Tє $\lambda \varepsilon \sigma \tau \omega \dot{(1)}$ Matrix Convexity

I $\omega \alpha ́ v v \eta \varsigma-А \pi o ́ \lambda \lambda \omega \nu ~ П \alpha \rho \alpha \sigma \kappa \varepsilon v \alpha ́ \varsigma ~$

Noź β ßpıo̧ 2023

Table of contents

1 Matrix Convexity

2 Compact Matrix Convex Sets

3 Krein-Milman in Matrix Convexity

Matrix Convexity

Definition

A matrix convex set $\mathbf{K}=\left\{K_{n}\right\}_{n \in \mathbb{N}}$ in a vector space V is a collection of non-empty convex sets $K_{n} \subseteq M_{n}(V)$ such that:

- For $a \in M_{r, n}$ with $a^{*} a=1$ we have $a^{*} K_{r} a \subseteq K_{n}$
- For $m, n \in \mathbb{N}$ we have

$$
K_{m} \oplus K_{n}:=\left\{\left[\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right]: \text { where } x \in K_{n} \text { and } y \in K_{m}\right\} \subseteq K_{m+n}
$$

Matrix Convexity

Proposition

A collection $\mathbf{K}=\left\{K_{n}\right\}_{n}$ where $K_{n} \subseteq M_{n}(V)$, is a matrix convex set of V if and only if

$$
\sum_{i=1}^{k} \gamma_{i}^{*} u_{i} \gamma_{i} \in K_{n}
$$

for all $u_{i} \in K_{n_{i}}$ and $\gamma_{i} \in M_{n_{i}, n}$ such that $\sum_{i=1}^{k} \gamma_{i}^{*} \gamma_{i}=I_{n}$. We call the element $\sum_{i=1}^{k} \gamma_{i}^{*} u_{i} \gamma_{i}$ a matrix convex combination.

Matrix Convexity

Theorem

Let V, V^{\prime} be in duality and let $\mathbf{K}=\left\{K_{n}\right\}_{n}$ be a closed matrix convex set of V with $0 \in K_{1}$. For any $u_{0} \notin K_{n}$ there exists a weakly continuous $\phi: V \rightarrow M_{n}$ such that $\operatorname{Re}\left(\phi_{r} \mid K_{r}\right) \leq I_{n} \otimes I_{r}$ for all $r \in \mathbb{N}$ and $\operatorname{Re}\left(\phi\left(u_{0}\right)\right) \not \leq I_{n} \otimes I_{n}$.

Matrix Convexity

Definition

Let $B(\mathcal{H})$ denote the bounded operators of a Hilbert space \mathcal{H}.

- A closed linear subspace $V \subseteq B(\mathcal{H})$ will be called an operator space.
- An operator space $S \subseteq B(\mathcal{H})$ that is self-adjoint and contains the identity operator will be called a (unital) operator system.

■ The space $M_{n}(V)$ inherits a norm from $M_{n}(B(\mathcal{H}))$ and $M_{n}(S)$ also inherits a positive cone of elements

$$
C_{n}=\left\{x \in M_{n}(S): x \in M_{n}(B(\mathcal{H}))^{+}\right\} .
$$

Matrix Convexity

Definition

Let V, W be vector spaces and $\mathbf{K}=\left\{K_{n}\right\}_{n}$ be a matrix convex set. A matrix affine mapping on \mathbf{K} is a sequence $\theta=\left\{\theta_{n}\right\}_{n}$ of mappings $\theta_{n}: K_{n} \rightarrow M_{n}(W)$ such that

$$
\theta_{n}\left(\sum_{i=1}^{k} \gamma_{i}^{*} v_{i} \gamma_{i}\right)=\sum_{i=1}^{k} \gamma_{i}^{*} \theta_{n_{i}}\left(v_{i}\right) \gamma_{i}
$$

for all $v_{i} \in K_{n_{i}}$ and $\gamma_{i} \in M_{n_{i}, n}$ satisfying $\sum_{i=1}^{k} \gamma_{i}^{*} \gamma_{i}=I_{n}$.

Compact Matrix Convex Sets

Example

Let R be an operator system and consider the collection
$\mathbf{C S}(R)=\left\{C S_{n}(R)\right\}_{n}$ where

$$
C S_{n}(R):=\left\{\phi: R \rightarrow M_{n}: \phi \text { is completely positive and unital }\right\} .
$$

We can consider $C S_{n}(R)$ to be a subset of $M_{n}\left(R^{d}\right)$ via the identification

$$
\phi=\left[\phi_{i j}\right],
$$

where

$$
\phi_{i j}(x)=e_{i}^{*} \phi(x) e_{j}, \text { for } x \in R,
$$

and e_{j} is the column matrix with 1 on the j-th coordinate and 0 elsewhere. Then $\mathbf{C S}(R)$ is a compact matrix convex set of R^{d}.

Compact Matrix Convex Sets

- Let $\mathbf{K}=\left\{K_{n}\right\}_{n}$ be a matrix convex set, we define $A\left(\mathbf{K}, M_{r}\right)$ to be the set of all matrix affine mappings

$$
F=\left\{F_{n}\right\}_{n} \text { where } F_{n}: K_{n} \rightarrow M_{n}\left(M_{r}\right),
$$

such that F_{1} is continuous.

- $A\left(\mathbf{K}, M_{r}\right)$ becomes a $*$-vector space if we define the $*$-operation $F^{*}=\left\{F_{n}^{*}\right\}_{n}$ where

$$
F_{n}^{*}(v)=F_{n}(v)^{*}, \text { for every } v \in K_{n} \text { and } n \in \mathbb{N} .
$$

- We say that $F \geq 0$ in $A\left(\mathbf{K}, M_{r}\right)$ if

$$
F_{n}(v) \geq 0 \text { for all } v \in K_{n} \text { and } n \in \mathbb{N} .
$$

Compact Matrix Convex Sets

■ We define $E=\left\{E_{n}\right\}_{n}$ in $A(\mathbf{K}, \mathbb{C})$ where $E_{n}(v)=I_{n} \in M_{n}$ for every $v \in K_{n}$ and $n \in \mathbb{N}$.

- We identify $M_{r}(A(\mathbf{K}, \mathbb{C}))$ with $A\left(\mathbf{K}, M_{r}\right)$ where for $F=\left[F_{i j}\right] \in M_{r}(A(\mathbf{K}, \mathbb{C}))$ and $v \in K_{n}$ we have

$$
F_{n}(v)=\left[\left(F_{i j}\right)_{n}(v)\right] .
$$

- We use the ordering of $A\left(\mathbf{K}, M_{r}\right)$ to define a positive cone in $M_{r}(A(\mathbf{K}, \mathbb{C}))$.
- Then $A(\mathbf{K}, \mathbb{C})$ becomes an (abstract) operator system with E as an Archimedean matrix order unit, which we will simply denote by $A(\mathbf{K})$.

Compact Matrix Convex Sets

Theorem

Let R be an operator system, then there exists a unital complete order isomorphism $\psi: R \rightarrow A(\boldsymbol{C S}(R))$.

Theorem

Let \mathbf{K} be a compact matrix convex set in a locally convex space V, then the spaces \mathbf{K} and $\mathbf{C S}(A(\mathbf{K}))$ are matrix affinely homeomorphic.

Compact Matrix Convex Sets

Example

The matrix interval $[a I, b I]=\left\{\left[a I_{n}, b I_{n}\right]\right\}_{n}$ where for each n we have $\left[a I_{n}, b I_{n}\right]=\left\{x \in M_{n}: a I_{n} \leq x \leq b I_{n}\right\}$ is a compact matrix convex set of \mathbb{C}.

Compact Matrix Convex Sets

Proposition

Suppose that $\mathbf{K}=\left\{K_{n}\right\}_{n}$ is a matrix convex set of \mathbb{C} and K_{1} is a compact subset of \mathbb{R}. Then

$$
\mathbf{K}=[a I, b I],
$$

for some $a, b \in \mathbb{R}$.
Proof.
■ Since K_{1} is a non-empty, convex and compact subset of \mathbb{R} it must be a closed interval of the form $[a, b]$ for some $a<b$ in \mathbb{R}.

- Suppose that $\gamma \in K_{n}$ and let ξ be a unit vector in \mathbb{C}^{n} and consider it as a column matrix $\xi=\left[\begin{array}{c}\xi_{1} \\ \vdots \\ \xi_{n}\end{array}\right]$.

Compact Matrix Convex Sets

- Then $\xi^{*} \xi=1$ and

$$
\langle\gamma \xi, \xi\rangle=\xi^{*} \gamma \xi \in K_{1}=[a, b]
$$

and thus $a I_{n} \leq \gamma \leq b I_{n}$.

- Conversely, if $a I_{n} \leq \gamma \leq b I_{n}$ for some matrix γ in M_{n}, we may pick a unitary U and scalars $\lambda_{i} \in[a, b]$ such that

$$
\gamma=U^{*}\left(\lambda_{1} \oplus \cdots \oplus \lambda_{n}\right) U
$$

and therefore $\gamma \in K_{n}$.

Krein-Milman in Matrix Convexity

Definition

Let K be a convex set in some vector space V. We say that a point $v \in K$ is extreme if whenever we write

$$
v=\sum_{i=1}^{k} \lambda_{i} v_{i}
$$

where $v_{i} \in K$ and $0<\lambda_{i}<1$ for $i=1, \ldots, n$ then $v_{i}=v$ for all $i=1, \ldots, n$. We denote the set of extreme points of K by $\operatorname{ext}(K)$.

■ For a set $S \subseteq V$ we denote by $\operatorname{co}(S)$ the smallest convex subset of V that contains S.

Theorem

Krein-Milman in Matrix Convexity Let K be a compact convex set in some locally convex space V. Then

$$
\overline{\mathrm{co}}(\operatorname{ext}(K))=K
$$

■ In particular, ext (K) is non-empty for a non-empty compact convex set K in a locally convex space.

Krein-Milman in Matrix Convexity

Definition

Let K be a convex subset of a vector space V. We say that a convex set $F \subseteq K$ is a face of K if for all $x, y \in K$ and $0<\lambda<1$ whenever $\lambda x+(1-\lambda) y \in F$ then $x, y \in F$.

- If $x \in \operatorname{ext}(K)$ for some convex set K, then $F=\{x\}$ is a face of K.
- If F is a face of a convex set K, then $\operatorname{ext}(F) \subseteq \operatorname{ext}(K)$.
- Suppose that K, C are convex sets and that $f: K \rightarrow C$ is an affine map. If F is a face of C then $f^{-1}(F)$ is a face of K.

Krein-Milman in Matrix Convexity

Definition

- Let \mathbf{K} be a matrix convex set. We say that a matrix convex combination

$$
v=\sum_{i=1}^{k} \gamma_{i}^{*} v_{i} \gamma_{i}
$$

where $v_{i} \in K_{n_{i}}$ and $\gamma_{i} \in M_{n_{i}, n}$ such that $\sum_{i=1}^{k} \gamma_{i}^{*} \gamma_{i}=I_{n}$, is proper if each γ_{i} has a right inverse in $M_{n, n_{i}}$.

- We say that $v \in K_{n}$ is matrix extreme point if whenever v is a proper matrix convex combination as above then each $n_{i}=n$ and $v=u_{i}^{*} v_{i} u_{i}$ for unitaries $u_{i} \in M_{n}$,
- We denote by ∂K_{n} the (possibly empty) set of matricial extreme points in K_{n} and set $\partial \mathbf{K}=\left\{\partial K_{n}\right\}_{n}$.

■ We observe that for $n=1$ the matrix extreme points of K_{1} are exactly the extreme points of K_{1}.

- Indeed, let $v \in K_{1}$ be a matrix extreme point and suppose that

$$
v=\sum_{i=1}^{k} \lambda_{i} v_{i}
$$

for some $v_{i} \in V$ and $0<\lambda_{i}<1$.

- Set $\gamma_{i}=\sqrt{\lambda_{i}}$ and thus

$$
v=\sum_{i=1}^{k} \overline{\gamma_{i}} v_{i} \gamma_{i}
$$

where $\sum_{i=1}^{k} \overline{\gamma_{i}} \gamma_{i}=1$.

Krein-Milman in Matrix Convexity

■ Since v is matrix extreme, for each i there exists a $\mu_{i} \in \mathbb{C}$ such that $\left|\mu_{i}\right|^{2}=1$ and

$$
\overline{\mu_{i}} v_{i} \mu_{i}=v \Longleftrightarrow v_{i}=v .
$$

- The converse is similar.
- If \mathbf{K} is compact matrix convex set, we obtain by the Krein-Milman theorem that ∂K_{1} is non-empty.
- This is not always the case for ∂K_{n} for $n>1$.

Krein-Milman in Matrix Convexity

Example

Let a, b be in \mathbb{R} where $a<b$ and $[a I, b I]=\left\{\left[a I_{n}, b I_{n}\right]_{n}\right\}_{n}$. Then

$$
\partial\left[a I_{n}, b I_{n}\right]= \begin{cases}\{a, b\} & \text { if } n=1 \\ \emptyset & \text { if } n>1\end{cases}
$$

Indeed,

$$
\partial[a, b]=\operatorname{ext}([a, b])=\{a, b\} .
$$

For $n>1$ let v be in $\left[a I_{n}, b I_{n}\right]$ then

$$
v=U^{*}\left(\lambda_{1} \oplus \cdots \oplus \lambda_{n}\right) U
$$

for some unitary $U \in M_{n}$ and $\lambda_{i} \in[a, b]$.

Krein-Milman in Matrix Convexity

Example

We may write

$$
U=\left[\begin{array}{c}
\gamma_{1} \\
\vdots \\
\gamma_{n}
\end{array}\right], \text { for some } \gamma_{i} \in M_{1, n}
$$

Since U is a unitary we obtain that

$$
\sum_{i=1}^{n} \gamma_{i}^{*} \lambda_{i} \gamma_{i}=v
$$

is a proper matrix convex combination and therefore v is not a matrix extreme point.

Krein-Milman in Matrix Convexity

Proposition

Let \mathbf{K} be a compact matrix convex set of a locally convex space V. If v is a matrix extreme point in K_{n}, then v is also an extreme point of K_{n}.

Krein-Milman in Matrix Convexity

Definition

Let $S_{n} \subseteq M_{n}(V)$ for each $n \geq 1$ for some locally convex space V and $\mathbf{S}=\left\{S_{n}\right\}_{n}$. We define the closed matrix convex hull $\overline{\mathrm{co}}(\mathbf{S})$ to be the smallest closed matrix convex set containing \mathbf{S}.

■ If $\overline{\operatorname{co}}(\mathbf{S})=\left\{K_{n}\right\}_{n}$ then each K_{n} is the closure of the set of all elements $v \in M_{n}(V)$ of the form

$$
v=\sum_{i=1}^{k} \gamma_{i}^{*} v_{i} \gamma_{i}
$$

where $v_{i} \in K_{n_{i}}$ and $\gamma_{i} \in M_{n_{i}, n}$ such that $\sum_{i=1}^{k} \gamma_{i}^{*} \gamma_{i}=I_{n}$.

Krein-Milman in Matrix Convexity

Example

We already saw that that the matrix extreme points of the matrix convex set $[a I, b I]=\left\{\left[a I_{n}, b I_{n}\right]\right\}_{n}$ are

$$
\partial\left[a I_{n}, b I_{n}\right]= \begin{cases}\{a, b\} & \text { if } n=1 \\ \emptyset & \text { if } n>1\end{cases}
$$

Since $\overline{\operatorname{co}}(\boldsymbol{\partial}[a I, b I])_{1}=[a, b]$ and $\overline{\operatorname{co}}(\boldsymbol{\partial}[a I, b I])$ is a matrix convex set we obtain that $\overline{\operatorname{co}}(\partial[a I, b I])=[a I, b I]$.

- The above is just an example of the following theorem.

Krein-Milman in Matrix Convexity

Theorem

Let \mathbf{K} be a compact matrix convex set of a locally convex space V and let $\partial \mathbf{K}=\left\{\partial K_{n}\right\}_{n}$. Then $\partial \mathbf{K}$ is non-empty and

$$
\overline{\operatorname{co}}(\partial \mathbf{K})=\mathbf{K} .
$$

- The essential idea of the proof is to perform a reduction to the classical Krein-Milman theorem. In order to do so we have to introduce some convex sets related to \mathbf{K}.

Krein-Milman in Matrix Convexity

Definition

Let \mathbf{K} be compact matrix convex set of a locally convex space V, we define $\Delta_{n}(\mathbf{K})$ to be the subset of $M_{n}(V)$ such that

$$
\Delta_{n}(\mathbf{K})=\left\{\xi^{*} v \xi: v \in K_{r}, \xi \in M_{r, n},\|\xi\|_{2}=1, r \in \mathbb{N}\right\}
$$

where $\|\cdot\|_{2}$ is the Hilbert-Schmidt norm.
■ We may pick ξ to be right-invertible and also $r \leq n$. Indeed, let s be the dimension of the range of $\xi \in M_{r, n}$ and let $\alpha \in M_{r, s}$ be an isometry of \mathbb{C}^{s} onto the range of ξ.

- Then, for $v \in K_{r}$ we have that

$$
\xi^{*} v \xi=\left(\alpha^{*} \xi\right)^{*}\left(\alpha^{*} v \alpha\right)\left(\alpha^{*} \xi\right)
$$

and $\alpha^{*} \xi \in M_{s, n}$ and also $\alpha^{*} \xi$ is right-invertible.

Krein-Milman in Matrix Convexity

- Therefore,

$$
\Delta_{n}(\mathbf{K})=\left\{\xi^{*} v \xi: v \in K_{r}, \xi \in M_{r, n},\|\xi\|_{2}=1, r \leq n\right\}
$$

and hence it follows that $\Delta_{n}(\mathbf{K})$ is compact as a finite union of compact sets.

- We prove now that $\Delta_{n}(\mathbf{K})$ is a convex set.
- Let $\xi^{*} v \xi$ and $\eta^{*} w \eta$ be in $\Delta_{n}(\mathbf{K})$ where $v \in K_{r}$ and $w \in K_{s}$ and $\xi \in M_{r, n}$ and $\eta \in M_{s, n}$ satisfying $\|\xi\|_{2}=\|\eta\|_{2}=1$ and $0 \leq t \leq 1$.
- We have that

$$
\begin{aligned}
& t \xi^{*} v \xi+(1-t) \eta^{*} w \eta \\
& =\left[\begin{array}{ll}
t^{1 / 2} \xi^{*} & (1-t)^{1 / 2} \eta^{*}
\end{array}\right]\left[\begin{array}{cc}
v & 0 \\
0 & w
\end{array}\right]\left[\begin{array}{c}
t^{1 / 2} \xi \\
(1-t)^{1 / 2} \eta
\end{array}\right]
\end{aligned}
$$

where

$$
\left\|\left[\begin{array}{c}
t^{1 / 2} \xi \\
(1-t)^{1 / 2} \eta
\end{array}\right]\right\|_{2}^{2}=t\|\xi\|_{2}^{2}+(1-t)\|\eta\|_{2}^{2}=1
$$

Krein-Milman in Matrix Convexity

Lemma

Let R be an operator system and let $\bar{\varphi}$ be an extreme point of $\Delta_{n}(\boldsymbol{C S}(R))$, then there exists a matrix extreme point $\varphi \in C S_{r}(R)$ for some $r \in \mathbb{N}$ and a right-invertible element $\xi \in M_{r, n}$ with $\|\xi\|_{2}=1$ such that

$$
\bar{\varphi}=\xi^{*} \varphi \xi
$$

Proof.

- Let $\bar{\varphi}$ be an extreme point of $\Delta_{n}(\mathbf{C S}(R))$, then there exist a right-invertible $\xi \in M_{r, n}$ with $\|\xi\|_{2}=1$ and $\varphi \in C S_{r}(R)$ for some $r \in \mathbb{N}$ such that

$$
\bar{\varphi}=\xi^{*} \varphi \xi
$$

- We will prove that φ is a matrix extreme point.

Krein-Milman in Matrix Convexity

- Assume that φ is written as a proper matrix convex combination

$$
\varphi=\sum_{i=1}^{k} \gamma_{i}^{*} \varphi_{i} \gamma_{i}
$$

where $\gamma_{i} \in M_{r_{i}, r}$ and $\varphi_{i} \in C S_{r_{i}}(R)$ for $i=1, \ldots, k$.
■ Set $t_{i}=\left\|\gamma_{i} \xi\right\|_{2}^{2}$, then $t_{i} \neq 0$, since both γ_{i} and ξ have right-inverses and we have that

$$
\bar{\varphi}=\xi^{*} \varphi \xi=\sum_{i=1}^{k} \xi^{*} \gamma_{i}^{*} \varphi_{i} \gamma_{i} \xi=\sum_{i=1}^{k} t_{i} \frac{\left(\gamma_{i} \xi\right)^{*}}{\left\|\gamma_{i} \xi\right\|_{2}} \varphi_{i} \frac{\left(\gamma_{i} \xi\right)}{\left\|\gamma_{i} \xi\right\|_{2}},
$$

and also

$$
\sum_{i=1}^{k} t_{i}=\sum_{i=1}^{k}\left\|\gamma_{i} \xi\right\|_{2}^{2}=\sum_{i=1}^{k} \operatorname{Tr}\left(\xi^{*} \gamma_{i}^{*} \gamma_{i} \xi\right)=\operatorname{Tr}\left(\xi^{*} \xi\right)=\|\xi\|_{2}^{2}=1
$$

Krein-Milman in Matrix Convexity

- Since $\bar{\varphi}$ is an extreme point we obtain that

$$
\xi^{*} \varphi \xi=\left\|\gamma_{i} \xi\right\|_{2}^{-2}\left(\gamma_{i} \xi\right)^{*} \varphi_{i}\left(\gamma_{i} \xi\right)
$$

and using the fact that ξ has a right-inverse we have

$$
\varphi\left\|\gamma_{i} \xi\right\|_{2}^{2}=\gamma_{i}^{*} \varphi_{i} \gamma_{i} .
$$

- Note that φ and φ_{i} are unital and therefore

$$
I_{r}\left\|\gamma_{i} \xi\right\|_{2}^{2}=\gamma_{i}^{*} \gamma_{i}
$$

and hence $\left\|\gamma_{i} \xi\right\|_{2}^{-1} \gamma_{i}$ is an isometry.

Krein-Milman in Matrix Convexity

- Thus, γ_{i} is both injective and surjective for $i=1, \ldots, k$ which implies that $r=r_{1}=\cdots=r_{k}$.
- We also have that

$$
\varphi=\frac{\gamma_{i}^{*}}{\left\|\gamma_{i} \xi\right\|_{2}} \varphi_{i} \frac{\gamma_{i}}{\left\|\gamma_{i} \xi\right\|_{2}}
$$

where $\left\|\gamma_{i} \xi\right\|_{2}^{-1} \gamma_{i}$ is a surjective isometry i.e. a unitary for $i=1, \ldots, k$.

- Hence φ is a matrix extreme point and the proof is complete.

Krein-Milman in Matrix Convexity

Lemma

Let \mathbf{K} be compact matrix convex set of a locally convex space V. If \bar{v} is an extreme point of $\Delta_{n}(\mathbf{K})$, then there exists a matrix extreme point $v \in K_{r}$ for some $r \in \mathbb{N}$ and a right-invertible element $\xi \in M_{r, n}$ with $\|\xi\|_{2}=1$ such that

$$
\bar{v}=\xi^{*} v \xi
$$

Proof.

- There exists an operator system R and a matrix affine homeomorphism $\theta=\left\{\theta_{n}\right\}_{n}$ of $\mathbf{C S}(R)$ onto \mathbf{K}.

Krein-Milman in Matrix Convexity

- It suffices to prove that $\Gamma: \Delta_{n}(\mathbf{C S}(R)) \rightarrow \Delta_{n}(\mathbf{K})$ is well-defined and continuous affine surjection where

$$
\Gamma\left(\xi^{*} \varphi \xi\right)=\xi^{*} \theta_{r}(\phi) \xi,
$$

for $\varphi \in C S_{r}(R)$ and $\xi \in M_{r, n}$ satisfying $\|\xi\|_{2}=1$.

- Indeed, in that case if $\bar{v} \in \Delta_{n}(\mathbf{K})$ is an extreme point then $\Gamma^{-1}(\bar{v})$ is a compact face of $\Delta_{n}(\mathbf{C S}(R))$. By the Krein-Milman theorem, this set has an extreme point which is also an extreme point of $\Delta_{n}(\mathbf{C S}(R))$ and since θ preserves matrix extreme points, from the preceding lemma we are done.

Krein-Milman in Matrix Convexity

■ Note that if $\varphi \in C S_{r}(R)$ and $\xi \in M_{r, n}$ as before we may pick an isometry $\alpha \in M_{r, s}$ such that $s \leq n$ and $\alpha \alpha^{*} \xi=\xi$ and in that case we have that

$$
\xi^{*} \theta_{r}(\varphi) \xi=\xi^{*} \alpha \alpha^{*} \theta_{r}(\varphi) \alpha \alpha^{*} \xi=\xi^{*} \alpha \theta_{s}\left(\alpha^{*} \varphi \alpha\right) \alpha^{*} \xi
$$

- Thus, in order to prove that Γ is well-defined we may pick

$$
\xi^{*} \varphi \xi=\eta^{*} \psi \eta
$$

where $\varphi \in C S_{r}(R)$ and $\psi \in C S_{t}(R)$ and right-invertible elements $\xi \in M_{r, n}$ and $\eta \in M_{t, n}$ where $\|\xi\|_{2}=\|\eta\|_{2}=1$ and show that

$$
\Gamma\left(\xi^{*} \varphi \xi\right)=\Gamma\left(\eta^{*} \psi \eta\right)
$$

Krein-Milman in Matrix Convexity

- Thus,

$$
\varphi=\left(\eta \xi^{-1}\right)^{*} \psi\left(\eta \xi^{-1}\right)
$$

and since φ and ψ are unital $\eta \xi^{-1}$ is an isometry.

- We have that

$$
\theta_{r}(\varphi)=\theta_{r}\left(\left(\eta \xi^{-1}\right)^{*} \psi\left(\eta \xi^{-1}\right)\right)=\left(\eta \xi^{-1}\right)^{*} \theta_{t}(\psi)\left(\eta \xi^{-1}\right)
$$

■ Since $\xi^{*} \xi=\eta^{*} \eta$ and η^{*} is left-invertible we have that

$$
\begin{aligned}
& \xi^{*} \xi \xi^{-1} \xi=\xi^{*} \xi \Leftrightarrow \eta^{*} \eta \xi^{-1} \xi=\eta^{*} \eta \\
& \quad \Leftrightarrow \eta \xi^{-1} \xi=\eta
\end{aligned}
$$

- Therefore,

$$
\xi^{*} \theta_{r}(\varphi) \xi=\eta^{*} \theta_{t}(\psi) \eta
$$

as desired.

Krein-Milman in Matrix Convexity

- The fact that Γ is affine and surjective is immediate.
- To see that Γ is continuous consider a convergent net

$$
\xi_{\lambda}^{*} \varphi_{\lambda} \xi_{\lambda} \rightarrow \xi^{*} \varphi \xi
$$

in $\Delta_{n}(\mathbf{C S}(R))$, where $\varphi_{\lambda} \in C S_{r_{\lambda}}(R)$ and $\varphi \in C S_{r}(R)$ and $\xi_{\lambda} \in M_{r_{\lambda}, n}$ and $\xi \in M_{r . n}$ are right-invertible.

- Set $\eta_{\lambda}:=\xi_{\lambda} \xi^{-1}$, since φ_{λ} and φ are unital we obtain that

$$
\eta_{\lambda}^{*} \eta_{\lambda} \rightarrow I_{r}
$$

and therefore there exists a λ_{0} such that for each $\lambda \geq \lambda_{0}$ we have that $\eta_{\lambda}^{*} \eta_{\lambda}$ is invertible.

■ If $\eta_{\lambda}=\nu_{\lambda}\left|\eta_{\lambda}\right|$ is the polar decomposition of η_{λ}, then $\left|\eta_{\lambda}\right|$ is surjective for $\lambda \geq \lambda_{0}$ and hence ν_{λ} becomes an isometry.

- Since $\nu_{\lambda}-\eta_{\lambda} \rightarrow 0$ we obtain that

$$
\nu_{\lambda}^{*} \varphi_{\lambda} \nu_{\lambda}=\eta_{\lambda}^{*} \varphi_{\lambda} \eta_{\lambda}+\left(\nu_{\lambda}-\eta_{\lambda}\right)^{*} \varphi_{\lambda} \nu_{\lambda}+\eta_{\lambda}^{*} \varphi_{\lambda}\left(\nu_{\lambda}-\eta_{\lambda}\right) \rightarrow \varphi .
$$

- Then continuity of θ_{r} yields

$$
\eta_{\lambda}^{*} \theta_{r_{\lambda}}\left(\varphi_{\lambda}\right) \eta_{\lambda}=\left|\eta_{\lambda}\right| \theta_{r}\left(\nu_{\lambda}^{*} \varphi_{\lambda} \nu_{\lambda}\right)\left|\eta_{\lambda}\right| \rightarrow I_{r} \theta_{r}(\varphi) I_{r}=\theta_{r}(\varphi),
$$

equivalently

$$
\Gamma\left(\xi_{\lambda}^{*} \varphi_{\lambda} \xi_{\lambda}\right)=\xi_{\lambda}^{*} \theta_{r_{\lambda}}\left(\varphi_{\lambda}\right) \xi_{\lambda} \rightarrow \xi^{*} \theta_{r}(\varphi) \xi=\Gamma\left(\xi^{*} \varphi \xi\right)
$$

Krein-Milman in Matrix Convexity

Theorem

Let \mathbf{K} be a compact matrix convex set of a locally convex space V and let $\boldsymbol{\partial \mathbf { K }}=\left\{\partial K_{n}\right\}_{n}$. Then $\boldsymbol{\partial \mathbf { K }}$ is non-empty and

$$
\overline{\operatorname{co}}(\partial \mathbf{K})=\mathbf{K}
$$

Proof.

- Since ∂K_{1} coincides with the usual extreme points of the compact convex set K_{1}, Krein-Milman theorem implies that ∂K_{1} is non-empty and hence $\boldsymbol{\partial K}$ is non-empty.
- Clearly $\boldsymbol{\partial K} \subseteq \mathbf{K}$.
- Without loss of generality by translating ∂K_{n} by $v \otimes I_{n}$ where $v \in \partial K_{1}$ we may assume that $0 \in \overline{\operatorname{co}}(\partial \mathbf{~})$.

Krein-Milman in Matrix Convexity

- For the converse inclusion suppose that there exists $v_{0} \in K_{n} \backslash \overline{\mathbf{c o}}(\boldsymbol{\partial K})_{n}$
■ By the bipolar theorem there exists a weakly continuous linear mapping $\Phi: V \rightarrow M_{n}$ such that

$$
\operatorname{Re}\left(\Phi_{r}(v)\right) \leq I_{n} \otimes I_{r}, \text { for all } v \in \overline{\operatorname{co}}(\boldsymbol{\partial} \mathbf{K})_{r} \text { and } r \in \mathbb{N},
$$

and

$$
\operatorname{Re}\left(\Phi_{n}\left(v_{0}\right)\right) \not \leq I_{n} \otimes I_{n} .
$$

- Then Φ induces a continuous linear functional $F: M_{n}(V) \rightarrow \mathbb{C}$ such that

$$
F\left(\eta^{*} v \xi\right)=\left\langle\Phi_{r}(v) \xi, \eta\right\rangle,
$$

for $v \in M_{r}(V)$ and $\xi, \eta \in M_{r, n}$ considered as vectors of $\mathbb{C}^{r n}$ on the right-hand side of the equality.

Krein-Milman in Matrix Convexity

- Let \bar{v} be an extreme point of $\Delta_{n}(\mathbf{K})$ then from the previous lemma we may write

$$
\bar{v}=\xi^{*} v \xi
$$

where $v \in \partial K_{r}$ and $\xi \in M_{r, n}$ with $\|\xi\|_{2}=1$ and $r \leq n$.

- Therefore, we have that

$$
\begin{aligned}
& \operatorname{Re} F(\bar{v})=\operatorname{Re} F\left(\xi^{*} v \xi\right)=\operatorname{Re}\left\langle\Phi_{r}(v) \xi, \xi\right\rangle \\
& =\left\langle\operatorname{Re}\left(\Phi_{r}(v)\right) \xi, \xi\right\rangle \leq\langle\xi, \xi\rangle=\|\xi\|_{2}^{2}=1,
\end{aligned}
$$

for all extreme points \bar{v} of $\Delta_{n}(\mathbf{K})$.

Krein-Milman in Matrix Convexity

■ Since $\Delta_{n}(\mathbf{K})$ is compact by the Krein-Milman theorem we obtain that

$$
\operatorname{Re} F\left(\Delta_{n}(\mathbf{K})\right) \leq 1
$$

- Thus, for each unit vector $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in\left(\mathbb{C}^{n}\right)^{n}$ where $\xi_{i} \in \mathbb{C}^{n}$ we have that

$$
\left[\begin{array}{c}
\xi_{1} \\
\vdots \\
\xi_{n}
\end{array}\right]^{*} v_{0}\left[\begin{array}{c}
\xi_{1} \\
\vdots \\
\xi_{n}
\end{array}\right] \in \Delta_{n}(\mathbf{K})
$$

and hence

$$
\operatorname{Re}\left\langle\Phi_{n}\left(v_{0}\right) \xi, \xi\right\rangle=\operatorname{Re} F\left(\left[\begin{array}{c}
\xi_{1} \\
\vdots \\
\xi_{n}
\end{array}\right]^{*} v_{0}\left[\begin{array}{c}
\xi_{1} \\
\vdots \\
\xi_{n}
\end{array}\right]\right) \leq 1
$$

which implies that $\operatorname{Re}\left(\Phi_{n}\left(v_{0}\right)\right) \leq I_{n} \otimes I_{n}$, a contradiction.

Theorem

Let \mathbf{K} be a compact matrix convex set in a locally convex space V and let $\mathbf{S}=\left\{S_{n}\right\}_{n}$ be a collection of closed subsets $S_{n} \subseteq K_{n}$ such that $\nu^{*} S_{m} \nu \subseteq S_{n}$ for all isometries $\nu \in M_{m, n}$. If $\overline{\operatorname{co}(\mathbf{S})}=\mathbf{K}$ then

$$
\partial \mathbf{K} \subseteq \mathbf{S} .
$$

$\Sigma \alpha \varsigma ~ \varepsilon v \chi \alpha \rho ı \sigma \tau \omega ́ ~ \pi о \lambda v ́!$

