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Postulates of Quantum Mechanics

Physical system↭ Hilbert space H

State of the system↭ unit vector ψ ∈ H

Positive measurement (POVM)↭ {Ei}ni=1 ⊆ B(H)
+,

∑n
i=1 Ei = IH

Projective measurement (PVM)↭ {Pi}ni=1 ⊆ B(H), Pi projections,∑n
i=1 Pi = IH

Probability to observe i in state ψ↭ ⟨Tiψ,ψ⟩, where {Ti}ni=1 POVM or PVM
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Composite systems

Tensor paradigm: The joint system, composed out of two others, HA,HB is given
by HA⊗HB and measurements are of the form {Ei ⊗ Fj}i,j , where
{Ei}i ⊆ B(HA) and {Fj}j ⊆ B(HB).

Commutativity paradigm: The composite system consists of one Hilbert space H
and the subsystems are specified by C∗-algebras A,B ⊆ B(H) that commute. The
measurements are performed by {Ei}i ⊆ A and {Fj}j ⊆ B such that EiFj = FjEi .

• The tensor paradigm is a special case of the commutativity one, since we can
set H = HA⊗HB and A = B(HA)⊗ IB and B = IA ⊗ B(HB).

• For finite dimensions they coincide.

• Not necessarily for infinite dimensions.
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Nonlocality

Fix A,B,X ,Y finite sets.

Alice’s lab: Bob’s lab:

Questions: X
Answers: A
Measurements: {Ea,x}a∈A, x ∈ X

Questions: Y
Answers: B
Measurements: {Fb,y}b∈B , y ∈ Y

Correlations ⇝ p = {p(a, b|x , y)}a,b,x,y

Local correlations: Convex combinations of pA(a|x) and pB(b|y). Notation: C loc .

Quantum: Assuming the tensor paradigm p(a, b|x , y) = ⟨Ea,x ⊗ Fy ,bψ,ψ⟩, with

ψ ∈ HA⊗HB , {Ea,x}a∈A ⊆ B(HA), {Fb,y}b∈B ⊆ B(HB) POVM’s.

*We assume HA,HB finite dimensional. Notation: Cq.
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Quantum commuting: Assuming the commutativity paradigm

p(a, b|x , y) = ⟨Ea,xFy ,bψ,ψ⟩ such that

ψ ∈ H, {Ea,x}a∈A, {Fb,y}b∈B ⊆ B(H) POVM’s, Ea,xFb,y = Fb,yEa,x .

Notation: Cqc .

C loc ⊆ Cq ⊆ Cqc .

Nonlocality: Correlations p with p ∈ Cq \ C loc (Bell’s Theorem, CHSH inequality)

Tsirelson’s Problem (TP): Is Cq = Cqc? (No, JNVWY 20’)

We denote Cqa := Cq.
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Connes, Tsirelson, and Kirchberg’s problems

Kirchberg’s Problem (KP): Is C∗(F2)⊗min C
∗(F2) = C∗(F2)⊗max C

∗(F2)?

Tsirelson’s Problem⇔ Kirchberg’s Problem⇔ Connes Embedding Problem

KP ⇒ TP : Passes through the following characterisation

Theorem [Fritz 10’]: Set FX ,A = ZA ∗ · · · ∗ ZA︸ ︷︷ ︸
X−times

(similarly FY ,B). A correlation p is

in the set:

1 Cqa if and only if there exists a state s of C∗(FX ,A)⊗min C
∗(FY ,B) such that

p(a, b|x , y) = s(ex,a ⊗ ey ,b)

2 Cqc if and only if there exists a state s of C∗(FX ,A)⊗max C
∗(FY ,B) such that

p(a, b|x , y) = s(ex,a ⊗ ey ,b)
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Via operator systems

Set AX ,A = ℓ∞A ∗1 · · · ∗1 ℓ∞A︸ ︷︷ ︸
X−times

and SX ,A = ℓ∞A ⊕1 · · · ⊕1 ℓ
∞
A︸ ︷︷ ︸

X−times

where SX ,A ⊆ AX ,A.

Using C∗(FX ,A) = AX ,A and the theory of tensor products for operator systems:

Theorem [Paulsen-Todorov 13’]: A correlation p is in the set:

1 Cqa if and only if there exists a state s of SX ,A⊗min SY ,B such that

p(a, b|x , y) = s(ex,a ⊗ ey ,b)

2 Cqc if and only if there exists a state s of SX ,A⊗c SY ,B such that

p(a, b|x , y) = s(ex,a ⊗ ey ,b)
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Introduction

A hypergraph is a pair G = (V ,E ), where V is a finite set and E is a finite set of
subsets of V .

Definition: A contextuality scenario is a hypergraph G = (V ,E ) such that
∪e∈Ee = V .

Vertices represent the “outcomes” and edges represent the “measurements”.

Definition: Let G = (V ,E ) be a contextuality scenario. A probabilistic model on
G, is an assignment p : V → [0, 1] such that∑

x∈e

p(x) = 1, for every e ∈ E .

Notation: G(G).

This hypergraph theoretic framework was introduced in [AFLS15] to study
contextuality.
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• A contextuality scenario that admits a probabilistic model will be called
non-trivial.

Alexandros Chatzinikolaou Operator systems and contextuality Jul 5, 2024 9 / 29



Definition: Let G = (V ,E ) be a non-trivial contextuality scenario. A Positive
Operator Representation (POR) of G on a Hilbert space H is a collection
(Ax)x∈V ⊆ B(H)+ such that∑

x∈e

Ax = 1, for every e ∈ E .

A Projective Representation (PR), is a POR such that Ax is a projection for
every x ∈ V .

Consider a scenario BX ,A such that

V = X × A and E =
{
{x} × A : x ∈ X

}
,

then a POR E = (Ex,a)x∈X ,a∈A is in fact a family of POVM’s. Such scenarios are
called Bell scenarios.

Remark: A family of POVM’s always dilates to a family of PVM’s. It’s not true
for POR’s as we will see.
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Definition: Let G = (V ,E ) be a contextuality scenario. A probabilistic model
p ∈ G(G) is called

1 deterministic, if p(x) ∈ {0, 1}, ∀x ∈ V .

2 classical, if it is a convex combination of deterministic ones. Notation: C(G)

3 quantum, if there exists a Hilbert space H, a PR (Px)x∈V on H and a state
ψ ∈ H such that

p(x) = ⟨Pxψ,ψ⟩ ∀x ∈ V

Notation: Q(G)

C(G) ⊆ Q(G) ⊆ G(G)

Theorem [Kochen-Specker Theorem]: There exists a contextuality scenario GKS ,
such that C(GKS) = ∅, while Q(GKS) ̸= ∅.
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For finite sets X ,A,
• ℓ∞A is the universal operator system for POVM’s:

{Ea}a∈A POVM on H ←→ ϕ : ℓ∞A → B(H) : ϕ(ea) = Ea is ucp.

• SX ,A := ℓ∞A ⊕1 · · · ⊕1 ℓ
∞
A︸ ︷︷ ︸

X−times

is the universal operator system for families of

POVM’s:

{Ex,a}a∈A POVM on H,∀x ←→ ϕ : SX ,A → B(H) : ϕ(ex,a) = Ex,a is ucp

where {ex,a}a∈A is the canonical basis of the x-th copy of ℓ∞A .

Aim: For hypergraph G, we want to find the universal operator system for POR’s.
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The operator system for POR’s

• Fix a scenario G = (V ,E ), and write E = {e1, e2, . . . , ed}. For each e ∈ E we
set

S := ℓ∞e1 ⊕ · · · ⊕ ℓ
∞
ed .

For x ∈ V , denote by δex ∈ ℓ∞e the element with 1 in the x-th, and zero in the
remaining ones.
• Define

J := span{(1⊕−1⊕ · · · ⊕ 0), (1⊕ 0⊕−1⊕ · · · ⊕ 0), . . . , (1⊕ 0⊕ · · · ⊕ −1),
(0⊕ · · · ⊕ δeix ⊕ · · · ⊕ −δ

ej
x ⊕ · · · 0) : ∀i ̸= j ∈ {1, . . . , n} s.t. x ∈ ei ∩ ej}.

• If J is a “kernel”, i.e., J = ker ϕ for a ucp map ϕ from S, then S /J is an
operator system. Otherwise we take S / J̃ where J ⊆ J̃ is an appropriate
subspace so that the quotient is an operator system.

Remark: If the hyperedges in G are mutually disjoint, S /J is simply the unital
coproduct ℓ∞e1 ⊕1 ℓ

∞
e2 ⊕1 · · · ⊕1 ℓ

∞
ed .
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For e ∈ E , let ιe : ℓ
∞
e → ⊕f∈E ℓ

∞
f be the natural embedding let ie : ℓ

∞
e → S / J̃

be the map given by

ie(u) = |E |(q ◦ ιe)(u), u ∈ ℓ∞e .

The maps ie are ucp but may not always be complete order embeddings so set

ax := ie(δ
e
x ), x ∈ V

and thus S / J̃ = span{ax : x ∈ V }.

Universal property: If Φ : S / J̃ → B(H) is a unital completely positive
map then (Φ(ax))x∈V is a POR of G. Conversely, if (Ax)x∈V ⊆ B(H)
is a POR of G then there exists a unique unital completely positive map
Φ : S / J̃ → B(H) such that Φ(ax) = Ax , x ∈ V . Moreover, it is the
unique operator system with this property.

We set SG := S / J̃ .
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The operator system for dilatable POR’s

The free hypergraph C*-algebra C∗(G) [AFLS15] is the universal C*-algebra
generated by orthogonal projections px , x ∈ V such that

∑
x∈e px = 1 for every

e ∈ E .

The *-representations π : C∗(G)→ B(H) correspond precisely to PR’s (Px)x∈V of
G on H via π(px) = Px , x ∈ V .

Consider
T G := span{px : x ∈ V } ⊆ C∗(G).

• We say that a POR (Ax)x∈V ⊆ B(H) of G dilates to a PR, if there exist a
Hilbert space K, an isometry V : H → K and a PR (Px)x∈V of G such that
Ax = V ∗PxV , x ∈ V .

• T G is universal for dilatable POR’s.
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The operator system for classically dilatable POR’s

Consider the C*-algebra D = ℓ∞e1 ⊗ · · · ⊗ ℓ
∞
ed , and let ι̃e : ℓ

∞
e → D be the natural

unital embedding and let I be the two-sided ideal generated by the elements

ι̃ei (δ
ei
x )− ι̃ej (δ

ej
x ), x ∈ ei ∩ ej , i , j ∈ [d ].

The quotient DG := D/I is a unital abelian C*-algebra; we let

dx := 1⊗ · · · ⊗ δex ⊗ · · · ⊗ 1 + I, x ∈ V

Set

RG := span{dx : x ∈ V },

viewed as an operator subsystem of DG.
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Definition: We say that a POR (Ax)x∈V is classically dilatable if there exists a
Hilbert space K and an isometry V : H → K and a PR (Px)x∈V with commuting
entries such that Ax = V ∗PxV , x ∈ V .

• The operator system DG is universal for classically dilatable POR’s.

We have the following picture:

SG
Φ−→ T G

Ψ−→ RG,

where Φ and Ψ are ucp maps that come from the universal properties.

As a corollary we have the following picture:

models ↭↭ states
G(G) ↭ SG
Q(G) ↭ T G
C(G) ↭ RG
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Dilations

Definition: We say that a scenario G is dilating (resp. classically dilating), if every
POR of G dilates to a PR (resp. PR with commuting entries) of G.

Theorem: Let G = (V ,E ) be a contextuality scenario. Then

• G is dilating if and only if SG = T G;

• G is classically dilating if and only if SG = RG

Proposition: Scenarios G = (V ,E ) such that e′ ∩ e′′ =
⋂

e∈E e ̸= ∅ for all
e′, e′′ ∈ E with e′ ̸= e′′ are dilating.
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The relations between the sets of probabilistic models can be described via
operator systems:

Proposition: Let G = (V ,E ) be a contextuality scenario. Then

1 G(G) = Q(G) if and only if OMIN(SG) = OMIN(T G);

2 Q(G) = C(G) if and only if OMIN(T G) = RG;

3 C(G) = G(G) if and only if RG = OMIN(SG)

We recall [PTT11] that for an Archimedean order unit space (V,V+, e),
OMIN(V) is the operator system obtained by the inclusion2 of V into C (S(V));

v ∈ V 7→
(
Φv : s 7→ s(v), s ∈ S(V)

)
.

The positive elements are such that: [vi,j ]
n
i,j=1 ∈ C n

min(V) iff [s(vi,j)]
n
i,j=1 ∈ M+

n for
every state s ∈ S(V).

2Kadison’s Representation Theorem.
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Quantum magic squares

Definition A = [ai,j ] ∈ Mn(B(Cs)) is called a quantum magic square, if
ai,j ∈ B(Cs)+, ∀i , j and all rows and columns sum to 1. It’s called a quantum
permutation matrix if moreover ai,j are projections.

Given n ∈ N define a hypergraph Gn by

V = [n]× [n] and E =
{
{i} × [n], [n]× {j} : i , j = 1, . . . , n

}
,

so that a quantum magic square A = [ai,j ]
n
i,j=1, is a POR (ai,j)(i,j)∈V (PR if A was

a quantum permutation matrix).

In particular for Gn, the Birkhoff von Neumann Theorem 3 implies that
C(Gn) = Q(Gn) = G(Gn).

3Every magic square is a convex combination of permutation matrices.
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The non-commutative analogue of the Birkhoff von Neumann Theorem was
proved not to be true in general.

[DlCDN20]: There exist quantum magic squares that do not dilate to any
quantum permutation matrix.

It is not clear if this automatically implies that they can’t dilate into infinite
dimensions.

By an adaptation of the considerations in [DlCDN20] in infinite dimensions, we
proved that their results extend to infinite dimensions. In other words,

Proposition: For every n ≥ 3 there is a POR of Gn, that doesn’t admit a
dilation into a PR. That is, Gn are not dilating for n ≥ 3 and SG3 ̸= T G3 .
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Product scenarios

Let G = (V ,E ) and H = (W ,F ) and G×H = (V ×W ,E × F ). A probabilistic
model p on G×H is called:

• no-signalling, if∑
x∈e

p(x , y) =
∑
x∈e′

p(x , y) and
∑
y∈f

p(x , y) =
∑
y∈f ′

p(x , y).

Notation: Gns(G,H).

• deterministic, if p(x , y) ∈ {0, 1} for all (x , y) ∈ V ×W .

• classical, if it’s a convex combination of deterministic models

p(x , y) = p1(x)p2(y), x ∈ V , y ∈W

where p1 ∈ G(G), p2 ∈ G(H).
Notation: C(G,H).
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• generalised tensor probabilistic model (resp. tensor probabilistic models), if

p(x , y) = ⟨(Ax ⊗ By )ψ,ψ⟩, (x , y) ∈ V ×W

for POR’s (resp. PR’s) (Ax)x∈V ⊆ B(HG) and (By )y∈W ⊆ B(HH), dimHG,
dimHH <∞ and ψ ∈ HG⊗HH unit vector.
Notation: Q̃q(G,H) (resp. Qq(G,H)).

• generalised commuting probabilistic model (resp. commuting probabilistic
models), if

p(x , y) = ⟨(AxBy )ψ,ψ⟩, (x , y) ∈ V ×W

for POR’s (resp. PR’s) (Ax)x∈V ⊆ B(H) and (By )y∈W ⊆ B(H) that commute
and ψ ∈ H unit vector.
Notation: Q̃qc(G,H) (resp. Qqc(G,H)).
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Bell scenarios and correlations

A no-signalling correlation p = {(p(a, b|x , y))a∈A,b∈B : x ∈ X , y ∈ Y } defines
p̃ ∈ Gns(BX ,A,BY ,B) where p̃((x , a), (y , b)) := p(a, b|x , y) and vice versa.

In particular,

Correlations Probabilistic models
Cns(X ,Y ,A,B) = Gns(BX ,A,BY ,B)
C loc(X ,Y ,A,B) = C(BX ,A,BY ,B)
Cq(X ,Y ,A,B) = Qq(BX ,A,BY ,B)
Cqa(X ,Y ,A,B) = Qqa(BX ,A,BY ,B)
Cqc(X ,Y ,A,B) = Qqc(BX ,A,BY ,B)

Where Qqa(G,H) = cl(Qq(G,H)).
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Characterisation in terms of states

Given a functional s : SG⊗SH → C define

ps(x , y) := s(ax ⊗ by )

Prob. models ↭↭ states on
Gns(G,H) ↭ SG⊗max SH
Q̃qc(G,H) ↭ SG⊗c SH
Q̃qa(G,H) ↭ SG⊗min SH
Qqc(G,H) ↭ T G⊗e T H
Qqa(G,H) ↭ T G⊗min T H
C(G,H) ↭ RG⊗minRH

Where Q̃qa(G,H) = cl(Q̃q(G,H)).

The above generalise the works of [PT13], [PSS+16], [LLM+18] in the
no-signalling correlation framework.
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On Connes Embedding Problem

Theorem: The following are equivalent:

• CEP has an affirmative answer

• Q̃qa(G,G) = Q̃qc(G,G) for every scenario G.

• C∗
u (SG)⊗min C∗

u (SG) = C∗
u (SG)⊗max C

∗
u (SG) for every scenario G.

• SG⊗min SG = SG⊗c SG for every scenario G.

and also

Theorem: The following are equivalent:

• CEP has an affirmative answer

• Qqa(G,G) = Qqc(G,G) for every dilating scenario G.

• C∗(G)⊗min C∗(G) = C∗(G)⊗max C
∗(G) for every dilating scenario

G.

• T G⊗min T G = T G⊗c T G for every dilating scenario G.
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What we know on SG and T G

• For any scenario G, C∗(G) = C∗
e (T G).

• For any scenario G, C∗
u (SG) can be identified as the right C*-algebra of a

ternary ring of operators (TRO) arising from the hypergraph G.

• Let G = (V ,E ) with |E | = n, define

LG =
{
(λ1x)x∈e1 ⊕ · · · ⊕ (λnx)x∈en :

∑
x∈ei

λix =
∑
x∈ej

λjx

and λix = λjx for all x ∈ ei ∩ ej , i , j ∈ [n]
}
,

then for uniform hypegraphs G, we can identify SdG = LG.
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A few questions

• Other C∗-covers for SG and T G?

For dilating scenarios G and H we can show that Q̃q(G,H) = Qq(G,H) and

Q̃qa(G,H) = Qqa(G,H).

• Does it hold that Q̃qc(G,H) = Qqc(G,H) for dilating scenarios?

• Is it true that T G⊗c T H ⊆ C∗(G)⊗max C
∗(H)?

• When G is not uniform what is the SdG?

• Is it true that CEP is equivalent the equality Qqa(G,G) = Qqc(G,G) for all
contextuality scenarios G?
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Thank You!
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