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Α’: Strong Morita equivalence
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Ternary rings of operators, Hestenes 1961

Let H,K be Hilbert spaces and M be a subspace of B(H,K). We call M
a ternary ring of operators (TRO’s) if X, Y,Z ∈ M ⇒ XY∗Z ∈ M. In this

case the spaces [M∗M], [MM∗] are selfadjoint algebras.

Examples:

(i) If A ⊆ B(H) a C∗-algebra and P,Q ∈ A projections then PAQ is a

TRO.

(ii) If H,K are Hilbert spaces then B(H,K) is TRO.

(iii) If X ⊆ B(H,K) a subspace then M = [XC∗(X ∗X )] is a TRO. Here

C∗(X ∗X ) is the C∗ algebra generated by the set X ∗X .
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Rieffel, 1974

The C∗-algebras A and B are called strongly Morita equivalent (SME) if

there exist faithful ∗−homomorphisms

α : A → B(H), β : B → B(K)

and a TRO M ⊆ B(H,K) such that

α(A) = [M∗M]
∥·∥
, β(B) = [MM∗]

∥·∥
.

We write A ∼SME B. For example the algebras C,Mn,K, where K is the

algebra of compact operators are SME.

If A is a C∗-algebra, we say that the pair (H, π), where π : A → B(H) is

a ∗-homomorphism is an object of the category AMod. If

(Hi, πi), i = 1, 2 are objects the space of morphisms is;

HomA(H1,H2) = {T ∈ B(H1,H2) : Tπ1(A) = π2(A)T, ∀ ∈ A}.
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We write A ∼R B in case there exists a functor of equivalence

F : AMod → BMod

satisfying

F(T∗) = F(T)∗, ∀ ∈ HomA(H1,H2), ∀,H1,H2 ∈ AMod.

If A,B are C∗-algebras then

A ∼SME⇒ A ∼R B.

The converse does not hold always.

Example: A ∼R B ̸⇒ A ∼SME B. If A = C([0, 1]) and B = C(T ), where
T is the circle, then A ∼R B. But they are not SME because the

commutative C∗-algebras are SME iff they are isomorphic. This is not true

in this case because [0, 1] and T are not homeomorphic.
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Brown, Green, Rieffel, 1977

The operator algebras A,B are called strongly stably isomorphic if the

algebras A⊗min K,B ⊗min K are ∗-isomorphic. Here K is the space of

compact operators acting on l2,
If A,B are SME C∗-algebras which possess countable approximate units

then they are strongly stably isomorphic. There exist C∗-algebras which are

SME but not strongly stably isomorphic.

Let A be a II1 factor, H be a non-separable Hilbert space and

B = A⊗̄B(H). If C is the C∗-subalgebra of B generated by the finite

projections of B then A ∼SME C but A and C are not strongly stably

isomorphic.
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Operator algebras

An operator space A for which the space Mn(A) is Banach algebra for all

n ∈ N is called operator algebra. The C∗-algebras are operator algebras.

If A is an operator algebra there exists a Hilbert space H and a completely

isometric homomorphism π : A → B(H).
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Blecher, Muhly, Paulsen,2000

The operator algebras A and B are called strongly Morita equivalent if

there exist completely isometric homomorphisms

α : A → B(H), β : B → B(K)

and operator bimodules U ⊆ B(H,K), V ⊆ B(K,H) such that

α(A) = [VU ]∥·∥, β(B) = [UV ]∥·∥

and there exist contractve rows

V1t ∈ Rnt(V), U2
s ∈ Rms(U)

and columns

U1
t ∈ Cnt(U), V2s ∈ Cms(V)

such that (V1t U1
t )t is approximate unit for α(A) and (U2

s V2s )s is
approximate unit for β(B). In this case we write A ∼BMP B.
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If A is an operator algebra the objects of the category AOMOD are

operator spaces U for which there exist completely contractive maps

A× U → U .

If U1,U2 ∈ AOMOD the corresponding space of morphisms is

CBA(U1,U2) = {T : U1 → U2,T is completely bounded A−module map}.

A functor

F : AOMOD → BOMOD

is called completely contractive if the maps

F : CBA(U1,U2) → CBA(F(U1), F(U2))

are completely contractive for every U1,U2 ∈ AOMOD
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Blecher, Muhly, Paulsen

If A ∼BMP B then the categories AOMOD, BOMOD are equivalent

through a cc functor.

Blecher, 2001, If the categories AOMOD, BOMOD are equivalent through

a cc functor then A ∼BMP B.
If A,B are C∗-algebras then

A ∼SME B ⇐⇒ A ∼BMP B.

A ∼BMP B iff there exists a A− B operator bimodule V and a B −A
operator bimodule U such that

A = V ⊗h
B U , B = U ⊗h

A V.

Here V ⊗h
B U is the balanced Haagerup tensor product of V and U which

linearizes completely bounded bilinear maps f : V × U → B(H) satisfying

f(TB, S) = f(T,BS), ∀ T ∈ V , B ∈ B, S ∈ U .
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E, 2016

Let A,B be operator algebras acting on the Hilbert spaces H,K. We call

them TRO equivalent if there exists a TRO M ⊆ B(H,K) such that

A = [M∗BM]
∥·∥
, B = [MAM∗]

∥·∥
.

In this case we write A ∼TRO B.
Let A,B be operator algebras. We call them ∆ equivalent if there exists

completely isometric homomorphisms

α : A → α(A), β : B → β(B)

such that

α(A) ∼TRO β(B).

In this case we write A ∼∆ B.
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Let A,B be operator algebras.

(iii) In case A,B possess countable approximate units then A ∼∆ B iff

A,B are strongly stably isomorphic.

(ii) If A,B are C∗-algebras then

A ∼∆ B ⇔ A ∼BMP B ⇔ A ∼SME B.
(i) A ∼∆ B then A ∼BMP B. The converse does not hold: Example, of

Blecher, Muhly, Paulsen of unital operator algebras which are

BMP−equivalent but not stably isomorphic.

A totally ordered set of projections N is called a nest in the Hibert space

H if it is w∗-closed and contains the zero and the identity, operators. The

algebra

Alg(N ) = {T :∈ B(H),T(N(H)) ⊆ N(H), ∀N ∈ N}
is called a nest algebra.

Let A,B be separably acting nest algebras. The following are equivalent:

(i) A ∩K ∼∆ B ∩ K
(ii) A ∩K and B ∩ K are strongly stably isomorphic.

(iii) The algebras A⊗̄B(l2) and B⊗̄B(l2) are completely isometrically and

w∗-homeomorphically isomorphic.
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E, Kakariadis, 2017

Let X ⊆ B(H1,H2),Y ⊆ B(K1,K2) be operator spaces. We call them

TRO equivalent if there exist TRO’s

Mi ⊆ B(Hi,Ki), i = 1, 2

such that

Y = [M∗
2XM1]

∥·∥
, X = [M2YM∗

1]
∥·∥
.

We write X ∼TRO Y. In case Mi are σ− TRO’s we write X ∼σTRO Y.
Let X ,Y be operator spaces. We call them strongly ∆-equivalent if there

exist completely isometric maps ϕ : X → ϕ(X ), ψ : Y → ψ(Y) such that

ϕ(X ) ∼TRO ψ(Y). We write X ∼∆ Y. In case the TRO’s are σ− TRO’s

we write X ∼σ∆ Y.
(i) X ∼σ∆ Y iff X ,Y are strongly stably isomorphic.

(ii) If X ∼∆ Y then the TRO envelopes of X ,Y are ∆-equivalent.

Therefore if X ,Y are unital operator spaces then their C∗-envelopes are
strongly stably isomorphic.
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B’: Weak Morita equivalence
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Rieffel, 1974

The W∗-algebras, (von Neumann algebras), A,B are called weakly Morita

equivalent if there exist faithful w∗ continuous homomorphisms

α : A → α(A), β : B → β(B) and a TRO M such that

α(A) = [M∗M]
w∗
, β(B) = [MM∗]

w∗
.

We write A ∼WME B.
The algebras C,Mn,B(H) are weakly Morita equivalent for every Hilbert

space H.
If the von Neumann algebras A,B are ∗-isomorphic then their commutants

A′,B′ are weakly Morita equivalent.

If A is a W∗-algebra, we say that the pair (H, π), where π : A → B(H) is

a w∗ continuous ∗-homomorphism is an object of the category AWMod.
If (Hi, πi), i = 1, 2 are objects the space of morphisms is;

HomA(H1,H2) = {T ∈ B(H1,H2) : Tπ1(A) = π2(A)T, ∀ ∈ A}.
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Let A,B be W∗ algebras. The following are equivalent:

(i) A ∼WME B
(ii) The categories AWMod, BWMod are equivalent.

(iii) There exist faithful w∗-continuous homomorphisms

α : A → α(A), β : B → β(B)

such that the commutants of α(A) and β(B) to be ∗−isomorphic.

(iv) There exists a Hilbert space H such that the algebras

A⊗̄B(H),B⊗̄B(H) are ∗−isomorphic.
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Dual operator algebras

An operator algebra which is dual operator space is called dual operator

algebra. The C∗-algebras which are dual Banach spaces are dual operator

algebras and they are called W∗-algebras.

If A is a dual operator algebra there exists a Hilbert space H and a

completely isometric w∗-continuous homomorphism π : A → B(H).
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Blecher, Kashyap, 2007

The dual operator algebras A and B are called weakly Morita equivalent if

there exist completely isometric w∗-continuous homomorphisms
α : A → B(H), β : B → B(K) and operator bimodules

U ⊆ B(H,K), V ⊆ B(K,H) such that α(A) = [VU ]w
∗
, β(B) = [UV ]w

∗

and there exist contractive rows V1t ∈ Rnt(V), U2
s ∈ Rms(U) and columns

U1
t ∈ Cnt(U), V2s ∈ Cms(V) such that (V1t U1

t )t is approximate in

w∗-topology unit for α(A) and (U2
s V2s )s is approximate unit for β(B). In

this case we write A ∼BK B.
A ∼BK B iff there exists a A−B dual operator bimodule V and a B −A
dual operator bimodule U such that

A = V ⊗σh
B U , B = U ⊗σh

A V.

Here V ⊗σh
B U is the w∗-balanced Haagerup tensor product of V and U

which linearizes w∗-continuous completely bounded bilinear maps

f : V × U → B(H) satisfying

f(TB, S) = f(T,BS), ∀ T ∈ V , B ∈ B, S ∈ U .
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If A is a dual operator algebra the objects of the category AWOMOD are

dual operator spaces U for which there exist completely contractive

w∗-continuous maps
A× U → U .

If U1,U2 ∈ AWOMOD the corresponding space of morphisms is

CBwA(U1,U2) =

{T : U1 → U2,T is w∗ continuous completely bounded A− module map}.

A functor

F : AWOMOD → BWOMOD

is called completely contractive if the maps

F : CBwA(U1,U2) → CBwA(F(U1), F(U2))

is completely contractive for every U1,U2 ∈ AWOMOD.
A ∼BK B iff the categories AWOMOD → BWOMOD are equivalent

through a cc functor.
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E, 2008

The dual operator spaces X ,Y are called weakly ∆ equivalent if there exist

w∗-continuous complete isometries ϕ : X → ϕ(X ), ψ : Y → ψ(Y) and

there exists TRO’s Mi, i = 1, 2 such that

ψ(Y) = [M∗
2ϕ(X )M1]

w∗
, ϕ(X ) = [M2ψ(Y)M∗

1]
w∗
. In this case we

write X ∼W∆ Y.
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If D is a dual operator algebra then the category DM has objects pairs

(H, π), where π : D → B(H) is a normal representation of D. If
(Hi, πi) ∈ DM, i = 1, 2 the corresponding space of homomorphisms is

HomD(H1,H2) = {T ∈ B(H1,H2),Tπ1(A) = π2(A)T, ∀ A ∈ D}.

Notice that if ∆(D) = D ∩D∗ then for

(Hi, πi) ∈ DM ⇒ (Hi, πi) ∈ ∆(D)M, i = 1, 2 and

Hom∆(D)(H1,H2) = {T ∈ B(H1,H2),Tπ1(A) = π2(A)T, ∀ A ∈ ∆(D)} ⊇

⊇ HomD(H1,H2).

Let A,B be dual operator algebras. Then a functor

F : ∆(A)M → ∆(B)M is called ∆-restricting if

F(HomA(H1,H2)) ⊆ HomB(F(H1),F(H2))), ∀ Hi ∈ AM.

Theorem: A ∼W∆ B iff there exists a ∆-restricting functor of equivalence

F : ∆(A)M → ∆(B)M.
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E, Paulsen, Todorov, Kakariadis

E, Paulsen, 2008 Let A,B be dual operator algebras. Then A ∼W∆ B.
iff there exists a Hilbert space H such that the algebras A⊗̄B(H),B⊗̄B(H)
are completely isometric and w∗ homeomorphic as algebras.

E, Paulsen, Todorov, 2010 Let X ,Y be dual operator spaces. Then

X ∼W∆ Y iff there exists a Hilbert space H such that the spaces

X⊗̄B(H),Y⊗̄B(H) are completely isometric and w∗ homeomorphic.

E, Kakariadis, 2017 If X ,Y are ∆−equivalent operator spaces then

X ∗∗ ∼W∆ Y∗∗.
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E, 2010

The nest algebras A = Alg(N1),B = Alg(N2) are weakly Morita

equivalent in the sense of Blecher Kashyap iff the nests N1,N2 are

isomorphic.

The nest algebras A = Alg(N1),B = Alg(N2) are weakly ∆− equivalent

iff there exists a ∗−isomorphism θ : (N1)
′′ → (N2)

′′ such that

θ(N1) = N2.

There exist isomorphic nests N1,N2 for which the von Neumann algebra

(N1)
′′ is atomic but the algebra (N2)

′′ has continuous part. Therefore

these algebras cant be ∗−isomorphic. Thus the nest algebras

A = Alg(N1),B = Alg(N2) are Morita equivalent in the sense of Blecher

Kashyap but not weakly ∆− equivalent and so not stably isomorphic.
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Davidson, book

We consider the counting meaure µ on Q and the nest

N1 = {Qt, Pt : t ∈ R}

acting on the Hilbert space L2(R, µ), where

Qt = {f : f|(t,+∞) = 0}, Pt = {f : f|[t,+∞) = 0}.

The atoms of this nest are the characteristic functions χ{t}, t ∈ Q which

generate the von Neumann algebra (N1)
′′.

If t ∈ R,Nt is the projection on L2((−∞, t], λ), λ is the Lebesgue

measure. We consider the nest N2 = {Qt ⊕ Nt, Pt ⊕ Nt, t ∈ R} acting on

the Hilbert space L2(R, µ)⊕ L2(R, λ). The map

N2 → N1,Qt ⊕ Nt → Qt, Pt ⊕ Nt → Pt is a nest isomorphism. Thus,

A = Alg(N1),B = Alg(N2) are Morita equivalent in the sense of Blecher

Kashyap. But the algebras (N1)
′′, (N2)

′′ cant be isomorphic, since

(N2)
′′ ∼ l∞(N)⊕ L∞(R) has continuous part. Thus

A = Alg(N1),B = Alg(N2) cant be ∆-equivalent.
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E, 2018

Let A,B be dual operator algebras. We say that B TRO-embeds into A if

there exists a TRO M such that

B = [M∗AM]
w∗
, MBM∗ ⊆ A.

We write in this case B ⊂TRO A. If β is a completely isometric normal

representation of B and α of A such that β(B) ⊂TRO α(A) we say that

the algebra B,∆−embeds into A and we write B ⊂∆ A.
Let L be a lattice of projections acting on the Hilbert space H. Then

Alg(L) = {T ∈ B(H) : T(L(H)) ⊆ L(H)}

is a dual operator algebra.

If A ⊆ B(H) a unital algebra,

Lat(A) = {L ∈ B(H) : L = projection, T(L(H)) ⊆ L(H) ∀ T ∈ A}.

If L is lattice satisfying

Lat(Alg(L)) = L,
we call L reflexive lattice.
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Let A,B be dual operator algebras. The following are equivalent

(i) B ⊂∆ A.
(ii) There exist reflexive lattices Li, i = 1, 2 and w∗continuous completely
isometric onto homomorphisms

α : A → Alg(L1), β : B → Alg(L2)

and an onto w∗continuous homomorphism

θ : ∆(A)′ = L′′
1 → ∆(B)′ = L′′

2

such that

θ(L1) = L2.

(iii) There exists a Hilbert space H and a projection Q ∈ A such that the

algebras

B⊗̄B(H), QAQ⊗̄B(H)

are completely isometrically and w∗- homeomorphically isomorphic.
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In case A,B are von Neumann algebras we have that

(i) B ⊂∆ A iff there exists a w∗-continuous onto homomorphism from

A⊗̄B(H) onto B⊗̄B(H).
(ii) B ⊂∆ A iff there exists a w∗-closed ideal I ⊆ A such that

B ∼W∆ A/I
(iii) If B ⊂∆ A and A ⊂∆ B then B ∼W∆ A
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