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Function Systems

Definition

Let X be a compact Hausdorft space. A function system R is a closed
subspace of C'(X) that contains the constant functions and for every
f € R we have that f € R.

m We denote the positive elements of a function system R by R™.

m We say that a linear map between two function systems ¢ : R — .S
is positive (or order preserving) and unital if

G(RT) C ST

and
P(lg)=1g.




Function Systems

Definition

The state space S(R) of a function system R C C'(X) is the set of
positive linear functionals (which are automatically bounded) that
preserve the unit i.e.

S(R):={pe R : ¢(f) >0forevery f >0and ¢(1y) =1}.

m S(R) is a w*-compact convex set of (R*,w*).



Function Systems

Definition

We say that a topological vector space (X, T) is locally convex if T is
the weak topology of a family of seminorms P that separates the points
of X. In particular, a set U is open if for every x, € U there exist
Dis-e Dy € P and €q,...€, > 0 such that

Zg € ﬂ{meX:p(m—xo) <e}CU.
i=1

Definition

Let /' : K — C be map between convex sets K ,C. We say that F' is

affine if
F (ZA) S AP,
=1 =1

for every Aq,..., A, > 0 such that Z:.L:l A =1



Function Systems

Let X be a locally convex space and K C X be a compact convex set.
m Weset A(K):={F: K — C: F is continuous and affine}.
m A(K) C C(K) is a function system.
m Each x € K naturally defines a state & € S(A(K)) where

Z(F)=F(z), for F € A(K).



Function Systems

There is a correspondence between compact convex sets and function
systems, described by the following theorems:

Theorem

Let K be a compact convex set of a locally convex space and let

S(A(K)) be the state space of the continuous affine function on K.
Then the evaluation map

Vv: K — (S(AK)),w*): x>z

is an affine homeomorphism.



Function Systems

Let R be a function system, then every f € R defines a map

Fr8(R)—C:  f(s)=s(f)

which is w*-continuous and affine.

Theorem

The map B
¢:R—ASR): [ f

is an order preserving isomorphism (i.e. ¢ is also positive).



Operator systems are considered to be the ”quantization” of function
systems, so a natural question is whether there is a similar
correspondence between operator systems and a suitable notion of
”quantized” convexity.

There is an affirmative answer to this question and the suitable notion
turns out to be matrix convexity.



Preliminaries

Let E, F' be vector spaces.

Definition

A tensor product of E and F' is a couple (M, ¢) where M is a vector
space and ¢ : £ X F' — M is a bi-linear map that satisfy
M = span{p(z,y) : x € E,y € F'}.
If{z;:i€l} C Fand{y,:j€ J} C F are linear independent
sets, then {¢(x;,y,) :4 € I, j € J} C M is linear independent.




Preliminaries

A tensor product of E and F’ exists, is unique up to isomorphism and
satisfies the following universal property: ifp: EX F — G is a

bi-linear map then there exists a linear map ¥ : M — G that makes the
following diagram commutative

EXFL)G

9%

m From now on we will denote M by E® F and ¢(x,y) by z®y.
s EQF~F®Ead EQ(FR®G)~(E®F)®G.




Preliminaries

Let V be a vector space. Then V ® M,, ~ M, (V') via the isomorphism

v® [’Yij] - [’Yijv]-

In particular,




Preliminaries

Definition

A C*-algebra A is a Banach space equiped with a multiplication and a
map * : A — A where for every a,b € A and every A € C the following
properties are satisfied:

m [ab] < [al[],

m (a+A\b)* =a*+ Ab*,

mat=a,
m (ab)* =b*a*,
= [a*] = |al,

w [a*al = Jal?.



Preliminaries

Definition

A x-homomorphism between two C*-algebras A and B is a map
¢ : A — B that satisfies the following properties for every a,b € A and
el

l¢( +A ) ¢(a) +Xo(b),
ab)
)=

| |
/-\
S

¢(a)
p(a)".

If ¢ is also bijective we say that ¢ is a x-isomorphism.



Preliminaries

Definition

We say that an element a of a C*-algebra A is positive if a = ¢*c for
some ¢ € A. We denote by A™ the set of all postive elements in A.

Definition

Let A be a unital C*-algebra i.e. there exists a unique element 1 , € A
such that 1 ja=al, = aforalla € A. We say that ¢ : A — C is a state
of Aif p(AT) C R* and ¢(1 4) = 1. We denote the set of states of A by
S(A).

Proposition

For each self-adjoint element a (i.e. a* = a) in a unital C* algebra A
there exists a state ¢ € S(A) such that

|#(a)] = lal.



Preliminaries

We say that a state ¢ € S(A) is faithful if
¢(a*a) >0

for every 0 # a € A.



Preliminaries

Let us denote by B() the bounded operators on some Hilbert space

|ﬁ

Definition
Let m: A — B(J) be an injective *-homomorphism. Let £ be in .
We say that ¢ is cyclic for m(A) if

m(A)E=H.
We say that ¢ is separating for w(A) if

m(a){ =0=a=0.




Preliminaries

Theorem

Let ¢ be a faithful state of a C*-algebra A. Then there exists an
injective x-homomorphism 7w : A — B(JH) for some Hilbert space H
and a § € JH such that & is separating and cyclic for w(A) and

¢(a) = (m(a)§,€),
forall a € A.



Preliminaries

Let M, (B(7()) be the algebra of all n x n-matrices with entries from
B(J(), with the usual matrix multiplication. For [T};] € M,,(B(J()) we

set
[T = [T5]-

Consider the Hilbert space direct sum K" = H &...® . Let
T = [T;,] be an element of M, (B(J)), then we can regard it as an
element of B( (™)) via the matrix multiplication rule :

Zj:l T8
— c j—[(”) .
Z] 1 n]

&1

&n
One can prove that this defines a bounded operator of 7 (™) and that this
correspondence yields a *-isomorphism between M,, (B()) and

B(J{™)). Therefore we obtain a norm on M, (B(J{)) which makes it a
C*-algebra.



Preliminaries

Definition

Let B(J() denote the bounded operators of a Hilbert space J{ .

m A closed linear subspace V' C B(#) will be called an operator
space.

m An operator space S C B(H) that is self-adjoint and contains the
identity operator will be called a (unital) operator system.

m The space M,, (V') inherits a norm from M, (B()) and M,,(S)
also inherits a positive cone of elements

C,={zeM,/(S): v M,(B(F))".




Preliminaries

Let V', W be operator spaces and ¢ : V' — W a linear map.

m For each n we define the n-th amplification
¢, M, (V) — M, (W) of ¢ to be the map such that

(Z)n([xij]) = [</’<33”)]

m Ifsup,, [¢,[ < oo, we say that ¢ is completely bounded and we set
Illcy = suplley|-

m If |¢] ., <1 we say that ¢ is completely contractive.



Preliminaries

Let S, T be operator systems and ¢ : S — " be a linear map.

m LetC, C M, (S)and D,, C M, (T) be the positive cones of
M, (S) and M, (T), respectively.

m We say that ¢ is completely positive if

¢n(Cp) € Dy,

for all n.



Matrix Convexity

A matrix convex set K = {K, }, o, in a vector space V' is a collection
of non-empty convex sets K, C M, (V') such that:

m Fora € M, ,, witha*a =1I,, wehave a*K,.a C K,

m For m,n € N we have

x

K, ®K, ::{[O 2] : wherexz € K, andyGKm} CK,in




Matrix Convexity

Proposition
A collection K = {K, }, where K,, C M, (V), is a matrix convex set
of V if and only if

k
Z’ﬁuﬂi EK,,
i=1

forallu; € K,, _and~; € M, such that Zle vy, =1,

We call the element ) ., ~y;u;7y; a matrix convex combination.



Matrix Convexity

Proof. (=)
Suppose that K = { K, },, is a matrix convex set of V and let u; € K n,

and; € M,, , fori=1,....k such that Zle ~vi7; = I,,. Then

*

. 7 0 - 0 v 0 e 0
. 0 e 0 0 e 0

Z%’ L I . [ug @uy @] | & .

=1 . : : :

0 0 - 0 0 - 7,



Matrix Convexity

(<)
The first condition of the definition is obviously satisfied. For the second
let u be in K, and w be in K, then

I, [0
udw = [O]u[fn 0] + _Im}w[o I, €K, im

and

[ﬂ 2. 0]+[IO 0 I,]=1I,,.

mJ

Finally, to see that every K, is convex note that if u,...,u; € K, and
k
0< A, A, <1sit ) ;1A = 1then

k ey
> = [V ] [ @ @y { : ]eKn.
=1 \/rk



Matrix Convexity

Example

The matrix interval [al,bI] = {[al,,,bI, ]}, where for each n we have
[al,,bl,| ={xz € M, : al, <x <bI,} is a matrix convex set of C.

Example

Let V' C B(#') be an operator space and for each n € N set
K, (V)={ueM,(V):|u| <1}.Then K(V)={K,(V)}, isa
matrix convex set of V.

Example

Let S C B() be an operator system and for each n € N set
C,(S)={ue M,(S):u>0}.Then C(S) ={C,(S)},, is a matrix
convex set of S.



Matrix Convexity

Let V, W be operator spaces and C' B(V', W) denote the space of
completely bounded maps from V' to W equipped with the norm ||. ;.
For each n we identify M,,(CB(V,W)) with CB(V, M, (W)).
Consider an element [¢,;] € M,,(CB(V,W)) and v € V. Then we can
identify [¢,;] with an element of C'B(V', M,,(W)) via

[¢ij]v = [¢z‘jv]-



Matrix Convexity

Example

Set
CC,(V.W)={p e CB(V,M,(W)) such that |§] ., < 1},

then CC(V, W) ={€CC,,(V,W)},, is a matrix convex set of
CB(V,W).

Example

Let S, T be operator systems. For each n set
CP,(S,T)={¢p € CB(S,T) such that ¢ is completely positive},

then CP(S,T) ={CP,(S,T)}, is a matrix convex set.



Matrix Convexity

Proposition

If K ={K,}, is a matrix convex setin V and 0 € K, then
a*K,a C K, forany a € M,. ,, with ||a] < 1.

Proof. Since 0 € K; wehave 0 =000®...40 € K,,. Set
b =[1—a*a]'/?, then for any u € K, we have

cua= [ ) weo)]

where

@ b [‘b‘] 1



The Bipolar Theorem

Let V, W be vector spaces.

Definition

A pairing of V', W is a bilinear function
F=(,):VxW—=C

such that
m (v,w) =0 for all w € W implies v = 0,
m (v,w) =0 forallv e V implies w = 0.

m When such a pairing exists we say that V" and W are in duality and
that V' is the dual of W and W is the dual of V.




The Bipolar Theorem

Having a pairing of V', W determines for each n, a pairing of M, (V)
and M, (W) by

M, (V) x M, (W) —C: ([Uz’j]7 [“h‘j]) = Z <vi,j7wij> .

Thus, M, (V') and M,, (W) are in duality for every n.



The Bipolar Theorem

If two vector spaces are in duality, then each one determines a weak
topology on its dual and the weakly continuous functionals on the space
can be identified with the elements of the dual space.

m Therefore, if V and V" are in duality we can define a weak
topology on M, (V).

m Anetvt = [vf‘J] converges to an element v with respect to this

topology if and only if

F@d) = (0 B @ F) > (v, By ® F) = fluyy),

forevery i,jand f € V.



The Bipolar Theorem

Let V and V’ be in duality and K a convex subset of V.
m The polar of K is the set

K ={feV :Re(v,f) <1lforallve K}.

m K° is a weakly closed subset of V'’ that contains 0.

Theorem

If K is a convex and weakly closed subset of V' that contains 0, then

K* =K.




The Bipolar Theorem

The proof of the preceding theorem is essentially the same with the case
V' = R" but one has to use the following separation theorem:

Theorem

Let V be a complex locally convex space and let K and C' be two
disjoint closed convex subsets of V. If C is compact, then there is a
continuous linear functional f : V — C, an a € R and an € > 0 such
that for all x € K and y € C,

Ref(z) <a<a+e<Ref(y).



The Bipolar Theorem

Let V, V' be in duality and K = { K, } be a matrix convex set of V.

m We say that K is closed if each K, is a weakly closed subset of
M, (V).

n



The Bipolar Theorem

Theorem

Let V, V' be in duality and let K = { K, },, be a closed matrix convex
set of V with 0 € K. For any u, ¢ K, there exists a weakly
continuous ¢ : V. — M, such that Re (¢,.|K,) <1, Q1I, forallT € N
and Re (¢(u0>) f In ® In'

In order to prove this theorem we are going to need a few lemmas.



The Bipolar Theorem

Lemma

Let & be a cone of real continuous affine functions on a compact convex
subset K of a vector space V' and that for each e € &, there is a
corresponding point p, € K with e(p.) > 0. Then there is a point

Do € K such that e(py) > 0 for every e € €.

Proof.

m The sets {e > 0} :={p € K : e(p) > 0} are non-empty and
compact.
m [t suffices to prove that they have the finite intersection property.
m Suppose that
{e; >0}n--Nn{e, >0} =0,

for some e, ...,e,, € &.



The Bipolar Theorem

m Define 6 : K — R" where

0(p) = (e1(p), .- e,(P)),

then 6 is continuous and affine and thus 6( K) is a compact convex
set.

m Then
O(K)N(R")" =0,
where (R™)" ={(xy,...,x,,) : 1,...,2,, > 0}.
m There exists a linear functional f : R™ — R such that f((R™)" >0
and f(0(K)) <O.



The Bipolar Theorem

> 0.

m f(zy,...,x,)=cxy+...c,x,, forsome cq,...,c,, >

syl

m Then {e >0} =0 for
e=fol=cie;+-+c,e, €&,

which is a contradiction.



The Bipolar Theorem

Lemma

Let V, V' be in duality and K = {K,, },, be a matrix convex set of V
such that 0 € K. If F': M, (V') — C is a weakly continuous linear
Sfunction that satisfies Re F'|K,, <1 then there exists a p € §(M,,) such

that for allv € K, and ~y € M, ,, we have

Re F(y*vy) < p(v*y).



The Bipolar Theorem

Proof.

m Set £ to be the set of continuous affine real functions on §(M,,) of
the form

€y (P) = p(7"y) =Re F(y"v7),
where v € K andy € M, , andr € N.

m For ¢ € RT we have that

Cev,'y = 61)761/2,y

m Forv,w € K, and 3, v € M, ,, we have that

€yy T Cw 8 = €y

where u = vPw and o = [g}



The Bipolar Theorem

We proved that £ is a cone. We prove now that for e := e, , € & there
exists a state p, € S(M,,) such that e(p,) > 0. Wlog we may assume
that v # 0.

m Let p, be a state of M, such that

p(vy) =13,

a Set =7/l then
pgrvpeK,,

since 0 € K and thus

Re F(v*vy) = |7|?Re F(B*vB) < p. (7).

m From the previous lemma we are done.



The Bipolar Theorem

Proof of the theorem.

m From the classical bipolar theorem since K, is a weakly closed
convex set that contains the origin and u,, ¢ K, there exists a
weakly continuous linear functional " on M,, (V') such that

ReF|K, <1< ReF(uy).
m From the previous lemma there exists a state p of M,, such that
Re F(y"vy) <p(v™),

forally € M, , andv € K, andr € N.



The Bipolar Theorem

m We may pick 1 > € > 0 such that G := (1 —¢€) F and
q:= (1—¢)p+er, where 7 : M, — C is the normalized trace,
satisfy

ReG(v*vy) < q(v*7)

and
ReG|K, <1< ReG(ug).

m The state g is faithful and therefore it induces a representation
m: M, — B(J) on a finite dimensional Hilbert space (', with a
separating and cyclic vector £ where

g(a) = (m(a)§,€).



The Bipolar Theorem

m For a row matrix v = [;...7,,] we define 7 € M,, where

Y1 V2
=10 0

and we set N 1,, be the linear space of all such matrices.

m Since £ is separating
‘7{0 = W(Ml,n)g

1s n-dimensional and also

~

Bv(ﬂ-(&)gv W(ﬁ)&) = G(ﬁ*va),

is a well-defined sesquilinear form for every v € V.



The Bipolar Theorem

m Since B, is defined on a finite dimensional space it is bounded and
therefore there exists a ¢p(v) € B(H ) such that

G(Bva) = ($(v)m(@)E,7(B)E) .

m The map
¢ : V*)B(%O)a

is linear and weakly continuous.
m Forv € M, (V) we have that

=2 ewyes

wheree; = |1| € M,



The Bipolar Theorem

m We may identify 7, with C" and B(J(,) with M, by fixing a
basis of (.

m If we denote by f; the row matrix e then

Imoll* = ZHW F)ElP = quf =q(I)=1.



The Bipolar Theorem

m Letv = [v;;] € K,.. We wish to show that
Re(6, (1) < I, ®1,.

After the identification of M, ® M, with M,.(M,,) we obtain that
this is equivalent to

Re(¢,.(v)n,n) = (Re(¢,.(v))n,n) < (n,m),

for every n € (C™)".



The Bipolar Theorem

: ] bein (H,)", where a; € M ,,.
(&, )¢

Inll* = ZII7r DENP = Zq ‘o),



The Bipolar Theorem

m Thus,

(Re(¢,.(v))n,m) = Re <Z ¢<vij>7r(6aj>£,7r<&i)§>
= ReZG advga;)
= ReG(a va)
< g(a*a) = n|?
= On the other hand,
Re (¢, (uo )0, 10) = G ug) > 1,

and thus
Re(¢n(u0)> j<— In & In’
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