Xeuvaplo Zuvoptnotokne Avaivong kor AlyeBpav
Teleotmv: Matrix Convexity

lodvvns-Andriov [apackevdc

EOvico & Kamodiotpraxd IMavemotipo AOnvav
Tunpo Mabnpotikdv

Noéupprog 2023



Table of contents

Matrix Convexity
Compact Matrix Convex Sets

Krein-Milman in Matrix Convexity



Matrix Convexity

A matrix convex set K= { K}, in a vector space V is a collection of
non-empty convex sets K,, C M, (V') such that:

m Fora € M, ,, witha*a =1 we have a* K, a C K,

m For m,n € N we have

x

K, ®K, ::{[O 2] : wherexz € K, andyGKm} CK,in




Matrix Convexity

Proposition
A collection K = {K,, },, where K, C M, (V), is a matrix convex set
of V if and only if

k
Z’ﬁuﬂi EK,,
i—1

forallu; € K,, and~; € M, such that Zle vy, =1,.

We call the element )., ~y;u;7y; a matrix convex combination.



Matrix Convexity

Theorem

Let V, V' be in duality and let K = { K, },, be a closed matrix convex
set of V with 0 € K. For any u, ¢ K, there exists a weakly
continuous ¢ : V. — M, such that Re(¢,|K,) <I,®1, forallr € N
and Re(p(ug)) £ 1, ®1,.



Matrix Convexity

Definition

Let B(J() denote the bounded operators of a Hilbert space J{ .

m A closed linear subspace V' C B(#) will be called an operator
space.

m An operator space S C B(H) that is self-adjoint and contains the
identity operator will be called a (unital) operator system.

m The space M,, (V') inherits a norm from M, (B()) and M,,(S)
also inherits a positive cone of elements

C,={zeM,/(S): v M,(B(F))".




Matrix Convexity

Definition

Let V, W be vector spaces and K = { K, },, be a matrix convex set. A
matrix affine mapping on K is a sequence 6 = {6,, },, of mappings
0, : K,, — M, (W) such that

k k
0, (Zﬁ%%) = %6, ()%,
p=Il =1

n

forallv, € K,, and~, € M,, ,, satistying Z?zl Yiv, = 1,,.



Compact Matrix Convex Sets

Example

Let R be an operator system and consider the collection
CS(R)={CS,(R)},, where

CS,,(R):={¢: R— M, : ¢ is completely positive and unital }.

We can consider C'S,, (R) to be a subset of M,,(R%) via the
identification

o= [¢ij]7
where

¢;i(z) = ejp(x)e;, forx € R,

and e 5 18 the column matrix with 1 on the j-th coordinate and 0
elsewhere. Then CS(R) is a compact matrix convex set of R¢.



Compact Matrix Convex Sets

m Let K= {K,}, be amatrix convex set, we define A(K, M) to be
the set of all matrix affine mappings

F={F,}, where F, : K,, — M, (M,),

such that F) is continuous.

m A(K, M, ) becomes a *-vector space if we define the x-operation
F*={F}}, where
Fi(v) =F,(v)*, foreveryv € K, andn € N.

m We say that /' > 0 in A(K, M) if

F,(v)>0forallve K, andn € N.



Compact Matrix Convex Sets

m We define £ = {E,}, in A(K,C) where E, (v) = I,, € M,, for
every v € K, andn € N.

m We identify M, (A(K,C)) with A(K, M,.) where for
F=[F;] € M,(A(K,C)) and v € K,, we have

Fy(v) = [(Fiy)p (v)]-

m We use the ordering of A(K, M,.) to define a positive cone in
M, (A(K,C)).
m Then A(K, C) becomes an (abstract) operator system with F as an

Archimedean matrix order unit, which we will simply denote by
A(K).



Compact Matrix Convex Sets

Theorem

Let R be an operator system, then there exists a unital complete order
isomorphism 1) : R — A(CS(R)).

Theorem

Let K be a compact matrix convex set in a locally convex space V, then
the spaces K and CS(A(K)) are matrix affinely homeomorphic.



Compact Matrix Convex Sets

Example

The matrix interval [al,bI] = {[al,,,bI, ]}, where for each n we have
[al,,,bI,]={x€ M, : al, <z <0bI,}isacompact matrix convex set
of C.



Compact Matrix Convex Sets

Proposition

Suppose that K = { K, },, is a matrix convex set of C and K is a
compact subset of R. Then

K = [al,bI],
for some a,b € R.

Proof.

m Since K is a non-empty, convex and compact subset of R it must
be a closed interval of the form [a, b] for some a < b in R.

m Suppose that v € K, and let £ be a unit vector in C" and consider

&1

it as a column matrix £ = | :

&)




Compact Matrix Convex Sets

m Then {*¢ =1 and

(v6,6) =& € Ky = [a,b]

and thus al,, <y <bl,.

m Conversely, if al,, < < bl,, for some matrix vy in M,,, we may
pick a unitary U and scalars \; € [a, b] such that

T=U"(A&0A)U

and therefore v € K.



Krein-Milman in Matrix Convexity

Definition
Let K be a convex set in some vector space V. We say that a point
v € K is extreme if whenever we write

k
=1

where v; € K and 0 < \; < 1fori=1,...,n then v; = v for all
i=1,...,n. We denote the set of extreme points of K by ext(K).

m Foraset.S C V we denote by co(.S) the smallest convex subset of
V that contains S.




Theorem

Krein-Milman in Matrix Convexity Let K be a compact convex set in
some locally convex space V. Then

(ext(K)) = K.

m In particular, ext(K') is non-empty for a non-empty compact
convex set K in a locally convex space.



Krein-Milman in Matrix Convexity

Definition

Let K be a convex subset of a vector space V. We say that a convex set
F C K isaface of K if forall z,y € K and 0 < A\ < 1 whenever
A+ (1—N)y € Fthenz,y € F.

m Ifz € ext(K) for some convex set K, then F' = {x} is a face of K.
m If F'is a face of a convex set K, then ext(F') C ext(K).

m Suppose that K, C are convex sets and that f : K — C is an affine
map. If F is a face of C' then f~1(F) is a face of K.




Krein-Milman in Matrix Convexity

m Let K be a matrix convex set. We say that a matrix convex

combination
k
*
Z Vi Viis
i=1

k .
where v; € K, and~; € M,, , suchthat) /v, =1,,is
proper if each ; has a right inverse in M,, ,, .

[

m We say that v € K, is matrix extreme point if whenever v is a
proper matrix convex combination as above then each n; = n and
. o
v = u;v;u; for unitaries u; € M,,,

m We denote by 0K, the (possibly empty) set of matricial extreme
points in K, and set 0K = {0K, },,.



Krein-Milman in Matrix Convexity

m We observe that for n = 1 the matrix extreme points of K are
exactly the extreme points of K.

m Indeed, let v € K be a matrix extreme point and suppose that

k
v= g AV
i=1

for some v; € Vand 0 < \; < 1.
m Sety; = /A, and thus

k
v = E YiViYis
=1

where Zleﬁyjfyi =1



Krein-Milman in Matrix Convexity

m Since v is matrix extreme, for each ¢ there exists a p; € C such that
|;|* =1 and
Vi, =V <= U, = 0.
m The converse is similar.

m [f K is compact matrix convex set, we obtain by the Krein-Milman
theorem that 0K, is non-empty.

m This is not always the case for 0K, forn > 1.



Krein-Milman in Matrix Convexity

Let a, b be in R where a < b and [al,bI] = {[al,,,bI,],},. Then

{a,b} ifn=1,

Olal,,bl,) = {@ ifn>1

Indeed,
Jla,b] = ext([a,b]) = {a,b}.

Forn > 1letwvbein [al,,bI,] then
v=U O\ @ ®N,)U

for some unitary U € M,, and \; € [a,b].



Krein-Milman in Matrix Convexity

Example

We may write

T
U=|: |, forsome~y, € M, ,.

Tn

Since U is a unitary we obtain that

n
Z’Yf/\i%' =v
i=1

is a proper matrix convex combination and therefore v is not a matrix
extreme point.



Krein-Milman in Matrix Convexity

Proposition

Let K be a compact matrix convex set of a locally convex space V. If v
is a matrix extreme point in K, then v is also an extreme point of K ,,.



Krein-Milman in Matrix Convexity

Definition

Let S,, C M, (V) for each n > 1 for some locally convex space V' and
S ={S,,},- We define the closed matrix convex hull ¢o(S) to be the
smallest closed matrix convex set containing S.

m Ifco(S) = {K,, },, then each K, is the closure of the set of all
elements v € M,, (V') of the form

k
S *
V= E Yi Vi
i—1

where v; € K,, andy; € M,, ,, such that Zle vy, =1,



Krein-Milman in Matrix Convexity

Example

We already saw that that the matrix extreme points of the matrix convex
set [al,bl] ={[al,,bl,]}, are

{a,b} ifn=1,
0 ifn>1.

dlal,,,bl, | = {

Since co(0[al,bl]); = [a,b] and co(d[al,bI]) is a matrix convex set we
obtain that co(d[al,bl]) = [al,bI].

m The above is just an example of the following theorem.



Krein-Milman in Matrix Convexity

Theorem

Let K be a compact matrix convex set of a locally convex space V' and
let 0K = {0K,,},,. Then 0K is non-empty and

co(dK) =K.
m The essential idea of the proof is to perform a reduction to the

classical Krein-Milman theorem. In order to do so we have to
introduce some convex sets related to K.




Krein-Milman in Matrix Convexity

Definition

Let K be compact matrix convex set of a locally convex space V', we
define A, (K) to be the subset of M, (V') such that

A, (K)={Ev€:ve K, ,E€ M, ,,[¢]s =17 €N},
where |.| is the Hilbert-Schmidt norm.

m We may pick £ to be right-invertible and also r < n. Indeed, let s
be the dimension of the range of { € M,. ,, and let & € M,  be an
isometry of C* onto the range of €.

m Then, for v € K. we have that
§vg = (@) (@ va)(a’§)

and ¢ € M, ,, and also "¢ is right-invertible.




Krein-Milman in Matrix Convexity

m Therefore,
An<K) = {5*’05 S Kr?é € MT,n? “6”2 =1,r< n}

and hence it follows that A (K) is compact as a finite union of
compact sets.

m We prove now that A, (K) is a convex set.



Krein-Milman in Matrix Convexity

m Let £*v€ and n*wn be in A, (K) where v € K, and w € K and
§ €M, , andn € M, , satisfying [, = [n]ly =1and 0 <t < 1.

m We have that

t o€+ (1=t wn
1/2
= [t (-] [v O] [(1;)15/277}

0 w

where

H[ B ”r tIElZ+ 1 —1)nlz =1
(1—t>1/277 ) 2 2



Krein-Milman in Matrix Convexity

Lemma

Let R be an operator system and let ¢ be an extreme point of

A, (CS(R)), then there exists a matrix extreme point ¢ € C'S, (R) for
some v € N and a right-invertible element £ € M,. ,, with |||y = 1 such
that

o =E"pE.

Proof.

m Let ¢ be an extreme point of A, (CS(R)), then there exist a
right-invertible § € M,. ,, with [{], = 1 and ¢ € C'S,.(R) for some
r € N such that
P =EpE

m We will prove that ¢ is a matrix extreme point.



Krein-Milman in Matrix Convexity

m Assume that ¢ is written as a proper matrix convex combination

k
Y= Z’Yf‘ﬂﬂm
i=1

where y; € M, . and p; € CS, (R) fori=1,... k.

m Sett, = |v,£]3, then t; # 0, since both ; and & have right-inverses
and we have that

k
oS @ 0
p=Ept= Zﬁ i€ th gl Tegl

and also

k k
> = lhli= ZTT £777:€) = Te(€°6) = €15 = 1.
i—1 i=1 i=1



Krein-Milman in Matrix Convexity

m Since @ is an extreme point we obtain that

£ o€ = |17:€)2% (1) @i (7€)

and using the fact that £ has a right-inverse we have

QDH’Yzé-HQ ’71 200

m Note that ¢ and ¢, are unital and therefore

Lv:€I5 = ;v

and hence |;£|3 1, is an isometry.



Krein-Milman in Matrix Convexity

m Thus, 7, is both injective and surjective for ¢ = 1, ..., k which
implies that r =1 = -+ =1,
m We also have that
Y Vi
= iy e
lvigllz ™ i€l

where |,£]|51; is a surjective isometry i.e. a unitary for
i=1,....k.

m Hence ¢ is a matrix extreme point and the proof is complete.



Krein-Milman in Matrix Convexity

Lemma

Let K be compact matrix convex set of a locally convex space V. If v is
an extreme point of A\, (K), then there exists a matrix extreme point

v € K, for some r € N and a right-invertible element § € M, with
I€]lo = 1 such that

v =E"vE.

Proof.

m There exists an operator system R and a matrix affine
homeomorphism 6 = {6,, },, of CS(R) onto K.



Krein-Milman in Matrix Convexity

m It suffices to prove that I' : A (CS(R)) — A,,(K) is well-defined
and continuous affine surjection where

L(§p8) =£70,(9)E,

foro € CS,.(R)and £ € M, ., satisfying €]l = 1.

m Indeed, in that case if v € A, (K) is an extreme point then T'~1(?)
is a compact face of A, (CS(R)). By the Krein-Milman theorem,
this set has an extreme point which is also an extreme point of
A, (CS(R)) and since 6 preserves matrix extreme points, from the
preceding lemma we are done.



Krein-Milman in Matrix Convexity

m Note thatif ¢ € C'S,.(R) and § € M, ., as before we may pick an
isometry o € M,  such that s < n and aa”§ = § and in that case
we have that

§0,(p)§ =& aa™l, (p)aa’ = £ ald,(a"pa)a™t.
m Thus, in order to prove that I is well-defined we may pick
§'p€ = n"yn,

where p € C'S,.(R) and ¢ € C'S,(R) and right-invertible elements
§€M,, andn € M, , where ||{]y = |||y = 1 and show that

D(& @) =T(n"yn).



Krein-Milman in Matrix Convexity

m Thus,
=m)Png™)
and since ¢ and 1) are unital n¢ ! is an isometry.
m We have that

0,(¢) = 0,.((n& )" (1)) = § 1) 0, (¥) (& ™).
m Since £*¢ = n*n and n* is left-invertible we have that
EEETE=E¢ = g =
= n&i=n

m Therefore,
§0,(p)§ =n0,(v)n,

as desired.



Krein-Milman in Matrix Convexity

m The fact that I is affine and surjective is immediate.

m To see that I is continuous consider a convergent net

Exprén = €98

in A, (CS(R)), where o, € CS, (R)and p € C'S,(R) and
&\ €M, , and € M, , areright-invertible.

m Setn, :=&,&7L, since o, and  are unital we obtain that

x0T

77;77)\ - Ir

and therefore there exists a \, such that for each A > A, we have
that 37, is invertible.



Krein-Milman in Matrix Convexity

m Ifn, =v,|n,| is the polar decomposition of 7, then |7, | is
surjective for A > )\ and hence v, becomes an isometry.

m Since vy, — 1, — 0 we obtain that
VAPAVA = TAPATA + (VA =) eava +miea(va —my) = .
m Then continuity of 6, yields
M0y, () = [0 (ieava) | = L0,.(0) L, = 0,(¢),

equivalently

L(&erén) = 50, (r)éx = €0, ()€ =T(£"pE).



Krein-Milman in Matrix Convexity

Theorem

Let K be a compact matrix convex set of a locally convex space V' and
let K = {0K, },,. Then 0K is non-empty and

@o(dK) = K.

Proof.

m Since 0K coincides with the usual extreme points of the compact
convex set K|, Krein-Milman theorem implies that 0K is
non-empty and hence JK is non-empty.

m Clearly 0K C K.

m Without loss of generality by translating 0K, by v® I,, where
v € 0K, we may assume that 0 € ¢o(JK).
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m For the converse inclusion suppose that there exists
vy € K,,\c0(0K),,

m By the bipolar theorem there exists a weakly continuous linear
mapping ® : V' — M, such that

Re(®,.(v)) <I,®1I,, forall v € co(dK), and r € N,

and

Re((pn(v())) $ In ®In

m Then @ induces a continuous linear functional F': M, (V) — C
such that

F(’?*Uf) - <(I)7'(,U)£777>7

forve M,.(V)and ,n € M, ,, considered as vectors of C"™ on
the right-hand side of the equality.
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m Let v be an extreme point of A, (K) then from the previous lemma
we may write

v =g,
where v € 0K and { € M, ,, with [{], =1 and r <n.

m Therefore, we have that

Re F(v) = Re F(§"0€) = Re (®,.(v)¢,§)
= (Re(®,(v))&,€) < (&€ = €5 =1,

for all extreme points v of A, (K).
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m Since A, (K) is compact by the Krein-Milman theorem we obtain
that
ReF(A,(K)) <1.

m Thus, for each unit vector £ = (£,,...,§,,) € (C™)™ where &, € C"
we have that

Torg

&
(%)
§TL g’n/

|:§1] rl]
Re(®,(v))6, &) =ReF | | | vo| i || <1
&n &

which implies that Re(®,,(v,)) < I,, ® I,,, a contradiction.

€A, (K),

and hence



Theorem

Let K be a compact matrix convex set in a locally convex space V' and
let S ={S,,},, be a collection of closed subsets S,, C K, such that
v*S,,v C S, for all isometries v € M,, .. If o(S) = K then

K CS.
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