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Function Systems

There is a correspondence between compact convex sets and function
systems, described by the following theorems:

Theorem
Let 𝐾 be a compact convex set of a locally convex space and let
𝒮(𝐴(𝐾)) be the state space of the continuous affine function on 𝐾.
Then the map

𝜓 ∶ 𝐾 → (𝒮(𝐴(𝐾)),𝑤∗) ∶ 𝑥 ↦ ̂𝑥

is an affine homeomorphism.



4/42

Function Systems

Let 𝑅 be a function system, then every 𝑓 ∈ 𝑅 defines a map

̃𝑓 ∶ 𝒮(𝑅) → ℂ ∶ ̃𝑓(𝑠) = 𝑠(𝑓),

which is 𝑤∗-continuous and affine.

Theorem
The map

𝜙 ∶ 𝑅 → 𝐴(𝒮(𝑅)) ∶ 𝑓 ↦ ̃𝑓
is an order preserving isomorphism (i.e. 𝜙−1 is also positive).
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Operator systems are considered to be the ”quantization” of function
systems, so a natural question is whether there is a similar
correspondence between operator systems and a suitable notion of
”quantized” convexity.
There is an affirmative answer to this question and the suitable notion
turns out to be matrix convexity.
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Definition
Let 𝐵(ℋ) denote the bounded operators of a Hilbert space ℋ.

A closed linear subspace 𝑉 ⊆ 𝐵(ℋ) will be called an operator
space.
An operator space 𝑆 ⊆ 𝐵(ℋ) that is self-adjoint and contains the
identity operator will be called a (unital) operator system.

The space 𝑀𝑛(𝑉 ) inherits a norm from 𝑀𝑛(𝐵(ℋ)) and 𝑀𝑛(𝑆)
also inherits a positive cone of elements
𝐶𝑛 = {𝑥 ∈ 𝑀𝑛(𝑆) ∶ 𝑥 ∈ 𝑀𝑛(𝐵(ℋ))+}.
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Matrix Convexity

Definition
A matrix convex set K= {𝐾𝑛}𝑛∈ℕ in a vector space 𝑉 is a collection of
non-empty convex sets 𝐾𝑛 ⊆ 𝑀𝑛(𝑉 ) such that:

For 𝑎 ∈ 𝑀𝑟,𝑛 with 𝑎∗𝑎 = 1 we have 𝑎∗𝐾𝑟𝑎 ⊆ 𝐾𝑛
For 𝑚,𝑛 ∈ ℕ we have

𝐾𝑚 ⊕𝐾𝑛 ∶= {[𝑥 0
0 𝑦] ∶ where 𝑥 ∈ 𝐾𝑛 and 𝑦 ∈ 𝐾𝑚} ⊆ 𝐾𝑚+𝑛.
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Matrix Convexity

Proposition

A collection K = {𝐾𝑛}𝑛 where 𝐾𝑛 ⊆ 𝑀𝑛(𝑉 ), is a matrix convex set
of 𝑉 if and only if

𝑘
∑
𝑖=1

𝛾∗
𝑖 𝑢𝑖𝛾𝑖 ∈ 𝐾𝑛,

for all 𝑢𝑖 ∈ 𝐾𝑛𝑖
and 𝛾𝑖 ∈ 𝑀𝑛𝑖,𝑛 such that ∑𝑘

𝑖=1 𝛾∗
𝑖 𝛾𝑖 = 𝐼𝑛.

We call the element ∑𝑘
𝑖=1 𝛾∗

𝑖 𝑢𝑖𝛾𝑖 a matrix convex combination.
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The Bipolar Theorem

Theorem
Let 𝑉 , 𝑉 ′ be in duality and let K = {𝐾𝑛}𝑛 be a closed matrix convex
set of 𝑉 with 0 ∈ 𝐾1. For any 𝑢0 ∉ 𝐾𝑛 there exists a weakly
continuous 𝜙 ∶ 𝑉 → 𝑀𝑛 such that Re(𝜙𝑟|𝐾𝑟) ≤ 𝐼𝑛 ⊗𝐼𝑟 for all 𝑟 ∈ ℕ
and Re(𝜙(𝑢0)) ≰ 𝐼𝑛 ⊗𝐼𝑛.
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The Bipolar Theorem

Corollary

Let 𝑉 , 𝑉 ′ be in duality and let K = {𝐾𝑛}𝑛 be a closed matrix convex
set of 𝑉 . For any 𝑢0 ∉ 𝐾𝑛 there exists a weakly continuous
𝜙 ∶ 𝑉 → 𝑀𝑛 and a self-adjoint 𝛼 ∈ 𝑀𝑛 such that Re𝜙𝑟|𝐾𝑟 ≤ 𝛼⊗𝐼𝑟
for all 𝑟 ∈ ℕ and 𝜙(𝑢0) ≰ 𝛼⊗𝐼𝑛.

Proof.
Let 𝑥 be in 𝐾1 and set 𝑥1 = 𝑥 and for 𝑛 ≥ 2 set 𝑥𝑛 = 𝑥⊗𝐼𝑛 ∈ 𝐾𝑛.
Then each 𝐿𝑛 = 𝐾𝑛 −𝑥𝑛 is a weakly closed convex set containing
0 and for 𝛾 ∈ 𝑀𝑟,𝑛 and 𝑣 = 𝑣′ −𝑥𝑟 ∈ 𝐿𝑟 we have that

𝛾∗𝑣𝛾 = 𝛾∗𝑣′𝛾 −[∑
𝑙

𝛾𝑙𝑖𝑥𝛾𝑙𝑗] = 𝛾∗𝑣′𝛾 −[∑
𝑙

𝛾𝑙𝑖𝛾𝑙𝑗]⊗𝑥

𝛾∗𝑣′𝛾 −(𝛾∗𝛾)⊗𝑥 = 𝛾∗𝑣′𝛾 −𝑥𝑛 ∈ 𝐿𝑛.
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The Bipolar Theorem

If 𝑣 = 𝑣′ −𝑥𝑛 ∈ 𝐿𝑛 and 𝑤 = 𝑤′ −𝑥𝑚 ∈ 𝐿𝑚 we have that

𝑣 ⊕𝑤 = [𝑣′ −𝑥𝑛 0
0 𝑤′ −𝑥𝑚

] = 𝑣′ ⊕𝑤′ −𝑥𝑛+𝑚 ∈ 𝐿𝑛+𝑚.

Thus, L= {𝐿𝑛}𝑛 is a closed matrix convex set and 𝑢0 −𝑥𝑛 ∉ 𝐿𝑛.
From the bipolar theorem there exists Φ ∶ 𝑉 → 𝑀𝑛 such that for
every 𝑣′ ∈ 𝐾𝑟

Re(Φ𝑟(𝑣′ −𝑥𝑟)) = Re(Φ𝑟(𝑣′))−Re(Φ𝑟(𝑥⊗𝐼𝑟))
= Re(Φ𝑟(𝑣′))−Re(Φ(𝑥))⊗𝐼𝑟 ≤ 𝐼𝑛 ⊗𝐼𝑟

and
Re(Φ(𝑢0))−Re(Φ(𝑥))⊗𝐼𝑛 ≰ 𝐼𝑛 ⊗𝐼𝑛

Setting 𝛼 = Re(Φ(𝑥))+𝐼𝑛 completes the proof.
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The Bipolar Theorem

Definition
A ∗-vector space 𝑉 is a complex vector space together with a map
∗ ∶ 𝑉 → 𝑉 that satisfies

1 (𝑣∗)∗ = 𝑣 for each 𝑣 ∈ 𝑉 ,
2 (𝑣 +𝜆𝑤)∗ = 𝑣∗ +�̄�𝑤∗ for each 𝑣,𝑤 ∈ 𝑉 and 𝜆 ∈ ℂ.

We denote the set of self-adjoint elements of 𝑉 by 𝑉𝑠𝑎.
𝑀𝑛(𝑉 ) becomes a ∗-vector space for each 𝑛 if we set

[𝑣𝑖𝑗]∗ ∶= [𝑣∗
𝑗𝑖].
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Preliminaries

Definition
If 𝑉 is a ∗-vector space, we say that (𝑉 ,𝑉 +) is an ordered ∗-vector
space if 𝑉 + ⊆ 𝑉𝑠𝑎 and the following two conditions hold

1

𝑉 + +𝑉 + ⊆ 𝑉 + and 𝑎𝑉 + ⊆ 𝑉 + for all 𝑎 ∈ ℝ+,
2

𝑉 + ∩(−𝑉 +) = {0}.

For 𝑢,𝑣 ∈ 𝑉𝑠𝑎 we say that 𝑢 ≤ 𝑣 if 𝑣 −𝑢 ∈ 𝑉 +.
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Preliminaries

Definition
Let (𝑉 ,𝑉 +) be an ordered ∗-vector space, we say that an element
𝑒 ∈ 𝑉𝑠𝑎 is an Archimedean order unit if

1 For each 𝑣 ∈ 𝑉𝑠𝑎 there exists 𝑟 ∈ ℝ+ such that 𝑟𝑒 ≥ 𝑣.
2 If 𝑣 ∈ 𝑉𝑠𝑎 and 𝑟𝑒+𝑣 ≥ 0 for all 𝑟 ∈ ℝ+ then 𝑣 ≥ 0.

Each function system 𝑅 is an ordered ∗-vector space with
Archimedean order unit 𝑒 = 1𝑅.
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Preliminaries

Definition
We say that a linear map 𝜙 ∶ (𝑉 ,𝑉 +) → (𝑊,𝑊 +) is order preserving if
𝜙(𝑉 +) ⊆ 𝑊 + and we call 𝜙 an order isomorphism if in addition 𝜙 is
bijective and 𝜙(𝑉 +) = 𝑊 +.

Theorem
Let (𝑉 ,𝑉 +) be an ordered ∗-vector space with an Archimedean order
unit 𝑒, then there exist a compact set 𝐾, a function system 𝑅 ⊆ 𝐶(𝐾)
and an order isomorphism Φ ∶ 𝑉 → 𝑅 such that Φ(𝑒) = 1𝐾.

Therefore each 𝑉 as above can be considered as an (abstract)
function system.
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Preliminaries

Definition
We say that ∗-vector space 𝑉 is matrix ordered if

1 For each 𝑛 we are given a cone 𝑀𝑛(𝑉 )+ ⊆ 𝑀𝑛(𝑉 )𝑠𝑎 such that
(𝑀𝑛(𝑉 ),𝑀𝑛(𝑉 )+) is an ordered ∗-vector space,

2 for every 𝑛 and 𝑚 and 𝛼 ∈ 𝑀𝑛,𝑚, we have that
𝛼∗𝑀𝑛(𝑉 )+𝛼 ⊆ 𝑀𝑚(𝑉 )+.

We call the collection {𝑀𝑛(𝑉 )+}𝑛 a matrix order on 𝑉 .
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Preliminaries

Definition
Let 𝑉 a matrix ordered ∗-vector space 𝑉 , we say that 𝑒 ∈ 𝑉𝑠𝑎 is an
Archimedean matrix order unit if 𝑒𝑛 = 𝑒⊗𝐼𝑛 is an Archimedean order
unit for the ordered ∗-vector space (𝑀𝑛(𝑉 ),𝑀𝑛(𝑉 )+) for each 𝑛.

Let 𝑆 be an operator system. Then 𝑆 is a matrix ordered ∗-vector
space with 𝑒 = 1𝑆 as an Archimedean matrix order unit.

Definition
We say that a linear map 𝜙 ∶ (𝑉 ,{𝑀𝑛(𝑉 )+}𝑛) → (𝑊,{𝑀𝑛(𝑊)+}𝑛)
between two matrix ordered ∗-vector spaces is a completely order
preserving if each 𝜙𝑛 ∶ (𝑀𝑛(𝑉 ),𝑀𝑛(𝑉 )+) → (𝑀𝑛(𝑊),𝑀𝑛(𝑊)+) is
order preserving. If in addition each 𝜙𝑛 is an order isomorphism we call
𝜙 a complete order isomorphism.
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Preliminaries

Theorem
If 𝑉 is a matrix ordered ∗-vector space with an Archimedean matrix
order unit 𝑒, then there exists a Hilbert space ℋ, an operator system
𝑆 ⊆ 𝐵(ℋ) and a complete order isomorphism Φ ∶ 𝑉 → 𝑆 such that
Φ(𝑒) = 1𝐵(ℋ).

Therefore each 𝑉 as above can be considered as an (abstract)
operator system.
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Compact Matrix Convex Sets

Definition
Let 𝑉 and 𝑉 ′ be in duality. We say that a matrix convex set K of 𝑉 is
compact if each 𝐾𝑛 is a weakly compact subset of 𝑀𝑛(𝑉 ).

Note that if 𝑉 is a locally convex space and 𝑉 𝑑 is the topological
dual of 𝑉 , we have that

⟨., .⟩ ∶ 𝑉 ×𝑉 𝑑 → ℂ ∶ (𝑣,𝑓) ↦ ⟨𝑣,𝑓⟩ = 𝑓(𝑣)

is a pairing of 𝑉 and 𝑉 𝑑 and the weak topology on 𝑉 𝑑 defined by
the pairing is exactly the 𝑤∗-topology.
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Compact Matrix Convex Sets

Example

Let 𝑅 be an operator system and consider the collection
CS(𝑅) = {𝐶𝑆𝑛(𝑅)}𝑛 where

𝐶𝑆𝑛(𝑅) ∶= {𝜙 ∶ 𝑅 → 𝑀𝑛 ∶ 𝜙 is completely positive and unital}.

We can consider 𝐶𝑆𝑛(𝑅) to be a subset of 𝑀𝑛(𝑅𝑑) via the
identification

𝜙 = [𝜙𝑖𝑗],
where

𝜙𝑖𝑗(𝑥) = 𝑒∗
𝑖𝜙(𝑥)𝑒𝑗, for 𝑥 ∈ 𝑅,

and 𝑒𝑗 is the column matrix with 1 on the 𝑗-th coordinate and 0
elsewhere. Then CS(𝑅) is a compact matrix convex set of 𝑅𝑑.



21/42

Compact Matrix Convex Sets

Proposition

Let 𝑅 be an operator system and 𝑥 ∈ 𝑀𝑟(𝑅). Then

𝑥 ≥ 0 ⟺ 𝜙𝑟(𝑥) ≥ 0 for every 𝜙 ∈ 𝐶𝑆𝑛(𝑅) and 𝑛 ∈ ℕ.

Theorem
Let 𝑅 be an operator system and 𝜙 ∶ 𝑅 → 𝑀𝑛 be a linear map. Then 𝜙
is completely positive if and only if 𝜙 is 𝑛-positive i.e.
𝜙𝑛 ∶ 𝑀𝑛(𝑅) → 𝑀𝑛(𝑀𝑛)) is positive.
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Compact Matrix Convex Sets

Definition
Let 𝑉 , 𝑊 be vector spaces and K = {𝐾𝑛}𝑛 be a matrix convex set. A
matrix affine mapping on K is a sequence 𝜃 = {𝜃𝑛}𝑛 of mappings
𝜃𝑛 ∶ 𝐾𝑛 → 𝑀𝑛(𝑊) such that

𝜃𝑛 (
𝑘

∑
𝑖=1

𝛾∗
𝑖 𝑣𝑖𝛾𝑖) =

𝑘
∑
𝑖=1

𝛾∗
𝑖 𝜃𝑛𝑖

(𝑣𝑖)𝛾𝑖,

for all 𝑣𝑖 ∈ 𝐾𝑛𝑖
and 𝛾𝑖 ∈ 𝑀𝑛𝑖,𝑛 satisfying ∑𝑘

𝑖=1 𝛾∗
𝑖 𝛾𝑖 = 𝐼𝑛.
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Compact Matrix Convex Sets

If 𝑉 and 𝑊 are locally convex then we say that 𝜃 as above is a
matrix affine homeomorphism if each 𝜃𝑛 is a homeomorphism.
In this case 𝜃−1 = {𝜃−1

𝑛 }𝑛 is automatically matrix affine.
Note that if K is a compact matrix convex set, it suffices to prove
that each 𝜃𝑛 is a continuous and bijective affine map in order to
have that 𝜃 is a matrix affine homeomorphism.
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Compact Matrix Convex Sets

Let K = {𝐾𝑛}𝑛 be a matrix convex set, we define 𝐴(K,𝑀𝑟) to be
the set of all matrix affine mappings

𝐹 = {𝐹𝑛}𝑛 where 𝐹𝑛 ∶ 𝐾𝑛 → 𝑀𝑛(𝑀𝑟),

such that 𝐹1 is continuous.
𝐴(K,𝑀𝑟) becomes a ∗-vector space if we define the ∗-operation
𝐹 ∗ = {𝐹 ∗

𝑛}𝑛 where

𝐹 ∗
𝑛(𝑣) = 𝐹𝑛(𝑣)∗, for every 𝑣 ∈ 𝐾𝑛 and 𝑛 ∈ ℕ.

We say that 𝐹 ≥ 0 in 𝐴(K,𝑀𝑟) if

𝐹𝑛(𝑣) ≥ 0 for all 𝑣 ∈ 𝐾𝑛 and 𝑛 ∈ ℕ.
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Compact Matrix Convex Sets

We define 𝐸 = {𝐸𝑛}𝑛 in 𝐴(K,ℂ) where 𝐸𝑛(𝑣) = 𝐼𝑛 ∈ 𝑀𝑛 for
every 𝑣 ∈ 𝐾𝑛 and 𝑛 ∈ ℕ.
Then 𝐴(K,ℂ) becomes an (abstract) function system with 𝐸 as an
Archimedean order unit and the ordering defined above.
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Compact Matrix Convex Sets

Proposition

The map 𝜙 ∶ 𝐴(K,ℂ) → 𝐴(𝐾1) where 𝜙({𝐹𝑛}𝑛) = 𝐹1 is a unital
order isomorphism.

Proof.
𝜙 is clearly order preserving and unital.
If 𝐹 = {𝐹𝑛}𝑛 is self adjoint then for every 𝑛 and 𝑣 ∈ 𝐾𝑛 and unit
vector 𝜉 ∈ ℂ𝑛 considered as row matrix we have that

⟨𝐹𝑛(𝑣)𝜉,𝜉⟩ = 𝜉∗𝐹𝑛(𝑣)𝜉 = 𝐹1(𝜉∗𝑣𝜉).

Therefore, 𝜙 is injective.
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Compact Matrix Convex Sets

To see that 𝜙 is surjective suppose that 𝐹 ′ ∈ 𝐴(𝐾1) and 𝑛 ≥ 2.
Then for every 𝑢 ∈ 𝐾𝑛 we have that

𝛾𝑢(𝜉) = ‖𝜉‖2𝐹 ′ (𝜉∗𝑢𝜉
‖𝜉‖2 ), 𝜉 ∈ ℂ𝑛

is a bounded quadratic form and therefore there exists a unique
𝐹𝑛(𝑢) ∈ 𝑀𝑛 such that for all 𝜉 ∈ ℂ𝑛

⟨𝐹𝑛(𝑢)𝜉,𝜉⟩ = 𝛾𝑢(𝜉).

Then 𝐹 = {𝐹𝑛}𝑛 ∈ 𝐴(K, ℂ) where 𝐹1 = 𝐹 ′ and 𝜙(𝐹) = 𝐹1.
We also have 𝐹 = {𝐹𝑛}𝑛 ≥ 0 if and only if 𝐹1 ≥ 0, which
completes the proof.
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Compact Matrix Convex Sets

We should also note that if 𝐹 = {𝐹𝑛}𝑛 ∈ 𝐴(K,ℂ) then the
formula above implies that each 𝐹𝑛 is also continuous.
We identify 𝑀𝑟(𝐴(K,ℂ)) with 𝐴(K,𝑀𝑟) where for
𝐹 = [𝐹𝑖𝑗] ∈ 𝑀𝑟(𝐴(K,ℂ)) and 𝑣 ∈ 𝐾𝑛 we have

𝐹𝑛(𝑣) = [(𝐹𝑖𝑗)𝑛(𝑣)].

We use the ordering of 𝐴(K,𝑀𝑟) to define a positive cone in
𝑀𝑟(𝐴(K,ℂ)).
Then 𝐴(K,ℂ) becomes an (abstract) operator system with 𝐸 as an
Archimedean matrix order unit, which we will simply denote by
𝐴(K).
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Compact Matrix Convex Sets

Theorem
Let 𝑅 be an operator system, then there exists a unital complete order
isomorphism 𝜓 ∶ 𝑅 → 𝐴(CS(𝑅)).

Proof. For brevity set K ∶= CS(𝑅). We have that
𝐾1 = 𝐶𝑆1(𝑅) = 𝒮(𝑅) and therefore 𝑅, 𝐴(𝐾1) and 𝐴(K) are
isomorphic as function systems. Let 𝜓 ∶ 𝑅 → 𝐴(K) be the order
preserving isomorphism where

𝑥 ∈ 𝑅 ↦ 𝐹 = {𝐹𝑛}𝑛 such that 𝐹1 = ̃𝑥.

It suffices to check that the matrix orderings are also preserved.
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Compact Matrix Convex Sets

For 𝑥 ∈ 𝑅 and [𝜙𝑖𝑗] ∈ 𝐾𝑛 and a unit vector 𝜉 = ⎡⎢
⎣

𝜉1
⋮

𝜉𝑛

⎤⎥
⎦

∈ ℂ𝑛 we

have that

⟨𝐹𝑛([𝜙𝑖𝑗])𝜉,𝜉⟩ = 𝐹1(𝜉∗[𝜙𝑖𝑗]𝜉)

= ̃𝑥(
𝑛

∑
𝑖,𝑗=1

𝜉𝑗𝜉𝑖𝜙𝑖𝑗) = ⟨ ̃𝑥𝑛([𝜙𝑖𝑗])𝜉,𝜉⟩

and therefore 𝐹𝑛 = ̃𝑥𝑛.
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Compact Matrix Convex Sets

Now let 𝑥 = [𝑥𝑖𝑗] be in 𝑀𝑟(𝑅) and [𝜙𝑘𝑙] ∈ 𝐾𝑛 then

𝜓𝑟([𝑥𝑖𝑗]𝑖,𝑗)𝑛([𝜙𝑘𝑙]𝑘,𝑙) = ([𝜓(𝑥𝑖𝑗)]𝑖,𝑗)𝑛([𝜙𝑘𝑙]𝑘,𝑙)
= [𝜓(𝑥𝑖𝑗)𝑛([𝜙𝑘𝑙]𝑘,𝑙)]𝑖,𝑗 = [( ̃𝑥𝑖𝑗)𝑛([𝜙𝑘𝑙]𝑘,𝑙)]𝑖,𝑗
= [𝜙𝑘𝑙(𝑥𝑖𝑗)]𝑖,𝑗,𝑘,𝑙 = [(𝜙𝑘𝑙)𝑟(𝑥)]𝑘,𝑙 = 𝜙𝑟(𝑥).

Therefore 𝜓𝑟([𝑥𝑖𝑗]) = 𝐹 ∈ 𝑀𝑟(𝐴(K)) where 𝐹𝑛(𝜙) = 𝜙𝑟(𝑥) for
each 𝜙 ∈ 𝐾𝑛 and 𝑛 ∈ ℕ.
Finally,

𝑥 = [𝑥𝑖𝑗] ≥ 0 ⟺ 𝜙𝑟(𝑥) ≥ 0, for each 𝜙 ∈ 𝐾𝑛, 𝑛 ∈ ℕ
⟺ 𝐹𝑛(𝜙) ≥ 0, for each 𝜙 ∈ 𝐾𝑛, 𝑛 ∈ ℕ
⟺ 𝐹 ≥ 0 ⟺ 𝜓𝑟(𝑥) ≥ 0,

which proves that 𝜓 is a complete order isomorphism.
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Theorem
Let K be a compact matrix convex set in a locally convex space 𝑉 , then
the spaces K and CS(𝐴(K)) are matrix affinely homeomorphic.

Proof.
For each 𝑛 ∈ ℕ set 𝜃𝑛 ∶ 𝐾𝑛 → 𝐶𝑆𝑛(𝐴(K)) where for 𝑣 ∈ 𝐾𝑛 and
𝐹 ∈ 𝐴(K)

𝜃𝑛(𝑣)(𝐹) = 𝐹𝑛(𝑣).
Note that

𝜃𝑛(𝑣)(𝐸) = 𝐸𝑛(𝑣) = 𝐼𝑛,
thus 𝜃𝑛(𝑣) is unital.
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In order to prove that 𝜃𝑛(𝑣) is completely positive it suffices to
prove that 𝜃𝑛(𝑣) is 𝑛-positive, so let [𝐹𝑖𝑗] ≥ 0 be in 𝑀𝑛(𝐴(K)).
Then we have that

(𝜃𝑛(𝑣))𝑛([𝐹𝑖𝑗]) = [𝜃𝑛(𝑣)𝐹𝑖𝑗]
= [(𝐹𝑖𝑗)𝑛(𝑣)] = [𝐹𝑖𝑗]𝑛(𝑣) ≥ 0.

We prove now that 𝜃 = {𝜃𝑛}𝑛 is matrix affine and that each 𝜃𝑛 is
continuous.
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Suppose that 𝑣𝑖 ∈ 𝐾𝑛𝑖
and 𝛾𝑖 ∈ 𝑀𝑛𝑖,𝑛 for 𝑖 = 1,…,𝑘 and

∑𝑘
𝑖=1 𝛾∗

𝑖 𝛾𝑖 = 𝐼𝑛 and 𝐹 ∈ 𝐴(K). Then

𝜃𝑛 (
𝑘

∑
𝑖=1

𝛾∗
𝑖 𝑣𝑖𝛾𝑖)(𝐹) = 𝐹𝑛 (

𝑘
∑
𝑖=1

𝛾∗
𝑖 𝑣𝑖𝛾𝑖)

=
𝑘

∑
𝑖=1

𝛾∗
𝑖 𝐹𝑛𝑖

(𝑣𝑖)𝛾𝑖 =
𝑘

∑
𝑖=1

𝛾∗
𝑖 𝜃𝑛𝑖

(𝑣𝑖)(𝐹)𝛾𝑖.

Note that

𝑘
∑
𝑖=1

𝛾∗
𝑖 𝜃𝑛𝑖

(𝑣𝑖)(𝐹)𝛾𝑖 =
𝑘

∑
𝑖=1

𝛾∗
𝑖 𝜃𝑛𝑖

(𝑣𝑖)𝛾𝑖(𝐹).
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Indeed, for 𝑣 ∈ 𝐾𝑟 we view 𝜃𝑟(𝑣) as element of 𝑀𝑟(𝐴(K)𝑑) and
thus 𝜃𝑟(𝑣) = [𝜙𝑖𝑗] for some 𝜙𝑖𝑗 ∈ 𝐴(K)𝑑. For 𝛾 = [𝛾𝑘𝑙] ∈ 𝑀𝑟,𝑛
and 𝐹 ∈ 𝐴(K) we have that

𝛾∗𝜃𝑟(𝑣)𝛾(𝐹) = [∑
𝑗,𝑘

𝛾𝑗𝑖𝜙𝑗𝑘𝛾𝑘𝑙](𝐹)

= [∑
𝑗,𝑘

𝛾𝑗𝑖𝜙𝑗𝑘(𝐹)𝛾𝑘𝑙] = 𝛾∗[𝜙𝑖𝑗(𝐹)]𝛾 = 𝛾∗𝜃𝑟(𝑣)(𝐹)𝛾.

Suppose that 𝑣𝜆 → 𝑣 in 𝐾𝑟 and 𝐹 ∈ 𝐴(K) then

𝜃𝑟(𝑣𝜆)(𝐹) = 𝐹𝑟(𝑣𝜆) → 𝐹𝑟(𝑣) = 𝜃𝑟(𝑣)(𝐹),

since each 𝐹𝑟 is continuous.
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We now prove injectivity of each 𝜃𝑟.
Let 𝑉 𝑑 denote the topological dual of 𝑉 and note that for each
𝑓 ∈ 𝑉 𝑑 the mapping 𝐹 = {𝑓𝑛|𝐾𝑛}𝑛 is in 𝐴(K).
Suppose that 𝜃𝑟(𝑣) = 𝜃𝑟(𝑤) for some 𝑣,𝑤 ∈ 𝐾𝑛. Then

𝜃𝑟(𝑣)({𝑓𝑛|𝐾𝑛}𝑛) = 𝜃𝑟(𝑤)({𝑓𝑛|𝐾𝑛}𝑛) ⇒ 𝑓𝑟(𝑣) = 𝑓𝑟(𝑤).

Since 𝑉 𝑑 separates the points of 𝑉 we obtain that 𝑣 = 𝑤 and hence
injectivity of 𝜃𝑟.
It remains to prove surjectivity for each 𝜃𝑛 due to the compactness
of each 𝐾𝑛.
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Let 𝜙0 be in 𝐶𝑆𝑛(𝐴(K)) such that 𝜙0 ∉ 𝜃𝑛(𝐾𝑛). We apply the
bipolar theorem to (𝐴(K)𝑑,𝑤∗) and the 𝑤∗-closed matrix convex
set 𝜃(K) = {𝜃𝑛(𝐾𝑛)}𝑛.
Hence there exists a 𝑤∗-continuous and linear map
Φ ∶ 𝐴(K)𝑑 → 𝑀𝑛 and a self-adjoint 𝛼 ∈ 𝑀𝑛 such that

Re(Φ𝑟(𝜃𝑟(𝑣)) ≤ 𝛼⊗𝐼𝑟, for all 𝑣 ∈ 𝐾𝑟 and 𝑟 ∈ ℕ

and also
Re(Φ𝑛(𝜙0)) ≰ 𝛼⊗𝐼𝑛.
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For 𝜓 ∈ 𝐴(K)𝑑 set

Φ𝑖𝑗(𝜓) = 𝑒∗
𝑖Φ(𝜓)𝑒𝑗,

where 𝑒𝑗 is the column matrix with 1 on the 𝑗-th coordinate and 0
elsewhere.
Then each Φ𝑖𝑗 ∶ 𝐴(K)𝑑 → ℂ is 𝑤∗-continuous and hence there
exists 𝐹𝑖𝑗 ∈ 𝐴(K) such that ̂𝐹𝑖𝑗 = Φ𝑖𝑗.
Therefore we may identify Φ with [ ̂𝐹𝑖𝑗] ∈ 𝑀𝑛((𝐴(K)𝑑)𝑑).
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Set 𝐹 = [𝐹𝑖𝑗] ∈ 𝑀𝑛(𝐴(K)) ≅ 𝐴(K,𝑀𝑛) then for 𝑣 ∈ 𝐾𝑟 we have
that

Re(𝐹𝑟(𝑣)) = Re([(𝐹𝑖𝑗)𝑟(𝑣)]) = Re([𝜃𝑟(𝑣)(𝐹𝑖𝑗)])
= Re([( ̂𝐹𝑖𝑗)𝑟(𝜃𝑟(𝑣))]) = Re(Φ𝑟(𝜃𝑟(𝑣))) ≤ 𝛼⊗𝐼𝑟.

We also have that

Re((𝜙0)𝑛(𝐹)) = Re([𝜙0(𝐹𝑖𝑗)]) = Re([( ̂𝐹𝑖𝑗)𝑛(𝜙0)])
= Re([ ̂𝐹𝑖𝑗]𝑛(𝜙0)) = Re(Φ𝑛(𝜙0)) ≰ 𝛼⊗𝐼𝑛.
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Note that for 𝑣 ∈ 𝐾𝑟

(Re𝐹)𝑟(𝑣) = (Re([𝐹𝑖𝑗]))𝑟(𝑣) = ([𝐹𝑖𝑗]+ [𝐹𝑖𝑗]∗
2 )

𝑟
(𝑣)

= ([𝐹𝑖𝑗])𝑟(𝑣)+([𝐹 ∗
𝑗𝑖])𝑟(𝑣)

2 = [(𝐹𝑖𝑗)𝑟(𝑣)]+([(𝐹𝑗𝑖)𝑟(𝑣)∗])
2

= 𝐹𝑟(𝑣)+𝐹𝑟(𝑣)∗

2 = Re(𝐹𝑟(𝑣)) ≤ 𝛼⊗𝐼𝑟 = (𝛼⊗𝐸)𝑟(𝑣).

Thus,
Re𝐹 ≤ 𝛼⊗𝐸

in 𝑀𝑛(𝐴(K)).
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Since 𝜙0 is completely positive and unital we obtain that

Re((𝜙0)𝑛(𝐹)) = (𝜙0)𝑛([𝐹𝑖𝑗])+((𝜙0)𝑛([𝐹𝑖𝑗]))∗

2
= (𝜙0)𝑛 ([𝐹𝑖𝑗]+ [𝐹𝑖𝑗]∗

2 ) = (𝜙0)𝑛(Re𝐹)

≤ (𝜙0)𝑛(𝛼⊗𝐸) = 𝛼⊗𝜙0(𝐸) = 𝛼⊗𝐼𝑛,

a contradiction.
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Σας ευχαριστώ πολύ!
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