C* -algebras the spectrum Gelfand theory for commutative C*-algebras positivity-states the Gelfand - Naimark Theorem group algebras

M. Anoussis

November 2023

æ

C* -algebras the spectrum Gelfand theory for commutative C*-algebras positivity-states the Gelfand - Naimark Theorem group algebras

- 2 the spectrum
- 3 Gelfand theory for commutative C*-algebras
- 4 positivity-states
- 5 the Gelfand Naimark Theorem

6 group algebras

Image: A mathematical states and the states and

< ≣ >

The space of all bounded linear operators $T : \mathcal{H} \to \mathcal{H}$ on a Hilbert space \mathcal{H} is denoted $\mathcal{B}(\mathcal{H})$. It is complete under the norm

 $\|T\| = \sup\{\|Tx\| : x \in \mathbf{b}_1(\mathcal{H})\}\$

($b_1(\mathcal{X})$ the closed unit ball of a normed space \mathcal{X}) and is an algebra under composition. Moreover, because it acts on a Hilbert space, it has additional structure: an *involution* $T \to T^*$ defined via

$$\langle T^*x,y
angle=\langle x,Ty
angle$$
 for all $x,y\in\mathcal{H}.$

This satisfies

$$\|T^*T\| = \|T\|^2$$
 the C^* property.

G*-algebras the spectrum Gelfand theory for commutative C*-algebras positivity-states the Gelfand - Nalimark Theorem group olgebras

These fundamental properties of $\mathcal{B}(\mathcal{H})$ (norm-completeness, involution, C^* property) motivate the definition of an abstract C*-algebra.

< ∃ >

C*-algebras the spectrum Gelfand theory for commutative C*-algebras positivity-states the Gelfand - Naimark Theorem group algebras

Definition

(a) A Banach algebra ${\cal A}$ is a complex algebra equipped with a complete norm which is sub-multiplicative:

 $\|ab\| \le \|a\| \|b\|$ for all $a, b \in \mathcal{A}$.

(b) An involution is a map on \mathcal{A} such that $(a + \lambda b)^* = a^* + \overline{\lambda} b^*$, $(ab)^* = b^* a^*$, $a^{**} = a$ for all $a, b \in \mathcal{A}$ and $\lambda \in \mathbb{C}$.

(c) A C^* -algebra ${\cal A}$ is a Banach algebra equipped with an involution $a o a^*$ satisfying the C^* -condition

$$\|a^*a\| = \|a\|^2$$
 for all $a \in \mathcal{A}$.

< ≣ >

C*-digebras the spectrum Gelfand theory for commutative C--algebras positivity-states the Gelfand - Naimark Theorem group algebras

C*-algebras

If \mathcal{A} has a unit 1 then necessarily $\mathbf{1}^* = \mathbf{1}$ and $\|\mathbf{1}\| = 1$.

Definition

If \mathcal{A} is a C*-algebra let $\mathcal{A}^{\sim} =: \mathcal{A} \oplus \mathbb{C}$ (a, z)(b, w) =: (ab + wa + zb, zw) $(a, z)^* =: (a^*, \overline{z})$ $\|(a, z)\| =: \sup\{\|ab + zb\| : b \in b_1 \mathcal{A}\}$ Thus the norm of \mathcal{A}^{\sim} is defined by identifying each $(a, z) \in \mathcal{A}^{\sim}$ with

the operator $L_{(a,z)} : A \to A : b \to ab + zb$ acting on the Banach space A.

G*-algebras the spectrum Gelfand theory for commutative C*-algebras positivity-states the Gelfand - Nalimark Theorem group olgebras

 \mathbb{C}^2 with norm

$$||(x,y)|| = |x| + |y|$$

and pointwise multiplication is not a C^* -algebra.

a = (1, 1)

$$\|a^*a\| = \|(1,1)(1,1)\| = \|(1,1)\| = 2$$

 $\|a\|^2 = \|(1,1)\|^2 = 4$

C*-clgebras the spectrum Gelfand theory for commutative C*-algebras positivity-states the Gelfand - Nalimark Theorem aroup algebras

A morphism $\phi: \mathcal{A} \to \mathcal{B}$ between C*-algebras is a linear map that preserves products and the involution.

C^{*}-algebras the spectrum Gelfand theory for commutative C^{*}-algebras positivity-states the Gelfand - Naimark Theorem group algebras

- \mathbb{C} , the set of complex numbers.
- C(K), the set of all continuous functions $f : K \to \mathbb{C}$, where K is a compact Hausdorff space. With pointwise operations, $f^*(t) = \overline{f(t)}$ and the sup norm, C(K) is an abelian, unital algebra.
- $C_0(X)$, where X is a locally compact Hausdorff space. This consists of all functions $f: X \to \mathbb{C}$ which are continuous and `vanish at infinity': given $\varepsilon > 0$ there is a compact $K_{f,\varepsilon} \subseteq X$ such that $|f(x)| < \varepsilon$ for all $x \notin K_{f,\varepsilon}$. With the same operations and norm as above, this is an abelian C*-algebra.

C*-digebras the spectrum Gelfand theory for commutative C--algebras positivity-states the Gelfand - Naimark Theorem group algebras

- $M_n(\mathbb{C})$, the set of all $n \times n$ matrices with complex entries. With matrix operations, $A^* = \text{conjugate transpose}$, and $||A|| = \sup\{||Ax||_2 : x \in \ell^2(n), ||x||_2 = 1\}$, this is a non-abelian, unital algebra.
- $\mathcal{B}(\mathcal{H})$ is a non-abelian, unital C*-algebra.
- $\mathcal{K}(\mathcal{H}) = \{A \in \mathcal{B}(\mathcal{H}) : \overline{A(b_1(\mathcal{H}))} \text{ compact in } \mathcal{H}\}$: the compact operators. This is a closed selfadjoint subalgebra of $\mathcal{B}(\mathcal{H})$, hence a C*-algebra.

・ロト ・ ア・ ・ ア・ ・ ア・ ア

C^{*}-algebras the spectrum Gelfand theory for commutative C^{*}-algebras positivity-states the Gelfand - Naimark Theorem group algebras

If X is an index set and \mathcal{A} is a C*-algebra, the Banach space $\ell^{\infty}(X, \mathcal{A})$ of all bounded functions $a : X \to \mathcal{A}$ (with norm

 $\|a\|_{\infty} = \sup\{\|a(x)\|_{\mathcal{A}} : x \in X\}$) becomes a C*-algebra with pointwise product and involution.

Its subspace $c_0(X, \mathcal{A})$ consisting of all $a : X \to \mathcal{A}$ such that $\lim_{x \to \infty} \|a(x)\|_{\mathcal{A}} = 0$ is a C*-algebra. (for each $\varepsilon > 0$ there is a finite subset $X_{\varepsilon} \subseteq X$ s.t. $x \notin X_{\varepsilon} \Rightarrow \|a(x)\|_{\mathcal{A}} < \varepsilon$).

C^{*}-algebras the spectrum Gelfand theory for commutative C^{*}-algebras positivity-states the Gelfand - Naimark Theorem group algebras

If \mathcal{A} is a C*-algebra and $n \in \mathbb{N}$, the space $M_n(\mathcal{A})$ of all matrices $[a_{ij}]$ with entries $a_{ij} \in \mathcal{A}$ becomes a *-algebra with product $[a_{ij}][b_{ij}] = [c_{ij}]$ where $c_{ij} = \sum_k a_{ik}b_{kj}$ and involution $[a_{ij}]^* = [d_{ij}]$ where $d_{ij} = a_{ji}^*$.

Define a norm on $M_n(\mathcal{A})$ satisfying the C*-condition.

C* -algebras the spectrum Gelfand theory for commutative C*-algebras positivity-states the Gelfand - Naimark Theorem group algebras C*-algebras

Suppose \mathcal{A} is $\mathcal{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} . Identify $M_n(\mathcal{B}(\mathcal{H}))$ with $\mathcal{B}(\mathcal{H}^n)$: Given a matrix $[a_{ij}]$ of bounded operators a_{ij} on \mathcal{H} , we define an operator \mathcal{A} on \mathcal{H}^n by

$$A\begin{bmatrix}\xi_1\\\vdots\\\xi_n\end{bmatrix} = \begin{bmatrix}\sum_j a_{1j}\xi_j\\\vdots\\\sum_j a_{nj}\xi_j\end{bmatrix}$$

Conversely any $A \in \mathcal{B}(\mathcal{H}^n)$ defines an $n \times n$ matrix of operators a_{ij} on \mathcal{H} by $\langle a_{ij}\xi, \eta \rangle_{\mathcal{H}} = \langle A\xi_j, \eta_i \rangle_{\mathcal{H}^n}$, where $\xi_j \in \mathcal{H}^n$ is the vector having ξ at the *j*-th entry and zeroes elsewhere (and η_i is defined analogously).

(日)

C*-algebras the spectrum Gelfand theory for commutative C'-algebras positivity-states the Gelfand - Naimark Theorem group algebras

Hence one defines the norm $||[a_{ij}]||$ of $[a_{ij}] \in M_n(\mathcal{B}(\mathcal{H}))$ to be the norm ||A|| of the corresponding operator on \mathcal{H}^n .

For
$$n = 2$$
:

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \xi \\ \eta \end{bmatrix} = \begin{bmatrix} A\xi + B\eta \\ C\xi + D\eta \end{bmatrix}$$

This applies also if \mathcal{A} is a C^* -subalgebra of $\mathcal{B}(\mathcal{H})$.

イロト イポト イヨト イヨト

C*-algebras the spectrum Gelfand theory for commutative C*-algebras positivity-states the Gelfand - Nailmark Theorem group algebras

the spectrum

Definition

 \mathcal{A} unital C*-algebra and $GL(\mathcal{A})$ the group of invertible elements of \mathcal{A} . The spectrum of an element $a \in \mathcal{A}$ is

$$\sigma(a) = \sigma_{\mathcal{A}}(a) = \{\lambda \in \mathbb{C} : \lambda \mathbf{1} - a \notin GL(\mathcal{A})\}.$$

If $\mathcal A$ is non-unital, the spectrum of $a\in\mathcal A$ is defined by

$$\sigma(\mathbf{a}) = \sigma_{\mathcal{A}^{\sim}}(\mathbf{a}).$$

In this case, necessarily $0 \in \sigma(a)$.

イロト イポト イヨト イヨト

C*-algebras **Ihe spectrum** Gelfand theory for commutative C*-algebras positivity-states the Gelfand - Naimark Theorem group algebras

the spectrum

Examples

- $\mathcal{A} = M_n(\mathbb{C})$ and $a \in \mathcal{A}$, then $\sigma(A)$ is the set of eigenvalues of A.
- $\mathcal{A} = C([0, 1])$ and $f \in \mathcal{A}$, then:

4

$$f - \lambda \mathbf{1}$$
 invertible $\Leftrightarrow f(x) - \lambda \mathbf{1}(x) \neq 0, \forall x$

$$\Rightarrow f(x) - \lambda 1 \neq 0, \forall x \Leftrightarrow \lambda \neq f(x), \forall x.$$

$$\Rightarrow \sigma(f) = \{f(x) : x \in [0, 1]\}$$

(日)

C*-algebras **the spectrum** Gelfand theory for commutative C*-algebras positivity-states the Gelfand - Naimark Theorem group algebras

the spectrum

Proposition

The spectrum $\sigma(a)$ is a compact nonempty subset of $\mathbb C.$

(i) $\sigma(a)$ is bounded: In a unital C*-algebra, if ||x|| < 1 then since $\sum ||x^n|| \le \sum ||x||^n$, the series $\sum x^n$ converges absolutely, and so converges to an element y such that (1 - x)y = y(1 - x) = 1 and $(1 - x) \in GL(\mathcal{A})$.

If $a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$ satisfies $|\lambda| > \|a\|$ then:

$$\|\frac{a}{\lambda}\| < 1 \Rightarrow 1 - \frac{a}{\lambda}$$
 is invertible

 $\Rightarrow \lambda \mathbf{1} - \mathbf{a} \text{ is invertible} \Rightarrow \lambda \notin \sigma(\mathbf{a})$

イロト イヨト イヨト イヨト

and the spectrum is bounded by ||a||.

C*-algebras the spectrum Gelfand theory for commutative C*-algebras positivity-states the Gelfand - Naimark Theorem group algebras

the spectrum

The spectral radius of $a \in \mathcal{A}$ is defined to be

$$\rho(a) = \sup\{|\lambda| : \lambda \in \sigma(a)\}.$$

It satisfies $ho(a) \leq \|a\|$, but equality may fail. In fact, it can be shown that

$$\rho(a) = \lim_n \|a^n\|^{1/n}$$

This is the Gelfand-Beurling formula.

イロト イポト イヨト イヨト

C*-algebras the spectrum Gelfand theory for commutative C*-algebras positivity-states the Gelfand - Nailmark Theorem group algebras

the spectrum

Lemma

If
$$\mathbf{a} = \mathbf{a}^*$$
 then $ho(\mathbf{a}) = \sup\{|\lambda| : \lambda \in \sigma(\mathbf{a})\} = \|\mathbf{a}\|.$

proof

 $\|a\|^2 = \|a^2\|$ and inductively $\|a\|^{2^n} = \|a^{2^n}\|$ for all *n*. Thus, by the Gelfand - Beurling formula, $\rho(a) = \lim \|a^{2^n}\|^{2^{-n}} = \|a\|$.

イロト イロト イヨト

★ 글 ▶ - 글

C*-algebras **the spectrum** Gelfand theory for commutative C*-algebras positivity-states the Gelfand - Nailmark Theorem group algebras

the spectrum

Theorem

A morphism $\pi : \mathcal{A} \to \mathcal{B}$ is contractive (i.e. $\|\pi(a)\| \le \|a\|$ for all $a \in \mathcal{A}$).

proof WLOG we may assume that \mathcal{A} and π are unital. If $x, y \in \mathcal{A}$ and xy = 1 then $\pi(x)\pi(y) = 1$.

 $a - \lambda \mathbf{1}$ invertible implies $\pi(a) - \lambda \mathbf{1}$ invertible and hence, $\sigma(\pi(a) \subseteq \sigma(a) \Rightarrow \rho(\pi(a)) \le \rho(a).$

$$\|\pi(a)\|^2 = \|\pi(a)^*\pi(a)\|$$

 $= \|\pi(a^*a)\| =
ho(\pi(a^*a)) \le
ho(a^*a) = \|a^*a\| = \|a\|^2$

(日)

C²⁺ -digebras the spectrum Gelfand theory for commutative C⁻-algebras positivity-states the Gelfand - Naimark Theorem group algebras

Gelfand theory for commutative C*-algebras

Theorem (Gelfand-Naimark 1)

Every commutative C*-algebra \mathcal{A} is isometrically *-isomorphic to $C_0(\hat{\mathcal{A}})$ where $\hat{\mathcal{A}}$ is the set of nonzero morphisms $\phi : \mathcal{A} \to \mathbb{C}$ which, equipped with the topology of pointwise convergence, is a locally compact Hausdorff space. For each $a \in \mathcal{A}$ the function $\hat{a} : \hat{\mathcal{A}} \to \mathbb{C} : \phi \to \phi(a)$ is in $C_0(\hat{\mathcal{A}})$. The Gelfand transform:

$$\mathcal{A}
ightarrow C_0(\hat{\mathcal{A}}): a
ightarrow \hat{a}$$

is an isometric *-isomorphism. The space $\hat{\mathcal{A}}$ is compact if and only if \mathcal{A} is unital.

A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

C^{*}-algebras the spectrum Gelfand theory for commutative C⁻algebras positivity-states the Gelfand - Naimark Theorem group algebras

commutative C*-algebras

 ${\cal A}$ unital.

• $\hat{\mathcal{A}}$ is the set of all nonzero multiplicative linear forms (characters) $\phi : \mathcal{A} \to \mathbb{C}$. $\phi(\mathbf{1})^2 = \phi(\mathbf{1}) \Rightarrow \phi(\mathbf{1}) = 1$ (for if $\phi(\mathbf{1}) = 0$ then $\phi(a) = \phi(a\mathbf{1}) = 0$ for all a, a contradiction). Each $\phi \in \hat{\mathcal{A}}$ satisfies $\|\phi\| \le 1$ and $\|\phi\| = \phi(\mathbf{1}) = 1$. The topology on $\hat{\mathcal{A}}$ is pointwise convergence: $\phi_i \to \phi$ iff $\phi_i(a) \to \phi(a)$ for all $a \in \mathcal{A}$.

イロト イポト イヨト イヨト 二日

C⁺ -algebras the spectrum Gelfand theory for commutative C⁻.algebras positivity-states the Gelfand - Naimark Theorem group algebras

commutative C*-algebras

• The inequality $|\phi(a)| \leq ||a||$ shows that $\hat{\mathcal{A}}$ is contained in the space $\prod_{a \in \mathcal{A}} \mathbb{D}_a$, the Cartesian product of the compact spaces $\mathbb{D}_a = \{z \in \mathbb{C} : |z| \leq ||a||\}$; and the product topology is the topology of pointwise convergence.

 $\hat{\mathcal{A}}$ is closed in this product: if $\phi_i \to \psi$ pointwise, then it is clear that ψ is linear and multiplicative, because each ϕ_i is linear and multiplicative, and $\psi \neq 0$ because $\psi(\mathbf{1}) = \lim_i \phi_i(\mathbf{1}) = 1$; thus $\psi \in \widehat{\mathcal{A}}$.

イロト イポト イヨト イヨト 一日

C^{*}-algebras the spectrum Gelland theory for commutative C⁻-algebras positivity-states the Gelfand - Nailmark Theorem group algebras

commutative C*-algebras

• The Gelfand map $\mathcal{G}: a
ightarrow \hat{a}.$ For each $a \in \mathcal{A}$ the function

$$\hat{a}:\hat{\mathcal{A}} o\mathbb{C}$$
 where $\hat{a}(\phi)=\phi(a),\ (\phi\in\hat{\mathcal{A}})$

is continuous by the definition of the topology on $\hat{\mathcal{A}}.$ This gives a well defined map

$$\mathcal{G}:\mathcal{A}
ightarrow {\sf C}(\hat{\mathcal{A}}):{\sf a}
ightarrow \hat{{\sf a}}$$
 .

If $a,b\in\mathcal{A},$ since each $\phi\in\hat{\mathcal{A}}$ is linear, multiplicative and *-preserving, we have

$$\widehat{(a+b)}(\phi) = \phi(a+b) = \phi(a) + \phi(b) = \hat{a}(\phi) + \hat{b}(\phi)$$

$$\widehat{(ab)}(\phi) = \phi(ab) = \phi(a)\phi(b) = \hat{a}(\phi)\hat{b}(\phi)$$

$$\widehat{(a^*)}(\phi) = \phi(a^*) = \overline{\phi(a)} = \overline{\hat{a}(\phi)}$$

C^{*} -algebras the spectrum Gelfand theory for commutative C^{*}-algebras positivity-states the Gelfand - Naimark Theorem group algebras

commutative C*-algebras

therefore

$$\mathcal{G}(a+b)=\mathcal{G}(a)+\mathcal{G}(b), \hspace{1em} \mathcal{G}(ab)=\mathcal{G}(a)\mathcal{G}(b) \hspace{1em} ext{and} \hspace{1em} \mathcal{G}(a^*)=(\mathcal{G}(a))^*$$

$$\hat{a}(\phi) = \phi(a) \Rightarrow \|\hat{a}(\phi)\| \le \|\phi\| \|a\| \Rightarrow \|\hat{a}\| \le \|a\|$$

It can be seen that ${\mathcal G}$ is isometric.

イロト イポト イヨト イヨト

C*-algebras the spectrum Gelfand theory for commutative C*-algebras positivity-states the Gelfand - Naimark Theorem group algebras

commutative C*-algebras

• The Gelfand map is onto $C(\hat{\mathcal{A}})$. Consider the range $\mathcal{G}(\mathcal{A})$: it is a *-subalgebra of $C(\hat{\mathcal{A}})$, because \mathcal{G} is a *-homomorphism. It contains the constants, because $\mathcal{G}(1) = 1$. It separates the points of $\hat{\mathcal{A}}$, because if $\phi, \psi \in \hat{\mathcal{A}}$ are different, they must differ at some $a \in \mathcal{A}$, so

$$\mathcal{G}(\mathsf{a})(\phi) = \phi(\mathsf{a}) \neq \psi(\mathsf{a}) = \mathcal{G}(\mathsf{a})(\psi).$$

By the Stone -- Weierstrass Theorem, $\mathcal{G}(\mathcal{A})$ must be dense in $C(\hat{\mathcal{A}})$. But it is closed, since \mathcal{A} is complete and \mathcal{G} is isometric. Hence $\mathcal{G}(\mathcal{A}) = C(\hat{\mathcal{A}})$.

C^{*} -djeebras the spectrum Gelfand theory for commutative C^{*}-algebras positivity-states the Gelfand - Nalmark Theorem group algebras

commutative C*-algebras

When \mathcal{A} is abelian but non-unital every $\phi \in \hat{\mathcal{A}}$ extends uniquely to a character $\phi^{\sim} \in \widehat{\mathcal{A}^{\sim}}$ by $\phi^{\sim}(\mathbf{1}) = 1$, and there is exactly one $\phi_{\infty} \in \widehat{\mathcal{A}^{\sim}}$ that vanishes on \mathcal{A} . Thus \mathcal{A} is *-isomorphic the algebra of those continuous functions on the `one-point compactification' $\hat{\mathcal{A}} \cup \{\phi_{\infty}\}$ of $\hat{\mathcal{A}}$ which vanish at ϕ_{∞} ; this algebra is in fact isomorphic to $C_0(\hat{\mathcal{A}})$.

C^{*} -algebras the spectrum Gelfand theory for commutative C^{*}-algebras positivity-states the Gelfand - Naimark Theorem group algebras

commutative C*-algebras

Example

 c_0 the space of sequences converging to 0.

$$\phi_n: c_0 \to \mathbb{C}, \phi_n((a_k)) = a_n$$
. Then $\hat{c_0} \simeq \mathbb{N}$.

 (ϕ_n) converges pointwise to the zero character, since

$$\lim_{n} \phi_n((a_k)) = \lim_{n} a_n = 0.$$

Thus, \hat{c}_0 is not compact.

C^a -algebras the spectrum Gelfand theory for commutative C^{*}-algebras positivity-states the Gelfand - Naimark Theorem group algebras

commutative C*-algebras

Example

Consider the unitization c of c_0 which is the space of convergent sequences.

Extend ϕ_n to c by the same formula $\phi_n^{\sim}((a_k)) = a_n$.

A new nonzero character appears: $\phi_{\infty}((a_k)) = \lim(a_k)$. This is the pointwise limit of the ϕ_n^{\sim} , since

$$\lim_{n} \phi_{n}^{\sim}((a_{k})) = \lim_{n} (a_{n}) = \phi_{\infty}((a_{n})).$$

 \hat{c} is the one point compactification of \mathbb{N} .

(日)

C^{*} -algebras the spectrum Gelfand theory for commutative C^{*}-algebras positivity-states the Gelfand - Naimark Theorem group algebras

commutative C*-algebras

remark

When \mathcal{A} is non-abelian there may be no characters. $M_2(\mathbb{C})$ has no ideals, hence the only character is the trivial one.

・ロト ・ ア・ ・ ア・ ・ ア・ ア

C^{*} -algebras the spectrum Gelfand theory for commutative C*-algebras **positivity-states** the Gelfand - Naimark Theorem group algebras

positivity

Definition

Let \mathcal{A} be a C^* -algebra. An element $a \in \mathcal{A}$ is selfadjoint if $a = a^*$.

Definition

An element $a \in A$ is positive (written $a \ge 0$) if $a = a^*$ and $\sigma(a) \subseteq \mathbb{R}_+$. We write $A_+ = \{a \in A : a \ge 0\}$.

Definition

If a, b are selfadjoint, we define $a \leq b$ by $b - a \in A_+$.

ヘロア 人間 アメヨア 人間 アー

C^{*} -algebras the spectrum Gelfand theory for commutative C^{*}-algebras **positivity-states** the Gelfand - Naimark Theorem group algebras

positivity

Theorem

Let \mathcal{A} be a C^* -algebra and a $\in \mathcal{A}$. The following are equivalent:

- a is positive
- $a = b^2$ for some positive $b \in \mathcal{A}$
- $a = b^*b$ for some $b \in \mathcal{A}$
- If $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$, $\langle ax, x \rangle \geq 0$, $\forall x \in \mathcal{H}$ (complex \mathcal{H})

イロト 人間 とくほ とくほ とう

C^{*} -algebras the spectrum Gelfand theory for commutative C*-algebras positivity-states the Gelfand - Naimark Theorem group algebras

Examples

- In C(X): $f \ge 0$ iff $f(t) \in \mathbb{R}_+$ for all $t \in X$ because $\sigma(f) = f(X)$.
- In $\mathcal{B}(\mathcal{H})$: $T \ge 0$ iff $\langle T\xi, \xi \rangle \ge 0$ for all $\xi \in \mathcal{H}$.

• In $M_2(\mathbb{C})$:

$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}^* \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & -4 \\ -4 & 5 \end{bmatrix}$$

イロト イポト イヨト イヨト

C^{*}-algebras the spectrum Gelfand theory for commutative C*-algebras **positivity-states** the Gelfand - Naimark Theorem group algebras

positivity

Proposition

Every positive element of a C*-algebra has a unique positive square root. In fact

 $a \in \mathcal{A}_+$ if and only if there exists $b \in \mathcal{A}_+$ such that $a = b^2$.

Proposition

For any C*-algebra the set \mathcal{A}_+ is a cone:

$$a, b \in \mathcal{A}_+, \ \lambda \ge 0 \implies \lambda a \in \mathcal{A}_+, a + b \in \mathcal{A}_+.$$

イロト イヨト イヨト イヨト

C^{*}-algebras the spectrum Gelfand theory for commutative C*-algebras **positivity-stales** the Gelfand - Naimark Theorem group algebras

positivity

remark

Any morphism $\pi:\mathcal{A}\to\mathcal{B}$ between C*-algebras preserves order:

$$a \ge 0 \quad \Rightarrow \quad \pi(a) \ge 0.$$

proof If $a=a^*$ and $\sigma(a)\subseteq [0,+\infty)$ then $\pi(a)^*=\pi(a^*)$ and

$$\sigma(\pi(a)) \subseteq \sigma(a) \cup \{0\} \subseteq [0, +\infty)$$

so $\pi(a) \geq 0$.

イロン イボン イヨン イヨン 三日

C* -algebras the spectrum Gelfand theory for commutative C*-algebras **positivity-states** the Gelfand - Naimark Theorem group algebras

states

Definition

Let \mathcal{A} be a C^* -algebra. A linear form on \mathcal{A} is positive if $f(a^*a) \geq 0$ $\forall a \in \mathcal{A}.$

Lemma

Let f be a positive linear form on \mathcal{A} . Then

•
$$f(b^*a) = \overline{f(a^*b)}$$

2
$$|f(b^*a)|^2 \le f(a^*a)f(b^*b)$$

$$\bullet f(a^*) = \overline{f(a)}$$

•
$$|f(a)|^2 \leq f(e)f(a^*a)$$

イロト イロト イヨト

< ≣ >

C^{*}-algebras the spectrum Gelfand theory for commutative C*-algebras **positivity-stales** the Gelfand - Naimark Theorem group algebras

states

Lemma

Let f be a positive linear form on A. Then f is bounded and ||f|| = f(e).

Definition

Let A be a C^* -algebra. A state is a linear form on A which is positive and satisfies f(e) = 1.

(日)

C^{*}-algebras the spectrum Gelfand theory for commutative C^{*}-algebras **positivity-states** the Gelfand - Naimark Theorem group algebras

states

The set of states S(A) of a C^* -algebra A is a w^* -compact set of the dual of A. It is convex, hence by the Krein-Milman theorem it has extreme points.

Definition

A state is pure if it is an extreme point of S(A).

イロト イロト イヨト

< ≣ >

C* -algebras the spectrum Gelfand theory for commutative C*-algebras positivity-states the Gelfand - Naimark Theorem group algebras

states

Examples

- C(X), for X compact. A state on C(X) is a probability measure. A pure state is a Dirac measure.
- $\mathcal{B}(\mathcal{H})$ for a Hilbert space \mathcal{H} . If $\xi \in \mathcal{H}$, $f(a) = \langle a\xi, \xi \rangle$ is a state. These are called vector states.

(日)

< 三→ -

C^{*}-algebras the spectrum Gelfand theory for commutative C^{*}-algebras **positivity-states** the Gelfand - Naimark Theorem group algebras

states

Examples

• Let $\mathcal D$ be the C^* -algebra of 2 \times 2 diagonal complex matrices. A linear form on $\mathcal D$ is of the form

$$f\left(\left(\begin{array}{cc}a&0\\0&d\end{array}\right)\right)=xa+yd$$

for some $x, y \in \mathbb{C}$. f is a state if and only if x + y = 1 and $xa + yd \ge 0$ when $a \ge 0$ and $d \ge 0$. That is $x \ge 0$ and $y \ge 0$. f is pure iff x = 0 or y = 0.

イロト イポト イヨト イヨト

C^{*}-algebras the spectrum Gelfand theory for commutative C⁻-algebras positivity-states the Gelfand - Naimark Theorem group algebras

the GNS construction

Examples

• For a C*-algebra \mathcal{A} , if $\pi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ is a representation and $\xi \in \mathcal{H}$ a unit vector, then $\phi(a) = \langle \pi(a)\xi, \xi \rangle$ is a state.

イロト 人間 とくほ とくほ とう

C* -algebras the spectrum Gelfand theory for commutative C*-algebras positivity-states the Gelfand - Naimark Theorem group algebras

the GNS construction

Conversely,

Theorem (Gelfand, Naimark, Segal)

For every state f on a C*-algebra \mathcal{A} there is a triple $(\pi_f, \mathcal{H}_f, \xi_f)$ where π_f is a representation of \mathcal{A} on \mathcal{H}_f and $\xi_f \in \mathcal{H}_f$ a cyclic ^a unit vector such that

$$f(a) = \langle \pi_{\mathsf{f}}(a) \xi_{\mathsf{f}}, \xi_{\mathsf{f}}
angle$$
 for all $a \in \mathcal{A}.$

The GNS triple $(\pi_f, \mathcal{H}_f, \xi_f)$ is uniquely determined by this relation up to unitary equivalence.

^{*a*}i.e. $\pi_f(\mathcal{A})\xi_f$ is dense in \mathcal{H}_f .

イロト イポト イヨト イヨト

C*-algebras the spectrum Gelfand theory for commutative C*-algebras positivity-states the Gelfand - Naimark Theorem group algebras

the universal representation

Theorem (Gelfand, Naimark)

For every C*-algebra A there exists a representation (π, \mathcal{H}) which is one to one (called faithful).

Idea of proof Enough to assume \mathcal{A} unital. Let $\mathcal{S}(\mathcal{A})$ be the set of all states. For each $f \in \mathcal{S}(\mathcal{A})$ consider (π_f, \mathcal{H}_f) and `add them up' to obtain (π, \mathcal{H}) . Why is this faithful? Because

Lemma

For each nonzero $a \in A$ there exists $f \in S(A)$ such that $f(a^*a) > 0$.

... and then

$$\|\pi(a)\xi_f\|^2 = \langle \pi(a^*a)\xi_f,\xi_f\rangle = \langle \pi_f(a^*a)\xi_f,\xi_f\rangle = f(a^*a) > 0$$

イロト イポト イヨト イヨト

so $\pi(a) \neq 0$.

C^{*}-algebras the spectrum Gelfand theory for commutative C^{*}-algebras positivity-states the Gelfand - Naimark Theorem aroup algebras

von Neumann algebras

Definition

A von Neumann algebra is a unital wot closed *-subalgebra of $\mathcal{B}(\mathcal{H})$.

Theorem

 ${\mathcal A}$ a unital *- subalgebra of ${\mathcal B}({\mathcal H}).$ The following are equivalent:

•
$$\mathcal{A} = \mathcal{A}''$$

 ${\it 2}$ ${\it A}$ is wot closed

(日)

the center

 $\mathcal A$ von Neumann algebra, p a central projection, $a \in \mathcal A$

$$egin{aligned} & a = (p+p^{\perp})a(p+p^{\perp}) = \ & pap + pap^{\perp} + p^{\perp}ap + p^{\perp}ap^{\perp} = pap + p^{\perp}ap^{\perp}. \ & \mathcal{A} = p\mathcal{A}p \oplus p^{\perp}\mathcal{A}p^{\perp}, \ & \mathcal{A} = \left\{ \left(egin{aligned} & x & 0 \ 0 & y \end{array}
ight) : x \in p\mathcal{A}p, y \in p^{\perp}\mathcal{A}p^{\perp}
ight\} \end{aligned}$$

Definition

A von Neumann algebra is a factor iff its center is $\mathbb{C}I$.

(日)

C^{*}-algebras the spectrum Gelfand theory for commutative C⁻-algebras positivity-states the Gelfand - Nalmark Theorem aroup algebras

vN(G)

 ${\cal G}$ locally compact topological group, λ the left regular representation of ${\cal G}$

Definition

The von Neumann algebra of G is the wot closure of the linear span of the $\lambda(x), x \in G$.

Examples

- vN(\mathbb{R}) is $L^{\infty}(\mathbb{R})$.
- vN(\mathbb{T}) is $\ell^{\infty}(\mathbb{Z})$.
- vN(\mathbb{Z}) is $L^{\infty}(\mathbb{T})$.

イロト イポト イヨト イヨト

C*-algebras the spectrum Gelfand theory for commutative C*-algebras positivity-states the Gelfand - Nailmark Theorem group algebras

G discrete, λ the left regular representation of G, $\{e_x : x \in G\}$ basis of $\ell^2(G)$.

$$\langle \lambda(\mathbf{x})\mathbf{e}_{\mathbf{y}},\mathbf{e}_{\mathbf{z}}\rangle = \langle \mathbf{e}_{\mathbf{x}\mathbf{y}},\mathbf{e}_{\mathbf{z}}\rangle = \delta_{\mathbf{x}\mathbf{y},\mathbf{z}}$$
1

$$\langle \lambda(\mathbf{x})\mathbf{e}_{\mathbf{y}},\mathbf{e}_{\mathbf{z}} \rangle$$

depends only on zy^{-1} .

Image: A math a math

-≣->

C^{*}-algebras the spectrum Gelfand theory for commutative C^{*}-algebras positivity-states the Gelfand - Naimark Theorem aroup algebras

<ロ> (四) (四) (三) (三) (三)

C* -algebras the spectrum Gelfand theory for commutative C*-algebras positivity-states the Gelfand - Naimark Theorem group algebras

$$a \in vN(G)$$
.

$$a e_e = \sum_{x \in G} c_x e_x = \sum_{x \in G} c_x \lambda(x) e_e$$

 $(c_x) \in \ell^2$.

◆□ ▶ ◆舂 ▶ ◆臣 ▶ ◆臣 ▶ ○

æ

C* -algebras the spectrum Gelfand theory for commutative C*-algebras positivity-states the Gelfand - Naimark Theorem aroup datebras

the center

a in the center of vN(G),

$$\lambda(\mathbf{y}) \mathbf{a} \mathbf{e}_{\mathbf{e}} = \lambda(\mathbf{y}) \left(\sum_{x \in G} c_x \mathbf{e}_x \right) = \left(\sum_{x \in G} c_x \mathbf{e}_{\mathbf{y}x} \right) = \left(\sum_{x \in G} c_{\mathbf{y}^{-1}x\mathbf{y}} \mathbf{e}_{x\mathbf{y}} \right)$$

and

$$a\lambda(y)e_e = ae_y = a
ho(y^{-1})e_e =
ho(y^{-1})ae_e =
ho(y^{-1})\left(\sum_{x\in G} c_x e_x\right) = \sum_{x\in G} c_x e_{xy}$$

Thus

$$c_x = c_{y^{-1}xy}$$

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ...

æ

for all $y \in G$.

C^{*}-algebras the spectrum Gelfand theory for commutative C^{*}-algebras positivity-states the Gelfand - Naimark Theorem aroup algebras

 $x\mapsto c_x$ is constant on conjugacy classes and since $(c_x)\in \ell^2$ it is 0 on infinite conjugacy classes.

Theorem

If G is icc (that is, every conjugacy class except the class of e is infinite) then $\nu N(G)$ factor.

Examples

•
$$F_2$$

• $S_{\infty} = \{\phi : \mathbb{N} \to \mathbb{N}, 1-1\} : \exists k_{\phi}, \phi(n) = n, \forall n \ge k_{\phi}\}$
• $\left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a \in \mathbb{Q}^*, b \in \mathbb{Q} \right\}$

A D > A B > A B

< ≣⇒

C^{*}-algebras the spectrum Gelfand theory for commutative C⁻-algebras positivity-states the Gelfand - Naimark Theorem group digebras

Theorem (Cuntz)

$$\begin{split} & K_0(C^*(F_n)) = \mathbb{Z}, \quad K_1(C^*(F_n)) = \mathbb{Z}^n. \\ & \text{Hence } C^*(F_m) \text{ is not isomorphic to } C^*(F_n) \end{split}$$

Question

Is $vN(F_2)$ isomorphic to $vN(F_3)$?

イロト イポト イヨト イヨト 一日

C* (G)

G locally compact topological group, $f,g\in L^1(G)$

$$f * g(x) = \int_{y \in G} f(xy^{-1})g(y)d\mu(y)$$

$$f^*(x) = \overline{f(x^{-1})}$$

 $L^{1}(G)$ with multiplication and involution as above is the group algebra of G.

イロン 不良 とくほど 不良 とう

C^{**}-algebras the spectrum Gelfand theory for commutative C^{*}-algebras positivity-states the Gelfand - Nalimark Theorem group olgebras

$C^*(G)$

Proposition

$$(\pi, \mathcal{H}) \text{ unitary representation of } G. \text{ Then}$$

$$f \mapsto \pi(f) = \int_G f(x)\pi(x)d\mu(x) \text{ satisfies}$$

$$\pi : L^1(G) \to \mathcal{B}(\mathcal{H}) \text{ is linear}$$

$$\pi(f * g) = \pi(f)\pi(g)$$

$$\pi(f^*) = \pi(f)^*$$

$$\pi(L^1(G))\mathcal{H} = \mathcal{H}$$

Conversely, if

If $\phi : L^1(G) \to \mathcal{B}(\mathcal{H})$ satisfies the above statements, then there exists a unitary representation π of G st $\phi(f) = \pi(f)$

ヘロン 人間 とくほ とくほ とう

C* -algebras the spectrum Gelfand theory for commutative C*-algebras positivity-states the Gelfand - Naimark Theorem group algebras

Definition

Define a norm on $L^1(G)$:

$$\|f\| = \sup_{\pi \in \hat{G}} \|\pi(f)\|.$$

 $C^*(G)$ is the completion of $L^1(G)$ wrt to this norm and is a C^* algebra. It is called the C^* -algebra of G.

There is a 1-1 correspondence between unitary representation of G and non-degenerate * representations of $C^*(G)$.

イロト イポト イヨト イヨト

C^{**}-algebras the spectrum Gelfand theory for commutative C^{*}-algebras positivity-states the Gelfand - Nalmark Theorem aroup algebras

$C^*(G)$

Proposition

G abelian $C^*(G)$ is $C_0(\hat{G})$.

Examples

- $C^*(\mathbb{R})$ is $C_0(\mathbb{R})$.
- $C^*(\mathbb{T})$ is $C_0(\mathbb{Z})$.
- $C^*(\mathbb{Z})$ is $C_0(\mathbb{T})$.
- G compact

 $C^*(G)$ is the c_0 sum $\sum_{\pi\in \hat{G}}\oplus \mathcal{B}(\mathcal{H}_\pi)$

ヘロト 人間 とくほ とくほとう

C* -algebras the spectrum Gelfand theory for commutative C*-algebras positivity-states the Gelfand - Naimark Theorem aroup algebras

primitive ideals

Definition

An ideal of a C^* -algebra \mathcal{A} is primitive if it is the kernel of an irreducible representation of \mathcal{A} . Prim (\mathcal{A}) is the set of the primitive ideals.

Consider the space $\operatorname{Prim}(\mathcal{A})$ with the hull-kernel topology: If

 $U \subseteq \mathsf{Prim}(\mathcal{A})$

then

$$\overline{U} = \{I \in \mathsf{Prim}(\mathcal{A}) : I \supseteq \cap_{J \in U} J\}.$$

The space $Prim(\mathcal{A})$ is T_0 . Denote $Prim(\mathcal{G}) = Prim(\mathcal{C}^*(\mathcal{G}))$. There is a map $\hat{\mathcal{G}} \to Prim(\mathcal{G}), \pi \mapsto \ker \pi$.

イロト 人間 とくほ とくほ とう

C^{*}-algebras the spectrum Gelfand theory for commutative C^{*}-algebras positivity-states the Gelfand - Nalimark Theorem aroup datebras

Definition

G is of type I if: whenever π is a representation of G such that $\pi(G)''$ is a factor, then $\pi(G)''$ is a factor of type I (that is π is a multiple of an irreducible representation).

Proposition

G second countable locally compact group. The following are equivalent

- G is type I.
- 2 The map $\hat{G} \rightarrow \text{Prim}(G)$ is 1-1.
- If (π, H) ∈ Ĝ, then π(C*(G)) contains the compact operators on H.

C^{*}-algebras the spectrum Gelfand theory for commutative C^{*}-algebras positivity-states the Gelfand - Nalimark Theorem aroup datebras

Proposition

- If G is abelian then it is of type I
- 2 If G is compact then it is of type I
- If G is discrete then it is of type I iff it contains an abelian normal subgroup of finite index.

Example

$$G = \{ < a, b >: a^2 = e, aba = b^{-1} \}$$

G as a set is $\{b^n, b^n a : n \in \mathbb{Z} \}$

イロン 不良 とくほど 不良 とう

C^{*}-algebras the spectrum Gelfand theory for commutative C⁻-algebras positivity-states the Gelfand - Naimark Theorem group algebras

Examples

• The Heisenberg group *H*: $\lambda \in \mathbb{R}^*, \pi_{\lambda} L^2(\mathbb{R})$:

$$(\pi_{\lambda}(x,y,z)f)(t) = e^{i\lambda z}e^{-i\lambda yt}f(t-x)$$

 $(s,t)\in \mathbb{R}^2$, define $\pi_{s,t}$ acting on \mathbb{C} :

$$\pi_{s,t}(x,y,z) = e^{i(sx+ty)}$$

$$\hat{H} = \{\pi_{\lambda} : \lambda \in \mathbb{R}^*\} \cup \{\pi_{s,t} : (s,t) \in \mathbb{R}^2\}$$

イロト 人間 とくほ とくほとう

C^{*} -algebras the spectrum Gelfand theory for commutative C^{*}-algebras positivity-states the Gelfand - Naimark Theorem group algebras

Examples

• Discrete Heisenberg H_d :

$$u = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, v = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, w = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 π irreducible then $\pi(w) = e^{2\pi i \theta}$ for some θ .

If θ irrational $\pi(u), \pi(v)$ generate the irrational rotation algebra A_{θ} .

If ρ_1 , ρ_2 are two inequivalent representations of A_{θ} , $\rho_1 \pi$, $\rho_2 \pi$ are inequivalent representations of $C^*(G)$ with the same kernel

$$\ker \rho_1 \pi = \ker \rho_2 \pi = \ker \pi.$$

イロト イロト イヨト

< ≣ >