Σεμινάριο Συναρτησιακής Ανάλυσης και Αλγεβρών Τελεστών: Matrix Convexity

Ιωάννης-Απόλλων Παρασκευάς

Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Μαθηματικών

Νοέμβριος 2023

1 Matrix Convexity

2 Compact Matrix Convex Sets

3 Krein-Milman in Matrix Convexity

Definition

A matrix convex set $\mathbf{K} = \{K_n\}_{n \in \mathbb{N}}$ in a vector space V is a collection of non-empty convex sets $K_n \subseteq M_n(V)$ such that:

- For $a \in M_{r,n}$ with $a^*a = 1$ we have $a^*K_ra \subseteq K_n$
- For $m, n \in \mathbb{N}$ we have

$$K_m \oplus K_n := \left\{ \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} : \text{ where } x \in K_n \text{ and } y \in K_m \right\} \subseteq K_{m+n}.$$

Proposition

A collection $\mathbf{K} = \{K_n\}_n$ where $K_n \subseteq M_n(V)$, is a matrix convex set of V if and only if

$$\sum_{i=1}^k \gamma_i^* u_i \gamma_i \in K_n,$$

for all $u_i \in K_{n_i}$ and $\gamma_i \in M_{n_i,n}$ such that $\sum_{i=1}^k \gamma_i^* \gamma_i = I_n$. We call the element $\sum_{i=1}^k \gamma_i^* u_i \gamma_i$ a matrix convex combination.

Theorem

Let V, V' be in duality and let $\mathbf{K} = \{K_n\}_n$ be a closed matrix convex set of V with $0 \in K_1$. For any $u_0 \notin K_n$ there exists a weakly continuous $\phi : V \to M_n$ such that $\operatorname{Re}(\phi_r | K_r) \leq I_n \otimes I_r$ for all $r \in \mathbb{N}$ and $\operatorname{Re}(\phi(u_0)) \notin I_n \otimes I_n$.

Definition

Let $B(\mathcal{H})$ denote the bounded operators of a Hilbert space $\mathcal{H}.$

- A closed linear subspace $V \subseteq B(\mathcal{H})$ will be called an operator space.
- An operator space $S \subseteq B(\mathcal{H})$ that is self-adjoint and contains the identity operator will be called a (unital) operator system.
- The space $M_n(V)$ inherits a norm from $M_n(B(\mathcal{H}))$ and $M_n(S)$ also inherits a positive cone of elements $C_n = \{x \in M_n(S) : x \in M_n(B(\mathcal{H}))^+\}.$

Definition

Let V, W be vector spaces and $\mathbf{K} = \{K_n\}_n$ be a matrix convex set. A matrix affine mapping on \mathbf{K} is a sequence $\theta = \{\theta_n\}_n$ of mappings $\theta_n : K_n \to M_n(W)$ such that

$$\theta_n\left(\sum_{i=1}^k\gamma_i^*v_i\gamma_i\right)=\sum_{i=1}^k\gamma_i^*\theta_{n_i}(v_i)\gamma_i,$$

for all $v_i \in K_{n_i}$ and $\gamma_i \in M_{n_i,n}$ satisfying $\sum_{i=1}^k \gamma_i^* \gamma_i = I_n$.

Example

Let R be an operator system and consider the collection $\mathbf{CS}(R) = \{CS_n(R)\}_n$ where

 $CS_n(R):=\{\phi:R\to M_n:\phi\text{ is completely positive and unital}\}.$

We can consider ${\cal CS}_n(R)$ to be a subset of ${\cal M}_n(R^d)$ via the identification

 $\phi = [\phi_{ij}],$

where

$$\phi_{ij}(x)=e_i^*\phi(x)e_j, \text{ for } x\in R,$$

and e_j is the column matrix with 1 on the *j*-th coordinate and 0 elsewhere. Then CS(R) is a compact matrix convex set of R^d .

Compact Matrix Convex Sets

• Let $\mathbf{K} = \{K_n\}_n$ be a matrix convex set, we define $A(\mathbf{K}, M_r)$ to be the set of all matrix affine mappings

$$F = \{F_n\}_n \text{ where } F_n: K_n \to M_n(M_r),$$

such that F_1 is continuous.

• $A(\mathbf{K}, M_r)$ becomes a *-vector space if we define the *-operation $F^* = \{F_n^*\}_n$ where

$$F_n^*(v) = F_n(v)^*$$
, for every $v \in K_n$ and $n \in \mathbb{N}$.

• We say that $F \ge 0$ in $A(\mathbf{K}, M_r)$ if

 $F_n(v) \ge 0$ for all $v \in K_n$ and $n \in \mathbb{N}$.

Compact Matrix Convex Sets

- We define $E = \{E_n\}_n$ in $A(\mathbf{K}, \mathbb{C})$ where $E_n(v) = I_n \in M_n$ for every $v \in K_n$ and $n \in \mathbb{N}$.
- We identify $M_r(A(\mathbf{K}, \mathbb{C}))$ with $A(\mathbf{K}, M_r)$ where for $F = [F_{ij}] \in M_r(A(\mathbf{K}, \mathbb{C}))$ and $v \in K_n$ we have

 $F_n(v) = [(F_{ij})_n(v)].$

- We use the ordering of $A(\mathbf{K}, M_r)$ to define a positive cone in $M_r(A(\mathbf{K}, \mathbb{C})).$
- Then *A*(**K**, ℂ) becomes an (abstract) operator system with *E* as an Archimedean matrix order unit, which we will simply denote by *A*(**K**).

Theorem

Let R be an operator system, then there exists a unital complete order isomorphism $\psi : R \to A(\mathbf{CS}(R))$.

Theorem

Let **K** be a compact matrix convex set in a locally convex space V, then the spaces **K** and CS(A(K)) are matrix affinely homeomorphic.

Example

The matrix interval $[aI, bI] = \{[aI_n, bI_n]\}_n$ where for each n we have $[aI_n, bI_n] = \{x \in M_n : aI_n \le x \le bI_n\}$ is a compact matrix convex set of \mathbb{C} .

Proposition

Suppose that $\mathbf{K} = \{K_n\}_n$ is a matrix convex set of \mathbb{C} and K_1 is a compact subset of \mathbb{R} . Then

$$\mathbf{K} = [aI, bI],$$

for some $a, b \in \mathbb{R}$.

Proof.

- Since K₁ is a non-empty, convex and compact subset of ℝ it must be a closed interval of the form [a,b] for some a < b in ℝ.</p>
- Suppose that $\gamma \in K_n$ and let ξ be a unit vector in \mathbb{C}^n and consider it as a column matrix $\xi = \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix}$.

• Then $\xi^* \xi = 1$ and

$$\langle \gamma \xi, \xi \rangle = \xi^* \gamma \xi \in K_1 = [a,b]$$

and thus $aI_n \leq \gamma \leq bI_n.$

• Conversely, if $aI_n \leq \gamma \leq bI_n$ for some matrix γ in M_n , we may pick a unitary U and scalars $\lambda_i \in [a, b]$ such that

$$\gamma = U^*(\lambda_1 \oplus \cdots \oplus \lambda_n) U$$

and therefore $\gamma \in K_n$.

Definition

Let K be a convex set in some vector space V. We say that a point $v \in K$ is extreme if whenever we write

$$v = \sum_{i=1}^k \lambda_i v_i,$$

where $v_i \in K$ and $0 < \lambda_i < 1$ for i = 1, ..., n then $v_i = v$ for all i = 1, ..., n. We denote the set of extreme points of K by ext(K).

• For a set $S \subseteq V$ we denote by co(S) the smallest convex subset of V that contains S.

Theorem

Krein-Milman in Matrix Convexity Let K be a compact convex set in some locally convex space V. Then

 $\overline{\mathrm{co}}(\mathrm{ext}(K))=K.$

 In particular, ext(K) is non-empty for a non-empty compact convex set K in a locally convex space.

Definition

Let K be a convex subset of a vector space V. We say that a convex set $F \subseteq K$ is a face of K if for all $x, y \in K$ and $0 < \lambda < 1$ whenever $\lambda x + (1 - \lambda)y \in F$ then $x, y \in F$.

- If $x \in \text{ext}(K)$ for some convex set K, then $F = \{x\}$ is a face of K.
- If F is a face of a convex set K, then $ext(F) \subseteq ext(K)$.
- Suppose that K, C are convex sets and that f : K → C is an affine map. If F is a face of C then f⁻¹(F) is a face of K.

Definition

• Let **K** be a matrix convex set. We say that a matrix convex combination

$$v = \sum_{i=1}^{k} \gamma_i^* v_i \gamma_i,$$

where $v_i \in K_{n_i}$ and $\gamma_i \in M_{n_i,n}$ such that $\sum_{i=1}^k \gamma_i^* \gamma_i = I_n$, is proper if each γ_i has a right inverse in M_{n,n_i} .

- We say that $v \in K_n$ is matrix extreme point if whenever v is a proper matrix convex combination as above then each $n_i = n$ and $v = u_i^* v_i u_i$ for unitaries $u_i \in M_n$,
- We denote by ∂K_n the (possibly empty) set of matricial extreme points in K_n and set $\partial \mathbf{K} = {\partial K_n}_n$.

Krein-Milman in Matrix Convexity

- We observe that for n = 1 the matrix extreme points of K₁ are exactly the extreme points of K₁.
- Indeed, let $v \in K_1$ be a matrix extreme point and suppose that

$$v = \sum_{i=1}^k \lambda_i v_i,$$

for some $v_i \in V$ and $0 < \lambda_i < 1$.

• Set $\gamma_i = \sqrt{\lambda_i}$ and thus

$$v = \sum_{i=1}^{k} \overline{\gamma_i} v_i \gamma_i,$$

where $\sum_{i=1}^{k} \overline{\gamma_i} \gamma_i = 1$.

Since v is matrix extreme, for each i there exists a $\mu_i\in\mathbb{C}$ such that $|\mu_i|^2=1$ and

$$\overline{\mu_i}v_i\mu_i=v\iff v_i=v.$$

- The converse is similar.
- If **K** is compact matrix convex set, we obtain by the Krein-Milman theorem that ∂K_1 is non-empty.
- This is not always the case for ∂K_n for n > 1.

Example

Let a, b be in \mathbb{R} where a < b and $[aI, bI] = \{[aI_n, bI_n]_n\}_n$. Then

$$\partial [aI_n, bI_n] = \begin{cases} \{a, b\} & \text{if } n = 1, \\ \emptyset & \text{if } n > 1. \end{cases}$$

Indeed,

$$\partial[a,b] = \operatorname{ext}([a,b]) = \{a,b\}.$$

For n > 1 let v be in $[aI_n, bI_n]$ then

 $v = U^*(\lambda_1 \oplus \dots \oplus \lambda_n) U$

for some unitary $U \in M_n$ and $\lambda_i \in [a, b]$.

Example

We may write

$$U = \begin{bmatrix} \gamma_1 \\ \vdots \\ \gamma_n \end{bmatrix}, \text{ for some } \gamma_i \in M_{1,n}.$$

Since U is a unitary we obtain that

$$\sum_{i=1}^n \gamma_i^* \lambda_i \gamma_i = v$$

is a proper matrix convex combination and therefore v is not a matrix extreme point.

Proposition

Let **K** be a compact matrix convex set of a locally convex space V. If v is a matrix extreme point in K_n , then v is also an extreme point of K_n .

Definition

Let $S_n \subseteq M_n(V)$ for each $n \ge 1$ for some locally convex space V and $\mathbf{S} = \{S_n\}_n$. We define the closed matrix convex hull $\overline{\mathrm{co}}(\mathbf{S})$ to be the smallest closed matrix convex set containing \mathbf{S} .

• If $\overline{co}(S) = \{K_n\}_n$ then each K_n is the closure of the set of all elements $v \in M_n(V)$ of the form

$$v = \sum_{i=1}^k \gamma_i^* v_i \gamma_i,$$

where $v_i \in K_{n_i}$ and $\gamma_i \in M_{n_i,n}$ such that $\sum_{i=1}^k \gamma_i^* \gamma_i = I_n$.

Example

We already saw that that the matrix extreme points of the matrix convex set $[aI, bI] = \{[aI_n, bI_n]\}_n$ are

$$\partial [aI_n, bI_n] = \begin{cases} \{a, b\} & \text{if } n = 1, \\ \emptyset & \text{if } n > 1. \end{cases}$$

Since $\overline{\operatorname{co}}(\partial[aI, bI])_1 = [a, b]$ and $\overline{\operatorname{co}}(\partial[aI, bI])$ is a matrix convex set we obtain that $\overline{\operatorname{co}}(\partial[aI, bI]) = [aI, bI]$.

• The above is just an example of the following theorem.

Theorem

Let **K** be a compact matrix convex set of a locally convex space V and let $\partial \mathbf{K} = \{\partial K_n\}_n$. Then $\partial \mathbf{K}$ is non-empty and

 $\overline{\mathrm{co}}(\partial \mathbf{K}) = \mathbf{K}.$

• The essential idea of the proof is to perform a reduction to the classical Krein-Milman theorem. In order to do so we have to introduce some convex sets related to **K**.

Definition

Let K be compact matrix convex set of a locally convex space V, we define $\Delta_n({\bf K})$ to be the subset of $M_n(V)$ such that

$$\Delta_n(\mathbf{K}) = \{\xi^* v \xi : v \in K_r, \xi \in M_{r,n}, \|\xi\|_2 = 1, r \in \mathbb{N}\},$$

where $\|.\|_2$ is the Hilbert-Schmidt norm.

- We may pick ξ to be right-invertible and also r ≤ n. Indeed, let s be the dimension of the range of ξ ∈ M_{r,n} and let α ∈ M_{r,s} be an isometry of C^s onto the range of ξ.
- Then, for $v \in K_r$ we have that

$$\xi^* v \xi = (\alpha^* \xi)^* (\alpha^* v \alpha) (\alpha^* \xi)$$

and $\alpha^* \xi \in M_{s,n}$ and also $\alpha^* \xi$ is right-invertible.

■ Therefore,

$$\Delta_n(\mathbf{K}) = \{\xi^* v \xi : v \in K_r, \xi \in M_{r,n}, \|\xi\|_2 = 1, r \le n\}$$

and hence it follows that $\Delta_n(\mathbf{K})$ is compact as a finite union of compact sets.

• We prove now that $\Delta_n(\mathbf{K})$ is a convex set.

Krein-Milman in Matrix Convexity

Let ξ^{*}vξ and η^{*}wη be in Δ_n(K) where v ∈ K_r and w ∈ K_s and ξ ∈ M_{r,n} and η ∈ M_{s,n} satisfying ||ξ||₂ = ||η||₂ = 1 and 0 ≤ t ≤ 1.
 We have that

$$\begin{split} & t\xi^* v\xi + (1-t)\eta^* w\eta \\ & = \begin{bmatrix} t^{1/2}\xi^* & (1-t)^{1/2}\eta^* \end{bmatrix} \begin{bmatrix} v & 0 \\ 0 & w \end{bmatrix} \begin{bmatrix} t^{1/2}\xi \\ (1-t)^{1/2}\eta \end{bmatrix} \end{split}$$

where

$$\left\| \begin{bmatrix} t^{1/2}\xi \\ (1-t)^{1/2}\eta \end{bmatrix} \right\|_2^2 = t \|\xi\|_2^2 + (1-t)\|\eta\|_2^2 = 1.$$

Lemma

Let R be an operator system and let $\bar{\varphi}$ be an extreme point of $\Delta_n(\mathbf{CS}(R))$, then there exists a matrix extreme point $\varphi \in CS_r(R)$ for some $r \in \mathbb{N}$ and a right-invertible element $\xi \in M_{r,n}$ with $\|\xi\|_2 = 1$ such that

$$\bar{\varphi} = \xi^* \varphi \xi.$$

Proof.

• Let $\bar{\varphi}$ be an extreme point of $\Delta_n(\mathbf{CS}(R))$, then there exist a right-invertible $\xi \in M_{r,n}$ with $\|\xi\|_2 = 1$ and $\varphi \in CS_r(R)$ for some $r \in \mathbb{N}$ such that

$$\bar{\varphi} = \xi^* \varphi \xi$$

• We will prove that φ is a matrix extreme point.

Krein-Milman in Matrix Convexity

• Assume that φ is written as a proper matrix convex combination

$$\varphi = \sum_{i=1}^k \gamma_i^* \varphi_i \gamma_i,$$

where $\gamma_i \in M_{r_i,r}$ and $\varphi_i \in CS_{r_i}(R)$ for $i=1,\ldots,k.$

• Set $t_i = \|\gamma_i \xi\|_2^2$, then $t_i \neq 0$, since both γ_i and ξ have right-inverses and we have that

$$\bar{\varphi} = \xi^* \varphi \xi = \sum_{i=1}^k \xi^* \gamma_i^* \varphi_i \gamma_i \xi = \sum_{i=1}^k t_i \frac{(\gamma_i \xi)^*}{\|\gamma_i \xi\|_2} \varphi_i \frac{(\gamma_i \xi)}{\|\gamma_i \xi\|_2},$$

and also

$$\sum_{i=1}^k t_i = \sum_{i=1}^k \|\gamma_i \xi\|_2^2 = \sum_{i=1}^k \mathrm{Tr}(\xi^* \gamma_i^* \gamma_i \xi) = \mathrm{Tr}(\xi^* \xi) = \|\xi\|_2^2 = 1.$$

Since $\bar{\varphi}$ is an extreme point we obtain that

$$\xi^*\varphi\xi=\|\gamma_i\xi\|_2^{-2}(\gamma_i\xi)^*\varphi_i(\gamma_i\xi)$$

and using the fact that ξ has a right-inverse we have

$$\varphi \| \gamma_i \xi \|_2^2 = \gamma_i^* \varphi_i \gamma_i.$$

• Note that φ and φ_i are unital and therefore

$$I_r \|\gamma_i \xi\|_2^2 = \gamma_i^* \gamma_i$$

and hence $\|\gamma_i \xi\|_2^{-1} \gamma_i$ is an isometry.

- Thus, γ_i is both injective and surjective for i = 1, ..., k which implies that $r = r_1 = \dots = r_k$.
- We also have that

$$\varphi = \frac{\gamma_i^*}{\|\gamma_i\xi\|_2} \varphi_i \frac{\gamma_i}{\|\gamma_i\xi\|_2},$$

where $\|\gamma_i \xi\|_2^{-1} \gamma_i$ is a surjective isometry i.e. a unitary for $i = 1, \dots, k$.

• Hence φ is a matrix extreme point and the proof is complete.

Lemma

Let **K** be compact matrix convex set of a locally convex space V. If \bar{v} is an extreme point of $\Delta_n(\mathbf{K})$, then there exists a matrix extreme point $v \in K_r$ for some $r \in \mathbb{N}$ and a right-invertible element $\xi \in M_{r,n}$ with $\|\xi\|_2 = 1$ such that

$$\bar{v} = \xi^* v \xi.$$

Proof.

• There exists an operator system R and a matrix affine homeomorphism $\theta = \{\theta_n\}_n$ of CS(R) onto K.

• It suffices to prove that $\Gamma: \Delta_n(\mathbf{CS}(R)) \to \Delta_n(\mathbf{K})$ is well-defined and continuous affine surjection where

$$\Gamma(\xi^*\varphi\xi)=\xi^*\theta_r(\phi)\xi,$$

for $\varphi \in CS_r(R)$ and $\xi \in M_{r,n}$ satisfying $\|\xi\|_2 = 1.$

Indeed, in that case if v
∈ Δ_n(K) is an extreme point then Γ⁻¹(v
is a compact face of Δ_n(CS(R)). By the Krein-Milman theorem, this set has an extreme point which is also an extreme point of Δ_n(CS(R)) and since θ preserves matrix extreme points, from the preceding lemma we are done.

Krein-Milman in Matrix Convexity

• Note that if $\varphi \in CS_r(R)$ and $\xi \in M_{r,n}$ as before we may pick an isometry $\alpha \in M_{r,s}$ such that $s \leq n$ and $\alpha \alpha^* \xi = \xi$ and in that case we have that

$$\xi^*\theta_r(\varphi)\xi=\xi^*\alpha\alpha^*\theta_r(\varphi)\alpha\alpha^*\xi=\xi^*\alpha\theta_s(\alpha^*\varphi\alpha)\alpha^*\xi.$$

• Thus, in order to prove that Γ is well-defined we may pick

$$\xi^*\varphi\xi = \eta^*\psi\eta,$$

where $\varphi \in CS_r(R)$ and $\psi \in CS_t(R)$ and right-invertible elements $\xi \in M_{r,n}$ and $\eta \in M_{t,n}$ where $\|\xi\|_2 = \|\eta\|_2 = 1$ and show that

$$\Gamma(\xi^*\varphi\xi) = \Gamma(\eta^*\psi\eta).$$

Thus,

$$\varphi = (\eta\xi^{-1})^*\psi(\eta\xi^{-1})$$

and since φ and ψ are unital $\eta \xi^{-1}$ is an isometry.

We have that

$$\theta_r(\varphi) = \theta_r((\eta\xi^{-1})^*\psi(\eta\xi^{-1})) = (\eta\xi^{-1})^*\theta_t(\psi)(\eta\xi^{-1}).$$

• Since $\xi^* \xi = \eta^* \eta$ and η^* is left-invertible we have that

$$\begin{split} \xi^* \xi \xi^{-1} \xi &= \xi^* \xi \iff \eta^* \eta \xi^{-1} \xi = \eta^* \eta \\ \iff \eta \xi^{-1} \xi = \eta \end{split}$$

■ Therefore,

$$\xi^*\theta_r(\varphi)\xi=\eta^*\theta_t(\psi)\eta,$$

as desired.

Krein-Milman in Matrix Convexity

- The fact that Γ is affine and surjective is immediate.
- To see that Γ is continuous consider a convergent net

$$\xi_{\lambda}^{*}\varphi_{\lambda}\xi_{\lambda} \to \xi^{*}\varphi\xi$$

in $\Delta_n(\mathbf{CS}(R))$, where $\varphi_\lambda \in CS_{r_\lambda}(R)$ and $\varphi \in CS_r(R)$ and $\xi_\lambda \in M_{r_\lambda,n}$ and $\xi \in M_{r,n}$ are right-invertible.

• Set $\eta_{\lambda} := \xi_{\lambda} \xi^{-1}$, since φ_{λ} and φ are unital we obtain that

$$\eta^*_\lambda\eta_\lambda\to I_r$$

and therefore there exists a λ_0 such that for each $\lambda \ge \lambda_0$ we have that $\eta_{\lambda}^* \eta_{\lambda}$ is invertible.

Krein-Milman in Matrix Convexity

If η_λ = ν_λ |η_λ| is the polar decomposition of η_λ, then |η_λ| is surjective for λ ≥ λ₀ and hence ν_λ becomes an isometry.

Since
$$\nu_{\lambda} - \eta_{\lambda} \to 0$$
 we obtain that

$$\nu_{\lambda}^{*}\varphi_{\lambda}\nu_{\lambda} = \eta_{\lambda}^{*}\varphi_{\lambda}\eta_{\lambda} + (\nu_{\lambda} - \eta_{\lambda})^{*}\varphi_{\lambda}\nu_{\lambda} + \eta_{\lambda}^{*}\varphi_{\lambda}(\nu_{\lambda} - \eta_{\lambda}) \rightarrow \varphi.$$

• Then continuity of θ_r yields

$$\eta_{\lambda}^{*}\theta_{r_{\lambda}}(\varphi_{\lambda})\eta_{\lambda} = |\eta_{\lambda}|\theta_{r}(\nu_{\lambda}^{*}\varphi_{\lambda}\nu_{\lambda})|\eta_{\lambda}| \rightarrow I_{r}\theta_{r}(\varphi)I_{r} = \theta_{r}(\varphi),$$

equivalently

$$\Gamma(\xi_{\lambda}^{*}\varphi_{\lambda}\xi_{\lambda}) = \xi_{\lambda}^{*}\theta_{r_{\lambda}}(\varphi_{\lambda})\xi_{\lambda} \to \xi^{*}\theta_{r}(\varphi)\xi = \Gamma(\xi^{*}\varphi\xi).$$

Theorem

Let **K** be a compact matrix convex set of a locally convex space V and let $\partial \mathbf{K} = \{\partial K_n\}_n$. Then $\partial \mathbf{K}$ is non-empty and

$$\overline{\mathrm{co}}(\partial \mathbf{K}) = \mathbf{K}.$$

Proof.

- Since ∂K_1 coincides with the usual extreme points of the compact convex set K_1 , Krein-Milman theorem implies that ∂K_1 is non-empty and hence $\partial \mathbf{K}$ is non-empty.
- Clearly $\partial \mathbf{K} \subseteq \mathbf{K}$.
- Without loss of generality by translating ∂K_n by $v \otimes I_n$ where $v \in \partial K_1$ we may assume that $0 \in \overline{\operatorname{co}}(\partial \mathbf{K})$.

Krein-Milman in Matrix Convexity

- For the converse inclusion suppose that there exists $v_0 \in K_n \backslash \overline{\mathrm{co}}(\partial \mathbf{K})_n$
- By the bipolar theorem there exists a weakly continuous linear mapping $\Phi:V\to M_n$ such that

$$\operatorname{Re}(\Phi_r(v)) \leq I_n \otimes I_r, \text{ for all } v \in \overline{\operatorname{co}}(\partial \mathbf{K})_r \text{ and } r \in \mathbb{N},$$

and

$$\operatorname{Re}(\Phi_n(v_0)) \not\leq I_n \otimes I_n.$$

 Then Φ induces a continuous linear functional $F:M_n(V)\to \mathbb{C}$ such that

$$F(\eta^* v \xi) = \left< \Phi_r(v) \xi, \eta \right>,$$

for $v \in M_r(V)$ and $\xi, \eta \in M_{r,n}$ considered as vectors of \mathbb{C}^{rn} on the right-hand side of the equality.

 \blacksquare Let \bar{v} be an extreme point of $\Delta_n(\mathbf{K})$ then from the previous lemma we may write

$$\bar{v} = \xi^* v \xi,$$

where $v \in \partial K_r$ and $\xi \in M_{r,n}$ with $\|\xi\|_2 = 1$ and $r \le n$. • Therefore, we have that

$$\begin{split} &\operatorname{Re} F(\bar{v}) = \operatorname{Re} F(\xi^* v\xi) = \operatorname{Re} \left< \Phi_r(v)\xi,\xi \right> \\ &= \left< \operatorname{Re} (\Phi_r(v))\xi,\xi \right> \leq \left< \xi,\xi \right> = \|\xi\|_2^2 = 1, \end{split}$$

for all extreme points \bar{v} of $\Delta_n(\mathbf{K})$.

Krein-Milman in Matrix Convexity

Since $\Delta_n(\mathbf{K})$ is compact by the Krein-Milman theorem we obtain that

 $\operatorname{Re} F(\Delta_n(\mathbf{K})) \leq 1.$

Thus, for each unit vector $\xi = (\xi_1, \dots, \xi_n) \in (\mathbb{C}^n)^n$ where $\xi_i \in \mathbb{C}^n$ we have that

$$\begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix}^* v_0 \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix} \in \Delta_n(\mathbf{K}),$$

and hence

$$\operatorname{Re} \left< \Phi_n(v_0)\xi,\xi \right> = \operatorname{Re} F\left(\begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix}^* v_0 \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix} \right) \leq 1$$

which implies that $\mathrm{Re}(\Phi_n(v_0)) \leq I_n \otimes I_n,$ a contradiction.

Theorem

Let **K** be a compact matrix convex set in a locally convex space V and let $\mathbf{S} = \{S_n\}_n$ be a collection of closed subsets $S_n \subseteq K_n$ such that $\nu^* S_m \nu \subseteq S_n$ for all isometries $\nu \in M_{m,n}$. If $\overline{\operatorname{co}}(\mathbf{S}) = \mathbf{K}$ then

 $\partial \mathbf{K} \subseteq \mathbf{S}.$

Σας ευχαριστώ πολύ!