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1 Positive definite functions and Hilbert spaces

We begin by describing a construction that appears in very many contexts; we will see more
specific manifestations later on.

Let1 X be a nonempty set. A function

u : X ×X → C

is said to be positive (semi-) definite if, for all n ∈ N, all x1 . . . , xn ∈ X, and all
λ1 . . . , λn ∈ C we have

n∑
k,j=1

u(xk, xj)λj λ̄k ≥ 0. (*)

This is equivalent to requiring that, for any finite subset Xf = {x1 . . . , xn} of X the matrix
u(Xf ) := [u(xk, xj)] induces a positive operator on the Hilbert space `2(Xf ) = (Cn, ‖·‖2).
Indeed relation (∗) can be written〈

u(Xf )

[
λ1
...
λn

]
,

[
λ1
...
λn

]〉
≥ 0.

Example 1.1 If we are given a Hilbert space H and a function f : X → H, then

u(x, y) := 〈f(x), f(y)〉H (x, y ∈ X)

is a positive definite function.

Conversely,
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Proposition 1.2 Given (X,u) where X is a set and u : X ×X → C is positive definite,
there exists (H(u), f) where H(u) is a Hilbert space and a function f : X → H(u) such that

u(x, y) := 〈f(x), f(y)〉 for all x, y ∈ X.

Moreover, f is minimal in the sense that the linear span [f(X)] of f(X) is dense in H(u).

Idea of the proof On the linear space

c00(X) = {ξ : X → C : supp ξ is finite }

(here supp ξ = {x ∈ X : ξ(x) 6= 0}) define the form

〈ξ, η〉0 =
∑
x,y∈X

u(x, y)ξ(x)ξ(y)

and prove that this sesquilinear form has all the properties of a scalar product, 2 except
possibly that

N := {ξ ∈ c00(X) : 〈ξ, ξ〉0 = 0}

may contain non-zero vectors. The Cauchy-Schwarz inequality (!) for 〈·, ·〉0 shows that N is
a subspace and so 〈·, ·〉0 induces a true scalar product on the quotient space H0 := c00(X)/N
given by

〈ξ +N, η +N〉 = 〈ξ, η〉0 .

(of course ξ +N is the coset {ξ + ζ : ζ ∈ N}).
The Hilbert space H(u) is defined to be the completion of (H0, 〈·, ·〉).
The function f : X → H(u) is defined by

f(x) = δx +N

where δ ∈ c00(X) is given by

δx(y) :=

{
1, y = x
0, y 6= x

It is immediate from the definition of the scalar product that

〈f(x), f(y)〉 = 〈δx, δy〉0 = u(x, y) for all x, y ∈ X.

Note that the family {δx : x ∈ X} is an algebraic basis of c00(X); hence the linear span
[f(X)] = H0 is dense in H(u) as required. 2

Remark 1.3 It is not hard to verify that, if X has a topology making u continuous, then
the map f : X → H(u) constructed above is also continuous.

How to construct isometries on H(u) from u-preserving maps on X.
To be slightly more general, suppose we are given two pairs (X1, u1) and (X2, u2) and a
map φ : X1 → X2 such that

u2(φ(x), φ(y)) = u1(x, y) for all x, y ∈ X1.

2〈ξ, ξ〉0 ≥ 0 is immediate from (*), and 〈η, ξ〉0 = 〈ξ, η〉0 follows from this by polarisation
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If fk : Xk → H(uk) (l = 1, 2) are the maps of the Proposition, then the previous equality
can be rewritten

〈f2(φ(x)), f2(φ(y))〉H(u2)
= u2(φ(x), φ(y)) = u1(x, y) = 〈f1(x), f1(y)〉H(u1)

, x, y ∈ X1.

It follows that if we define a map Vo on f1(X1) by

Vo(f1(x) = f2(φ(x)), x ∈ X1

then this map extends by linearity to a map V0 : [f1(X1)]→ H(u2) satisfying

‖V0(ξ)‖H(u2)
= ‖ξ‖H(u1)

, ξ ∈ [f1(X1)]

and hence extends by continuity to an isometry Vφ : H(u1)→ H(u2), since [f1(X1)] is dense
in H(u2). This isometry implements φ in the sense that, on the generators of H(u1),

Vφ(f1(x) = f2(φ(x)), x ∈ X1.

Note that, in case φ maps X1 onto X2, the range of Vφ contains the whole of [f2(X2)], and
hence Vφ is a bijection: a unitary operator.

Remark 1.4 It is immediate from the definitions that Vφ◦ψ = VφVψ; thus the correspon-
dence φ→ Vφ is covariant.

A unitary representation of the symmetry group Gu of (X,u)
This is the group consisting of all bijections φ : X → X that preserve u in the sense that
u(φ(x), φ(y)) = u(x, y) for all x, y ∈ X.

It follows from the above remark that for all φ ∈ Gu the isometry Vφ in fact belongs to
the group U(H(u)) of unitary operators on H(u) and the map

Gu → U(H(u)) : φ→ Vφ

is a group homomorphism: it is a unitary representation of Gu on H(u).

Example 1.5 Let X = D, the open unit disc in C, and define u by

u(z, w) =
1

1− w̄z
, z, w ∈ D

(this is known as the Szegö kernel).

A way to see that this is positive definite is to write it in the form

u(z, w) =

∞∑
n=0

znw̄n = 〈f(z), f(w)〉`2

where
f : D→ `2 : z → (1, z, z2, . . . ).

Then Example 1.1 shows that u must be positive definite.
There is a very fruitful connection with analytic function theory: consider, for each

w ∈ D, the function kw given by

kw(λ) =

∞∑
n=1

w̄nλn = 〈f(λ), f(w)〉`2 .
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This converges for all λ ∈ D, hence defines an analytic function on D. It has the following
remarkable property:

Consider the space H2(D) of all analytic functions h whose power series representation
h(z) =

∑
n anz

n has square-summable coefficients (i.e.
∑
|an|2 < ∞). This is isomorphic

to `2 (via the map h→ (an)) and hence a Hilbert space for the inner product

〈h, h1〉 =

∞∑
n=0

anb̄n

if h(z) =
∑

n anz
n and h1(z) =

∑
n bnz

n. Then for each h ∈ H2(D) we have

〈h, kw〉 =
∑
n

anw
n = h(w), w ∈ D.

Thus the actual value of the function h at w can be found from its scalar product with kw.

Example 1.6 Now let X be a Hilbert space (finite dimensional or not). Define u by

u(x, y) = exp 〈x, y〉X , x, y ∈ X.

The Hilbert space H(u) obtained from (X,u) is called the symmetric Fock space over X.
Any unitary operator φ : X → X preserves u, of course; the associated unitary operator Vφ
on H(u) is called the second quantization of the unitary φ.

Exercise Show that the function u in the last example is indeed positive definite.

2 Positive linear maps and dilations

Definition 1 A Banach *-algebra A is a complex algebra which is a Banach space such
that

‖ab‖ ≤ ‖a‖ ‖b‖ for all a, b ∈ A

(this makes multiplication continuous) which is equipped with a map A → A : a → a∗

satisfying (a+λb)∗ = a∗+λ̄b, (ab)∗ = b∗a∗ and (a∗)∗ = a (an involution) which is isometric:
‖a∗‖ = ‖a‖.

An example is the algebra B(H) of all bounded operators on a Hilbert space H, or more
generally a closed subalgebra of B(H) which is closed under the map T → T ∗. These are
C∗-algebras: they satisfy the much more rigid C∗ property: ‖T ∗T‖ = ‖T‖2.

Example Recall that the Banach space `1(Z) consists of all summable functions a : Z→ C
with norm ‖a‖1 =

∑
n |a(n)|. Each a ∈ `1(Z) is the absolutely convergent sum

a =
∑
n∈Z

a(n)δn.

Defining

a ∗ b =
∑
n,m∈Z

a(n)b(m)δn+m =
∑
k

(∑
n

a(n)b(k − n)

)
δk

and a∗ =
∑
n

a(n)δ−n =
∑
n

a(−k)δk.

we obtain an abelian Banach *-algebra with identity δ0 of norm 1.
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This is not a C*-algebra; however it can be embedded as a dense subalgebra of a C*-
algebra. 3 One way of doing this is as follows:

If a ∈ `1(Z) the series

fa(z) =
∑
n

a(n)zn, z = eit ∈ T

converges absolutely, hence defines a continuous function on the circle, the (inverse) ‘Fourier
transform’ of a.

The map a → fa is easily seen to be a *-homomorphism, and it is injective. Moreover

its range contains all ‘trigonometric polynomials’
N∑

n=−N
a(n)zn and is therefore dense in the

C*-algebra (C(T), ‖·‖∞) of all continuous functions on the circle (by the Stone-Weierstrass
theorem). Note also that ‖fa‖∞ ≤ ‖a‖1: the embedding is contractive. 2

Positvity and complete poisitivity If A is a Banach *-algebra and H a Hilbert space,
a linear map

φ : A → B(H)

is said to be positive provided that

〈φ(a∗a)ξ, ξ〉 ≥ 0 for all a ∈ A and ξ ∈ H

i.e. provided that for all a ∈ A the operator φ(a∗a) is a positive operator on H.
The map φ is said to be completely positive (CP) if for all n ∈ N and all a1, . . . , an ∈

A the operator matrix [φ(a∗i aj)] defines a positive operator on the Hilbert space direct sum
Hn. Equivalently, if for all n ∈ N, all a1, . . . , an ∈ A and all ξ1, . . . , an ∈ A we have〈

[φ(a∗i aj)]

[
ξ1
...
ξn

]
,

[
ξ1
...
ξn

]〉
=

n∑
i,j=1

〈φ(a∗i aj)ξj , ξi〉 ≥ 0.

Examples 2.1 (i) Let π : A → B(H) be a *-representation. The map π is CP:

n∑
i,j=1

〈π(a∗i aj)ξj , ξi〉 =
n∑

i,j=1

〈π(aj)ξj , π(ai)ξi〉 =

∥∥∥∥∥∑
i

π(ai)ξi

∥∥∥∥∥
2

≥ 0.

(ii) Let A ⊆ B(H), let K be another Hilbert space and V : H → K be a bounded linear map.
Define φ(a) = V ∗aV . Then φ is CP:

n∑
i,j=1

〈φ(a∗i aj)ξj , ξi〉 =

n∑
i,j=1

〈V ∗a∗i ajV ξj , ξi〉 =

n∑
i,j=1

〈ajV ξj , aiV ξi〉 =

∥∥∥∥∥∑
i

aiV ξi

∥∥∥∥∥
2

≥ 0.

The suprising fact is that every completely positive map on a unital Banach *-algebra is a
combination of these two types:

Theorem 2.2 Let A be a unital Banach *-algebra with ‖1‖ = 1. If φ : A → B(H) is
a completely positive map, then there exists a triple (V, π,K) where K is a Hilbert space,
π : A → B(K) a *-representation and V : H → K a bounded linear map satisfying

φ(a) = V ∗π(a)V, a ∈ A.

In fact φ is automatically continuous with ‖φ‖ = ‖V ‖2 = ‖φ(1)‖.
This theorem was proved (for the case of a C*-algebra A) by Stinespring. For the proof see
Theorem 3.2 below.

3We will see later (see Theorem 3.5) that for any unital Banach *-algebra A there exists an ‘enveloping
C*-algebra’ C∗(A) and a contractive *-homomorphism A → C∗(A) with dense range.

5



Minimality A ‘Stinespring triple’ (V, π,K) as above is said to be minimal if

[π(a)V ξ : a ∈ A, ξ ∈ H] = K.

Remarks 2.3 (i) Given any Stinespring triple (V, π,K) one may find a minimal one by
restricting each π(a) to the (invariant) subspace

K1 = [π(a)V ξ : a ∈ A, ξ ∈ H].

(ii) Moreover if (V, π,K) is minimal and A has a unit 1 then necessarily π(1) = IK.

Proposition 2.4 If (Vi, πi,Ki) (i = 1, 2) are two minimal pairs for φ, then they are equiv-
alent in the following sense: there exists a unitary W : K1 → K2 such that WV1 = V2 and
Wπ1(a) = π2(a)W for all a ∈ A.

Proof. Let a, b ∈ A and ξ, η ∈ H. Then

〈π2(a)V2ξ, π2(b)V2η〉 = 〈V ∗2 π2(b∗a)V2ξ, η〉 = 〈φ(b∗a)ξ, η〉
= 〈V ∗1 π1(b∗a)V1ξ, η〉 = 〈π1(a)V1ξ, π1(b)V1η〉 .

This shows that the map
W0 : π1(a)V1ξ → π2(a)V2ξ

extends by linearity and continuity to an isometry W between the closed linear span of
{π1(a)V1ξ : a ∈ A, ξ ∈ H}, which is K1 and the closed linear span of {π2(a)V2ξ : a ∈ A, ξ ∈
H} which is K2 (by minimality). So this extension is onto, i.e. a unitary, and it is easy to
verify that it has the stated properties. 2

Remark 2.5 Suppose additionally that φ(1) = IH. If (V, π,K) is minimal for φ, then

V ∗V = V ∗π(1)V = φ(1) = IH

showing that V is in this case an isometry. Therefore we may identify H with its image, a
closed subspace of K. Then V becomes the identity mapping of H into K and so V ∗ : K → H
is simply the projection onto H and the formula φ(a) = V ∗π(a)V becomes

φ(a) = PHπ(a)|H, a ∈ A.

In other words, each φ(a) is the compression of π(a) to the subspace H; equivalently, π(a)
is the (simultaneous) dilation of φ(a) (for all a ∈ A) to the larger space K.

Unitary (power) dilation of a contraction We wish to prove the following result of
B. Sz.-Nagy:

Theorem 2.6 If T ∈ B(H) is a contraction, there is a Hilbert space K ⊇ H and a unitary
U ∈ B(K) such that

Tn = PHU
n|H, n ∈ Z+.

The idea of the proof is the following: If such a unitary exists, then, for n ≥ 1,

PHU
−n|H = PHU

∗n|H = T ∗n.

Thus if we define

T (n) =

{
Tn, n ≥ 0

(T ∗)|n|, n < 0
(n ∈ Z)
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then for every ‘trigonometric polynomial’ a =
N∑

n=−N
a(n)δn we would have

PH

(
N∑

n=−N
a(n)Un

)∣∣∣
H

=
N∑

n=−N
a(n)T (n).

Now, since U is unitary, the map

N∑
n=−N

a(n)δn →
N∑

n=−N
a(n)Un

extends to a *-representation of `1(Z) on K. Therefore, to prove the existence of U , it
suffices to dilate the linear map 4

φ : `1(Z)→ B(H)

a→ φ(a) =

∞∑
n=−∞

a(n)T (n)

to a *-representation π of `1(Z) on some larger Hilbert space. The required unitary U will
then be given by π(δ1).

To apply Stinespring’s theorem, we need to prove that φ is completely positive. However,

Theorem 2.7 A positive linear map defined on an abelian Banach *-algebra with an iden-
tity of norm one is automatically completely positive.

(For the proof, see Theorem 3.10 below).

Thus it remains to prove that φ is positive.

Proof of positivity of φ We have to prove that for every a ∈ `1 and ξ ∈ H,

〈φ(a∗a)ξ, ξ〉 ≥ 0.

By continuity of φ (and the operations on `1(Z)), it suffices to prove this when a ∈ c00(Z),
i.e. when there exists N ∈ Z+ s.t.

a =

N∑
n=−N

a(n)δn.

But notice that then

(a ∗ δN )∗ ∗ (a ∗ δN ) = a∗ ∗ δ−N ∗ a ∗ δN = a∗ ∗ a

by commutativity, i.e. a∗ ∗ a = b∗ ∗ b, where

b = a ∗ δN =
N∑

n=−N
a(n)δn+N =

2N∑
k=0

a(k −N)δk =
M∑
k=0

b(k)δk

is an ‘analytic polynomial’ (we have set M = 2N and b(k) = a(k −N)).

Now b∗ ∗ b =
∑
m
b(m)δ−m

∑
n
b(n)δn =

∑
n,m

b(m)b(n)δn−m and so

4the series below converges absolutely since ‖T (n)‖ ≤ 1 for all n ∈ Z
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〈φ(a∗a)ξ, ξ〉 = 〈φ(b∗b)ξ, ξ〉 =
M∑

n,m=0

b(m)b(n) 〈T (n−m)ξ, ξ〉

=
M∑

n,m=0

〈
T (n−m)b(m)ξ, b(n)ξ

〉
.

Now consider the Hilbert space K = HM+1 of ‘columns’ [ξ0, . . . , ξM ]T with scalar product

〈
[ξ1, . . . , ξM ]T, [η1, . . . , ηM ]T

〉
=

M∑
k=0

〈ξk, ηk〉H .

The matrix [T (n−m)] defines an operator A on K satisfying〈
A

[
ξ0
...
ξM

]
,

[
η0
...
ηM

]〉
=
∑
m,n

〈T (n−m)ξm, ηn〉

and therefore

〈φ(a∗a)ξ, ξ〉 =

〈
A

 b(0)ξ

...
b(M)ξ

 ,
 b(0)ξ

...
b(M)ξ

〉 .
Hence it is enough to show that the matrix A defines a positive operator on K. This matrix
is

A =



I T ∗ T ∗2 . . . T ∗(M−1) T ∗M

T I T ∗ . . . T ∗(M−2) T ∗(M−1)

T 2 T I . . . . . .
... . . .
... . . .
TM TM−1 TM−2 . . . T I


If we let R be the operator matrix

R =


0 . . . 0

T
. . .

T
...

. . .
. . .

0 . . . T 0


then A is given by

A = I +R+ · · ·+RM +R∗ + · · ·+R∗M .

But RM+1 = 0 and so

(I +R+ · · ·+RM )(I −R) = (I −R)(I +R+ · · ·+RM ) = I −RM+1 = I

hence I −R is invertible, (I −R)−1 = I +R+ · · ·+RM and thus

A = (I −R)−1 + (I −R∗)−1 − I.

Therefore, for all x ∈ K, if we set y = (I −R)−1x we have

〈Ax, x〉 =
〈
(I −R)−1x, x

〉
+
〈
(I −R∗)−1x, x

〉
− 〈x, x〉

= 〈y, (I −R)y〉+ 〈(I −R)y, y〉 − 〈(I −R)y, (I −R)y〉
= ‖y‖2 − ‖Ry‖2 ≥ 0
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because ‖R‖ = ‖T‖ ≤ 1.
This shows that the operator matrix A is positive and therefore

〈φ(a∗a)ξ, ξ〉 ≥ 0.

for all a ∈ c00(Z) and all ξ ∈ H. 2

Aside: Connection with the Poisson kernel. If a ∈ `1(Z) the formula

fa(z) =
∑
n

a(n)zn, z = eit ∈ T

defines a continuous function fa on the circle, the (inverse) ‘Fourier transform’ of a. The
Poisson extension of this to the disc D is given by

f̃a(w) =
∑
n

a(n)r|n|eint, w = reit, 0 ≤ r < 1

which is the ‘convolution’ of fa with the ‘Poisson kernel’
∑

n r
|n|eint. The map f → f̃ is

positive: if f(z) ≥ 0 everywhere on the circle, then f̃(w) ≥ 0 everywhere on the disc. This
is because the Poisson kernel is nonnegative: indeed, if w = reit with 0 < r < 1, then∑

n

r|n|eint =
∑
n≥0

wn +
∑
m≥1

w̄m = (1− w)−1 + (1− w̄)−1 − 1

and the latter quantity is always nonnegative: it equals
1− r2

|1− w|2
.

Tυχαιo;

Dilation of operator-valued measures. 5

A positive operator - valued measure is a map E : S → B(H)+ defined on a σ-algebra S of
subsets of some set X and taking values in the set of positive operators on a Hilbert space
H, which is weakly countably additive in the sense that for each ξ ∈ H the map

µξ,ξ(S) := 〈E(S)ξ, ξ〉 , S ∈ S

is a positive (countably additive) measure. We will assume that E(X) = I; it then follows
that all E(S) are positive contractions. 6 Note that the operators E(S) need not commute.

E(·) is said to be a spectral or projection-valued measure or a resolution of the identity
in case it additionally satisfies E(S1 ∩ S2) = E(S1)E(S2). Then each E(S) is a positive
idempotent, hence an orthogonal projection.

When S is the Borel σ-algebra of a compact Hausdorff space X, we say E(·) is regular
when for each ξ ∈ H the scalar measure µξ,ξ is regular.

One version of the spectral theorem states that, if X is a compact Hausdorff space, every
unital *-representation π : C(X) → B(H) gives rise to a unique regular Borel spectral
measure F (·) such that

π(f) =

∫
X
fdF, f ∈ C(X)

5 Neumark, M. A. On a representation of additive operator set functions. C. R. (Doklady) Acad. Sci.
URSS (N.S.) 41, (1943). 359–361.

6Indeed, additivity implies that 0 ≤ 〈E(S)ξ, ξ〉 ≤ µξ,ξ(S) ≤ µξ,ξ(X) = 〈Iξ, ξ〉 for all ξ ∈ H, hence
0 ≤ E(S) ≤ I.
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where the integral may be defined in the ‘weak’ sense:

〈π(f)ξ, η〉K =

∫
X
fdνξ,η

for all ξ, η ∈ H, where νξ,η(S) = 〈F (S)ξ, η〉.

Theorem 2.8 (Naimark) Let E : S → B(H) be a positive regular operator – valued
measure defined on the Borel σ-algebra S of a compact Hausdorff space X.

Then there is a Hilbert space K ⊇ H and a regular spectral measure F : S → B(K)
which dilates E(·) in the sense that

E(S) = PHF (S)|H for all S ∈ S.

Proof. For each ξ, η ∈ H the map

S → C : S → µξ,η(S) = 〈E(S)ξ, η〉H ,

is a complex regular Borel measure on X. Actually, it is a linear combination of four positive
regular Borel measures: µξ,η = 1

4

∑4
n=1 i

nµξn,ξn where ξn = ξ + inη; so if f ∈ C(X), the
integral

∫
X fdµξ,η may be defined as a linear combination of four integrals over positive

measures. Now for ξ = η we have∣∣∣∣∫
X
fdµξ,ξ

∣∣∣∣ ≤ ‖f‖∞ µξ,ξ(X) = ‖f‖∞ 〈E(X)ξ, ξ〉 = ‖f‖∞ ‖ξ‖
2 .

Therefore, if ‖ξ‖ ≤ 1 and ‖η‖ ≤ 1∣∣∣∣∫
X
fdµξ,η

∣∣∣∣ =
1

4

∣∣∣∣∣
4∑

n=1

in
∫
X
fdµξn,ξn

∣∣∣∣∣ ≤ 1

4

4∑
n=1

∫
X
|f |dµξn,ξn

≤ 1

4

4∑
n=1

‖f‖∞ ‖ξ + inη‖2 = ‖f‖∞ (‖ξ‖2 + ‖η‖2) ≤ 2 ‖f‖∞

(we have used the parallelogram law). Consider the map

H ×H → C : (ξ, η)→
∫
X
fdµξ,η.

This is sesquilinear, since the map (ξ, η)→ µξ,η(S) is sesquilinear for each S (Proof: Exer-
cise!). Moreover, we have just shown that it is bounded. Therefore there exists a unique
φE(f) ∈ B(H) such that

〈φE(f)ξ, η〉H =

∫
X
fdµξ,η for all ξ, η ∈ H.

The map φE : C(X)→ B(H) is linear and unital because

〈φE(1)ξ, η〉H =

∫
X

1dµξ,η = 〈E(X)ξ, η〉H = 〈ξ, η〉H

since E(X) = I. Moreover, it is positive because the measures µξ,ξ are all positive. Since
the domain of φE is abelian, 7 φE is completely positive (Theorem 3.10). Therefore, by
Stinespring’s theorem there is a *-representation π of C(X) such that

φE(f) = PHπ(f)|H for all f ∈ C(X).

7but the range φE(C(X)) is neither an algebra nor commutative in general
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But now, as noted before the theorem, π defines a unique regular (projection-valued) spec-
tral measure F : S → B(K) such that, if νx,y(S) = 〈F (S)x, y〉K ,

〈π(f)x, y〉K =

∫
X
fdνx,y for all f ∈ C(X).

We have to show that, for all S ∈ S,

E(S) = PHF (S)|H ,

equivalently that, for all ξ, η ∈ H ⊆ K,

〈E(S)ξ, η〉 = 〈PHF (S)ξ, η〉 = 〈F (S)ξ, η〉 .

By polarisation, it is enough to prove the equality 〈E(S)ξ, ξ〉 = 〈F (S)ξ, ξ〉. In other words
we need to show that for all ξ ∈ H ⊆ K the positive measures µξ,ξ and νξ,ξ are the same.
Indeed, for all f ∈ C(X),∫

X
fdνξ,ξ = 〈π(f)ξ, ξ〉 = 〈π(f)PHξ, PHξ〉 = 〈PHπ(f)PHξ, ξ〉 = 〈φE(f)ξ, ξ〉 =

∫
X
fdµξ,ξ

so that
νξ,ξ(S) = µξ,ξ(S) far all S ∈ S

because both µξ,ξ and νξ,ξ are regular measures. 2

3 Proofs of the main theorems

3.1 Stinespring’s Dilation Theorem

We will need the following result, which is well known for C* algebras.

Proposition 3.1 Any positive linear form ρ defined on a unital Banach *-algebra with
‖1‖ = 1 is bounded with ‖ρ‖ = ρ(1).

Proof. The inequality ρ(a∗a) ≥ 0 for all a ∈ A implies (in the standard way) the Cauchy -
Schwarz inequality

|ρ(b∗a)|2 ≤ ρ(a∗a)ρ(b∗b) and so |ρ(a)|2 ≤ ρ(a∗a)ρ(1).

It is therefore enough to prove the inequality

ρ(a∗a) ≤ ρ(1) ‖a‖2 .

Take a ∈ A with ‖a‖ ≤ 1; we have to prove that ρ(a∗a) ≤ ρ(1).
By Taylor’s theorem, for all z ∈ C with |z| ≤ 1 we have

(1− z)1/2 = 1−
∞∑
n=1

λnz
n

where one can verify that all λn > 0 and moreover that 8
∑∞

n=1 λn < ∞, i.e. (λn) ∈ `1.
It follows that if b ∈ A has ‖b‖ ≤ 1 then the series

∑
n λnb

n converges absolutely to some
c ∈ A such that

(1− c)2 =

(
1−

∑
n

λnb
n

)2

= 1− b.

8indeed, for all N ∈ N and all t ∈ (0, 1) we have 0 <
N∑
n=1

λnt
n ≤

∞∑
n=1

λnt
n = 1− (1− t)1/2 < 1 and hence

0 <
N∑
n=1

λn = sup
t

(
N∑
n=1

λnt
n) ≤ 1.

11



Apply this to b = a∗a: note that b∗ = b and so c∗ = c (the coefficients of the series are real)
and

1− a∗a = (1− c)2 = (1− c)∗(1− c)
hence ρ(1− a∗a) = ρ((1− c)∗(1− c)) ≥ 0

which shows that ρ(a∗a) ≤ ρ(1) as required. 2

Theorem 3.2 Let A be a unital Banach *-algebra with ‖1‖ = 1. If φ : A → B(H) is
a completely positive map, then there exists a triple (V, π,K) where K is a Hilbert space,
π : A → B(K) a *-representation and V : H → K a bounded linear map satisfying

φ(a) = V ∗π(a)V, a ∈ A.

In fact φ is automatically continuous with ‖φ‖ = ‖V ‖2 = ‖φ(1)‖.

Proof. Define a sesquilinear form on the algebraic tensor product 9 A⊗H by the formula〈∑
i

ai ⊗ ξi,
∑
j

bj ⊗ ηj

〉
o

=
∑
i,j

〈
φ(b∗jai)ξi, ηj

〉
H

(ai, bi ∈ A, ξi, ηi ∈ H).

Since the map (a, ξ) → a ⊗ ξ is bilinear, this is clearly a sesquilinear form. The complete
positivity of φ is exactly what is needed to ensure that 〈·, ·〉o is positive semidefinite:〈∑

i

ai ⊗ ξi,
∑
j

aj ⊗ ξj

〉
o

=
∑
i,j

〈
φ(a∗jai)ξi, ξj

〉
≥ 0.

Therefore 〈·, ·〉o satisfies the Cauchy-Schwarz inequality, and so

∥∥∥∥∥∑
i

ai ⊗ ξi

∥∥∥∥∥
o

:=

〈∑
i

ai ⊗ ξi,
∑
j

aj ⊗ ξj

〉
o

1/2

is a seminorm on A⊗H.
For all a ∈ A define a map

πo(a) : A⊗H → A⊗H :∑
j

bj ⊗ ξj →
∑
j

(abj)⊗ ξj .

Clearly each πo(a) is a linear map. Moreover, it is immediate that

πo(a+ b) = πo(a) + πo(b), πo(ab) = πo(a)πo(b), πo(1) = I. (1)

Claim 1 For all u, v ∈ A⊗H and all a ∈ A we have

〈πo(a)u, v〉o = 〈u, πo(a∗)v〉o .
9This is isomorphic to the linear space of all continuous finite rank antilinear maps f : H → A: if

the range f(H) is spanned by {a1, . . . , an}, then there are linearly independent ξ1, . . . , ξn ∈ H such that
f(ξ) =

∑n
i=1 ai 〈ξi, ξ〉; we write f =

∑
i ai ⊗ ξi.
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Proof If u =
∑

i bi ⊗ ξi and v =
∑

j cj ⊗ ηj then

〈πo(a)u, v〉o =

〈
πo(a)

∑
i

bi ⊗ ξi,
∑
j

cj ⊗ ηj

〉
o

o =

〈∑
i

(abi)⊗ ξi,
∑
j

cj ⊗ ηj

〉
o

=
∑
i,j

〈
φ(c∗jabi)ξi, ηj

〉
H

=
∑
i,j

〈φ((a∗cj)
∗bi)ξi, ηj〉H =

∑
i,j

〈bi ⊗ ξi, (a∗cj)⊗ ηj〉o

=

〈∑
i

bi ⊗ ξi,
∑
j

(a∗cj)⊗ ηj

〉
o

= 〈u, πo(a∗)v〉o . 2

It follows from the claim that for each u ∈ A⊗H and a ∈ A,

〈πo(a∗a)u, u〉o = 〈πo(a∗)πo(a)u, u〉o = 〈πo(a)u, πo(a)u〉o ≥ 0

which means that the functional ρu : A → C given by

ρu(b) = 〈πo(b)u, u〉o , b ∈ A

is a positive linear form. By Proposition 3.1, it is bounded with ‖ρu‖ = ρu(1) = 〈u, u〉o.
Thus

ρu(a∗a) ≤ ‖ρu‖ ‖a∗a‖ ≤ ‖ρu‖ ‖a∗‖ ‖a‖ = ‖ρu‖ ‖a‖2

and therefore

‖πo(a)u‖2o = 〈πo(a)u, πo(a)u〉o = ρu(a∗a) ≤ ‖ρu‖ ‖a‖2 = ‖u‖2o ‖a‖
2 . (2)

It follows from this that if

N := {u ∈ A⊗H : ‖u‖o = 0}

then N is invariant under πo(a) (if ‖u‖o = 0 then ‖πo(a)u‖o = 0), and so πo(a) factors to
a linear map π(a) from the quotient space Ko := (A⊗H)/N to itself given by

π(a)(u+N ) = (πo(a)u) +N .

Also, if ‖u+N‖ := ‖u‖o is the quotient norm, then

‖π(a)(u+N )‖ = ‖πo(a)u‖o ≤ ‖u‖o ‖a‖ = ‖a‖ ‖u+N‖

by (2). Therefore π(a) is bounded on Ko by ‖a‖, hence extends to a bounded operator (also
denoted by π(a)) on the Hilbert space completion K of Ko satisfying ‖π(a)‖ ≤ ‖a‖. It is
immediate that the map

π : A → B(K) : a→ π(a)

is a unital algebra morphism; it follows from Claim 1 that it is also *-preserving: for all
u, v ∈ A⊗H,

〈(u+N ), π(a)∗(v +N )〉 = 〈π(a)(u+N ), (v +N )〉 = 〈πo(a)u, v〉o = 〈u, πo(a∗)v〉o
= 〈(u+N ), π(a∗)(v +N )〉 .

Thus the bounded operators π(a)∗ and π(a∗) coincide on the dense subspace Ko of K, hence
they are equal.
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We have defined the Hilbert space K and the *-representation π : A → B(K). Now we
define

V : H → K : ξ → (1⊗ ξ) +N .

Note that the (obviously linear) map V is bounded; indeed,

‖V ξ‖2= 〈(1⊗ ξ)+N , (1⊗ ξ)+N〉 = 〈1⊗ ξ,1⊗ ξ〉o = 〈φ(1)ξ, ξ〉o ≤ ‖φ(1)‖ ‖ξ‖2H

so that ‖V ‖2 ≤ ‖φ(1)‖ . (3)

Now for all a ∈ A and ξ, η ∈ H we have

π(a)V ξ = π(a)(1⊗ ξ +N ) = a⊗ ξ +N
hence 〈V ∗π(a)V ξ, η〉H = 〈π(a)V ξ, V η〉K = 〈(a⊗ ξ) +N , (1⊗ η) +N〉K

= 〈a⊗ ξ,1⊗ η〉o = 〈φ(1∗a)ξ, η〉H = 〈φ(a)ξ, η〉H
so that V ∗π(a)V = φ(a)

as required.
Using this equality we have

‖φ(a)‖ ≤ ‖V ∗‖ ‖π(a)‖ ‖V ‖ ≤ ‖V ‖2 ‖a‖ .

This shows that the map φ : A → B(H) is automatically bounded with ‖φ‖ ≤ ‖V ‖2; but
since ‖V ‖2 ≤ ‖φ(1)‖ ≤ ‖φ‖ by (3), we have ‖φ‖ = ‖V ‖2 = ‖φ(1)‖. 2

Remarks 3.3 (i) The Stinespring triple (V, π,K) that we have constructed is minimal in
the sense that

K = [π(a)V ξ : a ∈ A, ξ ∈ H]

(indeed we saw that [π(a)V ξ : a ∈ A, ξ ∈ H} = [a ⊗ ξ +N : a ∈ A, ξ ∈ H] = Ko). Recall
that all minimal Stinespring triples for φ are unitarily equivalent (Proposition 2.4).

(ii) Note that V ∗V = V ∗π(1)V = φ(1). Thus, if φ(1) = IH , then V ∗V = IH and so
V : H → K is an isometry.

The special case dimH = 1 yields the celebrated Gelfand - Naimark - Segal representation:

Theorem 3.4 (GNS) Let A be a unital Banach *-algebra with ‖1‖ = 1. If ρ : A → C is a
positive linear form, there exists a Hilbert space Hρ, a vector ξρ ∈ Hρ and a *-representation
πρ : A → B(Hρ) such that

ρ(a) = 〈πρ(a)ξρ, ξρ〉 , a ∈ A.

Moreover πρ is a cyclic representation with cyclic vector ξρ, that is, {πρ(a)ξρ : a ∈ A} is
dense in Hρ.

Proof. We apply Theorem 3.2: The Hilbert space H is C and hence B(H) = C. Since ρ
takes values in C, positivity implies complete positivity (Theorem 3.10). Thus Stinespring’s
theorem applies: There is a Hilbert space K, a bounded operator V : C → K and a
*-representation π : A → B(K) such that

ρ(a) = V ∗π(a)V, a ∈ A.
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Now setting ξ = V 1 we have V ∗η = 〈η, ξ〉 , η ∈ K. Indeed,

〈η, ξ〉K = 〈η, V 1〉K = 〈V ∗η, 1〉C = V ∗η.

Therefore,

ρ(a) = ρ(a)1 = V ∗π(a)V 1 = V ∗(π(a)ξ) = 〈π(a)ξ, ξ〉

as required. We now set ξρ = ξ, Hρ = {π(a)ξ : a ∈ A} and πρ(a) = π(a)|Hρ to get the
required GNS triple (πρ, Hρ, ξρ). 2

3.2 The enveloping C* algebra

Theorem 3.5 Let A be a Banach *-algebra with identity of norm 1. Then there exists a
C*-algebra C∗(A) and a contractive *-homomorphism

ι : A → C∗(A)

with dense range, having the following universal property:

For every *-representation (π,H) of A there is a unique *-representation (π̃, H) of C∗(A)
such that

π̃ ◦ ι = π.

In particular, C∗(A) is unique up to *-isomorphism.

Proof. Let
S = {ρ : A → C positive linear form s.t. ‖ρ‖ ≤ 1}.

Recall that each ρ ∈ S defines a cyclic *-representation (πρ, Hρ, ξρ) of A such that

ρ(a) = 〈πρ(a)ξρ, ξρ〉 (a ∈ A)

hence in particular ‖ξρ‖2 = ρ(1) ≤ 1. Conversely every cyclic *-representation (π,H, ξ)
defines a ρ ∈ S by the formula ρ(a) = 〈π(a)ξ, ξ〉, and π is unitarily equivalent to πρ.

For a ∈ A, define
‖a‖2o = sup{ρ(a∗a) : ρ ∈ S}.

Since ρ(a∗a) ≤ ‖ρ‖ ‖a∗a‖ ≤ ‖a∗a‖ ≤ ‖a∗‖ ‖a‖ = ‖a‖2, it is clear that

‖a‖o ≤ ‖a‖ .

Claim 1 ‖a‖o = sup{‖πρ(a)‖ : ρ ∈ S}.
Proof Write b for the right hand side of the claimed equality. For every ρ ∈ S we have

ρ(a∗a) = 〈πρ(a∗a)ξρ, ξρ〉 = ‖πρ(a)ξρ‖2 ≤ ‖πρ(a)‖2 ≤ b2

(since ‖ξρ‖ ≤ 1) and so, taking sup over all ρ ∈ S,

‖a‖2o ≤ b
2.

For the reverse inequality, take any ρ ∈ S and calculate

‖πρ(a)‖2 = sup{‖πρ(a)η‖2 : η ∈ H, ‖η‖ ≤ 1}
= sup{〈πρ(a∗a)η, η〉 : η ∈ H, ‖η‖ ≤ 1}.
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But the forms ρη given on A by ρη(a) = 〈πρ(a)η, η〉 belong to S (because ‖η‖ ≤ 1), and so
the last supremum is no larger than ‖a‖2o. Therefore

‖πρ(a)‖2 ≤ ‖a‖2o

for each ρ, and so b2 ≤ ‖a‖2o . 2

The claim shows that ‖a‖o is indeed an algebra seminorm on A, being the supremum of
algebra seminorms. It also satisfies the C*-identity, because each πρ(a) is a Hilbert space
operator, hence ‖πρ(a)‖2 = ‖πρ(a)∗πρ(a)‖ = ‖πρ(a∗a)‖.

Thus if we define N by
N = {a ∈ A : ‖a‖o = 0}

then N is a two-sided selfadjoint ideal, hence the quotient space A/N is a unital *-algebra;
moreover ‖·‖o induces an algebra norm ‖·‖∗ on A/N which satisfies the C*-identity.

The quotient map ι : A → A/N is a *-epimorphism and is contractive because ‖ι(a)‖∗ =
‖a‖o ≤ ‖a‖A. Thus if we define C∗(A) to be the completion of (A/N , ‖·‖∗), we obtain a
C*-algebra and a contractive *-homomorphism ι : A → C∗(A) whose range A/N is dense
in C∗(A).

It remains to prove the universal property. We show that it suffices to consider cyclic
representations:

Claim Any *-representation π of A is the direct sum of cyclic representations.

Proof Call two unit vectors ξ, η ∈ H very orthogonal if 〈π(a)ξ, π(b)η〉 = 0 for all a, b ∈ A
10. This is equivalent to requiring that the cyclic subspaces Hξ = {π(a)ξ : a ∈ A} and Hη

be orthogonal. Of course Hξ is π(A)-invariant (hence reducing, because π(A) is selfadjoint)
and the map πξ : a→ π(a)|Hξ is a cyclic *-representation of A (with cyclic vector ξ).

Let {ξi : i ∈ I} be a maximal family of very orthogonal unit vectors in H (Zornication),
let Hi be the cyclic subspace corresponding to ξi, and let πi be the corresponding sub-
representation of π. We have to show that the (pairwise orthogonal) invariant subspaces
Hi satisfy ⊕iHi = H.

Indeed, if there existed a unit vector ξ ∈ H orthogonal to ⊕iHi, then for all i ∈ I and
all a, b ∈ A we would have

〈π(a)ξ, π(b)ξi〉 = 〈ξ, π(a∗b)ξi〉 = 0

because π(a∗b)ξi is in Hi while ξ is orthogonal to Hi. This shows that Hξ is orthogonal to
Hi, for all i ∈ I, contradicting the maximality of {ξi : i ∈ I}. 2

Therefore, to show that any *-representation of A induces a *-representation of C∗(A)
as claimed, it is sufficient to consider cyclic representations. Indeed, if π = ⊕iπi, and each
π induces a *-representation π̃i of C∗(A) such that π̃i ◦ ι = πi, then π̃ := ⊕iπ̃i satisfies
π̃ ◦ ι = π.

So let π : A → B(H) be a *-representation of A with unit cyclic vector ξ .
If a ∈ A then, for all b ∈ A such that ‖π(b)ξ‖ ≤ 1,

‖π(a)π(b)ξ‖2 = 〈π(ab)ξ, π(ab)ξ〉 = 〈π(b∗a∗ab)ξ, ξ〉 = ρb(a
∗a)

where ρb(x) = 〈π(b∗xb)ξ, ξ〉. Clearly ρb ∈ S, so ρb(a
∗a) ≤ ‖a‖2o. Thus ‖πρ(a)πρ(b)ξ‖ ≤ ‖a‖o

for all b ∈ A of norm at most 1. Since {πρ(b)ξ : b ∈ A, ‖π(b)ξ‖ ≤ 1} is dense in the unit
ball of H, this shows that ‖πρ(a)‖ ≤ ‖a‖o. In particular if a ∈ N then πρ(a) = 0. Thus πρ
factors through N to a map π̃ρ : A/N → B(Hρ) given by π̃ρ(ι(a)) = πρ(a) for a ∈ A, and
we have ‖π̃ρ(ι(a))‖ = ‖πρ(a)‖ ≤ ‖a‖o = ‖ι(a)‖∗.

10actually, it is enough to take b = 1
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Thus π̃ρ induces a *-representation of C∗(A) (which is contractive).
Taking direct sums, it follows that there exists a *-representation π̃ of C∗(A) satisfying

π̃(ι(a)) = π(a) for all a ∈ A.
Finally, the relation π̃ ◦ ι = π uniquenely determines π̃ since ι(A) is dense in C∗(A).
In particular, suppose (C, κ) is a C*-algebra and κ : A → C is a unital *-morphism

with dense range, satisfying the analogous universal property. Then the *-representation κ
induces a *-representation κ̃ : C∗(A) → C satisfying κ̃ ◦ ι = κ; but the *-representation ι
also induces a *-representation ι̃ : C → C∗(A) satisfying ι̃ ◦ κ = ι. Now we have

κ̃ ◦ ι = κ ⇒ κ̃ ◦ (ι̃ ◦ κ) = κ

so (κ̃ ◦ ι̃) ◦ κ = κ and thus κ̃ ◦ ι̃ is the identity on κ(A) and hence on its closure C. By the
same argument, ι̃◦ κ̃ is the identity on C∗(A). Thus ι̃ : C → C∗(A) is a *-isomorphism such
that ι̃ ◦ κ = ι: this proves the uniqueness of C∗(A).

Proposition 3.6 Every positive linear map ρ : A → B(H) defined on an Banach *-algebra
with unit of norm ‖1‖ = 1 induces a unique positive linear map ρ̃ : C∗(A) → B(H) such
that

ρ̃ ◦ ι = ρ.

Moreover ρ is completely positive if and only if ρ̃ is.

Proof. We use the notation of the previous proof. It suffices to assume that ‖ρ‖ ≤ 1, so
that ρ ∈ S. Now, for all a ∈ A,

|ρ(a)|2 ≤ ρ(a∗a)ρ(1) ≤ ‖a‖2o

by the definition of ‖a‖o. Thus ρ leaves N invariant, hence induces a linear functional
ρ̃ : A/N → C by ρ̃(a+N ) = ρ(a), i.e. ρ̃(ι(a)) = ρ(a) for all a ∈ A. Thus

|ρ̃(ι(a))| = |ρ(a)| ≤ ‖a‖o = ‖ι(a)‖∗ .

Thus ρ̃ is bounded, hence extends (uniquely, since ι(A) is dense in C∗(A)) to a linear form
on C∗(A).

We show ρ̃ is positive: if b ∈ C∗(A), there is a sequence (an) in A such that ι(an)→ b;
thenι(a∗nan)→ b∗b . It follows that

ρ̃(b∗b) = lim ρ̃(ι(a∗nan)) = lim ρ(a∗nan) ≥ 0.

An obvious modification of this argument, considering an m-tuple b1, . . . , bm in C∗(A),
shows that if ρ is completely positive, then so is ρ̃. The converse is obvious.

Finally, since ι(1) = 1,

‖ρ̃‖ = ρ̃(1) = ρ̃(ι(1)) = ρ(1) = ‖ρ‖ .

3.3 Positive maps on abelian algebras

Let us repeat the definition:

Definition 2 Let A be a Banach *-algebra with identity of norm 1, and B = B(H), the
bounded operators on a Hilbert space H. A map φ : A → B is said to be positive if for all
a ∈ A,

φ(a∗a) ≥ 0 i.e. 〈φ(a∗a)ξ, ξ〉 ≥ 0 for all ξ ∈ H.
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It is said to be completely positive if for all n and all a1, a2, . . . , an ∈ A, the operator-valued
matrix

φn([a∗i aj ]) := [φ(a∗i aj)]

is positive as an operator on Hn, that is if, for all ξ1 . . . , ξn ∈ H,〈
φn([a∗i aj ])

[
ξ1
...
ξn

]
,

[
ξ1
...
ξn

]〉
=
∑
m,n

〈φ(a∗nam)ξm, ξn〉 ≥ 0 .

Example 3.7 If A = B = M2(C), the transpose map φ : A → AT is positive but not
completely positive.

The transpose map on Mn is positive: if A = [aij ] ∈ Mn is a positive matrix then for each
ξ = [λ1, . . . , λn]T we must have

〈Aξ, ξ〉 =
∑
i,j

aijλj λ̄i ≥ 0.

But then, setting η = [µ1, . . . , µn] where µk = λ̄k, we see that〈
ATξ, ξ

〉
=
∑
i,j

ajiλj λ̄i =
∑
i,j

ajiµ̄jµi = 〈Aη, η〉 ≥ 0.

However the transpose map is not even 2-positive on M2: if E = [a∗i aj ] ∈ M2(A) where
a1 = [ 0 0

1 0 ] and a2 = [ 0 0
0 1 ], then

E =

[
[ 1 0
0 0 ] [ 0 1

0 0 ]
[ 0 0
1 0 ] [ 0 0

0 1 ]

]
=

[
1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

]
and φ2(E) =

[
[ 1 0
0 0 ] [ 0 0

1 0 ]
[ 0 1
0 0 ] [ 0 0

0 1 ]

]
=

[
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

]
so E is positive (it is a multiple of a projection) while φ2(E) is not positive. 11

Remark 3.8 If φ : A → C is positive, then it is completely positive.

Proof. Indeed, if a1 . . . , an ∈ A and λ1 . . . , λn ∈ C,∑
i,j

〈φ(a∗i aj)λj , λi〉C =
∑
i,j

φ(a∗i aj)λj λ̄i =
∑
i,j

φ((λiai)
∗(λjaj))

= φ

(∑
i

λiai

)∗∑
j

λjaj

 ≥ 0 .

Proposition 3.9 Every positive linear map defined on an abelian (unital) C*-algebra A is
automatically completely positive.

Proof. By Gelfand theory, we may assume thatA = C(X) where X is a a compact Hausdroff
space. Let

φ : C(X)→ B(H)

be a positive linear map, where H is a Hilbert space. If n ∈ N and f1, . . . , fn ∈ C(X), write
F for the matrix F = [f∗i fj ]. We need to prove that

φn(F ) ≥ 0

11For example, 〈φ2(E)(e2 − e3), (e2 − e3)〉 < 0.
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as an operator on Hn. Now the map

X →Mn(C) : t→ F (t) = [fi(t)fj(t)]

is continuous. Therefore, given ε > 0 there exists a finite open cover U1, . . . , Um of X and
points tk ∈ Uk so that

t ∈ Uk ⇒ ‖F (t)− F (tk)‖Mn < ε (k = 1, . . . ,m)

(here ‖ · ‖Mn is the operator norm on Mn(C) ' B(Cn)). Write F (tk) = Tk for short; so
Tk ∈Mn(C).

Let {u1, · · · , um} ⊆ C(X) be a partition of unity 12 subordinate to the cover U1, . . . , Um:
this means that 0 ≤ uk(t) ≤ 1 for all k and t,

∑
k uk(t) = 1 for all t and suppuk ⊆ Uk for

all k.
For all y ∈ X we have∥∥∥∥∥F (y)−

m∑
l=1

ul(y)Tl

∥∥∥∥∥
Mn

=

∥∥∥∥∥
(

m∑
l=1

ul(y)

)
F (y)−

m∑
l=1

ul(y)Tl

∥∥∥∥∥
Mn

≤
m∑
l=1

ul(y) ‖F (y)− Tl‖Mn
.

Now each term ul(y) ‖F (y)− Tl‖Mn
is less than ul(y)ε; for either y ∈ Ul in which case

‖F (y)− Tl‖Mn
< ε or y /∈ Ul in which case ul(y) = 0. Therefore∥∥∥∥∥F (y)−

m∑
l=1

ul(y)Tl

∥∥∥∥∥
Mn

<
m∑
l=1

ul(y)ε = ε .

Taking sup over y ∈ X, ∥∥∥∥∥F −
m∑
l=1

ulTl

∥∥∥∥∥
Mn(A)

≤ ε.

Since φn is continuous,13 it follows that∣∣∣∣∣φn(F )−
m∑
l=1

φn(ulTl)

∣∣∣∣∣ ≤ ‖φn‖ ε.
Therefore, since ε > 0 is arbitrary, in order to prove that φn(F ) ≥ 0 it suffices to prove
that each term φn(ulTl) is a positive operator. Droping the index l for clarity, we have a
continuous function u = ul : X → R+ and a matrix T = [fi(t)fj(t)] ∈Mn(C). Now

φn(uT ) = φn([ufi(t)fj(t)]) = [φ(ufi(t)fj(t))] = [φ(u)fi(t)fj(t)]

since each fj(t) is a scalar. Thus for each ξ = [ξ1, . . . , ξn]T ∈ Hn we have

〈φn(uT )ξ, ξ〉Hn =
〈

[φ(u)fi(t)fj(t)]ξ, ξ
〉
Hn

=
∑
i,j

〈
φ(u)fi(t)fj(t)ξj , ξi

〉
H

=
∑
i,j

〈φ(u)fj(t)ξj , fi(t)ξi〉H

=

〈
φ(u)

∑
j

fj(t)ξj

 ,

(∑
i

fi(t)ξi

)〉
H

12 see for example Rudin, Real and Complex Analysis, Theorem 2.13
13in fact ‖φn‖ ≤ n ‖φ‖
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which is nonnegative, because φ(u) ∈ B(H) is positive since u is positive in C(X) and φ is
a positive linear form.

Alternatively, the matrix φn(uT ) ∈Mn(B(H)) may be factorised as follows

φn(uT ) =

 f1(t) ... 0

...
...

fn(t) ... 0

[ φ(u) 0

. . .
0 φ(u)

][
f1(t) ... fn(t)

...
...

0 ... 0

]
= A∗BA

where B ∈Mn(B(H) is positive and A ∈Mn(C).

Theorem 3.10 Every positive linear map φ : A → B(H) defined on an abelian Banach
*-algebra with unit of norm ‖1‖ = 1 is automatically completely positive.

Proof. The enveloping C*-algebra C = C∗(A) is abelian and unital. Therefore every positive
linear map defined on C is completely positive. Thus the theorem follows from Proposition
3.6.

References

[1] William Arveson. Dilation theory yesterday and today. In A glimpse at Hilbert space
operators, volume 207 of Oper. Theory Adv. Appl., pages 99–123. Birkhäuser Verlag,
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