Fock covariance for product systems and the Hao–Ng isomorphism problem

Ioannis Apollon Paraskevas Joint work with Evgenios T.A. Kakariadis

National & Kapodistrian University of Athens Department of Mathematics

Functional Analysis and Operator Algebras Seminar Athens, July, 2024

Table of contents

1 Coactions, gradings and Fell bundles

2 Product systems and their representations

- 3 Fock covariant representations
- 4 The reduced Hao–Ng isomorphism problem

Coactions

- In this talk G will always denote a discrete group and \otimes the spatial tensor product of C*-algebras.
- Set $\{u_g\}_{g \in G}$ to be the generators of the universal group C*-algebra $\mathrm{C}^*_{\mathrm{max}}(G)$ and let $\lambda \colon \mathrm{C}^*_{\mathrm{max}}(G) \to \mathrm{C}^*_{\lambda}(G)$ be the left regular representation.
- \blacksquare By the universal property of $\mathrm{C}^*_{\mathrm{max}}(G)$ there exists a faithful *-homomorphism

$$\Delta \colon \mathrm{C}^*_{\mathrm{max}}(G) \to \mathrm{C}^*_{\mathrm{max}}(G) \otimes \mathrm{C}^*_{\mathrm{max}}(G); u_g \mapsto u_g \otimes u_g.$$

By Fell's absorption principle there exists a faithful *-homomorphism

$$\Delta_{\lambda} \colon \mathrm{C}^*_{\lambda}(G) \to \mathrm{C}^*_{\lambda}(G) \otimes \mathrm{C}^*_{\lambda}(G); \lambda_g \mapsto \lambda_g \otimes \lambda_g,$$

with the additional property that $\Delta_{\lambda} \circ \lambda = (\lambda \otimes \lambda) \circ \Delta$.

Coactions

• We say that a C*-algebra $\mathcal C$ admits a coaction δ by G if there is a faithful *-homomorphism $\delta\colon \mathcal C\to \mathcal C\otimes \mathrm{C}^*_{\mathrm{max}}(G)$ such that the coaction identity

$$(\delta \otimes \mathrm{id}) \circ \delta = (\mathrm{id} \otimes \Delta) \circ \delta$$

is satisfied.

 Since G is discrete, the coaction identity is equivalent to the induced spectral spaces

$$\mathcal{C}_g := \{c \in \mathcal{C} \mid \delta(c) = c \otimes u_g\} \text{ for all } g \in G,$$

together spanning a dense subset of C.

Coactions

- If, in addition, the map $(id \otimes \lambda) \circ \delta$ is faithful, then δ will be called *normal*.
- It follows that δ is normal if and only if $\mathcal C$ admits a *reduced* coaction by G, i.e., there is a faithful *-homomorphism $\delta_{\lambda} \colon \mathcal C \to \mathcal C \otimes \mathrm{C}^*_{\lambda}(G)$ such that

$$(\delta_{\lambda} \otimes \mathrm{id}) \circ \delta_{\lambda} = (\mathrm{id} \otimes \Delta_{\lambda}) \circ \delta_{\lambda}.$$

■ If $\delta \colon \mathcal{C} \to \mathcal{C} \otimes \mathrm{C}^*_{\mathrm{max}}(G)$ is a coaction, then

$$E:=(\operatorname{id}\otimes E_\lambda)\circ(\operatorname{id}\otimes\lambda)\circ\delta$$

defines a conditional expectation on \mathcal{C}_e , where E_{λ} is the faithful conditional expectation of $\mathrm{C}^*_{\lambda}(G)$.

 \bullet δ is normal if and only if E is faithful.

Gradings

- A collection $\{\mathcal{C}_g\}_{g \in G}$ of closed subspaces of a C*-algebra \mathcal{C} is called a C*-grading of \mathcal{C} if:

 - $\mathbf{3} \quad \mathcal{C}_g^* \subseteq \mathcal{C}_{g^{-1}}.$
- If there exists a conditional expectation $E\colon \mathcal{C}\to\mathcal{C}_e$, then the subspaces are linearly independent and in this case the C*-grading is called *topological*.
- By definition, a coaction on a C*-algebra induces a topological C*-grading.
- Gradings form the prototypical example of Fell bundles.

- A Fell bundle over a group G is a collection $\mathcal{B} = \{\mathcal{B}_g\}_{g \in G}$ of Banach spaces, each of which is called a *fiber*, such that:
 - In there are bilinear and associative *multiplication maps* from $\mathcal{B}_q \times \mathcal{B}_{q'}$ to $\mathcal{B}_{qq'}$ such that $\|b_q b_{q'}\| \le \|b_q\| \|b_{q'}\|$;
 - 2 there are conjugate linear involution maps from \mathcal{B}_g to $\mathcal{B}_{g^{-1}}$ such that $(b_q^*)^* = b_q$ and $\|b_q^*\| = \|b_q\|$;
 - $(b_g b_{g'})^* = (b_{g'})^* b_g^*;$
 - $||b_g^*b_g|| = ||b_g||^2;$
 - $b_g^* b_g^* \ge 0 \text{ in } \mathcal{B}_e.$
- Note that conditions (i)—(iv) imply that \mathcal{B}_e is in fact a C*-algebra and thus condition (v) makes sense.

- A representation Ψ of a Fell bundle $\mathcal B$ over G is a family $\{\Psi_g\}_{g\in G}$ of linear maps each one defined on $\mathcal B_q$ such that:
 - $\begin{array}{ll} \blacksquare & \Psi_g(b_g)\Psi_h(b_h)=\Psi_{gh}(b_gb_h) \text{ for all } g,h\in G; \text{ and} \\ \blacksquare & \Psi_g(b_g)^*=\Psi_{g^{-1}}(b_g^*) \text{ for all } g\in G. \end{array}$
- It follows that Ψ_e is a *-homomorphism and thus contractive.
- A standard C*-trick shows that every Ψ_a is contractive.
- We say that a representation Ψ is *injective* if Ψ_e is injective; in this case every Ψ_q is isometric.
- A representation Ψ is called *equivariant* if there exists a *-homomorphism

$$\delta \colon \mathrm{C}^*(\Psi) \to \mathrm{C}^*(\Psi) \otimes \mathrm{C}^*_{\mathrm{max}}(G); \Psi_g(b_g) \mapsto \Psi_g(b_g) \otimes u_g.$$

• It follows that δ is a coaction of $C^*(\Psi)$ by G.

8/37

■ There exists a universal C*-algebra $C^*_{max}(\mathcal{B})$ with respect to the representations of \mathcal{B} and a canonical embedding

$$\hat{j} \colon \mathcal{B} \to \mathrm{C}^*_{\mathrm{max}}(\mathcal{B}).$$

- By universality, we have that $\{\hat{j}_g\}_{g \in G}$ is an equivariant repn of \mathcal{B} , and in particular the map $\hat{j}_g \colon \mathcal{B}_g \to [\mathrm{C}^*_{\max}(\mathcal{B})]_g$ is an isometric isomorphism.
- Hence, any Fell bundle arises as a C*-grading from some
 C*-algebra (conversely, any C*-grading defines a Fell bundle).
- The left regular representation is defined by considering the left creation operators

$$(\lambda_g(b_g)\xi)_{g'}=b_g\xi_{g^{-1}g'} \text{ for all } b_g\in\mathcal{B},$$

on the Hilbert $\mathcal{B}_e\text{-module}$ direct sum $\ell^2(\mathcal{B}):=\sum_{g\in G}^{\oplus}\mathcal{B}_g.$

• We call $C^*_{\lambda}(\mathcal{B}) := C^*(\lambda)$ the reduced C^* -algebra of \mathcal{B} .

Theorem (Exel 1997)

If Ψ is an equivariant representation of $\mathcal B$ that is injective on $\mathcal B_e$, then there are equivariant canonical *-epimorphisms

$$\mathrm{C}^*_{\mathrm{max}}(\mathcal{B}) \longrightarrow \mathrm{C}^*(\Psi) \longrightarrow \mathrm{C}^*_{\lambda}(\mathcal{B}).$$

If, in addition, the coaction on $C^*(\Psi)$ is normal, then $C^*(\Psi) \simeq C^*_{\lambda}(\mathcal{B})$.

We will be interested in graded quotients of C*-algebras of Fell bundles. If $\delta\colon \mathcal{C}\to\mathcal{C}\otimes\mathrm{C}^*_{\mathrm{max}}(G)$ is a coaction on a C*-algebra \mathcal{C} , then we say that an ideal $\mathcal{I}\lhd\mathcal{C}$ is *induced* if

$$\mathcal{I} = \langle \mathcal{I} \cap [\mathcal{C}]_e \rangle.$$

In that case, the canonical quotient map $q_{\mathcal{I}}$ is equivariant, i.e., the coaction δ descends to a coaction on \mathcal{C}/\mathcal{I} .

- \blacksquare P will always denote a unital subsemigroup of G.
- We say that a family $X = \{X_p\}_{p \in P}$ of closed operator spaces in a common $\mathcal{B}(H)$ is a *product system over* P if the following conditions are satisfied:
 - $lacksquare A := X_e$ is a C*-algebra;
 - $2 X_p \cdot X_q \subseteq X_{pq} \text{ for all } p,q \in P;$
 - $3 \quad X_p^* \cdot X_{pq} \subseteq X_q \text{ for all } p,q \in P.$
- It follows that each X_p has a natural Hilbert A-module structure.

Example

Every Fell bundle over G defines a product system over G.

Example

Every C*-correspondence defines a product system over \mathbb{Z}_+ . Indeed, recall that a (concrete) C*-correspondence (X,A) is a pair where $X\subseteq B(H)$ is an operator space and $A\subseteq \mathcal{B}(H)$ is a C*-algebra such that

$$A \cdot X \subseteq X$$
 and $X \cdot A \subseteq X$ and $X^* \cdot X \subseteq A$.

By setting

$$X_0 := A$$
 and $X_n := X^n$ for every $n \in \mathbb{N}$,

we obtain a product system over \mathbb{Z}_+ .

- \blacksquare A representation $t=\{t_p\}_{p\in P}$ of X consists of a family of linear maps t_p of X_p such that:
 - 1 t_e is a *-representation of $A := X_e$;
 - $2 \ t_p(\xi_p)t_q(\xi_q) = t_{pq}(\xi_p\xi_q) \ \text{for all} \ \xi_p \in X_p \ \text{and} \ \xi_q \in X_q;$
- We say that t is *injective* if t_e is injective.
- We use the notation

$$t^{(p)} \colon \mathcal{K}(X_p) := [X_p X_p^*] \to \mathbf{C}^*(t); \xi_p \eta_p^* \mapsto t_p(\xi_p) t_p(\eta_p)^*,$$

for the induced *-representation of the compact operators $\mathcal{K}(X_p)$.

■ t will be called *equivariant* if there exists a *-homomorphism

$$\delta \colon \mathbf{C}^*(t) \to \mathbf{C}^*(t) \otimes \mathbf{C}^*_{\max}(G); t_p(\xi_p) \mapsto t_p(\xi_p) \otimes u_p.$$

• We say that t admits a normal coaction by G if δ is normal.

■ Consider the Fock space $\mathcal{F}X := \sum_{r \in P}^{\oplus} X_r$ as a Hilbert A-module and the Fock representation $\lambda \colon X \to \mathcal{L}(\mathcal{F}X)$ where

$$\lambda_p(\xi_p)\eta_r = \xi_p \cdot \eta_r \quad \text{and} \quad \lambda_p(\xi_p)^*\eta_r = \begin{cases} \xi_p^* \cdot \eta_r & \text{if } r = p \cdot s, \\ 0 & \text{otherwise.} \end{cases}$$

- Universality implies that \hat{t} is equivariant.
- $lue{\lambda}$ admits a reduced coaction and hence a normal coaction.

Indeed, consider the unitary

$$U\colon \mathcal{F}X\otimes \ell^2(G)\to \mathcal{F}X\otimes \ell^2(G); U(\xi_r\otimes \delta_q)=\xi_r\otimes \delta_{rq}.$$

Then, we have that

$$U\cdot (\lambda_p(\xi_p)\otimes I) = (\lambda_p(\xi_p)\otimes \lambda_p)\cdot U \text{ for all } p\in P,$$

and therefore the map

$$\mathcal{T}_{\lambda}(X) \stackrel{\cong}{\longrightarrow} \mathrm{C}^*(\lambda_p(\xi_p) \otimes I \mid p \in P) \stackrel{\mathrm{ad}_U}{\longrightarrow} \mathrm{C}^*(\lambda_p(\xi_p) \otimes \lambda_p \mid p \in P)$$

defines a reduced coaction on $\mathcal{T}_{\lambda}(X)$.

■ For a set $Z \subseteq P$ and $p \in P$ we write

$$pZ:=\{px\mid x\in Z\}\quad\text{and}\quad p^{-1}Z:=\{y\in P\mid py\in Z\}.$$

- We set $\mathcal{J}:=\{q_n^{-1}p_n\dots q_1^{-1}p_1P\mid n\in\mathbb{N}; p_i,q_i\in P\}\cup\{\emptyset\}$. It follows that \mathcal{J} is \cap -closed.
- We will write \mathbf{x}, \mathbf{y} etc. for the elements in \mathcal{J} and we will refer to them as *constructible ideals*.
- For $\mathbf{x} \in \mathcal{J}$ we define $\mathbf{K}_{\mathbf{x},t_{\mathbf{x}}}$ to be the closed linear span of the spaces

$$\left(t_{p_1}(X_{p_1})^*\right)^\varepsilon t_{q_1}(X_{q_1})\cdots t_{p_n}(X_{p_n})^*t_{q_n}(X_{q_n})^{\varepsilon'}$$

for any $p_1,q_1,\dots,p_n,q_n\in P$ and $\varepsilon,\varepsilon'\in\{0,1\}$ that satisfy

$$p_1^{-\varepsilon}q_1\cdots p_n^{-1}q_n^{\varepsilon'}=e \text{ and } q_n^{-\varepsilon'}p_n\dots q_1^{-1}p_1^\varepsilon P=\mathbf{x}.$$

- Let $\lambda_* : \mathcal{T}(X) \to \mathcal{T}_{\lambda}(X)$ be the induced *-epimorphism.
- Consider the induced ideal

$$\mathcal{J}_{\operatorname{c}}^{\operatorname{F}}:=\langle\ker\lambda_*\cap[\mathcal{T}(X)]_e\rangle\lhd\mathcal{T}(X),$$

and write $\mathcal{T}_{\mathrm{c}}^{\mathrm{F}}(X)$ for the quotient of $\mathcal{T}(X)$ by $\mathcal{J}_{\mathrm{c}}^{\mathrm{F}}$.

- \mathcal{J}_{c}^{F} is an induced ideal of $\mathcal{T}(X)$ and hence $\mathcal{T}_{c}^{F}(X)$ inherits a coaction by G.
- The *Fock covariant* bundle of *X* is the Fell bundle

$$\mathcal{FC}X := \left\{ [\mathcal{T}_{\operatorname{c}}^{\operatorname{F}}(X)]_g \right\}_{g \in G},$$

defined by the coaction by G on $\mathcal{T}_{c}^{F}(X)$.

■ By universality and Fell bundle theory we obtain

$$\mathcal{T}_{\mathrm{c}}^{\mathrm{F}}(X) \simeq \mathrm{C}^*_{\mathrm{max}}(\mathcal{F}\mathcal{C}X).$$

• Since $\mathcal{T}_{\lambda}(X)$ admits a normal coaction we obtain

$$\mathcal{T}_{\lambda}(X) \simeq \mathrm{C}^*_{\lambda}(\mathcal{F}\mathcal{C}X).$$

■ A representation of X that promotes to a representation of $\mathcal{FC}X$ will be called a *Fock covariant representation of* X.

Theorem (Kakariadis-P. 2024)

An equivariant injective representation t of X is Fock covariant if and only if t satisfies the following conditions:

- **I** $\mathbf{K}_{\emptyset,t_*} = (0).$
- **2** For any \cap -closed $\mathcal{F} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\} \subseteq \mathcal{J}$ such that $\bigcup_{i=1}^n \mathbf{x}_i \neq \emptyset$, and any $b_{\mathbf{x}_i} \in \mathbf{K}_{\mathbf{x}_i, \hat{t}_*}$, with $i = 1, \dots, n$, the following property holds:

if
$$\sum\limits_{i:r\in\mathbf{x}_i}t_*(b_{\mathbf{x}_i})t_r(X_r)=(0)$$
 for all $r\in\bigcup_{i=1}^n\mathbf{x}_i$, then
$$\sum\limits_{i=1}^nt_*(b_{\mathbf{x}_i})=0.$$

- P is said to be a *right LCM semigroup* if $\mathcal{J} = \{pP \mid p \in P\} \bigcup \{\emptyset\}$.
- A p.s. X over a right LCM semigroup P is compactly aligned if

$$\lambda^{(p)}(\mathcal{K}(X_p))\lambda^{(q)}(\mathcal{K}(X_q))\subseteq \lambda^{(w)}(\mathcal{K}(X_w)) \text{ when } pP\cap qP=wP.$$

• We say that a representation t of X is $Nica\ covariant$ if

$$t^{(p)}(\mathcal{K}(X_p))t^{(q)}(\mathcal{K}(X_q))\subseteq \begin{cases} t^{(w)}\left(\mathcal{K}(X_w)\right)) & \text{if } pP\cap qP=wP,\\ (0) & \text{if } pP\cap qP=\emptyset. \end{cases}$$

Using our characterisation we give an alternative proof of:

Proposition (Dor-On-Kakariadis-Katsoulis-Laca-Li 2020)

A representation of X is Fock covariant if and only if it is Nica covariant.

- $lackbox{ }P\subseteq G$ is a unital subsemigroup and $X_p=\mathbb{C}$ for each $p\in P$.
- \bullet $\alpha=(p_1,q_1,\ldots,p_n,q_n)$ is called neutral if $p_1^{-1}q_1\cdots p_n^{-1}q_n=e.$
- For a unital (i.e. $t_e(1) = 1$) representation t of X set $w_p := t_p(1)$.
- For a neutral word $\alpha = (p_1, q_1, \dots, p_n, q_n)$ we write

$$K(\alpha) := q_n^{-1} p_n \dots q_1^{-1} p_1 P \text{ and } \dot{w}_\alpha := w_{p_1}^* w_{q_1} \cdots w_{p_n}^* w_{q_n}.$$

Using our characterisation we give an alternative proof of:

Proposition (Laca-Sehnem 2021)

A unital (equivariant) representation t is Fock covariant if and only if

- $w_e = 1$,
- $\dot{w}_{\alpha} = 0$ if $K(\alpha) = \emptyset$ for a neutral word α , and
- $\dot{w}_{\alpha} = \dot{w}_{\beta}$ if $K(\alpha) = K(\beta)$ for neutral words α and β ,
- $\prod_{\beta \in F} (\dot{w}_{\alpha} \dot{w}_{\beta}) = 0 \text{ whenever } \alpha \text{ is a neutral word, } F \text{ is a finite set of neutral words and } K(\alpha) = \bigcup_{\beta \in F} K(\beta).$

Definition

Let \mathcal{F} be a class of *-representations of a C*-algebra A. We say that a Φ in \mathcal{F} is \mathcal{F} -boundary and denote it by $\partial \mathcal{F}$ if:

Example

Let A, B be C*-algebras and

$$\mathcal{F}^{\odot} := \{ \Psi \colon A \otimes_{\max} B \to \mathcal{B}(H) \mid \Psi \text{ is injective on } A \odot B \}.$$

Then the *-homomorphism $A \otimes_{\max} B \to A \otimes B$ is \mathcal{F}^{\odot} -boundary.

Example

Let δ be a coaction on a C*-algebra A and let $\mathcal{A}:=\{\mathcal{A}_g\}_{g\in G}$ to be the induced Fell bundle. Let

$$\mathcal{F}_{\mathcal{A}^\delta} := \{ \text{ equivariant repn's of } \mathrm{C}^*_{\max}(\mathcal{A}) \text{ that are injective on } \mathcal{A}_e \}.$$

Then the canonical *-epimorphism $\mathrm{C}^*_{\mathrm{max}}(\mathcal{A}) \to \mathrm{C}^*_{\lambda}(\mathcal{A})$ is $\mathcal{F}_{\mathcal{A}^{\delta}}$ -bdy.

Theorem (Hamana 1978, Dritschel-McCullough 2000)

Let $\mathfrak A$ be an operator algebra and let

$$\mathcal{F}_{\mathfrak{A}}:=\{\Psi\colon \mathrm{C}^*_{\mathrm{max}}(\mathfrak{A})\to \mathcal{B}(K)\mid \Psi|_{\mathfrak{A}} \text{ is c.is.}\}.$$

Then $\mathcal{F}_{\mathfrak{A}}$ admits an $\mathcal{F}_{\mathfrak{A}}$ -boundary repn, called the C*-envelope of \mathfrak{A} , denoted by $\mathrm{C}^*_{\mathrm{env}}(\mathfrak{A})$.

Let X be a product system over P. A key question in the theory of product systems was whether there exists a boundary representation for

 $\mathcal{F}_{\mathrm{c},X}^{\mathrm{F},G} := \{ \text{ equivariant Fock covariant injective representations of } X \ \},$

and what is its relation to the C*-envelope of $\mathcal{T}_{\lambda}(X)^+$?

Affirmative answers

- For $P = \mathbb{Z}_+$ Katsoulis-Kribs (2004) showed that
- $\mathrm{C}^*_{\mathrm{env}}(\mathcal{T}_\lambda(X)^+) \simeq \mathcal{O}_X \text{ and Katsura (2007) showed that } \mathcal{O}_X \simeq \partial \mathcal{F}^{\mathrm{F},G}_{\mathrm{c},X}.$
- For (G,P) quasi-lattice and with assumptions on X Carlsen–Larsen–Sims–Vittadello (2011) showed that $\partial \mathcal{F}^{\mathrm{F},G}_{\mathrm{c},X} \simeq \mathcal{N}\mathcal{O}^r_X$.
- For $P=\mathbb{Z}^d_+$ and X arising from dynamics Davidson–Fuller–Kakariadis (2014) showed that $\partial \mathcal{F}^{\mathrm{F},G}_{\mathrm{c},X} \simeq \mathrm{C}^*_{\mathrm{env}}(\mathcal{T}_\lambda(X)^+).$
- For (G,P) an abelian lattice Dor-On–Katsoulis (2018) showed that $\partial \mathcal{F}^{\mathrm{F},G}_{\mathrm{c},X} \simeq \mathrm{C}^*_{\mathrm{env}}(\mathcal{T}_\lambda(X)^+)$.

Affirmative answers

- For P a right LCM Dor-On–Kakariadis–Katsoulis–Laca–Li (2020) showed that $\partial \mathcal{F}^{\mathrm{F},G}_{\mathrm{c},X} \simeq \mathrm{C}^*_{\mathrm{env}}(\mathcal{T}_{\lambda}(X)^+,G,\delta)$.
- For any P and X trivial Kakariadis–Katsoulis–Laca–Li (2021) showed that $\partial \mathcal{F}^{\mathrm{F},G}_{\mathrm{c},X} \simeq \mathrm{C}^*_{\mathrm{env}}(\mathcal{T}_\lambda(X)^+,G,\delta).$
- For general product systems Sehnem (2021) showed that $\partial \mathcal{F}^{\mathrm{F},G}_{\mathrm{c},X} \simeq \mathrm{C}^*_{\mathrm{env}}(\mathcal{T}_\lambda(X)^+).$

Strong covariant relations (Sehnem 2018)

(1) Sehnem (2018) constructed a universal C*-algebra $A \times_X P$ of a product system X with the following property:

 $X \hookrightarrow A \times_X P$ and if $t \colon A \times_X P \to \mathcal{B}(H)$ is a *-representation with $t|_A$ injective then t is injective on the fixed point algebra of $A \times_X P$.

(2) $A \times_X P$ admits a coaction by G and a Fell bundle, say $\mathcal{SC}_G X$. We then write

$$\mathrm{C}^*_{\mathrm{max}}(\mathcal{SC}_GX) = A \times_X P \text{ and } \mathrm{C}^*_{\lambda}(\mathcal{SC}_GX) = A \times_{X,\lambda} P.$$

Theorem (Sehnem 2021)

$$\partial \mathcal{F}_{\mathrm{c},X}^{\mathrm{F},G} \simeq \mathrm{C}_{\mathrm{env}}^*(\mathcal{T}_{\lambda}(X)^+) \simeq A \times_{X,\lambda} P. \tag{1}$$

- Let \mathfrak{H} be a locally compact group.
- \blacksquare A generalised gauge action is an action of $\mathfrak H$ on $\mathcal T_\lambda(X)$ such that

$$\alpha_{\mathfrak{h}}(\lambda_p(X_p)) = \lambda_p(X_p) \text{ for all } p \in P \text{ and } \mathfrak{h} \in \mathfrak{H}.$$

- $\blacksquare \text{ There is an induced product system } X \rtimes_{\alpha,\lambda} \mathfrak{H} := \{X_p \rtimes_{\alpha,\lambda} \mathfrak{H}\}_{p \in P}.$
- In the case where \mathfrak{H} is discrete we have

$$X_p \rtimes_{\alpha,\lambda} \mathfrak{H} = \overline{\operatorname{span}} \{ \overline{\pi}(\lambda_p(\xi_p)) U_{\mathfrak{h}} \mid \xi_p \in X_p, \mathfrak{h} \in \mathfrak{H} \},$$

where $\overline{\pi} \times U$ is a faithful representation of $\mathcal{T}_{\lambda}(X) \rtimes_{\alpha,\lambda} \mathfrak{H}$.

The reduced Hao-Ng isomorphism problem

Is α compatible with the reduced strong covariant functor, i.e., is there a canonical *-isomorphism

$$A \times_{X \rtimes_{\alpha} \lambda \mathfrak{H}, \lambda} P \stackrel{?}{\simeq} (A \times_{X, \lambda} P) \rtimes_{\alpha, \lambda} \mathfrak{H}.$$

Affirmative answers

- For $P = \mathbb{Z}_+$ and \mathfrak{H} locally compact amenable (Hao-Ng 2008).
- For $P = \mathbb{Z}_+$ and \mathfrak{H} discrete (Katsoulis 2017).
- For (G,P) is an abelian lattice and $\mathfrak H$ discrete (Dor-On–Katsoulis 2018).
- For (G,P) is an abelian lattice and $\mathfrak H$ locally compact abelian (Katsoulis 2020).
- For *P* a right LCM and \mathfrak{H} discrete (Dor-On–Kakariadis–Katsoulis–Laca–Li 2020).

Definition (Katsoulis-Ramsey 2019)

Let $\mathfrak A$ be an operator algebra and α an action of a locally compact group $\mathfrak H$ on $\mathfrak A$ by completely isometric isomorphisms. The *(nonselfadjoint)* crossed product $\mathfrak A \rtimes_{\alpha,\lambda} \mathfrak H$ is the norm-closed sublagebra generated by the copies of $\mathfrak A$ and $\mathfrak H$ inside $C^*_{\text{env}}(\mathfrak A) \rtimes_{\dot{\alpha},\lambda} \mathfrak H$ where $\dot{\alpha}$ is the induced action on $C^*_{\text{env}}(\mathfrak A)$.

The next proposition, in the case $\mathfrak A$ admits a contractive approximate identity, was proved by Katsoulis (2017) when $\mathfrak H$ is discrete and by Katsoulis-Ramsey (2019) when $\mathfrak H$ is abelian. By using maximal representations we can remove the c.a.i. hypothesis, when $\mathfrak H$ is discrete.

Proposition

Let $\mathfrak H$ be a discrete group acting by α on an operator algebra $\mathfrak A$. Then

$$C^*_{\text{env}}(\mathfrak{A} \rtimes_{\alpha,\lambda} \mathfrak{H}) \simeq C^*_{\text{env}}(\mathfrak{A}) \rtimes_{\dot{\alpha},\lambda} \mathfrak{H}.$$
 (2)

Let \mathfrak{H} be discrete. Using our characterisation of equivariant Fock covariant injective representations we obtain the following:

Proposition

The identity representation $\iota \colon X \rtimes_{\alpha,\lambda} \mathfrak{H} \to \mathcal{T}_{\lambda}(X) \rtimes_{\alpha,\lambda} \mathfrak{H}$ is a Fock covariant injective representation that admits a normal coaction.

We also need the following corollary of a result of Sehnem (2021):

Proposition

If t is a Fock covariant injective representation of X that admits a normal coaction, then the map

$$\mathcal{T}_{\lambda}(X)^{+} \to \overline{\operatorname{alg}}\{t_{p}(X_{p}) \mid p \in P\}; \lambda_{p}(\xi_{p}) \mapsto t_{p}(\xi_{p}),$$

is a (well defined) completely isometric isomorphism.

Combining the preceding propositions we obtain

$$\mathcal{T}_{\lambda}(X \rtimes_{\alpha,\lambda} \mathfrak{H})^{+} \simeq \mathcal{T}_{\lambda}(X)^{+} \rtimes_{\alpha,\lambda} \mathfrak{H},$$

then (2) implies that

$$\mathrm{C}^*_{\mathrm{env}}(\mathcal{T}_\lambda(X \rtimes_{\alpha,\lambda} \mathfrak{H})^+) \simeq \mathrm{C}^*_{\mathrm{env}}(\mathcal{T}_\lambda(X)^+) \rtimes_{\alpha,\lambda} \mathfrak{H},$$

and (1) finishes the proof.

Hence the reduced Hao–Ng isomorphism problem for generalised gauge actions by discrete groups has an affirmative answer:

Theorem (Kakariadis-P. 2024)

There exists a canonical *-isomorphism

$$(A \rtimes_{\alpha,\lambda} \mathfrak{H}) \times_{X \rtimes_{\alpha,\lambda} \mathfrak{H},\lambda} P \simeq (A \times_{X,\lambda} P) \rtimes_{\dot{\alpha},\lambda} \mathfrak{H}.$$

Bibliography I

- T.M. Carlsen, N.S. Larsen, A. Sims and S.T. Vittadello, *Co-universal algebras associated to product systems, and gauge-invariant uniqueness theorems*, Proc. Lond. Math. Soc. (3) **103** (2011), no. 4, 563–600.
- R. Davidson, A.H. Fuller and E.T.A. Kakariadis, Semicrossed products of operator algebras by semigroups, Mem. Amer. Math. Soc. 247 (2017).
- A. Dor-On, E.T.A. Kakariadis, E.G. Katsoulis, M. Laca and X. Li, *C*-envelopes of operator algebras with a coaction and co-universal C*-algebras for product systems*, Adv. Math. **400** (2022), paper no. 108286, 40 pp.
- A. Dor-On and E.G. Katsoulis, *Tensor algebras of product systems and their C*-envelopes*, J. Funct. Anal. **278** (2020), no. 7, 108416, 32 pp.

Bibliography II

- M.A. Dritschel and S.A. McCullough, *Boundary representations* for families of representations of operator algebras and spaces, J. Operator Theory **53** (2005), no. 1, 159–167.
- R. Exel, *Amenability of Fell bundles*, J. Reine Angew. Math. **492** (1997), 41–73.
- M. Hamana, *Injective envelopes of operator systems*, Publ. Res. Inst. Math. Sci. **15** (1979), no. 3, 773–785.
- G. Hao and C.-K. Ng, Crossed products of C*-correspondences by amenable group actions, J. Math. Anal. Appl. **345** (2008), no. 2, 702–707.
- E.T.A. Kakariadis, E.G. Katsoulis, M. Laca and X. Li, *Boundary quotient C*-algebras of semigroups*, J. Lond. Math. Soc. **105** (2022), no. 4, 2136–2166.

Bibliography III

- E.G. Katsoulis, *Product systems of C*-correspondences and Takai duality*, Israel J. Math. **240** (2020), no. 1, 223–251.
- E.G. Katsoulis and C. Ramsey, *Crossed products of operator algebras*, Mem. Amer. Math. Soc. **258** (2019), no. 1240, vii+85 pp.
- E. Katsoulis, *C*-envelopes and the Hao-Ng isomorphism for discrete groups*, IMRN **18** (2017), no. 18, 5751–5768.
- E.G. Katsoulis and D.W. Kribs, *Tensor algebras of C*-correspondences and their C*-envelopes*, J. Funct. Anal. **234** (2006), no. 1, 226–233.
- T. Katsura, *Ideal structure of C*-algebras associated with C*-correspondences*, Pac. J. Math. **230** (2007), no. 2, 107–145.
- M. Laca, C. Sehnem, *Toeplitz algebras of semigroups*, Trans. Amer. Math. Soc. **375** (2022), no. 10, 7443–7507.

Bibliography IV

C.F. Sehnem, *C*-envelopes of tensor algebras*, J. Funct. Anal. **283** (2022), no. 12, 109707.

Thank you!