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Matrix Convexity

Definition
A matrix convex set K = {𝐾𝑛}𝑛∈ℕ in a vector space 𝑉 is a collection of
non-empty convex sets 𝐾𝑛 ⊆ 𝑀𝑛(𝑉 ) such that:

For 𝑎 ∈ 𝑀𝑟,𝑛 with 𝑎∗𝑎 = 1 we have 𝑎∗𝐾𝑟𝑎 ⊆ 𝐾𝑛
For 𝑚,𝑛 ∈ ℕ we have

𝐾𝑚 ⊕𝐾𝑛 ∶= {[𝑥 0
0 𝑦] ∶ where 𝑥 ∈ 𝐾𝑛 and 𝑦 ∈ 𝐾𝑚} ⊆ 𝐾𝑚+𝑛.
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Matrix Convexity

Proposition

A collection K = {𝐾𝑛}𝑛 where 𝐾𝑛 ⊆ 𝑀𝑛(𝑉 ), is a matrix convex set
of 𝑉 if and only if

𝑘
∑
𝑖=1

𝛾∗
𝑖 𝑢𝑖𝛾𝑖 ∈ 𝐾𝑛,

for all 𝑢𝑖 ∈ 𝐾𝑛𝑖
and 𝛾𝑖 ∈ 𝑀𝑛𝑖,𝑛 such that ∑𝑘

𝑖=1 𝛾∗
𝑖 𝛾𝑖 = 𝐼𝑛.

We call the element ∑𝑘
𝑖=1 𝛾∗

𝑖 𝑢𝑖𝛾𝑖 a matrix convex combination.
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Matrix Convexity

Theorem
Let 𝑉 , 𝑉 ′ be in duality and let K = {𝐾𝑛}𝑛 be a closed matrix convex
set of 𝑉 with 0 ∈ 𝐾1. For any 𝑢0 ∉ 𝐾𝑛 there exists a weakly
continuous 𝜙 ∶ 𝑉 → 𝑀𝑛 such that Re(𝜙𝑟|𝐾𝑟) ≤ 𝐼𝑛 ⊗𝐼𝑟 for all 𝑟 ∈ ℕ
and Re(𝜙(𝑢0)) ≰ 𝐼𝑛 ⊗𝐼𝑛.
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Matrix Convexity

Definition
Let 𝐵(ℋ) denote the bounded operators of a Hilbert space ℋ.

A closed linear subspace 𝑉 ⊆ 𝐵(ℋ) will be called an operator
space.
An operator space 𝑆 ⊆ 𝐵(ℋ) that is self-adjoint and contains the
identity operator will be called a (unital) operator system.

The space 𝑀𝑛(𝑉 ) inherits a norm from 𝑀𝑛(𝐵(ℋ)) and 𝑀𝑛(𝑆)
also inherits a positive cone of elements
𝐶𝑛 = {𝑥 ∈ 𝑀𝑛(𝑆) ∶ 𝑥 ∈ 𝑀𝑛(𝐵(ℋ))+}.
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Matrix Convexity

Definition
Let 𝑉 , 𝑊 be vector spaces and K = {𝐾𝑛}𝑛 be a matrix convex set. A
matrix affine mapping on K is a sequence 𝜃 = {𝜃𝑛}𝑛 of mappings
𝜃𝑛 ∶ 𝐾𝑛 → 𝑀𝑛(𝑊) such that

𝜃𝑛 (
𝑘

∑
𝑖=1

𝛾∗
𝑖 𝑣𝑖𝛾𝑖) =

𝑘
∑
𝑖=1

𝛾∗
𝑖 𝜃𝑛𝑖

(𝑣𝑖)𝛾𝑖,

for all 𝑣𝑖 ∈ 𝐾𝑛𝑖
and 𝛾𝑖 ∈ 𝑀𝑛𝑖,𝑛 satisfying ∑𝑘

𝑖=1 𝛾∗
𝑖 𝛾𝑖 = 𝐼𝑛.
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Compact Matrix Convex Sets

Example

Let 𝑅 be an operator system and consider the collection
CS(𝑅) = {𝐶𝑆𝑛(𝑅)}𝑛 where

𝐶𝑆𝑛(𝑅) ∶= {𝜙 ∶ 𝑅 → 𝑀𝑛 ∶ 𝜙 is completely positive and unital}.

We can consider 𝐶𝑆𝑛(𝑅) to be a subset of 𝑀𝑛(𝑅𝑑) via the
identification

𝜙 = [𝜙𝑖𝑗],
where

𝜙𝑖𝑗(𝑥) = 𝑒∗
𝑖𝜙(𝑥)𝑒𝑗, for 𝑥 ∈ 𝑅,

and 𝑒𝑗 is the column matrix with 1 on the 𝑗-th coordinate and 0
elsewhere. Then CS(𝑅) is a compact matrix convex set of 𝑅𝑑.
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Compact Matrix Convex Sets

Let K = {𝐾𝑛}𝑛 be a matrix convex set, we define 𝐴(K,𝑀𝑟) to be
the set of all matrix affine mappings

𝐹 = {𝐹𝑛}𝑛 where 𝐹𝑛 ∶ 𝐾𝑛 → 𝑀𝑛(𝑀𝑟),

such that 𝐹1 is continuous.
𝐴(K,𝑀𝑟) becomes a ∗-vector space if we define the ∗-operation
𝐹 ∗ = {𝐹 ∗

𝑛}𝑛 where

𝐹 ∗
𝑛(𝑣) = 𝐹𝑛(𝑣)∗, for every 𝑣 ∈ 𝐾𝑛 and 𝑛 ∈ ℕ.

We say that 𝐹 ≥ 0 in 𝐴(K,𝑀𝑟) if

𝐹𝑛(𝑣) ≥ 0 for all 𝑣 ∈ 𝐾𝑛 and 𝑛 ∈ ℕ.



10/45

Compact Matrix Convex Sets

We define 𝐸 = {𝐸𝑛}𝑛 in 𝐴(K,ℂ) where 𝐸𝑛(𝑣) = 𝐼𝑛 ∈ 𝑀𝑛 for
every 𝑣 ∈ 𝐾𝑛 and 𝑛 ∈ ℕ.
We identify 𝑀𝑟(𝐴(K,ℂ)) with 𝐴(K,𝑀𝑟) where for
𝐹 = [𝐹𝑖𝑗] ∈ 𝑀𝑟(𝐴(K,ℂ)) and 𝑣 ∈ 𝐾𝑛 we have

𝐹𝑛(𝑣) = [(𝐹𝑖𝑗)𝑛(𝑣)].

We use the ordering of 𝐴(K,𝑀𝑟) to define a positive cone in
𝑀𝑟(𝐴(K,ℂ)).
Then 𝐴(K,ℂ) becomes an (abstract) operator system with 𝐸 as an
Archimedean matrix order unit, which we will simply denote by
𝐴(K).
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Compact Matrix Convex Sets

Theorem
Let 𝑅 be an operator system, then there exists a unital complete order
isomorphism 𝜓 ∶ 𝑅 → 𝐴(CS(𝑅)).

Theorem
Let K be a compact matrix convex set in a locally convex space 𝑉 , then
the spaces K and CS(𝐴(K)) are matrix affinely homeomorphic.
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Compact Matrix Convex Sets

Example

The matrix interval [𝑎𝐼,𝑏𝐼] = {[𝑎𝐼𝑛, 𝑏𝐼𝑛]}𝑛 where for each 𝑛 we have
[𝑎𝐼𝑛, 𝑏𝐼𝑛] = {𝑥 ∈ 𝑀𝑛 ∶ 𝑎𝐼𝑛 ≤ 𝑥 ≤ 𝑏𝐼𝑛} is a compact matrix convex set
of ℂ.
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Compact Matrix Convex Sets

Proposition

Suppose that K = {𝐾𝑛}𝑛 is a matrix convex set of ℂ and 𝐾1 is a
compact subset of ℝ. Then

K = [𝑎𝐼,𝑏𝐼],

for some 𝑎,𝑏 ∈ ℝ.

Proof.
Since 𝐾1 is a non-empty, convex and compact subset of ℝ it must
be a closed interval of the form [𝑎,𝑏] for some 𝑎 < 𝑏 in ℝ.
Suppose that 𝛾 ∈ 𝐾𝑛 and let 𝜉 be a unit vector in ℂ𝑛 and consider

it as a column matrix 𝜉 = ⎡⎢
⎣

𝜉1
⋮

𝜉𝑛

⎤⎥
⎦
.
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Compact Matrix Convex Sets

Then 𝜉∗𝜉 = 1 and

⟨𝛾𝜉,𝜉⟩ = 𝜉∗𝛾𝜉 ∈ 𝐾1 = [𝑎,𝑏]

and thus 𝑎𝐼𝑛 ≤ 𝛾 ≤ 𝑏𝐼𝑛.
Conversely, if 𝑎𝐼𝑛 ≤ 𝛾 ≤ 𝑏𝐼𝑛 for some matrix 𝛾 in 𝑀𝑛, we may
pick a unitary 𝑈 and scalars 𝜆𝑖 ∈ [𝑎,𝑏] such that

𝛾 = 𝑈 ∗(𝜆1 ⊕⋯⊕𝜆𝑛)𝑈

and therefore 𝛾 ∈ 𝐾𝑛.
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Krein-Milman in Matrix Convexity

Definition
Let 𝐾 be a convex set in some vector space 𝑉 . We say that a point
𝑣 ∈ 𝐾 is extreme if whenever we write

𝑣 =
𝑘

∑
𝑖=1

𝜆𝑖𝑣𝑖,

where 𝑣𝑖 ∈ 𝐾 and 0 < 𝜆𝑖 < 1 for 𝑖 = 1,…,𝑛 then 𝑣𝑖 = 𝑣 for all
𝑖 = 1,…,𝑛. We denote the set of extreme points of 𝐾 by ext(𝐾).

For a set 𝑆 ⊆ 𝑉 we denote by co(𝑆) the smallest convex subset of
𝑉 that contains 𝑆.
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Theorem
Krein-Milman in Matrix Convexity Let 𝐾 be a compact convex set in
some locally convex space 𝑉 . Then

co(ext(𝐾)) = 𝐾.

In particular, ext(𝐾) is non-empty for a non-empty compact
convex set 𝐾 in a locally convex space.
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Krein-Milman in Matrix Convexity

Definition
Let 𝐾 be a convex subset of a vector space 𝑉 . We say that a convex set
𝐹 ⊆ 𝐾 is a face of 𝐾 if for all 𝑥,𝑦 ∈ 𝐾 and 0 < 𝜆 < 1 whenever
𝜆𝑥+(1−𝜆)𝑦 ∈ 𝐹 then 𝑥,𝑦 ∈ 𝐹 .

If 𝑥 ∈ ext(𝐾) for some convex set 𝐾, then 𝐹 = {𝑥} is a face of 𝐾.
If 𝐹 is a face of a convex set 𝐾, then ext(𝐹) ⊆ ext(𝐾).
Suppose that 𝐾,𝐶 are convex sets and that 𝑓 ∶ 𝐾 → 𝐶 is an affine
map. If 𝐹 is a face of 𝐶 then 𝑓−1(𝐹) is a face of 𝐾.
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Krein-Milman in Matrix Convexity

Definition

Let K be a matrix convex set. We say that a matrix convex
combination

𝑣 =
𝑘

∑
𝑖=1

𝛾∗
𝑖 𝑣𝑖𝛾𝑖,

where 𝑣𝑖 ∈ 𝐾𝑛𝑖
and 𝛾𝑖 ∈ 𝑀𝑛𝑖,𝑛 such that ∑𝑘

𝑖=1 𝛾∗
𝑖 𝛾𝑖 = 𝐼𝑛, is

proper if each 𝛾𝑖 has a right inverse in 𝑀𝑛,𝑛𝑖
.

We say that 𝑣 ∈ 𝐾𝑛 is matrix extreme point if whenever 𝑣 is a
proper matrix convex combination as above then each 𝑛𝑖 = 𝑛 and
𝑣 = 𝑢∗

𝑖𝑣𝑖𝑢𝑖 for unitaries 𝑢𝑖 ∈ 𝑀𝑛,

We denote by 𝜕𝐾𝑛 the (possibly empty) set of matricial extreme
points in 𝐾𝑛 and set ∂K = {𝜕𝐾𝑛}𝑛.
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Krein-Milman in Matrix Convexity

We observe that for 𝑛 = 1 the matrix extreme points of 𝐾1 are
exactly the extreme points of 𝐾1.
Indeed, let 𝑣 ∈ 𝐾1 be a matrix extreme point and suppose that

𝑣 =
𝑘

∑
𝑖=1

𝜆𝑖𝑣𝑖,

for some 𝑣𝑖 ∈ 𝑉 and 0 < 𝜆𝑖 < 1.
Set 𝛾𝑖 = √𝜆𝑖 and thus

𝑣 =
𝑘

∑
𝑖=1

𝛾𝑖𝑣𝑖𝛾𝑖,

where ∑𝑘
𝑖=1 𝛾𝑖𝛾𝑖 = 1.
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Krein-Milman in Matrix Convexity

Since 𝑣 is matrix extreme, for each 𝑖 there exists a 𝜇𝑖 ∈ ℂ such that
|𝜇𝑖|2 = 1 and

𝜇𝑖𝑣𝑖𝜇𝑖 = 𝑣 ⟺ 𝑣𝑖 = 𝑣.
The converse is similar.
If K is compact matrix convex set, we obtain by the Krein-Milman
theorem that 𝜕𝐾1 is non-empty.
This is not always the case for 𝜕𝐾𝑛 for 𝑛 > 1.
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Krein-Milman in Matrix Convexity

Example

Let 𝑎, 𝑏 be in ℝ where 𝑎 < 𝑏 and [𝑎𝐼,𝑏𝐼] = {[𝑎𝐼𝑛, 𝑏𝐼𝑛]𝑛}𝑛. Then

𝜕[𝑎𝐼𝑛, 𝑏𝐼𝑛] = {{𝑎,𝑏} if 𝑛 = 1,
∅ if 𝑛 > 1.

Indeed,
𝜕[𝑎,𝑏] = ext([𝑎,𝑏]) = {𝑎,𝑏}.

For 𝑛 > 1 let 𝑣 be in [𝑎𝐼𝑛, 𝑏𝐼𝑛] then

𝑣 = 𝑈 ∗(𝜆1 ⊕⋯⊕𝜆𝑛)𝑈

for some unitary 𝑈 ∈ 𝑀𝑛 and 𝜆𝑖 ∈ [𝑎,𝑏].
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Krein-Milman in Matrix Convexity

Example

We may write

𝑈 = ⎡⎢
⎣

𝛾1
⋮

𝛾𝑛

⎤⎥
⎦

, for some 𝛾𝑖 ∈ 𝑀1,𝑛.

Since 𝑈 is a unitary we obtain that

𝑛
∑
𝑖=1

𝛾∗
𝑖 𝜆𝑖𝛾𝑖 = 𝑣

is a proper matrix convex combination and therefore 𝑣 is not a matrix
extreme point.
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Krein-Milman in Matrix Convexity

Proposition

Let K be a compact matrix convex set of a locally convex space 𝑉 . If 𝑣
is a matrix extreme point in 𝐾𝑛, then 𝑣 is also an extreme point of 𝐾𝑛.
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Krein-Milman in Matrix Convexity

Definition
Let 𝑆𝑛 ⊆ 𝑀𝑛(𝑉 ) for each 𝑛 ≥ 1 for some locally convex space 𝑉 and
S = {𝑆𝑛}𝑛. We define the closed matrix convex hull co(S) to be the
smallest closed matrix convex set containing S.

If co(S) = {𝐾𝑛}𝑛 then each 𝐾𝑛 is the closure of the set of all
elements 𝑣 ∈ 𝑀𝑛(𝑉 ) of the form

𝑣 =
𝑘

∑
𝑖=1

𝛾∗
𝑖 𝑣𝑖𝛾𝑖,

where 𝑣𝑖 ∈ 𝐾𝑛𝑖
and 𝛾𝑖 ∈ 𝑀𝑛𝑖,𝑛 such that ∑𝑘

𝑖=1 𝛾∗
𝑖 𝛾𝑖 = 𝐼𝑛.
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Krein-Milman in Matrix Convexity

Example

We already saw that that the matrix extreme points of the matrix convex
set [𝑎𝐼,𝑏𝐼] = {[𝑎𝐼𝑛, 𝑏𝐼𝑛]}𝑛 are

𝜕[𝑎𝐼𝑛, 𝑏𝐼𝑛] = {{𝑎,𝑏} if 𝑛 = 1,
∅ if 𝑛 > 1.

Since co(∂[𝑎𝐼,𝑏𝐼])1 = [𝑎,𝑏] and co(∂[𝑎𝐼,𝑏𝐼]) is a matrix convex set we
obtain that co(∂[𝑎𝐼,𝑏𝐼]) = [𝑎𝐼,𝑏𝐼].

The above is just an example of the following theorem.
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Krein-Milman in Matrix Convexity

Theorem
Let K be a compact matrix convex set of a locally convex space 𝑉 and
let ∂K = {𝜕𝐾𝑛}𝑛. Then ∂K is non-empty and

co(∂K) = K.

The essential idea of the proof is to perform a reduction to the
classical Krein-Milman theorem. In order to do so we have to
introduce some convex sets related to K.
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Krein-Milman in Matrix Convexity

Definition
Let K be compact matrix convex set of a locally convex space 𝑉 , we
define Δ𝑛(K) to be the subset of 𝑀𝑛(𝑉 ) such that

Δ𝑛(K) = {𝜉∗𝑣𝜉 ∶ 𝑣 ∈ 𝐾𝑟, 𝜉 ∈ 𝑀𝑟,𝑛, ‖𝜉‖2 = 1,𝑟 ∈ ℕ},

where ‖.‖2 is the Hilbert-Schmidt norm.

We may pick 𝜉 to be right-invertible and also 𝑟 ≤ 𝑛. Indeed, let 𝑠
be the dimension of the range of 𝜉 ∈ 𝑀𝑟,𝑛 and let 𝛼 ∈ 𝑀𝑟,𝑠 be an
isometry of ℂ𝑠 onto the range of 𝜉.
Then, for 𝑣 ∈ 𝐾𝑟 we have that

𝜉∗𝑣𝜉 = (𝛼∗𝜉)∗(𝛼∗𝑣𝛼)(𝛼∗𝜉)

and 𝛼∗𝜉 ∈ 𝑀𝑠,𝑛 and also 𝛼∗𝜉 is right-invertible.
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Krein-Milman in Matrix Convexity

Therefore,

Δ𝑛(K) = {𝜉∗𝑣𝜉 ∶ 𝑣 ∈ 𝐾𝑟, 𝜉 ∈ 𝑀𝑟,𝑛, ‖𝜉‖2 = 1,𝑟 ≤ 𝑛}

and hence it follows that Δ𝑛(K) is compact as a finite union of
compact sets.
We prove now that Δ𝑛(K) is a convex set.
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Krein-Milman in Matrix Convexity

Let 𝜉∗𝑣𝜉 and 𝜂∗𝑤𝜂 be in Δ𝑛(K) where 𝑣 ∈ 𝐾𝑟 and 𝑤 ∈ 𝐾𝑠 and
𝜉 ∈ 𝑀𝑟,𝑛 and 𝜂 ∈ 𝑀𝑠,𝑛 satisfying ‖𝜉‖2 = ‖𝜂‖2 = 1 and 0 ≤ 𝑡 ≤ 1.
We have that

𝑡𝜉∗𝑣𝜉 +(1−𝑡)𝜂∗𝑤𝜂

= [𝑡1/2𝜉∗ (1−𝑡)1/2𝜂∗][𝑣 0
0 𝑤][ 𝑡1/2𝜉

(1−𝑡)1/2𝜂]

where

∥[ 𝑡1/2𝜉
(1−𝑡)1/2𝜂]∥

2

2
= 𝑡‖𝜉‖2

2 +(1−𝑡)‖𝜂‖2
2 = 1.
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Krein-Milman in Matrix Convexity

Lemma
Let 𝑅 be an operator system and let 𝜑̄ be an extreme point of
Δ𝑛(CS(𝑅)), then there exists a matrix extreme point 𝜑 ∈ 𝐶𝑆𝑟(𝑅) for
some 𝑟 ∈ ℕ and a right-invertible element 𝜉 ∈ 𝑀𝑟,𝑛 with ‖𝜉‖2 = 1 such
that

𝜑̄ = 𝜉∗𝜑𝜉.

Proof.
Let 𝜑̄ be an extreme point of Δ𝑛(CS(𝑅)), then there exist a
right-invertible 𝜉 ∈ 𝑀𝑟,𝑛 with ‖𝜉‖2 = 1 and 𝜑 ∈ 𝐶𝑆𝑟(𝑅) for some
𝑟 ∈ ℕ such that

𝜑̄ = 𝜉∗𝜑𝜉
We will prove that 𝜑 is a matrix extreme point.
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Krein-Milman in Matrix Convexity

Assume that 𝜑 is written as a proper matrix convex combination

𝜑 =
𝑘

∑
𝑖=1

𝛾∗
𝑖 𝜑𝑖𝛾𝑖,

where 𝛾𝑖 ∈ 𝑀𝑟𝑖,𝑟 and 𝜑𝑖 ∈ 𝐶𝑆𝑟𝑖
(𝑅) for 𝑖 = 1,…,𝑘.

Set 𝑡𝑖 = ‖𝛾𝑖𝜉‖2
2, then 𝑡𝑖 ≠ 0, since both 𝛾𝑖 and 𝜉 have right-inverses

and we have that

𝜑̄ = 𝜉∗𝜑𝜉 =
𝑘

∑
𝑖=1

𝜉∗𝛾∗
𝑖 𝜑𝑖𝛾𝑖𝜉 =

𝑘
∑
𝑖=1

𝑡𝑖
(𝛾𝑖𝜉)∗

‖𝛾𝑖𝜉‖2
𝜑𝑖

(𝛾𝑖𝜉)
‖𝛾𝑖𝜉‖2

,

and also

𝑘
∑
𝑖=1

𝑡𝑖 =
𝑘

∑
𝑖=1

‖𝛾𝑖𝜉‖2
2 =

𝑘
∑
𝑖=1

Tr(𝜉∗𝛾∗
𝑖 𝛾𝑖𝜉) = Tr(𝜉∗𝜉) = ‖𝜉‖2

2 = 1.
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Since 𝜑̄ is an extreme point we obtain that

𝜉∗𝜑𝜉 = ‖𝛾𝑖𝜉‖−2
2 (𝛾𝑖𝜉)∗𝜑𝑖(𝛾𝑖𝜉)

and using the fact that 𝜉 has a right-inverse we have

𝜑‖𝛾𝑖𝜉‖2
2 = 𝛾∗

𝑖 𝜑𝑖𝛾𝑖.

Note that 𝜑 and 𝜑𝑖 are unital and therefore

𝐼𝑟‖𝛾𝑖𝜉‖2
2 = 𝛾∗

𝑖 𝛾𝑖

and hence ‖𝛾𝑖𝜉‖−1
2 𝛾𝑖 is an isometry.
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Thus, 𝛾𝑖 is both injective and surjective for 𝑖 = 1,…,𝑘 which
implies that 𝑟 = 𝑟1 = ⋯ = 𝑟𝑘.
We also have that

𝜑 = 𝛾∗
𝑖

‖𝛾𝑖𝜉‖2
𝜑𝑖

𝛾𝑖
‖𝛾𝑖𝜉‖2

,

where ‖𝛾𝑖𝜉‖−1
2 𝛾𝑖 is a surjective isometry i.e. a unitary for

𝑖 = 1,…,𝑘.
Hence 𝜑 is a matrix extreme point and the proof is complete.
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Lemma
Let K be compact matrix convex set of a locally convex space 𝑉 . If ̄𝑣 is
an extreme point of Δ𝑛(K), then there exists a matrix extreme point
𝑣 ∈ 𝐾𝑟 for some 𝑟 ∈ ℕ and a right-invertible element 𝜉 ∈ 𝑀𝑟,𝑛 with
‖𝜉‖2 = 1 such that

̄𝑣 = 𝜉∗𝑣𝜉.

Proof.
There exists an operator system 𝑅 and a matrix affine
homeomorphism 𝜃 = {𝜃𝑛}𝑛 of CS(𝑅) onto K.



35/45

Krein-Milman in Matrix Convexity

It suffices to prove that Γ ∶ Δ𝑛(CS(𝑅)) → Δ𝑛(K) is well-defined
and continuous affine surjection where

Γ(𝜉∗𝜑𝜉) = 𝜉∗𝜃𝑟(𝜙)𝜉,

for 𝜑 ∈ 𝐶𝑆𝑟(𝑅) and 𝜉 ∈ 𝑀𝑟,𝑛 satisfying ‖𝜉‖2 = 1.
Indeed, in that case if ̄𝑣 ∈ Δ𝑛(K) is an extreme point then Γ−1( ̄𝑣)
is a compact face of Δ𝑛(CS(𝑅)). By the Krein-Milman theorem,
this set has an extreme point which is also an extreme point of
Δ𝑛(CS(𝑅)) and since 𝜃 preserves matrix extreme points, from the
preceding lemma we are done.
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Note that if 𝜑 ∈ 𝐶𝑆𝑟(𝑅) and 𝜉 ∈ 𝑀𝑟,𝑛 as before we may pick an
isometry 𝛼 ∈ 𝑀𝑟,𝑠 such that 𝑠 ≤ 𝑛 and 𝛼𝛼∗𝜉 = 𝜉 and in that case
we have that

𝜉∗𝜃𝑟(𝜑)𝜉 = 𝜉∗𝛼𝛼∗𝜃𝑟(𝜑)𝛼𝛼∗𝜉 = 𝜉∗𝛼𝜃𝑠(𝛼∗𝜑𝛼)𝛼∗𝜉.

Thus, in order to prove that Γ is well-defined we may pick

𝜉∗𝜑𝜉 = 𝜂∗𝜓𝜂,

where 𝜑 ∈ 𝐶𝑆𝑟(𝑅) and 𝜓 ∈ 𝐶𝑆𝑡(𝑅) and right-invertible elements
𝜉 ∈ 𝑀𝑟,𝑛 and 𝜂 ∈ 𝑀𝑡,𝑛 where ‖𝜉‖2 = ‖𝜂‖2 = 1 and show that

Γ(𝜉∗𝜑𝜉) = Γ(𝜂∗𝜓𝜂).
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Thus,
𝜑 = (𝜂𝜉−1)∗𝜓(𝜂𝜉−1)

and since 𝜑 and 𝜓 are unital 𝜂𝜉−1 is an isometry.
We have that

𝜃𝑟(𝜑) = 𝜃𝑟((𝜂𝜉−1)∗𝜓(𝜂𝜉−1)) = (𝜂𝜉−1)∗𝜃𝑡(𝜓)(𝜂𝜉−1).

Since 𝜉∗𝜉 = 𝜂∗𝜂 and 𝜂∗ is left-invertible we have that

𝜉∗𝜉𝜉−1𝜉 = 𝜉∗𝜉 ⟺ 𝜂∗𝜂𝜉−1𝜉 = 𝜂∗𝜂
⟺ 𝜂𝜉−1𝜉 = 𝜂

Therefore,
𝜉∗𝜃𝑟(𝜑)𝜉 = 𝜂∗𝜃𝑡(𝜓)𝜂,

as desired.
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The fact that Γ is affine and surjective is immediate.
To see that Γ is continuous consider a convergent net

𝜉∗
𝜆𝜑𝜆𝜉𝜆 → 𝜉∗𝜑𝜉

in Δ𝑛(CS(𝑅)), where 𝜑𝜆 ∈ 𝐶𝑆𝑟𝜆
(𝑅) and 𝜑 ∈ 𝐶𝑆𝑟(𝑅) and

𝜉𝜆 ∈ 𝑀𝑟𝜆,𝑛 and 𝜉 ∈ 𝑀𝑟.𝑛 are right-invertible.

Set 𝜂𝜆 ∶= 𝜉𝜆𝜉−1, since 𝜑𝜆 and 𝜑 are unital we obtain that

𝜂∗
𝜆𝜂𝜆 → 𝐼𝑟

and therefore there exists a 𝜆0 such that for each 𝜆 ≥ 𝜆0 we have
that 𝜂∗

𝜆𝜂𝜆 is invertible.
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If 𝜂𝜆 = 𝜈𝜆|𝜂𝜆| is the polar decomposition of 𝜂𝜆, then |𝜂𝜆| is
surjective for 𝜆 ≥ 𝜆0 and hence 𝜈𝜆 becomes an isometry.
Since 𝜈𝜆 −𝜂𝜆 → 0 we obtain that

𝜈∗
𝜆𝜑𝜆𝜈𝜆 = 𝜂∗

𝜆𝜑𝜆𝜂𝜆 +(𝜈𝜆 −𝜂𝜆)∗𝜑𝜆𝜈𝜆 +𝜂∗
𝜆𝜑𝜆(𝜈𝜆 −𝜂𝜆) → 𝜑.

Then continuity of 𝜃𝑟 yields

𝜂∗
𝜆𝜃𝑟𝜆

(𝜑𝜆)𝜂𝜆 = |𝜂𝜆|𝜃𝑟(𝜈∗
𝜆𝜑𝜆𝜈𝜆)|𝜂𝜆| → 𝐼𝑟𝜃𝑟(𝜑)𝐼𝑟 = 𝜃𝑟(𝜑),

equivalently

Γ(𝜉∗
𝜆𝜑𝜆𝜉𝜆) = 𝜉∗

𝜆𝜃𝑟𝜆
(𝜑𝜆)𝜉𝜆 → 𝜉∗𝜃𝑟(𝜑)𝜉 = Γ(𝜉∗𝜑𝜉).
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Theorem
Let K be a compact matrix convex set of a locally convex space 𝑉 and
let ∂K = {𝜕𝐾𝑛}𝑛. Then ∂K is non-empty and

co(∂K) = K.

Proof.
Since 𝜕𝐾1 coincides with the usual extreme points of the compact
convex set 𝐾1, Krein-Milman theorem implies that 𝜕𝐾1 is
non-empty and hence ∂K is non-empty.
Clearly ∂K ⊆ K.
Without loss of generality by translating 𝜕𝐾𝑛 by 𝑣 ⊗𝐼𝑛 where
𝑣 ∈ 𝜕𝐾1 we may assume that 0 ∈ co(∂K).
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For the converse inclusion suppose that there exists
𝑣0 ∈ 𝐾𝑛\co(∂K)𝑛
By the bipolar theorem there exists a weakly continuous linear
mapping Φ ∶ 𝑉 → 𝑀𝑛 such that

Re(Φ𝑟(𝑣)) ≤ 𝐼𝑛 ⊗𝐼𝑟, for all 𝑣 ∈ co(∂K)𝑟 and 𝑟 ∈ ℕ,

and
Re(Φ𝑛(𝑣0)) ≰ 𝐼𝑛 ⊗𝐼𝑛.

Then Φ induces a continuous linear functional 𝐹 ∶ 𝑀𝑛(𝑉 ) → ℂ
such that

𝐹(𝜂∗𝑣𝜉) = ⟨Φ𝑟(𝑣)𝜉,𝜂⟩ ,
for 𝑣 ∈ 𝑀𝑟(𝑉 ) and 𝜉,𝜂 ∈ 𝑀𝑟,𝑛 considered as vectors of ℂ𝑟𝑛 on
the right-hand side of the equality.
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Let ̄𝑣 be an extreme point of Δ𝑛(K) then from the previous lemma
we may write

̄𝑣 = 𝜉∗𝑣𝜉,
where 𝑣 ∈ 𝜕𝐾𝑟 and 𝜉 ∈ 𝑀𝑟,𝑛 with ‖𝜉‖2 = 1 and 𝑟 ≤ 𝑛.
Therefore, we have that

Re𝐹( ̄𝑣) = Re𝐹(𝜉∗𝑣𝜉) = Re⟨Φ𝑟(𝑣)𝜉,𝜉⟩
= ⟨Re(Φ𝑟(𝑣))𝜉,𝜉⟩ ≤ ⟨𝜉,𝜉⟩ = ‖𝜉‖2

2 = 1,

for all extreme points ̄𝑣 of Δ𝑛(K).
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Since Δ𝑛(K) is compact by the Krein-Milman theorem we obtain
that

Re𝐹(Δ𝑛(K)) ≤ 1.
Thus, for each unit vector 𝜉 = (𝜉1,…,𝜉𝑛) ∈ (ℂ𝑛)𝑛 where 𝜉𝑖 ∈ ℂ𝑛

we have that

⎡⎢
⎣

𝜉1
⋮

𝜉𝑛

⎤⎥
⎦

∗

𝑣0
⎡⎢
⎣

𝜉1
⋮

𝜉𝑛

⎤⎥
⎦

∈ Δ𝑛(K),

and hence

Re⟨Φ𝑛(𝑣0)𝜉,𝜉⟩ = Re𝐹 ⎛⎜⎜
⎝

⎡⎢
⎣

𝜉1
⋮

𝜉𝑛

⎤⎥
⎦

∗

𝑣0
⎡⎢
⎣

𝜉1
⋮

𝜉𝑛

⎤⎥
⎦

⎞⎟⎟
⎠

≤ 1

which implies that Re(Φ𝑛(𝑣0)) ≤ 𝐼𝑛 ⊗𝐼𝑛, a contradiction.
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Theorem
Let K be a compact matrix convex set in a locally convex space 𝑉 and
let S = {𝑆𝑛}𝑛 be a collection of closed subsets 𝑆𝑛 ⊆ 𝐾𝑛 such that
𝜈∗𝑆𝑚𝜈 ⊆ 𝑆𝑛 for all isometries 𝜈 ∈ 𝑀𝑚,𝑛. If co(S) = K then

∂K ⊆ S.
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Σας ευχαριστώ πολύ!
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