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C* -algebras

C*-algebras

The space of all bounded linear operators T : H — H on a Hilbert
space H is denoted B(#H). It is complete under the norm

Tl = sup{[Im]| - x € ba(H)}

(b1(X) the closed unit ball of a normed space X) and is an algebra
under composition. Moreover, because it acts on a Hilbert space, it has
additional structure: an involution T — T* defined via

(T"'x,y) = (x,Ty) foralix,y € H.

This satisfies
T*1|| = ||T||? the C* property.
|
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C* -algebras

C*-algebras

These fundamental properties of B(H) (norm-completeness, involution,
C* property) motivate the definition of an abstract C*-algebra.
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C* -algebras

Definition

(a) A Banach algebra A is a complex algebra equipped with a
complete norm which is sub-multiplicative:

lab|l < [lall[Ibl]]  forall a,b € A

(b) An involution is a map on A such that

(a+ Ab)* = a* 4+ \b*, (ab)* = b*a*, a** = afordlla,b € Aand
A e C.

(¢) A C*-algebra A is a Banach algebra equipped with an involution
a — a* satisfying the C*-condition

a*all = ||al? foral a € A.
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C* -algebras

C*-algebras

If A has a unit 1 then necessarily 1* = 1 and ||1|| = 1.

If Ais a C*-algebra let
A=A C

(a,z)(b,w) =: (ab+ wa + zb, zw)
(a,2)" =: (a",2)
|(a,2)|| =: sup{|lab+ zb|| : b € by A}

Thus the norm of A™ is defined by identifying each (a, z) € A™ with
the operator L,y : A — A : b — ab + zb acting on the Banach
space A.

v
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C* -algebras

C*-algebras

C? with norm
GG =[x+ Iyl

and pointwise multiplication is not a C*-algebra.

a=(1,1)
la*all =111, DA, DIF =1, DI =2

lal® =100, 1)I* = 4
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C* -algebras

C*-algebras

A morphism ¢ : A — B between C*-algebras is a linear map that
preserves products and the involution.
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C* -algebras

C*-algebras

o C, the set of complex numbers.

e C(K). the set of all continuous functions f : K — C, where K isa

compact Hausdorff space. With pointwise operations, f*(t) = f(t)
and the sup norm, C(K) is an abelian, unital algebra.

° CO(X ) where X is a locally compact Hausdorff space. This consists
of all functions f : X — C which are continuous and ‘vanish at
infinity”: given € > 0 there is a compact K¢ . € X such that
|f(x)| < € forall x ¢ K. With the same operations and norm as
above, this is an abelian C*-algebra.
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C* -algebras

C*-algebras

@ M,(C), the set of all n X n matrices with complex entries. With
matrix operations, A* = conjugate transpose, and
|All = sup{||Ax||, : x € £2(n), ||x||, = 1}. this is @ non-abelian,
unital algebra.

e B(H) is a non-abelian, unital C*-algebra.

o K(H)={A€ B(H): A(b:1(H)) compactin H}: the compact
operators. This is a closed selfadjoint subalgebra of B(#), hence a
C*-algebra.
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C* -algebras

C*-algebras

If X is an index set and A is a C*-algebra, the Banach space (>°(X, A)
of all bounded functions a : X — A (with norm

lallo = sup{|la(x)|| 4 : x € X}) becomes a C*-algebra with
pointwise product and involution.

Its subspace cp(X, . A) consisting of all a : X — A such that

lim |la(x)|| 4 = Ois a C*-algebra. (for each € > 0 there is a finite
X—r00

subset X. C Xst.x ¢ X. = [la(x)]| 4 < .
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C* -algebras

C*-algebras

If Ais a C*-algebra and n € N, the space M,(.A) of all matrices [aj]
with entries a; € A becomes a *-algebra with product [a;][b;] = [¢]
where ¢; = ), axby and involution [g;]* = [d;] where dj = af.

Define a norm on M, (.A) satisfying the C*-condition.
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C* -algebras

C*-algebras

Suppose A is B(H) for some Hilbert space H. Identify M,(B(H)) with
B(H"): Given a maitrix [g;] of bounded operators a; on H, we define
an operator A on H" by

& Z,- ayg)

A

&n Z,- ans;

Conversely any A € B(H") defines an n x n matrix of operators aj on
H by (€, 1) 4, = (A&, Mi)4n. Where & € H" is the vector having & at
the j-th entry and zeroes elsewhere (and 7); is defined analogously).
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C* -algebras

C*-algebras

Hence one defines the norm ||[q;]|| of [a;] € M.(B(H)) to be the
norm ||Al|| of the corresponding operator on H".

Forn=2:
& ol - 1& )

This applies also if A is a C*-subalgebra of B(H).
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the spectrum

the spectrum

Definition

A unital C*-algebra and GL(.A) the group of invertible elements of A.
The spectrum of an element a € A is

ola)=ca(a)={AeC: N1 —a¢GL(A)}.
If A is non-unital, the spectrum of a € A is defined by

o(a) = oa~(a).

In this case, necessarily 0 € o(a).
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the spectrum

the spectrum

o A= M,(C)and a € A, then o(A) is the set of eigenvalues of A.
e A=C([0,1]) and f € A, then:

f — A1 invertible < f(x) — A1(x) # 0, Vx

< f(x) — A1 #0,Vx & X # f(x), Vx.

= o(f) = {f(x) : x € [0,1]}
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the spectrum

the spectrum

Proposition

The spectrum o*(a) is a compact nonempty subset of C.

 o(a) is bounded: In a unital C*-algebra, if ||x|| < 1 then since
STIX < ST IXI™ the series > x™ converges absolutely, and so
converges to an element y such that (1 — x)y = y(1 —x) = 1 and

(1 —x) € GL(A).
If a € Aand A € C satisfies |A| > ||a|| then:

12 <1=1- 2 is invertibl
- — — 1s Imveruple
A A

= A1 — a is invertible = \ ¢ o(a)

and the spectrum is bounded by ||al|.
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the spectrum

the spectrum

The spectral radius of a € A is defined to be

p(a) = sup{|A| : A € o(a)}.

It satisfies p(a) < ||al|. but equality may fail. In fact, it can be shown
that
pla) = lim """
n

This is the Gelfand-Beurling formula.
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the spectrum

the spectrum

Ifa = a* then p(a) = sup{|A| : A € o(a)} = ||al.

proof
llall? = ||e?|| and inductively ||a||?” = ||a®’|| for all n. Thus, by the
Gelfand - Beurling formula, p(a) = lim ||a®’ 2" = lal. O
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the spectrum

the spectrum

A morphism 7t : A — B is contractive (i.e. ||w(a)|| < ||al| for all
ae A.

proof WLOG we may assume that A and 7 are unital.
Ifx,y € Aand xy = 1then 7(x)7(y) = 1.

a — Al invertible implies 7(a) — A1 invertible and hence,
o(n(a) € a(a) = p(n(a)) < p(a).
Im(a)||* = [lm(a)*m(a)]
= |[n(a"a)|l = p(r(a*a)) < p(a”a) = |la"al| = ||a|®
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Gelfand theory for commutative C*-algebras

Gelfand theory for commmutative C*-algebras

Theorem (Gelfand-Naimark 1)

Every commutative C*algebra A is isometrically *-isomorphic to Co(.ﬁ)
where A is the set of nonzero morphisms ¢ : A — C which, equipped
with the fopology of pointwise convergence, is a locally compact
Hausdorff space. For each a € A the function & : A — C : ¢ — ¢(a)

~

is in Co(\A). The Gelfand transform:
A= Cy(A): a— &

is an isometric *-isomorphism. The space .ﬁ is compact if and only if A is
unital.
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Gelfand theory for commutative C*-algebras

commutative C*-algebras

A unital.

° A is the set of all nonzero multiplicative linear forms ( characters)
¢p: A—C.
#(1)? = ¢(1) = ¢(1) = 1 (forif #(1) = 0 then
¢(a) = ¢(al) = O for all a, a contradiction).
Each ¢ € A satisfies ||¢|| < 1.and ||¢|| = ¢(1) = 1. The topology
on A is pointwise convergence: ¢; — ¢ iff ¢;(a) — ¢(a) for all
ae A
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Gelfand theory for commutative C*-algebras

commutative C*-algebras

e The inequality |¢(a)| < ||a|| shows that A is contained in the
space [yc 4D, the Cartesian product of the compact spaces
Dy = {z € C: |z| < ||a||}: and the product topology is the
topology of pointwise convergence.

A is closed in this product: if ¢; — 1) pointwise, then it is clear that
1) is linear and multiplicative, because each ¢; is linear and
multiplicative, and v # 0 because (1) = lim; ¢;(1) = 1; thus
Ve A
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Gelfand theory for commutative C*-algebras

commutative C*-algebras

@ The Gelfand map G : a — &. For each a € A the function
a: A—C where a(¢) = d(a), (¢ € A)

is continuous by the definition of the topology on fl This gives a
well defined map

~

G:A—C(A):a—a.

If a,b € A, since each ¢ € Ais linear, multiplicative and
*-preserving. we have

(a+b)(¢) = ¢(a+b) = ¢(a) + ¢(b) = &(¢) + b(¢)

(ab) () = d(ab) = ¢(a)d(b) = &($)B(¢)
(a*)(¢) = ¢(a") = ¢(a) = a&(¢)




Gelfand theory for commutative C*-algebras

commutative C*-algebras

therefore

G(a+b) = G(a)+G(b), G(ab) =G(a)g(b) and G(a") = (G(a))"

a(¢) = ¢(a) = [[a(d)|| < ¢l llall = llall < [lall

It can be seen that G is isometric.
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Gelfand theory for commutative C*-algebras

commutative C*-algebras

A

@ The Gelfand map is onto C(.A). Consider the range G(.A): it is a
*-subalgebra of C(.A) because § is a *-homomorphism. It
contains the constants, because G(1) = 1. It separates the points
of A, because if o, € A are different, they must differ at some
ac A so

G(a)(¢) = é(a) # ¥(a) = G(a)(¥).

By the Stone - Weierstrass Theorem, G(.A) must be dense in C(A).
But it is closed, since A is complete and G is isometric. Hence

G(A) = c(A). O
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Gelfand theory for commutative C*-algebras

commutative C*-algebras

When A is abelian but non-unital every ¢ € A extends uniquely toa__
character ¢™ € A~ by ¢™~(1) = 1, and there is exactly one ¢, € A~
that vanishes on A. Thus A is *-isomorphic the algebra of those
continuous functions on the ‘one-point compactification’ .A U {qboo} of
A which vanish at ¢ this algebra is in fact isomorphic to Co(.A).
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Gelfand theory for commutative C*-algebras

commutative C*-algebras

co the space of sequences converging to 0.
on:co— C, pn((ak)) = an. Then & ~ N.

(¢n) converges pointwise to the zero character, since

Iirr1n on((ak)) = Iirr1n a, =0.

Thus, & is not compact.
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Gelfand theory for commutative C*-algebras

commutative C*-algebras

Consider the unitization ¢ of cg which is the space of convergent
sequences.

Extend ¢, to ¢ by the same formula ¢ ((ak)) = an.

A new nonzero character appears: ¢oo((ax)) = lim(ay).
This is the pointwise limit of the ¢;", since

im 67 (@) = lim(ar) = doc((cn))

¢ is the one point compactification of N.
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Gelfand theory for commutative C*-algebras

commutative C*-algebras

When A is non-abelian there may be no characters. Mp(C) has no
ideals, hence the only character is the trivial one.
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positivity-states

positivity

Definition
Let A be a C*-algebra. An element a € A is selfadjoint if a = a*.

Definition
An element a € A is positive (written a > 0)if a = a* and o(a) C R..
We write Ay = {ae A:a >0}

Definition

If a, b are selfadjoint, we define a < bby b — a & .A+.
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positivity-states

positivity

Let A be a C*-algebra and a € A. The following are equivalent:
@ q is positive
e a = b? for some positive b € A
@ a=b*bforsomeb c A
o IfAC B(H). (ax,x) > 0,Vx € H (complex H)
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positivity-states

e In C(X): f > 0iff f(t) € Ry forall t € X because o(f) = f(X).
o InB(H): T >0iff (T, &) > 0forall { € H.
e In My(C):
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positivity-states

positivity

Proposition
Every positive element of a C*-algebra has a unique positive square
rooft. In fact

a € Ay ifand only if there exists b € A such that a = b,

For any C*-algebra the set A is a cone:

abeA, A>0 = Xdae A, ,a+be A,.
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positivity-states

positivity

Any morphism w : A — B between C*-algebras preserves order:

a>0 = m(a)>0.

proof If a = a* and ¢(a) C [0, +00) then m(a)* = 7(a*) and
a(m(a)) € o(a) U{0} C [0, +00)

so (a) > 0.
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positivity-states

states

Definition

Let A be a C*-algebra. A linear form on A is positive if f(a*a) > 0
Vae A

Let f be a positive linear form on A. Then
0 f(b*a) = f(a*b)
9 |f(b*a)|? < f(a*a)f(b*b)
0 f(a*) = f(a)
0 [f(a)? < f(e)f(a"a)

.
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positivity-states

states

Let f be a positive linear form on A. Then f is bounded and ||f|| = f(e).

Definition

Let A be a C*-algebra. A state is a linear form on A which is positive
and satisfies f(e) = 1.
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positivity-states

states

The set of states S(A) of a C*-algebra A is a w*-compact set of the
dual of A. It is convex, hence by the Krein-Miiman theorem it has
extreme points.

Definition

A state is pure if it is an extreme point of S(.A).
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positivity-states

states

e C(X), for X compact. A state on C(X) is a probability measure. A
pure state is a Dirac measure.

e B(H) for a Hilbert space H. If £ € H., f(a) = (a&, €) is a state.
These are called vector states.
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positivity-states

states

@ Let D be the C*-algebra of 2 x 2 diagonal complex matrices.
A linear form on D is of the form

f is a state if and only if

x+y=1landxa+ yd > 0whena > 0and d > 0.
Thatisx > 0and y > 0.

fispureiff x =0ory = 0.
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the Gelfand - Naimark Theorem

the GNS construction

e For a C*-algebra A, if 7 : A — B(H) is a representation and { € H
a unit vector, then ¢(a) = (r(a)¢, &) is a state.

M. Anoussis C* -algebras



the Gelfand - Naimark Theorem

the GNS construction

Conversely,

Theorem (Gelfand, Naimark, Segal)

For every state f on a C*-algebra A there is a triple (m¢, Hy, &) where

¢ is a representation of A on H¢ and & € H; a cyclic @ unit vector
such that

f(a) = (m¢(a)&s, &) forall a € A.

The GNS triple (¢, He, &) is uniquely determined by this relation up to
unitary equivalence.

%.e. m¢(A)&; is dense in Hs.
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the Gelfand - Naimark Theorem

the universal representation

Theorem (Gelfand, Naimark)

For every C*algebra A there exists a representation (7r, ’H) which is
one fo one (called faithful).

Idea of proof Enough to assume A unital. Let S(A) be the set of all
states. For each f € S(A) consider (¢, H¢) and ‘add them up’ to
obtain (7, 7). Why is this faithful? Because

For each nonzero a € A there exists f € S(.A) such that f(a*a) > 0.

... and then

Im(@)él® = (n(a*a)ér, &) = (mi(a"a)ér, &) = f(a*a) > 0

som(a 0.
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group algebras

von Neumann algebras

Definition

A von Neumann algebra is a unital wot closed *-subalgebra of B(H).

A a unital x- subalgebra of B(H). The following are equivalent:

Q A=A

Q A is wot closed
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group algebras

the center

A von Neumann algebra, p a central projection, a € A

a=(p+p)alp+p) =
pap + pap™ + pTap + prap™ = pap + prap™.
A =pAp @ ptApt,

A= {(g 3):x€pAp,y€pLApL}

Definition
A von Neumann algebra is a factor iff its center is CI.

M. Anoussis C* -algebras




group algebras

G locally compact topological group, A the left regular representation
of G

Definition

The von Neumann algebra of G is the wot closure of the linear span of
the A(x),x € G.

e VN(R)is L*(R).
o VN(T) is £°(Z).
o VN(Z)is L°°(T).

M. Anoussis C* -algebras

.




group algebras

G discrete, A the left regular representation of G,
{ex : x € G} basis of £2(G).

(A(x)ey, &) = (e, 6;) = Oxy,21

(A(x)ey, e)

depends only on zyq.
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group algebras

Qo ap a2 as Oy

a= ... Ao a ap ay (o))
ad_3 d_o 4 Qo aj
a4 d_3 a2 a1 Q
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group algebras

a € vN(G).
aee = Z Cey = Z cxA(x)ee
XEG XEG

(cx) € 2.
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group algebras

the center

ain the center of VN(G),

A()aee = Aly (z ) _ <z ) _ (z )

xX€G XEG XEG
and
a\(v)es = aey = ap(y~')es = p(y~')aee =
RIDESES »s
XEG xXE€EG
Thus
Cx = Cy—lyy

forally € G.
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group algebras

X — ¢y Is constant on conjugacy classes and since (c,) € £2 it is 0 on
infinite conjugacy classes.

If G is icc (that is, every conjugacy class except the class of e is infinite)
then vN(G) factor.

°F2
OSw:{¢:N—>N, ]—]} :Elk¢, ¢(n):n7Vn2k¢}

(5 3):0ewoeq)
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group algebras

Theorem (Cuntz)
Ko(C*(F)) =Z, K(C*"(F))=2".
Hence C*(Fy,) is not isomorphic to C*(Fy)

Question
Is vN(F,) isomorphic to vN(F3)?
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group algebras

G locally compact topological group, f, g € L'(G)

fxg(x) = /eG v~ )aly)du(y)

*(x) = f(x71)
L (G) with multiplication and involution as above is the group algebra
of G.
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group algebras

Proposition

(7r, H) unitary representation of G. Then
f—7(f) = [5 f(x)m(x)du(x) satisfies
Q@ 7:L'(G) = B(H) is linear
Q n(f*g) = n(f)m(9)
Q n(f*) =n(f)*
O n(L'(e)H="H

Conversely, if
It ¢ : L'(G) — B(H) satisfies the above statements, then there exists a
unitary representation  of G st ¢(f) = 7 (f)
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group algebras

Definition

Define a norm on L'(G):

17l = suprcellm(AIl-

C*(G) is the completion of L'(G) wrt to this norm and is a C* algebra.
It is called the C*-algebra of G.

There is a 1-1 correspondence between unitary representation of
G and non-degenerate * representations of C*(G).
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group algebras

Proposition

G abelian
C*(G) is Co(GB).

N
C*(R) is Co(R).
C*(T) is Co(Z).
C*(Z)is Co(T).
G compact
C*(G)isthe cosum > ODB(Hx)

.
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group algebras

primitive ideals

Definition

An ideal of a C*-algebra A is primitive if it is the kermnel of an irreducible
representation of A. Prim(.A) is the set of the primitive ideals.

Consider the space Prim(.A) with the hull-kernel topology:
If
U C Prim(A)

then
U={lIe€Prim(A): 12Ny}

The space Prim(.A) is To. Denote Prim(G) = Prim(C*(G)).
There is a map G — Prim(G), 7 > ker .
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group algebras

Definition

G is of type | if: whenever T is a representation of G such that W(G)/ "is
a factor, then 7(G)" is a factor of type | (that is 7 is @ multiple of an
ireducible representation).

\

Proposition

G second countable locally compact group. The following are
equivalent

Q Gistypel.
Q The map G — Prim(G) is1 — 1.

Q If(m,H) € G, then (C*(&)) contains the compact operators on
H.
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group algebras

Proposition
@ If G is abelian then it is of type |

Q If G is compact then it is of type |

@ If G is discrete then it is of type | iff it contains an abelian normal
subgroup of finite index.

G={<ab>d=eaba=b"'}
Gasasetis {b",b"a:nec 7}

\,
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group algebras

@ The Heisenberg group H:
A € R*, my, LZ(R):

(ma(x, v, 2)F)(1) = 26 M (1 — x)
(s, 1) € R?, define s+ acting on C:

mst(x, y,2) = W)

A={m:AeR*}U{nm,,;: (s, 1) € R?}
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group algebras

@ Discrete Heisenberg Hy:

1 1 0 1 00 1 0 1
u= 010 L,V = 0 1 1 W= 0O 1 0
0 0 1 0 0 1 0 0 1

7 ireducible then 7(w) = ™ for some 6.

If 6 irational w(u), 7(v) generate the irrational rotation algebra
Agp.

If p1. p2 are two inequivalent representations of Ag, p17, pom are
inequivalent representations of C*(G) with the same kemel

ker p1m = ker pom = ker .
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