ)] − b sin[2πν(ti − τ)] − c}2 , (4.2)

with τ a fixed reference epoch. We then finda, b, c by solving the set of equations:

∂L

∂a
= 0,

∂L

∂b
= 0,

∂L

∂c
= 0. (4.3)
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After some manipulation this results in the following values for the unknowns:










































































































a =
cx
c2

− c1
c2

cxc1
c2

+
sxs1
s2

− xsum

c21
c2

+
s21
s2

−N

,

b =
sx

s2
− s1
s2

cxc1
c2

+
sxs1
s2

− xsum

c21
c2

+
s21
s2

−N

,

c =

cx
c2
c1 +

sx

s2
s1 − xsum

c21
c2

+
s21
s2

−N

,

(4.4)

in which we have used the following definitions:

c2 ≡
N
∑

i=1

cos2[2πν(ti − τ)], s2 ≡
N
∑

i=1

sin2[2πν(ti − τ)],

cx ≡
N
∑

i=1

xi cos[2πν(ti − τ)], sx ≡
N
∑

i=1

xi sin[2πν(ti − τ)],

c1 ≡
N
∑

i=1

cos[2πν(ti − τ)], s1 ≡
N
∑

i=1

sin[2πν(ti − τ)],

xsum ≡
N
∑

i=1

xi.

(4.5)

The solutions fora, b, c allow us to compute the predicted value ofxc
i (ti) for the test frequencyν :

xc
i(ν) ≡ a cos[2πν(ti − τ)] + b sin[2πν(ti − τ)] + c. (4.6)

The difference between the measured valuexi(ti) and the predicted valuexc
i(ti) is called theresidualat

time ti:
Ri(ν) ≡ xi − xc

i (ν). (4.7)

Searching for the most likely frequency comes down to searching for the frequencyν for which the sum of
squares of the residuals is minimal, i.e. searching for a minimum of the function

R2(ν) =
N
∑

i=1

R2
i (ν) =

N
∑

i=1

[xi − xc
i (ν)]

2 . (4.8)

We note that estimating the best value ofa, b, c for the test frequencyν is equivalent to searching for
the best value ofA, δ, c such that

xc
i = A cos {2π[ν(ti − τ) + δ]} + c. (4.9)
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Figure 4.1: Simulated data (dots) representing a periodic signal with frequencyν = 0.123456789 d−1.
The dotted line is a harmonic fit for this frequency. The full line represents a fit with the frequency
2.123456789 d−1.

This is perhaps a more often used harmonic model, as theamplitudeA and thephaseδ of the frequency
ν are readily interpretable observables that result from thedata, unlikea and b whose meaning is more
complicated. It is indeed easy to show thatA2 = a2 + b2 and2πδ = arctan(−b/a).

After having determined the value ofA, δ, c such that the curve describes as well as possible the data
with the least-squares method for each test frequencyν, we derive the variance of the data with respect to
the best average curve. Whenever this variance is small we have found a frequency that explains a large
percentage of the variability in the data. This percentage is called thevariance reductionor fraction of the
variance(fv) and is defined as:

fv = 1 −

N
∑

i=1

(xi − {A cos {2π [ν(ti − τ) + δ]} + c})2

N
∑

i=1

(xi − x)2
= 1 − L

N
∑

i=1

(xi − x)2
. (4.10)

with x ≡ ∑N
i=1 xi/N . The search for a minimum ofR2(ν) is, in fact, a search for a maximal variance

reduction in the data. We thus assign toν1 the test frequencyν with the largest variance reduction and our
procedure at once gives us its amplitudeA and phaseδ.

As the very simple example shown in Fig. 4.1 demonstrates, one can easily have equivalent solutions
whenever the observed time series is limited in number of points and in time coverage. It is important to
keep in mind that almost equivalent solutions occur whenever the times of measurement cover a limited
number of cycles and are taken with intervals equal to the beat periods of the occurring frequencies.
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4.1.2 Searching for multiple frequencies

In principle, we could now repeat the previous derivation inorder to find the most likely set of frequencies
νk, k = 1, . . . ,M of the model fit in Eq. (4.1) from the data. Unfortunately, we are unable to predict the
amplitude of excited oscillation modes in a star. Thus, we donot know the numberM of oscillations that
will be excited with detectable amplitude in the observed time series. This implies that this discrete unknown
M has to be estimated along with the frequency search itself.

Estimation of discrete parameters is a very poorly developed field in statistics. This is a mathemati-
cal problem with very important implications for many fields, among which is asteroseismology. Besides
causing a problem here for frequency determination, a similar situation will occur in Chapter 5 on mode
identification, where the discrete wavenumbers of each of the detected oscillation modes(l,m, n) have to
be estimated. A consequence of this is that frequency analysis for asteroseismology is unavoidablydata-
driven. This is a huge disadvantage from a statistical viewpoint compared with the situation where we
would be able to estimate simultaneously the number of frequencies present in the data and their value from
a model description.

We cannot but conclude that the search for multiple oscillation frequencies necessarily must be done
by means of some kind ofprewhiteningprocedure by which we mean that, at each stage of the frequency
search, a fit with the selected frequency is computed and subtracted from the data values before a subsequent
frequency search is started. The statistical interpretation of such a data-driven approach is much more
challenging than one based on a model-driven treatment, unfortunately.

A prewhitening strategy thus has to be chosen to perform the frequency analysis. The simplest such
strategy is to prewhiten the data according to Eqs (4.9) and (4.7) after the frequencyν1 with the largest
variance reduction was derived and to start a new frequency analysis to search forν2 in the residuals, and so
on. One thus determines, at each stage of prewhitening, the values ofνk, Ak, δk.

As pointed out by Vanı́ček (1971), one can improve this procedure by fitting the original data at each
step with all the frequencies found up to then (he termed them“known constituents”), fixing only the fre-
quency values and leaving their amplitudes and phases (the “unknown constituents”) free during the whole
procedure. Vanı́ček showed that these unknown constituents determine “systematic noise” which is present
in the data, besides the additional random noise, and there is in principle no need to fix them while searching
for additional frequencies.

A rather evident next step is then to recompute a least-squares solution according to Eq. (4.1) at every
prewhitening stage, starting each time from the original data and leaving also the frequency valuesνk free
in making the fit, using the outcome of one or several different frequency search methods described here as
a good starting value. This procedure is most commonly used nowadays in asteroseismology. It works fine
as a prewhitening strategy and as a method to derive the most likely values for the frequencies, amplitudes
and phases, provided that good starting values for the frequencies, already very close to their true values, are
known and that a sufficient number of data points is availablewith respect to the degrees of freedom of the
fit. As a rule of thumb we advise against making such a fit for data sets with fewer points than ten times the
number of degrees of freedom. Additional requirements haveto be fulfilled for such a fit to be meaningful.
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We discuss these in Sects 4.3 and 4.4 and the reader is strongly advised to take these into account. Error
estimation is treated in Sect. 4.5.

4.2 Non-parametric frequency analysis methods

Non-parametric methods imply that one does nota priori assume a chosen model function to describe the
data. This is in contrast to the search for the maximal variance reduction described above, as well as to any
method based on Fourier transforms discussed further on, where harmonic model functions are assumed
from the start.

4.2.1 String length methods

Thestring or rope length methodsare also based on the principle of least squares. Lafler & Kinman (1965)
initially introduced such a method with the purpose to determine periods of RR Lyrae stars from small sam-
ples of visual data. Clarke (2002) presented a clear recent evaluation of these methods and proposed their
generalisation to the application for multivariate data, the so-called Rope Length Method. This method-
ology is very suitable to analyse time series of multicolourphotometric observations or of radial velocity
variations from different spectral lines. The prime disadvantage of these methods, the long computation
time needed, has largely been reduced with current speed of modern computers, except for very rich data
sets. Nevertheless, the string and rope length methods are much less often applied compared with those
discussed in the following sections. This has to do with the multitude of false peaks compared with Fourier
methods, as we will show below. On the other hand, the non-parametric methods may be preferred to search
for periodicity in strongly non-sinusoidal variations. These not only occur for large-amplitude pulsators, but
also for eccentric and/or eclipsing binary lightcurves.

Consider again measurements of a quantityx at different timesti, x(ti) with i = 1, . . . ,N . Thephase
φ(ti) corresponding to the frequencyν, or to the periodΠ = 1/ν, with respect to the reference epochτ is
defined as follows:

φ(ti) = [ν(ti − τ)] =

[

ti − τ

Π

]

, (4.11)

where[y] stands for the decimal part ofy, increased by one ify is negative. From this definition it follows
that 0 ≤ φ < 1. A plot of the observationsx(ti) as a function ofφ(ti) is called aphase diagram. An
example for the simulated data shown in Fig. 4.1 is provided in Fig. 4.2.

For each trial frequencyν, taken from a grid of test frequencies, the original datax(ti) are first assigned
phasesφ(ti), which are then ordered in ascending value0 ≤ φ1, . . . , φN < 1. For each trial frequency, the
original Lafler-Kinman statistic performs a “string length” summation of the squares of the differences
between the consecutive phase-ordered values. Following Clarke (2002), we advise the use of the following
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Figure 4.2: Simulated data from Fig. 4.1 drawn in a phase diagram where the arbitrary reference epochτ
was chosen such as to place the maximum of the observable at phaseφ = 0.25. The full line is the phased
fit for the frequency0.123456789 d−1 or for 2.123456789 d−1 shown as dotted and full line in Fig. 4.1.

modified string length statistic:

ΘSL(ν) ≡

N
∑

i=1

[x(φi+1) − x(φi)]
2

N
∑

i=1

[x(φi) − x]2
× N − 1

2N
, (4.12)

wherex is the mean value of the measurements andx(φN+1) is taken to be equal tox(φ1). The sum in the
denominator of Eq. (4.12) is nothing but the product of the number of measurements with the variance of the
data set such thatΘSL is independent of the noise in the data. Moreover, the factor2 results in a normalised
statistic with continuum level unity. If the time series contains periodicity with frequencyν, thenΘSL will
reach a minimum atν while fluctuations inΘSL due to the noise will result in a levelΘSL ≈ 1.0.

A typical example of a simulated single-site time series of astar discovered as a new variable is shown
in Fig. 4.3. These data represent the following situation. The discovery of the variability is made in one
season. A few follow-up tests are being done some months later, confirming the variability, and a dedicated
campaign is then undertaken to derive the periodicity in thenext year. The simulated data have a standard
deviation of 0.696 and a variance of 0.485. The white noise has a standard deviation of 0.01111 and a
variance of 0.00012.

The string-length statistic of this prototypical time series is shown in Fig. 4.4. One notices clear minima
with a daily repetition, the minimum ofΘSL occurring at the input frequency 5.123456789 d−1. A forest of
peaks also occurs for frequencies below 2 d−1. The occurrence of minima at subharmonics of the frequency
and of theiraliases(see Sect. 4.3 for a definition) is a general property of the frequency analysis methods
based on phase diagrams (see, e.g., Cuypers 1987 for an extensive discussion) and is considered as one of
its disadvantages.
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Figure 4.3: Simulated gapped data representing a typical time series for a single-site campaign of a pulsating
star.

Figure 4.4: StatisticΘSL according to Eq. (4.12) of the data shown in Fig. 4.3.
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Figure 4.5: Phase diagrams for six minima inΘSL found from Fig. 4.4. The phases for the data (dots) and
harmonic fit (full lines) are computed for 5.123 d−1 (upper left), 4.121 d−1 (middle left), 7.129 d−1 (lower
left), 2.562 d−1 (upper right), 1.021 d−1 (middle right), 0.244 d−1 (lower right).
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After having computedΘSL comes the task to try and disentangle which of the minima is the real oscil-
lation frequency. In principle, this is the one corresponding to the deepest minimum. In practice, however,
the interaction between the effects of the time sampling and(non-white) noise may imply a minimum inΘSL

deeper than the one for the true oscillation frequency. It can be helpful to draw phase diagrams of the few
deepest peaks inΘSL to discriminate the true frequency from false ones, besidescomparing their variance
reductionfv from a least-squares fit using the peak values of the candidate frequencies as starting values for
the fit. In Fig. 4.5 six such phase diagrams are shown. These make it evident, in this prototypical example,
that 5.123 d−1 is the true frequency. Note, however, that also its alias frequencies near 4.121 d−1 (middle
left) and 7.129 d−1 (lower left) give “good” phase diagrams in the sense that theperiodic variability is clearly
present in them. These phase diagrams also make it clear why the string-length statistic leads to a minimum
for them. One should therefore not mistakenly belief that the frequency is real as soon as clear variation is
seen in its phase diagram. All apparently significant deep minima in the statistic (or high peaks in Fourier
analysis, see further) will produce phase diagrams in whichone can see the variability, even if the selected
frequency is a noise peak. The right panels are those for halfof the true frequency, and for frequencies due
to a mixture of effects due to harmonics, the noise and the sampling. From the upper right panel it is again
apparent why subharmonics of the true frequency also deliver a low value of the string-length statistic. The
examples for the other two spurious frequencies show that the phase diagram can be a very useful tool. The
phase coverage of the data and the amplitude of the fit with respect to the peak-to-peak variation is bad for
these diagrams. This would also have been clear from a least-squares fit as it would result in an insignificant
amplitude and a low variance reductionfv for these cases. If the data are not well-spread in phase for limited
data sets, but cluster narrowly at particular phases and/orthe variability occurs mainly at phases where there
are no data points, then one is probably also dealing with a false frequency. These issues are important to
check for and justify the use of phase diagrams besides computation offv.

The behaviour ofΘSL was studied extensively from simulations by Clarke (2002),to whom we refer for
more information. He computed cumulative distribution functions forΘSL in order to develop confidence
levels for it as a function of data sampling and size. His workmainly focused on small time series, though.
This is also the case for the evaluation of earlier versions of different string length statistics as those by
Lafler & Kinman (1965), Burke, Rolland & Boy (1970), Renson (1978) and Dworetsky (1985).

With the goal to perform empirical mode identifications, asteroseismologists often gather multicolour
observations of their target stars. The measurements in different filters of a photometric system are usu-
ally taken as close as possible in time, or ideally simultaneously, as explained in Chapter 5. Most often,
however, the frequency analysis is performed for the different colours separately. One then either accepts
the frequency value derived from the filter that delivered the highestsignal-to-noise ratio(S/N ratio), or
determines a weighted average frequency based on the valuesobtained for the different colours. The same
is true for observables derived from different spectral lines, which are of course necessarily simultaneous.
Although it is in principle possible to extend most frequency analysis techniques to multivariate data (see
Sect. 4.6), such an endeavour is usually not undertaken. Nevertheless, using a weighted statistic has signifi-
cant advantages in some cases, as we will discuss below for the parametric methods. It is a major advantage
of the string length methods that they allow straightforward generalisation to a multivariate treatment.

The brightness variations in different photometric bands due to oscillations are strongly correlated.
Depending on whether or not there are phase differences between the colour curves of the pulsating star,
the measurements plotted in a brightness-brightness diagram for two different filters lie on a straight line or
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an ellipse-like structure. They can hence be connected by a “rope” consisting of various connecting strings,
whose squared length can be added, again after assigning a phase to each measurement and ordering the
data according to increasing phase. The same reasoning can be repeated for all thek = 1, . . . , Z filters in
which a photometric time series has been obtained or for theZ spectral lines from which a radial velocity
has been derived. Clarke (2002) proposes the following statistic for multivariate time series:

ΘRL(ν) ≡ 1

Z

Z
∑

k=1















N [k]
∑

i=1

[xk(φi+1) − xk(φi)]
2

N [k]
∑

i=1

[xk(φi) − xk]
2

× N [k] − 1

2N [k]















, (4.13)

wherexk(φi) is the magnitude in filterk or radial velocity from line profilek for each of the measurements
taken at timest1, . . . , tN after re-arranging the data such thatφ1, . . . , φN increases from 0 to 1 for each
of the test frequenciesν. It is rather cumbersome, however, to interprete the outcome of this statistic for
extensive multicolour asteroseismic time series due to thenumerous false frequency peaks.

4.2.2 Phase dispersion minimisation

ThePhase Dispersion Minimisation, or briefly PDM method, is another non-parametric approach.It was
introduced as an improved method compared with string length methods. One searches for the frequency by
requiring that the spread of the data around an average curvein the phase diagram reaches a minimum. The
average curve is determined from average values of the data in different phase intervals. We describe here
the method as developed by Stellingwerf (1978).

For each test frequencyν one divides the phase interval[0, 1] into B equal sub-intervals, calledbins.
The bin indexJi = INT(Bφi)+1, with INT(x) ≡ x− [x], determines to which bin each observationx(ti)
belongs. Suppose that thej−th bin containsNj measurements. The average value of the data, the sum of
the quadratic deviations and the variance for this bin are

xj =

Nj
∑

i=1

xij

Nj
, (4.14)

V 2
j =

Nj
∑

i=1

(xij − xj)
2 =

Nj
∑

i=1

x2
ij −Njxj

2, (4.15)

s2j =
V 2

j

Nj − 1
, (4.16)

with xij the observationx(ti) with bin indexJi = j. The analogous quantities for all data,x, V 2 ands2,
are defined as

x =
N
∑

i=1

xi

N
, (4.17)
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V 2 =
N
∑

i=1

(xi − x)2 =
N
∑

i=1

x2
i −Nx2, (4.18)

s2 =
V 2

N − 1
. (4.19)

For theB bins we introduce the following quantities:

V 2
B =

B
∑

j=1

V 2
j , (4.20)

V 2
G =

B
∑

j=1

Nj (xj − x)2 . (4.21)

We hence find that
V 2 = V 2

B + V 2
G. (4.22)

The differences between the bin averagesxj and the average of the entire data set are small whenever
the test frequency is not present in the data. In that caseV 2

G is small compared withV 2. In the case where
the true frequency is close to the test frequency, the bin averages are very different from the overall average
andV 2

G is comparable withV 2. The search for the most likely frequency in the data hence comes down to
the search for a maximum ofV 2

G, which is equivalent with a search for the minimum ofV 2
B .

The partition of the phase diagram intoB equal bins can have disadvantages. It may very well happen
that some bins are almost empty ifB is chosen to be large or if we have only few data points with a particular
time spread. For this reason one makes use of a more complicated bin/cover structure(B,C). The phase
diagram is divided intoB bins, each of length1/B. This partition is then appliedC times, such that each
partition is shifted over1/(B.C) with respect to the previous one. The incomplete bin near phase 1 is
completed with the data of the corresponding phase intervalnearφ = 0. In this way one covers the phase
diagramC times, and each partition containsB bins. Such a bin structure allows one to make sure that each
observation belongs to at least one bin. Further on we denotethe total number of binsB × C byBC .

We subsequently introduce the statisticΘPDM:

ΘPDM ≡





BC
∑

j=1

(Nj − 1) s2j



/





BC
∑

j=1

Nj −BC





(

N
∑

i=1

(xi − x)2
)

/ (N − 1)

, (4.23)

wheres2j is defined as:

s2j ≡

Nj
∑

i=1

(xij − xj)
2

Nj − 1
. (4.24)
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Figure 4.6: StatisticΘPDM according to Eq. (4.23) of the data shown in Fig. 4.3 using 10 bins and 2 covers.

With the notation introduced we can also writeΘPDM as:

ΘPDM =

V 2
BC
/





BC
∑

j=1

Nj −BC





V 2/ (N − 1)
=

V 2
BC
/C (N −B)

V 2/ (N − 1)
. (4.25)

A minimum in theΘPDM−statistic corresponds to a minimum ofVBC
and so this statistic is suitable to

search for frequencies in the data. For each test frequency that is not present in the data we will find
ΘPDM ≃ 1.

TheΘPDM−statistic defined in (4.23) was introduced by Stellingwerf (1978) and is a generalisation
of the Θ statistic used by Jurkevich (1971) which is only based on bins. Jurkevich’s method is therefore
equivalent to Stellingwerf’s forC = 1.

The more covers one uses, the larger the probability of finding the true frequency, but the longer the
computation time. In practice one usually takesB between 5 and 20, so that sufficient data points per bin
occur in order to guarantee a well-determined bin average. Typical values for the number of covers is from
1 to 10.

In Fig. 4.6 we showΘPDM for the time series shown in Fig. 4.3. Comparing this statistic with ΘSL

shown in Fig. 4.4 highlights a much “cleaner” statistic. Thepeak structure is similar, except for the low
frequency region where we see much less false peaks for the PDM version of the statistic. This is due to the
far better ability ofΘPDM to judge the spread of data within the bins with respect to theaverage bin value,
compared withΘSL’s evaluation of the string lengths across the phase diagramas a whole. This comparison
at once makes it clear why users prefer the PDM statistic among the non-parametric methods. Subharmonics
still occur prominently, though.

Far more in use in asteroseismology these days are, however,the parametric methods to which we turn
now.
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4.3 Parametric frequency analysis methods

All the methods described in this category are based upon Fourier analysis, i.e. one fits a harmonic model
function to the data. One must therefore keep in mind that these methods will do a very good job as long as
the signal consists of a combination of sine (or cosine) functions. Of course, any function that has a more
or less smooth behaviour can always be approximated by a Fourier series, such that the applicability of the
parametric methods discussed here is very good, particularly for frequency search. The methods are less
suited to analyse time series with strong discontinuous behaviour.

In frequency analysis based on Fourier transforms one also defines a function of test frequencies in
such a way that it reaches an extremum for the test frequency that is close to the true frequency present in
the data, just as for the non-parametric methods. The plot ofthis function is usually called theperiodogram,
rather than the terminology of a statistic used in the non-parametric methods.

We first recall some useful properties of Fourier analysis and subsequently introduce different types of
periodograms in use today.

4.3.1 The continuous Fourier transform of an infinite time series

TheFourier transformof a functionx(t) that fulfils the necessary conditions of continuity and finiteness is
given by

F (ν) ≡
∫ +∞

−∞

x(t) exp(2πi ν t)dt. (4.26)

Whenever we perform this transformation, we move from the time domain to the frequency domain. The
Fourier transform of the constant function 1, e.g., isDirac’s delta function:

δ(ν) ≡
∫ +∞

−∞

exp(2πi ν t)dt, (4.27)

which has the following properties:
∫ +∞

−∞

δ(ν)dν = 1,

∫ +∞

−∞

δ(ν − ξ)g(ν)dν = g(ξ). (4.28)

Frequency determination from Fourier analysis is based on the fact that the Fourier transformF (ν) of
a functionx(t), which can be written in terms of a sum of harmonic functions with frequenciesν1, . . . , νM

and amplitudesA1, . . . , AM :

x(t) =
M
∑

k=1

Ak exp(2πi νkt), (4.29)

is given by

F (ν) =
M
∑

k=1

Akδ(ν − νk). (4.30)

142



Wheneverx(t) is a sinusoidal function with frequencyν1, the Fourier transform ofx is only different from
zero forν = ν1 andν = −ν1. The Fourier transform of a multiperiodic functionx(t), which is the sum of
M harmonic functions with frequenciesν1, . . . , νM , is a sum ofδ−functions which are different from zero
for the frequencies±ν1, . . . ,±νM .

4.3.2 The continuous Fourier transform of a finite time series

In practice, we never have the luxury to work with infinite continuous time series. Let us go back to the
definition of the Fourier transform of a signalx(t) given in Eq. (4.26) and consider the case of a signal
x(t) = A cos[2π(ν1t + δ1)] for which we have observations fromt = 0 until t = T . In that case, the
continuous Fourier transform is

F (ν) =

∫ T

0
x(t) exp(2πi ν t)dt

=
A

2

∫ T

0
exp(2πi ν t) {exp[2πi (ν1 t+ δ1)] + exp[−2πi (ν1 t+ δ1)]}

=
A

2

{

exp(2πi δ1)

2πi (ν + ν1)
[exp[2πi (ν + ν1)T − 1] +

exp(−2πi δ1)

2πi (ν − ν1)
[exp[2πi (ν − ν1)T − 1]

}

= A

{

exp[iTπ(ν + ν1) + 2πi δ1]
sin[T2 2π(ν + ν1)]

2π(ν + ν1)
+

exp[iTπ(ν − ν1) − 2πi δ1]
sin[T2 2π(ν − ν1)]

2π(ν − ν1)

}

.

(4.31)

The periodograms are often displayed as power periodiagrams, i.e.|F (ν)|2 is plotted as a function of
frequencyν. In this case, their shape is determined by the function

sinc(x)2 ≡
(

sinx

x

)2

. (4.32)

We strongly prefer to work with amplitude periodograms, however, in which case|F (ν)| is displayed. This
will be done throughout the book, except for some figures taken from the literature that display power.
For simplicity we omit the notation of absolute values and note F (ν) on the periodograms. The function
sinc(x) and its square are graphically depicted in Fig. 4.7. Whenever T >> 1/ν1, the two frequency peaks
following from Eq. (4.31) centred at−ν1 andν1 are well separated such that it is justified to limit display of
the transform toν1 > 0 as we will do throughout the book. In this simple case, the maximum of the sinc or
sinc2 and its centre of gravity occur exactly atν1.
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Figure 4.7: The sinc function (left) and its square (right).

As afirst roughmeasure of the frequency accuracy, we could consider the width of the sinc peak, i.e.
≃ 1/T . This is sometimes termed theRayleigh criterion. In practice, however, any observed peak will
have a much more complex shape due to observational noise, tothe finite number of measurements over the
interval [0, T ], and to multiperiodic beating between oscillation modes resulting in frequency interference.
As stressed by Schwarzenberg-Czerny (2003), the Rayleigh criterion only provides alower limit to the
accuracy reachable. The true accuracy is necessarily dependent on the S/N ratio. The realistic case thus
requires a more sophisticated estimate of the frequency error, which will be treated in Sect. 4.5.

Whenever simultaneous oscillations occur,x(t) will be of a form like Eq. (4.1). In such a situation, the
frequenciesν1, . . . , νk can only be well separated provided thatT >> 1/|νi − νj | for all pairsi 6= j. When
this condition is not fulfilled, interference occurs in the periodogram and the ability to identify the correct
frequency values depends largely on the phase difference between the modes as well as on their amplitude
ratios. Loumos & Deeming (1978) first studied theresolving powerof a periodogram and derived that
the frequenciesνi andνj are separated when1/T < |νi − νj | < 1.5/T , but the maxima do not occur
necessarily at the real frequencies. They also concluded that the difference between two peak frequencies
in the periodogram and the real frequencies are negligible whenever|νi − νj| > 2.5/T , because the first
sidelobe of one sinc function no longer interferes with the main peak of the other sinc function. This
rule-of-thumb was further elaborated upon by Christensen-Dalsgaard & Gough (1982), who made a deeper
investigation of the resolving power in a periodogram focussing on solar-like oscillations. They came up
with a similar condition for accurate frequency separationof |νi − νj | > 2/T covering all cases of relative
phases of the modes.

Things get more complicated when the time series does not cover one time interval[0, T ], but is a
concatenation of continuous data spread over several different time intervals[0, T1], [T2, T3], [T4, T5], . . .,
i.e. in the case ofgappeddata. The degradation of the Fourier transform from dream towhat is not even yet
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Figure 4.8: Fourier transforms of an almost infinite noiseless time series with one million points spread over
thousand days for a harmonic signal with frequencyν = 5.123456789 d−1 (top), of a noiseles time series
with ten thousand points and a finite time span of 10 days (middle) and of a gapped finite noiseless time
series with 4472 points and a time span of 10 days (bottom).
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Figure 4.9: Fourier transforms of a noiseles time series of asine function with frequency 5.123456789 d−1

generated for a finite time span of 10 days and containing one large gap from day 4 until day 6 (top) and
from day 2 until day 8 (bottom).

reality in frequency analysis is illustrated in Fig. 4.8. Inthis figure, we compare the Fourier transforms for
an almost infinite noiseless time series (1 000 000 data points spread over 1 000 days) with one of a finite
noiseless series of 10 000 points spread over 10 days and a randomly gapped finite noiseless series of 4472
points with a total time span of 10 days, all for a simple noise-free sinusoidal signal in the approximation
of continuous measurements (i.e. still far too optimistic). The graph speaks for itself and makes one realise
why frequency analysis of astronomical time series is so inherently difficult even if the data are close to
being noise-free.

In reality, the gaps in data sets are not randomly distributed. In the simple case with one interruption
during a time∆T , the sinc function determining the periodogram (see Fig. 4.7) will be modulated by a
termcos[∆Tπ(ν − ν1)]. This modulation factor introduces fine structure in the periodogram peaks whose
relevance depends mostly on the values of∆T andT . Two examples are provided in Fig. 4.9 where the time
series used in the middle panel of Fig. 4.8 was interrupted for respectively two days from day 4 until day 6
and for six days from day 2 until day 8. These interruptions imply a strong rise in the height of spurious
frequencies that are due to the gap compared with the situation where there is no interruption in the data
(middle panel of Fig. 4.8), particularly when the gap is large. These spurious frequencies are termedalias
frequenciesand will be defined in the following section. In real data, thevalue of the modulation factor will
be affected by noise and may differ substantially from a simple cosine value, even if there is only one large
gap.
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4.3.3 Real life: the discrete Fourier transform

For a real data set, the functionx(t) is only known for a discrete number of time pointsti, i = 1, . . . ,N .
We are thus unable to determine itsF (ν). Following Deeming (1975), we introduce thediscrete Fourier
transformof the functionx(t):

FN (ν) ≡
N
∑

i=1

x(ti) exp(2πi νti). (4.33)

This transform can be calculated whenever theN measurements of the functionx(t) are available.

It is clear thatFN differs from F , but we can associate them with each other through thewindow
functiondefined as

wN (t) ≡ 1

N

N
∑

i=1

δ(t − ti). (4.34)

The window function and the properties of the Dirac functionallow us to transferFN to an integral form:

FN

N
=

∫ +∞

−∞

x(t)wN (t) exp(2πi νt)dt. (4.35)

The discrete Fourier transform of the window function is called thespectral windowWN (ν) :

WN (ν) =
1

N

N
∑

i=1

exp(2πi νti). (4.36)

The discrete Fourier transform can be written as the convolution of the spectral window and the Fourier
transform:

FN (ν)/N = (F ∗WN )(ν). (4.37)

If F (ν) is a δ-function at frequencyν1, thenFN (ν)/N will have the same behaviour as the spectral
windowWN (ν) atν1 becauseFN (ν)/N = WN (ν) ∗ δ(ν − ν1) = WN (ν− ν1). Comparison of theWN (ν)
with FN (ν)/N near the frequencyν1 thus helps one to conclude if the frequencyν1 may be real or not.
WheneverF (ν) is a sum ofM δ−functions we have:

FN (ν)

N
= WN (ν) ∗

M
∑

k=1

δ(ν − νk)

=
M
∑

k=1

WN (ν) ∗ δ(ν − νk)

=
M
∑

k=1

WN (ν − νk)

=
1

N

M
∑

k=1

N
∑

i=1

exp(2πi (ν − νk)ti).

(4.38)

Hence,FN (ν)/N is the sum ofM spectral windows that are all centred around the different frequencies
νk. Due to the fact thatWN (ν) can differ from zero at frequenciesν that are not necessarily equal to
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νk, k = 1, . . . ,M , we expect the presence of interference. This will give riseto maxima in the periodogram
that do not correspond to real frequencies. These maxima aredue to noise and/or the times of observation,
which introduce spurious frequencies in the periodogram. This phenomenon is calledaliasing when it
concerns peaks due to the times of measurement and the false frequencies are termedalias frequencies. The
latter can be recognised as maxima in the window function at frequencies different from zero. This property
of the alias frequencies occurring in the spectral window highlights one of the big advantages of Fourier
analysis in frequency searches.

The question of course arises which alias frequencies are most common? Let us assume for simplicity
that we are dealing with measurements that are evenly spaced: tj = τ + j∆t. In such a case of evenly
spaced data, the spectral window is given by:

WN (ν) =
1

N

N
∑

j=1

exp(2πi ντ) exp(2πi νj∆t)

=
1

N
exp(2πi ντ)

N
∑

j=1

exp(2πi νj∆t)

= exp(2πi ντ) exp(πi ν∆t(N + 1))
sin(πνN∆t)

N sin(πν∆t)
,

(4.39)

in which we have made use of
N−1
∑

j=0

zj =
1 − zN

1 − z
(4.40)

with z = exp(2πi ν∆t). Forτ = −(N + 1)∆t/2 we obtain

WN (ν) =
sin(πNν∆t)

N sin(πν∆t)
. (4.41)

The absolute value of this function is periodic with period1/∆t because
∣

∣

∣

∣

WN

(

ν +
n

∆t

)∣

∣

∣

∣

= |WN (ν)| . (4.42)

The functionFN (ν) hence reaches a maximum in an infinite number of frequenciesνj = j/∆t. Evenly
spaced data therefore give rise to a strong aliasing effect.

The situation of unevenly spaced data does not allow one to derive the alias frequencies in such a
straightforward analytical way. However, one can show by simulations that certain periodicities in the
observation times, such as∆t = 1 sidereal day, 1 sidereal year, etc., will also give rise to alias frequencies.
We call these theone-day aliasoccurring with intervals of±1, ±2, . . . when the frequency is expressed in
d−1 or, equivalently, with intervals of multiples of±11.5741µHz. Theone-year aliasoccurs with intervals
of 0.00274 d−1 = 0.0317µHz, etc. Thus also aliases with intervals of 1.00274 d−1 = 11.6225µHz occur
for data sets spanning more than one year. Such an alias structure was already very clearly seen in Figs 4.4
and 4.6.

The total time span of the data, as well as particular gaps in them, will give rise to additional alias
frequencies which are due to uncertainties in the number of cycles in or between the gaps. Moreover,
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Figure 4.10: Spectral window of the data shown in Fig. 4.3 computed according to Eq. (4.36).

Figure 4.11: Discrete Fourier transform of an noise-free sinusoid with amplitude 1 at frequency
5.123456789 d−1 for the sampling shown in Fig. 4.3.

regularity in the sampling with intervals close to (a multiple of) the intrinsic periodicities of the star will
inevitably hamper the discrimination between the true frequencies and their aliases. An example of the
latter situation occurred in Figs 2.17 and 2.18, where peaksat ν and1 − ν are almost indistinguishable in
the single-site ground-based data of the slowly pulsating Bstars HD 74195 and HD 123515 which exhibit
periodicities near one day.

All these caveats due to aliasing should be checked carefully in any frequency analysis through a
detailed study of the spectral window. We show in Fig. 4.10 the spectral window according to the definition
in Eq. (4.36) of the time series shown in Fig. 4.3. Spectral windows computed according to Eq. (4.36) are
symmetric with respect to zero frequency. The daily and yearly aliasing are apparent in this plot. Other
examples were given in Figs 2.5 and 2.43 in Chapter 2. Nevertheless, we advise to take a different approach
in practice. Indeed, for real data it is more informative to plot the discrete Fourier transform of an artificial,
noise-free sinusoid at a determined frequency (or frequencies). The reason is that the negative part of the
discrete Fourier transform may have an effect on the positive part of the periodogram. The latter approach
therefore gives the best guidance to discriminate real fromfalse frequencies. This approach is represented
in Fig. 4.11 for the data shown in Fig. 4.3, in which the discrete Fourier transform of an artificial sinusoid
computed at the sampling of the time series is shown. It givesus at once the complete picture of how
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FN (ν) would look like if only this one frequency is present in the data. In the current artificial example
with only one periodic signal, the discrete Fourier transform of this artificial noise-free sinusoid will be
almost indistinguishable from the one of the observed time series, since the latter had white noise with a low
standard deviation of only 0.0111. For another example in the case of a multiperiodic pulsator we refer to
Fig. 2.22 in Chapter 2.

All these examples, and numerous others in the literature aswell as simulations, lead one to the fol-
lowing conclusions. The heights of the alias peaks and of thenoise peaks in the spectral window express
the lack of knowledge from the data set. One must realise thatboth the noise and the true signal have an
amplitude and a phase and that both are convolved in complex Fourier space. The noise signal may thus add
to or subtract from a real frequency peak. Noise may also add to or subtract from an alias peak. Finally noise
may do nothing to real peaks. We therefore advise to study thespectral window in detail in any frequency
analysis before making firm conclusions on frequencies.

So far, we have not discussed the practicalities of the interval of test frequencies one should consider.
This can and should be derived from the data set. It is customary to take zero frequency as a lower limit,
since the limiting case of an infinite oscillation period is then covered. The highest useful frequency to search
for is the so-calledNyquist frequencyνNy. One can show thatνNy = 1/2∆t, with ∆t the sampling step in
the case of evenly spaced data. Some authors therefore use the same formula, taking as∆t the average of
all the sampling intervals in the case of unevenly spaced data. In practice, however, the Nyquist frequency
can be quite different from this value if numerous large gapsand/or serious undersampling or oversampling
occur in the data set. In that case, it was shown by Eyer & Bartholdi (1999) that a better approach to obtain
the Nyquist frequency is to takeνNy = 1/2p with p the greatest common divisor of all differences between
consecutive observation times. This is rather cumbersome to be used as daily approach in practice. A good
and fast way to make a realistic estimateνNy in the case of unevenly sampled data, appropriate whenever
the deviation from equidistance is not too severe, is to takethe inverse of twice the median value of all the
time differences between two consecutive measurements of the entire data set.

One should not blindly believe that peaks occurring above the Nyquist frequency in the periodogram
cannot correspond to true frequencies. It may very well be that a particular frequency occurring as highest
peak in the computed periodogram is, in fact, an alias of the true frequency which occurs aboveνNy. This
would still allow the detection of the true frequency, by implication, eventhough it occurs aboveνNy. In
any case, such a situation would call for further observations at higher sampling rate to rule out the original
low-frequency aliases. If the type of star is known, one can also accept the frequency outside of the interval
up toνNy on astrophysical arguments.

As we have shown, the irregular sampling of data usually implies a complicated response in the Fourier
transform. It can alter the peak frequencies and the amplitudes of the signal, besides introducing the occur-
rence of very large false peaks. Several different definitions of periodograms have been devised to try and
overcome impracticalities in the Fourier transform. We discuss some of them below.
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4.3.4 The classical periodogram

Assume we have a time series ofN measurements(ti, x(ti)). The classical periodogramwas defined
originally in meteorology (Schuster 1898) and is written asfollows:

PN (ν) =
1

N
|FN (ν)|2 =

1

N

∣

∣

∣

∣

∣

N
∑

i=1

x(ti) exp(2πi νti)

∣

∣

∣

∣

∣

2

=
1

N







(

N
∑

i=1

x(ti) sin(2πνti)

)2

+

(

N
∑

i=1

x(ti) cos(2πνti)

)2






.

(4.43)

If the signal we are searching is a pure harmonic one of the form x(ti) = A cos(2πν1ti), the periodogram
will have the value

PN (ν1) =
1

N

{

N
∑

i=1

A cos(2πν1ti) sin(2πν1ti)

}2

+
1

N

{

N
∑

i=1

A cos2(2πν1ti)

}2

(4.44)

at frequencyν1. For largeN we have

N
∑

i=1

cos(2πν1ti) sin(2πν1ti) ≈ 0,
N
∑

i=1

cos2(2πν1ti) ≈ N/2, (4.45)

and soPN (ν1) ≈ A2N/4 for N → ∞. Forν 6= ν1, positive as well as negative terms occur and these will
largely compensate each other. The overall sum will thus be small for such a test frequency.

The frequencyν for whichPN (ν) is maximal is the most likely one present in the data. For sufficiently
extensive data sets, e.g. those with a couple of hundred datapoints (as in Fig. 4.3, e.g.), the approximation
PN (ν1) ≈ A2N/4 is reasonably good. This is why we advise to consider theamplitude spectrumrather
than the power spectrum, i.e. to plot and analyse

A(ν) =

√

4PN (ν)

N
(4.46)

as a function of test frequencyν. After all, the amplitude of a mode is what we hope to interpret in terms of
the physics of the star.

4.3.5 The Lomb-Scargle periodogram

The periodogram introduced by Lomb (1976) and further improved by Ferraz-Mello (1981) and Scargle
(1982), is defined in a different way than the classical periodogram. We present here the formulation by
Scargle (1982) and speak of theLomb-Scargle periodogramas it is often done in the literature:

PLS(ν) =
1

2

{

N
∑

i=1

x(ti) cos[2πν(ti − τ)]

}2

N
∑

i=1

cos2[2πν(ti − τ)]

+

{

N
∑

i=1

x(ti) sin[2πν(ti − τ)]

}2

N
∑

i=1

sin2[2πν(ti − τ)]

. (4.47)
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Figure 4.12: Lomb-Scargle periodograms according to Eq. (4.47) for the data shown in Fig. 4.3.

In this expression, the reference epochτ is chosen in such a way that

N
∑

i=1

cos[2πν(ti − τ)] sin[2πν(ti − τ)] = 0, (4.48)

or, equivalently

tan(4πντ) =

N
∑

i=1

sin(4πνti)

N
∑

i=1

cos(4πνti)

. (4.49)

Using the simplifications in notation introduced in Eqs (4.5), the Lomb-Scargle periodogram is written
as:

PLS(ν) =
1

2

{

c2x
c2

+
s2x
s2

}

. (4.50)

It takes the valueA2N/4 for a harmonic signal with frequencyν1 and for sufficiently largeN . The amplitude
spectrum based on the Lomb-Scargle periodogram is therefore defined by Eq. (4.47):

ALS(ν) =

√

4PLS(ν)

N
. (4.51)
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We show in Fig. 4.12ALS(ν) for the simulated data shown in Fig. 4.3. The median value of the sub-
sequent time differences for this data set amounts to 0.012 d, such that the Nyquist frequency is estimated
to be near 42 d−1. The whole Lomb-Scargle periodogram up to that value is shown in the top panel, while
the lower panel is an enlarged section focusing on the region[0, 10] d−1 where significant amplitude occurs.
It can be seen that this lower panel is indeed almost indistinguishable from Fig. 4.11 as predicted for this
monoperiodic signal with white noise of low standard deviation. Compare this with the idealised situation of
having a continuous Fourier transform of an infinite noiseless signal at one frequency with which we started
this section (upper panel of Fig. 4.8)!

One of the reasons to have introduced the Lomb-Scargle periodogram is that its value does not change
when all time valuesti are replaced byti + T because of the definition ofτ . Another reason has to do with
hypothesis testing (see Sect. 4.4).

Horne & Baliunas (1986) and Schwarzenberg-Czerny (1997) have proved the Lomb-Scargle peri-
odogram to be equivalent to the variance reductionfv obtained from fitting a sinusoid at test frequencies
by least squares, as explained in Sect. 4.1. It is thus good practice to fit harmonic series of sinusoids at test
frequencies to data to search for non-sinusoidal signals aswell. This proof implied that the original moti-
vation for the use of non-parametric methods as more efficient tools to detect non-sinusoidal signals than
parametric ones weakened considerably, particularly so since they require a lot more computational time
and introduce a complex spectrum with subharmonics and their aliases.

4.4 Significance criteria

During a frequency analysis, one of course needs to adopt a stop criterion to decide whether or not a candi-
date frequency is stillsignificantor not. For obvious reasons, this aspect of frequency analysis has received
a lot of attention. To derive the significance of a frequency one needs to know the distribution function of
the employed frequency statistic. As a consequence of the data-driven approach of the frequency analysis
methods outlined above, one is unable to construct appropriate distribution functions based on theoretical
principles.

Stellingwerf (1978) and Cuypers (1987) derived that the significance ofΘPDM can be related to an
F−test. However, Schwarzenberg-Czerny (1997) pointed out that the sensitivity of the significance test
proposed by these authors is poor and he demonstrated thatΘPDM rather follows aβ distribution. It was
shown by Scargle (1982) that the distribution function for the Lomb-Scargle periodogram belongs to the
exponential family, but it has to be kept in mind that this is only true forN → ∞. Moreover, the author could
not come up with a simple treatment of the statistical properties ofALS. Schwarzenberg-Czerny (1997)
came to the important conclusion that all methods outlined in this chapter are mathematically equivalent for
a given sampling, binning and weighting pattern.

Schwarzenberg-Czerny (1998) demonstrated that an empirically derivedβ distribution is the only valid
approach to derive good significance levels and that theoretical distributions as used in e.g. Scargle (1982)
or Horne & Baliunas (1986, the so-called False-Alarm Probability or FAP) have to be abandoned. It is
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Figure 4.13: Lomb-Scargle periodogram of the residuals after subtracting the fit shown as full line from the
data in the upper left panel of Fig. 4.5. Note that this periodogram’sy-axis is enlarged with a factor 300
compared with the one for the original data before prewhitening shown in Fig. 4.12.

therefore common practice these days to take a frequency peak as significant whenever its amplitude in the
periodogram is above a particular empirically determined critical value, i.e. to let the data speak for itself
rather than relying on assumptions about the (uncertain) statistical model distributions.

Depending on the data set and authors, different so-calledS/N level significance criteriaare considered
appropriate and adopted. The S/N level is computed as the average amplitude in a well sampled periodogram
of the final residuals and for an appropriate interval in the frequency region where the candidate frequency is
situated. We denote this level byσres. The S/N level of a particular frequency is then computed as the ratio
between its amplitude andσres. Breger et al. (1993) derived empirically, from experiencewith numerous
data sets resulting fromδ Sct network campaigns, that a frequency can be very safely considered to be
significant whenever its amplitude, computed either in the time domain or in the frequency domain, fulfils
A > 4σres. This result was supported from simulations based on data assembled with the Hubble Space
Telescope Fine Guide Sensors and assuming photon-dominated white noise by Kuschnig et al. (1998). They
concluded that the criterionA > 4σres corresponds to a 99.9% confidence level of having found an intrinsic
peak rather than one due to noise. The confidence levels corresponding toA > 3.6σres andA > 3σres are
respectively 95% and 80% for photon-dominated noise. Sincenoise peaks can reach a3σres level with 20%
probability, we do not consider this to be a sufficiently safesignificance criterion. In reality, the noise is not
photon-dominated for most data sets, particularly those assembled from the ground. Moreover, the noise is
usually correlated, i.e. non-white. Unfortunately, the true noise profile may be very hard to compute (see
also Sect. 4.5). This is why this step is often omitted and theabovementioned criterion ofA > 4σres is
adopted as a very safe one, at least when only one data set is athand.

For the example of the simulated data shown in Fig. 4.3, we derive the frequency from Fig. 4.12, com-
pute the residuals from subtracting the least-squares fit shown in the upper left panel of Fig. 4.5 from the
data, recompute the Lomb-Scargle periodogram for these residuals and derive the noise level of the residuals
in the frequency domain. The periodogram of the residuals isshown in Fig. 4.13 and was computed with the
same sampling as the original periodogram according to the frequency accuracy discussed in the following
section. One should not undersample the periodogram for theS/N level computation (nor for the frequency
derivation!). The average amplitude in Fig. 4.13 amounts to0.0011 and is a good estimate ofσres in the
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considered frequency interval of[0, 10] d−1. This implies that the frequencyν = 5.123456789 d−1 reaches
a level of 909σres for this example. One can easily derive from Fig. 4.13 that the highest noise peaks in
[0, 10] d−1 reach a level of 3σres. The highest noise peaks in the interval[0, νNy] d−1 reach 3.6σres.

Examples of significance level computations for real data were already shown graphically in Figs 2.22
and 2.27 for the multisite campaigns of theβCep star 12 Lac (Handler et al. 2006) and of the pre-main-
sequence star IP Per (Ripepi et al. 2006). We refer to the original papers for the details of the adopted
criteria and their means of computation of the S/N level.

One can take a less conservative attitude thanA > 4σres whenever more than one independent data set
is available for analysis (see, e.g. Figs 2.17 and 2.18 and DeCat & Cuypers (2003) for additional examples).
One is usually also less conservative when it concerns the acceptance of combination frequencies, such as
multiples or linear combinations of frequencies, which have already passed the requirement ofA > 4σres.
In both these cases, i.e. for frequencies present in independent data sets or for combination frequencies
searched in one data set, we advise to useA > 3.6σres as a safe condition of acceptance.

4.5 Error estimation of the derived frequencies

Once the user has reached the stage to have concluded thatM frequencies with determined values are
present in the data, the question of final error estimation ofall the unknowns needs to be settled. We limit
ourselves here to the case of linear oscillations, with timedependence∼ cos[2π(νt + δ)]. In order to
compute the errors in an appropriate way, one can consider the model described in Eq. (4.1), whereM
is assumed to be error-free due to our inability to treat discrete parameter estimation in the data-driven
frequency analysis. The error estimation is done in the timedomain here, by means of least-squares fitting,
because the periodograms only give a good amplitude estimate in the limit of largeN .

In general, error estimation is usually based on derivatives of a kind of likelihood function, e.g. the
one defined in Eq. (4.2). The goal should be to make appropriate assumptions on the character of the data,
on the properties of the noise and on the inter-dependence ofthe model parameters which are in our case
the frequencies, their amplitudes and phases, and the mean value of the observablexi, when deriving the
errors. Appropriate error propagation is a poorly developed field in astronomy in general, and its application
in asteroseismology is, unfortunately, no exception to this rule. We emphasise below the shortcomings
we have to live with in current analyses. The reader is advised to keep these in mind in all the seismic
interpretations based on observed frequencies.

4.5.1 Data without alias problems

As a first approach to the problem of error estimation, we consider data not suffering from aliasing. This
implies that we assume there to be no ambiguity in selecting the true frequency values from the methods
outlined above. We discuss the complication introduced by aliasing separately further on.
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A first approximation usually adopted is to assume the times of measurementti, as well as the reference
epochτ , to be error-free. It is clear that the observers always should care about the accuracy of the clocks
they are using during the data gathering, particularly whenobserving short-period oscillators. Even for data
assembled with a carefully calibrated clock, the assumption of having instantaneous measurements with
error-free timings is in general not valid. Indeed, the datagathering is done by adopting a certain integration
time during which photons are detected by the instrument, and ti is usually taken to be the error-free time of
mid-exposure. The integration of course implies a smearingout of the oscillatory signal over a fraction of the
oscillation cycle for each of the modes. Moreover, the integration time is sometimes not constant during an
observing run, e.g. it is continuously adapted to the atmospheric conditions for ground-based spectroscopic
data.

All this implies that the timingsti cannot be error-free. Moreover, they are not independent ofeach
other. The assumption of instantaneous measurements with error-free timings may be a good approximation
as long as thetemporal resolutionof the data, i.e. the ratio of the integration times to the oscillations periods,
is very small, let’s say below 1%. This will in general not be the case for high-resolution spectroscopic time
series or for ground-based photometric time series of compact oscillators. A remedy to this problem is
achievable, but it requires a good model description of the oscillatory behaviour and it is time consuming.
The user can checka posteriorihow much the data set suffered from smearing over the oscillation cycles
for each of the modesafter the frequency derivation is finished. This allows a measure of the effect of this
assumption on the frequency values and their amplitudes.

A second approximation in deriving error estimates is much more problematic than the first one: the
assumption of having white uncorrelated noise with averagezero and constant varianceσ2

N in time. The
overall noise profile of the data contains, in general, contributions from the instrument performance and
from the environmental conditions, such as the behaviour ofthe atmosphere for ground-based data and
the effect of stray light, satellite jitter, proton impact etc. for space data. It is clear that the noise profile
must be time dependent and that the different noise factors are by no means uncorrelated. Unfortunately,
it is in general impossible to propagate all the different noise factors appropriately, due to lack of good
model descriptions for each of them. The conclusion must therefore be that any error estimate ignoring the
correlations among the noise factors and their time dependence cannot be but lower limits of the true errors.

A third approximation is to assume that there is no interference between the different true frequen-
cies and the noise peaks. This is an additional condition compared with the resolution issue described in
Sect. 4.3.2, where interference among intrinsic frequencies was considered. For similar reasons as outlined
there, this approximation is valid whenever the noise peaksare well separated from those of the intrinsic
frequencies, a situation seldom encountered.

The three approximations described here are followed out ofnecessity to avoid an ill-conditioned sta-
tistical description for the error derivation. Indeed, in the derivation of the error of one particular parameter,
a significant simplification is met when assuming that all other parameters are perfectly known. This situa-
tion occurs when adopting the discussed four approximations. In this case, one ends up with the following
standard error estimate for the derived amplitudes, phasesand frequencies:

σν =

√
6 σN

π
√
N A T

, σA =

√

2

N
σN, σδ =

σN

π
√

2N A
(4.52)
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with T the total time span of the data andN the number of data points (Bloomfield 1976; Cuypers 1987;
Montgomery & O’Donoghue 1999). In these formulae,σN stands for the average error on each of the data
points. Quite often, error estimates are not available for individual measurements, even in the simplified
assumption of uncorrelated time-independent noise. It is then good practice to take the standard deviation
of the residuals after removal of all accepted significant frequencies as a realistic and conservative estimate
of σN .

We note that the error estimates provided in Eq. (4.52) are1σ errors, i.e. the true values of the frequency,
amplitude and phase belong with 68.3% certainty to the intervals [ν − σν , ν + σν ], [A − σA, A + σA],
[δ − σδ, δ + σδ] respectively. Much more common practice in statistics is touse the so-called2σ error
estimates, which imply that the true values are with 95.4% certainty in the intervals[ν − 2σν , ν + 2σν ],
[A− 2σA, A+ 2σA], [δ − 2σδ, δ + 2σδ].

Schwarzenberg-Czerny (1991) has shown that the error estimate of the frequency can also be done in
the frequency domain, leading to the same accuracy as the onediscussed above in the time domain. Since
he proved both methods to be statistically equivalent, error estimation in the frequency domain suffers from
the same limitation of underestimating the variance due to the four assumptions outlined above.

For the choice of the interval of test frequencies it does notmake sense to search for frequencies with
a step much smaller than the value ofσν given in Eq. (4.52). A good guideline to start the first frequency
search, before an estimate ofσν can be made, is to take a step of0.1/T . Once the first frequency is found,
one can improve the frequency step by calculatingσν and adapting the step to this value for all subsequent
frequency searches.

Another issue in the derivation of the errors is to assume that the oscillation frequencies are indepen-
dent. As described in Chapter 3, the oscillation spectrum ofa star is determined by its stellar structure and
follows a clear pattern dependent on the internal physical properties. So, even in the linear approximation,
the oscillation frequencies cannot be independent becausethey are determined by the same stellar structure.
Deviations from linearity even imply complex coupling between oscillation modes and their frequencies
which are also dependent on the stellar model. This is usually ignored in the error estimation of frequency
analysis.

4.5.2 Data suffering from aliasing

Most data sets have gaps, quite often leading to ambiguity inthe selection of the true frequency peak from
its aliases when the duty cycle is limited. The situation is usually far more complex than having one simple
modulation factor as in Fig. 4.9, because numerous data gaps, all with different∆T ’s, occur. An accurate
study of the spectral window, or the consideration of independent data sets of the same star if available,
may help to discriminate between the true frequency peaks and their aliases. Sometimes, however, this is
impossible and in such a situation one has to take the uncertainty due to alias confusion into account in the
error estimate of the frequency. As a rule-of-thumb, one cantake a peak to be uncertain when the difference
between its amplitude and the one of its aliases is less than the height of the highest noise peaks. Indeed,
noise peaks and real peaks convolve with each other in complex space, such that they may add in amplitude,
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subtract in amplitude, or anything in between.

The best way to proceed when alias confusion cannot be overcome is to determine the full-width-at-
half-maximum of the envelope of all alias peaks that bring confusion, and to add this value to the frequency
error given in Eq. (4.52). While the full-width-at-half-maximum of the central peak depends on the total
time span of the data, as shown by Eqs (4.52), the one of the envelope depends mainly on the duty cycle, as
is clear from Fig. 4.9.

Finally, if the addition of a new frequency implies a modification of the derived amplitudes and phases
for previously determined frequencies (say by more than 3σ) during the process of fitting multiple frequen-
cies by least squares, then there isinteractionbetween the spectral window patterns of the frequencies. In
that case, the formal errors on amplitude and phase given in Eqs (4.52) underestimate the true uncertainties.

4.6 The use of weights in merging different data sets for frequency analysis

Very often, more than one time series is available for the analysis of a pulsator and the question arises if
one should merge them or simply analyse each of them separately before making final conclusions. The
goal of merging them would be to reach a lower noise level in the Fourier transform, or a higher frequency
precision or a cleaner spectral window. In any case, appropriate weights cannot be but data-driven, i.e. based
on the noise properties and the sampling of each of the separate data sets. This is why one cannot provide
one simple theoretical statistical treatment, nor performall-encompassing simultations encapsulating each
of the different circumstances. We therefore limit ourselves here to a brief discussion of some prototypical
situations.

As a first example, we consider the situation of a white-lightphotometric multisite campaign with
different instruments attached to telescopes of differentapertures and data gathered in different atmospheric
conditions. In this case, the data from the smaller telescopes have higher noise level, but, on the other hand,
they usually imply a better duty cycle. In such a situation one wants to investigate what data to include in the
final analysis, and whether weights should be used or not in the computation of the Fourier transforms. It
was shown in the highly recommended seminal paper by Handler(2003), who studied in detail the merging
of such type of data from the different telescopes of the WET consortium and for different targets, that the
use of appropriate weights is indeed advantageous comparedwith the use of unweighted merged sets. He
considered three different weighting schemes and concluded that weights proportional to the inverse local
scatter in the light curves produce the best result in Fourier space. The advised procedure is as follows. After
having completed the frequency analysis for the unweightedmerged data set, one computes the residuals
and their standard deviationσ. Each individual point is then weighted as follows:











wi = 1 if Ri ≤ Kσ,

wi = (Kσ/Ri)
α if Ri > Kσ,

(4.53)

whereRi is the residual of data pointi with respect to the unweighted least-squares solution andK and
α are free parameters to be adapted to the merged data set. A Fourier transform of the weighted data is
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then computed to try and improve the result in terms of findingthe frequencies with amplitudes of better
S/N level and/or to find more significant frequency peaks. Thebest values ofK andα must be derived by
using a few trial values and evaluating the noise level in theFourier transform. Typical values turn out to
beK,α ∈ [0, 2]. Since this method depends on the frequency solution found from the unweighted merged
data set, a scheme with a few iterations is the best approach.A similar strategy may be advantages to follow
when new data are merged with archival ones of the same kind. Recent applications of the methodology
evaluated by Handler (2003) are available in Rodriguez et al. (2003) for aδ Sct star and in Vučković et al.
(2006) for an sdB star.

As a second example, we consider the case of multicolour photometric data obtained with the same
instrument and having (almost) the same sampling. This is also an often encountered situation, because
the identification of the degreel of the oscillation may be within reach in this circumstance.In this case,
the duty cycle is not improved by merging the different sets.As we will show in the following chapter,
the amplitude of a mode is different in different wavelengths and it depends also on the geometry of the
mode (i.e. the number and position of the surface nodal linesl andm) and on the direction to the line of
sight (inclination angle). For a specific star, the amplitude ratios will be shown to be dependent onl only
(Chapter 5). This implies that the best wavelength to detecta mode is dependent on its degree. In addition,
it involves limb-darkening effects, as well as flux, gravityand temperature variations and these may be quite
different for different types of oscillations in differenttypes of stars. Pulsating B stars, e.g., have their largest
amplitude in the U filter, while the amplitude of pulsating A or F stars peaks at wavelengths of the B filter,
irrespective of the mode geometry. For one and the same star,the l-dependence of the amplitudes implies
that a particular mode may have an amplitude just above the detection treshold ofA > 4 S/N in one or a
few of the used filters, but not in all of them. It is therefore surely necessary to analyse the time series of
the different filters explicitly to decide upon the reality of all the significant oscillation frequencies, and not
just look at the filter where the best S/N is reached. Indeed, the difference in detected mode amplitude for
the various filters may be larger than the difference in the noise level among the filters. Recent examples of
this situation can be found for B pulsators in De Cat et al. (2007) and for A and F pulsators in Cuypers et al.
(2007). The modes that have significant amplitude in all filters will pop up better after (weighted) merging
of the data sets because the noise level is proportional to the number of data points as

√
N , but those that

are only significant in a subset of the filters may increase or decrease in significance.

A similar situation to the previous one occurs for radial-velocity measurements of different line profiles
from échelle spectra. The amplitudes of the modes may turn out to be quite different for different spectral
lines because of various reasons, such as a different intrinsic profile (Gaussian broadening due to temperature
versus Stark broadening due to pressure, e.g.), a differentline depth, a different skewness due to blending,
different formation depth in the atmosphere, a different limb darkening effect, etc. It may therefore be
worthwhile to consider merged data sets for the different spectral lines with the same sampling, in the same
way as outlined for the multicolour photometry.

Finally, we consider the case of having data sets of very different nature, i.e. different quantities ob-
tained for different sampling, for one and the same star. Examples are shown in Figs. 2.17 and 2.18 where
Hipparcos, Geneva and radial-velocity data of two SPBs are displayed. In this case, it is not obvious to
think of an appropriate weighting scheme similar to the one in (4.53) because of the different physical units.
Usually, the data are analysed separately first. In a second step, one could simply lower the treshold of ac-
cepting a peak in terms of amplitude, e.g. takeA > 3.6 S/N as a necessary condition whenever it is met for
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all the available independent time series. Sometimes, however, oscillation frequencies are easier to detect in
spectroscopy than in photometry, depending on theirl-value and one would want to give different weights
to the various data sets and lower the detection treshold further. This holds the danger of taking noise peaks
for real. A simple test in such a case may be to standardise each of the separate Fourier transforms, i.e. to
rescale them to[0, 1] by dividing through the amplitude of the highest peak, and then multiply them with the
idea that, if additional frequencies at S/N below 4 would be present in each of the periodograms, they would
have an improved S/N in the multiplied periodogram while they would reduce in amplitude if the frequency
was a spurious peak present in only one of the independent data sets. This method was employed by Aerts
et al. (2006) to unravel low-amplitude frequencies from MOST, Hipparcos and radial-velocity data of the
βCep starδCeti.

4.7 Damped oscillations

The descriptions in the preceding parts were valid under theassumption that the oscillation amplitudeA
and phaseδ are constant in time, i.e. that the modes under consideration have an infinite lifetime or a
lifetime several orders of magnitudes longer than the time series and that phase coherence is preserved
over the entire observing run. This assumption is not valid whenever growth and/or decay of modes occur
during the obtained time series. The best known example of such a situation is, of course, the one of
stochastically excited solar-like oscillations. Also modern high-precision radial-velocity measurements of
roAp stars contain evidence of growing and damping of mode amplitudes.

We recall that, whenever an oscillation with frequencyν1 is damped, one has, instead of Eq. (4.9):

x(ti) = A cos [2π(ν1ti + δ)] exp(−ηt) + c, (4.54)

with η the damping rate which is also the inverse of the mode lifetime. Suppose such a signal would be
observed continuously over an infinite amount of time. In that case, it is easy to show that the power at a
test frequencyν equals

P (ν) =
A2

4(ν − ν1)2 + η2
. (4.55)

The power spectrum thus takes a Lorentzian profile around thefrequencyν1 with a half-width-at-half-
maximum equal toη. If the signal is continuously observed during a finite timeT , then the resulting peak
in the power spectrum is intermediate between the sinc2 function and the Lorentzian, tending to the former
for ηT << 1, and towards the latter forηT >> 1.

Even Eq. (4.54) is an idealisation in that it implicitly assumes a sudden excitation of the mode, followed
by an exponential decay. The modes are stochastically excited by random fluctuations due to the turbulent
motions in the convection zone. In this case, one has

P (ν) =
Pf (ν)

4ν2
1 [(ν − ν1)2 + η2]

, (4.56)

with Pf (ν) the average power spectrum of the forcing function. Given that the forcing function is a slowly
varying function of frequency, the result is a Lorentzian spectrum with a width determined by the linear
damping rate of the mode.
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Whenever the observed time series is a single realisation ofthe spectrum, the result is only a random
function with a Lorentzian envelope. In that case, the observed profiles are asymmetric in this case and
representing them by a Lorentzian cannot be but an approximation. Neglecting such asymmetries in the
fitting of the frequency peak causes systematic errors in theinferred frequencies. The best way to proceed
in the case of damped oscillations is, therefore, to performsimulations and fit the Fourier transforms of the
observed time series with Lorentzian profiles to determine acceptable ranges for the frequency, amplitude,
and the mode lifetime. Such simulations have been performedextensively for the solar oscillation spectrum.
It was found that the stochastic nature of the excitation gives rise to a number of sharp frequency peaks,
with a distribution around the Lorentzian envelope. It thuscannot be assumed that the maximum observed
amplitude corresponds to the true frequency of the mode. Substantial care is required in analysing data of
this nature and the simulations have to be designed on a case-by-case basis.

4.8 Eliminating aliases

Several methods designed to “remove” false peaks from a periodogram have been devised. The widest used
one among them is the so-called CLEAN method. The original CLEAN algorithm was written by Hogbom
(1974) in the context of aperture synthesis. It was developed to help radio astronomers in their interpretation
of interferometric data by cleaning up thespatial window pattern. This algorithm was later adapted by
Roberts et al. (1987) to clean up the spectral window patternfor frequency analysis.

CLEANing implies that one first constructs thedirty spectrum, which is the Fourier transform of the
data. Subsequently, one deconvolves this observed spectrum with the window function shifted to the highest
peak of the dirty spectrum (cf. Figs 4.10 and 4.11). This deconvolution is done by first applying a particular
scaling to the window function according to the gain factorg, with 0 < g < 2. Thus, one subtracts
the scaled spectral window from the dirty spectrum to produce a residual spectrum. This deconvolution
process is repeated until the strongest residual peak is below a specified cutoff level or for a chosen number
of iterations. At that point, the CLEAN algorithm restores the removed frequency to the spectrum by
convolving it with the CLEANed residual spectrum. This process can be repeated at each prewhitening
stage.

The first application of the adapted CLEAN version by Robertset al. (1987) in pulsating star research
was made by Gies & Kullvanijaya (1988), who used it to treat their data of line-profile variations of the
B2III star εPer, an archetypical line-profile variable without clear periodic photometric variations due to
high-l modes. Numerous applications have followed since.

Foster (1996) developed the CLEANest frequency spectrum. The naming is quite unfortunate, because
CLEANest has not much to do with CLEAN. The CLEANest spectrumis the sum of a discrete amplitude
spectrum and the residual spectrum. The discrete spectrum is derived from a model fit of the bestM
frequencies to the data according to Eq. (4.1). This is done for one frequency at a time, i.e. one starts
with one frequency, tests the significance of its amplitude,next one makes a fit to find the best pair of
frequencies, tests their amplitudes, continues with a fit for the best triple of frequencies, etc. At a certain
point, the fit for the best(M + 1) frequency set does no longer lead to a significant peak for the(M +
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1)th frequency. At that stage, one constructs a composite graphical representation of the optimal discrete
amplitude representation of theM accepted frequencies and the amplitude spectrum of the residuals after
prewhitening the best fit forM frequencies. This CLEANest spectrum thus is not a true frequency spectrum,
but merely a convenient graphic that captures the differentstages of a least-squares fitting procedure and its
resulting residual spectrum.

Following Kurtz (2002), we issue some warnings in the use of these two methods that were designed
to eliminate aliases. It is in fact a crucial mistake in frequency analysis to think that methods capable of
eliminating aliases exist. Alias confusion in a data set canonly be overcome by additional data. All the
two methods described above do, is tohide the aliases for the user, seemingly easying the interpretation in
terms of intrinsic frequency detection. One must keep in mind that the final result obtained by CLEANing
depends crucially on the choices of highest peaks made during the deconvolution, while the CLEANest
spectrum assumes that frequencies are not confused with their aliases in the least-squares fitting. So both
the CLEAN and CLEANest methods are ambiguous.

The main danger of CLEANing occurs in situations where the noise in the data set under analysis has
added amplitude to an alias or subtracted amplitude from thetrue peak. If this is the case in such a way that
the alias peak has become the highest one in the periodogram,then this false peak will be selected as the
true frequency by the algorithm. The subsequent iteration schemes of CLEAN will take away an amount of
amplitude of the true frequency according to the gain and number of iterations.

CLEANest will consider the least-squares fit at the alias frequency if the noise has boosted its amplitude
above the one of the true peak. It will then start or continue an iterative least-squares fitting scheme based
on one or more alias frequencies rather than on true frequencies.

The user is thus easily fooled by these algorithms if they areused as a black boxes without making
a careful analysis of the spectral window at each step of the prewhitening. We disadvice their use for this
reason, particularly for unexperienced frequency analysts.

4.9 Conclusions

We provided the most commonly used methods to treat frequency analysis of unevenly spaced data with
large gaps of observables of variable stars. All methods discussed here in detail are suitable to determine
the oscillation frequencies of stars whose modes have infinite lifetime. The string length methods and the
phase dispersion minimisation methods are of broader application than stellar oscillations because they can
handle non-sinusoidal signals or signals with variable amplitude without loss of accuracy. On the other
hand, the approximation of having sinusoidal signals, the basic assumption of the methods based on Fourier
transforms, is usually very good in the study of stellar oscillations.

The reader has hopefully learned that frequency analysis ofunevenly spaced gapped data with noise
is an inherently difficult mathematical problem to solve. Methods based on Fourier analysis are best suited
to apply significance criteria and to obtain frequency errorestimation. One should never forget to make a
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detailed inspection of the spectral window before coming tofinal conclusions on the detected significant
frequencies.

Frequency analysis of data resulting from stars with dampedmodes is much more cumbersome and
requires a specific treatment, whose basic ingredients havebeen pointed out here but whose detailed appli-
cation will be omitted here.
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Chapter 5

Mode identification

The basic data for asteroseismology are the pulsation frequencies, and we have just shown in Chapter 4 how
those are derived from the observations. But before the frequencies can be used for detailed modelling, it
is imperative to know what pulsation mode gives rise to each frequency. Determining this is calledmode
identification. The reason it is so important can easily be understood for p modes (the situation is similar
for g modes). The frequency of pulsation is a measure of the sound travel time along the ray path for
p modes, and that is determined by the variable sound speed and the length of the ray path itself. It is thus
critical to know the ray path, and that is specified by the pulsation mode geometry. Mode-identification
techniques assign values to the discrete spherical harmonic quantum numbers(l,m) of each of the detected
oscillation modes. The amount of astrophysical information that can be derived from the observed pulsations
depends directly on the number of successfully identified modes. Therefore, great effort is put into mode
identification in any seismic analysis.

For oscillations in the asymptotic frequency regime, the derivation of frequency or period spacings
often suffices to identify the modes. This can be achieved forthe Sun, for solar-like oscillators and for
white dwarfs. However, when only a limited number of modes isexcited to observable amplitudes, or
when the modes do not follow particular frequency patterns,or whenever a very dense frequency spectrum
is predicted, the frequency values alone are insufficient toderive the(l,m, n). In this case, one cannot
proceed with seismic modelling consideringall values for(l,m, n) for any of the detected frequencies. In
order to limit the computation time of such forward modelling, the values of the degreel are usually limited
from arguments of partial cancellation. As we will show later on in this chapter (see Fig. 5.5), the observed
photometric amplitude of modes withl ≥ 3 are a factor five to ten less than those of modes withl < 3 having
the same intrinsic amplitude (Dziembowski 1977). It is thencustomary to consider modes withl ≤ 2 and
to assumem = 0 when no obvious evidence for rotational splitting is found in the Fourier transform of the
time series.

This procedure is not very satisfactory, though, because rotation can easily result in non-equidistant
splitting and imply merging of frequency multiplets in sucha way that they cannot be unravelled. Moreover,
quite a number of classical pulsators show evidence for modes with degreel ≥ 3 from spectroscopy, where
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the partial cancellation has a different effect than in photometry (see Figs 5.5 and 5.15). In these cases,
the assumption ofl ≤ 2 or m = 0 is unjustified. Within asteroseismology the quest forempirical mode
identificationhas therefore become an extended topic by itself. By this term we mean the assignment of
values of the spherical harmonic quantum numbers(l,m) to each of the frequencies derived from the data,
without relying on the (unknown) details of the model properties of the star. To obtain a correct mode
identification for each detected oscillation frequency is usually impossible. However, even only one correct
(l,m) identification, e.g., the one for the dominant mode, can imply a significant reduction of the free
parameter space in the modelling, and is therefore worthwhile to attempt.

Empirical mode identification is a sophisticated and time-consuming task. It requires a detailed con-
frontation between oscillation theory applied to the outerstellar atmosphere and observational characteris-
tics different from the frequencies, such as observed amplitudes and phases. All the methods we present
in this chapter were developed for the identification of heat-driven nonradial modes whose lifetimes can
be assumed infinite for their application. The reason is thatit is relatively easy to establish a value for the
large frequency separation of damped stochastically-excited oscillations and this usually suffices to start the
process of forward modelling efficiently. Numerous examples of mode identification from pattern recogni-
tion of solar-like oscillation frequencies will be treatedin Chapters 7, 8, and 9. The current chapter is thus
restricted to mode identification of heat-driven modes. In what follows, we will speak of theatmosphereof
the star as the regions with negativelog τ , τ being the optical depth, while the parts wherelog τ is positive
will be termed thestellar envelope.

Essentially two types of diagnostics are in use to identify the modes. One of them is based on time se-
ries of multicolour photometry, and the other relies on timeseries of line-profile variations detectable from
high-resolution spectroscopy. The introduction of high-resolution spectrographs with sensitive detectors in
the 1980s, as outlined in Chapter 4, had a large impact on the field of empirical mode identification. Spec-
troscopic data indeed offer a very detailed picture of the pulsation velocity field, as will be outlined below.
On the other hand, it requires moderate to large telescopes equipped with sophisticated instrumentation to
be available for extended observing time spans. It remains achallenge to obtain spectra covering the overall
beat period of the multiperiodic oscillation, with a high resolving power and with a high signal-to-noise ratio
for a good temporal resolution,i.e., for a ratio of the integration time to the oscillation periods below a few
percent. The latter condition is necessary in order to avoidsmearing out the oscillations during the cycle.
Also, the methodology to derive the full details of the pulsational velocity field (at least six unknowns – see
Sect. 5.2) is complicated. For this reason, multicolour photometric observations, which can only lead to an
estimatel, but which can be obtained from small telescopes, are still of utmost importance for mode iden-
tification. These kinds of data are especially more suitableto study long-period pulsations because small
telescopes are available on longer time scales. The most reliable results are obtained from the exploitation
of simultaneous multicolour photometry and line-profile data.

One remark we wish to repeat here was already made in Chapter 4: seeking mode identification from
observables implies the estimation of the discrete numbers(l,m). However, while doing so, one also must
estimate real-valued unknowns, such as amplitudes and phases of observable quantities. This mixture of
real and discrete unknowns cannot be treated simultaneously with standard statistical techniques to estimate
(l,m). Therefore, any of the discriminating functions that will be defined below will be computed for
each set of(l,m) separately, and its minimal value for the best choice of the continuous parameters will
subsequently be compared among the(l,m) couples to decide about the most likely one.
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In the following, we describe the methods for empirical modeidentification. We divided the chapter ac-
cording to the observational data available to apply them. This also corresponds to the historical progression
in this field of research.

5.1 Mode identification from multicolour photometry

A pulsating star changes in temperature and in geometrical cross-section over its pulsation cycle, both of
these contributing to variations in its bolometric luminosity. As we discussed in Chapter 4, photometric
observations measure the intensity of the starlight reaching us – usually through various filters, and never
bolometrically; no photometer can measure the entire electromagnetic spectrum! So in all observational
cases we are measuring the starlight and its variations oversome wavelength range. The wavelength de-
pendence of the effect of the temperature variation on the light variability in a pulsating star can be easily
seen in Fig. 5.1 which shows some schematic black-body curves for stars of different temperatures. Notice
how much greater the intensity change is in the blue than it isin the red – just because of the shape of the
black-body curves. That effect alone means that most pulsating stars will have larger photometric variations
in the blue than in the red.

In addition to this basic effect, the light variations at different wavelengths depend on the geometry of
the temperature variations – hence on the spherical harmonic of the pulsation mode – and on the change in
geometrical cross-section, also dependent on the pulsation mode. Both the pulsation amplitude and phase
as a function of wavelength are affected by the geometry of the temperature changes and the cross-section
changes; thus observations of the pulsation amplitudes andphases in different photometric passbands can
constrain mode identification. In the best cases the spherical degreel can be uniquely determined – an
important step for asteroseismology.

The mode-identification method that uses photometric amplitudes and phases is based on the time vari-
ations of the stellar magnitude measured with different filters of a photometric system. One considers only
the oscillation frequencies that are found in all the different filters for the mode identification; when the am-
plitude is too small in one or more filters of the system being used, then there is too little information for that
mode. For reasons given above the amplitudes of a mode can be markedly different in the different filters.
This is illustrated for two main-sequence stars in Fig. 5.2.As will be explained below, this amplitude differ-
ence depends on the kind of oscillation mode – more particularly on the degreel of the mode as illustrated
in Fig. 5.3. Similarly, the difference in phase behaviour ofthe light curves in the different photometric bands
is connected to the degree of the mode. This implies that, fora certain oscillation mode whose frequency
is detected with sufficient signal-to-noise in all the filters of the photometric system, the comparison of the
amplitude and phase values for the different filters allows one to derive the mode degree. This can be seen
for the case of the amplitude ratios by comparing Figs 5.2 and5.3.
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Figure 5.1: Black-body curves for stars of various temperatures. Top: temperatures range from 5000 K
(lower line) to 9000 K (upper line) in steps of 1000 K; bottom:temperatures range from 9000 K (lower line)
to 25000 K (upper line) in steps of 4000 K.
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Figure 5.2: Observed amplitude ratios from long-term monitoring of thel = 0 mode of the B2βCep star
HD 71913 (left, Aerts 2000) and for thel = 1 mode of the F2γ Dor star HD12901 (right, Aertset al.2004)
in the Geneva 7-band photometric system with filters X=UB1BB2V1VG.

Figure 5.3: Theoretically predicted amplitude ratios for various degreesl of a typical B2 star for the dom-
inant p-mode frequency of HD 71913 (left) and of a typical F2 star for the dominant g-mode frequency of
HD 12901 (right). The computations were done in the adiabatic approximation and assumedZ = 0.02. The
line style coding is as follows: full forl = 0 (not applicable in the right panel), dashed forl = 1, dashed-dot
for l = 2, dotted forl = 3 and dashed-dot-dot-dot forl = 4. Comparison of these predictions with the
observations shown in Fig. 5.2 allows the identification of the mode degreel. In the current examples we
find l = 0 for HD 71913 andl = 1 for HD 12901.
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5.1.1 General considerations

Different versions of the photometric mode-identificationmethod are present in the literature. It was orig-
inally proposed by Watson (1981), relying on the work by Dziembowski (1977), Balona & Stobie (1979)
and Buta & Smith (1979). A specific treatment for the case where temperature variations dominate the light
variations was provided in Robinsonet al. (1982), with an application to white dwarfs. Watson (1988) im-
proved the Balona & Stobie (1979) method by bringing it into applicable form, while Garridoet al. (1990)
and Heynderickxet al. (1994) included the perturbation of the limb darkening and,subsequently, of the
surface normal, respectively, in a proper way. All these versions are based on adiabatic oscillation theory,
and treat the non-adiabaticity of the oscillatory behaviour in the outer atmosphere by means of an ad-hoc
parameter. For an extensive review of the methods in this approximation, we refer to Garrido (2000).

The theoretical expressions of the amplitude and phase of the light curve in the different filters (i.e., as
a function of wavelength) depend on, among other things, thegeometrical configuration of the nodal lines
with respect to the observer,i.e., on the values of(l,m, i), wherei is the inclination angle between the
symmetry axis of the oscillation and the line-of-sight, as defined in Eq. (5.1) further on. The symmetry axis
of the oscillation is usually taken to be the rotation axis, except for stars with a strong magnetic field, such
as the rapidly oscillating Ap stars, where the magnetic axisis probably a more natural and better choice,
and possibly for some close binaries where the pulsation axis could be the tidal axis. It was already realised
by Watson (1988) that the functional dependence of the amplitude and phase on the mode geometry allows
one to group the terms depending onm andi into one single factor which is independent of wavelength.
One can thus make this factor disappear, and with it the very disturbing and unknown inclination angle, by
considering amplitude ratios and phase differences among the different filters. This is the procedure that is
usually adopted. The disadvantage is that one loses the information on them-value and one can thus only
identify the degreel of the mode.

A big step forward was achieved by the new versions of the method developed by Cugieret al. (1994)
and Cugier & Daszyńska (2001) forβCep stars, by Brassardet al. (1995) for ZZ Ceti stars, by Balona &
Evers (1999) forδ Sct stars, by Townsend (2002) for slowly pulsating B stars, and by Dupretet al. (2003)
for all main-sequence oscillators. In these works, a non-adiabatic treatment of the oscillations was included,
with different levels of sophistication, through which theunknown ad-hoc factor was eliminated. Dupretet
al. (2003) included for the first time a detailed non-adiabatic treatment of the oscillations in the optically-
thin atmosphere of main-sequence stars. They illustrated the applicability of their method toβCep stars,
slowly pulsating B stars,δ Sct stars, andγ Dor stars. A non-adiabatic treatment similar to the one by Dupret
et al. (2003) was presented by Randallet al. (2005) in the context of pulsating subdwarf B stars. It does not
contain an equally detailed treatment of the oscillations in the outer atmosphere, however.

In order to achieve identification ofl, the theoretical expressions for amplitude ratios and phase dif-
ferences must be computed, and this requires the computation of the perturbed version of the adopted limb
darkening and of the perturbed stellar flux as a function of the effective temperature and the gravity, which
are also affected by the oscillations. This brings us to the need for good atmosphere models and an appropri-
ate limb-darkening description. In particular, it turns out that this identification method is rather sensitive to
the adopted treatment of convection when constructing the atmosphere models for stars with outer convec-
tion zones, such asδ Sct andγ Dor stars (Garrido 2000; Dupretet al.2005). This treatment of convection is
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not a problem in the application of the method to stars with a radiative envelope, but here, the results of the
identification turn out to depend on the adopted metallicity(Dupretet al. 2003). These two dependencies
must always be kept in mind when making conclusions about thel-value.

The theoretical amplitude ratios and phase differences aredependent on the stellar flux, which is deter-
mined by the metallicity, the effective temperature, and the mass and radius, or, equivalently the gravity, of
the star. These parameters are often not known with high precision. Their uncertainties must be propagated
into the final selection of the best value forl from the observed amplitude ratios. This was often ignored
in the past, but is accounted for in modern applications of this method, following Balona & Evers (1999).
Examples of such applications were provided by Handleret al. (2003, 2005, 2006), De Ridderet al. (2004)
and Shobbrooket al. (2006) forβ Cep stars, by De Catet al. (2005, 2007) for slowly pulsating B stars, by
Dupretet al. (2005a,b) forδ Sct andγ Dor stars, and, finally, by Jefferyet al. (2004, 2005) and Tremblayet
al. (2006) for subdwarf B stars. We refer the reader to these papers for more detailed information.

5.1.2 Detailed description

In the following, we provide a detailed mathematical description of the photometric mode-identification
method. In doing so, we use two reference frames: a first one with Cartesian coordinates(x, y, z) and
spherical coordinates(r, θ, φ) such that the unit vector~az coincides with the symmetry (i.e., polar) axis
of the star and the origin at the stellar centre; and a second one with Cartesian coordinates(x′, y′, z′) and
spherical coordinates(r′, θ′, φ′), also with origin at the centre of the star but with~az′ pointing towards the
observer. As origin for the angular coordinatesφ andφ′, we take the meridian passing through the~az and
~az′ axes. We define theinclination angleof the star as the angle between~az and ~az′ such that

~az′ = − sin i ~ax + cos i ~az (5.1)

and we adopt the usual definitions ofµ andµ′:

µ = cos θ = ~ar · ~az, (5.2)

µ′ = cos θ = ~ar′ · ~az′ . (5.3)

Treatment of the atmosphere

The equations valid in the interior of the star, as describedin Chapter 3, are no longer valid in the outer stellar
atmosphere. First of all, the diffusion approximation, which connects the radiative flux to the temperature
gradient, does not hold when the density is very low,i.e., when the mean free path of the photons becomes a
considerable fraction of the remaining distance to the surface. Secondly, the approximation that the radiation
field is isotropic is no longer appropriate, implying that the momentum equation must be modified. The
approximations made in Chapter 3 are fine for the computationof the oscillation frequencies, which are
determined by the interior structure of the star, as well as for the instability computations, but they are not
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sufficient for the description of the photometric amplitudes and line-profile variations. In the following, we
adopt the approach outlined in detail in Dupret (2002) and summarised in Dupretet al. (2003).

It is assumed that the local atmosphere characterised by thecoordinatesθ andφ remains in radiative
equilibrium during the oscillation. This approximation isvalid because the heat capacity in the atmosphere is
very low, such that its thermal relaxation time is far shorter than any of the relevant oscillation periods. In that
case, a plane-parallel atmosphere in hydrostatic equilibrium is fully described by its effective temperature
Teff , its gravityg and its chemical composition. For a given chemical composition, we write the temperature
of the local atmosphere as

T = T (τ, Teff , g), (5.4)

with τ the Rosseland mean optical depth, and we assume that this temperature law does not change during
the oscillation cycle. Hence, the temperature of the local atmosphere at position(τ, θ, φ) varies according
to

T (τ, θ, φ) = T0 + δT (θ, φ)

= T (τ0 + δτ(θ, φ), Teff,0 + δTeff (θ, φ), g0 + δge(θ, φ)), (5.5)

whereδge is the Lagrangian perturbation of the gravity corrected forthe pulsational acceleration. In the
linear approximation, Eq. (5.5) can be written as

δT

T0
=

∂ lnT

∂ lnTeff

δTeff

Teff,0
+
∂ lnT

∂ ln ge

δge
g0

+
∂ lnT

∂ ln τ

δτ

τ0
. (5.6)

From the definition of the Rosseland mean optical depth we find

∂δτ

∂τ0
=
δκ

κ0
+
δρ

ρ0
+
∂ξr
∂r

. (5.7)

As in Eqs (??), (??), etc.the Lagrangian perturbations again contain a common factor
√

4πY m
l (θ, φ) exp (−iωt).

Elimination ofδτ between Eqs (5.6) and (5.7), and division by this common factor leads to
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.

This equation, rather than Eq. (??) is used as energy equation in the atmosphere. The derivatives in Eq. (5.9)
must be estimated numerically from a set of atmosphere models with effective temperatures and gravities
surrounding those of the star.

While the temperature variation in the atmosphere can be computed locally, as just explained, the
variation of the density, pressure and Lagrangian displacement must come from the solution of the mass and
momentum equation considering the entire outer atmosphere. In general, the momentum equation contains
a pressure gradient with a contribution from the gas pressure and one from the radiation pressure. The latter
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implies a radiative acceleration vector, which is, in the case of continuum radiation, given by~grad = κF
~F/c

with κF the flux weighted mean opacity (e.g., Lamers & Cassinelli 2001). It is in general safe to ignore the
line radiation, except for the hottest main-sequence stars(Teff > 25 000 K) and for supergiants (log g < 3.0),
which suffer from a line-driven stellar wind (e.g., Kudritzki & Puls 2000). In that case, one is dealing with
a dynamical atmosphere and the treatment we present here is not strictly valid (but a better approximation is
not available).

While solving the continuity and momentum equations one assumes thatδ|~F | remains constant from
the base of the atmosphere to the outermost layer, that~F remains parallel to the temperature gradient during
the oscillation cycle and that the relative variation ofκF equals the relative variation of the Rosseland
opacity:δκF/κF ≃ δκ/κ. The first two assumptions are again related to the short thermal relaxation time in
the very thin outer layer, which allows the plane-parallel approximation. The validity of the third assumption
was checked numerically by Dupret (2002). The first assumption implies, through Stefan’s law, that

δ|~F |
~F0

=
δFr

Fr,0
= 4

δTeff

Teff,0
(5.9)

and leads to the radial component ofδ~grad:

(δ~grad)r = grad

(

δκ

κ0
+ 4

δTeff

Teff,0

)

, (5.10)

wheregrad is the equilibrium value of the radial component of~grad. This leads to the following expression
for the radial component of the equation of motion:
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This equation is used in the atmosphere, instead of Eq. (??). The horizontal component of the momentum
equation becomes, through the assumption that~F remains parallel to the temperature gradient:

ω2ξ̃h =
1

r

(

δp̃g

ρ0
+ Φ̃′ + g0ξ̃r − grad

δT̃

∂T/∂r

)

. (5.12)

This equation replaces Eq. (??). And, finally, the continuity equation Eq. (??) is replaced by its version valid
in the outer atmosphere:

ω2
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. (5.13)

Following Dupretet al. (2002), appropriate boundary conditions are imposed at theoutermost layer
of the star. This requires a little more attention than the discussion in Chapter 3. Contrary to several
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other versions of the method, it is preferable to choose a mechanical boundary condition that is valid for
application to all stars,i.e., for the case where both the gas and radiation-pressure accelerations may be
significant. Therefore, Dupretet al. (2002) considered as boundary condition the version of Eq. (5.11) in
which the contribution of the gas pressure at the surface is ignored, but not the radiation pressure, thus
deleting the first term of the right-hand side of Eq. (5.11). As boundary condition for the gravitational
potential, we impose, as usual, continuity ofΦ̃′ and its first derivative between the inner solution given by
the Poisson equation and the outer solution given by the Laplace equation:

∂Φ̃′

∂r
+
l + 1

r
Φ̃′ = −4πGρ0ξ̃r. (5.14)

As boundary condition for the energy equation, Eq. (5.9), Eq. (5.6) is evaluated in the outermost layer by
computinglimτ→0 δτ/τ from Eq. (5.7), resulting in
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(5.15)

(Dupret 2002).

In order to solve for the unknown quantitiesξ̃r, ξ̃h, T̃ , . . ., we must require continuity of these variables
at a so-called connecting layer, bridging the stellar interior and the outer atmosphere. As explained in
Dupret (2002) and for the reasons outlined below, this connecting layer must be chosen carefully,i.e., at
a position where the flux is predominantly radiative. In thiscase, Dupret (2002) derived the following
matching conditions for the connecting layer:
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which reduces to the simpler condition

δg̃e
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= −
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)
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r

(5.18)

in the Cowling approximation, if one ignores the surface density divided by the mean density of the star.
By means of Eqs (5.16) and (5.17), Dupret (2002) showed that the continuity of the derivatives of̃ξr/R
andδp̃g/pg,0 is guaranteed. Following Dupretet al. (2002), the continuity ofδT̃ /T0 should be checkeda
posteriori. These authors achieved this condition by placing the connecting layer atlog τ = 1 for main-
sequence B stars and atlog τ = 0 for δ Sct stars, confirming the validity of their treatment.

The theory presented here is more sophisticated than what isoften used in the literature, where the
Eddington approximation with temperature distribution

T 4(r) =
3

4
T 4

eff

(

τ +
2

3

)

(5.19)
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Figure 5.4: Temperature distributions in the envelope and outer atmosphere of a hot star withTeff =
24000 K and log g = 4.5 for different approximations. Dotted line: grey atmosphere as in Eq. (5.19), dot-
dashed line: NLTE plane-parallel line-blanketed static atmosphere model without wind (Lanz & Hubeny
2006), full/dashed line: NLTE spherical unified atmospheremodel with weak/strong wind (Lefeveret al.
2006).

is regularly adopted for the stellar atmosphere rather thanthe general form given by Eq. (5.4) for a non-grey
atmosphere. The advantage of the treatment presented aboveis mainly important for hot stars as it includes
the radiative acceleration due to continuum radiation. Thecurrent treatment also allows one to use any type
of equilibrium atmosphere model, as long as it is static,i.e., whenever the acceleration due to line-driving
can be ignored. When the atmosphere is perturbed due to the oscillations, it is, in fact, no longer strictly
static. Dupretet al.(2002) checked for the difference between the perturbed atmosphere due to an oscillation
and the static one in the LTE approximation with corresponding temperature and gravity, and found relative
differences less than 20% in the quantities, depending on the order of the oscillation mode. This slight
inconsistency is negligible compared with the gain of usingmuch better equilibrium atmosphere models.

We compare in Fig. 5.4 the temperature structure of an Eddington atmosphere with state-of-the-art
NLTE line-blanketed atmosphere models with and without a line-driven wind, for a star withTeff = 24000 K
and log g = 4.5. It can be seen that significant deviations from the Eddington model are encountered for
the atmosphere region wherelog τ < 0, even for the static plane-parallel non-grey atmosphere without
mass loss (dashed-dot line). This discrepancy inT (τ) for log τ < 0 is a general property for all effective
temperatures of relevance for mode identification. The Eddington approximation is thus only appropriate for
the connecting layer, provided that it can be positioned in the regime oflog τ > 0. We therefore advise that
any user of the methodology checks for the validity of the Eddington approximation for the connecting layer
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and for the outer atmosphere. In any case, when computing theamplitude ratios and phase differences it
can easily be replaced by the treatment provided here, basedon a non-grey static plane-parallel atmosphere
model.

Coming back to Fig. 5.4, the discrepancy between the grey atmosphere and more realistic models is
particularly significant for hot stars and supergiants. Onecan see from Fig. 5.4 that even a state-of-the-art
NLTE plane-parallel model (Lanz & Hubeny 2006) does not givea good description of the temperature
distribution in the atmosphere where a temperature bump occurs nearlog τ < −2 in the case of a unified
spherical NLTE line-blanketed atmosphere with a line-driven wind. This bump is generally understood
in terms of line-heating (e.g., Mihalas 1978) but its exact position and height depend on the presence of
particular ions in the wind (see,e.g., Pauldrachet al. 2001; Pulset al. 2005 for discussions of this effect).
As can be derived from Fig. 5.4, the current treatment of the outer atmosphere in mode identification should
be improved by also considering the line acceleration in thedynamical atmospheres of OB-type stars and
supergiants, but this has not yet been done to our knowledge.

Finally, we come back to the prerequisite that the connecting layer must be situated in a part of the
atmosphere where the flux is predominantly radiative. The reason is that the assumptions made about the
link between the temperature structure and the flux are no longer valid when the convective flux dominates.
It is therefore important to position the connecting layer in the very outer part of the envelope for stars with
envelope convection zones, such asδ Sct andγ Dor stars along the main sequences and any type of evolved
pulsator.

Non-adiabatic observables

In what follows, we adopt the single-layer approximation ashas always been done so far in photometric
mode identification. This means we assume there to be a singlestellar photosphere, whose distance to the
stellar centre is characterised by the stellar radiusR and whose temperature equals the effective temperature
of the star. Moreover, it is assumed that the outward flux doesnot depend on the optical depth in the
atmosphere. The deformation of the photosphere is thus derived from the evaluation of the displacement
vector~ξ at r = R in the linear approximation.

We seek to determine the monochromatic amount of energy radiated by the star as measured by a
distant observer:E(λ, t). In doing so, we again recall the short thermal relaxation time of the atmosphere
which has led us to assume that, at each moment in the oscillation cycle, the atmosphere remains in radiative
equilibrium and the temperature distribution in the atmosphereT (τ) remains the same as in the equilibrium
model. We also use the same argument now to keep a fixed prescription for the monochromatic outgoing

flux of the local atmosphere~F+
λ and limb-darkening lawhλ(θ) during the oscillation cycle. Moreover, we

assume that the local atmosphere’s chemical composition stays constant and that~F+
λ remains perpendicular

to the local photosphere. Under these assumptions, the monochromatic flux variation in the local atmosphere
is given by

F+
λ,0 + δF+

λ (θ, φ, t) = F+
λ [Teff,0 + δTeff (θ, φ, t), g0 + δge(θ, φ, t)] , (5.20)
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where we have introduced the notationF+
λ = | ~F+

λ |. In the linear approximation, this can be written as

δF̃+
λ

F+
λ,0

=

(

∂ lnF+
λ

∂ lnTeff

)

δT̃eff

Teff,0
+

(

∂ lnF+
λ

∂ ln ge

)

δg̃e
g0

(5.21)

≡ αT,λ
δT̃eff

Teff,0
+ αg,λ

δg̃e
g0
. (5.22)

Similarly, the variation of the limb-darkening lawhλ(θ) in the linear approximation is written as

δrh̃λ

hλ,0
=

(

∂ lnhλ

∂ lnTeff

)

δT̃eff

Teff,0
+

(

∂ lnhλ

∂ ln ge

)

δg̃e
g0

+

(

∂ lnhλ

∂µ′

)

δr (~n · ~az′) , (5.23)

where~n is the normal to the stellar photosphere andδr stands for theradial Lagrangian perturbationdefined
by

δrX = δX (5.24)

for a scalar quantityX, and

δr~Y = ~Y ′ +
dYr

dr
ξr ~ar (5.25)

for a vector quantity~Y . With Eq. (5.23) we thus assumeδrθ = δrφ = 0. It is noteworthy that Heynderickx
et al. (1994) and De Ridderet al. (2002) did not make this approximation and considered the more general
classical Lagrangian perturbation in their description. It was, however, shown explicitly by Dupret (2002)
and by Townsend (2003) that these treatments are mathematically equivalent in the linear approximation for
the perturbations. Hence, we limit ourselves to the simplertreatment here, which comes down to the ap-
proximation that the geometrical distortion is not affected by the horizontal components of the displacement
field.

As we have shown in Eq. (5.18),δge/g0 is to a very good approximation in antiphase with the radial
displacement. The phase ofδTeff/Teff,0 can in principle take any value, depending on the kind of oscillation
mode and on the stellar model. Therefore, it is customary to introduce the coefficientsfT ,ψT andfg defined
as

δT̃eff

Teff,0
(R, θ, φ) = fT

ξ̃r(R)

R
exp (−iψT ) (5.26)

and
δg̃e
g0

(R, θ, φ) = −fg
ξ̃r(R)

R
. (5.27)

We recall that these amplitude functions are the true amplitudes divided by the common factor
√

4πY m
l (θ, φ) exp (−iωt).

The coefficientsfT , ψT andfg are termednon-adiabatic observables; in particular, the coefficientψT is
called thephase lag. They follow directly from the integration of the basic equations in the stellar interior
and in the atmosphere through the connecting layer, with thetreatment of the atmosphere as discussed above.
In models with an outer convection zone, their values dependon the treatment of convection, including
the choice of mixing-length parameter and the possible inclusion of modelling of the coupling between
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Figure 5.5: The integralbl,λ defined in Eq. (5.30) is shown for different mode degreesl for a linear limb-
darkening law taken from Claret (2000). The lower three curves are for a star ofTeff = 6000 K and
log g = 4.0 at the wavelengts of the U (full line), B (dotted line) and V (dashed-dot line) filters. The two
upper curves are for a star ofTeff = 25000 K and log g = 4.0 at U and B (indistinguishable, shown as
dashed line) and V (dashed-dot-dot-dot line) wavelengths.

convection and pulsations; thus, inferring them observationally provides a possibly diagnostic of the physics
of convection in the outer layers (cf. Sect. 5.1.3).

For the equilibrium model, we have

E(λ) =
R2

2πd2

∫ 1

0

∫ 2π

0
F+

λ hλ(µ′)µ′dµ′dφ′, (5.28)

with d the distance to the observer, so we must determineδE(λ, t). We omit this long derivation here, as it
is readily available in several papers in the literature, such as Cugier & Daszyńska (2001), Dupret (2002),
Townsend (2002), Dupretet al.(2003), Daszyńska-Daszkiewiczet al.(2003), and Randallet al.(2005). The
outcome, written in terms of the observed variation of the monochromatic visual magnitude at wavelength
λ, can be written as

δmλ = − 2.5

ln 10

√
4π

ξr(R)

R
Pm

l (cos i)bl,λ [−(l − 1)(l − 2) cos(ωt) (5.29)

+ fT cos(ψT + ωt)(αT,λ + βT,λ) − fg cos(ωt)(αg,λ + βg,λ)] ,

with

bl,λ =

∫ 1

0
µ′ hλ(µ′) Pldµ

′, βT,λ =
∂ ln bl,λ
∂ lnTeff

, βg,λ =
∂ ln bl,λ
∂ ln g

. (5.30)

The terms proportional to(l − 1)(l − 2), fT andfg correspond to the variation of the surface, of the local
effective temperature and of the gravity, respectively. Weshow the value of the integralbl,λ for different
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l in Fig. 5.5, for two different types of stars and for the wavelengths of the U, B, V filters. It can be seen
that there is a steep decrease in value asl increases from 0 to 3, and fluctuating values converging to zero
as l raises above 9. While Eq. (5.29) makes it clear that the computation of the decrease in the observed
amplitude of the brightness variations as a function ofl is far more complex than simply consideringbl,λ,
this dependence ofbl,λ on l forms the basis of the so-calledpartial cancellation effect. We can see from
Fig. 5.5 thatbl,λ is a factor∼ 4 smaller forl = 2 than forl = 0. The factor is even larger forl = 5, 6, while
b3,λ ≈ 0. This is the reason why one often assumesl ≤ 2 in the modelling of the photometrically detected
oscillation frequencies.

Another point of attention in Eq. (5.29) is the factorPm
l (cos i). For each(l,m), there exists at least

one inclination angle for whichPm
l (cos i) = 0. Such angles are termedInclination Angles of Complete

Cancellation, abbreviated as IACC. You can easily compute them!

Observations usually do not provide us with the monochromatic magnitude, but rather magnitudes for
particular filtersj with transmission curveswj(λ) and a wavelength range fromλj,blue to λj,red. One thus
computes

δmj =

∫ λj,red

λj,blue

δmλ wj(λ) dλ

∫ λj,red

λj,blue

wj(λ)dλ

(5.31)

for comparisons with observations. It is readily seen from Eq. (5.29) that one eliminates the common factor
−(2.5/ ln 10)

√
4π(ξr(R)/R)Pm

l (cos i), which is independent of wavelength, by considering amplitude ra-
tios for different photometric bands. With it, the dependence on the inclination angle and on the position of
the nodal lines on the stellar surface (by means ofm) disappears. This is an asset of the method, because the
inclination angle is often not, or only very poorly, known, but it is also a disadvantage as it cannot deliver
an estimate ofm.

Finally, we wish to emphasize that, in the early developmentphase of this method, some less accurate
approximations have been proposed for the computation offT , fg andδpg. These were mainly based on
adiabatic approximations or an ad-hoc generalization thereof, and/or the assumption that the Lagrangian
perturbation of the local temperature equals that of the effective temperature. These assumptions are not
appropriate for the outer stellar atmosphere. We advise against usage of the treatments published before
2000. Cugier & Daszyńska (2001) first came up with an improved computation offg in terms of the
dimensionless frequency of a mode:

fg ≃ 2 + σ2 = 2 +
ω2R3

GM
. (5.32)

This result is equivalent to the one we encountered in Eq. (5.18), which was a special case of the more general
Eq. (5.17) in the Cowling approximation and ignoring the surface density divided by the mean density of the
star in the outer atmosphere.

We point out that the inverse ofσ2, i.e., the ratio between the horizontal and radial components of
the displacement evaluated at the stellar surface, is termed theK-valueof the mode by observers. They
introduced this concept ofK while interpreting data of stellar oscillations. One thus encounters both terms
in the literature these days, depending on the background ofthe authors.

178



5.1.3 Mode identification schemes

Even though the oscillations always behave highly non-adiabatically in the outer atmosphere, some stars
haveψT -values close to the adiabatic values. This is, for example,the case for main-sequence B stars and
is understood in terms of their excitation by the heat mechanism acting on an opacity feature resulting from
iron-like elements, near a temperature oflog T ≃ 5.3. This is rather deep in the star where the quasi-
adiabatic approximation is still quite good. Therefore, the phase difference between the variation of the
luminosity and the radial displacement amounts to almost the adiabatic value,i.e., 180◦ for the p modes in
βCep stars and0◦ for the high-order g modes in SPB stars. In such cases, it is customary to exploit only the
amplitudes in the different photometric bands, and not the phase differences, when identifying the degree of
the modes. The same holds true for the pulsating sdB stars. Other pulsators, such asδ Sct stars and all other
pulsators in the classical instability strip, are predominantly driven by the partial ionization zone of once
ionized helium. This layer is positioned nearlog T ≃ 4.6, i.e., much further out where the non-adiabatic
effects are stronger. Non-adiabatic theoretical computations indeed predict large phase differences in the
magnitude variations for different filters for such stars. This is confirmed by the observations. In that case,
it is advantageous to exploit also these phase differences in identifying l, besides the amplitude ratios. We
treat these two situations below.

Mode identification schemes using only amplitudes

When using only the amplitudes, the following scheme is advised, after Dupretet al. (2003):

1. Compute stellar models with appropriate effective temperatures and gravities. One must make sure to
cover the observational error box in(Teff , log g) with models for a safe propagation of the uncertainty
of these fundamental parameters on the mode identification.As Teff and log g follow readily from
an interpretation of the stellar spectrum, it is best to use these as constraints to construct the models.
Observational values for the luminosity (or the absolute magnitude) require additional information,
such as the distance which is often poorly known, or rely on calibrations which can suffer from
unknown systematic uncertainties.

2. Perform non-adiabatic computations to derivefT , ψT , fg for modes with frequencies close to the
observed ones, for different degreel, for all the models that pass through the observational error
box computed in 1. Usually, one restricts the search tol = 0, . . . , 4 by arguments of observational
cancellation for higher degree modes.

3. For each filterj and for each degreel, compute the theoretical amplitude while omitting the common
factor−(2.5/ ln 10)

√
4π(ξr(R)/R)Pm

l (cos i), i.e., compute the amplitude factor:

Aj,th =

∫ λred

λblue

|bl,λ| |T1 + T2 + T3|wj(λ)dλ

∫ λred

λblue

wj(λ)dλ

, (5.33)
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with

T1 ≡ (1 − l)(l + 2). (5.34)

T2 ≡ fT exp(−iψT ) (αT,λ + βT,λ), (5.35)

T3 ≡ −fg (αg,λ + βg,λ). (5.36)

4. Choose a reference filterAref,th to compute the amplitude ratios. The best choice is to take the
particular filter for which the relative uncertainty of the measured amplitude is smallest. Quite often,
this is the filter in which the highest intrinsic amplitude isreached, but not always as this also depends
on the instrumental noise.

5. Compare the theoretical amplitude ratiosAj,th/Aref,th with the observed onesAj,obs/Aref,obs, for all
the stellar models that pass through the error boxin (Teff , log g). This comparison can be made by
visual inspection, as is often done, as it makes it possible to see the confusion regions due to the
uncertainty in(Teff , log g). It can also be done by computing theχ2 function defined as:

χ2(l) =
#filters
∑

j=1

(

Aj,th/Aref,th −Aj,obs/Aref,obs

σj,obs

)2

, (5.37)

whereσj,obs is the properly propagated standard error of the observed amplitude ratio for filterj and
the reference filter,i.e.,

σj,obs =
Aj,obs

Aref,obs

√

√

√

√

(

sAj,obs

Aj,obs

)2

+

(

sAref,obs

Aref,obs

)2

, (5.38)

with sAj,obs
the standard error of the observed amplitude in filterj. Also in this case, one must

consider different stellar models across the entire observational error box.

While performing step 3, one needs to derive the coefficientsαT,λ andβT,λ, which are derivatives of the
monochromatic flux at wavelengthλ, from appropriate stellar atmosphere models. Several grids of state-of-
the-art models are available in the literature, well suitedto particular kinds of pulsating stars,e.g., the LTE
plane-parallel models by Kurucz (1993) or Smalley & Kupka (1997) for main-sequence stars cooler than
spectral type B and the NLTE plane-parallel line-blanketedmodels for B stars (Lanz & Hubeny 2006) and O
stars (Lanz & Hubeny 2002) without wind. As already discussed in the context of the connecting layer and
Fig. 5.4, one should in principle adapt the theory presentedhere to NLTE unified spherical line-blanketed
models including winds, such as those computed by Lefeveret al. (2006), for O and B stars. For the time
being, such generalization is not available, but Duftonet al. (2005) made a comparison between the NLTE
static plane-parallel models without wind and the dynamical spherical models with wind and concluded
that most of the atmospheric parameters and chemical compositions are quite similar. One may thus hope
that the current description and the use of static NLTE models are sufficient to compute appropriate values
for αT,λ andβT,λ. Nevertheless, it would be very useful if the current treatment of the atmosphere were
generalised to a dynamical spherical unified atmosphere with a line-driven wind for the identification of the
oscillations of O and the hottest B stars.

One also needs good values for the limb darkeninghλ(µ′) to perform step 3. In a series of papers,
Claret (2000, 2003, 2004) has computed several limb-darkening laws for a very broad range of effective
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temperatures, gravities and metallicities, and for several photometric systems. These are ideally suited to be
used for mode identification. In the approaches by Ramachandranet al.(2004) and Randallet al.(2005), on
the other hand, the use of a perturbed atmosphere model is constructed in such a way that it automatically
incorporates the wavelength-dependence of the limb darkening, so that approximate parameterised limb-
darkening coefficients are not needed for the computation ofβT,λ andβg,λ.

In all of the applications of the method so far, steps 1 and 2 are done for non-rotating stellar models.
For each evolutionary stage of each track through the error box, one selects, for eachl, the mode with
frequency closest to the observed one and considers its amplitude for comparison with the observed ones.
This implicitly assumes that the observed frequency corresponds to the central peak of a multiplet. Given
that the Ledoux constant is usually substantially smaller than 1, the assumption thus becomes thatm = 0
or Ω ≃ 0. This is invalid for many pulsators. For stars with rapid rotation, the first-order approximation of
the rotational splitting breaks down, and even the central peaks of the multiplets are shifted (Goupilet al.
2000). Rotational mode coupling also occurs between modes whose degreel differs by 2 when they have
the same azimuthal orderm (Daszyńska-Daszkiewiczet al.2002). All these effects are ignored in the mode
identification. It is very important for readers to realise the limitation of assuming the measured frequency
to be equal to the central peak of the excited modes.This is, in fact, quite a weak point of the photometric
mode-identification method, except when the star is a very slow rotator in the sense that its rotation period
is far shorter than the pulsation periods in the corotating frame. Indeed, in many cases, we have clear
spectroscopic evidence that the observed mode hasm 6= 0 (see Sect. 5.2), even for moderate rotators. This
is particularly the case for the high-order g modes in SPB stars andγ Dor stars with their long pulsation
periods, but also for some of the p modes inβCep stars andδ Sct stars. One should, therefore, not expect
perfect agreement between the theoretical and observed amplitude ratios. It should also be kept in mind that
deviations from linearity may occur, and that non-linear effects can also be the cause of a departure from the
theoretical predictions based on the linear approximation.

While performing step 2, one can take two attitudes. Either one gives full confidence to excitation com-
putations, and one considers only the modes that are predicted to be excited when computing the theoretical
amplitude ratios. Or, a more conservative approach is taken, and one does not restrict the search by using
predicted theoretical amplitudes, but rather considers all modes with frequencies close the observed ones,
irrespective of their excitation predictions. As we will show in Chapter 10, we have a good, but not perfect,
view of mode excitation in main sequence stars. Thus we advise the conservative approach.

The most likely mode degreel is, obviously, the one with the best agreement between theory and ob-
servations. Discrimination among thel-values is achieved by comparing the results for the amplitude ratios,
either by visual inspection or from comparison of theχ2(l)-values. These two approaches are illustrated in
Figs 5.6 and 5.7 for nine of the ten independent oscillation frequencies detected for theβ Cep starν Eri, the
values of which are available from De Ridderet al.(2004) and are repeated here in Table 5.1. As can be seen
in Table 5.1, the frequencyν7 is only detected in the spectroscopy and could thus not be identified from the
photometry. In Fig. 5.6, all the modes of numerous models within the error box with frequencies close to
the observed ones are considered for the theoretical predictions of the amplitude ratios (indicated as the grey
zones).With this way of working, one assumes that the theory is error-free, and that the uncertainty in the
theoretical prediction of the amplitude ratios comes from the errors of the fundamental stellar parameters.
It can be seen that the first four dominant modesν1, . . . , ν4 are safely identified as a radial mode on the one
hand and anl = 1 triplet on the other hand, given the similar frequency values ofν2, ν3, ν4. The modes with
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Figure 5.6: Amplitude ratios with respect to the Strömgrenu filter for theβ Cep starν Eri, resulting from
a 5-month multisite campaign. The dots are the observed values with their errors, and the full lines are the
predicted values as a function ofl, for a model in the centre of the observational(Teff , log g) box. The grey
zones indicate the uncertainty of the theoretical prediction due to the observational error of(Teff , log g). All
modes close in frequency to the observed ones were considered for the theoretical prediction, irrespective
of their excitation. For a description of the data and the derived frequencies, we refer to Chapter 10. Figure
taken from De Ridderet al. (2004).
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Table 5.1: The ten independent frequencies for theβCep starν Eri, and their amplitude in the radial velocity
derived from the Si III 455.3nm line as well as in the Strömgrenu filter (from De Ridderet al. (2004).

ID Frequency Amplitude Amplitude Degree
(d−1) (km s−1) (mmag) l

ν1 5.7633 22.4 73.5 0
ν2 5.6539 8.9 37.9 1
ν3 5.6201 8.1 34.6 1
ν4 5.6372 7.9 32.2 1
ν5 7.898 1.0 4.3 1
ν6 6.244 1.0 3.9 1
ν7 6.223 0.3 – –
ν8 6.262 0.8 2.8 1
ν9 7.200 – 1.4 –
ν10 0.432 – 5.5 –

frequenciesν5, ν6 andν8 are also still safely identified asl = 1 modes. The identification ofν9 andν10

is impossible. Forν9 this due to the uncertainties on the observed amplitude. Forν10, which corresponds
to a high-order g mode, numerous such modes with differentl- andn-values have almost similar frequency
values which makes a discrimination among the possibilities impossible, as is reflected by the large grey
area in the bottom panel of Fig. 5.6. The reader will have noticed that the theoretical predictions of thel = 3
modes do not occur in Fig. 5.6. This is due to the authors’ choice to omit them in order to keep the graphs
clear, because odd modes withl > 1 have a very specific wavelength dependence crossing the one of the
even modes for B stars (see Fig. 5.2) which was not compatiblewith the observed ones. From Fig. 5.7 one
would get the impression that all modes but the one with frequencyν9 can be safely identified. We use this
example to illustrate the importance of propagating the errors on(Teff , log g) into the theoretical predictions,
as is done in Fig. 5.6, before making firm conclusions on the mode degree.

In principle, one could take one step further and use standard quality-of-fit measures of theχ2 approach
(e.g., Presset al.1986) to decide if a model is acceptable or not in an absolute sense,i.e., as a deterministic
tool to decide when to accept a mode identification as well as to decide which of the solutionsχ2(l) are
statistically equivalent/different. However, we refrainfrom using such a cut-off value forχ2 as a decision
criterion to decide if we can accept the mode identification or not, because it assumes that the complicated
non-adiabatic oscillation theory, the construction of themodel atmospheres, the treatment of the oscillations
in the atmosphere, and the input physics of the models (including the metal mixture, the description of
convection and the ignorance of rotation) are error-free, besides the assumption that the determination of
the fundamental parameters of the star does not suffer from systematic uncertainties. While all of this
may be true, it is rather optimistic, to say the least. In fact, a discrepancy between the theoretical and
observed amplitude ratios, translating into a high value for χ2(l), was exploited by Dupretet al. (2003), by
Daszyńska-Daszkiewiczet al.(2003) and by Daszyńska-Daszkiewiczet al.(2005) to improve the metallicity
of main-sequence B stars, the treatment of convection ofδ Sct stars, and the values for the opacities ofβCep
stars, respectively, after securely identifying the degree(s) of the mode(s). Dupretet al. (2003) termed this
non-adiabatic asteroseismology. Such fine-tuning can only be applied when there is no overlapamong the
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amplitude ratios of differentl-values, after consideration of the propagated uncertainties on the ratios due to
the observational error box and after making sure that the total neglect of rotation and non-linear effects in
the models and oscillations is justified.

A final remark on the amplitude-ratio method concerns the slightly different treatment of the deviation
parameter by Randallet al. (2005). Instead of Eq. (5.37), they preferred to minimize

χ2(l) =
#filters
∑

j=1





f⋆
l
Aref,obs

Aref,th
Aj,th −Aj,obs

σj,obs





2

=
#filters
∑

j=1

(

flAj,th −Aj,obs

σj,obs

)2

, (5.39)

wheref⋆
l andfl are free parameters that are solved for by minimizing theχ2. The main difference with

Eq. (5.37) is thus the introduction of the factorfl. In this way, one still uses amplitude ratios, but one
does not give preference any longer to the amplitude of one specific reference filter to compute the ratios.
This is more objective in the sense that all filters are treated equally, but, on the other hand, introduces an
additional free parameter that is adapted for eachl separately. This is done in such a way that the shape of
the amplitude-ratio distribution across the wavelength range is matched with the observed shape. This is a
valid treatment within theχ2 approach, where the number of degrees of freedom is simply increased by one.
An example of thisχ2, as an application to identify the dominant mode of the sdBV star KPD 2109+4401,
is shown in Fig. 5.8. The data have a very high S/N level and were taken with ULTRACAM by Jefferyet
al. (2004). These authors also tentatively identified this modein the adiabatic approximation and found it to
be radial, albeit that confusion among thel = 0, 1, 2 solutions occurred. The results in the figure contain a
non-adiabatic treatment and leave no doubt that the dominant mode is radial (Randallet al.2005), thanks to
the small error bars on the observed amplitudes.

Mode identification schemes also using phase differences

For the case ofδ Sct oscillations, information is also encapsulated in the observed phase differences. Typical
ψT -values for such oscillators range from60◦ to 200◦, depending on the mixing-length parameter, the mass
and the degree of the mode. This strong dependence ofψT on the mode degree has led to a slightly different
mode-identification method for such stars. Pioneering workin this respect was done by Garridoet al.
(1990), who defined so-calledregions of interestfor the Strömgren system. These are areas in diagrams of,
e.g., v/y versusδ(v)−δ(y) (whereδ(x) is the phase of time seriesx) as a function of the degreel. The level
of non-adiabaticity andψT were rather arbitrarily treated as free parameters in the ranges[0.25, 1] (where
adiabatic equals 1) and[90◦, 135◦], respectively, for the computation of these areas. Severalexamples of
such regions are shown in Fig. 5.9, where a confrontation with the modes detected in severalδ Sct stars is
also shown. It can be seen that the identification of the degree is easiest to achieve by considering theu filter
in combination with one of the three other filters. For an overview of applications of this method we refer
to Garrido (2000). In particular, this method was applied byBregeret al. (1999) to identify several modes
of the prototypical multiperiodicδ Sct star FG Vir.

A higher level of sophistication inδ Sct oscillation mode identification was reached by Dupretet al.
(2003), following the scheme outlined above, and subsequently by Daszyńska-Daszkiewiczet al. (2003).
These authors developed a method based on non-adiabatic computations similar to those described here, but
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Figure 5.8: Identification of the dominant mode of the sdBV star KPD 2109+4401 from ULTRACAM
photometry according to Eq. (5.39). The data are taken from Jeffery et al. (2004) while the identification
was done by Randallet al. (2005).
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Figure 5.9: Regions of interest based on amplitude ratios and phase differences for the Strömgren system in
the case of modes with degreel = 0, 1, 2. The dots with error bars denote the observed values for modes
detected in severalδ Sct stars. Figure kindly reproduced from Garridoet al. (1990) by Rafa Garrido.
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Figure 5.10:χ2 for the observed photometric data of theδ Sct star 20 CVn for four models in the observa-
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considering the amplitudes and phases themselves in the different passbands by re-arranging the equations.
While doing so, they defined a different type ofχ2, which they minimized as a function of the coefficients
[ξr(R)/R] Pm

l (cos i) andfT [ξr(R)/R] Pm
l (cos i). In this way, one does not need to know a value for the

unknown factorPm
l (cos i) because this factor is considered together with the unknownamplitudeξr(R)/R

of the mode. In fact, seeking the best solution for the two chosen unknowns by means of a minimum in
theirχ2 for models with different parameters allowed them to constrain these parameters. The identification
of l then comes as a by-product, excluding thel-values whenever theirχ2(l) turned out to be too high and
discriminating amongl whenever possible. We show in Fig. 5.10 the application of their method to the
low-amplitudeδ Sct star 20 CVn, which was already known to have a radial mode (see also Sect. 5.2 below).
There is no ambiguity in the mode identification for this star, as all modes withl > 0 have much higherχ2-
values than the radial mode. The main goal of the authors was to constrain the properties of the convection
treatment by comparing the value offT resulting from the fit with theoretically computed values. Using
a simplified treatment of the convection-pulsation interaction by assuming ‘frozen convection’ they noted
a preference for very small values of the mixing-length parameterα, although in all cases the agreement
between the observationally inferred and computed values of fT was rather poor; this clearly indicates
inadequacies in the convection modelling.

Daszyńska-Daszkiewiczet al. (2005) applied a similar method, in which the radial velocity amplitude
and phase is included and which will be discussed further in Sect. 5.3, to the data of FG Vir; this led to
the same result for the eight dominant modes as the one obtained already by Viskumet al. (1998) and
Bregeret al. (1999). We display these results in Fig. 5.11 and compare them with the spectroscopic mode
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Figure 5.11:χ2 for the twelve dominant modes in the photometry of theδ Sct star FG Vir, for three dif-
ferent stellar models characterised by the given effectivetemperature. The full horizontal line indicates a
confidence level of 80% (Daszyńska-Daszkiewiczet al.2005).
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identification in Sect. 5.2 by means of Table 5.4. Here again amajor goal was to investigate the treatment
of convection. Using a time-dependent formulation of mixing-length theory originally proposed by Gough
(1977) resulted in a somewhat better agreement between inferred and computedfT than for the frozen-
convection approximation, without requiring a possibly unrealistically low value ofα.

Even though the method by Daszyńska-Daszkiewiczet al. (2003) is a significant improvement to the
one by Garridoet al. (1990), it suffers from the same limitation as Dupretet al.’s (2003) amplitude-ratio
scheme outlined above,i.e., it uses model and oscillation computations for non-rotating stars and assumes
the theory to be well enough developed so that the discriminating values of theχ2 are mainly due to different
l-values and not to limitations of the theoretical models.

The application of the above theory to the case of the high-overtone p modes of the roAp stars was
used with a different goal. As explained in Chapter 2, some ofthese stars are known to have a dominant
dipole(l = 1) mode from frequency splitting in terms of the oblique pulsator model. This information can
thus be used to derive observational information on the badly known limb darkening, and from it of the
temperature structureT (τ) of the atmosphere, from a confrontation between observed amplitudes in differ-
ent filters and Eq. (5.29). This idea was put forward by Matthews et al. (1990, 1996) who derived such an
empiricalT (τ) relation for the star HR 3831 in the approximation of a grey atmosphere as in Eq. (5.19) and
assuming the steep amplitude decrease with increasing wavelength to be dominated by the limb-darkening
variations. Kurtz & Medupe (1996), on the other hand, showedfrom an analytical derivation that the limb-
darkening could not account for the observed steep decline of the amplitudes towards red wavelengths. They
suggested instead that this is a consequence of a depth effect in the atmosphere, and settled the ambiguity
between these two different interpretations by showing that the factor two difference between the theoretical
predictions according to Eq. (5.29) and the observations cannot be due to limb-darkening variations alone.
They re-affirmed the failure of the theory outlined above dueto the basic assumption adopted at the start of
Sect. 5.1.2,i.e., the single-layer approximation. This is inappropriate for roAp stars, given that depth effects
are clearly visible in the line-profile variations of such stars (e.g., Mkrtichian et al.2003; Elkinet al.2005;
Kurtz et al.2007; Ryabchikovaet al.2007). The generalization of the method of photometric amplitudes to
a multi-layer approach is still awaited.

To conclude this section, we stress that the photometric mode-identification methodology, in whichever
of the modern formulations, has to be treated with care. It relies rather heavily on the theoretical models
and assumes the input physics to be free of errors. In this sense, it is not reallyempirical. Nevertheless, it
works well for the large-amplitude p-mode oscillations inβCep andδ Sct stars, provided that they are not
fast rotators. The performance of the method has not yet beentested properly for the very dense frequency
spectra of high-order g modes in SPB stars andγ Dor stars, and it needs to be modified to include better
atmosphere models and depth effects for the application to roAp stars. Despite these limitations, we stress
once more that even the secure identification of thel-value of only one or two of the dominant modes is a
huge step forward in the seismic modelling.
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5.2 Mode identification from high-resolution spectroscopy

As already explained in Chapter 4, the velocity field caused by the non-radial oscillation(s) leads, through
Doppler displacement, to periodic variations in the profiles of spectral lines. The introduction of high-
resolution spectrographs with sensitive detectors in the 1980s thus had a large impact on the field of empirical
mode identification. Spectroscopic data offer a very detailed picture of the pulsational velocity field. As we
will show below, its interpretation in terms of(l,m) is far less dependent on the details of the oscillation
theory in the outer atmosphere than multicolour photometry. Indeed, it basically relies on the interpretation
of the data in terms of the oscillation velocity vector, derived from~ξ, and not so much on the Lagrangian
variation of the temperature and of the flux.

From an observational point of view, it remains a challenge to obtain spectra covering the overall beat
period of the multiperiodic oscillations, with a high resolving power (typically above 40 000) and with a
high signal-to-noise ratio (typically above 200 and preferably much higher than that), for a good temporal
resolution (typically below a few percent) in the sense of the ratio of the integration time to the oscillation
period. The latter condition is necessary in order to avoid smearing out of the oscillations during the cycle.

The methodology to derive the full details of the pulsational velocity field at the stellar surface contains
at least six unknowns, as will be shown below, and therefore tends to be complicated. For this reason,
multicolour photometric observations, which can only leadto an estimate of thel, but which can be obtained
from small telescopes, are still of utmost importance for mode identification. These kinds of data are in
particular more suitable to study long-period pulsations because small telescopes are available on longer
time scales. Ideally, one combines both types of data, in ways outlined in Sect. 5.3. In the current section we
first explain how theoretical line-profile variations can becalculated. Subsequently we describe two modern
mode-identification methods based on line-profile variations.

5.2.1 Calculation of theoretical line-profile variations

Osaki (1971) published a pioneering paper including a scheme on how to compute theoretical line-profile
variations for non-radial oscillations. This is remarkable since, at the time Osaki published his work, high-
resolution spectroscopy was not yet available. His scheme could therefore not be tested on real data. We
follow below the basic ingredients of a modern line-profile generation code based on Osaki’s description.

In the case of one linear spheroidal mode with infinite lifetime, the surface pulsation velocity vector
expressed in the coordinate system(r, θ, φ) is given by

~vosc(R, θ, φ, t) = (vr, vθ, vφ, t) (5.40)

= ℜ
{

−iωξr(R)

(

1,K
∂

∂θ
,
K

sin θ

∂

∂φ

)

Y m
l (θ, φ) exp (−iωt)

}

,

in the approximation where one can ignore the effects of the rotation in the computation of the oscillation
eigenfunctions. To this, we add the rotational surface velocity vector in the approximation of uniform time-
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Figure 5.12: The stellar surface is subdivided into a finite number of surface elements determined by a
step-size inθ andφ for the computation of theoretical line-profile variations.
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independent rotation:
~vrot(R, θ, φ, t) = ΩR~aφ (5.41)

to obtain the total velocity vector~v(R, θ, φ, t) = ~vosc(R, θ, φ, t) + ~vrot(R, θ, φ, t) at the stellar surface for
the surface element with coordinates(R, θ, φ).

In order to compute the observed line-profile shape corresponding to this velocity vector field, denoted
asp(λ, t), we have to determine the velocity vector component, as wellas the normalised flux of a particular
stellar surface element with coordinates(R, θ′, φ′), in the line-of-sight:

p(λ, t) ≡

∫ π/2

θ′=0

∫ 2π

φ′=0

(

d ~A(R, θ′, φ′, t) · ~a′z
)

Iλ(R, θ′, φ′, t,~a′z)

∫ π/2

θ′=0

∫ 2π

φ′=0

(

d ~A(R, θ′, φ′, t) · ~a′z
)

Icont
λ (R, θ′, φ′, t,~a′z)

, (5.42)

whered ~A is the local surface normal,Iλ(R, θ′, φ′, t,~a′z) is the intensity of the point with coordinates
(R, θ′, φ′) at timet in the line-of-sight andIcont

λ is the continuous intensity,i.e., the intensity that would
be observed if the spectral line were absent. In practice, one subdivides the visible stellar surface into a
large number of elements with central coordinates(θ′i, φ

′
j), i = 1, . . . ,N ; j = 1, . . . ,M for the computa-

tion of the integrals in Eq. (5.42) (see Fig. 5.12). For present-day computational power, one usually takes a
step of1◦ in the anglesθ′ andφ′, leading toN = 180 andM = 360. In order to get reliable results,N and
M must be at least 45 and 90, respectively.

We now consider all the ingredients necessary for the computation ofp(λ, t) through Eq. (5.42). The
velocity field due to the rotation and the pulsation leads to aDoppler shift at a point(R, θ′, φ′) on the visible
equilibrium surface of the star. The local contribution of apoint (R, θ′, φ′) to the line profile is proportional
to the flux at that point. We assume that the intensityIλ(θ′, φ′) is the same for all points of the considered
surface element. The flux through the surface element surrounding the point(R, θ′, φ′) thus is the product of
the intensityIλ(θ′, φ′) and the projection on the line-of-sight of the surface element around the considered
point:

Iλ(θ′, φ′) R2 sin θ′ cos θ′ dθ′ dφ′. (5.43)

An important effect that changes the flux over the visible surface is the limb darkening. The flux of a surface
element centred around the pointP (R, θ′, φ′) of the equilibrium surface with sizeR2 sin θ′ dθ′ dφ′ is

Fλ(R, θ′, φ′) = I0 hλ(θ′) R2 sin θ′ cos θ′ dθ′ dφ′, (5.44)

whereI0 is the continuum intensity atθ′ = 0. For line-profile variation calculations, a linear approximation
of the limb darkening largely suffices, because the profile variations are dominated by the Doppler shifts
due to the surface velocity. One therefore often encountersthe limb darkening in terms of one coefficient
uλ(Teff , log g, Z) because this saves an order of magnitude in computation timefor spectroscopic mode
identification, where numerous parameter combinations must be considered.

Perturbations of the intensity and of the surface due to the oscillations change the line profile. Usually,
however, these effects are far less important than the velocity effect for classical pulsators, and one often
assumesδFλ(θ′, φ′) = 0 during the oscillation cycle. However, one can easily generalise any line-profile
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generation code to include the non-adiabatic perturbationof the intensity,δ[I0hλ(θ′)], as well as the per-
turbed surface due to the oscillation, according to the treatment in the outer atmosphere discussed above.
This has been tested for the spectroscopic identification methods we discuss below and has been found to
be an unnecessary complication.

A spectral line with central wavelengthλ0 is subject to different broadening mechanisms, which we
also have to take into account in the computation ofp(λ, t):

1. Atomic broadeningresults in a Lorentz profile, which is caused by the finite lifetime of the energy
levels of the ions responsible for the line.

2. Neighbouring particles disturb the energy levels of the ions, causing a small change in the wavelength
of the spectral line. Thispressure broadeningresults in a Lorentz profile. The higher the pressure the
larger this broadening becomes.

3. All ions move on a microscopic scale due to thermal agitation. Thisthermal broadeningleads to a
Gaussian profile as the particles follow a Maxwellian velocity law with a temperature dependence
∼

√
T .

4. The stellar rotation causesrotational broadening. We assume the rotation to be uniform across the
stellar disk, and time independent. The resulting line profile is then symmetrically broadened by the
rotation.

5. Stellar oscillations give rise to periodic broadening ofthe line profile. The shape of the line profile is
completely determined by the parameters occurring in the expression of the pulsation velocity given
in Eq. (5.40). In particular, it is dependent on the(l,m) of all the oscillation modes.

In order to take into account such intrinsic broadening effects, the local line profile is convolved with an
intrinsic profile, which, in the simplest approximation of thermal broadening, is taken to be Gaussian with
variancev2

th, wherev2
th is an unknown parameter that depends on the spectral line considered. Generalisa-

tions to an intrinsic Voigt profile or a profile derived from a stellar atmosphere model are easily performed,
but are not necessary for mode identification (see below) while implying much longer computation times.
In principle, if the theory of model atmospheres and the time-independent broadening mechanisms were
well enough understood, we would not need this free parameter vth, but we could simply take the intrinsic
shape of the considered spectral line. In practice, however, one is always faced with the need to introduce
some unknown level of microturbulence, of up to several km s−1, when fitting spectral line profiles. For
this reason, we may as well omit the computation of the intrinsic line profile from atmosphere models and
estimate a Gaussian with variancev2

th along with the pulsational and rotational parameters that affect the
line profiles.

We have now considered all the ingredients for the computation of the observed line profilep(λ, t). We
represent byλij the Doppler-corrected wavelength for a point on the star with coordinates(R, θ′i, φ

′
j , t), i.e.,

λij − λ0

λ0
≡
λ(R, θ′i, φ

′
j , t) − λ0

λ0
=

∆λ(R, θ′i, φ
′
j , t)

λ0
=
v(R, θ′i, φ

′
j , t)

c̃
. (5.45)
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An explicit expression forv(R, θ′i, φ
′
j , t) can be found in,e.g., Aertset al. (1992):

v(R, θ′i, φ
′

j , t) = − v
Ω

sin θ′ sinφ′

+ vp

l
∑

k=−l

al,m,k(i)

(

cos θ′P k
l −K sin θ′

dP k
l

dθ′

)

× sin((ω −mΩ)t+ kφ′) , (5.46)

where the velocity amplitude is defined asvp ≡
√

4πclmξ̃r(R)ω with the normalization constantclm intro-
duced in Chapter 3 and where we usev

Ω
≡ ΩR sin i, usually denoted asv sin i, for the projected rotation

velocity for convenience of shorter notation. Equation (5.46) is based on the transformation formula for
spherical harmonics for two different coordinate systems whose polar axes are inclined with anglei:

Y m
l (θ, φ) =

l
∑

k=−l

al,m,k(i)Y
k
l (θ′, φ′), (5.47)

where

al,m,k(i) ≡ (l +m)!(l −m)!

×
∑

r

(−1)l+k+r sin(i/2)2l−2r−m−k cos(i/2)2r+m+k

r!(m+ k + r)!(l −m− r)!(l − k − r)!
, (5.48)

with r ≥ 0, r ≥ −k −m, r ≤ l −m, r ≤ l − k (Jeffreys 1965, Condon & Odabasi 1980).

The line profile is then approximated by

p(λ, t) =

∑

i,j

I0hλ(θ′i)√
2πσ

exp

(

−(λij − λ)2

2v2
th

)

R2 sin θ′i cos θ
′

i ∆θ′i ∆φ′j

∑

i,j

I0hλ(θ′i)R
2 sin θ′i cos θ

′

i ∆θ′i ∆φ′j
, (5.49)

where the sum is taken over the visible stellar surface,i.e., θ′ ∈ [0◦, 90◦], φ′ ∈ [0◦, 360◦] and where
we have assumed a constant Gaussian intrinsic profile and a non-variable surface normal for simplicity.
Equation (5.49) essentially represents the line-profile computation suggested by Osaki (1971).

We show in Figs 5.13 and 5.14 sets of theoretically calculated profiles forl = 2 and l = 6 modes
computed from Eq. (5.49). The profiles in Fig. 5.13 are prograde, those in Fig. 5.14 retrograde.

It is obvious that the pulsational broadening is easiest to unravel from the intrinsic broadening for the
sharpest lines in the spectrum, provided that they are well resolved. Indeed, for sharp lines with narrow
wings, the deformation of the line is detectable across the whole profile and not only in the line center.
This is why we want to avoid hydrogen lines, which suffer heavily from Stark broadening in their wings,
and helium lines for mode identification whenever possible.Nevertheless, Viskumet al. (1998) used the
equivalent-width variations of Balmer and metal lines in low-resolution (R = 4000) spectra to identify the
dominant modes of FG Vir. They discriminated among different possibilities forl from a plot of the ratio of
the amplitude of the equivalent-width variation of the Hα and an Fe I line versus the ratio of the amplitude for
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Figure 5.13: Theoretically determined line-profile variations calculated by means of the basic formalism
described in the text considering anl = 2 mode andm = 0 (left panel),m = −1 (middle panel), andm =
−2 (right panel) respectively. The other velocity parametersare: pulsation amplitudevp = 5 km/s, projected
rotational velocityv sin i = vω = 30 km/s, thermal velocityvth = 4 km/s, and inclinationi = 55◦. The
line-of-sight velocity is given on thex-axis while the normalised flux (unitless, with values between 0.7 and
1.0) is drawn on they-axis. The profiles are stacked according to increasing oscillation phase, from 0.00
(lowest profile) to 0.95 (uppermost profile) in steps of 0.05.

Figure 5.14: Same as in Figure 5.13, but forl = 6 with m = +2 (left panel),m = +4 (middle panel), and
m = +6 (right panel).
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Hα and an average photometric amplitude for the four Strömgren filters. In this way, they noticed “different
observational regions” in their plot, similar to those usedby Garridoet al.(1990) for multicolour photometry
of δ Sct stars. The application by Viskumet al. (1998) concerned a purely observational diagram. In fact,
the amplitude ratios in photometry are replaced here by amplitude ratios of the equivalent-width variations
of lines that are strongly affected byδT/T . On this basis they identifiedl for the eight dominant modes;
this identification was later confirmed by Bregeret al. (1999) and Daszyńska-Daszkiewiczet al. (2005)
(see Table 5.4 below). With the advent of high-resolution spectroscopy and the coupling between pulsation
theory and observations in the quantitative methods outlined below, this Balmer-line application was not
pursued for other stars.

As explained, the time dependence of the spectral line caused by the temperature eigenfunctionδT may
be important for the computation of the intrinsic line profile for lines that are sensitive to small temperature
variations. This is particularly the case for metal lines with significant equivalent-width changes because the
δT/T is such that it brings the ion into a higher/lower ionizationstage at compression/expansion compared
with equilibrium. For this reason, one carefully selects the best spectral line for mode identification. It is
advantageous to use an unblended, deep line which is insensitive to small temperature changes in the line-
forming region in the atmosphere, so that one can avoid having to includeδT/T in the computations. This
has been thoroughly investigated by De Ridderet al.(2002) for pulsating B stars. The choice of the best line
depends, of course, on the effective temperature and gravity of the star. Forβ Cep stars,e.g., the best line
is the Si III 4560̊A triplet (Aerts & De Cat 2003), while for slowly pulsating B stars the Si II 4130̊A doublet
is ideally suited (Aertset al. 1999). For very fast B-type rotators, these multiplet linesare unfortunately
blended and one has little choice but to consider the isolated He I 6678̊A line (e.g., Balonaet al. 1997) or
other helium lines (Riviniuset al. 2003). Temperature effects on line-profile variations ofδ Sct andγ Dor
stars have not been studied in the same detail as for B stars.

As discussed above, Eq. (5.49) for the computation of line-profile variations can be generalised in order
to take into account the following additional time-dependent effects: a perturbed surface, a perturbed flux
through non-adiabatic temperature and gravity variations, a time-dependent intrinsic profile. For fast rota-
tors, Coriolis and centrifugal correction terms to the pulsation velocity expression should also be included.
The most up-to-date line-profile generation codes take intoaccount several of these effects, except those
due to the centrifugal force. We refer the reader to Leeet al. (1992), Aerts & Waelkens (1993), Townsend
(1997), Schrijverset al. (1997), De Ridderet al. (2002), and Zima (2006) for a detailed description of such
codes.

The complication due to the centrifugal force is not included in spectroscopic mode-identification meth-
ods at present. It would thus be necessary to adapt the methodology presented below in the case of oscilla-
tions in rapid rotators,i.e., for stars that rotate at a considerable fraction of their critical velocity (say above
50%). In such a case, the expression for the velocity field in terms of one spherical harmonic as in Eq. (5.40)
is inaccurate. It is clear that the applicability of the methodology breaks down in such a situation. As already
emphasized in Chapter 3, we have no good theory of stellar oscillations for fast rotators. Thus, one cannot
hope to build a good mode-identification method for such cases at present.

The improved stability of spectrographs, some of which havebeen developed for exoplanet searches
since the beginning of this century, has allowed radial-velocity measurements with a precision of order
m s−1. This led Hekkeret al. (2006) to generalise the computation of line-profile variations to the case of
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solar-like damped oscillations. This revealed that line bisectors, as defined in Chapter 4, are not a good
diagnostic to investigate such oscillations, as was also found independently by Dahlet al. (2006). Hekkeret
al. (2006) compared their simulations with the variations detected in the cross-correlation functions (CCF)
of three red giants in which such damped oscillations were firmly established from radial-velocity mea-
surements. This led to the surprising result that non-radial modes seem to explain the CCF far better than
radial modes. This is at present not understood in terms of the theory outlined briefly in Chapter 3 and more
thoroughly in Chapter 7.

5.2.2 Line profile fitting

It is clear that the velocity expression based on the non-radial oscillation theory contains many free param-
eters, even in the simple formulation in which rotational and non-adiabatic effects are neglected. The very
large number of candidate modes is especially a problem whenconstructing identification techniques and
it often keeps the predictive power low. This is particularly the case for the methods that are based on a
trial-and-error principle. Quantitative methods are better to obtain a reliable mode identification. This need
for quantitative methods has become apparent since more andmore detailed spectroscopic analyses have
revealed that multimode pulsations are more the rule than exception. Below, we treat two such methods, but
first we mention trial-and-error line-profile fitting as a mode-identification method for historical reasons.

This rather subjective method was pioneered by M. Smith and his collaborators. They obtained for
the first time high-resolution spectroscopic observationsfor various types of pulsating stars along the main
sequence and implemented Osaki’s (1971) scheme to compare these data with theoretical predictions (e.g.,
Campos & Smith 1980; Smith 1983; Smithet al.1984,1985a,b,c, 1986). The idea to identify modes is the
following: one generates theoretical line profiles(λ, p(λ)) over the oscillation cycle from Eqs (5.45) and
(5.49), or their more sophisticated version including temperature and Coriolis effects, and one compares
them with the observed ones to select the best set of line-profile parameters. These are the velocity amplitude
vp of each of the modes, the projected rotation velocityv

Ω
, the inclination anglei, and the intrinsic profile

width vth. This selection of(l,m, vp, i, vΩ
, vth) is either done by simple visual inspection (early days) or

by defining a criterion that includes the deviation of the theoretical profiles from the observed ones in each
wavelength pixel. In order to do this objectively, one must construct a fine grid of theoretical profiles for
different values of(l,m) and for realistic ranges of the other line-profile parameters.

This method is relatively easy and straightforward to applyto a monoperiodic oscillator. Assume
we haveM observed normalised profiles of a spectral line(λj , pobs(λj, tk)) with j = 1, . . . ,N and
k = 1, . . . ,M . We can then compute theoretical line profiles(λj , ptheo(λj , tk)) as explained above us-
ing Eq. (5.49) for different input parametersvp, i, vΩ

andvth. Subsequently, we derive theline deviation
parameterbased on the classical statistical technique ofstandardised residuals(e.g., McCullagh & Nelder
1989):

Σm
l (vp, i, vΩ

, vth) ≡

√

√

√

√

1

(M ·N) − 1

M
∑

k=1

N
∑

j=1

[pobs(λj, tk) − ptheo(λj , tk)]
2

ptheo(λj , tk)[1 − ptheo(λj , tk)]
. (5.50)

The optimal choice of the continuous parameters (vp, i, vΩ
, vth) leads to a minimum ofΣm

l for each(l,m).
By carefully screening a four-dimensional parameter spacefor each(l,m), and by subsequently comparing
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theΣm
l -values, one can thus identify the most likely mode.

Whenever more than one mode is present, however, the method becomes unrealistic in computation
time because one cannot search a large enough parameter space. The latter has six dimensions for one
mode and increases by 3 for any additional mode, in the approximation where one neglects temperature and
Coriolis effects as well as mode coupling. Also, this methodis sensitive to the neglect of low-amplitude
modes that do affect the profiles slightly, because the time series of line profiles is used in an absolute sense.
Quite often one constructs theoretical line profiles after the mode identification has been achieved with
quantitative methods for direct comparison with the data. This is of course no longer line-profile fitting, but
serves as an empirical goodness-of-fit test to check identifications resulting from other methods.

5.2.3 The moment method

To overcome the computational obstacle of line-profile fitting, and to make the identification more objective,
quantitative mode-identification methods have been developed since the second part of the 1980s. With each
of these, one replaces the observed line profiles by carefully studied diagnostics derived from the data. One
such method is based on the moment variations of the spectrallines and was first introduced by Balona
(1986a,b, 1987) and further developed by Aertset al. (1992), De Pauwet al. (1993), Aerts (1996), Cugier
& Daszyńska (2001) and Briquet & Aerts (2003). This method essentially relies on the statistical property
that a line profile is fully characterised by all of its velocity moments. Given this, one derives information
about the velocity of the non-radial oscillations from the time series of the moments of the line profiles. The
moment method has meanwhile been applied to many different types of classical pulsators along the main
sequence. It is very powerful for low-degree modes (l ≤ 4) in slow rotators (v sin i ≤ 50 km s−1). We
discuss now the basic ingredients of this method and refer the reader to the papers listed above for details.

Definition of the moments

As discussed above, a line profileptheo(v) ≡ (f ∗ g)(v) is the convolution of an intrinsic profile denoted
here asg(v) for brevity, with the flux in the direction of the observer, denoted for convenience asf(v),
integrated over the visible stellar surface. The functionf(v) corresponds to the one defined in Eq. (5.44)
while the velocityv is a function of the angular coordinatesθ′ andφ′ and of timet: v = v(R, θ′, φ′, t). The
functiong(v) is a Gaussian with variancev2

th.

We define thejth moment of the line profile as follows:

〈vj〉f∗g ≡

∫ +∞

−∞

vjptheo(v) dv

∫ +∞

−∞

ptheo(v) dv

=

∫ +∞

−∞

vj(f ∗ g)(v) dv

∫ +∞

−∞

(f ∗ g)(v) dv

(5.51)

with v the component of the total (pulsation + rotation) velocity field in the line-of-sight.

199



All the information contained in the line profile can be reconstructed from the entire series of moments
of orderj. In practice, we consider the first three moments,i.e., those forj = 1, 2, 3. There are several
reasons for that, the major one being that each of these first three moments is connected to a specific property
of the line profile:

1. the first moment〈v〉 is thecentroidof the line profile in a reference frame with origin at the stellar
centre;

2. the second moment〈v2〉 is a measure of the width of the line profile;

3. the third moment〈v3〉 is a measure of the skewness of the line profile.

All higher-order moments can be written in terms of the first three moments for profiles whose wings do not
deviate much from a Gaussian. For the practical applicationto observed line-profile variations one easily
shows that the noise level in the observed moments increaseswith increasing moment order and that the
noise is higher for even moments than for odd moments. Aertset al. (1992) and Aerts (1996) showed that
the use of the three lowest-order moments is the optimal balance between having a clear signal and adding
independent information. Thus, each measured line profile is replaced by its first three normalised moments
〈v〉, 〈v2〉 and〈v3〉.

Theoretical expression of the moments for a monoperiodic oscillation

In Eq. (5.51) we considernormalisedmoments,i.e., each moment is divided by themoment of order zero
M0. The latter is the equivalent width of the line profile (see Chapter 4). The division by the equivalent
width is very convenient because small temperature and flux variations during the oscillation are more or less
averaged out in this way, as they occur in the same way in the numerator and denominator in the definition of
the moments. De Pauwet al.(1993) tested the robustness of the mode identification against small equivalent-
width variations and found the assumption of a constantM0 to be acceptable up to equivalent-width changes
of 5% in amplitude.

We subsequently make use of the property that the integral ofa convolution equals the product of the
integrals of the functions to be convolved. Hence it is straightforward to show that the first three moments
can be written as:

〈v〉
f∗g

= 〈v〉
f

+ 〈v〉g , (5.52)

〈v2〉
f∗g

= 〈v2〉
f

+ 2〈v〉
f
〈v〉g + 〈v2〉g , (5.53)

〈v3〉
f∗g

= 3〈v2〉
f
〈v〉g + 3〈v〉

f
〈v2〉g (5.54)

+〈v3〉
f

+ 〈v3〉g .

The odd moments of a Gaussian with average 0 km/s and variancev2
th are zero. The second moment of

the intrinsic Gaussian equalsv2
th. Thanks to these simple properties of a Gaussian, the convolution with the
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Gaussian intrinsic profile can be written as follows:

〈v〉
f∗g

= 〈v〉
f
, (5.55)

〈v2〉
f∗g

= 〈v2〉
f

+ v2
th, (5.56)

〈v3〉
f∗g

= 〈v3〉
f

+ 3v2
th〈v〉f

. (5.57)

By considering the component of the total velocity vector~v = ~vpuls +~vrot and by transforming the ex-
pression forf(v) given by (5.44) to the reference frame(r, θ, φ) connected with the stellar rotation axis, we
obtain the following expressions for the three normalised moments of a monoperiodic non-radial oscillator
with infinite lifetime, after integration over the visible stellar surface:

〈v〉
f∗g

= vpA(l,m, i) sin(ωt+ δ), (5.58)

〈v2〉
f∗g

= v2
pC(l,m, i)sin(2ωt+ 2δ + 3π/2) (5.59)

+ vpvΩ
D(l,m, i)sin(ωt+ δ + 3π/2)

+ v2
pE(l,m, i) + v2

th + b2v
2
Ω

〈v3〉
f∗g

= v3
pF (l,m, i) sin(3ωt+ 3δ) (5.60)

+ v2
pvΩ

G(l,m, i)sin(2ωt+ 2δ + 3π/2)

+
[

v3
pR(l,m, i) + vpv

2
Ω
S(l,m, i) + vpv

2
thT (l,m, i)

]

× sin(ωt + δ).

In these expressions,δ is a phase constant depending on the chosen reference epoch and b2 is a constant
that depends only on the limb-darkening law. The functionsA,C,D,E, F,G,R, S, T depend on the(l,m)
of the oscillation mode and on the inclination angle. Together with the pulsation velocity amplitudevp,
these dimensionless and normalised functions contain the complete physical information connected with
the theoretical expression of the non-radial oscillation mode. The derivation of the expressions for these
(complicated) functions was presented by Aertset al. (1992) to which we refer the reader for further infor-
mation. We only consider the case of the first moment in somewhat more detail here. The functionA(l,m, i)
can be decomposed as

A(l,m, i) = al,m,0(i) · a(l,K, hλ). (5.61)

An explicit expression fora(l,K, hλ) is available in Aertset al. (1992) and in De Ridderet al. (2002) and
is omitted here. From this decomposition, we encounter in a natural way again the same IACCs as for
a photometric lightcurve, as the anglesi for which al,m,0(i) = 0. Moreover, we can estimate the partial
cancellation effect for spectroscopy froma(l,K, hλ). Some values are graphically depicted in Fig. 5.15 for
two main-sequence stars with different spectral types (B and G) and for a typical p mode (upper panel)
and g mode (lower panel). First of all, a comparison of Figs 5.5 and 5.15 shows at once that the partial
cancellation effect is very different for a photometric time series compared with a spectroscopic one. While
the decrease in detectability of modes with increasingl is apparent for photometry, this is not the case for
spectroscopy. This explains why a larger variety of mode degrees is detected in spectroscopic data. It can be
seen from Fig. 5.15 that, for p modes with the same intrinsic amplitude, those withl = 2 are easiest to detect
in spectroscopy if we ignore the projection effect, particularly for hot stars. Modes withl = 1 and 3 have
equal probability of being detected if they have the same intrinsic amplitude and similar projection effect.
This explains why such modes have been derived from spectroscopy for some stars, whilel = 3 modes are
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Figure 5.15: The functiona(l,K, hλ) is shown for different mode degreesl for a linear limb-darkening law
taken from Claret (2000). We considered a star ofTeff = 6000 K andlog g = 4.0 at the wavelengts of the U
(full line), B (dotted line) and V (dashed-dot line) filters,as well as a star ofTeff = 25000 K andlog g = 4.0
at U and B (indistinguishable, shown as dashed line) and V (dashed-dot-dot-dot line) wavelengths. Upper
panel: results for a typical p mode withK = 0.1; lower panel: results for a g mode with K=10.
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usually absent in photometry (see,e.g., the example of theβCep starβCru, Aertset al.1998). In general,
the detected heat-driven p modes in individual target starsthat have been studied do not follow the patterns
predicted from Figs 5.5 and 5.15. This probably means that the intrinsic amplitudes of the excited p modes
are clearly different, although the inclination effect mayalso partly be the cause of this.

The situation is quite different for g modes, which have, first of all, smallera(l,K, hλ) values than
p modes. They are thus harder to detect. In this case, the modes with l = 1 and 2 are equally probable of
being detected and the bottom panel of Fig. 5.15 shows that itis easier to achieve this for B stars than for G
stars. Modes with higher degree are very hard to detect. Thisis fully compatible with the observations of
g modes in SPBs (Townsend 2003, De Catet al. 2005) and inγ Dor stars (Aertset al. 2004, Dupret et al.
2005).

Computation of the observational moments

In practice we have sets of numbers(λi, Fi) with i = 1, . . . ,N at our disposal for each measured line profile.
Here,Fi stands for the normalised flux value measured at wavelengthλi for pixel i. These profiles are
considered to be barycentric,i.e., their observation time and wavelengths have been shifted to the barycentre
of the solar system in order to take into account the motion ofthe Earth around the Sun. The star under
consideration exhibits an (a priori unknown) radial velocity with respect to the Sun caused by its space
motion and any binary orbital motion. These space motions are not of interest to us here and are not
contained in the theoretical expressions of the moments, which are valid for a reference frame connected to
the stellar centre. We therefore have to correct the observed line profile(λi, Fi) for the radial velocity shift
of this space motion, before we can study the intrinsic velocity due to the oscillation of the star as it occurs
in the theoretical expressions (5.58), (5.59), (5.60) of the moments. This implies that we have to determine
the observed moment variations in three different stages:

1. First we determine thesmall unnormalised momentsas follows:

m0 =
N
∑

i=1

(1 − Fi)∆xi, (5.62)

m1 =
N
∑

i=1

(1 − Fi)xi∆xi, (5.63)

m2 =
N
∑

i=1

(1 − Fi)x
2
i ∆xi, (5.64)

m3 =
N
∑

i=1

(1 − Fi)x
3
i ∆xi, (5.65)

with ∆xi ≡ xi − xi−1 wherexi is the velocity corresponding toλi with respect to the laboratory
wavelength of the spectral line. One has to make a clever choice for the velocity (or wavelength)
range[x1, xN ]: not too narrow a range in order to have all the information inthe line profile contained
in the moment values and not too broad to limit the noise in thecalculated higher-order moments.
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2. The reduction of the small moments to average zero is achieved by correcting for the relative motion
of the star with respect to the Sun. This motion is given by theaverage radial velocity of the star, which
is the average value ofm1/m0 (unit km s−1). We denote this average byx0. Thelarge unnormalised
momentsare obtained by usingx0 as a reference value:

M0 =
N
∑

i=1

(1 − Fi)∆xi, (5.66)

M1 =
N
∑

i=1

(1 − Fi)(xi − x0)∆xi, (5.67)

M2 =
N
∑

i=1

(1 − Fi)(xi − x0)
2∆xi, (5.68)

M3 =
N
∑

i=1

(1 − Fi)(xi − x0)
3∆xi. (5.69)

This leads to odd moments with average zero.

3. Finally, we obtain the observed normalised moments〈vj〉 for j = 1, . . . , 3 asMj/M0. These mo-
ments now have velocity units (km s−1)j and can be compared with the theoretical expressions (5.58)
– (5.60).

Interpretation of the moments

The periodograms of the three moments are immediately interpretable in terms of the oscillation frequencies
of the detected modes. The variations of the moments〈vj〉 in time are thus a very suitable diagnostic that
allows one to derive the temporal behaviour of the oscillations in full detail. It usually suffices to search the
frequencies of the modes in the observed first moment variations, but some modes may show up easier in
〈v2〉.

As soon as the oscillation frequencies have been derived, one is able to construct phase diagrams of the
moment variations from a harmonic analysis as explained in Chapter 5. The results of such a harmonic anal-
ysis are observational values for the different amplitudesthat occur in the theoretical expressions Eqs (5.58),
(5.59), (5.60) of the moments. We are therefore able to derive information about the six oscillation parame-
ters(l,m, i, vp, vΩ

, vth). We explain how to do that, by means of an example.

In Figs 5.16 and 5.17 we show some observed profile variationsand the three normalised moments of
theδ Sct starρPuppis. The full lines in Fig. 5.17 correspond to the result of a harmonic analysis according to
the Eqs (5.58), (5.59) and (5.60). The peak-to-peak value ofthe first moment gives an idea about the overall
velocity range due to the oscillation with that particular frequency, although it is an integrated quantity. For
linear oscillations (an assumption we adopted for the theoretical description of the moment method) we
expect this range to be well below the sound speed in the line-forming region within the stellar atmosphere.
If not, shock waves occur and the description of the modes in terms of a sine function is no longer valid.
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Figure 5.16: Some observed line-profile variations of theδ Sct starρPuppis obtained in 1995 with the Coudé
Auxiliary Telescope of the European Southern Observatory in Chile phased with the dominant frequency of
7.098 d−1. Data taken from Mathiaset al. (1997).
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Figure 5.17: Phase diagrams of the normalised moments of theδ Sct starρPuppis for the dominant fre-
quency 7.098 d−1. The dots are the observations and the lines are the result ofharmonic analyses according
to expressions (5.58), (5.59) and (5.60). Data taken from Mathiaset al. (1997). The analysis shows that this
mode is radial. Part of the scatter in the diagrams arises from the presence of other, weaker modes.
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For a linear oscillation, the first moment is expected to behave sinusoidally as is the case forρPuppis (see
Figure 5.17).

The second moment turns out to be a very good diagnostic for the azimuthal numberm. Indeed,
as shown in Aertset al. (1992), the functionD(l,m, i) equals zero form = 0. This allows us readily
to distinguish betweenm = 0 andm 6= 0 from a harmonic analysis of〈v2〉. Whenever the temporal
behaviour of〈v2〉 can be described by a single sine function with frequency2ω we are sure thatm = 0.
The middle panel of Figure 5.17 therefore implies that it is likely thatm = 0 for the main mode ofρPuppis,
although there is clearly a small sinusoidal contribution with frequencyω since the shape of〈v2〉 is not fully
symmetric. On the other hand, Aertset al. (1992) have shown thatC(l, l, i) = 0. This implies that〈v2〉 will
behave purely sinusoidally with frequencyω in the case of a sectoral mode. Any intermediate situation,i.e.,
a second moment in which both a term withω and one with2ω occur with equal amplitudes, points towards
a tesseral mode.

In order to obtain a complete identification of the mode from the three moments, one proceeds as
follows. The idea is to compare the observed variations of the moments with their theoretical expectations
and to select the most likely set of parameters(l,m, i, vp, vΩ

, vth). This comparison is done objectively by
means of the calculation of the so-calleddiscriminant. This is a function based on the observed amplitudes
of the moments for all terms that occur in the moment variations, i.e., one term in〈v〉, three terms in〈v2〉
and three terms in〈v3〉. The discriminant is defined as follows:

Γm
l (vp, i, vΩ

, vth) ≡
[

∣

∣

∣

∣
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(5.70)

(Aerts 1996). HereAobs, Cobs, . . . , Tobs are the observed values of the functionsA(l,m, i), C(l,m, i), . . .
etc. occurring in Eqs (5.58), (5.59) and (5.60) of the theoretical predictions of the moments. These can be
found from a harmonic least-squares fit to the observed moment time series. The quantitiesfA, . . . , fT are
normalised weights that take into account the quality of such a fit to the observed moments. An amplitude
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that has a smaller standard error will receive a larger weight in the discrimination among the candidatel-
values because it is more dominant in the discriminantΓm

l compared with an amplitude with a large standard
error. The discriminant is constructed in such a way that it is expressed in km s−1. From its definition, it is
unable to distinguish between positive and negativem. However, a greyscale representation of the observed
line profiles or the phase behaviour across the line profile (see below) provides this additional information
on the sign ofm.

The adopted criterion for mode identification works as follows: the functionΓm
l (vp, i, vΩ

, vth) is min-
imized for each set(l,m):

γm
l ≡ min

vp,i,v
Ω

,vth

Γm
l (vp, i, vΩ

, vth). (5.71)

As “overall best solution” forl andm we retain the one with the lowestγm
l . This solution also provides us

the most likely values for the continuous unknowns in the velocity expression, namelyvp, i, vΩ
andvth.

De Pauwet al.(1993) and Aerts (1996) each made an extensive simulation study to test the performance
of the discriminant, taking into account realistic gapped time series with an appropriate noise level. In these
papers, one also finds numerous examples of the behaviour of the three moments as a function of(l,m, i),
and of the radial and horizontal amplitudesvp andKvp. We advise a new user of the method to study
these two simulation papers carefully and we refer to the paper by Aerts (1996) for more information on the
performance of the discriminant defined in Eq. (5.70). In particular we warn the user not to accept solutions
with i close to an IACC. Viewing in the direction of a nodal line of a mode is an easy way to get small
amplitudes for the moment terms. Thus, stars with low momentamplitudes are easily explained by any
(l,m) for inclinations equal to their IACC. The predictive power of the discriminant cannot be large in such
a case. This must be kept in mind whenever interpreting the minimaγm

l . An example of such a situation is
discussed in detail in Sect. 5.2.3.

A robustness test was done by De Pauwet al. (1993) to assess the assumption of constant equivalent
width despite the occurrence ofδT/T . It turned out that the discriminant defined in Eq. (5.70) keeps per-
forming well in identifying the correct input mode as long asthe peak-to-peak variations ofM0 remain
below 10% (De Pauwet al.1993). This good performance occurs thanks to the use of normalised moments.
It would not hold if we would work withM1,M2,M3 without dividing them byM0. Since most of the
pulsating stars fulfil the criterion of having equivalent-width variations below 10% (see,e.g., De Ridderet
al. 2002 for B pulsators), it is indeed not necessary to include the consequences ofδT/T in the discriminant
of the moment method, as already anticipated above. This is avery comforting situation, as we are thus
not dependent on the details of the non-adiabatic oscillation theory in the outer atmosphere to identify the
modes. All one relies on is the velocity expression in Eq. (5.40). This is significant advantage over pho-
tometric mode identification. Of course, the condition of the relative amplitude ofM0 being below 10%
should be tested in any application of the discriminant.

The moment method as presented here is a good identification method, particularly for low-degree
modes (l ≤ 4). It is complementary to the Pixel-by-Pixel method outlined below. Modes with high degree
(l ≥ 5) have very small moment amplitudes with large standard errors, which limits the application of the
discriminant for such cases.

The application of the discriminant defined in Eq. (5.70) forthe moments ofρPuppis shown in Fig-
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Table 5.2: The minima of the discriminant for the main mode ofthe δ Sct starρPuppis.γm
l , vp, Kvp, v

Ω

andvth are expressed in km s−1.

l |m| γm
l vp Kvp i v

Ω
vth

0 0 0.08 5.6 0.218 – 15.3 6.5

1 1 0.13 10.0 0.390 38◦ 14.8 5.9

2 1 0.17 12.1 0.472 64◦ 16.4 2.2

1 0 0.18 5.0 0.195 7◦ 19.6 1.7

2 2 0.23 15.0 0.585 53◦ 10.3 4.8
...

...
...

...
...

...
...

...

ure 5.17 is given in Table 5.2.

One finds a radial main mode for this star, as was already suggested by Campos & Smith (1980). The
finding thatm = 0 could be anticipated from the behaviour of〈v2〉. The latter, however, does deviate from
a pure double sine (see Fig. 5.17). Such a deviation is expected whenever additional modes, besides the
dominant one, are present. Mathiaset al. (1997) indeed found with two additional candidate low-amplitude
modes inρPuppis. Due to their beating with the dominant mode,〈v2〉 is not perfectly symmetric. The
same situation occurs for the line-profile variations and their 〈v2〉 of theβCep starδCeti (Aertset al.1992),
whose low-amplitude modes were revealed in MOST space photometry (Aertset al. 2006). The second
moment is thus a suitable diagnostic to detect low-amplitude modes.

The largest shortcoming of the discriminant is that it lacksa statistical significance test. In other words,
we have no means to decide if the mode with the lowestγm

l in the list of best candidates in Table 5.2 is truly
better than the following solutions, or if it is acceptable to a certain significance level. This was elaborated
upon by De Ridderet al. (2005), but the complexity of the theoretical expressions for the moments, and the
mixture of discrete and continuous unknowns, prevented a solid goodness-of-fit test. The best procedure
to adopt, as already mentioned above, is to generate theoretical line-profile variations for the top listed
solutions and compare them with the data. In this way, one first eliminates a sufficient number of unlikely
combinations ofl, m, vp, i, v

Ω
andvth from the moment variations before starting a line-profile fitting

method, fixingl andm combinations from a list like the one in Table 5.2 and allowing for slight changes
in the continuous parameters to minimize the deviation between the observed and theoretically computed
profiles. Even after such a test, it may still be impossible todiscriminate among several(l,m) combinations
and one should not do so in such a situation. In fact, confusion between different(l,m) is inherent to
the mode-identification problem. A radial mode,e.g., will resemble a(1, 1) mode looked upon from the
equator and is indistinguishable from a(1, 0) mode viewed from the pole. There are several combinations of
(l,m, vp, i) that have closely resembling profiles, and thus moment variations. There are also cases where
the profiles are not very similar, but the moment values are, because of the integration over the surface.
Such cases can still be distinguished by applying the Pixel-by-Pixel method discussed in Sect. 5.2.4. To
unravel similar profiles resulting from different combinations of (l,m, vp, i), one needs a strong constraint
on the inclination angle. Multiperiodicity helps in this respect, as will be shown below, but independent
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Figure 5.18: Time series of the first velocity moment of the multiperiodicβCep starν Eridani derived from
a five-month dedicated multisite campaign (Aertset al.2004).

observational information is needed as well. This will be illustrated for the case of theδ Sct star 20 CVn in
Sect. 5.2.3.

Generalisation to multiperiodic oscillations and to a numerical version of the discriminant

A generalization of the mode-identification method described above for a multiperiodic star was provided
by Mathiaset al. (1994). Whenever more than one mode is excited to measurableamplitude, the moment
variations become more complicated. The first moment will simply consist of a linear superposition of all the
separate modes. However, this is no longer the case for the second and third moments, as they will contain
coupling terms from taking the square and the third power of the velocity expression in the integrand of
Eq. (5.51). For example, a biperiodic oscillation with frequenciesω1 andω2 will give rise to six frequencies
in the second moment:ω1, 2ω1, ω2, 2ω2, ω1 − ω2 andω1 + ω2. The third moment will in that case have to
be fitted with twelve frequencies: those of〈v2〉 and in addition3ω1, 3ω2, 2ω1 +ω2, 2ω1 −ω2, 2ω2 +ω1 and
2ω2 − ω1. The number of frequencies occurring in the moment expressions increases very rapidly with the
number of modes.This is a disadvantage of this method.

In order for the harmonic analysis to be accurate for a multiperiodic oscillation,i.e., to lead to ampli-
tudes with a small standard error as input for the discriminant, it is necessary to cover all the beat frequencies
with line-profile observations. The sampling of the data also has to be of high temporal resolution in order
to estimate the amplitudes of the sum frequencies in an accurate way. This fact implies large observational
challenges. An example in which a beat phenomenon occurs in the time series of centroid velocities derived
from spectra of theβ Cep starν Eri, which was the target of a multisite campaign, is shown inFig. 5.18.
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A beat pattern is clearly visible in this figure. Several other time series including beating phenomena were
already shown in Chapter 2, such as in Figs 2.9, 2.13, 2.19, 2.21, 2.23, 2.50. The challenges are most promi-
nent for stars with multiperiodic g-mode oscillations, such as slowly pulsating B stars,γ Doradus stars,
pulsating Be stars and pulsating supergiants. In all of those, the beat periods can be of the order of months
to years.

Solving the mode identification for multiperiodic oscillations is, of course, more complex than for
a single mode. Three unknowns(l,m, vp) are added for each additional oscillation mode. On the other
hand, having more than one mode helps significantly to discriminate among almost equivalent solutions
with different inclination anglesi. From the very complicated analytical expressions for〈v2〉 and 〈v3〉
available in Mathiaset al. (1994), one sees that almost all of the terms contain couplings between different
frequencies. As a consequence, identification of the modes is best performed simultaneously, and not mode
by mode as was originally done by Mathiaset al. (1994). With the advent of faster computers, the option of
simultaneous identification of all detected frequencies inthe moments was implemented by Briquet & Aerts
(2003). With this technique, the authors did not used the analytical expressions of the moments to identify
the modes as Aerts (1996) did. Instead, they computed line-profile variations for various combinations of the
parameters, derived their moments numerically as in Sect. 5.2.3, and compared them with the corresponding
values derived from the observations, in a similar way as in Eq. (5.70). Given that many of the factors
occurring in the moments can be separated, one only needs to compute them once and stack them into huge
tables. In that way, the moment method of Briquet & Aerts (2003) is more than a factor of ten faster than
the version of Mathiaset al. (1994).

Application to cross-correlation or least-squares-deconvolved profiles

The requirements on the quality of the spectra to apply the moment method successfully are stringent. The
same is true for the Pixel-by-Pixel method, as will be discussed below. This limits the applicability of the
methods to very bright stars (typically withV < 6 for telescopes with diameter below 4m) with not too
short oscillation periods (typically longer than 15 min). One can overcome this obstacle, to a certain extent,
by combining the information present in different spectrallines, such that fainter stars can be considered
as well, or the integration times can be limited, or lower-amplitude modes can be searched for. Although
of interest, one will seldom gain information on the correct(l,m) when repeating an analysis on additional
different individual lines, because the best line will havebeen picked to start with in the first place.

While one can in principle combine the〈v〉 values of different lines, this is certainly not true for〈v2〉
and〈v3〉. Indeed, each of the lines has its own thermal broadening,i.e., its own value ofvth. This leads
to a different constant termEE for 〈v2〉 and different amplitudes for〈v3〉 for each of the lines, as can be
seen from Eqs (5.59) and (5.60). One could still merge the second moments〈v2〉 of different lines, after
shifting them to a common constant termEE = 0 and by avoiding using that term in Eq. (5.70) for the
mode identification. However, the amplitudes are also different for different lines, because there is always
some level of blending and this is different for different lines (see,e.g., Mathiaset al. (1994) for a thorough
discussion and illustrations).The conclusion is that a simple line-by-line treatment is not helpful, from the
viewpoint of improving the mode identification. Such an analysis is very useful, however, to detect small
shock phenomena and details of wave propagation in the outerstellar atmosphere (e.g., Crowe & Gillet
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Figure 5.19: Phase diagrams of the observed normalised moments derived from cross-correlation functions
of theδ Sct star 20 CVn for the frequency 8.2168 d−1 (Chadidet al.2000).

1989; Mathiaset al.1991; Mathias & Gillet 1993).

We thus must search for a different way to combine the information in different spectral line variations.
Whenever the different line-forming regions do not enclosenodal surfaces and are situated not too far from
each other, one expects the moments to vary perfectly in phase with each other. This can easily be tested in
practice. In that case, one may combine them to increase the S/N level. This can be done by computing a
cross-correlation function (CCF) of each spectrum, or by least-squares deconvolution (LSD), as outlined in
Chapter 4. One finds numerous examples of oscillation signatures in the CCFs ofγ Dor stars in De Catet
al. (2006). It is very clear from that paper that the oscillations turn up in the CCFs. How to use them for
mode identification, is, however, another issue to that of detecting the modes.

While computing the CCF or LSD, the same requirement as for the individual lines should be respected,
i.e., the study must be restricted to unblended thermally-broadened metal lines. This usually reduces the
number of spectral lines considerably compared with the case where computation of the most accurate
radial-velocity value is the goal. The S/N level in the CCF orLSD will increase by a factor

√
N , withN the

number of lines used for the CCF or LSD, so even using only fourlines for a mask to derive the CCF or for
the computation of the LSD will imply doubling the S/N level.

One should not be fooled by thinking that the application of the moment method to such type of varia-
tions is exactly the same as for the individual spectral lines. This is not the case, because the second moment
〈v2〉 of the CCF or LSD is again affected by the merging of lines withdifferentvth and by slight differences

212



Table 5.3: The minima of the discriminant according to Eq. (5.70) (left) and of the deviation parameter from
line-profile fitting following Eq. (5.50) (right) for the monoperiodicδ Sct star 20 CVn (Chadidet al.2000).

l |m| γm
l vp Kvp i v

Ω
vth l m Σm

l vp Kvp i v
Ω

vth

3 2 0.09 4.50 0.27 75◦ 6 5.0 2 0 0.0022 2.50 0.15 45◦ 4.0 5.5

0 0 0.12 0.75 – – 5 6.03 0 0.0022 2.00 0.12 25◦ 4.0 5.7

3 0 0.12 4.00 0.24 55◦ 6.0 4.0 0 0 0.0023 0.85 – – 7.0 5.0

1 1 0.13 1.00 0.06 80◦ 6.0 5.0 3 +1 0.0024 2.50 0.15 85◦ 6.0 5.5

1 0 0.15 2.00 0.12 70◦ 6.0 5.0 4 +4 0.0026 1.50 0.09 70◦ 6.0 5.5

3 1 0.15 5.00 0.30 55◦ 5.0 5.0 3 +2 0.0026 3.00 0.18 15◦ 6.0 5.5

2 0 0.17 1.50 0.09 35◦ 7.0 5.5 3 -2 0.0027 3.00 0.18 15◦ 4.0 5.5

2 1 0.17 3.50 0.21 80◦ 4.0 5.5 2 +1 0.0029 2.00 0.12 90◦ 4.0 5.5
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

Figure 5.20: Theoretically determined line-profile variations (full lines) are compared with the observed
cross-correlation functions (open circles) of theδ Sct star 20 CVn. The input modes are(l,m) equal to
(2, 0) (left), (4,+4) (middle),(0, 0) (right). The continuous input parameters are listed in the right part of
Table 5.3 (Chadidet al.2000).
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Figure 5.21: Theoretically determined moment variations for (l,m) equal to(0, 0) (full line), (2, 0) (dashed
line) and(4,+4) (dotted line) for the parameters listed in the right part of Table 5.3. These moments corre-
spond to the theoretical line-profile variations shown in Fig. 5.20 and should be compared with the observed
ones shown in Fig. 5.19.
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l=4 m=�4 l=5 m=�4 l=6 m=�4 l=7 m=�4

Figure 5.22: Simulated line-profile variations due to non-radial oscillations of different(l,m). From top
to bottom we show: a representation of the real part of the radial component of the eigenfunction, the
line profile due to the mode at a particular phase in the cycle in comparison with the profile without an
oscillation, the difference between the two profiles, a grey-scale representation of the profiles with respect
to the mean during three cycles, the distribution of the amplitude across the pulsation-induced line-profile
variations (thick line) and its first harmonic (thin line) with the maximum values indicated, the distribution
of the phase across the pulsation-induced line-profile variations (thick line) and its first harmonic (thin line)
in units of π radians with the blue-to-red phase differences∆ψ0 and∆ψ1 used in Eqs (5.72) and (5.73)
indicated. The projected equatorial rotation velocity is indicated by the outer vertical lines in the top panel.
(From Telting & Schrijvers 1997.)
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in the line blending of the different lines. TheEE value is therefore affected, and, if computed without
giving this thought, also the discriminant defined in Eq. (5.70).

A thorough discussion of such a situation is presented in Chadid et al.(2000) for the F3III monoperiodic
δ Sct star 20 CVn. The purpose of their paper was to investigatethe appropriateness of using CCF and the
moment method to identify low-amplitude modes, because photometric mode-identification efforts for this
star in the literature, before the one done by Daszyńska-Daszkiewiczet al. (2003) discussed above, led to
a large discrepancy between the theoretical predictions and the observed values. We show in Fig. 5.19 the
moment values derived from a CCF computed from a mask for an F-type star including some 2000 lines
using the ELODIE spectrograph. The curves are phased according to the frequency 8.2168 d−1 known from
photometric light curves. It can be seen that the second moment hardly varies, while the first and third
moments have clear observed variations. This means that theconstant termEE dominates in〈v2〉. This is
a case where one has to be careful with the mode identificationbecause solutions withi close to the IACC
risk being favoured. The discriminant was subsequently computed, leaving out the constant terms of〈v2〉
and〈v3〉 following the careful analysis of all the terms occurring inthe observed moments by Chadidet al.
(2000). The values of this modified discriminant are provided in the left part of Table 5.3. It turns out that
several solutions withi closer than15◦ to an IACC occur (rows 1, 3, 6 and 8). These cannot be trusted. The
minimaγm

l are very close to each other, such that a unique solution cannot be derived without additional
effort.

In order to check for the power of the modified discriminant for this monoperiodic star, the spectral
deviation parameter in Eq. (5.50) through line-profile fitting was computed for all modes withl ≤ 4. The
results are listed in the right part of Table 5.3. It can be seen that the discriminating power of this method
is lower than the one of the moment method for this star. Several solutions of almost equal quality occur.
Three of those are compared with the observed CCFs in Fig. 5.20: one with an inclination angle close to
an IACC (left), one withi far from an IACC (middle) and the radial mode. This is a clear case where line-
profile fitting, even when using an objective deviation parameter, does not work, but where the addition of
the moment variations allows the selection of one unique solution for (l,m). Indeed, a choice among the
solutions in Table 5.3 can be made, by considering the theoretical moments belonging to the best solutions
from Σm

l and comparing them with the observed ones shown in Fig. 5.19.These are plotted in Fig. 5.21. It
is clear that only one set of〈v2〉 is in agreement with the observed ones and that 20 CVn is a radial oscillator.
This is the second-best solution of the modified discriminant, the first one havingi ≃ IACC.

This example shows that, indeed, it is valid to work with CCFsin identifying modes, provided that one
makes a very careful analysis. The moment method has not yet been tested on LSDs, but we expect similar
performance. The performance of the Pixel-by-Pixel method, to which we turn next, has not yet been tested
for CCFs or LSDs.

5.2.4 The Pixel-by-Pixel method

A second quantitative identification method was first introduced by Gies & Kullavanijaya (1988) and further
developed by Kennelly & Walker (1996), Telting & Schrijvers(1997), Mantegazza (2000) and Zima (2006).
Its use is illustrated and explained in Fig. 5.22. It is basedon the properties of the amplitude and phase
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Table 5.4: Comparison of the results for the mode identification of the thirteen dominant modes of the
multiperiodicδ Sct star FG Vir, as available from the literature. Whenever more than one value forl orm is
given in a column, discrimination among them was impossible.

Frequency Viskum Breger Daszyńska-Daszkiewicz Zima

d−1 et al. (1998)et al. (1999) et al. (2005) et al. (2006)

9.199 l = 2 l = 2 l = 2 l = 1, 2, 3 m = +1

9.656 l = 2 l = 1, 2 l = 2 l = 0, 1, 2 m = 0

12.154 l = 0 l = 0 l = 0 l = 0, 1, 2 m = 0,+1

12.716 l = 1 l = 1 l = 1 l = 1 m = 0

12.794 – – l = 2, 1 l = 2, 3, 4 m = −2

16.071 – – l = 0 – –

19.227 – – l = 2, 1, 0 l = 1, 2 m = +1

19.867 l = 2 l = 2 l = 2, 1 l = 0, 1, 2 m = 0

20.287 – – l = 0, 1 l = 1, 2, 3 m = −1

20.834 – – – l = 2, 3, 4 m = +1

21.051 l = 2 l = 2 l = 1, 0 l = 0, 1, 2 m = 0

23.403 l = 0 l = 0, 1 l = 2, 1 l = 2 m = 0

24.227 l = 1 l = 1, 2 l = 1 l = 0, 1 m = 0

distribution of each oscillation frequency and its first harmonic across the entire line profile. These properties
are linked to the(l,m)-value of the mode, and to the inclination angle, as can be seen from Fig. 5.22.

The computation of the amplitude and phase behaviour acrossthe profile is particularly suited to anal-
yse line-profile variations in moderate to rapid rotators (v sin i ≥ 50 km s−1), because we need a high
resolving power within the lines to interpret small changesin the skewness of the line, and/or moving sub-
features. The method can also be applied to slow rotators with low-degree modes, however, when combined
with the moment method (see Teltinget al.1997 for the first such application).

A particularly promising idea related to this method was to transform the line profile variations into 2D
Fourier space, where power is sought for appropriate combinations of time and spatial frequency, in analogy
to what had been done for the solar oscillations. This idea was put forward by Kennellyet al. (1992) and
was further developed by Kennellyet al. (1998), who applied it to theδ Sct starτ Pegasi (see Fig. 5.24). In
order to obtain the amplitude of the frequency as a function of l, however, one must perform a deconvolution
of the original data into a time-dependent and a time-independent broadening function, and this relies on
particular assumptions. Kennellyet al. (1998) assumed to be dealing with p modes havingK ≃ 0, with
profiles having a constant intrinsic width which can be disentangled from the constant rotationally broadened
profile ignoring pulsational broadening, and with spectrallines which can all be well described by one and
the same linear limb darkening law. Based on these assumptions, the authors developed a deconvolution
scheme that connects the two-dimensional Fourier transform of the line profile with the time and spatial
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Figure 5.23: Line-profile computations (full lines) for twodifferent biperiodic models are compared with
data (dots) for the starβ Cephei. The double full line has a slightly lower rotationalvelocity and amplitude
for the radial mode (labelled asf1), but a somewhat larger intrinsic width (differences of 2 kms−1) than the
single thin full line. The amplitude of the non-radial mode (labelled asf2) was adopted to fit the observations
after having fixed the parameters of the dominant radial mode, and varies between 1 and 2 km s−1, depending
on its(l,m) assignment. The top panel shows the average profile, the middle panels the amplitude and phase
across the profile for the dominant radial mode and the lower panels the amplitude and phase of the three
most likely identifications of the small-amplitude non-radial mode (f2). Discrimination among these three
possibilities is not possible. (From Teltinget al.1997.)
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Figure 5.24: The observed line profile variations of theδ Sct starτ Pegasi were Fourier transformed and
displayed as a function of the degreel by relying on particular assumptions (see text). The inset is the same
transform representing the pattern due to the window function and gives an idea about the uncertainty in the
identification of the mode degree due to the sampling. (From Kennellyet al.1998.)
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Figure 5.25: Fit of the amplitude and phase across the profilefor the twelve dominant oscillation modes
in the spectroscopy of theδ Sct star FG Vir. The top panels show the average, also termed zero profile
(indicated as “Z”). For every single frequency, the observed amplitude (label “A”) in units of the continuum
and the phase distribution (label “P”) in radians are shown together with the two best fitting models (Zima
et al.2006).

220



frequency, where the latter is assumed to be a particular measure of the mode degreel which is valid in the
case ofK = 0. The example shown in Fig. 5.24 shows this two-dimensional Fourier transform visually for
τ Pegasi. While this idea was very attractive at first sight, the many assumptions underlying this method
and the iterative manipulations of the data to end up with theresult displayed in Fig. 5.24 leave a rather high
level of uncertainty for the identification of the mode degree, in additional to the limitations of the predictive
power introduced by the window function. This is due to the absence of a rigorous mathematical derivation
of theoretical expressions for for the amplitude and phase variations across the profile, as a function ofl
andm. Hao (1998) tried to achieve such expressions, but did not succeed. This is thus the main difference
between this method and the moment method, for which such expressions are readily available in Eqs (5.58),
(5.59) and (5.60).

In order to remedy this situation and to understand the behaviour of the amplitude and phase variation
across the profiles, without having to rely too much on assumptions and omitting deconvolution opera-
tions, Telting & Schrijvers (1997) performed an extensive simulation study to exploit the method visualised
in Fig. 5.22 in terms of mode identification. Their simulations were restricted to p modes and low-order
g modes, and included the effects of the Coriolis force in thevelocity eigenfunctions. They computed more
than 15 000 time series of line-profile variations for different combinations of(l,m, vp, i, vΩ

, vth) consider-
ing l ≤ 15 and all correspondingm-valuesm ∈ [−l, l], realistic amplitudes for the modes, with or without
the effects of the Coriolis force, with or without parameterised equivalent-width variations. For each of these
time series, they subsequently computed the amplitude and phase across the profile for the input frequency
and its first harmonic, in the way visualised in the lower panels of Fig. 5.22. The differences in phase be-
tween the bluest and reddest point in the line profile were then derived, for the frequency (∆ψ0) and for its
first harmonic (∆ψ1). The authors then compared these values for∆ψ0 and∆ψ1 with the input values for
(l,m) for all these simulated time series and reached the following conclusions:

• there exists a strong correlation between the phase difference∆ψ0 at the blue and red edge of the
profile for the oscillation frequencyω and the degree of the mode. A good estimate ofl can be
derived from the empirical relation

l ≃ (0.10 + 1.09 |∆ψ0|/π) ± 1; (5.72)

• there exists a clear, but less strong correlation between the phase difference∆ψ1 from blue to red for
the first harmonic of the oscillation frequency2ω and the azimuthal number of the mode. A good
estimate ofm can be derived from the empirical relation

m ≃ (−1.33 + 0.54 |∆ψ1|/π) ± 2. (5.73)

The simulations of Telting & Schrijvers (1997) clearly showed that the original suggestion by Gies & Kulla-
vanijaya (1988) to associate the phase differences∆ψ0 with a measure of them-value of the mode, assuming
only sectoral modes to occur, is too limited for appropriatemode identification. This was also concluded
by Kennellyet al. (1998). In a generalisation of their work, Schrijvers & Telting (1999) took into account
the effects of intrinsic profile variations and equivalent width changes as well. This resulted in very similar
fitting formulae than those given in Eqs (5.72) and (5.73). A similar simulation study to the one by Telting
& Schrijvers (1997), but for stars with g modes, is not available.
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The fitting formulae in Eqs (5.72) and (5.73) are easy to applyonce the oscillation frequencies are
determined. However, they provide only a crude estimate of the degree and azimuthal order with a large
uncertainty, particularly for low-degree modes. It is therefore necessary to model the amplitude and phase
across the profile in full detail to achieve a reliable identification. In order to do that, one computes theoret-
ical line-profile variations from Eqs (5.45) and (5.49), derives their amplitude and phase across the profile
as in Fig. 5.22 and compares them with those derived from the observations. The earliest such application
was made for the starβCep by Teltinget al. (1997) and is depicted in Fig. 5.23 for a biperiodic model with
a dominant radial mode and with the three best solutions for the identification of the second, low-amplitude
mode.

Slightly different versions of the method by Telting & Schrijvers (1997) have been presented (e.g.,
Mantegazza 2000). The most important and recent one is by Zima (2006), who introduced a statistical
significance test into the method. In this way, he was able to discriminate more easily between different
mode identification solutions. He tuned and applied his method, which he termed thePixel-by-Pixel Method
or PPM, after Mantegazza (2000), to observed line-profile variations of theδ Sct star FG Vir (Zimaet al.
2006). Zimaet al. (2006) found eleven modes in the line-profile variations in common with those detected
with significant amplitude in the multicolour photometry. The fits to the amplitude and phase variation
across FG Vir’s profile for the best two identifications of thetwelve dominant modes in spectroscopy, are
shown in Fig. 5.25. This shows at once the big advantage of this method over the moment method: each
mode can be treated separately without having to worry aboutcoupling between the modes, at least in the
linear approximation. The drawback, however, is that its discriminating power starts to fail wheneverv sin i
drops below, say typically, 20 km s−1.

The spectroscopic mode identification for FG Vir is in good agreement with previous identifications.
In particular, Fig. 5.25 illustrates the power to identifym from spectroscopy. In Table 5.4 we show the
evolution of the ability to identify the dominant modes for this star from the literature. It can be seen that it
is more difficult to find a uniquel-value from the high-resolution spectroscopy. It is evident from this table
that the ideal way to proceed with mode identification of multiperiodic stars is to use multicolour photometry
to find thel-values, and line-profile variations to fixm. Depending onv sin i, a moment or PPM analysis
should be preferred, but there is no reason not to do both since they are complementary. This brings us in a
natural way to the following section.

5.3 Mode identification from combined photometry and spectroscopy

Numerous applications of the mode-identification methods outlined above are available in the literature.
The successful applications mainly concern p modes inβCep orδ Sct stars, but also the dominant g modes
in SPB stars (De Catet al. 2005). Given the complementarity between the photometric and spectroscopic
methods in terms of observational requirements and abilityto derivel versusm, it is only natural to check
whether consistency in the identifications is reached. Thiswas already shown to be the case for the complex
oscillations of FG Vir, besides the “simple” cases of 20 CVn and ρPuppis, allδ Sct stars discussed above.
Agreement between photometric and spectroscopic mode identifications was also achieved for theβCep
stars, such as for the dominant mode ofδCeti (Aertset al. 1992; Cugieret al. 1994), all three modes of
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16 Lac (Cugieret al.1994; Aertset al.2004), and most (but not all) of the modes ofν Eridani (De Ridderet
al. 2004). There are, however, also cases with differences in the mode-identification results. One example
is the famousβCep starβCrucis, which was found to be a monoperiodicl = 2 pulsator from photometric
data (Cugieret al. 1994), while Aertset al. (1998) found it to have two low-amplitude modes ofl = 3 or
4, besides a dominantl = 1 mode for the frequency detected in the photometry. The threemodes found in
the spectroscopy were later also detected in WIRE space white-light photometry (Cuyperset al.2002). The
misidentification from the multicolour photometry is probably due to the presence of the companion, which
was ignored in that analysis but which is of similar spectraltype to the oscillating component, and/or due
to the neglect of the low-amplitude modes that are invisiblein the ground-based photometry. Consistency
was also reached between the most likelyl = 1 mode identification of SPB stars as a group by Townsend
(2002) and the mode identification from multicolour photometry and high-resolution spectroscopy of seven
selected SPB stars by De Catet al. (2005).

The case ofβCrucis brings us to the fact that severalβCep stars and some SPB stars have modes
that are invisible in ground-based photometry, while they are clearly present in the line-profile variations.
The example ofβ Crucis shows that this may occur for slow rotators, but, mostfrequently, such finding is
obtained for moderate to rapid rotators,e.g.,ω1 Scorpii (Telting & Schrijvers 1998),λScorpii (Uytterhoeven
et al.2004),κScorpii (Uytterhoevenet al.2005),βCentauri (Ausselooset al.2006) and numerous pulsating
Be stars (Riviniuset al. 2003), all of which havev sin i above 60 km s−1. Of course, in such cases, one
cannot rely on photometry to help in the mode identification,except that one can testa posteriori if the
solutions found are compatible with the absence of photometric variations. The many B stars found to be
oscillating from WIRE (Bruntet al.2007) and MOST (Matthewset al.2007) space photometry, while being
essentially constant in ground-based photometry, prove that numerous low-amplitude modes are excited by
the heat mechanism.

With the occurrence of low-amplitude modes in spectroscopy, only some of which are detectable in
multicolour photometry in some cases, the idea arose to obtain simultaneous observations of these kinds.
This is particularly the case forβ Cep stars, for which extensive multisite, multi-techniquecampaigns were
initiated by G. Handler from Vienna since 2002, as already outlined in Chapter 2. Cases where the multi-
colour photometry allowed the derivation ofl, while the spectroscopy did not, occurred for the starsβ Canis
Majoris (Handleret al. 2005) andθOphiuchi (Shobbrooket al. 2006). The spectroscopists then were able
to find them-values, by fixing the photometric values forl and applying the moment method and evaluat-
ing the phase and amplitude across the profile for the best solutions as in Fig. 5.23 (Mazumdaret al.2006,
Briquetet al.2005). We come back to these twoβCep stars in Chapter 10, where we discuss their seismic
modelling based on the detected frequencies and the mode identification.

Whenever modes are detected in quasi-simultaneous multicolour photometry and high-resolution spec-
troscopy, one can do better than simply compare the mode identification results by exploiting the data
simultaneously. This was first done by Daszyńska-Daszkiewicz et al. (2005) for theβ Cep starsδCeti and
ν Eridani. These authors added the amplitude and phase of the first moment to the multicolour amplitudes
and phases, and upgraded theχ2 criterion as in Eq. (5.37) accordingly. This led them to a much safer mode
identification, and also an estimate of the parameterfT , provided that the different types of data are not
obtained too far apart in time to avoid different beat patterns to occur in the two types of data. From the
derivedfT values for models with different opacities, the authors found a way to derive information on the
most appropriate opacities to explain the modes. It is this combined method that also led to the identification
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of twelve modes for FG Vir discussed in the previous section and listed in Table 5.4. A natural extension
of this method would be to include also the second and third moment variations to obtain an even more
powerful discriminant, but this has not yet been done so far.

Finally, we point out that the empirical identification of the (l,m) values for the multiperiodicγ Dor
stars remains problematic. There are hardly any simultaneous long-term multi-technique data sets available
for such g-mode oscillators. The mode-identification results by De Catet al. (2005) for some selected
SPB stars show that the modes can be successfully identified,provided that one assembles multicolour
photometry and high-resolution spectroscopy with a time span of a few years. Multicolour photometry
with such a time span has been assembled from multisite campaigns dedicated to specific targets such as
9 Aurigae (Zerbiet al. 1997a), HD 164615 (Zerbiet al. 1997b), QW Puppis (Porettiet al. 1997), HR 8799
(Zerbi et al. 1999), and from single-site campaigns dedicated to samplesof γ Dor stars (Henry & Fekel
2004, 2005; Cuyperset al. 2007). Long-term spectroscopic campaigns for large samples were also carried
out (Mathiaset al. 2005; De Catet al. 2006). Unfortunately, these extensive data have not led to mode
identification. The modes of only fiveγ Dor stars have been identified so far from multicolour photometry
(Aerts et al. 2005b). This seems to point towards the excitation of onlyl = 1 modes, but this conclusion
must be considered as preliminary. Very likely, ground-breaking results for g-mode oscillators will come
from the CoRoT and Kepler photometry, in combination with ground-based spectroscopy.

5.4 Towards mode identification from combined interferometry and spec-
troscopy?

In an extensive review, Cunhaet al. (2007) have discussed the synergies and cross-fertilisation between
interferometry and asteroseismology. Interferometric measurements can help a lot in asteroseismic analyses
in several different ways. Direct radius estimates with a relative precision better than a few percent,e.g.,
can be obtained for several hundred stars in the solar neighbourhood with VLTI/AMBER. The masses of
binary stars with a pulsating component can be derived independently from asteroseismology by interfer-
ometry, with precision of only a few percent. As far as mode identification is concerned, the combination of
interferometric and spectroscopic data allows, in principle, the identification of the oscillation modes.

The PPM method described above exploits the amplitude and phase across the profile as a mode-
identification diagnostic by relying, through Eqs (5.45) and (5.49), on the expression for the pulsational
velocity in terms ofl andm. The Doppler effect is considered to be the dominant source of information
in identifying l andm from the variations through Eq. (5.49). A new interesting idea was put forward by
Berdyuginaet al. (2003a). They inverted a time series of line-profile variations, in this way turning the
data into a stellar surface brightness distribution. This comes down to an image reconstruction method,
also termed Doppler Imaging in the context of spotted stars.They applied this inversion without assuming
any prior knowledge of the physical cause of the variations of the line profiles. After having performed
the inversion, the authors assumed that the most important cause of the line-profile variations are surface
brightness variations superposed onto a time-independentbroadened Doppler profile. Rather than focusing
on v(R, θ′i, φ

′
j , t) in the interpretation through Eq. (5.49), they thus considered δ[Fλ(θ′, φ′)] to be the dom-

inant information for the mode identification. Such a situation may occur for rapidly rotating stars, whose
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velocity perturbation due to the oscillations is very smallcompared with its rotational broadening. In such
a case, the pulsation-induced intensity perturbations gain importance with respect to the velocity perturba-
tions. Berdyuginaet al.(2003b) applied their method to theβCep starω1 Scorpii and found it to be capable
of recoveringl andm of the oscillation, which had been derived before from a PPM-like application by Telt-
ing & Schrijvers (1998). This brings us to the capability of combining surface brightness variations,e.g.,
derived from interferometry, with surface velocity variations derived from high-resolution spectroscopy.

Long before the availability of appropriate instrumentation, Vakili (1992) had already suggested the
study of surface variations due to non-radial oscillationsof rapidly rotating stars from long-baseline differ-
ential interferometry (see Cunhaet al. 2007 for the technicalities of how this can be achieved). As shown
by Jankovet al. (2001), such a combined technique can be successful in identifying oscillation modes with
l > 2 in rapid rotators, providing information on the modes that can perhaps not be obtained from each
of the two types of observations, interferometry and spectroscopy, separately. The flux variations due to
the non-radial modes introduce a complex pattern in the so-called interferometricUV plane (Cunhaet al.
2007). This pattern can be disentangled by comparing the photocentre displacements in this plane due to
the oscillations with predicted monochromatic intensity maps of a constant star. In practice, one simulates
photocentre displacements as a function of(l,m, i). Such a simulation defines a kind of “spatial filter” for
each(l,m, i). Applying one-by-one all these spatial filters to the data allows one to identify the true nature
of the mode. This is illustrated in Fig. 5.26, in which the original signal in panel (a) is compared with a
map (b) recovered from spectra alone with a method similar tothe one of Berdyuginaet al. (2003a), as well
as with the map based on the photocentre shifts alone displayed in panel (c), and a combination of both
shown in panel (d). The limitations of panels (b) and (c) are particularly apparent in the reconstruction of
the features below the equator, where a loss of contrast occurs. A significant improvement with respect to
these separate reconstructions is obtained using both spectra and photocentre shifts simultaneously, as in
panel (d).

Domiciano de Souzaet al.(2002, 2003) and Jankovet al. (2004) showed that measurements of the dis-
placement of the photocentre across the stellar disk allowsmapping of the surface brightness, but requires
a minimum of three telescopes in an interferometric array insuch a way that fringes are collected for all
three baselines. The simulation study by Jankovet al. (2004) anticipates that the interferometric measure-
ments are sufficiently sensitive to detect a mode of low(l,m). In general, however, numerous modes are
simultaneously excited. In such more realistic cases, the photocentre displacements are ‘washed out’ by the
averaging effect of the many(l,m)-values. In that case, one can still obtain identification for a fixed number
of oscillation frequencies which have been derived from time series analysis of observables of any kind.
When carrying out the interferometric measurements, a selected oscillation frequency is used to phase-lock
the data to this frequency. In this way, all surface structures that are not associated with this frequency are
assumed to be removed, greatly improving the signal strength for the frequency under consideration. Such
frequency filtering can be done as a post-processing step by an appropriate weighting procedure. It is pos-
sible to design the appropriate weights for each of the measured oscillation frequencies separately, and use
the same set of interferometric observations to constrain the identification of all the oscillation modes whose
frequencies are known from other diagnostics.

Concrete applications of this promising mode-identification method are still awaited.
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Figure 5.26: (a) Simulation of the pole-on projection of thestellar surface brightness perturbations due to an
l = 5,m = 4 mode on a star with an inclination angle ofi = 45◦. The equator and the latitudes30◦ and60◦

are presented by full and dashed circles, respectively. Reconstruction based on (b) simulated flux spectra,
(c) photocentre shifts, and (d) combined flux spectra and photocentre shifts. (From Jankovet al.2001.)
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5.5 Towards mode identification from eclipse mapping?

Unno et al. (1989, p.22) pointed out the possibility to observe phase shifts due to non-radial oscillations
during the eclipse of a pulsating star by a companion, and to use this as a mode-identification method. No
applications of this technique existed yet at the time they wrote the second edition of their monograph on
non-radial oscillations of stars. Unnoet al. (1989) realised that the earlier interpretation of phase jumps
of 360◦ in the nova-like binary UX UMa in terms of non-radial oscillation modes ofl = 2 by Nather &
Robinson (1974) was premature, and that the observed phase phenomenon could be far better explained in
terms of an oblique rotator model.

Current versions of the eclipse-mapping method for cataclysmic variables are based on the original
development by Horne (1985). He introduced the method with the goal of mapping the surface brightness
distributions in eclipsing cataclysmic variables. Eclipse mapping allows a test of accretion theory because
the spatial structure of the disks can be derived from the light-curve behaviour. Moreover, the spot structure,
including the hot spot originating from the collision of thestream of the donor onto the disk of the gainer,
can be derived. For early applications to interacting binaries we refer to,e.g., Ruttenet al. (1993), Collier
Cameron & Hilditch (1997) and Hilditchet al. (1998).

In the case of mode identification of a non-radially pulsating star in an eclipsing binary, one needs
to reconstruct a time-dependent intensity map from the data, and subsequently infer the amplitude and
phase behaviour of the pulsation mode. Nuspl & Bı́ró (2002)and Nusplet al. (2004) modified Horne’s
method for mode identification from photometric data, as didGamarovaet al. (2003) who baptised their
method the Spatial Filtration method. Unfortunately, these studies were only published in short proceedings
papers and there is as yet no extensive simulation study of the methodology, highlighting its applicability to
multiperiodic oscillations and an evaluation of the uniqueness of solutions.

While severalδ Sct stars in eclipsing binaries are known (Pigulski 2006), the mode identifications per-
formed for them are almost all based on the out-of-eclipse data, e.g., RZ Cassiopeia (Ohshimaet al. 2001;
Rodrı́guezet al. 2004) and Y Cam (Kimet al. 2002). The next step towards application of mode iden-
tification through eclipse mapping was performed by Mkrtichian et al. (2004) for the Algol-type eclips-
ing binary star AS Eridani. They did not use the eclipse-mapping method, but they excluded the odd
l + m combinations of(l,m) from the fact that their disk-integrated amplitude disappears during the
eclipse. Gamarovaet al. (2004) made preliminary estimates of(l,m) for the Algol-type eclipsing bina-
ries AB Cassiopeia and RZ Cassiopeia from Spatial Filtration. Rodrı́guezet al. (2004) also applied Spatial
Filtration to AB Cassiopeia. Both studies provided a radialmode for the star, in agreement with the out-of-
eclipse identification. This result was recently confirmed by Riazi & Abedi (2006), who considered only
radial modes in their methodology. As far as we are aware, thecase of AB Cassiopeia, a radial pulsator, is
the only application they made so far.

By far the best documented version of mode identification from photometric data using eclipse mapping
was provided by Reedet al. (2005). While their primary goal was to search for evidence of tidally tipped
pulsation axes in close binaries, they also made simulations for the very specific case of eclipse mapping of
pulsating subdwarf B star binaries,i.e., assuming that the secondary has more or less the same size asthe
primary and does not contribute to the light. They assumed that the pulsation axis can take any value and
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is not necessarily aligned with the rotation or orbital axis. They investigated how the visibility of different
types of modes varies between the out-of-eclipse and in-eclipse phase. In particular, they found thatl > 2
modes become visible during an eclipse while they are essentially absent outside of eclipse. Their tools
have so far only been applied to concrete cases of KPD 1930+2752 (Reedet al.2006a) and of PG 1336-018
(Reedet al.2006b; see also Fig. 2.59) but without clear results.

We must conclude that, still today, more than 30 years after the original idea of Nather & Robinson
(1974), eclipse mapping has hardly been evaluated critically as a mode-identification method, nor has it been
applied successfully in practice for binary stars that havebeen subjected to seismic modelling afterwards.
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Part III

Applications of asteroseismology
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In this part of the notes you find selected papers on applications of asteroseismology to different kinds
of stars. Inevitably, this selection is a personal one by thelecturer and it is biased towards her own research
interests. It is by no means the intention to give a complete overview of applications. Rather, the lecturer
has opted to choose some specific papers which she finds well written and accessible to students while
containing state-of-the-art seismic analyses and prominent results. Very likely, the choice of the papers will
change during the forthcoming years as new analyses will become available in the international literature.

It is very important for the students to realise what the purpose of this last part of the course is: to
provide them with a selection of papers from the modern literature on asteroseismology and to make them
understand the role of asteroseismology in the general context of stellar astrophysics. The goal is that
the students get a flavour of the major achievements of asteroseismology and, equally importantly, of what
remains to be done in the future. As outlined in the Evaluation part of the notes, the material in this part of
the course will be studied by the students themselves, now that they have received the basic introduction on
stellar oscillations and tools to analyse data thereof as outlined in Parts I and II of these lecture notes. That
preparation should suffice for them to understand large parts of the papers selected here and report on the
results described in them.

The students must make a summary of the most important results in a (some of the) scientific paper(s)
and present this summary to their fellow students, after considerable interaction with the lecturer. I stress
that the goal cannot be for the students to understand all thedetails of all of those papers. In fact, the
lecturer herself does not understand all these details. Thepurpose is that the students learn to select the
highlights in these works and to place them in perspective into the global context of asteroseismology.
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Chapter 6

Helioseismology and solar-like oscillators

6.1 Helioseismology

The oscillations discovered in the Sun in the early 1960s have provided astrophysicists with a unique op-
portunity to investigate the interior of a star with unprecedented precision. The Sun’s oscillations have been
observed extensively since their discovery up to the present day, both from ground-based networks and from
space.

Many of the techniques used in asteroseismology have been developed in order to interprete the solar
frequency spectrum in full detail. In this sense, helioseismology has clearly paved the road for applications
of seismology to more distant stars with stochastically-excited modes. It is therefore evident that an overview
of the results obtained from helioseismology cannot be omitted in the current course. A very extensive,
recent review paper on helioseismology is available from

Christensen-Dalsgaard, J., 2002, Helioseismology,
Reviews of Modern Physics, Volume 74, pages 1073 – 1129.

Helioseismology is certainly not the specialisation of thelecturer. It is therefore evident that she would not
have been able to provide so many details in such an excellentway, so we prefer to provide the students with
the review paper mentioned above.
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6.2 Solar-like oscillations in distant stars

In 2003, a review paper on solar-like oscillations in distant stars was published by two world-leading experts
in this research field. We include it here instead of trying tomake our own summary:

Bedding, T.R., Kjeldsen, H., 2003, Solar-like Oscillations,
Publications of the Astronomical Society of Australia, Volume 20, pages 203 – 212.

The discovery of solar-like oscillations in nearby stars isa domain that undergoes a real boom, so by the time
you read these lecture notes new discoveries (among which inαCen B!) will undoubtedly have occurred, as
well as more refined observational studies of the stars mentioned in the review. Keep yourself informed and
updated by checking the World Wide Web!
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Chapter 7

Seismology of compact stars

7.1 White dwarf seismology

As already mentioned in the first introductory chapter of this course, the WET observing run of the white
dwarf PG 1159-035 implied a real break-through in white-dwarf seismology. Although this result was ob-
tained more than a decade ago, the same level of precision wasreached for only a very limited number of
stars so far. Moreover the paper on the WET run of PG 1159-035 is a very nice example of a goodend-to-
end seismic analysisin which one starts from the observations and ends with stringent constraints on the
internal structure of the star. We therefore certainly include this important paper here:

Winget, D.E., Nather, R.E., Clemens, J.C., et al., 1991,
Asteroseismology of the DOV star PG 1159-035 with the Whole Earth Telescope,

The Astrophysical Journal, Volume 378, pages 326 – 346.
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A recent interesting aspect of white dwarf seismology is theidea that it can constrain the nuclear
reaction rate12C(α, γ)16O. This result is a very nice example of the implications asteroseismology could
have for other fields in physics. However, there is no generalconsensus on this result in the international
literature. We point out four papers in this respect:

Metcalfe, T.S., Salaris, M., Winget, D.E., 2002,
Measuring12C(α, γ)16O from white dwarf asteroseismology,

The Astrophysical Journal, Volume 573, pages 803 – 811.

Handler, G., Metcalfe, T.S., Wood, M.A., 2002,
The asteroseismological potential of the pulsating DB white dwarf stars

CBS 114 and PG 1456+103,
Monthly Notices of the Royal Astronomical Society, Volume 335, pages 698 – 706.

Fontaine, G., Brassard, P., 2002,
Can white dwarf asteroseismology really constrain the12C(α, γ)16O reaction rate?,

The Astrophysical Journal, Volume 581, pages L33 – L37.

Metcalfe, T.S., 2003,
White dwarf asteroseismology and the12C(α, γ)16O rate,
The Astrophysical Journal, Volume 587, pages L43 – L46.
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7.2 Seismic studies of sdB stars

Ever since their discovery in 1997, the pulsating sdB stars,also termed EC 14026 or V 361 Hya stars, have
been observed intensively. However, it took several years,even for the sdB stars with short-period pressure
modes, before the observations reached the level of detail such that seismic inference could be achieved.
The first such detailed seismic study is summarised in the paper:

Brassard, P., Fontaine, G., 2001,
Discovery and asteroseismological analysis of the pulsating sdB star PG 0014+067,

The Astrophysical Journal, Volume 563, pages 1013 – 1030,

which we regard to be a reference work in this area of asteroseismology. The need of modes with degree
l > 2 to model the frequency spectrum of PG 0014+067 as explained in the paper is, however, not supported
by all asteroseismologists. Therefore, the same star is themain target of a WET run and of a multicolour
study with the instrument ULTRACAM attached to the William Herschel Telescope at La Palma in the sec-
ond part of 2004. We will therefore hopefully be able to report on more detailed seismic results for this star
in the version of these Lecture Notes next year.

In-depth seismic analyses are currently not yet possible for the much more recently discovered gravity-
mode oscillators among the sdB stars. Many more observational efforts are needed to firmly establish
numerous frequencies and mode identifications for the gravity modes in such objects.
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Chapter 8

Seismology of massive stars

8.1 Delta Scuti star seismology

The first attempts to perform detailed seismic studies of stars more massive than the Sun, i.e. for stars with
a considerable convective core, were made for selectedδ Scuti stars which had been the targets of multisite
campaigns (mainly organised by the Vienna team led by M. Breger). A reference work in this matter is:

Pamyatnykh, A.A., Dziembowski, W.A., Handler, G., Pikall,H., 1998,
Towards a seismic model of theδ Scuti star XX Pyxidis,

Astronomy & Astrophysics, Volume 333, pages 141 – 150.

While the conclusions from this study on the potential ofδ Scuti star seismology were rather worrisome at
the time of publication of that paper, a possible explanation for the limitations of the seismic modelling of
XX Pyxidis was proposed recently:

Aerts, C., Handler, G., Arentoft, T., Vandenbussche, B., Medupe, R., Sterken, C., 2002,
Theδ Scuti star XX Pyx is an ellipsoidal variable,

Monthly Notices of the Royal Astronomical Society, Volume 333, pages L35 – L39.

A secondδ Scuti star in which many oscillation modes have been detected and that was therefore the
subject of seismic modelling is FG Virginis. An example of such a study is:

Templeton, M., Basu, S., Demarque, P., 2001,
Asteroseismology ofδ Scuti stars: a parameter study and application to seismology of FG Virginis,

The Astrophysical Journal, volume 563, pages 999 – 1012.
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8.2 Seismic studies of roAp stars

A considerable amount of data of roAp stars has been gatheredthe past two decades. Frequency analyses
of their light curves have yielded quite rich asteroseismicinformation in general, and in particular on the
interaction of the oscillations with the magnetic field. However, many questions still remain unsolved today.

One of the best studied roAp stars is HR 1217, of which we list two recent remarkable and important
publications:

Cunha, M.S., 2001, The sixth frequency of roAp star HR 1217,
Monthly Notices of the Royal Astronomical Society, Volume 325, pages 373 – 378.

Kurtz, D.W., Kawaler, S.D., Riddle, R.L., et al., 2002,
Discovery of the ‘missing’ mode in HR 1217 by the Whole Earth Telescope,

Monthly Notices of the Royal Astronomical Society, Volume 330, pages L57 – L61.
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8.3 B-star seismology

It is always the privilige of the lecturer to put more emphasis on his/her favourite topic in lectures. While
your lecturer’s main research domain is asteroseismology of B stars, she has tried not to exaggerate and to
limit to the most recent results also for this type of stars. As for the oscillating sdB stars, we are still awaiting
the detection and mode identification of numerous gravity modes in the SPBs (up to some five modes have
been detected in some stars).

At present, significant progress in the detailed seismic modelling of the p-mode oscillators among the
B stars, i.e. theβCep stars, is occurring. While attempts of such modelling already started in 1996 by our
Polish colleagues W. Dziembowski and M. Jerzykiewicz for the stars 12 and 16 Lacertae, it was only in
2003 that a significant step forward has been achieved. One ofthe reasons for this is that we have finally
obtained good mode identifications for the modes in some selectedβ Cep stars. This has led to inferences
on internal properties of the convective core and the rotation profile in some cases. A second reason is that
βCep stars have become the targets of multisite campaigns lasting several months and involving dozens
of instruments around the globe. The campaigns have been organised under the leadership of G. Handler
from Vienna University. At the time of writing of these lecture notes, such a campaign has finished for the
starsν Eridani, 12 Lacertae, 16 Lacertae and V 2052 Ophiuchi. Interpretation of such network campaigns is
a tedious job which takes a long time, even if tackled by a large team of researchers. In these notes, we
include the final results of the campaign onν Eridani, the analyses for the other targets are still ongoing and
will be reported upon in the coming years.

The number of modes that are excited to detectable amplitudes in β Cep star is small, typically less
than ten. The examples for the 6 stars studied below show the amazing power of asteroseismology, even
with very few well-identified oscillation modes at hand:

Handler, G., Shobbrook, R.R., Vuthela, F.F., et al., 2003,
Asteroseismological studies of the threeβ Cephei stars: IL Vel, V 433 Car and KZ Mus,
Monthly Notices of the Royal Astronomical Society, Volume 341, pages 1005 – 1019.

Thoul, A., Aerts, C., Dupret, M.-A., et al., 2003,
Seismic modelling of theβCephei star EN (16) Lacertae,
Astronomy & Astrophysics, Volume 406, pages 287 – 292.

Aerts, C., Waelkens, C., Daszyńska-Daszkiewicz, J., et al., 2003,
Asteroseismology of theβ Cep star HD 129929.

I. Observations, oscillation frequencies and stellar parameters,
Astronomy & Astrophysics, Volume 415, pages 241 – 249.
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Dupret, M.-A., Thoul, A., Scuflaire, R., et al., 2003,
Asteroseismology of theβ Cep star HD 129929.

II. Seismic constraints on core overshooting, internal rotation and stellar parameters,
Astronomy & Astrophysics, Volume 415, pages 251 – 257.

Handler, G., Shobbrook, R.R., Jerzykiewicz, M., et al., 2004,
Asteroseismology of theβCephei starν Eridani

I. Photometric observations and pulsational frequency analysis,
Montly Notices of the Royal Astronomical Society, Volume 347, pages 454 – 462.

Aerts, C., De Cat, P., Handler, G., et al., 2004,
Asteroseismology of theβCephei starν Eridani

II. Spectroscopic observations and pulsational frequencyanalysis,
Montly Notices of the Royal Astronomical Society, Volume 347, pages 463 – 470.

De Ridder, J., Telting, J.H., Balona, L.A., et al., 2004,
Asteroseismology of theβCephei starν Eridani

III. Extended frequency analysis and mode identification,
Montly Notices of the Royal Astronomical Society, Volume 351, pages 324 – 332.

Pamyatnykh, A.A., Handler, G., Dziembowski, W.A., 2004,
Asteroseismology of theβ Cephei starν Eridani:

interpretation and applications of the oscillation spectrum,
Montly Notices of the Royal Astronomical Society, Volume 350, pages 1022 – 1028.

Ausseloos, M., Scuflaire, R., Thoul, A., Aerts, C., 2004,
Asteroseismology of theβ Cephei starν Eridani:

massive exploration of standard and non-standard stellar models to fit the oscillation data,
Montly Notices of the Royal Astronomical Society, Volume 355, 352 – 358.
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