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The purpose of this talk is twofold. In the first part (sections 1-4) I will
briefly describe the notions of generalised reflexivity and strong reflexivity
for linear space of operators, as well as the problem of the density of the
rank one subspace. The second part is devoted to a presentation of recent
joint work with John Erdos and Victor Shulman [9] concerning reflexive
subspaces admitting actions of masas. The perhaps surprising solution of
the rank one density problem will be given, and a new “simultaneous co-
ordinatisation” of such subspaces will be presented. This will be given in
measure-theoretic terms, and so the blanket assumption of separability of
all Hilbert spaces will be made (although many results, particularly in the
first part, are valid generally). The results in the first part are mostly known,
apart from a few exceptions (Theorem 2.2, for example); the treatment is
somewhat new1.

Let me emphasise that the objects in this talk are linear spaces of operators
acting on a Hilbert space. The basic notions we are interested in (reflexivity,
rank one operators etc.) are not invariant under isomorphism, but only
under spatial isomorphism. Thus the notion of equivalence will be unitary
equivalence, not some more general notion of isomorphism.

Why linear spaces and not (unital) algebras? As we will see, many results
in operator algebra theory do not depend essentially on multiplication of
operators; furthermore, in some problems concerning operator algebras,

1This approach is based on seminar notes which were privately circulated in 1994
under the title “Killers and preduals”.
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linear spaces which are not algebras (such as annihilators) appear quite
naturally. Thus in some instances the extra structure of multiplication (or
the *-operation) may obscure the issue.

1. Reflexivity

1.1. BASIC CONCEPTS

The concept of reflexivity for algebras of operators (and its dual concept,
reflexivity for lattices of subspaces) was formally introduced by Halmos [12],
although particular instances of reflexive algebras were considered earlier
(see [16], [25]).

Recall that a unital algebra A of operators on a Hilbert space H is said
to be reflexive if any T ∈ B(H) which leaves invariant all (closed) A-
invariant subspaces (that is, all elements of the lattice Lat(A) of A-invariant
subspaces) is itself in A. A moment’s reflection shows that this happens if
and only if Tx is in the closure of Ax for all x ∈ H. It is the latter property
which proves to be fruitful when A is a subspace of operators which need not
be an algebra or contain the identity; in fact the property makes sense even
when the operators map the space H to some (perhaps different) Hilbert
space K. This leads to the following

Definition 1.1 (Loginov-Shulman [21], Erdos [8])
(i) The reflexive cover Ref(S) of a subset S ⊆ B(H,K) is the set of all
B ∈ B(H,K) such that

Bx ∈ [Sx] ∀x ∈ H.

(ii) A subset S ⊆ B(H,K) is said to be reflexive if S =Ref(S).

Clearly Ref(S) is a weak operator closed subspace of B(H,K) contain-
ing S. The above remarks show that, when A ⊆ B(H) is a unital alge-
bra, then Ref(A) = Alg Lat(A), the unital algebra of all operators leav-
ing invariant all A-invariant subspaces. In general, (for H = K) one has
Ref(S) ⊆Alg Lat(S), and the inclusion may be strict:

Example 1 Let S ⊆ B(C2) be the algebra of all strictly upper-triangular
operators. Then LatS is the nest {{0}, [e1],C

2}. Here I ∈ Alg Lat(S) but
I /∈ Ref(S) because Se1 = {0}. In this example

S = Ref(S) =

(
∗

)
Alg Lat(S) =

(
∗ ∗

∗

)
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Example 2 Let S ⊆ B(C3) be the unital subspace generated by the matrix
units Eii (i = 1, 2, 3), E12 and E23. Here

S =




∗ ∗

∗ ∗
∗



 , Alg Lat(S) =




∗ ∗ ∗

∗ ∗
∗



 .

This is not an algebra because (E12 + E23)
2 = E13 /∈ S. Note that LatS

is the nest {{0}, [e1], [e1, e2],C
3}, so E13 ∈ Alg Lat(S). But E13 /∈ Ref(S)

because E13e3 = e1 while Se3⊥e1.

Note that in both examples S is a bimodule over the masa (:maximal
abelian selfadjoint algebra) of all diagonal matrices.

Even in the study of reflexive algebras, reflexive subspaces which are not
algebras arise quite naturally: as we shall see (Theorem 2.1), the annihilator
of the rank-one subalgebra of a reflexive algebra is a reflexive subspace, but
it is very seldom an algebra.

Given any set S ⊆ B(H) of operators, the smallest reflexive (unital) algebra
containing S may be determined in two steps, by first finding the lattice
L = Lat(S) of all closed S-invariant subspaces and then finding the unital
algebra AlgL of all operators which leave all members of L invariant:

S → Lat(S) → Alg Lat(S)

Erdos [8] defines an analogous two-step process for finding the reflexive
cover of a set S ⊆ B(H,K): one first finds the map φS determined by S

which associates to any (closed) subspace P of H the cyclic subspace S(P ).
Then Ref(S) equals OpφS , the set of all operators T that ‘respect’ this map
in the sense that T (P ) ⊆ φS(P ) for all P :

S → φS → OpφS = Ref(S).

Any subspace lattice L determines a map φL by

φL(P ) = ∧{L ∈ L : L ⊇ P}.

Note that φL|L is the identity map. Then OpφL = Alg(L). But other maps
are useful, even in the unital algebra case: if φ∨

L
is defined by

φ∨L(P ) = ∨{L ∈ L : L 6 ⊇P}
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then it turns out that Opφ∨
L

is precisely the annihilator of the rank one
subspace of Alg(L). Note that, for P ∈ L, φ∨

L
(P ) is the ‘generalised prede-

cessor’ P− of P introduced by Longstaff [22].

A reflexive (unital) subalgebra A of B(H) is determined by the set LatA of
its invariant subspaces. In the same way, a reflexive subspace S ⊆ B(H,K)
is determined by its map φS ; its invariant lattice is in general not large
enough to determine it.

Example Consider the ultraweakly closed subspace S ⊆ B(ℓ2) generated
by the matrix units {En,n : n ∈ N}, {En+1,n : n ∈ N} and {E1,n : n ∈ N}.

S =





∗ ∗ ∗ ∗ · · ·
∗ ∗

∗ ∗
∗ ∗

. . .
. . .





We will show below (section 6) that any subspace which is the ultraweakly
closed span of a set of matrix units is necessarily reflexive. However it can
be verified that in this case LatS is trivial and so cannot determine S.

1.2. ‘CLOSURES’

The reflexive cover of a set of operators can be thought of as its “one-
point closure”. Of course Ref is not a closure operator in the topological
sense. However, in some important cases, the reflexive cover of a subspace
coincides with its closure in the weak operator topology (WOT) or even
the ultraweak topology (w*).

In fact, the von Neumann bicommutant theorem says that if A ⊆ B(H) is a
unital *-algebra, then Ref(A) = w*-cl(A) (because Ref(A) = A′′ for unital
*-algebras). Of course this fails miserably in the non-selfadjoint case: for
example if

A =

{(
a b
0 a

)
: a, b ∈ C

}

then Ref(A) is the set of all upper-triangular matrices.

These observations motivate the general theme of this talk:

Theme: When do the equalities

Ref(S) =S
WOT

(1)
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or

Ref(S) =S
w∗

(2)

hold?

We will see below (section 6) that if S ⊆ B(H) is the linear span of a set of
matrix units, then (2) holds (hence (1) also holds). Note that in this case
S is a bimodule over the discrete masa generated by the diagonal matrix
units.

More generally, if S is a bimodule over a masa A (that is, AS ⊆ S and
SA ⊆ S) and is the linear span of a set of rank one operators, then (1)
holds (theorem 5.2) but (2) may fail (section 10).

2. Reflexivity and rank one operators

A crucial observation is that reflexive subspaces can be characterised in
terms of rank one operators2. Indeed,

Ref(S) = {T ∈ B(H,K) : 〈Sx, y〉 = 0 ⇒ 〈Tx, y〉 = 0}

= {T ∈ B(H,K) : x⊗ y∗⊥S ⇒ x⊗ y∗⊥T}

= (R1(
⊥S))⊥ (3)

where R1(T ) denotes the rank one subspace of T (the linear span of the
rank one operators in T ) and x⊗ y∗(η) = 〈η, y〉x.

Thus reflexive spaces are (post-) annihilators of sets of rank ones. The
converse also holds. Thus

Theorem 2.1 A set S ⊆ B(H,K) is reflexive if and only if it is of the form
S = R⊥, for some set R ⊆ B(K,H) of rank one operators.

Proof Let S = R⊥. Suppose that Tx ∈ Sx for all x ∈ H. Then for each
x⊗y∗ ∈ R, we have x⊗y∗⊥S, i.e. 〈Sx, y〉 = 0 and hence 〈Tx, y〉 = 0. Thus
T ∈ R⊥ = S. 2

An interesting application of this concerns “approximate decomposability”
of operators with respect to reflexive subspaces:

2This is due to Larson [18] in the case of unital algebras, and to Kraus-Larson [15]
and Erdos [8] in the general case. Theorem 2.1 is from [8], Theorem 9.2.
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Theorem 2.2 Let S ⊆ B(H,K) be reflexive, and let T be the reflexive sub-
space (R1(S))⊥. Then every Hilbert-Schmidt operator T on H decomposes
as a sum T1 + T2 of two Hilbert-Schmidt operators such that T1 ∈ S and
T ∗

2 ∈ T . This decomposition is unique if and only if every Hilbert-Schmidt
operator in S is in the C2-closure of R1(S). In particular, the sum S + T ∗

is ultraweakly dense in B(H,K).

Proof Let S2= C2∩S, T2= C2∩T and let A ∈ C2 be orthogonal to T2 in the
Hilbert space C2. Thus tr(A∗T ) = 0 for all T ∈ C2 that annihilate R1(S),

and hence A∗ ∈ R1(S)
2
(the closure of R1(S) in the Hilbert-Schmidt norm).

It follows easily that the orthogonal complement of T2 is precisely R1(S∗)
2
.

Thus
C2 = T2+T ⊥

2 ⊆ T2+S∗
2 ⊆ C2

hence equality holds. The sum T2+S∗
2 is direct if and only if R1(S)

2
=

S2. 2

In the case of a unital algebra, this result was obtained jointly with M. Pa-
padakis [24]. It allows a quick proof of various decomposability (sometimes
called *-density) results, the oldest of which is attributed to Kadison and
Singer [16] (see also [1], [3], [11]): If A ⊆ B(H) is a nest algebra, then A+A∗

is ultraweakly dense in B(H). Indeed, in this case one easily verifies that
(R1(A))⊥ ⊆ A. Thus the theorem may be considered as a generalisation of
the decomposability of a matrix in its upper triangular and strictly lower
triangular parts.

Remark 2.1 Theorem 2.1 leads to the following reformulation of our basic
theme for a subspace S ⊆ B(H,K) :

Ref(S) =S
w∗

⇔ R1(⊥S)
1

= ⊥S

and
Ref(S) =S

WOT
⇔ R1(⊥S)

1
⊇ F(⊥S)

(here F(⊥S) stands for the finite rank operators in ⊥S.) That is, the reflex-
ive cover of a subspace S coincides with its ultraweak (resp. weak operator)
closure if and only if every operator (resp. every finite rank operator) in its
pre-annihilator may be approximated, in trace norm, by sums of rank one
operators annihilating S.

This follows from (3) using duality theory, since S
WOT

= (F(⊥S))⊥ and

S
w∗

= (⊥S)⊥.
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3. Strong reflexivity

While there are always rank one operators annihilating a (proper) reflexive
subspace, there may well be no rank one operators contained in it (exam-
ple 3.1) or even no compact operators at all (example: the multiplication
algebra of a non-atomic masa).

Example 3.1 Let A = Alg(L) where L is a double triangle (that is, L
consists of three mutually disjoint closed subspaces such that the closed span
of each pair is the whole space). Then A contains no rank one operators.

By contrast, the annihilator of a reflexive subspace is itself a reflexive sub-
space containing plenty of rank one operators; in fact, it is the reflexive
cover of its rank one subspace (see Proposition 3.2 below). This leads to
the following

Definition 3.1 A subset S ⊆ B(H,K) is said to be strongly reflexive if
S = Ref(R) for some set R of rank one operators.

Then of course we can take R = R1(S).

The original definition of strong reflexivity generalised the notion of com-
plete distributivity from subspace lattices to subspace maps. The equiva-
lence of this definition to the one given above is due to John Erdos [8].
Longstaff [22] introduced this notion for unital algebras and showed that if
L is a subspace lattice which is completely distributive, then L = Lat(R)
and so Alg(L) is strongly reflexive, but the converse may fail.

The prototypes of strongly reflexive algebras are nest algebras [25] and alge-
bras whose lattices are Boolean and atomic [12]. These lattices were shown
to be reflexive using the particularly simple geometric characterisation of
rank one operators that leave them invariant.

But strongly reflexive subspaces are important from a different point of
view, which has so far received little attention: they arise quite naturally
in duality theory.

Lemma 3.1 A reflexive subspace S ⊆ B(H,K) is strongly reflexive if and
only if any rank one which kills R1(S) in fact kills all of S.

Proof Let R = R1(S). We have remarked above (see (3))that x ⊗ y∗⊥R
if and only if x ⊗ y∗⊥Ref(R). Thus if S = Ref(R) then any rank one
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operator killing R also kills S. Conversely if this latter property holds then
S = Ref(S) = Ref(R). 2

The following characterisation is essentially in [8], Theorem 9.4.

Proposition 3.2 A subspace S ⊆ B(H,K) is strongly reflexive if and only
if S = R⊥ where R ∈ B(K,H) is the set of all rank one operators in a
reflexive subspace.

Proof From (3),
Ref(Ro) = (R

1
(⊥Ro))

⊥.

But R1(
⊥Ro) = R1(R

⊥
o ) and R⊥

o is a reflexive subspace. 2

4. Density of the rank one subspace

In 1968, Erdos [7] showed that in a nest algebra A, the rank one subspace
R1(A) generates A not only as a reflexive algebra, but in fact as a w*-closed
algebra. This result generated a lot of interest in the general question,

When is the rank one subspace R1(S) of a reflexive space S dense in S
with respect to the ultraweak, or at least the weak operator topology?

It is clear that a necessary condition is Ref(R1(S)) = S, that is, strong
reflexivity of S.

For CSL algebras, that is, reflexive algebras containing a masa, it was
proved in 1983 that this condition was also sufficient for density in the
ultraweak topology [20]. But the question remained open for other strongly
reflexive algebras, and in particular for the important class of algebras with
atomic Boolean invariant lattices. In 1991 it was realised that the answer
is as negative as it could be: there exists an (abelian) algebra whose lattice
is atomic Boolean, with one-dimensional atoms, in which the identity oper-
ator cannot be approximated by sums of rank one operators at two points
of the space simultaneously (let alone in the weak operator topology). This
is shown in the Addendum of [2] using the main example of [19] (see also
J. Erdos’ article in these Proceedings).

In all these results, the behaviour of strongly reflexive unital algebras with
respect to rank one density in the ultraweak topology is the same as in the
weak operator topology. Surprisingly, as we shall see, this is no longer true
for strongly reflexive subspaces.
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The rank one density problem is equivalent to the questions:

Theme′: If R is a set of rank one operators,

Ref(R)
?
= [R]

WOT
(4)

Ref(R)
?
= [R]

w∗
(5)

Equivalently, is [R]
WOT

(resp. [R]
w∗

) a reflexive subspace?

In view of Remark 2.1, these questions may be reformulated as follows

Proposition 4.1 If R is a set of rank one operators,

Ref(R) =[R]
WOT

⇔ F(R⊥) ⊆ R1(R⊥)
1

(6)

and

Ref(R) =[R]
w∗

⇔ ⊥R = C1 ∩R⊥ = R1(R⊥)
1
. (7)

Note that R⊥ (unlike ⊥S as in the general case) is a reflexive subspace.

This brings us to the study of approximation of finite rank and trace class
operators by sums of rank one operators.

5. Finite rank operators in masa bimodules

Let S ⊆ B(H,K) be a (perhaps reflexive) subspace. Is every finite rank
operator of S a (finite) sum of rank one operators in S?

In general, the answer is no: in Example 3.1, AlgL never contains rank one
operators, whereas (for a suitable3 double triangle L) it may contain plenty
of rank two operators.

Such an extreme pathology cannot happen in norm closed masa bimod-
ules: if such an object has finite rank operators, then it also has rank one
operators (however, it may contain Hilbert-Schmidt operators and no rank
ones!). For CSL algebras, this was shown in [13].

In the sequel we will focus attention to masa bimodules, that is, subspaces
M ⊆ B(H,K) admitting actions of two masas A ⊆ B(H) and B ⊆ B(K) in

3There exist double triangles L where sums of rank two operators are WOT dense in
AlgL, but also others whose algebras contain no finite rank operators (see [17]).
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the sense that BMA ⊆ M. These objects have proved to be particularly
amenable to detailed analysis.

However, even in this setting the answer to the above question is negative:

Example 5.1 (Hopenwasser-Moore [13]) There exists a (strongly) re-
flexive space S ⊆ B(ℓ2) which is a bimodule over a totally atomic masa, and
a rank two operator T ∈ S which is not a (finite) sum of rank one operators

in S (although R1(S)
w∗

= S).

Proof Consider the space S of all operators on ℓ2 which have zero diagonal.
This is a reflexive space (it equals R⊥, where R ={Enn : n ∈ N}; that it is
strongly reflexive follows from Proposition 6.2 below), and a bimodule over
the (discrete) masa of diagonal operators. If x = ( 1

n
) and y = ( 1

n2 ), one
shows that the rank two operator T = x⊗ y∗− y⊗x∗ cannot be written as
a finite sum of rank one operators with zero diagonal. It can, of course, be
approximated by such sums, even in trace norm: just let Tn = PnT , where
Pn is the projection onto [e1, ...en]. 2

Nevertheless, Davidson [6] proves that every finite rank operator in a CSL
algebra is in the norm closure of the rank one subspace. In order to apply
the duality methods of the previous sections, we need to extend this beyond
algebras and also beyond norm closures.

Theorem 5.1 ([9]) If S is a norm closed masa bimodule, every finite rank
operator T in S can be approximated, even in trace-norm, by sums of rank
one operators in S.

Proof (Sketch) Suppose for simplicity that rankT = 2. Look at all com-
pressions FTE (where F,E are projections in the masas) whose rank is
at most 1. If these compressions ‘fill out’ T , we are done. If not, we can
find a compression FoTEo every sub-compression of which has rank 2 or
0. Now use the fact that the rank of FoTEo is finite to show that no
rank one operator in B(EoH, FoK) can annihilate FoTEo. This means that
Ref(FoSEo) = B(EoH, FoK), that is, FoSEo is transitive. By [4], this im-
plies that FoSEo is w*-dense in B(EoH, FoK). Since it is norm-closed, it
must contain all rank one operators, and thus FoTEo must be a finite sum
of rank one operators in FoSEo. 2

Remark 5.1 In Theorem 5.1,

(i) The assumption that S is norm closed cannot be omitted. Indeed Arve-
son [4] constructed a w*-closed masa bimodule M which is not reflexive;
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hence there exists a trace class operator T which annihilates M but not
Ref(M). Let S =⊥M. All rank one operators in S annihilate Ref(M), so
T cannot be in their trace-norm closed linear span.

(ii) The assumption that rankT < ∞ cannot be omitted: the conclusion
may fail even when T is trace class and S is a strongly reflexive bimodule
(see section 10).

Both these assertions use the concept of spectral synthesis (see section 9).

In view of the remarks of the previous section, Theorem 5.1 immediately
gives

Theorem 5.2 Every strongly reflexive masa bimodule S is the weak oper-
ator closure of its rank one subspace.

Proof Let R = R1(S). By Proposition 4.1, we need to prove that F(R⊥) ⊆

R1(R⊥)
1
. Since R⊥ is a norm-closed masa bimodule, this follows from

Theorem 5.1. 2

Let me emphasise once again that, contrary to the unital algebra case [20],
the result may fail for the w*-topology (see section 10).

To summarise:

− Any WOT-closed masa bimodule which is WOT-generated by rank
one operators is reflexive (hence strongly reflexive).

− There exists a w*-closed masa bimodule which is w*-generated by rank
one operators and is not reflexive (but its WOT-closure is).

However,

− Any w*-closed unital algebra containing a masa, which is w*-generated
by rank one operators, is reflexive (Laurie-Longstaff [20]).

6. The case of matrix units

To motivate the notion of supporting set and the techniques that use it,
consider the easy case of bimodules over discrete masas:

Let R ⊆ B(H,K) be a set of matrix units with respect to given orthonormal
bases {ej} of H and {fi} of K. Thus there exists a subset κ ⊆ N × N such
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that
R = {fj ⊗ e∗i : (i, j) ∈ κ}.

Let S = [R]
w∗
. If we set R∨ = {ei ⊗ f∗j : (i, j) /∈ κ}, it is not hard to show

that S = R⊥
∨ . By Theorem 2.1, this yields

Proposition 6.1 If S = [R]
w∗

, then S is reflexive (hence strongly reflex-
ive).

Note that in fact S consists of all T ∈ B(H,K) which are supported in κ in
the sense that (n,m) /∈ κ⇒ 〈Ten, fm〉 = 0.

The proof of Proposition 6.1 uses the existence of a bounded approximate
identity in the rank one subalgebras of the diagonal masas A = {[ei]}

′′ and
B = {[fj ]}

′′. This method in fact yields more:

Proposition 6.2 Any w*-closed (B,A)-bimodule S is generated in the w*
topology by its rank one subspace, and hence is strongly reflexive.

It is clear that this may fail if the masas are not discrete; the fact that the
previous proposition may also fail is rather deeper (section 10).

These ideas are also in the motivation of the work of Muhly, Saito and Solel
[23]. Very briefly, given a von Neumann algebra U containing a Cartan
subalgebra A they prove that any w*-closed A-bimodule M ⊆ U can be
‘represented’ as the set of all ‘matrices’ supported on a suitable set (the
multiplication may have to be twisted by a cocycle). A Cartan subalgebra
of U is a masa (relative to U) with additional properties, which need not
concern us here; in case U = B(H), the only Cartan subalgebras are the
discrete masas.

However, their notion of ‘representation’ is (isometric) isomorphism, not
unitary equivalence. They first represent U on a Hilbert space K (up to
*-isomorphism) so that it acquires a separating vector. Then all w*-closed
subspaces of U are automatically reflexive as subspaces of B(K) by a result
of Loginov-Shulman [21]. We have seen (Remark 5.1 (i)) that not all w*-
closed masa bimodules are reflexive in the Hilbert space where they ‘live’.

These remarks show that, in order to deal with spatial representations of
bimodules over arbitrary masas, we will have to adopt a different, ‘non-
discrete’, approach. Our ‘building blocks’ will be rank one operators, not
in the bimodule itself, but in its annihilator.
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7. Supports

Given masas A ⊆ B(H) and B ⊆ B(K), we wish to ‘choose co-ordinates’ in
order to represent (up to unitary equivalence) all reflexive (B,A)-bimodules
simultaneously in a ‘coherent way’. As is well known, H and K can be
represented as L2 spaces so that A and B correspond to the multiplication
masas.

Thus in the sequel we assume that H =L2(X,µ), K =L2(Y, ν) and that
A ⊆ B(H) and B ⊆ B(K) are the corresponding multiplication masas. If α
is a Borel subset of X (resp. β is a Borel subset of Y ) we write E(α) ∈ A
(resp. F (β) ∈ B) for the corresponding projections.

Definition 7.1 Let T ∈ B(H,K) and let κ ⊆ X × Y be any set. We say
that κ supports T if, for any Borel rectangle α× β,

(α× β) ∩ κ = ∅ ⇒ F (β)TE(α) = 0.

A subset S ⊆ B(H,K) is supported in κ if all its operators are supported
in κ.

Note that if a set κ supports S then it supports Ref(S). Also, this notion
clearly reduces to the one introduced in section 6 for the case of discrete
masas.

Definition 7.2 Let κ ⊆ X × Y be any set. Define

Mmax(κ) = {T ∈ B(H,K) : κ supports T}.

It is clear that Mmax(κ) is a w*-closed (B,A)-bimodule.

Proposition 7.1 Any Mmax(κ) is a reflexive (B,A)-bimodule.

The idea of the proof is to show that Mmax(κ) = R⊥ where

R ={E(α)RF (β) ∈ B(K,H) : rankR = 1, (α× β) ∩ κ = ∅}.

In the converse direction we have

Theorem 7.2 If M ⊆ B(H,K) is a reflexive (B,A)-bimodule, there exists
a set κM ⊆ X × Y such that Mmax(κM ) = M.
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For the proof, see [9].

To what extent is the set κM unique?

Recall that a unital algebra A is reflexive if and only if there is a set P of
subspaces such that A =AlgP. The set P is highly non-unique. But there
is only one reflexive lattice L with A =AlgL, namely L = LatA.

The notion corresponding to reflexivity for sets is ω-closure. To introduce
this, first note that a set κ ⊆ X × Y can be modified by ‘negligible’ sets
without affecting Mmax(κ). More precisely,

Remark 7.1 If κ, σ are subsets of X × Y and κ∆σ ⊆ χ × Y ∪ X × ψ
where µ(χ) = 0 = ν(ψ) (we then say that κ∆σ is marginally null and write

κ∆σ
m
∼= ∅) then Mmax(κ) = Mmax(σ).

The converse of this holds when the sets are sufficiently ‘well behaved’:

Definition 7.3 A set κ ⊆ X × Y is said to be ω-open if κ
m
∼= ∪n(αn ×

βn) where αn ⊆ X and βn ⊆ Y are Borel sets. A set is ω-closed if its
complement is ω-open.

Theorem 7.3 (uniqueness) If Mmax(κ) = Mmax(σ) and both κ, σ are

ω-closed then κ
m
∼= σ.

Observe that if a set κ ⊆ X × Y is marginally null, then it can support
no (nonzero) operators. The crucial step in the proof of the uniqueness
theorem is a partial converse to this:

Arveson’s null set Theorem [4] If the complement of κ is a countable
union of Borel rectangles, and it supports no operators, then it is marginally
null.

Definition 7.4 (a) Given a set S ⊆ B(H,K), let M = Ref(BSA). The set
κM constructed in Theorem 7.2 is called the ω-support of S and denoted
suppω(S).

(b) The ω-closure clω(κ)of a set κ⊆X×Y is defined to be suppω(Mmax(κ)).

Thus ω-supports and ω-closures are defined up to marginally null sets. Note
that ω-closure is not a topological closure operation.
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Remark 7.2 It can be easily shown that clω(κ) contains κ up to marginally
null sets. The uniqueness theorem shows that an ω-closed set κ is ‘reflexive’

in the sense that if M = Mmax(κ) then κ
m
∼= suppω(Mmax(κ)) (recall that

a set L of subspaces is called reflexive when L = LatAlgL ).

Remark 7.3 Given a reflexive (B,A)-bimodule M ⊆ B(H,K), we may
find compact metric spaces X,Y such that A,B are unitarily equivalent
to the multiplication masas acting on the corresponding L2 spaces and M
is unitarily equivalent to Mmax(κ) where κ is a closed set. This result is
an extension of the traditional approach, due essentially to Arveson [4].
However the topologies depend on M, not only on the masas.

By contrast, in our approach, once a spatial representation is fixed for the
masas A and B, all (B,A)-bimodules can be “simultaneously” written as
Mmax(κ) for (ω-closed) sets κ.

Remark 7.4 There is a close connection between reflexive masa bimodules
and reflexive algebras containing masas. This is provided by Arveson’s ‘2×2
matrix trick’: given an (B,A)-bimodule M ⊆ B(H,K), the set

U =

(
B M
0 A

)

is easily seen to be a (unital) algebra containing a masa. It can be shown
that U is reflexive as a unital algebra if and only if M is reflexive as a
subspace. However strong reflexivity of M does not imply that U is strongly
reflexive.

8. Strongly reflexive masa bimodules

The notion of ω-support allows a particularly transparent characterisa-
tion of these bimodules. They are precisely the masa bimodules whose
ω-supports are the ω-closures of ω-open sets:

Theorem 8.1 A subset M⊆B(H,K)is a strongly reflexive (B,A)-bimodule
if and only if there exists a countable family {γn × δn} of Borel rectangles
in X × Y such that

M = Mmax(∪n(γn × δn)).

Remark 8.1 In the situation of Theorem 8.1, compact metric topologies
can be chosen (depending on M as well as A,B) so that M is unitarily
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equivalent to Mmax(κ) where κ is the closure of an open set. The converse,
however, is not always true.

9. Spectral synthesis

Many interesting examples of CSL algebras and, more generally, masa bi-
modules, come from the interplay between operator theory and harmonic
analysis. We briefly recall the few facts that we shall need.

The Fourier-Wiener algebra is

A(T) = {f ∈ C(T) :
∑

n∈Z

|f̂(n)| <∞}

This is isomorphic to ℓ1(Z) via the Fourier transform f → f̂ . Thus A(T)
consists of all functions on the circle with absolutely convergent Fourier
series and is a Banach space under the norm

‖f‖A =
∑

n∈Z

|f̂(n)| ≥ ‖f‖∞.

The space PM(T) of pseudomeasures is the dual of (A(T), ‖.‖A). It is iso-
metrically isomorphic to ℓ∞(Z) via the Fourier transform; specifically for
φ ∈ PM(T) we define

φ̂(n) = φ(e−n)

where en(t) = exp(int), and we have

φ(f) =
∑

n

φ̂(−n)f̂(n) (8)

for φ ∈ PM(T) and f ∈ A(T).

We represent PM(T) and A(T) as operators on L2(T) so as to preserve the
duality (8): For φ ∈ PM(T) and f ∈ A(T) we define

Cφ(en) = φ̂(−n)en and Tf (en) = f̂(n)en .

Then Cφ ∈ B(L2(T)), Tf ∈ C1(L
2(T)) and ‖Cφ‖ = ‖φ‖A∗ , ‖Tf‖1 = ‖f‖A.

It follows that
tr(CφTf ) = φ(f).

Definition 9.1 Let E ⊆ T be a closed set. A pseudomeasure φ is said to
be supported in E if φ(f) = 0 for any f ∈ A(T) with supp(f) ∩ E = ∅.
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Note that such an f vanishes in a neighbourhood of E. Also note that a
point measure δt is supported in E if and only if t ∈ E.

Definition 9.2 A closed set E ⊆ T is said to satisfy spectral synthesis
if any φ ∈ PM(T) which is supported in E can be ‘synthesised’ by point
measures supported in E, that is

φ ∈ [δt : t ∈ E]
w∗
.

Thus if E ⊆ T fails spectral synthesis, there exists φ ∈ PM(T) which is
supported in E and f ∈ A(T) which vanishes on E such that φ(f) 6= 0.

10. w* density of the rank one subspace

We are now in a position to construct a strongly reflexive masa bimodule

M such that R1(M)
w∗

6= M. This will be described in the form Mmax(κE)
where

κE = {(t, s) : t− s ∈ E}

for a suitable subset E of the circle T. We will need two lemmas.

Lemma 10.1 (Froelich [10]) A pseudomeasure φ is supported in a closed
set E ⊆ T if and only if the corresponding operator Cφ is supported in κE,
that is Cφ ∈ Mmax(κE).

Lemma 10.2 Let f ∈ A(T) with f |E = 0. Then Tf⊥R1(Mmax(κE)).

Proof Suppose h⊗ g∗ is supported in κE . Then

tr(Tf (h⊗ g∗)) = 〈Tfh, g〉 =
∑

n

f̂(n)ĥ(n)ĝ(n)

=
∑

n

f̂ ∗ h(n)ĝ(n)

=

∫
(f ∗ h)(t)g(t)dt

=

∫ (∫
f(s− t)h(s)ds

)
g(t)dt

=

∫ ∫
f(s− t)h(s)g(t)dsdt
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which vanishes, because f(s − t) = 0 when (s, t) ∈ κE while h(s)g(t) = 0
for almost all (s, t) /∈ κE . 2

Now let E ⊆ T be a closed set failing spectral synthesis. Fix φ ∈ PM(T)
supported in E and f ∈ A(T) with f |E = 0 such that φ(f) 6= 0. If M =
Mmax(κE), then Tf annihilates R1(M) but not M because tr(CφTf ) =
φ(f) 6= 0 while Cφ ∈ M. It remains to find such a set E for which Mmax(κE)
is strongly reflexive.

Lemma 10.3 ([9]) If E ⊆ T is the closure of its interior, then Mmax(κE)
is strongly reflexive.

Lemma 10.4 (Colela [5]) There exists a closed set E ⊆ T failing spectral
synthesis which is the closure of its interior.

We have shown

Theorem 10.5 ([9]) There exists a strongly reflexive masa bimodule M
for which rank-one density fails in the w*-topology.

This also yields a strongly reflexive masa bimodule S and a trace-class
operator T ∈ S which is not in the trace-norm closure of R1(S). Indeed let

S = R1(M)⊥. Then there exists T ∈ C1 ∩ S not annihilating the whole of
M. But, since M is strongly reflexive, all rank one operators in S annihilate

M (lemma 3.1), hence T /∈ R1(S)
1
.
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