Isoperimetric constants of metric probability spaces

Seminar on Functional Analysis and Operator Algebras

December 4, 2020
Poincaré inequality and concentration

Let \((X, d, \mu)\) be a metric probability space. The concentration function of \(X\) is defined on \((0, \infty)\) by

\[
\alpha_\mu(t) := \sup\{1 - \mu(A_t) : \mu(A) \geq 1/2\}
\]

where the supremum runs over all sets \(A\) in the Borel \(\sigma\)-algebra \(B(X)\) with \(\mu(A) \geq 1/2\), and where \(A_t = \{x : d(x, A) < t\}\) is the \(t\)-extension of \(A\).

We say that \(\mu\) has exponential concentration on \((X, d)\) if there exist constants \(C, c > 0\) such that, for every \(t > 0\),

\[
\alpha_\mu(t) \leq Ce^{-ct}.
\]

Recall that a function \(f : (X, d) \rightarrow \mathbb{R}\) is called Lipschitz if there exists \(\sigma \geq 0\) such that \(|f(x) - f(y)| \leq \sigma d(x, y)\) for all \(x, y \in X\), and the smallest such constant \(\sigma\) is denoted by \(\|f\|_{\text{Lip}}\).

We say that \(f\) is locally Lipschitz if for every \(x \in X\) there exists a neighborhood \(U_x\) of \(x\) such that \(f \big|_{U_x}\) is Lipschitz. For every locally Lipschitz function \(f\) we define (in the continuous case)

\[
|\nabla f|(x) = \limsup_{y \to x} \frac{|f(x) - f(y)|}{d(x, y)}.
\]
We say that \(\mu \) satisfies a Poincaré inequality with constant \(\theta \) if
\[
\text{Var}_\mu(f) \leq \theta^2 \int |\nabla f|^2 \, d\mu
\]
for every locally Lipschitz function \(f : X \to \mathbb{R} \), where
\[
\text{Var}_\mu(f) = \mathbb{E}_\mu (f - \mathbb{E}_\mu(f))^2 = \mathbb{E}_\mu(f^2) - (\mathbb{E}_\mu(f))^2.
\]

Theorem (Gromov-Milman)

Let \((X, d, \mu)\) be a metric probability space. If \(\mu \) satisfies a Poincaré inequality with constant \(\theta \), then \(\mu \) has exponential concentration. More precisely,
\[
\alpha_\mu(t) \leq \exp\left(-\frac{t^3}{3\theta}\right).
\]

We present an argument that uses the notion of the expansion coefficient of \(\mu \).

This is defined for every \(\varepsilon > 0 \) as follows:
\[
\text{Exp}_\mu(\varepsilon) = \sup\{s \geq 1 : \mu(B_{\varepsilon}) \geq s\mu(B) \text{ for all } B \in \mathcal{B}(X) \text{ with } \mu(B_{\varepsilon}) \leq 1/2\}.
\]
Poincaré inequality and concentration

Theorem

Assume that for some $\varepsilon > 0$ we have $\text{Exp}_\mu(\varepsilon) \geq s > 1$. Then, for every $t > 0$ we have $\alpha_\mu(t) \leq \frac{s}{2} s^{-t/\varepsilon}$.

- Let $A \subseteq X$ with $\mu(A) \geq \frac{1}{2}$ and let $t > 0$. There exists $k \geq 0$ such that $k\varepsilon \leq t < (k + 1)\varepsilon$. Setting $B_0 = X \setminus A$ and $B_j = X \setminus A_{j\varepsilon}$, for every $1 \leq j \leq k$ we check that $(B_j)_{\varepsilon} \subseteq B_{j-1} \subseteq X \setminus A$.
- Applying the definition of the expansion coefficient to B_j (as $\mu(B_j) \leq 1/2$) and the assumption that $\text{Exp}_\mu(\varepsilon) \geq s$ we get

 \[\mu(B_j) = \mu(X \setminus A_{j\varepsilon}) \leq \frac{1}{s} \mu(X \setminus A_{(j-1)\varepsilon}) = \frac{1}{s} \mu(B_{j-1}), \]

 for all $1 \leq j \leq k$.
- Then, we have

 \[
 \mu(X \setminus A_t) \leq \mu(X \setminus A_{k\varepsilon}) \leq \frac{1}{s} \mu(X \setminus A_{(k-1)\varepsilon}) \leq \frac{1}{s^2} \mu(X \setminus A_{(k-2)\varepsilon}) \\
 \leq \cdots \leq \frac{1}{s^k} \mu(X \setminus A) \leq \frac{1}{2} s^{-k} \leq \frac{1}{2} s^{-\left(\frac{t}{\varepsilon} - 1\right)}
 \]

 where the last inequality follows from $t < (k + 1)\varepsilon$.

Apostolos Giannopoulos (Seminar, NKUA)

Isoperimetric constants

December 4, 2020 4 / 27
Poincaré inequality and concentration

Theorem (Gromov-Milman)

Let \((X, d, \mu)\) be a metric probability space. If \(\mu\) satisfies a Poincaré inequality with constant \(\theta\), then \(\mu\) has exponential concentration. More precisely,
\[
\alpha_\mu(t) \leq \exp\left(-t/(3\theta)\right).
\]

- For the proof of the Gromov-Milman theorem we shall show that if \(\mu\) satisfies a Poincaré inequality with constant \(\theta\) then \(\text{Exp}_\mu(\sqrt{2}\theta) \geq 2\).
- Let \(\sqrt{2}\theta = \varepsilon > 0\) and consider \(B \subseteq X\) such that \(A = X \setminus B_\varepsilon\) satisfies \(\mu(A) \geq 1/2\). We set \(a = \mu(A)\), \(b = \mu(B)\). Note that \(d(A, B) \geq \varepsilon\).
- Define \(f : X \to \mathbb{R}\) by \(f(x) = \frac{1}{a} - \frac{1}{\varepsilon} \left(\frac{1}{a} + \frac{1}{b}\right) \min\{\varepsilon, d(x, A)\}\).
- Then, \(f(x) = 1/a\) on \(A\), \(f(x) = -1/b\) on \(B\) and

\[
|\nabla f|(x) \leq \frac{1}{\varepsilon} \left(\frac{1}{a} + \frac{1}{b}\right)
\]

for all \(x \in X\), while \(|\nabla f|(x) = 0\) on a set of measure \(a + b\).
- Consequently,

\[
\int |\nabla f|^2 d\mu \leq \frac{1}{\varepsilon^2} \left(\frac{1}{a} + \frac{1}{b}\right)^2 (1 - a - b).
\]
On the other hand, if \(m = \mathbb{E}_{\mu}(f) \) we have

\[
\text{Var}_{\mu}(f) \geq \int_A (f - m)^2 d\mu + \int_B (f - m)^2 d\mu \geq a \left(\frac{1}{a} - m \right)^2 + b \left(-\frac{1}{b} - m \right)^2 \geq \frac{1}{a} + \frac{1}{b}.
\]

From the Poincaré inequality we get

\[
\left(\frac{1}{a} + \frac{1}{b} \right) \leq \frac{\theta^2}{\varepsilon^2} \left(\frac{1}{a} + \frac{1}{b} \right)^2 (1 - a - b),
\]

and hence \(\frac{\varepsilon^2}{\theta^2} \leq \frac{a + b}{ab} (1 - a - b) \leq \frac{1 - a - b}{ab} = \frac{1 - a}{ab} - \frac{1}{a} \).

Solving for \(b \) we have

\[
b \leq \frac{1 - a}{a} \cdot \frac{1}{\frac{1}{a} + \frac{\varepsilon^2}{\theta^2}} = \frac{1 - a}{1 + \frac{ae^2}{\theta^2}} \leq \frac{1 - a}{1 + \frac{\varepsilon^2}{2\theta^2}}.
\]

Having chosen \(\varepsilon = \sqrt{2\theta} \), this implies

\[
\mu(B) \leq \frac{1}{2} \mu(B_{\varepsilon}),
\]

as claimed. Since \(B \) was arbitrary, we conclude that \(\text{Exp}_{\mu}(\sqrt{2\theta}) \geq 2 \).

Then,

\[
\alpha_{\mu}(t) \leq \exp \left(-\frac{\ln 2}{\sqrt{2\theta}} t \right) \leq \exp \left(-\frac{t}{3\theta} \right).
\]
Let μ be a Borel probability measure on \mathbb{R}^n. For every Borel subset A of \mathbb{R}^n, the Minkowski content of A with respect to μ is defined as

$$\mu^+(A) = \liminf_{t \to 0^+} \frac{\mu(A_t) - \mu(A)}{t}.$$

The isoperimetric ratio of A is defined as follows:

$$\chi_\mu(A) := \frac{\mu^+(A)}{\min\{\mu(A), 1 - \mu(A)\}}.$$

Then, we define the Cheeger constant χ_μ of μ setting

$$\chi_\mu := \inf\{\chi_\mu(A) : A \text{ Borel } \subset \mathbb{R}^n\}.$$
Cheeger constant

Theorem (Rothaus, Cheeger, Maz’ya)

Let \(\mu \) be a Borel probability measure on \(\mathbb{R}^n \) with Cheeger constant \(\chi_\mu \). Let \(\alpha_1 \) be the largest constant with the following property: for every integrable, locally Lipschitz function \(f : \mathbb{R}^n \to \mathbb{R} \),

\[
\alpha_1 \int_{\mathbb{R}^n} |f(x) - \mathbb{E}_\mu(f)| \, d\mu(x) \leq \int_{\mathbb{R}^n} |\nabla f(x)| \, d\mu(x).
\]

Then, \(\alpha_1 \leq \chi_\mu \leq 2\alpha_1 \).

First we show that \(\chi_\mu \leq 2\alpha_1 \).

- Let \(f : \mathbb{R}^n \to \mathbb{R} \) be an integrable, locally Lipschitz function. We may assume that \(f \) is bounded from below and hence, by adding a suitable constant, that \(f > 0 \).

- The co-area formula shows that

\[
\int_{\mathbb{R}^n} |\nabla f(x)| \, d\mu(x) \geq \int_0^\infty \mu^+\left(\{x : f(x) > s\}\right) \, ds \\
\geq \chi_\mu \int_0^\infty \min\{\mu(A(s)), 1 - \mu(A(s))\} \, ds,
\]

where \(A(s) = \{f > s\} \).
• Setting $A(s) = \{ f > s \}$ we saw that
\[
\int_{\mathbb{R}^n} |\nabla f(x)| \, d\mu(x) \geq \chi_{\mu} \int_0^\infty \min\{\mu(A(s)), 1 - \mu(A(s))\} \, ds.
\]

• Using the fact that $\|1_B - \mathbb{E}_\mu(1_B)\|_1 = 2\mu(B)(1 - \mu(B))$ for every Borel subset B of \mathbb{R}^n, and the simple identity $\mathbb{E}_\mu(f(g - \mathbb{E}_\mu(g))) = \mathbb{E}_\mu(g(f - \mathbb{E}_\mu(f)))$, we may write
\[
\int_{\mathbb{R}^n} |\nabla f(x)| \, d\mu(x) \geq \chi_{\mu} \int_0^\infty \mu(A(s))(1 - \mu(A(s))) \, ds
\]
\[
= \frac{\chi_{\mu}}{2} \int_0^\infty \|1_{A(s)} - \mathbb{E}_\mu(1_{A(s)})\|_1 \, ds
\]
\[
\geq \frac{\chi_{\mu}}{2} \sup \left\{ \int_0^\infty \int_{\mathbb{R}^n} (1_{A(s)} - \mathbb{E}_\mu(1_{A(s)}))g \, d\mu \, ds : \|g\|_\infty \leq 1 \right\}
\]
\[
= \frac{\chi_{\mu}}{2} \sup \left\{ \int_0^\infty \int_{\mathbb{R}^n} 1_{A(s)}(g - \mathbb{E}_\mu(g)) \, d\mu \, ds : \|g\|_\infty \leq 1 \right\}
\]
\[
= \frac{\chi_{\mu}}{2} \sup \left\{ \int_{\mathbb{R}^n} f(g - \mathbb{E}_\mu(g)) \, d\mu : \|g\|_\infty \leq 1 \right\}
\]
\[
= \frac{\chi_{\mu}}{2} \sup \left\{ \int_{\mathbb{R}^n} g(f - \mathbb{E}_\mu(f)) \, d\mu : \|g\|_\infty \leq 1 \right\} = \frac{\chi_{\mu}}{2} \|f - \mathbb{E}_\mu(f)\|_1.
\]
This shows that $\chi_{\mu} \leq 2\alpha_1$.
Recall that α_1 is the largest constant so that
\[\alpha_1 \int_{\mathbb{R}^n} |f(x) - \mathbb{E}_\mu(f)| \, d\mu(x) \leq \int_{\mathbb{R}^n} |\nabla f(x)| \, d\mu(x)\]
for locally Lipschitz functions. Now, we want to show that $\alpha_1 \leq \chi_\mu$.

Consider any closed subset A of \mathbb{R}^n and for small $\varepsilon > 0$ we define the function
\[f_\varepsilon(x) = \max \left\{ 0, 1 - \frac{d(x, A_\varepsilon)}{\varepsilon - \varepsilon^2} \right\}.
\]
Then, $0 \leq f_\varepsilon \leq 1$, $f_\varepsilon \equiv 1$ on $A_\varepsilon \supseteq A$, $f \equiv 0$ on $\{x : d(x, A) > \varepsilon\}$, and $f_\varepsilon \rightarrow 1_A$ as $\varepsilon \rightarrow 0$.

Finally, f_ε is Lipschitz: we have
\[|f_\varepsilon(x) - f_\varepsilon(y)| \leq \frac{1}{\varepsilon(1 - \varepsilon)} \left| d(x, A_\varepsilon) - d(y, A_\varepsilon) \right| \leq \frac{|x - y|}{\varepsilon(1 - \varepsilon)},
\]
therefore $|\nabla f_\varepsilon(x)| \leq (\varepsilon - \varepsilon^2)^{-1}$.

Since $\nabla f_\varepsilon(x) = 0$ on $C = \{x : d(x, A) > \varepsilon\} \cup \{x : d(x, A) < \varepsilon^2\}$, we get
\[
\int_{\mathbb{R}^n} |\nabla f_\varepsilon(x)| \, d\mu(x) \leq \int_{\mathbb{R}^n \setminus C} |\nabla f_\varepsilon(x)| \, d\mu(x)
\leq \frac{1}{1 - \varepsilon} \frac{\mu(A_\varepsilon) - \mu(A)}{\varepsilon} - \frac{\varepsilon}{1 - \varepsilon} \frac{\mu(A_\varepsilon^2) - \mu(A)}{\varepsilon^2}.
\]
We have assumed that
\[
\alpha_1 \int_{\mathbb{R}^n} |f(x) - \mathbb{E}_\mu(f)| \, d\mu(x) \leq \int_{\mathbb{R}^n} |\nabla f(x)| \, d\mu(x).
\]

Therefore,
\[
\alpha_1 \int_{\mathbb{R}^n} |f_\varepsilon(x) - \mathbb{E}_\mu(f_\varepsilon)| \, d\mu(x) \leq \frac{1}{1 - \varepsilon} \frac{\mu(A_\varepsilon) - \mu(A)}{\varepsilon} - \frac{\varepsilon}{1 - \varepsilon} \frac{\mu(A_\varepsilon^2) - \mu(A)}{\varepsilon^2}.
\]

Letting \(\varepsilon \to 0^+ \) we see that
\[
\mu^+(A) \geq \alpha_1 \|1_A - \mathbb{E}_\mu(1_A)\|_1 = 2\alpha_1 \mu(A)(1 - \mu(A)).
\]

This shows that \(\chi_\mu \geq \alpha_1 \).

Definition

\[
\psi_\mu = \frac{1}{\chi_\mu}, \text{ the reciprocal Cheeger constant.}
\]
Recall that a Borel probability measure μ on \mathbb{R}^n satisfies the Poincaré inequality with constant $\vartheta > 0$ if

$$\text{Var}_\mu(f) \leq \vartheta^2 \int |\nabla f|^2 d\mu,$$

for all smooth functions f on \mathbb{R}^n, where

$$\text{Var}_\mu(g) = \mathbb{E}_\mu(g^2) - (\mathbb{E}_\mu(g))^2$$

is the variance of g with respect to μ.

The Poincaré constant ϑ_μ of μ is the smallest constant $\vartheta > 0$ for which the Poincaré inequality is satisfied for all f.

Theorem (Maz’ya, Cheeger)

Let μ be a Borel probability measure with reciprocal Cheeger constant ψ_μ. Then its Poincaré constant ϑ_μ satisfies

$$\vartheta_\mu \leq 2\psi_\mu.$$
Poincaré constant and Cheeger constant

- By the co-area formula and the definition of the Cheeger constant, for every positive integrable locally Lipschitz function g we have

$$\chi_\mu \int_0^\infty \min\{\mu\{g \geq s\}, 1 - \mu\{g \geq s\}\} \, ds \leq \int_0^\infty \mu^+\{g \geq s\} \, ds$$

$$\leq \int_{\mathbb{R}^n} |\nabla g| \, d\mu.$$

- Let f be an integrable locally Lipschitz function and set $m = \text{med}(f)$. Then, we have $\mu\{f \geq m\} \geq \frac{1}{2}$ and $\mu\{f \leq m\} \geq \frac{1}{2}$.

- We set $f^+ = \max\{f - m, 0\}$ and $f^- = -\min\{f - m, 0\}$. Then, $f - m = f^+ - f^-$ and by the definition of m we have

$$\mu\{(f^+)^2 \geq s\} \leq \frac{1}{2} \quad \text{and} \quad \mu\{(f^-)^2 \geq s\} \leq \frac{1}{2}$$

for all $s > 0$.
Poincaré constant and Cheeger constant

Using
\[\chi \mu \int_0^{\infty} \min \{ \mu(g \geq s), 1 - \mu(g \geq s) \} \, ds \leq \int_{\mathbb{R}^n} |\nabla g| \, d\mu \]

with \(g = (f^+)^2 \) and \(g = (f^-)^2 \) and applying integration by parts we see that

\[\chi \mu \int_{\mathbb{R}^n} |f - m|^2 \, d\mu = \chi \mu \int_{\mathbb{R}^n} (f^+)^2 \, d\mu + \chi \mu \int_{\mathbb{R}^n} (f^-)^2 \, d\mu \]

\[= \chi \mu \int_0^{\infty} \mu(\{(f^+)^2 \geq s\}) \, ds + \chi \mu \int_0^{\infty} \mu(\{(f^-)^2 \geq s\}) \, ds \]

\[\leq \int_{\mathbb{R}^n} |\nabla ((f^+)^2)| \, d\mu + \int_{\mathbb{R}^n} |\nabla ((f^-)^2)| \, d\mu \]

\[= \int_{\mathbb{R}^n} (|\nabla ((f^+)^2)| + |\nabla ((f^-)^2)|) \, d\mu. \]

Note that
\[|\nabla ((f^+)^2)| + |\nabla ((f^-)^2)| \leq 2 |f - m| |\nabla f|. \]

Therefore, applying the Cauchy-Schwarz inequality we see that

\[\chi \mu \int_{\mathbb{R}^n} |f - m|^2 \, d\mu \leq 2 \left(\int_{\mathbb{R}^n} |f - m|^2 \, d\mu \right)^{1/2} \left(\int_{\mathbb{R}^n} |\nabla f|^2 \, d\mu \right)^{1/2}. \]
We saw that
\[\chi_{\mu} \int_{\mathbb{R}^n} |f - m|^2 d\mu \leq 2 \left(\int_{\mathbb{R}^n} |f - m|^2 d\mu \right)^{1/2} \left(\int_{\mathbb{R}^n} |\nabla f|^2 d\mu \right)^{1/2}. \]

This gives
\[\frac{\chi_{\mu}^2}{4} \int_{\mathbb{R}^n} |f - m|^2 d\mu \leq \int_{\mathbb{R}^n} |\nabla f|^2 d\mu. \]

Since
\[\int_{\mathbb{R}^n} |f - \mathbb{E}_\mu(f)|^2 d\mu = \min_{\alpha \in \mathbb{R}} \int_{\mathbb{R}^n} |f - \alpha|^2 d\mu \leq \int_{\mathbb{R}^n} |f - m|^2 d\mu \]
and \(f \) was arbitrary, we get \(\varphi_{\mu}^2 \leq 4\chi_{\mu}^{-2} = 4\psi_{\mu}^2 \).
A Borel probability measure μ on \mathbb{R}^n is called log-concave if for all compact subsets A, B of \mathbb{R}^n and all $0 < \lambda < 1$ we have

$$\mu((1-\lambda)A + \lambda B) \geq \mu(A)^{1-\lambda} \mu(B)^\lambda.$$

Theorem (Buser, Ledoux)

Let μ be a log-concave probability measure on \mathbb{R}^n with reciprocal Cheeger constant ψ_μ. Then its Poincaré constant ϑ_μ satisfies

$$\psi_\mu \leq c \vartheta_\mu.$$
Isotropic measures

- We say that a Borel probability measure μ on \mathbb{R}^n is isotropic if $\text{bar} (\mu) = \int_{\mathbb{R}^n} x d\mu (x) = 0$ and μ satisfies the isotropic condition
 $$\int_{\mathbb{R}^n} \langle x, \theta \rangle^2 d\mu (x) = 1, \quad \theta \in S^{n-1}. $$

- Similarly, we shall say that a log-concave function $f : \mathbb{R}^n \to [0, \infty)$ with barycenter $\text{bar} (f) = 0$ is isotropic if $\int f (x) dx = 1$ and the measure $d\mu (x) = f (x) dx$ is isotropic.

- A convex body K of volume 1 in \mathbb{R}^n with barycenter at the origin is called isotropic if
 $$\int_{K} \langle x, \theta \rangle^2 dx = L_K^2 $$
 for some constant $L_K > 0$ (the isotropic constant of K) and all $\theta \in S^{n-1}$.

- One can check that K is isotropic if and only if the function $f_K := L_K^n \frac{1}{L_K} \mathbf{1}_K$ is an isotropic log-concave function.

- Every non-degenerate absolutely continuous probability measure μ has an isotropic image $\nu = \mu \circ S$, where $S : \mathbb{R}^n \to \mathbb{R}^n$ is an affine map. Similarly, every log-concave function $f : \mathbb{R}^n \to [0, \infty)$ with $0 < \int f < \infty$ has an isotropic image: there exist an affine isomorphism $S : \mathbb{R}^n \to \mathbb{R}^n$ and a positive number a such that $af \circ S$ is isotropic.
Let f be a log-concave function with finite, positive integral. The covariance matrix $\text{Cov}(f)$ is the matrix with entries

$$\text{Cov}(f)_{ij} := \frac{\int_{\mathbb{R}^n} x_i x_j f(x) \, dx}{\int_{\mathbb{R}^n} f(x) \, dx} - \frac{\int_{\mathbb{R}^n} x_i f(x) \, dx}{\int_{\mathbb{R}^n} f(x) \, dx} \frac{\int_{\mathbb{R}^n} x_j f(x) \, dx}{\int_{\mathbb{R}^n} f(x) \, dx}.$$

If f is the density of a measure μ, we denote this matrix also by $\text{Cov}(\mu)$. Note that if f is isotropic then $\text{Cov}(f)$ is the identity matrix.

The isotropic constant of f is defined by

$$L_f := \left(\frac{\sup_{x \in \mathbb{R}^n} f(x)}{\int_{\mathbb{R}^n} f(x) \, dx} \right)^{\frac{1}{n}} \left[\det \text{Cov}(f) \right]^{\frac{1}{2n}}.$$

(and given a log-concave measure μ with density f_μ, we let $L_\mu := L_{f_\mu}$).

It is easy to check that the isotropic constant L_μ is an affine invariant.
Conjecture 1: Isotropic constant

- One can also prove that if $f: \mathbb{R}^n \to [0, \infty)$ is a log-concave density, then
 \[
 nL_f^2 = \inf_{S \in SL_n} \left(\sup_{x \in \mathbb{R}^n} f(x) \right)^{2/n} \int_{\mathbb{R}^n} |S(x) + y|^2 f(x) \, dx.
 \]

- If $f: \mathbb{R}^n \to [0, \infty)$ is an isotropic log-concave function then
 \[
 L_f = \|f\|_\infty^{1/n} \geq c,
 \]
 where $c > 0$ is an absolute constant.

This would imply that a convex body of volume one, in any dimension, has at least one hyperplane section with volume bounded from below by an absolute constant (slicing problem).
Conjecture 1: Isotropic constant

- Define
 \[L_n := \sup \{ L_\mu : \mu \text{ is an isotropic log-concave measure on } \mathbb{R}^n \}. \]

- Then, Conjecture 1 states that \(L_n \leq C \) for an absolute constant \(C > 0 \).

- Around 1985-6 (published in 1991), Bourgain introduced this conjecture and obtained the upper bound \(L_n \leq c^{4/\sqrt{n}} \ln n \).

- In 2006 the estimate was improved by Klartag, who showed that the logarithmic factor can be omitted.

Theorem (Bourgain/Klartag)

There exists an absolute constant \(c > 0 \) such that \(L_n \leq c^{4/\sqrt{n}} \) for all \(n \geq 1 \).
KLS-conjecture

- Kannan, Lovász and Simonovits conjectured in 1994 that the isoperimetric ratio of any Borel set A with respect to the uniform measure μ_K on a convex body K in \mathbb{R}^n (defined by $\mu_K(A) = \frac{\text{vol}_n(K \cap A)}{\text{vol}_n(K)}$) should be, up to an absolute constant, at least as large as the minimal isoperimetric ratio over all half-spaces.

\[
\chi(K) \geq c \cdot \inf_H \frac{\mu_K^+(H)}{\min\{\mu_K(H), \mu_K(\mathbb{R}^n \setminus H)\}}
\]

for some absolute constant $c > 0$, where the infimum is over all half-spaces H in \mathbb{R}^n.

- Their interest in this parameter was related to the study of randomized volume algorithms.
- Since the isoperimetric ratio of a half-space is basically a one-dimensional quantity, one can obtain an explicit formula for this infimum. Then, one arrives at the following conjecture:
KLS-conjecture

Conjecture 2

\[\chi(K) \approx 1/\sqrt{\lambda(K)} \]

where \(\lambda(K) \) is the largest eigenvalue of the matrix of inertia \(M_{ij} := \int_K x_i x_j dx \) of \(K \).

- They actually proved that one always has \(\chi(K) \leq 10/\sqrt{\lambda(K)} \), therefore the question is about the lower bound.

Theorem (Kannan-Lovász-Simonovits)

For every convex body \(K \) in \(\mathbb{R}^n \) one has

\[\chi(K) \geq \frac{\ln 2}{l_1(K)}. \]

- Here,

\[l_1(K) := \frac{1}{\text{vol}_n(K)} \int_K |x - \text{bar}(K)| \, dx. \]

- If \(K \) is isotropic this gives \(\chi(K) \geq c/(\sqrt{n}L_K) \).

- In fact, one may find literature on the subject before their work, and there were known lower bounds for \(\chi(K) \) of order \(1/\text{diam}(K) \).
Another approach to the KLS-conjecture is due to Bobkov.

Theorem (Bobkov)

Let μ be a log-concave probability measure on \mathbb{R}^n. Then we have

$$\chi_\mu \geq \frac{c}{\|f\|_{L_2(\mu)}},$$

where $f(x) = |x - \text{bar}(\mu)|$ and $c > 0$ is an absolute constant.

- If μ is isotropic this gives $\chi_\mu \geq c/\sqrt{n}$.
Conjecture 2

\[\chi(K) \approx \frac{1}{\sqrt{\lambda(K)}} \]

where \(\lambda(K) \) is the largest eigenvalue of the matrix of inertia \(M_{ij} := \int_K x_i x_j dx \) of \(K \).

- For an isotropic convex body \(K \) this becomes \(\chi(K) \approx \frac{1}{L_K} \).

KLS-Conjecture

For every isotropic log-concave probability measure \(\mu \) on \(\mathbb{R}^n \) one has \(\chi_\mu \geq c \), where \(c > 0 \) is an absolute constant.

Theorem (Eldan-Klartag)

\[L_n \leq C \psi_n = C / \chi_n. \]

- In other words, the KLS-conjecture is stronger than Conjecture 1 about the isotropic constant.
The currently best known results are due to Lee and Vempala and are consequences of the following theorem:

Theorem (Lee-Vempala)

If μ is a log-concave probability measure on \mathbb{R}^n with covariance matrix A then

$$\psi_\mu \leq c \left(\text{tr}(A^2) \right)^{1/4}$$

where $c > 0$ is an absolute constant.

- If we make the additional assumption that μ is isotropic then we obtain the upper bound
 $$\psi_\mu \leq c^4 \sqrt{n}.$$

- The approach of Lee and Vempala is based on Eldan’s stochastic localization.
An Almost Constant Lower Bound of the Isoperimetric Coefficient in the KLS Conjecture

Yuansi Chen

Seminar for Statistics
ETH, Zürich

November 30, 2020

Abstract

We prove an almost constant lower bound of the isoperimetric coefficient in the KLS conjecture. The lower bound has dimension dependency $d^{-\omega(1)}$. When the dimension is large enough, our lower bound is tighter than the previous best bound which has dimension dependency $d^{-1/4}$. Improving the isoperimetric coefficient in the KLS conjecture has many implications, including improvements of the bounds in the thin-shell conjecture and in the slicing conjecture, better concentration inequalities for Lipschitz functions of log-concave measures and better mixing time bounds for MCMC sampling algorithms on log-concave measures.
Yuansi Chen

Quick Bio:

I am a postdoc fellow at ETH Foundations of Data Science (ETH-FDS) in ETH Zürich under the supervision of Prof. Peter Bühlmann. Previously, I obtained my PhD in the Department of Statistics at UC Berkeley in 2019. My PhD study was advised by Prof. Bin Yu. During my PhD, I am fortunate to also work with Prof. Martin Wainwright and Prof. Jack Gallant.

My main research interests lie on statistical machine learning, optimization and the applications in neuroscience. In particular, I am interested in domain adaptation, stability, MCMC sampling algorithms, convolutional neural networks and statistical problems that arise from computational neuroscience. Before my PhD study, I obtained my Diplome d'Ingénieur (Eng. Deg. in Applied Mathematics) at Ecole Polytechnique in France.