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The space of all bounded linear operators T : H → H on a Hilbert

space H is denoted B(H). It is complete under the norm

∥T∥ = sup{∥Tx∥ : x ∈ b1(H)}

( b1(X ) the closed unit ball of a normed space X ) and is an algebra

under composition. Moreover, because it acts on a Hilbert space, it has

additional structure: an involution T → T∗ defined via

⟨T∗x, y⟩ = ⟨x, Ty⟩ for all x, y ∈ H.

This satisfies

∥T
∗
T∥ = ∥T∥2

the C
∗

property.
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These fundamental properties of B(H) (norm-completeness, involution,

C∗ property) motivate the definition of an abstract C*-algebra.
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Definition

(a) A Banach algebra A is a complex algebra equipped with a

complete norm which is sub-multiplicative:

∥ab∥ ≤ ∥a∥ ∥b∥ for all a, b ∈ A.

(b) An involution is a map on A such that

(a + λb)∗ = a∗ + λ̄b∗, (ab)∗ = b∗a∗, a∗∗ = a for all a, b ∈ A and

λ ∈ C.

(c) A C∗-algebra A is a Banach algebra equipped with an involution

a → a∗ satisfying the C∗-condition

∥a
∗
a∥ = ∥a∥2

for all a ∈ A.
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If A has a unit 1 then necessarily 1∗ = 1 and ∥1∥ = 1.

Definition

If A is a C*-algebra let

A∼ =: A⊕ C

(a, z)(b,w) =: (ab + wa + zb, zw)

(a, z)∗ =: (a∗, z̄)

∥(a, z)∥ =: sup{∥ab + zb∥ : b ∈ b1 A}

Thus the norm of A∼ is defined by identifying each (a, z) ∈ A∼ with

the operator L(a,z) : A → A : b → ab + zb acting on the Banach

space A.
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C2 with norm

∥(x, y)∥ = |x|+ |y|

and pointwise multiplication is not a C∗-algebra.

a = (1, 1)

∥a
∗
a∥ = ∥(1, 1)(1, 1)∥ = ∥(1, 1)∥ = 2

∥a∥2 = ∥(1, 1)∥2 = 4
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A morphism ϕ : A → B between C*-algebras is a linear map that

preserves products and the involution.
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C, the set of complex numbers.

C(K ), the set of all continuous functions f : K → C, where K is a

compact Hausdorff space. With pointwise operations, f∗(t) = f(t)
and the sup norm, C(K ) is an abelian, unital algebra.

C0(X), where X is a locally compact Hausdorff space. This consists

of all functions f : X → C which are continuous and ‘vanish at

infinity’: given ε > 0 there is a compact Kf ,ε ⊆ X such that

|f(x)| < ε for all x /∈ Kf ,ε. With the same operations and norm as

above, this is an abelian C*-algebra.

M. Anoussis C
∗-algebras



C
∗-algebras

the spectrum
Gelfand theory for commutative C*-algebras

positivity-states
the Gelfand - Naimark Theorem

group algebras

C∗-algebras

Mn(C), the set of all n × n matrices with complex entries. With

matrix operations, A∗ = conjugate transpose, and

∥A∥ = sup{∥Ax∥
2
: x ∈ ℓ2(n), ∥x∥

2
= 1}, this is a non-abelian,

unital algebra.

B(H) is a non-abelian, unital C*-algebra.

K(H) = {A ∈ B(H) : A(b1(H)) compact in H}: the compact

operators. This is a closed selfadjoint subalgebra of B(H), hence a

C*-algebra.
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If X is an index set and A is a C*-algebra, the Banach space ℓ∞(X ,A)
of all bounded functions a : X → A (with norm

∥a∥∞ = sup{∥a(x)∥A : x ∈ X}) becomes a C*-algebra with

pointwise product and involution.

Its subspace c0(X ,A) consisting of all a : X → A such that

lim
x→∞

∥a(x)∥A = 0 is a C*-algebra. (for each ε > 0 there is a finite

subset Xε ⊆ X s.t. x /∈ Xε ⇒ ∥a(x)∥A < ε).
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If A is a C*-algebra and n ∈ N, the space Mn(A) of all matrices [aij ]
with entries aij ∈ A becomes a *-algebra with product [aij ][bij ] = [cij ]
where cij =

∑
k

aikbkj and involution [aij ]
∗ = [dij ] where dij = a∗

ji .

Define a norm on Mn(A) satisfying the C*-condition.
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Suppose A is B(H) for some Hilbert space H. Identify Mn(B(H)) with

B(Hn): Given a matrix [aij ] of bounded operators aij on H, we define

an operator A on Hn by

A

ξ1

...

ξn

 =


∑

j
a1jξj

...∑
j
anjξj


Conversely any A ∈ B(Hn) defines an n × n matrix of operators aij on

H by ⟨aijξ, η⟩H = ⟨Aξj , ηi⟩Hn , where ξj ∈ Hn is the vector having ξ at

the j-th entry and zeroes elsewhere (and ηi is defined analogously).
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Hence one defines the norm ∥[aij ]∥ of [aij ] ∈ Mn(B(H)) to be the

norm ∥A∥ of the corresponding operator on Hn.

For n = 2: ï
A B

C D

ò ï
ξ
η

ò
=

ï
Aξ + Bη
Cξ + Dη

ò
This applies also if A is a C∗-subalgebra of B(H).
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Definition

A unital C*-algebra and GL(A) the group of invertible elements of A.

The spectrum of an element a ∈ A is

σ(a) = σA(a) = {λ ∈ C : λ1− a /∈ GL(A)}.

If A is non-unital, the spectrum of a ∈ A is defined by

σ(a) = σA∼(a).

In this case, necessarily 0 ∈ σ(a).
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Examples

A = Mn(C) and a ∈ A, then σ(A) is the set of eigenvalues of A.

A = C([0, 1]) and f ∈ A, then:

f − λ1 invertible ⇔ f(x)− λ1(x) ̸= 0,∀x

⇔ f(x)− λ1 ̸= 0, ∀x ⇔ λ ̸= f(x),∀x.

⇒ σ(f) = {f(x) : x ∈ [0, 1]}
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Proposition

The spectrum σ(a) is a compact nonempty subset of C.

(i) σ(a) is bounded: In a unital C*-algebra, if ∥x∥ < 1 then since∑
∥xn∥ ≤

∑
∥x∥n

, the series
∑

xn converges absolutely, and so

converges to an element y such that (1− x)y = y(1− x) = 1 and

(1− x) ∈ GL(A).

If a ∈ A and λ ∈ C satisfies |λ| > ∥a∥ then:

∥a

λ
∥ < 1 ⇒ 1− a

λ
is invertible

⇒ λ1− a is invertible ⇒ λ /∈ σ(a)

and the spectrum is bounded by ∥a∥.
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The spectral radius of a ∈ A is defined to be

ρ(a) = sup{|λ| : λ ∈ σ(a)}.

It satisfies ρ(a) ≤ ∥a∥, but equality may fail. In fact, it can be shown

that

ρ(a) = lim
n
∥a

n∥1/n

This is the Gelfand-Beurling formula.
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Lemma

If a = a∗ then ρ(a) = sup{|λ| : λ ∈ σ(a)} = ∥a∥.

proof
∥a∥2 = ∥a2∥ and inductively ∥a∥2n

= ∥a2n∥ for all n. Thus, by the

Gelfand - Beurling formula, ρ(a) = lim
∥∥a2n

∥∥2−n

= ∥a∥.
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Theorem

A morphism π : A → B is contractive (i.e. ∥π(a)∥ ≤ ∥a∥ for all

a ∈ A).

proof WLOG we may assume that A and π are unital.

If x, y ∈ A and xy = 1 then π(x)π(y) = 1.

a − λ1 invertible implies π(a)− λ1 invertible and hence,

σ(π(a) ⊆ σ(a) ⇒ ρ(π(a)) ≤ ρ(a).

∥π(a)∥2 = ∥π(a)∗π(a)∥

= ∥π(a∗
a)∥ = ρ(π(a∗

a)) ≤ ρ(a∗
a) = ∥a

∗
a∥ = ∥a∥2
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Gelfand theory for commutative C*-algebras

Theorem (Gelfand-Naimark 1)

Every commutative C*-algebra A is isometrically *-isomorphic to C0(Â)
where Â is the set of nonzero morphisms ϕ : A → C which, equipped

with the topology of pointwise convergence, is a locally compact

Hausdorff space. For each a ∈ A the function â : Â → C : ϕ→ ϕ(a)
is in C0(Â). The Gelfand transform:

A → C0(Â) : a → â

is an isometric *-isomorphism. The space Â is compact if and only if A is

unital.
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A unital.

Â is the set of all nonzero multiplicative linear forms ( characters)

ϕ : A → C.

ϕ(1)2 = ϕ(1) ⇒ ϕ(1) = 1 (for if ϕ(1) = 0 then

ϕ(a) = ϕ(a1) = 0 for all a, a contradiction).

Each ϕ ∈ Â satisfies ∥ϕ∥ ≤ 1 and ∥ϕ∥ = ϕ(1) = 1. The topology

on Â is pointwise convergence: ϕi → ϕ iff ϕi(a) → ϕ(a) for all

a ∈ A.
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The inequality |ϕ(a)| ≤ ∥a∥ shows that Â is contained in the

space Πa∈ADa , the Cartesian product of the compact spaces

Da = {z ∈ C : |z| ≤ ∥a∥}; and the product topology is the

topology of pointwise convergence.

Â is closed in this product: if ϕi → ψ pointwise, then it is clear that

ψ is linear and multiplicative, because each ϕi is linear and

multiplicative, and ψ ̸= 0 because ψ(1) = limi ϕi(1) = 1; thus

ψ ∈ “A.
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The Gelfand map G : a → â. For each a ∈ A the function

â : Â → C where â(ϕ) = ϕ(a), (ϕ ∈ Â)

is continuous by the definition of the topology on Â. This gives a

well defined map

G : A → C(Â) : a → â .

If a, b ∈ A, since each ϕ ∈ Â is linear, multiplicative and

*-preserving, we have◊�(a + b)(ϕ) = ϕ(a + b) = ϕ(a) + ϕ(b) = â(ϕ) + b̂(ϕ)‘(ab)(ϕ) = ϕ(ab) = ϕ(a)ϕ(b) = â(ϕ)b̂(ϕ)‘(a∗)(ϕ) = ϕ(a∗) = ϕ(a) = â(ϕ)
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therefore

G(a+b) = G(a)+G(b), G(ab) = G(a)G(b) and G(a∗) = (G(a))∗

â(ϕ) = ϕ(a) ⇒ ∥â(ϕ)∥ ≤ ∥ϕ∥ ∥a∥ ⇒ ∥â∥ ≤ ∥a∥

It can be seen that G is isometric.
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The Gelfand map is onto C(Â). Consider the range G(A): it is a

*-subalgebra of C(Â), because G is a *-homomorphism. It

contains the constants, because G(1) = 1. It separates the points

of Â, because if ϕ, ψ ∈ Â are different, they must differ at some

a ∈ A, so

G(a)(ϕ) = ϕ(a) ̸= ψ(a) = G(a)(ψ).

By the Stone -- Weierstrass Theorem, G(A) must be dense in C(Â).
But it is closed, since A is complete and G is isometric. Hence

G(A) = C(Â).
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When A is abelian but non-unital every ϕ ∈ Â extends uniquely to a

character ϕ∼ ∈ Â∼ by ϕ∼(1) = 1, and there is exactly one ϕ∞ ∈ Â∼

that vanishes on A. Thus A is *-isomorphic the algebra of those

continuous functions on the ‘one-point compactification’ Â ∪ {ϕ∞} of

Â which vanish at ϕ∞; this algebra is in fact isomorphic to C0(Â).
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Example

c0 the space of sequences converging to 0.

ϕn : c0 → C, ϕn((ak)) = an. Then ĉ0 ≃ N.

(ϕn) converges pointwise to the zero character, since

lim
n
ϕn((ak)) = lim

n
an = 0.

Thus, ĉ0 is not compact.
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Example

Consider the unitization c of c0 which is the space of convergent

sequences.

Extend ϕn to c by the same formula ϕ∼n ((ak)) = an.

A new nonzero character appears: ϕ∞((ak)) = lim(ak).
This is the pointwise limit of the ϕ∼n , since

lim
n
ϕ∼n ((ak)) = lim

n
(an) = ϕ∞((an)).

ĉ is the one point compactification of N.
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remark

When A is non-abelian there may be no characters. M2(C) has no

ideals, hence the only character is the trivial one.
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Definition

Let A be a C∗-algebra. An element a ∈ A is selfadjoint if a = a∗.

Definition

An element a ∈ A is positive (written a ≥ 0) if a = a∗ and σ(a) ⊆ R+.

We write A+ = {a ∈ A : a ≥ 0}.

Definition

If a, b are selfadjoint, we define a ≤ b by b − a ∈ A+.
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Theorem

Let A be a C∗-algebra and a ∈ A. The following are equivalent:

a is positive

a = b2 for some positive b ∈ A
a = b∗b for some b ∈ A
If A ⊆ B(H), ⟨ax, x⟩ ≥ 0, ∀x ∈ H (complex H)
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Examples

In C(X): f ≥ 0 iff f(t) ∈ R+ for all t ∈ X because σ(f) = f(X).

In B(H): T ≥ 0 iff ⟨Tξ, ξ⟩ ≥ 0 for all ξ ∈ H.

In M2(C): ï
2 −1

−1 2

ò∗ ï
2 −1

−1 2

ò
=

ï
5 −4

−4 5

ò
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Proposition

Every positive element of a C*-algebra has a unique positive square

root. In fact

a ∈ A+ if and only if there exists b ∈ A+ such that a = b
2.

Proposition

For any C*-algebra the set A+ is a cone:

a, b ∈ A+, λ ≥ 0 =⇒ λa ∈ A+, a + b ∈ A+.
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remark

Any morphism π : A → B between C*-algebras preserves order:

a ≥ 0 ⇒ π(a) ≥ 0.

proof If a = a∗ and σ(a) ⊆ [0,+∞) then π(a)∗ = π(a∗) and

σ(π(a)) ⊆ σ(a) ∪ {0} ⊆ [0,+∞)

so π(a) ≥ 0.
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Definition

Let A be a C∗-algebra. A linear form on A is positive if f(a∗a) ≥ 0

∀a ∈ A.

Lemma

Let f be a positive linear form on A. Then

1 f(b∗a) = f(a∗b)

2 |f(b∗a)|2 ≤ f(a∗a)f(b∗b)

3 f(a∗) = f(a)

4 |f(a)|2 ≤ f(e)f(a∗a)
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Lemma

Let f be a positive linear form on A. Then f is bounded and ∥f∥ = f(e).

Definition

Let A be a C∗-algebra. A state is a linear form on A which is positive

and satisfies f(e) = 1.
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states

The set of states S(A) of a C∗-algebra A is a w∗-compact set of the

dual of A. It is convex, hence by the Krein-Milman theorem it has

extreme points.

Definition

A state is pure if it is an extreme point of S(A).
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states

Examples

C(X), for X compact. A state on C(X) is a probability measure. A

pure state is a Dirac measure.

B(H) for a Hilbert space H. If ξ ∈ H, f(a) = ⟨aξ, ξ⟩ is a state.

These are called vector states.
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states

Examples

Let D be the C∗-algebra of 2 × 2 diagonal complex matrices.

A linear form on D is of the form

f

ÅÅ
a 0

0 d

ãã
= xa + yd

for some x, y ∈ C.

f is a state if and only if

x + y = 1 and xa + yd ≥ 0 when a ≥ 0 and d ≥ 0.

That is x ≥ 0 and y ≥ 0.

f is pure iff x = 0 or y = 0.
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the GNS construction

Examples

• For a C*-algebra A, if π : A → B(H) is a representation and ξ ∈ H
a unit vector, then ϕ(a) = ⟨π(a)ξ, ξ⟩ is a state.

M. Anoussis C
∗-algebras



C
∗-algebras

the spectrum
Gelfand theory for commutative C*-algebras

positivity-states
the Gelfand - Naimark Theorem

group algebras

the GNS construction

Conversely,

Theorem (Gelfand, Naimark, Segal)

For every state f on a C*-algebra A there is a triple (πf ,Hf , ξf ) where

πf is a representation of A on Hf and ξf ∈ Hf a cyclic a unit vector

such that

f(a) = ⟨πf (a)ξf , ξf ⟩ for all a ∈ A.

The GNS triple (πf ,Hf , ξf ) is uniquely determined by this relation up to

unitary equivalence.

a
i.e. πf (A)ξf is dense in Hf .

M. Anoussis C
∗-algebras



C
∗-algebras

the spectrum
Gelfand theory for commutative C*-algebras

positivity-states
the Gelfand - Naimark Theorem

group algebras

the universal representation

Theorem (Gelfand, Naimark)

For every C*-algebra A there exists a representation (π,H) which is

one to one (called faithful).

Idea of proof Enough to assume A unital. Let S(A) be the set of all

states. For each f ∈ S(A) consider (πf ,Hf ) and ‘add them up’ to

obtain (π,H). Why is this faithful? Because

Lemma

For each nonzero a ∈ A there exists f ∈ S(A) such that f(a∗a) > 0.

... and then

∥π(a)ξf∥2 = ⟨π(a∗
a)ξf , ξf ⟩ = ⟨πf (a

∗
a)ξf , ξf ⟩ = f(a∗

a) > 0

so π(a) ̸= 0.
M. Anoussis C
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Definition

A von Neumann algebra is a unital wot closed ∗-subalgebra of B(H).

Theorem

A a unital ∗- subalgebra of B(H). The following are equivalent:

1 A = A′′

2 A is wot closed
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the center

A von Neumann algebra, p a central projection, a ∈ A

a = (p + p
⊥)a(p + p

⊥) =

pap + pap
⊥ + p

⊥
ap + p

⊥
ap

⊥ = pap + p
⊥

ap
⊥.

A = pAp ⊕ p
⊥Ap

⊥,

A =

ßÅ
x 0

0 y

ã
: x ∈ pAp, y ∈ p

⊥Ap
⊥
™

Definition

A von Neumann algebra is a factor iff its center is CI.
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vN(G)

G locally compact topological group, λ the left regular representation

of G

Definition

The von Neumann algebra of G is the wot closure of the linear span of

the λ(x), x ∈ G.

Examples

vN(R) is L∞(R).
vN(T) is ℓ∞(Z).
vN(Z) is L∞(T).
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G discrete, λ the left regular representation of G,

{ex : x ∈ G} basis of ℓ2(G).

⟨λ(x)ey , ez⟩ = ⟨exy , ez⟩ = δxy,z1

⟨λ(x)ey , ez⟩

depends only on zy−1.
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Example

G = Z

a =



... ... ... ... ... ... ...

... a0 a1 a2 a3 a4 ...

... a−1 a0 a1 a2 a3 ...

... a−2 a−1 a0 a1 a2 ...

... a−3 a−2 a−1 a0 a1 ...

... a−4 a−3 a−2 a−1 a0 ...

... ... ... ... ... ... ...


.
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a ∈ vN(G).

aee =
∑
x∈G

cxex =
∑
x∈G

cxλ(x)ee

(cx) ∈ ℓ2.
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the center

a in the center of vN(G),

λ(y)aee = λ(y)

(∑
x∈G

cxex

)
=

(∑
x∈G

cxeyx

)
=

(∑
x∈G

cy−1xyexy

)
and

aλ(y)ee = aey = aρ(y−1)ee = ρ(y−1)aee =

ρ(y−1)

(∑
x∈G

cxex

)
=
∑
x∈G

cxexy

Thus

cx = cy−1xy

for all y ∈ G.
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x 7→ cx is constant on conjugacy classes and since (cx) ∈ ℓ2 it is 0 on

infinite conjugacy classes.

Theorem

If G is icc (that is, every conjugacy class except the class of e is infinite)

then vN(G) factor.

Examples

F2

S∞ = {ϕ : N → N, 1 − 1 } : ∃ kϕ, ϕ(n) = n,∀n ≥ kϕ}ßÅ
a b

0 1

ã
: a ∈ Q∗, b ∈ Q

™
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Theorem (Cuntz)

K0(C
∗(Fn)) = Z, K1(C

∗(Fn)) = Zn.
Hence C∗(Fm) is not isomorphic to C∗(Fn)

Question

Is vN(F2) isomorphic to vN(F3)?

M. Anoussis C
∗-algebras



C
∗-algebras

the spectrum
Gelfand theory for commutative C*-algebras

positivity-states
the Gelfand - Naimark Theorem

group algebras

C∗(G)

G locally compact topological group, f , g ∈ L1(G)

f ∗ g(x) =

∫
y∈G

f(xy
−1)g(y)dµ(y)

f
∗(x) = f(x−1)

L1(G) with multiplication and involution as above is the group algebra

of G.
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C∗(G)

Proposition

(π,H) unitary representation of G. Then

f 7→ π(f) =
∫

G
f(x)π(x)dµ(x) satisfies

1 π : L1(G) → B(H) is linear

2 π(f ∗ g) = π(f)π(g)

3 π(f∗) = π(f)∗

4 π(L1(G))H = H

Conversely, if

If ϕ : L1(G) → B(H) satisfies the above statements, then there exists a

unitary representation π of G st ϕ(f) = π(f)

M. Anoussis C
∗-algebras



C
∗-algebras

the spectrum
Gelfand theory for commutative C*-algebras

positivity-states
the Gelfand - Naimark Theorem

group algebras

C∗(G)

Definition

Define a norm on L1(G):

∥f∥ = supπ∈Ĝ
∥π(f)∥.

C∗(G) is the completion of L1(G) wrt to this norm and is a C∗ algebra.

It is called the C∗-algebra of G.

There is a 1-1 correspondence between unitary representation of

G and non-degenerate ∗ representations of C∗(G).
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C∗(G)

Proposition

G abelian

C∗(G) is C0(Ĝ).

Examples

C∗(R) is C0(R).
C∗(T) is C0(Z).
C∗(Z) is C0(T).
G compact

C∗(G) is the c0 sum
∑

π∈Ĝ
⊕B(Hπ)
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primitive ideals

Definition

An ideal of a C∗-algebra A is primitive if it is the kernel of an irreducible

representation of A. Prim(A) is the set of the primitive ideals.

Consider the space Prim(A) with the hull-kernel topology:

If

U ⊆ Prim(A)

then

U = {I ∈ Prim(A) : I ⊇ ∩J∈UJ}.

The space Prim(A) is T0. Denote Prim(G) = Prim(C∗(G)).
There is a map Ĝ → Prim(G), π 7→ ker π.
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Definition

G is of type I if: whenever π is a representation of G such that π(G)′′ is

a factor, then π(G)′′ is a factor of type I (that is π is a multiple of an

irreducible representation).

Proposition

G second countable locally compact group. The following are

equivalent

1 G is type I.

2 The map Ĝ → Prim(G) is 1 − 1.

3 If (π,H) ∈ Ĝ, then π(C∗(G)) contains the compact operators on

H.
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Proposition

1 If G is abelian then it is of type I

2 If G is compact then it is of type I

3 If G is discrete then it is of type I iff it contains an abelian normal

subgroup of finite index.

Example

G = {< a, b >: a2 = e, aba = b−1}
G as a set is {bn, bna : n ∈ Z}
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Examples

The Heisenberg group H:

λ ∈ R∗, πλ L2(R):

(πλ(x, y, z)f)(t) = e
iλz

e
−iλyt

f(t − x)

(s, t) ∈ R2, define πs,t acting on C:

πs,t(x, y, z) = e
i(sx+ty)

Ĥ = {πλ : λ ∈ R∗} ∪ {πs,t : (s, t) ∈ R2}
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Examples

Discrete Heisenberg Hd :

u =

Ñ
1 1 0

0 1 0

0 0 1

é
, v =

Ñ
1 0 0

0 1 1

0 0 1

é
, w =

Ñ
1 0 1

0 1 0

0 0 1

é
.

π irreducible then π(w) = e2πiθ for some θ.

If θ irrational π(u), π(v) generate the irrational rotation algebra

Aθ .

If ρ1, ρ2 are two inequivalent representations of Aθ , ρ1π, ρ2π are

inequivalent representations of C∗(G) with the same kernel

ker ρ1π = ker ρ2π = ker π.
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