
Seminar 21 March 2011

AK

We wish to prove the following Theorem:

Theorem 1 (Spronk – Turowska [5]) A closed set E ⊆ G is a n S-set (i.e. satisfies spectral
synthesis) if and only if the set

E∗ = {(s, t) ∈ G×G : st−1 ∈ E}

is operator synthetic.

(1) The extended Varopoulos algebra. The Varopoulos algebra V (G) = C(G)⊗h C(G) was
identified with the space of all continuous functions u : G×G→ C which can be represented in the
form

u(s, t) =
∑
k

ek(s)fk(t) with ek, fk ∈ C(G) s.t.
∑
k

|ek|2 and
∑
k

|fk|2 converge uniformly.

V (G) is equipped with the norm

‖u‖h = inf


∥∥∥∥∥∑

k

|ek|2
∥∥∥∥∥

1/2

∞

∥∥∥∥∥∑
k

|fk|2
∥∥∥∥∥

1/2

∞

: all such repr’s u =
∑
k

ek ⊗ fk

 .

We now consider the algebra 1 V ∞(G) consisting of all bounded Borel functions u : G×G→ C
which can be represented in the form

u(s, t) =
∑
k

ek(s)fk(t) with ek, fk ∈ L∞(G) s.t.

∥∥∥∥∥∑
k

|ek|2
∥∥∥∥∥
∞

·

∥∥∥∥∥∑
k

|fk|2
∥∥∥∥∥
∞

<∞.

We identify 2 two such functions if they coincide marginally almost everywhere.

Note that the condition ‖
∑

k |ek|2‖∞ <∞ just means that there is a Ce <∞ so that
N∑
n=1

|en(t)|2 ≤ Ce

for all N and all t ∈ G. If u ∈ V ∞(G) then for any S ∈ B(L2(G)) the series

∞∑
k=1

MekSMfk := Tu(S)

converges weak* to an element Tu(S) ∈ B(L2(G)). The map Tu : B(L2(G))→ B(L2(G)) is in fact
w*-w* continuous and it can be shown that ‖Tu‖ = ‖u‖h, where ‖u‖h is given by

‖u‖h = inf


∥∥∥∥∥∑

k

|ek|2
∥∥∥∥∥

1/2

∞

∥∥∥∥∥∑
k

|fk|2
∥∥∥∥∥

1/2

∞

: all such repr’s u =
∑
k

ek ⊗ fk

 .

1In fact V ∞(G) coincides with the w*-Haagerup tensor product L∞ ⊗w∗hL∞; see [1].
2L∞(G) consists of bounded measurable functions, as opposed to equivalence classes
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It can be shown that ‖Tu‖ = ‖u‖h [4] and that Tu = 0 if and only if u vanishes marginally almost
everywhere if and only if u vanishes almost everywhere (see for example [3, Theorem 7]). Thus
‖u‖h is in fact a norm. This also shows that the Varopoulos algebra V (G) embeds isometrically
into V ∞(G).

Proposition 2 Any u ∈ V ∞(G) defines a multiplier mu on T (G) = L2(G)⊗̂L2(G):
if (mu(ω))(s, t) = u(s, t)ω(s, t), the map mu is a bounded operator mu : T (G) → T (G) such that
‖mu‖ ≤ ‖u‖h. 3

Proof Choose a representation u(s, t) =
∑

k ek(s)fk(t) with ‖u‖h = ‖
∑

k |ek|2‖
1/2

∞ ‖
∑

k |fk|2‖
1/2

∞
(such a representation exists). Consider a rank one ω(s, t) = φ(t)ψ(s) in T (G). Then

(mu(ω))(s, t) =
∑
k

ek(s)fk(t)φ(t)ψ(s) =
∑
k

(fkφ)(t)(ekψ)(s)

so ‖mu(ω)‖1 =

∥∥∥∥∥∑
k

(fkφ)⊗ (ekψ)

∥∥∥∥∥
1

≤
∑
k

‖fkφ‖2 ‖ekψ‖2

≤

(∑
k

‖fkφ‖2
2

∑
k

‖ekψ‖2
2

)1/2

But ∑
k

‖fkφ‖2
2 =

∑
k

∫
|fk(t)φ(t)|2dt =

∫ ∑
k

|fk(t)φ(t)|2dt

=

∫ (∑
k

|fk(t)|2
)
|φ(t)|2dt ≤

∥∥∥∥∥∑
k

|fk|2
∥∥∥∥∥
∞

‖φ‖2
2

and similarly ∑
k

‖ekψ‖2
2 ≤

∥∥∥∥∥∑
k

|ek|2
∥∥∥∥∥
∞

‖ψ‖2
2

so that

‖mu(ω)‖1 ≤

∥∥∥∥∥∑
k

|fk|2
∥∥∥∥∥

1/2

∞

∥∥∥∥∥∑
k

|ek|2
∥∥∥∥∥

1/2

∞

‖φ‖2 ‖ψ‖2 = ‖u‖h ‖ω‖1 .

By linearity and continuity, the same inequality holds for any ω ∈ T (G). 2

Corollary 3 The map J : V ∞(G) → T (G) : u → mu(1) (i.e. (Ju)(s, t) = u(s, t) considered as
an element of T (G)) is contractive and injective.

Remarks 4 Here 1(s, t) = 1 for all s, t ∈ G. This is in T (G) only because G is compact!
Note also that by our conventions if u = e⊗f ∈ V ∞(G), i.e. u(s, t) = e(s)f(t), then (Ju)(s, t) =

e(s)f(t) should be written as Ju = f ⊗ e in T (G)!

Proof Obviously,
‖Ju‖1 = ‖mu(1)‖1 ≤ ‖u‖h ‖1‖1 = ‖u‖h .

For the injectivity, if Ju = 0 then u is zero as an element of T (G) so u(s, t) = 0 marginally a.e. and
so u = 0 as an element of V ∞(G). 2

3in fact equality holds - see [5]



(2) Isometric embedding of A(G) into T (G). If u ∈ A(G), we define Ñu : G×G→ C by

(Ñu)(s, t) = u(st−1).

We will use the fact that the map N : u→ Nu given by (Nu)(s, t) = u(st−1) maps A(G) contrac-
tively 4 into V (G). Note that Ñu = JNu. Therefore Ñ maps A(G) contractively into T (G).

If ω ∈ T (G) we define Qω : G→ C by

(Qω)(s) =

∫
G

ω(sr, r)dr

Proposition 5 The map Q is a well-defined contraction Q : T (G)→ A(G) and

(Q ◦ Ñ)u = u for all u ∈ A(G).

Thus Ñ is in fact an isometric embedding of A(G) into T (G).

Proof First consider ω ∈ L2(G)⊗ L2(G) of the form ω(s, t) =
n∑
k=1

fk(t)gk(s). Then

(Qω)(s) =

∫
G

n∑
k=1

fk(r)gk(sr)dr =
n∑
k=1

∫
G

fk(s
−1t)gk(t)dt =

n∑
k=1

∫
G

(λsfk)(t)gk(t)dt

=
n∑
k=1

〈(λsfk), ḡk〉 =
n∑
k=1

uk(s).

By the definition of A(G), each uk is in A(G), hence so is Qω. Furthermore

‖Qω‖A =

∥∥∥∥∥
n∑
k=1

uk

∥∥∥∥∥
A

≤
∑
k

‖uk‖A ≤
∑
k

‖fk‖2 ‖ḡk‖2

and this holds for every representation ω(s, t) =
n∑
k=1

fk(t)gk(s). Thus

‖Qω‖A ≤ inf

{∑
k

‖fk‖2 ‖gk‖2 : ω =
n∑
k=1

fk ⊗ gk

}
= ‖ω‖1

Hence Q maps the algebraic tensor product L2(G)⊗L2(G) contractively into A(G), and so the first
claim follows by continuity.

The second claim is easy: If u ∈ A(G) then

(Q(Ñu))(s) =

∫
(Ñu)(sr, r)dr =

∫
u(srr−1)dr = u(s)

because the Haar measure of G is 1 (compactness!). 2

4Proof next time!



(3) The right action of G and of L1(G) on T (G). For r ∈ G we define a map

ω → r • ω : T (G)→ T (G)

by (r • ω)(s, t) = ω(sr, tr).

Using the fact that
∫
|f(tr)|2dt =

∫
|f(t)|2dt (right-invariance of Haar measure on a compact group)

for all f ∈ L2(G), it is readily verified that ‖r • ω‖1 = ‖ω‖1 and so this map is an isometric action
of G on T (G). Moreover, it is strongly continuous. Indeed, if ω =

∑n
k=1 fk ⊗ gk then, denoting

provisionally by f r the right translate of f , we see that

r • ω − ω =
∑
k

(f rk ⊗ grk − fk ⊗ gk) =
∑
k

[(f rk − fk)⊗ grk + fk ⊗ (grk − gk)]

so ‖r • ω − ω‖1 ≤
∑
k

(‖f rk − fk‖2 ‖g
r
k‖2 + ‖fk‖2 ‖g

r
k − gk‖2)

and therefore ‖r • ω − ω‖1 → 0 as r → e.
In fact the action ω → r • ω extends to a contractive action of (the convolution algebra) L1(G),

defined as follows: 5

h•ω =

∫
G

h(r)(r •ω)dr i.e. (h•ω)(s, t) =

∫
G

h(r)(r •ω)(s, t)dr =

∫
G

h(r)ω(sr, tr)dr, h ∈ L1(G).

Thus

‖h • ω‖1 =

∥∥∥∥∫
G

h(r)(r • ω)dr

∥∥∥∥
1

≤
∫
G

|h(r)| ‖r • ω‖1 dr =

∫
G

|h(r)|dr ‖ω‖1 = ‖h‖L1 ‖ω‖1 .

(4) The image of A(G) in T (G). If

Pω =

∫
G

(r • ω)dr i.e. (Pω)(s, t) =

∫
G

ω(sr, tr)dr

then Pω ∈ T (G) and in fact clearly Pω is invariant, i.e. r • (Pω) = Pω for all r ∈ G.
Note also that,

‖Pω‖1 ≤
∫
G

‖r • ω‖1 dr =

∫
G

‖ω‖1 dr = ‖ω‖1 .

We put
Tinv(G) = {ω ∈ T (G) : ω(sr, tr) = ω(s, t) for all s, t, r ∈ G}

and it is clear that P is a contractive projection onto Tinv(G).

Proposition 6 The range of Ñ consists of all invariant elements of T (G):

Ñ(A(G)) = Tinv(G).

Proof It is clear that Ñu is invariant; indeed for all u ∈ A(G) we have

(Ñu)(sr, tr) = u(sr(tr)−1) = u(st−1) = (Ñu)(s, t)

5The integral converges in the norm of T (G) for every h ∈ L1(G).



for all s, t ∈ G. For the converse, let ω ∈ Tinv(G) and ε > 0 be given. First choose ω1(s, t) =
n∑
k=1

fk(t)gk(s) such that ‖ω − ω1‖1 < ε. Then approximate each fk, gk by continuous functions:

choose ek, hk ∈ C(G) such that

‖ek − gk‖2 <
ε

2n ‖fk‖2

and ‖hk − fk‖2 <
ε

2n ‖ek‖2

, k = 1, . . . n.

Then setting u(s, t) =
n∑
k=1

ek(s)hk(t) so that u ∈ C(G)⊗ C(G) ⊆ V (G) we have

Ju− ω1 =
∑
k

(hk ⊗ ek − fk ⊗ gk) =
∑
k

[(hk − fk)⊗ ek + fk ⊗ (ek − gk)]

so ‖Ju− ω1‖1 ≤
∑
k

(‖hk − fk‖2 ‖ek‖2 + ‖fk‖2 ‖ek − gk‖2) < ε

and so ‖Ju− ω‖1 < 2ε. It follows that ‖PJu− Pω‖1 < 2ε.
Now put

v(s) =

∫
G

n∑
k=1

ek(sr)hk(r)dr =
n∑
k=1

∫
G

ek(x)hk(s
−1x)dx =

n∑
k=1

〈λshk, ēk〉

hence v ∈ A(G) and

(Ñv)(s, t) = v(st−1) =

∫
G

n∑
k=1

ek(st
−1x)hk(x)dx

=

∫
G

n∑
k=1

ek(sr)hk(tr)dr = (PJu)(s, t)

hence PJu = Ñv and so
∥∥∥Ñv − ω∥∥∥

1
= ‖PJu− Pω‖1 < 2ε since Pω = ω because ω is invariant.

Thus ω ∈ Ñ(A(G)) = Ñ(A(G)) since A(G) is complete and Ñ is isometric. 2

(5) Proof of the Theorem: First part.

Proposition 7 Let E ⊂ G be a closed set. If E is a set of synthesis, then E∗ = {(s, t) : st−1 ∈ E}
is a set of operator synthesis.

Proof Let ω ∈ Φ(E∗), i.e. ω ∈ T (G) vanishes marginally almost everywhere in E∗. It is to be
shown that ω ∈ Φ0(E∗), i.e. that ω can be approximated in ‖·‖1 by elements of T (G) that vanish
m.a.e. in a neighbourhood of E∗.

Step 1 Assume additionally that ω ∈ Tinv(G). Then by Proposition 6 there exists u ∈ A(G) such
that Ñu = ω. Thus ω is continuous and hence vanishes everywhere on E∗. It follows that u vanishes
in E (i.e. u ∈ K(E)). Indeed, if x ∈ E then (x, e) ∈ E∗ and so u(x) = (Ñu)(x, e) = 0.

Since E is an S-set, u can be approximated in ‖·‖A by a sequence (un) vanishing near E. If
ωn = Ñun then supp(ωn) ⊆ (suppun)∗, because if ωn(s, t) 6= 0 then un(st−1) 6= 0. The complement
Un of (suppun)∗ is an open neighbourhood of E∗ and ωn vanishes in Un. In the notation of the
previous talk, ωn ∈ Ψ(E∗). But

‖ωn − ω‖1 = ‖ũn − ũ‖1 ≤ ‖un − u‖A → 0



showing that ω ∈ Φ0(E∗) as required.

Step 2 Now let ω ∈ Φ(E∗) be arbitrary.
For each irreducible representation (π,Hπ) of G let {eπi : i = 1, . . . , dπ} be an orthonormal

basis of Hπ (it is known that dimHπ = dπ is always finite when G is compact) and consider the
coefficients of the matrix π(s) ∈ B(Hπ) given by

uπij(s) = 〈π(s)ej, ei〉Hπ , i, j = 1, . . . , dπ, s ∈ G.

These functions of course depend only on the unitary equivalence class [π] of π.
[If G were abelian as well as compact then dπ = 1 for all π and uπ would be the character corre-
sponding to π. By Plancherel, these characters would form an orthonormal basis of L2(G).]

If Ĝ denotes the set of unitary equivalence classes of irreducible representations of G, the set

S = {
√
dπu

π
ij : i, j = 1, . . . , dπ, [π] ∈ Ĝ}

forms an orthonormal basis of L2(G). This is the Peter-Weyl Theorem [2, Theorem 27.40].

For each [π] ∈ Ĝ we define

ωπ(s, t) =

∫
G

ω(sr, tr)π(r)dr

and ω̃π(s, t) = π(s)ωπ(s, t), (s, t) ∈ G×G.

Since each π(r) is a unitary operator on Hπ, these are elements of B(Hπ), i.e. each ωπ is a dπ × dπ-
matrix-valued function on G×G. Since ω ∈ Φ(E∗), it follows that the matrix ωπ(s, t) vanishes for
marginally almost all (s, t) /∈ E∗ and hence so does ω̃π(s, t) (multiplying by π(s) cannot increase
the support).

Note that ω̃π is invariant:

ω̃π(sx, tx) = π(sx)ωπ(sx, tx) = π(sx)

∫
G

ω(sxr, txr)π(r)dr

= π(s)

∫
G

ω(sxr, txr)π(x)π(r)dr = π(s)

∫
G

ω(sy, ty)π(y)dy

= π(s)ωπ(s, t) = ω̃π(s, t)

where we have used the fact that π is a group morphism and that π(r)ω(s, t) = ω(s, t)π(r) since
ω(s, t) ∈ C. It follows that the matrix coefficients

ω̃πij(s, t) = 〈ω̃π(s, t)ej, ei〉

are also invariant: ω̃πij ∈ Tinv(G); since they also vanish for marginally almost all (s, t) /∈ E∗, by the
first part ω̃πij ∈ Φ0(E∗).

However since ω̃π(s, t) = π(s)ωπ(s, t), we have ωπ(s, t) = π(s−1)ω̃π(s, t) and therefore the matrix
coefficients satisfy

ωπij(s, t) := 〈ωπ(s, t)ej, ei〉 =
dπ∑
k=1

〈
π(s−1)ek, ei

〉
〈ω̃π(s, t)ej, ek〉

=
∑
k

ǔπi,k(s)ω̃
π
kj(s, t)

where ǔ(s) = u(s−1). If we denote by u⊗ 1 the function (u⊗ 1)(s, t) = u(s)1(t), the last formula
may be written

ωπij =
∑
k

(ǔπi,k ⊗ 1)ω̃πkj



(pointwise multiplication). Since ω̃πij ∈ Φ0(E∗), it follows from this that ωπij ∈ Φ0(E∗).
Thus for each π and i, j the function

(s, t)→
∫
G

uπij(r)ω(sr, tr)dr =

∫
G

ω(sr, tr) 〈π(r)ej, ei〉 dr =

〈(∫
G

ω(sr, tr)π(r)dr

)
ej, ei

〉
= ωπij(s, t)

which we denote by uπij •ω, belongs to Φ0(E∗). Therefore if u is a linear combination of the functions
uπij, i.e. if u belongs to [S], then u • ω ∈ Φ0(E∗). Since Φ0(E∗) is closed, to prove that ω ∈ Φ0(E∗)
it therefore remains to prove the

Claim Given ε > 0 there exists u = uε ∈ [S] such that ‖u • ω − ω‖1 < 2ε.

Indeed, since r → r•ω is continuous, there is a neighbourhood U of e ∈ G such that ‖r • ω − ω‖1 < ε

for all r ∈ U . Then letting χ :=
χU
m(U)

(here m(U) is the Haar measure of U) we have, since∫
G
χ(r)dr = 1,

‖χ • ω − ω‖1 =

∥∥∥∥∫
G

χ(r)(r • ω − ω)dr

∥∥∥∥
1

≤
∫
G

χ(r) ‖r • ω − ω‖1 dr ≤ ε

But observe that since S is an orthonormal basis of L2(G), the linear span [S] is dense in L2(G),
hence also in L1(G) (recall that ‖·‖1 ≤ ‖·‖2 since Haar measure of a compact group is finite). Thus

there is u ∈ [S] such that ‖χ− u‖L1 <
ε

‖ω‖1

and therefore

‖χ • ω − u • ω‖1 ≤ ‖χ− u‖L1 ‖ω‖1 < ε

and the claim follows.
This completes the proof of the first part of Theorem 1.
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Recall for τ ∈ A(G)∗:

supp τ =
(⋃
{V ⊆ G open : τ |V = 0}

)c
where τ |V = 0 means: u ∈ A(G), suppu ⊆ V ⇒ τ(u) = 0.

Also recall for E ⊆ G closed:

J (E) = {u ∈ A : suppu ∩ E = ∅}

i.e. u vanishes near E.

Remark 8 J (E)⊥ = {τ ∈ A(G)∗ : supp τ ⊆ E}.

Proof Take τ ∈ J (E)⊥.
Let V be open, V ∩E = ∅. Then for all u ∈ A(G) with suppu ⊆ V have u ∈ J (E) so τ(u) = 0.

Thus V ∩ supp τ = ∅.
We have shown that supp τ ⊆ E.
Cvsly spose supp τ ⊆ E. Let u ∈ A(G) be s.t. suppu ∩ E = ∅. Hence there is V open nhd of

suppu with V ∩ E = ∅. (compactness)
Thus τ vanishes on V and so τ(u) = 0. We have shown that τ ∈ J (E)⊥. 2

Let
V N(G) = {λs : s ∈ G}′′ ⊆ B(L2(G))

For u(s) = 〈λsf, g〉 ∈ A(G) cal S = λs and define τS(u) = 〈Sf, g〉 Note that this is independent
of f, g and depends only on u. Further |τS(u)| ≤ ‖S‖ ‖f‖2 ‖g‖2 for each such repr. of u so
|τS(u)| ≤ ‖S‖ ‖u‖A. Thus τS ∈ (A(g)∗ and ‖τS‖A∗ ≤ ‖S‖. Since the map S → τS is WOT-w*-
continuous it extends to a contraction S → τS : V N(G)→ A(G)∗. In fact this is an onto isometry
and a w*-homeo (?).

Lemma 9 If S ∈ V N(G), then suppS ⊆ ((supp τS)−1)∗ i.e. if (t, s) ∈ suppS then st−1 ∈ supp τS.

Proof Let (t, s) ∈ suppS. If st−1 /∈ supp τS there is W open with st−1 ∈ W but W ∩ supp τS = ∅.
Find U, V open in G with t ∈ U, s ∈ V and V U−1 ⊆ W .

Since (t, s) ∈ suppS, have P (V )SP (U) 6= 0, so there are f, g ∈ L2(G) with supp f ⊆ U, supp g ⊆
V and 〈Sf, g〉 6= 0.

But if u(s) = 〈λsf, g〉 then u ∈ A(G) and 〈Sf, g〉 = τS(u).
If u(s) 6= 0 then

∫
G
f(s−1y)ḡ(y)dy 6= 0 so there must exist y ∈ V so that s−1y ∈ U , i.e.

y−1s ∈ U−1 i.e. s ∈ yU−1 or s ∈ V U−1. It follows that suppu ⊆ V U−1 ⊆ W ; but W ∩ supp τS = ∅
and so τS(u) = 0, a contradiction. 2

Proof of Theorem Let E ⊆ G be closed. Assume E∗ ⊆ G × G is operator synthetic. To show
that E is an S-set, fix u ∈ K(E) and show that u ∈ J (E). By Remark 8, this is equivalent to
showing that if τ ∈ A(G)∗ has supp τ ⊆ E then τ(u) = 0. Now τ = τS where S ∈ V N(G) satisfies
suppS ⊆ ((supp τS)−1)∗ ⊆ (E−1)∗ (Lemma 9).

Recall that we have embedded A(G) isometrically into V (G) by u → Nu where (Nu)(s, t) =
u(st−1) (proof missing!). If

Nu(s, t) =
∑
i

φi(t)ψi(s)



is a representation of Nu, then we have defined a map

TNu : B(H)→ B(H) : A→
∑
i

MφiAMψi

where the sum converges an the weak* topology (and boundedly? mallon). We shorten TNu(A) to
Φ(A) (recall u is fixed).

Claim For all A ∈ V N(G),

τΦ(A)(v) = τA(uv), (v ∈ A(G)).

Proof Assume first A = λs (s ∈ G fixed). Then for all v ∈ A(G) of the form v(s) = 〈λsf, g〉 we
have

τΦ(A)(v) := 〈Φ(λs)f, g〉 =

〈∑
i

MφiλsMψif, g

〉

=

〈∑
i

Mφiλs(ψif), g

〉
=

∫ ∑
i

φi(t)(λs(ψf))(t)ḡ(t)dt

=

∫ ∑
i

φi(t)ψ(s−1t)f(s−1t)ḡ(t)dt

=

∫
(Nu)(t, s−1t)f(s−1t)ḡ(t)dt =

∫
u(tt−1s)f(s−1t)ḡ(t)dt

=

∫
u(s)(λsf(t)ḡ(t)dt = 〈u(s)λsf, g〉 = u(s) 〈λsf, g〉

= u(s)v(s) = (uv)(s).

But by definition, when w(s) = 〈λsξ, η〉 is in A(G) then for A = λs we have τA(w) = 〈Aξ, η〉 =
〈λsξ, η〉 = w(s); thus (uv)(s) = τA(uv) and the Claim is proved for the generators A = λs of V N(G).

Thus, for each fixed v ∈ A(G), the maps A→ τΦ(A)(v) and A→ τA(uv) agree on the generators.
Since they are both weak*-continuous (or WOT continuous on the unit ball) and V N(G) is the
w*-closed linear span of the set {λs : s ∈ G} (it is already a semigroup), these two maps must agree
on the whole of V N(G).

Now let ω(A) = tr(Θfg∗A) where Θfg∗ is the rank one operator Θfg∗ξ = 〈ξ, g〉 f . Then

ω(Φ(A)) = tr(Θfg∗

∑
i

MφiAMψi) = tr(
∑
i

MψiΘfg∗MφiAMψi)

= tr(Ψ(Θfg∗)A) = ω1(A)

where
Ψ(B) =

∑
i

MψiBMφi

so, when ω comes from the function f(t)ḡ(s), ω1 comes from the function∑
i

ψi(t)f(t)ḡ(s)φi(s) =
∑
i

ψi(t)f(t)ḡ(s)φi(s)f(t)ḡ(s) = (Nu)(t, s)f(t)ḡ(s)

i.e. ω1 = mNǔω (recall ǔ(s) = u(s−1)). But u vanishes on E, so ǔ vanishes on E−1 and hence
Nǔ vanishes on (E−1)∗, which is a set of operator synthesis, by assumption. On the other hand
suppS ⊆ (E−1)∗ and therefore

ω1(S) = 0



(you need a Lemma like Lemma 9 for that). By the previous calculation it follows that ω(Φ(S)) = 0
or 〈Φ(S)f, g〉 = 0. Since f, g are arbitrary, we have shown that Φ(S) = 0.

Now form the claim we have

τS(uv) = τΦ(S)(v) = 0 for all v ∈ A(G)

and so in particular τS(u) = τS(u1) = 0, ce qu’il fallait démontrer.
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