Operator Theory Seminar

Brief notes by A.K., March 2012

Contents

1 Positive definite functions and Hilbert spaces
 1

2 Positive linear maps and dilations 4
3 Proofs of the main theorems 11
3.1 Stinespring's Dilation Theorem . 11
3.2 The enveloping C* algebra. 15
3.3 Positive maps on abelian algebras . 17

1 Positive definite functions and Hilbert spaces

We begin by describing a construction that appears in very many contexts; we will see more specific manifestations later on.
Let ${ }^{11} X$ be a nonempty set. A function

$$
u: X \times X \rightarrow \mathbb{C}
$$

is said to be positive (semi-) definite if, for all $n \in \mathbb{N}$, all $x_{1} \ldots, x_{n} \in X$, and all $\lambda_{1} \ldots, \lambda_{n} \in \mathbb{C}$ we have

$$
\begin{equation*}
\sum_{k, j=1}^{n} u\left(x_{k}, x_{j}\right) \lambda_{j} \bar{\lambda}_{k} \geq 0 \tag{*}
\end{equation*}
$$

This is equivalent to requiring that, for any finite subset $X_{f}=\left\{x_{1} \ldots, x_{n}\right\}$ of X the matrix $u\left(X_{f}\right):=\left[u\left(x_{k}, x_{j}\right)\right]$ induces a positive operator on the Hilbert space $\ell^{2}\left(X_{f}\right)=\left(\mathbb{C}^{n},\|\cdot\|_{2}\right)$. Indeed relation ($*$) can be written

$$
\left\langle u\left(X_{f}\right)\left[\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{n}
\end{array}\right],\left[\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{n}
\end{array}\right]\right\rangle \geq 0 .
$$

Example 1.1 If we are given a Hilbert space H and a function $f: X \rightarrow H$, then

$$
u(x, y):=\langle f(x), f(y)\rangle_{H} \quad(x, y \in X)
$$

is a positive definite function.
Conversely,

[^0]Proposition 1.2 Given (X, u) where X is a set and $u: X \times X \rightarrow \mathbb{C}$ is positive definite, there exists $(H(u), f)$ where $H(u)$ is a Hilbert space and a function $f: X \rightarrow H(u)$ such that

$$
u(x, y):=\langle f(x), f(y)\rangle \quad \text { for all } x, y \in X
$$

Moreover, f is minimal in the sense that the linear span $[f(X)]$ of $f(X)$ is dense in $H(u)$.
Idea of the proof On the linear space

$$
c_{00}(X)=\{\xi: X \rightarrow \mathbb{C}: \operatorname{supp} \xi \text { is finite }\}
$$

(here $\operatorname{supp} \xi=\{x \in X: \xi(x) \neq 0\}$) define the form

$$
\langle\xi, \eta\rangle_{0}=\sum_{x, y \in X} u(x, y) \xi(x) \overline{\xi(y)}
$$

and prove that this sesquilinear form has all the properties of a scalar product, ${ }^{2}$ except possibly that

$$
N:=\left\{\xi \in c_{00}(X):\langle\xi, \xi\rangle_{0}=0\right\}
$$

may contain non-zero vectors. The Cauchy-Schwarz inequality (!) for $\langle\cdot, \cdot\rangle_{0}$ shows that N is a subspace and so $\langle\cdot, \cdot\rangle_{0}$ induces a true scalar product on the quotient space $H_{0}:=c_{00}(X) / N$ given by

$$
\langle\xi+N, \eta+N\rangle=\langle\xi, \eta\rangle_{0}
$$

(of course $\xi+N$ is the $\operatorname{coset}\{\xi+\zeta: \zeta \in N\}$).
The Hilbert space $H(u)$ is defined to be the completion of $\left(H_{0},\langle\cdot, \cdot\rangle\right)$.
The function $f: X \rightarrow H(u)$ is defined by

$$
f(x)=\delta_{x}+N
$$

where $\delta \in c_{00}(X)$ is given by

$$
\delta_{x}(y):= \begin{cases}1, & y=x \\ 0, & y \neq x\end{cases}
$$

It is immediate from the definition of the scalar product that

$$
\langle f(x), f(y)\rangle=\left\langle\delta_{x}, \delta_{y}\right\rangle_{0}=u(x, y) \quad \text { for all } x, y \in X
$$

Note that the family $\left\{\delta_{x}: x \in X\right\}$ is an algebraic basis of $c_{00}(X)$; hence the linear span [$f(X)]=H_{0}$ is dense in $H(u)$ as required.

Remark 1.3 It is not hard to verify that, if X has a topology making u continuous, then the map $f: X \rightarrow H(u)$ constructed above is also continuous.

How to construct isometries on $H(u)$ from u-preserving maps on X.
To be slightly more general, suppose we are given two pairs $\left(X_{1}, u_{1}\right)$ and $\left(X_{2}, u_{2}\right)$ and a $\operatorname{map} \phi: X_{1} \rightarrow X_{2}$ such that

$$
u_{2}(\phi(x), \phi(y))=u_{1}(x, y) \quad \text { for all } \quad x, y \in X_{1} .
$$

[^1]If $f_{k}: X_{k} \rightarrow H\left(u_{k}\right)(l=1,2)$ are the maps of the Proposition, then the previous equality can be rewritten

$$
\left\langle f_{2}(\phi(x)), f_{2}(\phi(y))\right\rangle_{H\left(u_{2}\right)}=u_{2}(\phi(x), \phi(y))=u_{1}(x, y)=\left\langle f_{1}(x), f_{1}(y)\right\rangle_{H\left(u_{1}\right)}, \quad x, y \in X_{1} .
$$

It follows that if we define a map V_{o} on $f_{1}\left(X_{1}\right)$ by

$$
V_{o}\left(f_{1}(x)=f_{2}(\phi(x)), \quad x \in X_{1}\right.
$$

then this map extends by linearity to a map $V_{0}:\left[f_{1}\left(X_{1}\right)\right] \rightarrow H\left(u_{2}\right)$ satisfying

$$
\left\|V_{0}(\xi)\right\|_{H\left(u_{2}\right)}=\|\xi\|_{H\left(u_{1}\right)}, \quad \xi \in\left[f_{1}\left(X_{1}\right)\right]
$$

and hence extends by continuity to an isometry $V_{\phi}: H\left(u_{1}\right) \rightarrow H\left(u_{2}\right)$, since $\left[f_{1}\left(X_{1}\right)\right]$ is dense in $H\left(u_{2}\right)$. This isometry implements ϕ in the sense that, on the generators of $H\left(u_{1}\right)$,

$$
V_{\phi}\left(f_{1}(x)=f_{2}(\phi(x)), \quad x \in X_{1} .\right.
$$

Note that, in case ϕ maps X_{1} onto X_{2}, the range of V_{ϕ} contains the whole of $\left[f_{2}\left(X_{2}\right)\right]$, and hence V_{ϕ} is a bijection: a unitary operator.

Remark 1.4 It is immediate from the definitions that $V_{\phi \circ \psi}=V_{\phi} V_{\psi}$; thus the correspondence $\phi \rightarrow V_{\phi}$ is covariant.

A unitary representation of the symmetry group G_{u} of (X, u)
This is the group consisting of all bijections $\phi: X \rightarrow X$ that preserve u in the sense that $u(\phi(x), \phi(y))=u(x, y)$ for all $x, y \in X$.

It follows from the above remark that for all $\phi \in G_{u}$ the isometry V_{ϕ} in fact belongs to the group $\mathcal{U}(H(u))$ of unitary operators on $H(u)$ and the map

$$
G_{u} \rightarrow \mathcal{U}(H(u)): \phi \rightarrow V_{\phi}
$$

is a group homomorphism: it is a unitary representation of G_{u} on $H(u)$.
Example 1.5 Let $X=\mathbb{D}$, the open unit disc in \mathbb{C}, and define u by

$$
u(z, w)=\frac{1}{1-\bar{w} z}, \quad z, w \in \mathbb{D}
$$

(this is known as the Szegö kernel).
A way to see that this is positive definite is to write it in the form

$$
u(z, w)=\sum_{n=0}^{\infty} z^{n} \bar{w}^{n}=\langle f(z), f(w)\rangle_{\ell^{2}}
$$

where

$$
f: \mathbb{D} \rightarrow \ell^{2}: z \rightarrow\left(1, z, z^{2}, \ldots\right)
$$

Then Example 1.1 shows that u must be positive definite.
There is a very fruitful connection with analytic function theory: consider, for each $w \in \mathbb{D}$, the function k_{w} given by

$$
k_{w}(\lambda)=\sum_{n=1}^{\infty} \bar{w}^{n} \lambda^{n}=\langle f(\lambda), f(w)\rangle_{\ell^{2}} .
$$

This converges for all $\lambda \in \mathbb{D}$, hence defines an analytic function on \mathbb{D}. It has the following remarkable property:

Consider the space $H^{2}(\mathbb{D})$ of all analytic functions h whose power series representation $h(z)=\sum_{n} a_{n} z^{n}$ has square-summable coefficients (i.e. $\sum\left|a_{n}\right|^{2}<\infty$). This is isomorphic to ℓ^{2} (via the map $h \rightarrow\left(a_{n}\right)$) and hence a Hilbert space for the inner product

$$
\left\langle h, h_{1}\right\rangle=\sum_{n=0}^{\infty} a_{n} \bar{b}_{n}
$$

if $h(z)=\sum_{n} a_{n} z^{n}$ and $h_{1}(z)=\sum_{n} b_{n} z^{n}$. Then for each $h \in H^{2}(\mathbb{D})$ we have

$$
\left\langle h, k_{w}\right\rangle=\sum_{n} a_{n} w^{n}=h(w), \quad w \in \mathbb{D} .
$$

Thus the actual value of the function h at w can be found from its scalar product with k_{w}.
Example 1.6 Now let X be a Hilbert space (finite dimensional or not). Define u by

$$
u(x, y)=\exp \langle x, y\rangle_{X}, \quad x, y \in X
$$

The Hilbert space $H(u)$ obtained from (X, u) is called the symmetric Fock space over X. Any unitary operator $\phi: X \rightarrow X$ preserves u, of course; the associated unitary operator V_{ϕ} on $H(u)$ is called the second quantization of the unitary ϕ.

Exercise Show that the function u in the last example is indeed positive definite.

2 Positive linear maps and dilations

Definition $1 A$ Banach *-algebra \mathcal{A} is a complex algebra which is a Banach space such that

$$
\|a b\| \leq\|a\|\|b\| \quad \text { for all } a, b \in \mathcal{A}
$$

(this makes multiplication continuous) which is equipped with a map $\mathcal{A} \rightarrow \mathcal{A}: a \rightarrow a^{*}$ satisfying $(a+\lambda b)^{*}=a^{*}+\bar{\lambda} b,(a b)^{*}=b^{*} a^{*}$ and $\left(a^{*}\right)^{*}=a$ (an involution) which is isometric: $\left\|a^{*}\right\|=\|a\|$.

An example is the algebra $\mathcal{B}(\mathcal{H})$ of all bounded operators on a Hilbert space \mathcal{H}, or more generally a closed subalgebra of $\mathcal{B}(\mathcal{H})$ which is closed under the map $T \rightarrow T^{*}$. These are C^{*}-algebras: they satisfy the much more rigid C^{*} property: $\left\|T^{*} T\right\|=\|T\|^{2}$.
Example Recall that the Banach space $\ell^{1}(\mathbb{Z})$ consists of all summable functions $a: \mathbb{Z} \rightarrow \mathbb{C}$ with norm $\|a\|_{1}=\sum_{n}|a(n)|$. Each $a \in \ell^{1}(\mathbb{Z})$ is the absolutely convergent sum

$$
a=\sum_{n \in \mathbb{Z}} a(n) \delta_{n} .
$$

Defining

$$
\begin{aligned}
a * b & =\sum_{n, m \in \mathbb{Z}} a(n) b(m) \delta_{n+m}=\sum_{k}\left(\sum_{n} a(n) b(k-n)\right) \delta_{k} \\
\text { and } \quad a^{*} & =\sum_{n} \overline{a(n)} \delta_{-n}=\sum_{n} \overline{a(-k)} \delta_{k} .
\end{aligned}
$$

we obtain an abelian Banach *-algebra with identity δ_{0} of norm 1 .

This is not a C^{*}-algebra; however it can be embedded as a dense subalgebra of a C^{*} algebra. ${ }^{3}$ One way of doing this is as follows:

If $a \in \ell^{1}(\mathbb{Z})$ the series

$$
f_{a}(z)=\sum_{n} a(n) z^{n}, \quad z=e^{i t} \in \mathbb{T}
$$

converges absolutely, hence defines a continuous function on the circle, the (inverse) 'Fourier transform' of a.

The map $a \rightarrow f_{a}$ is easily seen to be a ${ }^{*}$-homomorphism, and it is injective. Moreover its range contains all 'trigonometric polynomials' $\sum_{n=-N}^{N} a(n) z^{n}$ and is therefore dense in the C^{*}-algebra $\left(C(\mathbb{T}),\|\cdot\|_{\infty}\right)$ of all continuous functions on the circle (by the Stone-Weierstrass theorem). Note also that $\left\|f_{a}\right\|_{\infty} \leq\|a\|_{1}$: the embedding is contractive.

Positvity and complete poisitivity If \mathcal{A} is a Banach *-algebra and \mathcal{H} a Hilbert space, a linear map

$$
\phi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})
$$

is said to be positive provided that

$$
\left\langle\phi\left(a^{*} a\right) \xi, \xi\right\rangle \geq 0 \quad \text { for all } a \in \mathcal{A} \text { and } \xi \in \mathcal{H}
$$

i.e. provided that for all $a \in \mathcal{A}$ the operator $\phi\left(a^{*} a\right)$ is a positive operator on \mathcal{H}.

The map ϕ is said to be completely positive (CP) if for all $n \in \mathbb{N}$ and all $a_{1}, \ldots, a_{n} \in$ \mathcal{A} the operator matrix $\left[\phi\left(a_{i}^{*} a_{j}\right)\right]$ defines a positive operator on the Hilbert space direct sum \mathcal{H}^{n}. Equivalently, if for all $n \in \mathbb{N}$, all $a_{1}, \ldots, a_{n} \in \mathcal{A}$ and all $\xi_{1}, \ldots, a_{n} \in \mathcal{A}$ we have

$$
\left\langle\left[\phi\left(a_{i}^{*} a_{j}\right)\right]\left[\begin{array}{c}
\xi_{1} \\
\vdots \\
\xi_{n}
\end{array}\right],\left[\begin{array}{c}
\xi_{1} \\
\vdots \\
\xi_{n}
\end{array}\right]\right\rangle=\sum_{i, j=1}^{n}\left\langle\phi\left(a_{i}^{*} a_{j}\right) \xi_{j}, \xi_{i}\right\rangle \geq 0 .
$$

Examples 2.1 (i) Let $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$ be $a{ }^{*}$-representation. The map π is $C P$:

$$
\sum_{i, j=1}^{n}\left\langle\pi\left(a_{i}^{*} a_{j}\right) \xi_{j}, \xi_{i}\right\rangle=\sum_{i, j=1}^{n}\left\langle\pi\left(a_{j}\right) \xi_{j}, \pi\left(a_{i}\right) \xi_{i}\right\rangle=\left\|\sum_{i} \pi\left(a_{i}\right) \xi_{i}\right\|^{2} \geq 0
$$

(ii) Let $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$, let \mathcal{K} be another Hilbert space and $V: \mathcal{H} \rightarrow \mathcal{K}$ be a bounded linear map. Define $\phi(a)=V^{*} a V$. Then ϕ is $C P$:

$$
\sum_{i, j=1}^{n}\left\langle\phi\left(a_{i}^{*} a_{j}\right) \xi_{j}, \xi_{i}\right\rangle=\sum_{i, j=1}^{n}\left\langle V^{*} a_{i}^{*} a_{j} V \xi_{j}, \xi_{i}\right\rangle=\sum_{i, j=1}^{n}\left\langle a_{j} V \xi_{j}, a_{i} V \xi_{i}\right\rangle=\left\|\sum_{i} a_{i} V \xi_{i}\right\|^{2} \geq 0
$$

The suprising fact is that every completely positive map on a unital Banach *-algebra is a combination of these two types:
Theorem 2.2 Let \mathcal{A} be a unital Banach *-algebra with $\|\mathbf{1}\|=1$. If $\phi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$ is a completely positive map, then there exists a triple (V, π, \mathcal{K}) where \mathcal{K} is a Hilbert space, $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{K}) a^{*}$-representation and $V: \mathcal{H} \rightarrow \mathcal{K}$ a bounded linear map satisfying

$$
\phi(a)=V^{*} \pi(a) V, \quad a \in \mathcal{A} .
$$

In fact ϕ is automatically continuous with $\|\phi\|=\|V\|^{2}=\|\phi(\mathbf{1})\|$.
This theorem was proved (for the case of a C*-algebra \mathcal{A}) by Stinespring. For the proof see Theorem 3.2 below.

[^2]Minimality A 'Stinespring triple' (V, π, \mathcal{K}) as above is said to be minimal if

$$
\overline{[\pi(a) V \xi: a \in \mathcal{A}, \xi \in \mathcal{H}]}=\mathcal{K} .
$$

Remarks 2.3 (i) Given any Stinespring triple (V, π, \mathcal{K}) one may find a minimal one by restricting each $\pi(a)$ to the (invariant) subspace

$$
\mathcal{K}_{1}=\overline{[\pi(a) V \xi: a \in \mathcal{A}, \xi \in \mathcal{H}]} .
$$

(ii) Moreover if (V, π, \mathcal{K}) is minimal and \mathcal{A} has a unit $\mathbf{1}$ then necessarily $\pi(\mathbf{1})=I_{\mathcal{K}}$.

Proposition 2.4 If $\left(V_{i}, \pi_{i}, \mathcal{K}_{i}\right)(i=1,2)$ are two minimal pairs for ϕ, then they are equivalent in the following sense: there exists a unitary $W: \mathcal{K}_{1} \rightarrow \mathcal{K}_{2}$ such that $W V_{1}=V_{2}$ and $W \pi_{1}(a)=\pi_{2}(a) W$ for all $a \in \mathcal{A}$.

Proof. Let $a, b \in \mathcal{A}$ and $\xi, \eta \in \mathcal{H}$. Then

$$
\begin{aligned}
\left\langle\pi_{2}(a) V_{2} \xi, \pi_{2}(b) V_{2} \eta\right\rangle & =\left\langle V_{2}^{*} \pi_{2}\left(b^{*} a\right) V_{2} \xi, \eta\right\rangle=\left\langle\phi\left(b^{*} a\right) \xi, \eta\right\rangle \\
& =\left\langle V_{1}^{*} \pi_{1}\left(b^{*} a\right) V_{1} \xi, \eta\right\rangle=\left\langle\pi_{1}(a) V_{1} \xi, \pi_{1}(b) V_{1} \eta\right\rangle .
\end{aligned}
$$

This shows that the map

$$
W_{0}: \pi_{1}(a) V_{1} \xi \rightarrow \pi_{2}(a) V_{2} \xi
$$

extends by linearity and continuity to an isometry W between the closed linear span of $\left\{\pi_{1}(a) V_{1} \xi: a \in \mathcal{A}, \xi \in \mathcal{H}\right\}$, which is \mathcal{K}_{1} and the closed linear span of $\left\{\pi_{2}(a) V_{2} \xi: a \in \mathcal{A}, \xi \in\right.$ $\mathcal{H}\}$ which is \mathcal{K}_{2} (by minimality). So this extension is onto, i.e. a unitary, and it is easy to verify that it has the stated properties.

Remark 2.5 Suppose additionally that $\phi(\mathbf{1})=I_{\mathcal{H}}$. If (V, π, \mathcal{K}) is minimal for ϕ, then

$$
V^{*} V=V^{*} \pi(\mathbf{1}) V=\phi(\mathbf{1})=I_{\mathcal{H}}
$$

showing that V is in this case an isometry. Therefore we may identify \mathcal{H} with its image, a closed subspace of \mathcal{K}. Then V becomes the identity mapping of H into K and so $V^{*}: \mathcal{K} \rightarrow \mathcal{H}$ is simply the projection onto \mathcal{H} and the formula $\phi(a)=V^{*} \pi(a) V$ becomes

$$
\phi(a)=\left.P_{\mathcal{H}} \pi(a)\right|_{\mathcal{H}}, \quad a \in \mathcal{A} .
$$

In other words, each $\phi(a)$ is the compression of $\pi(a)$ to the subspace \mathcal{H}; equivalently, $\pi(a)$ is the (simultaneous) dilation of $\phi(a)$ (for all $a \in \mathcal{A}$) to the larger space \mathcal{K}.

Unitary (power) dilation of a contraction We wish to prove the following result of B. Sz.-Nagy:

Theorem 2.6 If $T \in \mathcal{B}(\mathcal{H})$ is a contraction, there is a Hilbert space $\mathcal{K} \supseteq \mathcal{H}$ and a unitary $U \in \mathcal{B}(\mathcal{K})$ such that

$$
T^{n}=\left.P_{\mathcal{H}} U^{n}\right|_{\mathcal{H}}, \quad n \in \mathbb{Z}_{+}
$$

The idea of the proof is the following: If such a unitary exists, then, for $n \geq 1$,

$$
\left.P_{\mathcal{H}} U^{-n}\right|_{\mathcal{H}}=\left.P_{\mathcal{H}} U^{* n}\right|_{\mathcal{H}}=T^{* n} .
$$

Thus if we define

$$
T(n)=\left\{\begin{array}{ll}
T^{n}, & n \geq 0 \\
\left(T^{*}\right)^{|n|}, & n<0
\end{array} \quad(n \in \mathbb{Z})\right.
$$

then for every 'trigonometric polynomial' $a=\sum_{n=-N}^{N} a(n) \delta_{n}$ we would have

$$
\left.P_{\mathcal{H}}\left(\sum_{n=-N}^{N} a(n) U^{n}\right)\right|_{\mathcal{H}}=\sum_{n=-N}^{N} a(n) T(n) .
$$

Now, since U is unitary, the map

$$
\sum_{n=-N}^{N} a(n) \delta_{n} \rightarrow \sum_{n=-N}^{N} a(n) U^{n}
$$

extends to a ${ }^{*}$-representation of $\ell^{1}(\mathbb{Z})$ on \mathcal{K}. Therefore, to prove the existence of U, it suffices to dilate the linear map ${ }^{4}$

$$
\begin{aligned}
\phi: \ell^{1}(\mathbb{Z}) & \rightarrow B(H) \\
a & \rightarrow \phi(a)=\sum_{n=-\infty}^{\infty} a(n) T(n)
\end{aligned}
$$

to a ${ }^{*}$-representation π of $\ell^{1}(\mathbb{Z})$ on some larger Hilbert space. The required unitary U will then be given by $\pi\left(\delta_{1}\right)$.

To apply Stinespring's theorem, we need to prove that ϕ is completely positive. However,
Theorem 2.7 A positive linear map defined on an abelian Banach *-algebra with an identity of norm one is automatically completely positive.
(For the proof, see Theorem 3.10 below).
Thus it remains to prove that ϕ is positive.
Proof of positivity of ϕ We have to prove that for every $a \in \ell^{1}$ and $\xi \in H$,

$$
\left\langle\phi\left(a^{*} a\right) \xi, \xi\right\rangle \geq 0 .
$$

By continuity of ϕ (and the operations on $\ell^{1}(\mathbb{Z})$), it suffices to prove this when $a \in c_{00}(\mathbb{Z})$, i.e. when there exists $N \in \mathbb{Z}_{+}$s.t.

$$
a=\sum_{n=-N}^{N} a(n) \delta_{n} .
$$

But notice that then

$$
\left(a * \delta_{N}\right)^{*} *\left(a * \delta_{N}\right)=a^{*} * \delta_{-N} * a * \delta_{N}=a^{*} * a
$$

by commutativity, i.e. $a^{*} * a=b^{*} * b$, where

$$
b=a * \delta_{N}=\sum_{n=-N}^{N} a(n) \delta_{n+N}=\sum_{k=0}^{2 N} a(k-N) \delta_{k}=\sum_{k=0}^{M} b(k) \delta_{k}
$$

is an 'analytic polynomial' (we have set $M=2 N$ and $b(k)=a(k-N)$).
Now $b^{*} * b=\sum_{m} \overline{b(m)} \delta_{-m} \sum_{n} b(n) \delta_{n}=\sum_{n, m} \overline{b(m)} b(n) \delta_{n-m}$ and so

[^3]\[

$$
\begin{aligned}
\left\langle\phi\left(a^{*} a\right) \xi, \xi\right\rangle & =\left\langle\phi\left(b^{*} b\right) \xi, \xi\right\rangle=\sum_{n, m=0}^{M} \overline{b(m)} b(n)\langle T(n-m) \xi, \xi\rangle \\
& =\sum_{n, m=0}^{M}\langle T(n-m) \overline{b(m)} \xi, \overline{b(n)} \xi\rangle .
\end{aligned}
$$
\]

Now consider the Hilbert space $K=H^{M+1}$ of 'columns' $\left[\xi_{0}, \ldots, \xi_{M}\right]^{\mathrm{T}}$ with scalar product

$$
\left\langle\left[\xi_{1}, \ldots, \xi_{M}\right]^{\mathrm{T}},\left[\eta_{1}, \ldots, \eta_{M}\right]^{\mathrm{T}}\right\rangle=\sum_{k=0}^{M}\left\langle\xi_{k}, \eta_{k}\right\rangle_{H} .
$$

The matrix $[T(n-m)]$ defines an operator A on K satisfying

$$
\left\langle A\left[\begin{array}{c}
\xi_{0} \\
\vdots \\
\xi_{M}
\end{array}\right],\left[\begin{array}{c}
\eta_{0} \\
\vdots \\
\eta_{M}
\end{array}\right]\right\rangle=\sum_{m, n}\left\langle T(n-m) \xi_{m}, \eta_{n}\right\rangle
$$

and therefore

$$
\left\langle\phi\left(a^{*} a\right) \xi, \xi\right\rangle=\left\langle A\left[\begin{array}{c}
\overline{b(0) \xi} \\
\vdots \\
\overline{b(M) \xi}
\end{array}\right],\left[\begin{array}{c}
\overline{b(0) \xi} \\
\vdots \\
\overline{b(M) \xi}
\end{array}\right]\right\rangle .
$$

Hence it is enough to show that the matrix A defines a positive operator on K. This matrix is

$$
A=\left[\begin{array}{llllll}
I & T^{*} & T^{* 2} & \ldots & T^{*(M-1)} & T^{* M} \\
T & I & T^{*} & \ldots & T^{*(M-2)} & T^{*(M-1)} \\
T^{2} & T & I & \ldots & \ldots & \\
\vdots & & & & \ldots & \\
\vdots & & & & \ldots & \\
T^{M} & T^{M-1} & T^{M-2} & \ldots & T & I
\end{array}\right]
$$

If we let R be the operator matrix

$$
R=\left[\begin{array}{ccccc}
0 & & \cdots & & 0 \\
T & \ddots & & & \\
& T & & & \\
\vdots & & \ddots & \ddots & \\
0 & \cdots & & T & 0
\end{array}\right]
$$

then A is given by

$$
A=I+R+\cdots+R^{M}+R^{*}+\cdots+R^{* M}
$$

But $R^{M+1}=0$ and so

$$
\left(I+R+\cdots+R^{M}\right)(I-R)=(I-R)\left(I+R+\cdots+R^{M}\right)=I-R^{M+1}=I
$$

hence $I-R$ is invertible, $(I-R)^{-1}=I+R+\cdots+R^{M}$ and thus

$$
A=(I-R)^{-1}+\left(I-R^{*}\right)^{-1}-I .
$$

Therefore, for all $x \in K$, if we set $y=(I-R)^{-1} x$ we have

$$
\begin{aligned}
\langle A x, x\rangle & =\left\langle(I-R)^{-1} x, x\right\rangle+\left\langle\left(I-R^{*}\right)^{-1} x, x\right\rangle-\langle x, x\rangle \\
& =\langle y,(I-R) y\rangle+\langle(I-R) y, y\rangle-\langle(I-R) y,(I-R) y\rangle \\
& =\|y\|^{2}-\|R y\|^{2} \geq 0
\end{aligned}
$$

because $\|R\|=\|T\| \leq 1$.
This shows that the operator matrix A is positive and therefore

$$
\left\langle\phi\left(a^{*} a\right) \xi, \xi\right\rangle \geq 0 .
$$

for all $a \in c_{00}(\mathbb{Z})$ and all $\xi \in H$.

Aside: Connection with the Poisson kernel. If $a \in \ell^{1}(\mathbb{Z})$ the formula

$$
f_{a}(z)=\sum_{n} a(n) z^{n}, \quad z=e^{i t} \in \mathbb{T}
$$

defines a continuous function f_{a} on the circle, the (inverse) 'Fourier transform' of a. The Poisson extension of this to the disc \mathbb{D} is given by

$$
\tilde{f}_{a}(w)=\sum_{n} a(n) r^{|n|} e^{i n t}, \quad w=r e^{i t}, 0 \leq r<1
$$

which is the 'convolution' of f_{a} with the 'Poisson kernel' $\sum_{n} r^{|n|} e^{i n t}$. The map $f \rightarrow \tilde{f}$ is positive: if $f(z) \geq 0$ everywhere on the circle, then $\tilde{f}(w) \geq 0$ everywhere on the disc. This is because the Poisson kernel is nonnegative: indeed, if $w=r e^{i t}$ with $0<r<1$, then

$$
\sum_{n} r^{|n|} e^{i n t}=\sum_{n \geq 0} w^{n}+\sum_{m \geq 1} \bar{w}^{m}=(1-w)^{-1}+(1-\bar{w})^{-1}-1
$$

and the latter quantity is always nonnegative: it equals $\frac{1-r^{2}}{|1-w|^{2}}$.
Tv $\chi \alpha \iota o ;$

Dilation of operator-valued measures. ${ }^{5}$

A positive operator - valued measure is a map $E: \mathcal{S} \rightarrow \mathcal{B}(H)_{+}$defined on a σ-algebra \mathcal{S} of subsets of some set X and taking values in the set of positive operators on a Hilbert space H, which is weakly countably additive in the sense that for each $\xi \in H$ the map

$$
\mu_{\xi, \xi}(S):=\langle E(S) \xi, \xi\rangle, \quad S \in \mathcal{S}
$$

is a positive (countably additive) measure. We will assume that $E(X)=I$; it then follows that all $E(S)$ are positive contractions. ${ }^{6}$ Note that the operators $E(S)$ need not commute.
$E(\cdot)$ is said to be a spectral or projection-valued measure or a resolution of the identity in case it additionally satisfies $E\left(S_{1} \cap S_{2}\right)=E\left(S_{1}\right) E\left(S_{2}\right)$. Then each $E(S)$ is a positive idempotent, hence an orthogonal projection.

When \mathcal{S} is the Borel σ-algebra of a compact Hausdorff space X, we say $E(\cdot)$ is regular when for each $\xi \in H$ the scalar measure $\mu_{\xi, \xi}$ is regular.

One version of the spectral theorem states that, if X is a compact Hausdorff space, every unital *-representation $\pi: C(X) \rightarrow \mathcal{B}(H)$ gives rise to a unique regular Borel spectral measure $F(\cdot)$ such that

$$
\pi(f)=\int_{X} f d F, \quad f \in C(X)
$$

[^4]where the integral may be defined in the 'weak' sense:
$$
\langle\pi(f) \xi, \eta\rangle_{K}=\int_{X} f d \nu_{\xi, \eta}
$$
for all $\xi, \eta \in H$, where $\nu_{\xi, \eta}(S)=\langle F(S) \xi, \eta\rangle$.
Theorem 2.8 (Naimark) Let $E: \mathcal{S} \rightarrow \mathcal{B}(H)$ be a positive regular operator - valued measure defined on the Borel σ-algebra \mathcal{S} of a compact Hausdorff space X.

Then there is a Hilbert space $K \supseteq H$ and a regular spectral measure $F: \mathcal{S} \rightarrow \mathcal{B}(K)$ which dilates $E(\cdot)$ in the sense that

$$
E(S)=\left.P_{H} F(S)\right|_{H} \quad \text { for all } S \in \mathcal{S} .
$$

Proof. For each $\xi, \eta \in H$ the map

$$
\mathcal{S} \rightarrow \mathbb{C}: S \rightarrow \mu_{\xi, \eta}(S)=\langle E(S) \xi, \eta\rangle_{H},
$$

is a complex regular Borel measure on X. Actually, it is a linear combination of four positive regular Borel measures: $\mu_{\xi, \eta}=\frac{1}{4} \sum_{n=1}^{4} i^{n} \mu_{\xi_{n}, \xi_{n}}$ where $\xi_{n}=\xi+i^{n} \eta$; so if $f \in C(X)$, the integral $\int_{X} f d \mu_{\xi, \eta}$ may be defined as a linear combination of four integrals over positive measures. Now for $\xi=\eta$ we have

$$
\left|\int_{X} f d \mu_{\xi, \xi}\right| \leq\|f\|_{\infty} \mu_{\xi, \xi}(X)=\|f\|_{\infty}\langle E(X) \xi, \xi\rangle=\|f\|_{\infty}\|\xi\|^{2}
$$

Therefore, if $\|\xi\| \leq 1$ and $\|\eta\| \leq 1$

$$
\begin{aligned}
\left|\int_{X} f d \mu_{\xi, \eta}\right| & =\frac{1}{4}\left|\sum_{n=1}^{4} i^{n} \int_{X} f d \mu_{\xi_{n}, \xi_{n}}\right| \leq \frac{1}{4} \sum_{n=1}^{4} \int_{X}|f| d \mu_{\xi_{n}, \xi_{n}} \\
& \leq \frac{1}{4} \sum_{n=1}^{4}\|f\|_{\infty}\left\|\xi+i^{n} \eta\right\|^{2}=\|f\|_{\infty}\left(\|\xi\|^{2}+\|\eta\|^{2}\right) \leq 2\|f\|_{\infty}
\end{aligned}
$$

(we have used the parallelogram law). Consider the map

$$
H \times H \rightarrow \mathbb{C}:(\xi, \eta) \rightarrow \int_{X} f d \mu_{\xi, \eta}
$$

This is sesquilinear, since the map $(\xi, \eta) \rightarrow \mu_{\xi, \eta}(S)$ is sesquilinear for each S (Proof: Exercise!). Moreover, we have just shown that it is bounded. Therefore there exists a unique $\phi_{E}(f) \in \mathcal{B}(H)$ such that

$$
\left\langle\phi_{E}(f) \xi, \eta\right\rangle_{H}=\int_{X} f d \mu_{\xi, \eta} \quad \text { for all } \xi, \eta \in H
$$

The map $\phi_{E}: C(X) \rightarrow \mathcal{B}(H)$ is linear and unital because

$$
\left\langle\phi_{E}(\mathbf{1}) \xi, \eta\right\rangle_{H}=\int_{X} \mathbf{1} d \mu_{\xi, \eta}=\langle E(X) \xi, \eta\rangle_{H}=\langle\xi, \eta\rangle_{H}
$$

since $E(X)=I$. Moreover, it is positive because the measures $\mu_{\xi, \xi}$ are all positive. Since the domain of ϕ_{E} is abelian, ${ }^{7} \phi_{E}$ is completely positive (Theorem 3.10). Therefore, by Stinespring's theorem there is a ${ }^{*}$-representation π of $C(X)$ such that

$$
\phi_{E}(f)=\left.P_{H} \pi(f)\right|_{H} \quad \text { for all } f \in \mathcal{C}(X)
$$

[^5]But now, as noted before the theorem, π defines a unique regular (projection-valued) spectral measure $F: \mathcal{S} \rightarrow \mathcal{B}(K)$ such that, if $\nu_{x, y}(S)=\langle F(S) x, y\rangle_{K}$,

$$
\langle\pi(f) x, y\rangle_{K}=\int_{X} f d \nu_{x, y} \quad \text { for all } f \in \mathcal{C}(X)
$$

We have to show that, for all $S \in \mathcal{S}$,

$$
E(S)=\left.P_{H} F(S)\right|_{H},
$$

equivalently that, for all $\xi, \eta \in H \subseteq K$,

$$
\langle E(S) \xi, \eta\rangle=\left\langle P_{H} F(S) \xi, \eta\right\rangle=\langle F(S) \xi, \eta\rangle .
$$

By polarisation, it is enough to prove the equality $\langle E(S) \xi, \xi\rangle=\langle F(S) \xi, \xi\rangle$. In other words we need to show that for all $\xi \in H \subseteq K$ the positive measures $\mu_{\xi, \xi}$ and $\nu_{\xi, \xi}$ are the same. Indeed, for all $f \in C(X)$,

$$
\int_{X} f d \nu_{\xi, \xi}=\langle\pi(f) \xi, \xi\rangle=\left\langle\pi(f) P_{H} \xi, P_{H} \xi\right\rangle=\left\langle P_{H} \pi(f) P_{H} \xi, \xi\right\rangle=\left\langle\phi_{E}(f) \xi, \xi\right\rangle=\int_{X} f d \mu_{\xi, \xi}
$$

so that

$$
\nu_{\xi, \xi}(S)=\mu_{\xi, \xi}(S) \quad \text { far all } S \in \mathcal{S}
$$

because both $\mu_{\xi, \xi}$ and $\nu_{\xi, \xi}$ are regular measures.

3 Proofs of the main theorems

3.1 Stinespring's Dilation Theorem

We will need the following result, which is well known for C^{*} algebras.
Proposition 3.1 Any positive linear form ρ defined on a unital Banach *-algebra with $\|\mathbf{1}\|=1$ is bounded with $\|\rho\|=\rho(\mathbf{1})$.

Proof. The inequality $\rho\left(a^{*} a\right) \geq 0$ for all $a \in \mathcal{A}$ implies (in the standard way) the Cauchy Schwarz inequality

$$
\left|\rho\left(b^{*} a\right)\right|^{2} \leq \rho\left(a^{*} a\right) \rho\left(b^{*} b\right) \quad \text { and so } \quad|\rho(a)|^{2} \leq \rho\left(a^{*} a\right) \rho(1) .
$$

It is therefore enough to prove the inequality

$$
\rho\left(a^{*} a\right) \leq \rho(1)\|a\|^{2} .
$$

Take $a \in \mathcal{A}$ with $\|a\| \leq 1$; we have to prove that $\rho\left(a^{*} a\right) \leq \rho(1)$.
By Taylor's theorem, for all $z \in \mathbb{C}$ with $|z| \leq 1$ we have

$$
(1-z)^{1 / 2}=1-\sum_{n=1}^{\infty} \lambda_{n} z^{n}
$$

where one can verify that all $\lambda_{n}>0$ and moreover that ${ }^{8} \sum_{n=1}^{\infty} \lambda_{n}<\infty$, i.e. $\left(\lambda_{n}\right) \in \ell^{1}$. It follows that if $b \in \mathcal{A}$ has $\|b\| \leq 1$ then the series $\sum_{n} \lambda_{n} b^{n}$ converges absolutely to some $c \in \mathcal{A}$ such that

$$
(\mathbf{1}-c)^{2}=\left(\mathbf{1}-\sum_{n} \lambda_{n} b^{n}\right)^{2}=\mathbf{1}-b .
$$

[^6]Apply this to $b=a^{*} a$: note that $b^{*}=b$ and so $c^{*}=c$ (the coefficients of the series are real) and

$$
\begin{aligned}
\mathbf{1}-a^{*} a & =(\mathbf{1}-c)^{2}=(\mathbf{1}-c)^{*}(\mathbf{1}-c) \\
\text { hence } \quad \rho\left(\mathbf{1}-a^{*} a\right) & =\rho\left((\mathbf{1}-c)^{*}(\mathbf{1}-c)\right) \geq 0
\end{aligned}
$$

which shows that $\rho\left(a^{*} a\right) \leq \rho(\mathbf{1})$ as required.

Theorem 3.2 Let \mathcal{A} be a unital Banach *-algebra with $\|\mathbf{1}\|=1$. If $\phi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$ is a completely positive map, then there exists a triple (V, π, \mathcal{K}) where \mathcal{K} is a Hilbert space, $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{K}) a^{*}$-representation and $V: \mathcal{H} \rightarrow \mathcal{K}$ a bounded linear map satisfying

$$
\phi(a)=V^{*} \pi(a) V, \quad a \in \mathcal{A} .
$$

In fact ϕ is automatically continuous with $\|\phi\|=\|V\|^{2}=\|\phi(\mathbf{1})\|$.
Proof. Define a sesquilinear form on the algebraic tensor product ${ }^{9} \mathcal{A} \otimes H$ by the formula

$$
\left\langle\sum_{i} a_{i} \otimes \xi_{i}, \sum_{j} b_{j} \otimes \eta_{j}\right\rangle_{o}=\sum_{i, j}\left\langle\phi\left(b_{j}^{*} a_{i}\right) \xi_{i}, \eta_{j}\right\rangle_{H} \quad\left(a_{i}, b_{i} \in \mathcal{A}, \xi_{i}, \eta_{i} \in H\right)
$$

Since the map $(a, \xi) \rightarrow a \otimes \xi$ is bilinear, this is clearly a sesquilinear form. The complete positivity of ϕ is exactly what is needed to ensure that $\langle\cdot, \cdot\rangle_{o}$ is positive semidefinite:

$$
\left\langle\sum_{i} a_{i} \otimes \xi_{i}, \sum_{j} a_{j} \otimes \xi_{j}\right\rangle_{o}=\sum_{i, j}\left\langle\phi\left(a_{j}^{*} a_{i}\right) \xi_{i}, \xi_{j}\right\rangle \geq 0
$$

Therefore $\langle\cdot, \cdot\rangle_{o}$ satisfies the Cauchy-Schwarz inequality, and so

$$
\left\|\sum_{i} a_{i} \otimes \xi_{i}\right\|_{o}:=\left(\left\langle\sum_{i} a_{i} \otimes \xi_{i}, \sum_{j} a_{j} \otimes \xi_{j}\right\rangle_{o}\right)^{1 / 2}
$$

is a seminorm on $\mathcal{A} \otimes H$.
For all $a \in \mathcal{A}$ define a map

$$
\begin{aligned}
\pi_{o}(a): \mathcal{A} \otimes H & \rightarrow \mathcal{A} \otimes H: \\
\sum_{j} b_{j} \otimes \xi_{j} & \rightarrow \sum_{j}\left(a b_{j}\right) \otimes \xi_{j} .
\end{aligned}
$$

Clearly each $\pi_{o}(a)$ is a linear map. Moreover, it is immediate that

$$
\begin{equation*}
\pi_{o}(a+b)=\pi_{o}(a)+\pi_{o}(b), \quad \pi_{o}(a b)=\pi_{o}(a) \pi_{o}(b), \quad \pi_{o}(\mathbf{1})=I . \tag{1}
\end{equation*}
$$

Claim 1 For all $u, v \in \mathcal{A} \otimes H$ and all $a \in \mathcal{A}$ we have

$$
\left\langle\pi_{o}(a) u, v\right\rangle_{o}=\left\langle u, \pi_{o}\left(a^{*}\right) v\right\rangle_{o}
$$

[^7]Proof If $u=\sum_{i} b_{i} \otimes \xi_{i}$ and $v=\sum_{j} c_{j} \otimes \eta_{j}$ then

$$
\begin{aligned}
\left\langle\pi_{o}(a) u, v\right\rangle_{o} & =\left\langle\pi_{o}(a) \sum_{i} b_{i} \otimes \xi_{i}, \sum_{j} c_{j} \otimes \eta_{j}\right\rangle_{o} o=\left\langle\sum_{i}\left(a b_{i}\right) \otimes \xi_{i}, \sum_{j} c_{j} \otimes \eta_{j}\right\rangle_{o} \\
& =\sum_{i, j}\left\langle\phi\left(c_{j}^{*} a b_{i}\right) \xi_{i}, \eta_{j}\right\rangle_{H}=\sum_{i, j}\left\langle\phi\left(\left(a^{*} c_{j}\right)^{*} b_{i}\right) \xi_{i}, \eta_{j}\right\rangle_{H}=\sum_{i, j}\left\langle b_{i} \otimes \xi_{i},\left(a^{*} c_{j}\right) \otimes \eta_{j}\right\rangle_{o} \\
& =\left\langle\sum_{i} b_{i} \otimes \xi_{i}, \sum_{j}\left(a^{*} c_{j}\right) \otimes \eta_{j}\right\rangle_{o}=\left\langle u, \pi_{o}\left(a^{*}\right) v\right\rangle_{o} .
\end{aligned}
$$

It follows from the claim that for each $u \in \mathcal{A} \otimes H$ and $a \in \mathcal{A}$,

$$
\left\langle\pi_{o}\left(a^{*} a\right) u, u\right\rangle_{o}=\left\langle\pi_{o}\left(a^{*}\right) \pi_{o}(a) u, u\right\rangle_{o}=\left\langle\pi_{o}(a) u, \pi_{o}(a) u\right\rangle_{o} \geq 0
$$

which means that the functional $\rho_{u}: \mathcal{A} \rightarrow \mathbb{C}$ given by

$$
\rho_{u}(b)=\left\langle\pi_{o}(b) u, u\right\rangle_{o}, \quad b \in \mathcal{A}
$$

is a positive linear form. By Proposition 3.1, it is bounded with $\left\|\rho_{u}\right\|=\rho_{u}(\mathbf{1})=\langle u, u\rangle_{o}$. Thus

$$
\rho_{u}\left(a^{*} a\right) \leq\left\|\rho_{u}\right\|\left\|a^{*} a\right\| \leq\left\|\rho_{u}\right\|\left\|a^{*}\right\|\|a\|=\left\|\rho_{u}\right\|\|a\|^{2}
$$

and therefore

$$
\begin{equation*}
\left\|\pi_{o}(a) u\right\|_{o}^{2}=\left\langle\pi_{o}(a) u, \pi_{o}(a) u\right\rangle_{o}=\rho_{u}\left(a^{*} a\right) \leq\left\|\rho_{u}\right\|\|a\|^{2}=\|u\|_{o}^{2}\|a\|^{2} . \tag{2}
\end{equation*}
$$

It follows from this that if

$$
\mathcal{N}:=\left\{u \in \mathcal{A} \otimes H:\|u\|_{o}=0\right\}
$$

then \mathcal{N} is invariant under $\pi_{o}(a)$ (if $\|u\|_{o}=0$ then $\left\|\pi_{o}(a) u\right\|_{o}=0$), and so $\pi_{o}(a)$ factors to a linear map $\pi(a)$ from the quotient space $K_{o}:=(\mathcal{A} \otimes H) / \mathcal{N}$ to itself given by

$$
\pi(a)(u+\mathcal{N})=\left(\pi_{o}(a) u\right)+\mathcal{N}
$$

Also, if $\|u+\mathcal{N}\|:=\|u\|_{o}$ is the quotient norm, then

$$
\|\pi(a)(u+\mathcal{N})\|=\left\|\pi_{o}(a) u\right\|_{o} \leq\|u\|_{o}\|a\|=\|a\|\|u+\mathcal{N}\|
$$

by (2). Therefore $\pi(a)$ is bounded on K_{o} by $\|a\|$, hence extends to a bounded operator (also denoted by $\pi(a))$ on the Hilbert space completion K of K_{o} satisfying $\|\pi(a)\| \leq\|a\|$. It is immediate that the map

$$
\pi: \mathcal{A} \rightarrow \mathcal{B}(K): a \rightarrow \pi(a)
$$

is a unital algebra morphism; it follows from Claim 1 that it is also *-preserving: for all $u, v \in \mathcal{A} \otimes H$,

$$
\begin{aligned}
\left\langle(u+\mathcal{N}), \pi(a)^{*}(v+\mathcal{N})\right\rangle & =\langle\pi(a)(u+\mathcal{N}),(v+\mathcal{N})\rangle=\left\langle\pi_{o}(a) u, v\right\rangle_{o}=\left\langle u, \pi_{o}\left(a^{*}\right) v\right\rangle_{o} \\
& =\left\langle(u+\mathcal{N}), \pi\left(a^{*}\right)(v+\mathcal{N})\right\rangle
\end{aligned}
$$

Thus the bounded operators $\pi(a)^{*}$ and $\pi\left(a^{*}\right)$ coincide on the dense subspace K_{o} of K, hence they are equal.

We have defined the Hilbert space K and the *-representation $\pi: \mathcal{A} \rightarrow \mathcal{B}(K)$. Now we define

$$
V: H \rightarrow K: \xi \rightarrow(\mathbf{1} \otimes \xi)+\mathcal{N} .
$$

Note that the (obviously linear) map V is bounded; indeed,

$$
\|V \xi\|^{2}=\langle(\mathbf{1} \otimes \xi)+\mathcal{N},(\mathbf{1} \otimes \xi)+\mathcal{N}\rangle=\langle\mathbf{1} \otimes \xi, \mathbf{1} \otimes \xi\rangle_{o}=\langle\phi(\mathbf{1}) \xi, \xi\rangle_{o} \leq\|\phi(\mathbf{1})\|\|\xi\|_{H}^{2}
$$

so that

$$
\begin{equation*}
\|V\|^{2} \leq\|\phi(\mathbf{1})\| . \tag{3}
\end{equation*}
$$

Now for all $a \in \mathcal{A}$ and $\xi, \eta \in H$ we have

$$
\begin{aligned}
\pi(a) V \xi & =\pi(a)(\mathbf{1} \otimes \xi+\mathcal{N})=a \otimes \xi+\mathcal{N} \\
\text { hence } \quad\left\langle V^{*} \pi(a) V \xi, \eta\right\rangle_{H} & =\langle\pi(a) V \xi, V \eta\rangle_{K}=\langle(a \otimes \xi)+\mathcal{N},(\mathbf{1} \otimes \eta)+\mathcal{N}\rangle_{K} \\
& =\langle a \otimes \xi, \mathbf{1} \otimes \eta\rangle_{o}=\left\langle\phi\left(\mathbf{1}^{*} a\right) \xi, \eta\right\rangle_{H}=\langle\phi(a) \xi, \eta\rangle_{H}
\end{aligned}
$$

so that $V^{*} \pi(a) V=\phi(a)$
as required.
Using this equality we have

$$
\|\phi(a)\| \leq\left\|V^{*}\right\|\|\pi(a)\|\|V\| \leq\|V\|^{2}\|a\| .
$$

This shows that the map $\phi: \mathcal{A} \rightarrow \mathcal{B}(H)$ is automatically bounded with $\|\phi\| \leq\|V\|^{2}$; but since $\|V\|^{2} \leq\|\phi(\mathbf{1})\| \leq\|\phi\|$ by (3), we have $\|\phi\|=\|V\|^{2}=\|\phi(\mathbf{1})\|$.

Remarks 3.3 (i) The Stinespring triple (V, π, K) that we have constructed is minimal in the sense that

$$
K=\overline{[\pi(a) V \xi: a \in \mathcal{A}, \xi \in H]}
$$

(indeed we saw that $[\pi(a) V \xi: a \in \mathcal{A}, \xi \in H\}=[a \otimes \xi+\mathcal{N}: a \in \mathcal{A}, \xi \in H]=K_{o}$). Recall that all minimal Stinespring triples for ϕ are unitarily equivalent (Proposition 2.4).
(ii) Note that $V^{*} V=V^{*} \pi(\mathbf{1}) V=\phi(\mathbf{1})$. Thus, if $\phi(\mathbf{1})=I_{H}$, then $V^{*} V=I_{H}$ and so $V: H \rightarrow K$ is an isometry.

The special case dim $H=1$ yields the celebrated Gelfand - Naimark - Segal representation:

Theorem 3.4 (GNS) Let \mathcal{A} be a unital Banach ${ }^{*}$-algebra with $\|\mathbf{1}\|=1$. If $\rho: \mathcal{A} \rightarrow \mathbb{C}$ is a positive linear form, there exists a Hilbert space H_{ρ}, a vector $\xi_{\rho} \in H_{\rho}$ and a *-representation $\pi_{\rho}: \mathcal{A} \rightarrow \mathcal{B}\left(H_{\rho}\right)$ such that

$$
\rho(a)=\left\langle\pi_{\rho}(a) \xi_{\rho}, \xi_{\rho}\right\rangle, \quad a \in \mathcal{A} .
$$

Moreover π_{ρ} is a cyclic representation with cyclic vector ξ_{ρ}, that is, $\left\{\pi_{\rho}(a) \xi_{\rho}: a \in \mathcal{A}\right\}$ is dense in H_{ρ}.

Proof. We apply Theorem 3.2. The Hilbert space H is \mathbb{C} and hence $\mathcal{B}(H)=\mathbb{C}$. Since ρ takes values in \mathbb{C}, positivity implies complete positivity (Theorem 3.10). Thus Stinespring's theorem applies: There is a Hilbert space K, a bounded operator $V: \mathbb{C} \rightarrow K$ and a *-representation $\pi: \mathcal{A} \rightarrow \mathcal{B}(K)$ such that

$$
\rho(a)=V^{*} \pi(a) V, \quad a \in \mathcal{A} .
$$

Now setting $\xi=V 1$ we have $V^{*} \eta=\langle\eta, \xi\rangle, \eta \in K$. Indeed,

$$
\langle\eta, \xi\rangle_{K}=\langle\eta, V 1\rangle_{K}=\left\langle V^{*} \eta, 1\right\rangle_{\mathbb{C}}=V^{*} \eta .
$$

Therefore,

$$
\rho(a)=\rho(a) 1=V^{*} \pi(a) V 1=V^{*}(\pi(a) \xi)=\langle\pi(a) \xi, \xi\rangle
$$

as required. We now set $\xi_{\rho}=\xi, H_{\rho}=\overline{\{\pi(a) \xi: a \in \mathcal{A}\}}$ and $\pi_{\rho}(a)=\left.\pi(a)\right|_{H_{\rho}}$ to get the required GNS triple ($\pi_{\rho}, H_{\rho}, \xi_{\rho}$).

3.2 The enveloping C* algebra

Theorem 3.5 Let \mathcal{A} be a Banach *-algebra with identity of norm 1. Then there exists a C^{*}-algebra $C^{*}(\mathcal{A})$ and a contractive ${ }^{*}$-homomorphism

$$
\iota: \mathcal{A} \rightarrow C^{*}(\mathcal{A})
$$

with dense range, having the following universal property:
For every *-representation (π, H) of \mathcal{A} there is a unique *-representation $(\tilde{\pi}, H)$ of $C^{*}(\mathcal{A})$ such that

$$
\tilde{\pi} \circ \iota=\pi .
$$

In particular, $C^{*}(\mathcal{A})$ is unique up to *-isomorphism.
Proof. Let

$$
\mathcal{S}=\{\rho: \mathcal{A} \rightarrow \mathbb{C} \quad \text { positive linear form s.t. }\|\rho\| \leq 1\} .
$$

Recall that each $\rho \in \mathcal{S}$ defines a cyclic *-representation $\left(\pi_{\rho}, H_{\rho}, \xi_{\rho}\right)$ of \mathcal{A} such that

$$
\rho(a)=\left\langle\pi_{\rho}(a) \xi_{\rho}, \xi_{\rho}\right\rangle \quad(a \in \mathcal{A})
$$

hence in particular $\left\|\xi_{\rho}\right\|^{2}=\rho(\mathbf{1}) \leq 1$. Conversely every cyclic *-representation (π, H, ξ) defines a $\rho \in \mathcal{S}$ by the formula $\rho(a)=\langle\pi(a) \xi, \xi\rangle$, and π is unitarily equivalent to π_{ρ}.

For $a \in \mathcal{A}$, define

$$
\|a\|_{o}^{2}=\sup \left\{\rho\left(a^{*} a\right): \rho \in \mathcal{S}\right\}
$$

Since $\rho\left(a^{*} a\right) \leq\|\rho\|\left\|a^{*} a\right\| \leq\left\|a^{*} a\right\| \leq\left\|a^{*}\right\|\|a\|=\|a\|^{2}$, it is clear that

$$
\|a\|_{o} \leq\|a\| .
$$

Claim 1

$$
\|a\|_{o}=\sup \left\{\left\|\pi_{\rho}(a)\right\|: \rho \in \mathcal{S}\right\}
$$

Proof Write b for the right hand side of the claimed equality. For every $\rho \in \mathcal{S}$ we have

$$
\rho\left(a^{*} a\right)=\left\langle\pi_{\rho}\left(a^{*} a\right) \xi_{\rho}, \xi_{\rho}\right\rangle=\left\|\pi_{\rho}(a) \xi_{\rho}\right\|^{2} \leq\left\|\pi_{\rho}(a)\right\|^{2} \leq b^{2}
$$

(since $\left\|\xi_{\rho}\right\| \leq 1$) and so, taking sup over all $\rho \in \mathcal{S}$,

$$
\|a\|_{o}^{2} \leq b^{2}
$$

For the reverse inequality, take any $\rho \in \mathcal{S}$ and calculate

$$
\begin{aligned}
\left\|\pi_{\rho}(a)\right\|^{2} & =\sup \left\{\left\|\pi_{\rho}(a) \eta\right\|^{2}: \eta \in H,\|\eta\| \leq 1\right\} \\
& =\sup \left\{\left\langle\pi_{\rho}\left(a^{*} a\right) \eta, \eta\right\rangle: \eta \in H,\|\eta\| \leq 1\right\} .
\end{aligned}
$$

But the forms ρ_{η} given on \mathcal{A} by $\rho_{\eta}(a)=\left\langle\pi_{\rho}(a) \eta, \eta\right\rangle$ belong to \mathcal{S} (because $\|\eta\| \leq 1$), and so the last supremum is no larger than $\|a\|_{o}^{2}$. Therefore

$$
\left\|\pi_{\rho}(a)\right\|^{2} \leq\|a\|_{o}^{2}
$$

for each ρ, and so $b^{2} \leq\|a\|_{o}^{2}$.
The claim shows that $\|a\|_{o}$ is indeed an algebra seminorm on \mathcal{A}, being the supremum of algebra seminorms. It also satisfies the C^{*}-identity, because each $\pi_{\rho}(a)$ is a Hilbert space operator, hence $\left\|\pi_{\rho}(a)\right\|^{2}=\left\|\pi_{\rho}(a)^{*} \pi_{\rho}(a)\right\|=\left\|\pi_{\rho}\left(a^{*} a\right)\right\|$.

Thus if we define \mathcal{N} by

$$
\mathcal{N}=\left\{a \in \mathcal{A}:\|a\|_{o}=0\right\}
$$

then \mathcal{N} is a two-sided selfadjoint ideal, hence the quotient space $\mathcal{A} / \mathcal{N}$ is a unital ${ }^{*}$-algebra; moreover $\|\cdot\|_{o}$ induces an algebra norm $\|\cdot\|_{*}$ on $\mathcal{A} / \mathcal{N}$ which satisfies the C^{*}-identity.

The quotient map $\iota: \mathcal{A} \rightarrow \mathcal{A} / \mathcal{N}$ is a *-epimorphism and is contractive because $\|\iota(a)\|_{*}=$ $\|a\|_{o} \leq\|a\|_{\mathcal{A}}$. Thus if we define $C^{*}(\mathcal{A})$ to be the completion of $\left(\mathcal{A} / \mathcal{N},\|\cdot\|_{*}\right)$, we obtain a C^{*}-algebra and a contractive ${ }^{*}$-homomorphism $\iota: \mathcal{A} \rightarrow C^{*}(\mathcal{A})$ whose range $\mathcal{A} / \mathcal{N}$ is dense in $C^{*}(\mathcal{A})$.

It remains to prove the universal property. We show that it suffices to consider cyclic representations:
Claim Any *-representation π of \mathcal{A} is the direct sum of cyclic representations.
Proof Call two unit vectors $\xi, \eta \in H$ very orthogonal if $\langle\pi(a) \xi, \pi(b) \eta\rangle=0$ for all $a, b \in \mathcal{A}$ 10 . This is equivalent to requiring that the cyclic subspaces $H_{\xi}=\overline{\{\pi(a) \xi: a \in \mathcal{A}\}}$ and H_{η} be orthogonal. Of course H_{ξ} is $\pi(\mathcal{A})$-invariant (hence reducing, because $\pi(\mathcal{A})$ is selfadjoint) and the $\operatorname{map} \pi_{\xi}:\left.a \rightarrow \pi(a)\right|_{H_{\xi}}$ is a cyclic *-representation of \mathcal{A} (with cyclic vector ξ).

Let $\left\{\xi_{i}: i \in I\right\}$ be a maximal family of very orthogonal unit vectors in H (Zornication), let H_{i} be the cyclic subspace corresponding to ξ_{i}, and let π_{i} be the corresponding subrepresentation of π. We have to show that the (pairwise orthogonal) invariant subspaces H_{i} satisfy $\oplus_{i} H_{i}=H$.

Indeed, if there existed a unit vector $\xi \in H$ orthogonal to $\oplus_{i} H_{i}$, then for all $i \in I$ and all $a, b \in \mathcal{A}$ we would have

$$
\left\langle\pi(a) \xi, \pi(b) \xi_{i}\right\rangle=\left\langle\xi, \pi\left(a^{*} b\right) \xi_{i}\right\rangle=0
$$

because $\pi\left(a^{*} b\right) \xi_{i}$ is in H_{i} while ξ is orthogonal to H_{i}. This shows that H_{ξ} is orthogonal to H_{i}, for all $i \in I$, contradicting the maximality of $\left\{\xi_{i}: i \in I\right\}$.

Therefore, to show that any ${ }^{*}$-representation of \mathcal{A} induces a ${ }^{*}$-representation of $C^{*}(\mathcal{A})$ as claimed, it is sufficient to consider cyclic representations. Indeed, if $\pi=\oplus_{i} \pi_{i}$, and each π induces a ${ }^{*}$-representation $\tilde{\pi}_{i}$ of $C^{*}(\mathcal{A})$ such that $\tilde{\pi}_{i} \circ \iota=\pi_{i}$, then $\tilde{\pi}:=\oplus_{i} \tilde{\pi}_{i}$ satisfies $\tilde{\pi} \circ \iota=\pi$.

So let $\pi: \mathcal{A} \rightarrow \mathcal{B}(H)$ be a *-representation of \mathcal{A} with unit cyclic vector ξ.
If $a \in \mathcal{A}$ then, for all $b \in \mathcal{A}$ such that $\|\pi(b) \xi\| \leq 1$,

$$
\|\pi(a) \pi(b) \xi\|^{2}=\langle\pi(a b) \xi, \pi(a b) \xi\rangle=\left\langle\pi\left(b^{*} a^{*} a b\right) \xi, \xi\right\rangle=\rho_{b}\left(a^{*} a\right)
$$

where $\rho_{b}(x)=\left\langle\pi\left(b^{*} x b\right) \xi, \xi\right\rangle$. Clearly $\rho_{b} \in \mathcal{S}$, so $\rho_{b}\left(a^{*} a\right) \leq\|a\|_{o}^{2}$. Thus $\left\|\pi_{\rho}(a) \pi_{\rho}(b) \xi\right\| \leq\|a\|_{o}$ for all $b \in \mathcal{A}$ of norm at most 1. Since $\left\{\pi_{\rho}(b) \xi: b \in \mathcal{A},\|\pi(b) \xi\| \leq 1\right\}$ is dense in the unit ball of H, this shows that $\left\|\pi_{\rho}(a)\right\| \leq\|a\|_{o}$. In particular if $a \in \mathcal{N}$ then $\pi_{\rho}(a)=0$. Thus π_{ρ} factors through \mathcal{N} to a map $\tilde{\pi}_{\rho}: \mathcal{A} / \mathcal{N} \rightarrow \mathcal{B}\left(H_{\rho}\right)$ given by $\tilde{\pi}_{\rho}(\iota(a))=\pi_{\rho}(a)$ for $a \in \mathcal{A}$, and we have $\left\|\tilde{\pi}_{\rho}(\iota(a))\right\|=\left\|\pi_{\rho}(a)\right\| \leq\|a\|_{o}=\|\iota(a)\|_{*}$.

[^8]Thus $\tilde{\pi}_{\rho}$ induces a *-representation of $C^{*}(\mathcal{A})$ (which is contractive).
Taking direct sums, it follows that there exists a *-representation $\tilde{\pi}$ of $C^{*}(\mathcal{A})$ satisfying $\tilde{\pi}(\iota(a))=\pi(a)$ for all $a \in \mathcal{A}$.

Finally, the relation $\tilde{\pi} \circ \iota=\pi$ uniquenely determines $\tilde{\pi}$ since $\iota(\mathcal{A})$ is dense in $C^{*}(\mathcal{A})$.
In particular, suppose (\mathcal{C}, κ) is a C^{*}-algebra and $\kappa: \mathcal{A} \rightarrow \mathcal{C}$ is a unital ${ }^{*}$-morphism with dense range, satisfying the analogous universal property. Then the ${ }^{*}$-representation κ induces a *-representation $\tilde{\kappa}: C^{*}(\mathcal{A}) \rightarrow \mathcal{C}$ satisfying $\tilde{\kappa} \circ \iota=\kappa$; but the *-representation ι also induces a *-representation $\tilde{\iota}: \mathcal{C} \rightarrow C^{*}(\mathcal{A})$ satisfying $\tilde{\iota} \circ \kappa=\iota$. Now we have

$$
\tilde{\kappa} \circ \iota=\kappa \Rightarrow \tilde{\kappa} \circ(\tilde{\iota} \circ \kappa)=\kappa
$$

so $(\tilde{\kappa} \circ \tilde{\iota}) \circ \kappa=\kappa$ and thus $\tilde{\kappa} \circ \tilde{\iota}$ is the identity on $\kappa(\mathcal{A})$ and hence on its closure \mathcal{C}. By the same argument, $\tilde{\iota} \circ \tilde{\kappa}$ is the identity on $C^{*}(\mathcal{A})$. Thus $\tilde{\iota}: \mathcal{C} \rightarrow C^{*}(\mathcal{A})$ is a ${ }^{*}$-isomorphism such that $\tilde{\iota} \circ \kappa=\iota$: this proves the uniqueness of $C^{*}(\mathcal{A})$.

Proposition 3.6 Every positive linear map $\rho: \mathcal{A} \rightarrow \mathcal{B}(H)$ defined on an Banach *-algebra with unit of norm $\|\mathbf{1}\|=1$ induces a unique positive linear map $\tilde{\rho}: C^{*}(\mathcal{A}) \rightarrow \mathcal{B}(H)$ such that

$$
\tilde{\rho} \circ \iota=\rho .
$$

Moreover ρ is completely positive if and only if $\tilde{\rho}$ is.
Proof. We use the notation of the previous proof. It suffices to assume that $\|\rho\| \leq 1$, so that $\rho \in \mathcal{S}$. Now, for all $a \in \mathcal{A}$,

$$
|\rho(a)|^{2} \leq \rho\left(a^{*} a\right) \rho(\mathbf{1}) \leq\|a\|_{o}^{2}
$$

by the definition of $\|a\|_{o}$. Thus ρ leaves \mathcal{N} invariant, hence induces a linear functional $\tilde{\rho}: \mathcal{A} / \mathcal{N} \rightarrow \mathbb{C}$ by $\tilde{\rho}(a+\mathcal{N})=\rho(a)$, i.e. $\tilde{\rho}(\iota(a))=\rho(a)$ for all $a \in \mathcal{A}$. Thus

$$
|\tilde{\rho}(\iota(a))|=|\rho(a)| \leq\|a\|_{o}=\|\iota(a)\|_{*}
$$

Thus $\tilde{\rho}$ is bounded, hence extends (uniquely, since $\iota(\mathcal{A})$ is dense in $C^{*}(\mathcal{A})$) to a linear form on $C^{*}(\mathcal{A})$.

We show $\tilde{\rho}$ is positive: if $b \in C^{*}(\mathcal{A})$, there is a sequence $\left(a_{n}\right)$ in \mathcal{A} such that $\iota\left(a_{n}\right) \rightarrow b$; then $\iota\left(a_{n}^{*} a_{n}\right) \rightarrow b^{*} b$. It follows that

$$
\tilde{\rho}\left(b^{*} b\right)=\lim \tilde{\rho}\left(\iota\left(a_{n}^{*} a_{n}\right)\right)=\lim \rho\left(a_{n}^{*} a_{n}\right) \geq 0
$$

An obvious modification of this argument, considering an m-tuple b_{1}, \ldots, b_{m} in $C^{*}(\mathcal{A})$, shows that if ρ is completely positive, then so is $\tilde{\rho}$. The converse is obvious.

Finally, since $\iota(\mathbf{1})=\mathbf{1}$,

$$
\|\tilde{\rho}\|=\tilde{\rho}(\mathbf{1})=\tilde{\rho}(\iota(\mathbf{1}))=\rho(\mathbf{1})=\|\rho\|
$$

3.3 Positive maps on abelian algebras

Let us repeat the definition:
Definition 2 Let \mathcal{A} be a Banach *-algebra with identity of norm 1, and $\mathcal{B}=\mathcal{B}(H)$, the bounded operators on a Hilbert space $H . A \operatorname{map} \phi: \mathcal{A} \rightarrow \mathcal{B}$ is said to be positive if for all $a \in \mathcal{A}$,

$$
\phi\left(a^{*} a\right) \geq 0 \quad \text { i.e. } \quad\left\langle\phi\left(a^{*} a\right) \xi, \xi\right\rangle \geq 0 \quad \text { for all } \xi \in H .
$$

It is said to be completely positive if for all n and all $a_{1}, a_{2}, \ldots, a_{n} \in \mathcal{A}$, the operator-valued matrix

$$
\phi_{n}\left(\left[a_{i}^{*} a_{j}\right]\right):=\left[\phi\left(a_{i}^{*} a_{j}\right)\right]
$$

is positive as an operator on H^{n}, that is if, for all $\xi_{1} \ldots, \xi_{n} \in H$,

$$
\left\langle\phi_{n}\left(\left[a_{i}^{*} a_{j}\right]\right)\left[\begin{array}{c}
\xi_{1} \\
\vdots \\
\xi_{n}
\end{array}\right],\left[\begin{array}{c}
\xi_{1} \\
\vdots \\
\xi_{n}
\end{array}\right]\right\rangle=\sum_{m, n}\left\langle\phi\left(a_{n}^{*} a_{m}\right) \xi_{m}, \xi_{n}\right\rangle \geq 0 .
$$

Example 3.7 If $\mathcal{A}=\mathcal{B}=M_{2}(\mathbb{C})$, the transpose map $\phi: A \rightarrow A^{\mathrm{T}}$ is positive but not completely positive.

The transpose map on M_{n} is positive: if $A=\left[a_{i j}\right] \in M_{n}$ is a positive matrix then for each $\xi=\left[\lambda_{1}, \ldots, \lambda_{n}\right]^{\mathrm{T}}$ we must have

$$
\langle A \xi, \xi\rangle=\sum_{i, j} a_{i j} \lambda_{j} \bar{\lambda}_{i} \geq 0 .
$$

But then, setting $\eta=\left[\mu_{1}, \ldots, \mu_{n}\right]$ where $\mu_{k}=\bar{\lambda}_{k}$, we see that

$$
\left\langle A^{\mathrm{T}} \xi, \xi\right\rangle=\sum_{i, j} a_{j i} \lambda_{j} \bar{\lambda}_{i}=\sum_{i, j} a_{j i} \bar{\mu}_{j} \mu_{i}=\langle A \eta, \eta\rangle \geq 0 .
$$

However the transpose map is not even 2-positive on M_{2} : if $E=\left[a_{i}^{*} a_{j}\right] \in M_{2}(\mathcal{A})$ where $a_{1}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$ and $a_{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$, then

$$
E=\left[\begin{array}{lll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 \\
0 & 0 \\
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

so E is positive (it is a multiple of a projection) while $\phi_{2}(E)$ is not positive. ${ }^{11}$
Remark 3.8 If $\phi: \mathcal{A} \rightarrow \mathbb{C}$ is positive, then it is completely positive.
Proof. Indeed, if $a_{1} \ldots, a_{n} \in \mathcal{A}$ and $\lambda_{1} \ldots, \lambda_{n} \in \mathbb{C}$,

$$
\begin{aligned}
\sum_{i, j}\left\langle\phi\left(a_{i}^{*} a_{j}\right) \lambda_{j}, \lambda_{i}\right\rangle_{\mathbb{C}} & =\sum_{i, j} \phi\left(a_{i}^{*} a_{j}\right) \lambda_{j} \bar{\lambda}_{i}=\sum_{i, j} \phi\left(\left(\lambda_{i} a_{i}\right)^{*}\left(\lambda_{j} a_{j}\right)\right) \\
& =\phi\left(\left(\sum_{i} \lambda_{i} a_{i}\right)^{*}\left(\sum_{j} \lambda_{j} a_{j}\right)\right) \geq 0 .
\end{aligned}
$$

Proposition 3.9 Every positive linear map defined on an abelian (unital) C^{*}-algebra \mathcal{A} is automatically completely positive.

Proof. By Gelfand theory, we may assume that $\mathcal{A}=C(X)$ where X is a a compact Hausdroff space. Let

$$
\phi: C(X) \rightarrow B(H)
$$

be a positive linear map, where H is a Hilbert space. If $n \in \mathbb{N}$ and $f_{1}, \ldots, f_{n} \in C(X)$, write F for the matrix $F=\left[f_{i}^{*} f_{j}\right]$. We need to prove that

$$
\phi_{n}(F) \geq 0
$$

[^9]as an operator on H^{n}. Now the map
$$
X \rightarrow M_{n}(\mathbb{C}): t \rightarrow F(t)=\left[\overline{f_{i}(t)} f_{j}(t)\right]
$$
is continuous. Therefore, given $\varepsilon>0$ there exists a finite open cover U_{1}, \ldots, U_{m} of X and points $t_{k} \in U_{k}$ so that
$$
t \in U_{k} \Rightarrow\left\|F(t)-F\left(t_{k}\right)\right\|_{M_{n}}<\varepsilon \quad(k=1, \ldots, m)
$$
(here $\|\cdot\|_{M_{n}}$ is the operator norm on $M_{n}(\mathbb{C}) \simeq \mathcal{B}\left(\mathbb{C}^{n}\right)$). Write $F\left(t_{k}\right)=T_{k}$ for short; so $T_{k} \in M_{n}(\mathbb{C})$.

Let $\left\{u_{1}, \cdots, u_{m}\right\} \subseteq C(X)$ be a partition of unity ${ }^{12}$ subordinate to the cover U_{1}, \ldots, U_{m} : this means that $0 \leq u_{k}(t) \leq 1$ for all k and $t, \sum_{k} u_{k}(t)=1$ for all t and $\operatorname{supp} u_{k} \subseteq U_{k}$ for all k.

For all $y \in X$ we have

$$
\begin{aligned}
\left\|F(y)-\sum_{l=1}^{m} u_{l}(y) T_{l}\right\|_{M_{n}} & =\left\|\left(\sum_{l=1}^{m} u_{l}(y)\right) F(y)-\sum_{l=1}^{m} u_{l}(y) T_{l}\right\|_{M_{n}} \\
& \leq \sum_{l=1}^{m} u_{l}(y)\left\|F(y)-T_{l}\right\|_{M_{n}} .
\end{aligned}
$$

Now each term $u_{l}(y)\left\|F(y)-T_{l}\right\|_{M_{n}}$ is less than $u_{l}(y) \varepsilon$; for either $y \in U_{l}$ in which case $\left\|F(y)-T_{l}\right\|_{M_{n}}<\varepsilon$ or $y \notin U_{l}$ in which case $u_{l}(y)=0$. Therefore

$$
\left\|F(y)-\sum_{l=1}^{m} u_{l}(y) T_{l}\right\|_{M_{n}}<\sum_{l=1}^{m} u_{l}(y) \varepsilon=\varepsilon .
$$

Taking sup over $y \in X$,

$$
\left\|F-\sum_{l=1}^{m} u_{l} T_{l}\right\|_{M_{n}(\mathcal{A})} \leq \varepsilon
$$

Since ϕ_{n} is continuous ${ }^{[13}$ it follows that

$$
\left|\phi_{n}(F)-\sum_{l=1}^{m} \phi_{n}\left(u_{l} T_{l}\right)\right| \leq\left\|\phi_{n}\right\| \varepsilon .
$$

Therefore, since $\varepsilon>0$ is arbitrary, in order to prove that $\phi_{n}(F) \geq 0$ it suffices to prove that each term $\phi_{n}\left(u_{l} T_{l}\right)$ is a positive operator. Droping the index l for clarity, we have a continuous function $u=u_{l}: X \rightarrow \mathbb{R}_{+}$and a matrix $T=\left[\overline{f_{i}(t)} f_{j}(t)\right] \in M_{n}(\mathbb{C})$. Now

$$
\phi_{n}(u T)=\phi_{n}\left(\left[u \overline{f_{i}(t)} f_{j}(t)\right]\right)=\left[\phi\left(u \overline{f_{i}(t)} f_{j}(t)\right)\right]=\left[\phi(u) \overline{f_{i}(t)} f_{j}(t)\right]
$$

since each $f_{j}(t)$ is a scalar. Thus for each $\xi=\left[\xi_{1}, \ldots, \xi_{n}\right]^{\mathrm{T}} \in H^{n}$ we have

$$
\begin{aligned}
\left\langle\phi_{n}(u T) \xi, \xi\right\rangle_{H^{n}} & =\left\langle\left[\phi(u) \overline{f_{i}(t)} f_{j}(t)\right] \xi, \xi\right\rangle_{H^{n}} \\
& =\sum_{i, j}\left\langle\phi(u) \overline{f_{i}(t)} f_{j}(t) \xi_{j}, \xi_{i}\right\rangle_{H}=\sum_{i, j}\left\langle\phi(u) f_{j}(t) \xi_{j}, f_{i}(t) \xi_{i}\right\rangle_{H} \\
& =\left\langle\phi(u)\left(\sum_{j} f_{j}(t) \xi_{j}\right),\left(\sum_{i} f_{i}(t) \xi_{i}\right)\right\rangle_{H}
\end{aligned}
$$

[^10]which is nonnegative, because $\phi(u) \in \mathcal{B}(H)$ is positive since u is positive in $C(X)$ and ϕ is a positive linear form.

Alternatively, the matrix $\phi_{n}(u T) \in M_{n}(\mathcal{B}(H))$ may be factorised as follows

$$
\phi_{n}(u T)=\left[\begin{array}{ccc}
\overline{f_{1}(t)} & \ldots & 0 \\
\vdots & \vdots \\
\overline{f_{n}(t)} & \ldots & 0
\end{array}\right]\left[\begin{array}{ccc}
\phi(u) & & 0 \\
& \ddots & \\
0 & & \phi(u)
\end{array}\right]\left[\begin{array}{ccc}
f_{1}(t) & \ldots & f_{n}(t) \\
\vdots & & \vdots \\
0 & \ldots & 0
\end{array}\right]=A^{*} B A
$$

where $B \in M_{n}\left(\mathcal{B}(H)\right.$ is positive and $A \in M_{n}(\mathbb{C})$.
Theorem 3.10 Every positive linear map $\phi: \mathcal{A} \rightarrow \mathcal{B}(H)$ defined on an abelian Banach *-algebra with unit of norm $\|\mathbf{1}\|=1$ is automatically completely positive.

Proof. The enveloping C^{*}-algebra $\mathcal{C}=C^{*}(\mathcal{A})$ is abelian and unital. Therefore every positive linear map defined on \mathcal{C} is completely positive. Thus the theorem follows from Proposition 3.6.

References

[1] William Arveson. Dilation theory yesterday and today. In A glimpse at Hilbert space operators, volume 207 of Oper. Theory Adv. Appl., pages 99-123. Birkhäuser Verlag, Basel, 2010.
[2] Jacques Dixmier. Les C^{*}-algèbres et leurs représentations. Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics]. Éditions Jacques Gabay, Paris, 1996. Reprint of the second (1969) edition.
[3] Vern Paulsen. Completely bounded maps and operator algebras, volume 78 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2002.

[^0]: ${ }^{1}$ sem1, April 11, 2012

[^1]: ${ }^{2}\langle\xi, \xi\rangle_{0} \geq 0$ is immediate from $\left(^{*}\right)$, and $\langle\eta, \xi\rangle_{0}=\overline{\langle\xi, \eta\rangle_{0}}$ follows from this by polarisation

[^2]: ${ }^{3}$ We will see later (see Theorem 3.5) that for any unital Banach *-algebra \mathcal{A} there exists an 'enveloping C^{*}-algebra' $C^{*}(\mathcal{A})$ and a contractive *-homomorphism $\mathcal{A} \rightarrow C^{*}(\mathcal{A})$ with dense range.

[^3]: ${ }^{4}$ the series below converges absolutely since $\|T(n)\| \leq 1$ for all $n \in \mathbb{Z}$

[^4]: ${ }^{5}$ Neumark, M. A. On a representation of additive operator set functions. C. R. (Doklady) Acad. Sci. URSS (N.S.) 41, (1943). 359-361.
 ${ }^{6}$ Indeed, additivity implies that $0 \leq\langle E(S) \xi, \xi\rangle \leq \mu_{\xi, \xi}(S) \leq \mu_{\xi, \xi}(X)=\langle I \xi, \xi\rangle$ for all $\xi \in H$, hence $0 \leq E(S) \leq I$.

[^5]: ${ }^{7}$ but the range $\phi_{E}(C(X))$ is neither an algebra nor commutative in general

[^6]: ${ }^{8}$ indeed, for all $N \in \mathbb{N}$ and all $t \in(0,1)$ we have $0<\sum_{n=1}^{N} \lambda_{n} t^{n} \leq \sum_{n=1}^{\infty} \lambda_{n} t^{n}=1-(1-t)^{1 / 2}<1$ and hence $0<\sum_{n=1}^{N} \lambda_{n}=\sup _{t}\left(\sum_{n=1}^{N} \lambda_{n} t^{n}\right) \leq 1$.

[^7]: ${ }^{9}$ This is isomorphic to the linear space of all continuous finite rank antilinear maps $f: H \rightarrow \mathcal{A}$: if the range $f(H)$ is spanned by $\left\{a_{1}, \ldots, a_{n}\right\}$, then there are linearly independent $\xi_{1}, \ldots, \xi_{n} \in H$ such that $f(\xi)=\sum_{i=1}^{n} a_{i}\left\langle\xi_{i}, \xi\right\rangle$; we write $f=\sum_{i} a_{i} \otimes \xi_{i}$.

[^8]: ${ }^{10}$ actually, it is enough to take $b=\mathbf{1}$

[^9]: ${ }^{11}$ For example, $\left\langle\phi_{2}(E)\left(e_{2}-e_{3}\right),\left(e_{2}-e_{3}\right)\right\rangle<0$.

[^10]: ${ }^{12}$ see for example Rudin, Real and Complex Analysis, Theorem 2.13
 ${ }^{13}$ in fact $\left\|\phi_{n}\right\| \leq n\|\phi\|$

