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We wish to prove the second part of the following Theorem:

Theorem 1 (Spronk – Turowska [3]) A closed set E ⊆ G is an S-set (i.e. satisfies spectral
synthesis) if and only if the set

E∗ = {(s, t) ∈ G×G : st−1 ∈ E}

is operator synthetic.

Preliminaries. Recall for τ ∈ A(G)∗:

supp τ =
(⋃
{V ⊆ G open : τ |V = 0}

)c
where τ |V = 0 means: u ∈ A(G), suppu ⊆ V ⇒ τ(u) = 0.

Also recall for E ⊆ G closed:

J (E) = {u ∈ A : suppu ∩ E = ∅}

i.e. u vanishes near E.

Remark 2 J (E)⊥ = {τ ∈ A(G)∗ : supp τ ⊆ E}.

Proof Take τ ∈ J (E)⊥.
Let V be open, V ∩ E = ∅. Then for all u ∈ A(G) with suppu ⊆ V we have u ∈ J (E) so

τ(u) = 0. Thus V ∩ supp τ = ∅.
We have shown that supp τ ⊆ E.
Conversely suppose that supp τ ⊆ E. Let u ∈ A(G) be s.t. suppu ∩ E = ∅. Hence there is an

open neighbourhood V of suppu with V ∩ E = ∅. (compactness)
Thus τ vanishes on V and so τ(u) = 0. We have shown that τ ∈ J (E)⊥. 2

Let
V N(G) = {λs : s ∈ G}′′ ⊆ B(L2(G))

Note that, since the set of generators {λs : s ∈ G} is a semigroup, the algebra V N(G) equals the
WOT-closed linear span of the set of generators.

It is known that this von Neumann algebra is isometrically and w*-homeomorphically isomorphic
to the Banach space dual of (A(G), ‖·‖A).

Sketch For A = λs and u(t) = 〈λtf, g〉 ∈ A(G) define

τA(u) = 〈Af, g〉 .

Note that this is independent of f, g and depends only on u. Further |τA(u)| ≤ ‖A‖ ‖f‖2 ‖g‖2 for
each such representation of u so |τA(u)| ≤ ‖A‖ ‖u‖A. Thus τA ∈ (A(G)∗ and ‖τA‖A∗ ≤ ‖A‖. Since
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the map A→ τA is linear and WOT-w*-continuous it extends to a contraction A→ τA : V N(G)→
A(G)∗.

Conversely given τ ∈ A(G)∗ we consider the sesquilinear from B : L2(G)×L2(G)→ C given by
B(f, g) = τ(u) where u(s) = 〈λsf, g〉. Since |B(f, g)| = |τ(u)| ≤ ‖τA‖A∗ ‖f‖2 ‖g‖2 there is a unique
A ∈ B(L2(G) with ‖A‖ ≤ ‖τA‖A∗ so that B(f, g) = 〈Af, g〉. One shows that A must commute with
all right translations and hence must be in V N(G).

Lemma 3 If A ∈ V N(G), then suppA ⊆ ((supp τA)−1)∗ i.e. if (t, s) ∈ suppA then st−1 ∈ supp τA.

Proof Let (t, s) ∈ suppA. If st−1 /∈ supp τA there is an open set W with st−1 ∈ W but W ∩
supp τA = ∅. Find U, V open in G with t ∈ U, s ∈ V and V U−1 ⊆ W .

Since (t, s) ∈ suppA, we have P (V )AP (U) 6= 0, so there are f, g ∈ L2(G) with supp f ⊆
U, supp g ⊆ V and 〈Af, g〉 6= 0.

But if u ∈ A(G) is given by u(s) = 〈λsf, g〉 then u ∈ A(G) and 〈Af, g〉 = τA(u).
If u(s) 6= 0 then

∫
G
f(s−1y)ḡ(y)dy 6= 0 so there must exist y ∈ V so that s−1y ∈ U , i.e. y−1s ∈

U−1 i.e. s ∈ yU−1 hence s ∈ V U−1. It follows that suppu ⊆ V U−1 ⊆ W ; but W ∩ supp τA = ∅ and
so τA(u) = 0, a contradiction. 2

Lemma 4 If T ∈ B(H) is supported in a closed set F ⊆ G×G, then T ∈ Ψ(F )⊥, i.e. if ω ∈ T (G)
vanishes m.a.e. in a neighbourhood of F , then ω(T ) = 0.

Proof Changing ω on a marginally null set, if necessary, (this doesn’t affect ω(T )) we may assume
that ω vanishes everywhere in some neighbourhood V of F . We may cover the closed set V c by a
finite number of open rectangles Ui × Vi each disjoint from F (compactness of V c). Thus

ω(s, t) =

(∑
i

χUi×Vi(s, t)

)
ω(s, t) =

∑
i

∑
n

χUi
(s)χVi(t)fn(s)ḡn(t)

=
∑
i

∑
n

(χUi
fn)(s)(χVign)(t).

Since (Ui × Vi) ∩ F = 0 we have P (Vi)TP (Ui) = 0 for all i and so

ω(T ) =
∑
i

∑
n

〈T (χUi
fn), (χVign)〉 =

∑
i

∑
n

〈TP (Ui)fn, P (Vi)gn〉

=
∑
i

∑
n

〈P (Vi)TP (Ui)fn, gn〉 = 0

as claimed. 2

Conclusion of the proof of the Theorem Let E ⊆ G be closed. Assume E∗ ⊆ G × G is
operator synthetic. We have to show that E is an S-set.

Fix u ∈ K(E) (i.e. u ∈ A(G) vanishes on E) and show that u ∈ J (E). By Remark 2, this is
equivalent to showing that if τ ∈ A(G)∗ has supp τ ⊆ E then τ(u) = 0. Now τ is of the form τ = τT
where T ∈ V N(G) satisfies suppT ⊆ ((supp τT )−1)∗ ⊆ (E−1)∗ (Lemma 3). We have to prove that
τT (u) = 0.

Recall 1 that A(G) can be embedded isometrically into V (G) by u → Nu where (Nu)(s, t) =
u(st−1). If

Nu(s, t) =
∑
i

φi(t)ψi(s)

1The proof (which uses the Peter – Weyl theorem) is in [3, Theorem 2.2]



is any representation of Nu, consider the map (recall that u is fixed)

Φ : B(H)→ B(H) : A→
∑
i

MφiAMψi
.

Note that Φ depends only on Nu (hence on u) and not on the particular representation of Nu.
One can show that the sum converges in the weak* topology, because the sums

∑
i |φi(t)|2 and∑

i |ψi(t)|2 converge uniformly in t, hence are uniformly bounded and converge in the L2 norm. It
follows also that the map Φ is w*-w*-continuous. (See for example [1, Section 3] or [2]).

Claim 5 For all A ∈ V N(G),

τΦ(A)(v) = τA(uv), (v ∈ A(G)).

Proof Assume first A = λs (s ∈ G fixed). Then for all v ∈ A(G) of the form v(t) = 〈λtf, g〉 we have

τΦ(A)(v) := 〈Φ(A)f, g〉 =

〈∑
i

MφiAMψi
f, g

〉

=

〈∑
i

MφiA(ψif), g

〉
=

∫ ∑
i

φi(t)(λs(ψif))(t)ḡ(t)dt

=

∫ ∑
i

φi(t)ψi(s
−1t)f(s−1t)ḡ(t)dt

=

∫
(Nu)(t, s−1t)f(s−1t)ḡ(t)dt =

∫
u(tt−1s)f(s−1t)ḡ(t)dt

=

∫
u(s)(λsf)(t)ḡ(t)dt = 〈u(s)λsf, g〉 = u(s) 〈λsf, g〉

= u(s)v(s) = (uv)(s).

But by definition, when w(s) = 〈λsξ, η〉 is in A(G) then for A = λs we have τA(w) = 〈Aξ, η〉 =
〈λsξ, η〉 = w(s); thus (uv)(s) = τA(uv) and the Claim is proved for the generators A = λs of V N(G).

Thus, for each fixed v ∈ A(G), the maps A→ τΦ(A)(v) and A→ τA(uv) agree on the generators
of V N(G). Since both maps are linear and weak*-continuous and V N(G) is the w*-closed linear
span of the set {λs : s ∈ G}, these two maps must agree on the whole of V N(G). This proves the
Claim. 2

Claim 6 Φ(T ) = 0.

Proof For A ∈ B(H), let ω(A) = 〈Af, g〉 where f, g ∈ L2(G) are arbitrary. Then

ω(Φ(A)) =

〈∑
i

MφiAMψi
f, g

〉
=
∑
i

〈
AMψi

f,M∗
φi
g
〉

=
∑
i

〈
A(ψif), φig

〉
= ω1(A)

so, when ω comes from the function f(t)ḡ(s), the functional ω1 := ω ◦ Φ comes from the function∑
i

ψi(t)f(t)φi(s)ḡ(s) =
∑
i

ψi(t)φi(s)f(t)ḡ(s) = (Nu)(t, s)f(t)ḡ(s) = u(ts−1)f(t)ḡ(s).

But u vanishes on E, so u(ts−1) = 0 when (s, t) ∈ (E−1)∗, which is a set of operator synthesis, by
assumption. Thus ω1 can be approximated, in ‖·‖1, by a sequence of functions ωn ∈ T (G) vanishing



in a neighbourhood of (E−1)∗. On the other hand suppT ⊆ (E−1)∗ and therefore ωn(T ) = 0 for all
n by Lemma 4. Therefore

ω1(T ) = 0.

But ω1(T ) = ω(Φ(T )) and so 〈Φ(T )f, g〉 = 0. Since f, g are arbitrary, we have shown that Φ(T ) = 0.
2

Now using Claim 5 we have

τT (uv) = τΦ(T )(v) = 0 for all v ∈ A(G)

and so in particular τT (u) = τT (u1) = 0, ce qu’il fallait démontrer.
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