Seminar 21 March 2011

AK

We wish to prove the following Theorem:

Theorem 1 (Spronk – **Turowska** [5]) A closed set $E \subseteq G$ is a n S-set (i.e. satisfies spectral synthesis) if and only if the set

$$E^* = \{(s,t) \in G \times G : st^{-1} \in E\}$$

is operator synthetic.

(1) The extended Varopoulos algebra. The Varopoulos algebra $V(G) = C(G) \otimes^h C(G)$ was identified with the space of all continuous functions $u : G \times G \to \mathbb{C}$ which can be represented in the form

$$u(s,t) = \sum_{k} e_k(s) f_k(t)$$
 with $e_k, f_k \in C(G)$ s.t. $\sum_{k} |e_k|^2$ and $\sum_{k} |f_k|^2$ converge uniformly.

V(G) is equipped with the norm

$$||u||_{h} = \inf \left\{ \left\| \sum_{k} |e_{k}|^{2} \right\|_{\infty}^{1/2} \left\| \sum_{k} |f_{k}|^{2} \right\|_{\infty}^{1/2} : \text{ all such repr's } u = \sum_{k} e_{k} \otimes f_{k} \right\}.$$

We now consider the algebra ${}^1 V^{\infty}(G)$ consisting of all bounded Borel functions $u: G \times G \to \mathbb{C}$ which can be represented in the form

$$u(s,t) = \sum_{k} e_k(s) f_k(t) \quad \text{with } e_k, f_k \in \mathcal{L}^{\infty}(G) \text{ s.t. } \left\| \sum_{k} |e_k|^2 \right\|_{\infty} \cdot \left\| \sum_{k} |f_k|^2 \right\|_{\infty} < \infty.$$

We identify ² two such functions if they coincide marginally almost everywhere. Note that the condition $\|\sum_k |e_k|^2\|_{\infty} < \infty$ just means that there is a $C_e < \infty$ so that $\sum_{n=1}^N |e_n(t)|^2 \le C_e$ for all N and all $t \in G$. If $u \in V^{\infty}(G)$ then for any $S \in B(L^2(G))$ the series

$$\sum_{k=1}^{\infty} M_{e_k} S M_{f_k} := T_u(S)$$

converges weak^{*} to an element $T_u(S) \in B(L^2(G))$. The map $T_u: B(L^2(G)) \to B(L^2(G))$ is in fact w^{*}-w^{*} continuous and it can be shown that $||T_u|| = ||u||_h$, where $||u||_h$ is given by

$$||u||_{h} = \inf \left\{ \left\| \sum_{k} |e_{k}|^{2} \right\|_{\infty}^{1/2} \left\| \sum_{k} |f_{k}|^{2} \right\|_{\infty}^{1/2} : \text{ all such repr's } u = \sum_{k} e_{k} \otimes f_{k} \right\}.$$

¹In fact $V^{\infty}(G)$ coincides with the w*-Haagerup tensor product $L^{\infty} \otimes^{w^*h} L^{\infty}$; see [1].

 $^{{}^{2}\}mathcal{L}^{\infty}(G)$ consists of bounded measurable *functions*, as opposed to equivalence classes

It can be shown that $||T_u|| = ||u||_h$ [4] and that $T_u = 0$ if and only if u vanishes marginally almost everywhere if and only if u vanishes almost everywhere (see for example [3, Theorem 7]). Thus $||u||_h$ is in fact a norm. This also shows that the Varopoulos algebra V(G) embeds isometrically into $V^{\infty}(G)$.

Proposition 2 Any $u \in V^{\infty}(G)$ defines a multiplier m_u on $T(G) = L^2(G) \hat{\otimes} L^2(G)$: if $(m_u(\omega))(s,t) = u(s,t)\omega(s,t)$, the map m_u is a bounded operator $m_u : T(G) \to T(G)$ such that $||m_u|| \leq ||u||_h$.³

Proof Choose a representation $u(s,t) = \sum_k e_k(s) f_k(t)$ with $||u||_h = ||\sum_k |e_k|^2 ||_{\infty}^{1/2} ||\sum_k |f_k|^2 ||_{\infty}^{1/2}$ (such a representation exists). Consider a rank one $\omega(s,t) = \phi(t)\psi(s)$ in T(G). Then

$$(m_{u}(\omega))(s,t) = \sum_{k} e_{k}(s)f_{k}(t)\phi(t)\psi(s) = \sum_{k} (f_{k}\phi)(t)(e_{k}\psi)(s)$$

so $||m_{u}(\omega)||_{1} = \left\|\sum_{k} (f_{k}\phi) \otimes (e_{k}\psi)\right\|_{1} \le \sum_{k} ||f_{k}\phi||_{2} ||e_{k}\psi||_{2}$
 $\le \left(\sum_{k} ||f_{k}\phi||_{2}^{2} \sum_{k} ||e_{k}\psi||_{2}^{2}\right)^{1/2}$

But

$$\sum_{k} \|f_{k}\phi\|_{2}^{2} = \sum_{k} \int |f_{k}(t)\phi(t)|^{2}dt = \int \sum_{k} |f_{k}(t)\phi(t)|^{2}dt$$
$$= \int \left(\sum_{k} |f_{k}(t)|^{2}\right) |\phi(t)|^{2}dt \le \left\|\sum_{k} |f_{k}|^{2}\right\|_{\infty} \|\phi\|_{2}^{2}$$

and similarly

$$\sum_{k} \|e_{k}\psi\|_{2}^{2} \leq \left\|\sum_{k} |e_{k}|^{2}\right\|_{\infty} \|\psi\|_{2}^{2}$$

so that

$$\|m_u(\omega)\|_1 \le \left\|\sum_k |f_k|^2\right\|_{\infty}^{1/2} \left\|\sum_k |e_k|^2\right\|_{\infty}^{1/2} \|\phi\|_2 \|\psi\|_2 = \|u\|_h \|\omega\|_1.$$

By linearity and continuity, the same inequality holds for any $\omega \in T(G)$. \Box

Corollary 3 The map $J: V^{\infty}(G) \to T(G): u \to m_u(1)$ (i.e. (Ju)(s,t) = u(s,t) considered as an element of T(G)) is contractive and injective.

Remarks 4 Here $\mathbf{1}(s,t) = 1$ for all $s,t \in G$. This is in T(G) only because G is compact!

Note also that by our conventions if $u = e \otimes f \in V^{\infty}(G)$, i.e. u(s,t) = e(s)f(t), then (Ju)(s,t) = e(s)f(t) should be written as $Ju = f \otimes e$ in T(G)!

Proof Obviously,

$$||Ju||_1 = ||m_u(\mathbf{1})||_1 \le ||u||_h ||\mathbf{1}||_1 = ||u||_h$$

For the injectivity, if Ju = 0 then u is zero as an element of T(G) so u(s,t) = 0 marginally a.e. and so u = 0 as an element of $V^{\infty}(G)$. \Box

³ in fact equality holds - see [5]

(2) Isometric embedding of A(G) into T(G). If $u \in A(G)$, we define $\tilde{N}u : G \times G \to \mathbb{C}$ by

$$(\tilde{N}u)(s,t) = u(st^{-1})$$

We will use the fact that the map $N: u \to Nu$ given by $(Nu)(s,t) = u(st^{-1})$ maps A(G) contractively ⁴ into V(G). Note that $\tilde{N}u = JNu$. Therefore \tilde{N} maps A(G) contractively into T(G).

If $\omega \in T(G)$ we define $Q\omega : G \to \mathbb{C}$ by

$$(Q\omega)(s) = \int_G \omega(sr, r) dr$$

Proposition 5 The map Q is a well-defined contraction $Q: T(G) \to A(G)$ and

 $(Q \circ \tilde{N})u = u$ for all $u \in A(G)$.

Thus \tilde{N} is in fact an isometric embedding of A(G) into T(G).

Proof First consider $\omega \in L^2(G) \otimes L^2(G)$ of the form $\omega(s,t) = \sum_{k=1}^n f_k(t)g_k(s)$. Then

$$\begin{aligned} (Q\omega)(s) &= \int_{G} \sum_{k=1}^{n} f_{k}(r) g_{k}(sr) dr = \sum_{k=1}^{n} \int_{G} f_{k}(s^{-1}t) g_{k}(t) dt = \sum_{k=1}^{n} \int_{G} (\lambda_{s} f_{k})(t) g_{k}(t) dt \\ &= \sum_{k=1}^{n} \left\langle (\lambda_{s} f_{k}), \bar{g}_{k} \right\rangle = \sum_{k=1}^{n} u_{k}(s). \end{aligned}$$

By the definition of A(G), each u_k is in A(G), hence so is $Q\omega$. Furthermore

$$\|Q\omega\|_{A} = \left\|\sum_{k=1}^{n} u_{k}\right\|_{A} \le \sum_{k} \|u_{k}\|_{A} \le \sum_{k} \|f_{k}\|_{2} \|\bar{g}_{k}\|_{2}$$

and this holds for every representation $\omega(s,t) = \sum_{k=1}^{n} f_k(t)g_k(s)$. Thus

$$\|Q\omega\|_{A} \le \inf\left\{\sum_{k} \|f_{k}\|_{2} \|g_{k}\|_{2} : \omega = \sum_{k=1}^{n} f_{k} \otimes g_{k}\right\} = \|\omega\|_{1}$$

Hence Q maps the algebraic tensor product $L^2(G) \otimes L^2(G)$ contractively into A(G), and so the first claim follows by continuity.

The second claim is easy: If $u \in A(G)$ then

$$(Q(\tilde{N}u))(s) = \int (\tilde{N}u)(sr, r)dr = \int u(srr^{-1})dr = u(s)$$

because the Haar measure of G is 1 (compactness!). \Box

⁴Proof next time!

(3) The right action of G and of $L^1(G)$ on T(G). For $r \in G$ we define a map

$$\begin{split} & \omega \to r \bullet \omega: T(G) \to T(G) \\ \text{by} \quad (r \bullet \omega)(s,t) = \omega(sr,tr). \end{split}$$

Using the fact that $\int |f(tr)|^2 dt = \int |f(t)|^2 dt$ (right-invariance of Haar measure on a compact group) for all $f \in L^2(G)$, it is readily verified that $||r \bullet \omega||_1 = ||\omega||_1$ and so this map is an isometric action of G on T(G). Moreover, it is strongly continuous. Indeed, if $\omega = \sum_{k=1}^n f_k \otimes g_k$ then, denoting provisionally by f^r the right translate of f, we see that

$$r \bullet \omega - \omega = \sum_{k} (f_{k}^{r} \otimes g_{k}^{r} - f_{k} \otimes g_{k}) = \sum_{k} [(f_{k}^{r} - f_{k}) \otimes g_{k}^{r} + f_{k} \otimes (g_{k}^{r} - g_{k})]$$

so $||r \bullet \omega - \omega||_{1} \leq \sum_{k} (||f_{k}^{r} - f_{k}||_{2} ||g_{k}^{r}||_{2} + ||f_{k}||_{2} ||g_{k}^{r} - g_{k}||_{2})$

and therefore $||r \bullet \omega - \omega||_1 \to 0$ as $r \to e$.

In fact the action $\omega \to r \bullet \omega$ extends to a contractive action of (the convolution algebra) $L^1(G)$, defined as follows: ⁵

$$h \bullet \omega = \int_{G} h(r)(r \bullet \omega) dr \text{ i.e. } (h \bullet \omega)(s,t) = \int_{G} h(r)(r \bullet \omega)(s,t) dr = \int_{G} h(r)\omega(sr,tr) dr, \quad h \in L^{1}(G).$$

Thus

$$\|h \bullet \omega\|_{1} = \left\| \int_{G} h(r)(r \bullet \omega) dr \right\|_{1} \le \int_{G} |h(r)| \, \|r \bullet \omega\|_{1} \, dr = \int_{G} |h(r)| \, dr \, \|\omega\|_{1} = \|h\|_{L^{1}} \, \|\omega\|_{1} \, dr$$

(4) The image of A(G) in T(G). If

$$P\omega = \int_G (r \bullet \omega) dr$$
 i.e. $(P\omega)(s,t) = \int_G \omega(sr,tr) dr$

then $P\omega \in T(G)$ and in fact clearly $P\omega$ is *invariant*, i.e. $r \bullet (P\omega) = P\omega$ for all $r \in G$. Note also that,

$$\|P\omega\|_{1} \leq \int_{G} \|r \bullet \omega\|_{1} dr = \int_{G} \|\omega\|_{1} dr = \|\omega\|_{1}.$$

We put

$$T_{inv}(G) = \{ \omega \in T(G) : \omega(sr, tr) = \omega(s, t) \text{ for all } s, t, r \in G \}$$

and it is clear that P is a contractive projection onto $T_{inv}(G)$.

Proposition 6 The range of \tilde{N} consists of all invariant elements of T(G):

$$\tilde{N}(A(G)) = T_{inv}(G).$$

Proof It is clear that $\tilde{N}u$ is invariant; indeed for all $u \in A(G)$ we have

$$(\tilde{N}u)(sr,tr) = u(sr(tr)^{-1}) = u(st^{-1}) = (\tilde{N}u)(s,t)$$

⁵The integral converges in the norm of T(G) for every $h \in L^1(G)$.

for all $s, t \in G$. For the converse, let $\omega \in T_{inv}(G)$ and $\epsilon > 0$ be given. First choose $\omega_1(s,t) = \sum_{k=1}^{n} f_k(t)g_k(s)$ such that $\|\omega - \omega_1\|_1 < \epsilon$. Then approximate each f_k, g_k by continuous functions: choose $e_k, h_k \in C(G)$ such that

$$||e_k - g_k||_2 < \frac{\epsilon}{2n ||f_k||_2}$$
 and $||h_k - f_k||_2 < \frac{\epsilon}{2n ||e_k||_2}$, $k = 1, \dots n$.

Then setting $u(s,t) = \sum_{k=1}^{n} e_k(s)h_k(t)$ so that $u \in C(G) \otimes C(G) \subseteq V(G)$ we have

$$Ju - \omega_1 = \sum_k (h_k \otimes e_k - f_k \otimes g_k) = \sum_k [(h_k - f_k) \otimes e_k + f_k \otimes (e_k - g_k)]$$

so $\|Ju - \omega_1\|_1 \le \sum_k (\|h_k - f_k\|_2 \|e_k\|_2 + \|f_k\|_2 \|e_k - g_k\|_2) < \epsilon$

and so $||Ju - \omega||_1 < 2\epsilon$. It follows that $||PJu - P\omega||_1 < 2\epsilon$. Now put

$$v(s) = \int_{G} \sum_{k=1}^{n} e_k(sr) h_k(r) dr = \sum_{k=1}^{n} \int_{G} e_k(x) h_k(s^{-1}x) dx = \sum_{k=1}^{n} \langle \lambda_s h_k, \bar{e}_k \rangle$$

hence $v \in A(G)$ and

$$(\tilde{N}v)(s,t) = v(st^{-1}) = \int_{G} \sum_{k=1}^{n} e_k(st^{-1}x)h_k(x)dx$$
$$= \int_{G} \sum_{k=1}^{n} e_k(sr)h_k(tr)dr = (PJu)(s,t)$$

hence $PJu = \tilde{N}v$ and so $\|\tilde{N}v - \omega\|_1 = \|PJu - P\omega\|_1 < 2\epsilon$ since $P\omega = \omega$ because ω is invariant. Thus $\omega \in \overline{\tilde{N}(A(G))} = \tilde{N}(A(G))$ since A(G) is complete and \tilde{N} is isometric. \Box

(5) Proof of the Theorem: First part.

Proposition 7 Let $E \subset G$ be a closed set. If E is a set of synthesis, then $E^* = \{(s,t) : st^{-1} \in E\}$ is a set of operator synthesis.

Proof Let $\omega \in \Phi(E^*)$, i.e. $\omega \in T(G)$ vanishes marginally almost everywhere in E^* . It is to be shown that $\omega \in \Phi_0(E^*)$, i.e. that ω can be approximated in $\|\cdot\|_1$ by elements of T(G) that vanish m.a.e. in a neighbourhood of E^* .

Step 1 Assume additionally that $\omega \in T_{inv}(G)$. Then by Proposition 6 there exists $u \in A(G)$ such that $\tilde{N}u = \omega$. Thus ω is continuous and hence vanishes everywhere on E^* . It follows that u vanishes in E (i.e. $u \in \mathcal{K}(E)$). Indeed, if $x \in E$ then $(x, e) \in E^*$ and so $u(x) = (\tilde{N}u)(x, e) = 0$.

Since E is an S-set, u can be approximated in $\|\cdot\|_A$ by a sequence (u_n) vanishing near E. If $\omega_n = \tilde{N}u_n$ then $\operatorname{supp}(\omega_n) \subseteq (\operatorname{supp} u_n)^*$, because if $\omega_n(s,t) \neq 0$ then $u_n(st^{-1}) \neq 0$. The complement U_n of $(\operatorname{supp} u_n)^*$ is an open neighbourhood of E^* and ω_n vanishes in U_n . In the notation of the previous talk, $\omega_n \in \Psi(E^*)$. But

$$\|\omega_n - \omega\|_1 = \|\tilde{u}_n - \tilde{u}\|_1 \le \|u_n - u\|_A \to 0$$

showing that $\omega \in \Phi_0(E^*)$ as required.

Step 2 Now let $\omega \in \Phi(E^*)$ be arbitrary.

For each irreducible representation (π, H_{π}) of G let $\{e_i^{\pi} : i = 1, \ldots, d_{\pi}\}$ be an orthonormal basis of H_{π} (it is known that dim $H_{\pi} = d_{\pi}$ is always finite when G is compact) and consider the coefficients of the matrix $\pi(s) \in B(H_{\pi})$ given by

$$u_{ij}^{\pi}(s) = \langle \pi(s)e_j, e_i \rangle_{H_{\pi}}, \quad i, j = 1, \dots, d_{\pi}, s \in G.$$

These functions of course depend only on the unitary equivalence class $[\pi]$ of π . [If G were abelian as well as compact then $d_{\pi} = 1$ for all π and u^{π} would be the character corresponding to π . By Plancherel, these characters would form an orthonormal basis of $L^2(G)$.]

If \widehat{G} denotes the set of unitary equivalence classes of irreducible representations of G, the set

$$\mathcal{S} = \{\sqrt{d_{\pi}}u_{ij}^{\pi} : i, j = 1, \dots, d_{\pi}, \ [\pi] \in \widehat{G}\}$$

forms an orthonormal basis of $L^2(G)$. This is the Peter-Weyl Theorem [2, Theorem 27.40].

For each $[\pi] \in \widehat{G}$ we define

$$\begin{split} \omega^{\pi}(s,t) &= \int_{G} \omega(sr,tr) \pi(r) dr \\ \text{and} \qquad \tilde{\omega}^{\pi}(s,t) &= \pi(s) \omega^{\pi}(s,t), \qquad (s,t) \in G \times G. \end{split}$$

Since each $\pi(r)$ is a unitary operator on H_{π} , these are elements of $B(H_{\pi})$, i.e. each ω^{π} is a $d_{\pi} \times d_{\pi}$ matrix-valued function on $G \times G$. Since $\omega \in \Phi(E^*)$, it follows that the matrix $\omega^{\pi}(s,t)$ vanishes for
marginally almost all $(s,t) \notin E^*$ and hence so does $\tilde{\omega}^{\pi}(s,t)$ (multiplying by $\pi(s)$ cannot increase
the support).

Note that $\tilde{\omega}^{\pi}$ is invariant:

$$\begin{split} \tilde{\omega}^{\pi}(sx,tx) &= \pi(sx)\omega^{\pi}(sx,tx) = \pi(sx)\int_{G}\omega(sxr,txr)\pi(r)dr\\ &= \pi(s)\int_{G}\omega(sxr,txr)\pi(x)\pi(r)dr = \pi(s)\int_{G}\omega(sy,ty)\pi(y)dy\\ &= \pi(s)\omega^{\pi}(s,t) = \tilde{\omega}^{\pi}(s,t) \end{split}$$

where we have used the fact that π is a group morphism and that $\pi(r)\omega(s,t) = \omega(s,t)\pi(r)$ since $\omega(s,t) \in \mathbb{C}$. It follows that the matrix coefficients

$$\tilde{\omega}_{ij}^{\pi}(s,t) = \langle \tilde{\omega}^{\pi}(s,t)e_j, e_i \rangle$$

are also invariant: $\tilde{\omega}_{ij}^{\pi} \in T_{inv}(G)$; since they also vanish for marginally almost all $(s,t) \notin E^*$, by the first part $\tilde{\omega}_{ij}^{\pi} \in \Phi_0(E^*)$.

However since $\tilde{\omega}^{\pi}(s,t) = \pi(s)\omega^{\pi}(s,t)$, we have $\omega^{\pi}(s,t) = \pi(s^{-1})\tilde{\omega}^{\pi}(s,t)$ and therefore the matrix coefficients satisfy

$$\omega_{ij}^{\pi}(s,t) := \left\langle \omega^{\pi}(s,t)e_{j}, e_{i} \right\rangle = \sum_{k=1}^{d_{\pi}} \left\langle \pi(s^{-1})e_{k}, e_{i} \right\rangle \left\langle \tilde{\omega}^{\pi}(s,t)e_{j}, e_{k} \right\rangle$$
$$= \sum_{k} \check{u}_{i,k}^{\pi}(s)\tilde{\omega}_{kj}^{\pi}(s,t)$$

where $\check{u}(s) = u(s^{-1})$. If we denote by $u \otimes \mathbf{1}$ the function $(u \otimes \mathbf{1})(s,t) = u(s)\mathbf{1}(t)$, the last formula may be written

$$\omega_{ij}^{\pi} = \sum_{k} (\check{u}_{i,k}^{\pi} \otimes \mathbf{1}) \tilde{\omega}_{kj}^{\pi}$$

(pointwise multiplication). Since $\tilde{\omega}_{ij}^{\pi} \in \Phi_0(E^*)$, it follows from this that $\omega_{ij}^{\pi} \in \Phi_0(E^*)$.

Thus for each π and i, j the function

$$(s,t) \to \int_{G} u_{ij}^{\pi}(r)\omega(sr,tr)dr = \int_{G} \omega(sr,tr) \left\langle \pi(r)e_{j},e_{i} \right\rangle dr = \left\langle \left(\int_{G} \omega(sr,tr)\pi(r)dr \right)e_{j},e_{i} \right\rangle = \omega_{ij}^{\pi}(s,t)$$

which we denote by $u_{ij}^{\pi} \bullet \omega$, belongs to $\Phi_0(E^*)$. Therefore if u is a linear combination of the functions u_{ij}^{π} , i.e. if u belongs to $[\mathcal{S}]$, then $u \bullet \omega \in \Phi_0(E^*)$. Since $\Phi_0(E^*)$ is closed, to prove that $\omega \in \Phi_0(E^*)$ it therefore remains to prove the

Claim Given $\epsilon > 0$ there exists $u = u_{\epsilon} \in [S]$ such that $||u \bullet \omega - \omega||_1 < 2\epsilon$.

Indeed, since $r \to r \bullet \omega$ is continuous, there is a neighbourhood U of $e \in G$ such that $||r \bullet \omega - \omega||_1 < \epsilon$ for all $r \in U$. Then letting $\chi := \frac{\chi_U}{m(U)}$ (here m(U) is the Haar measure of U) we have, since $\int_G \chi(r) dr = 1$,

$$\|\chi \bullet \omega - \omega\|_1 = \left\| \int_G \chi(r)(r \bullet \omega - \omega) dr \right\|_1 \le \int_G \chi(r) \|r \bullet \omega - \omega\|_1 dr \le \epsilon$$

But observe that since S is an orthonormal basis of $L^2(G)$, the linear span [S] is dense in $L^2(G)$, hence also in $L^1(G)$ (recall that $\|\cdot\|_1 \leq \|\cdot\|_2$ since Haar measure of a compact group is finite). Thus there is $u \in [S]$ such that $\|\chi - u\|_{L^1} < \frac{\epsilon}{\|\omega\|_1}$ and therefore

$$\left\| \chi \bullet \omega - u \bullet \omega \right\|_1 \le \left\| \chi - u \right\|_{L^1} \left\| \omega \right\|_1 < \epsilon$$

and the claim follows.

This completes the proof of the first part of Theorem 1.

Recall for $\tau \in A(G)^*$:

$$\operatorname{supp} \tau = \left(\bigcup \{ V \subseteq G \text{ open } : \tau |_V = 0 \} \right)^c$$

where $\tau|_V = 0$ means: $u \in A(G)$, supp $u \subseteq V \Rightarrow \tau(u) = 0$.

Also recall for $E \subseteq G$ closed:

$$\mathcal{J}(E) = \{ u \in \mathcal{A} : \operatorname{supp} u \cap E = \emptyset \}$$

i.e. u vanishes near E.

Remark 8 $\mathcal{J}(E)^{\perp} = \{ \tau \in A(G)^* : \operatorname{supp} \tau \subseteq E \}.$

Proof Take $\tau \in \mathcal{J}(E)^{\perp}$.

Let V be open, $V \cap E = \emptyset$. Then for all $u \in A(G)$ with $\operatorname{supp} u \subseteq V$ have $u \in \mathcal{J}(E)$ so $\tau(u) = 0$. Thus $V \cap \operatorname{supp} \tau = \emptyset$.

We have shown that $\operatorname{supp} \tau \subseteq E$.

Cvsly spose supp $\tau \subseteq E$. Let $u \in A(G)$ be s.t. supp $u \cap E = \emptyset$. Hence there is V open nhd of supp u with $V \cap E = \emptyset$. (compactness)

Thus τ vanishes on V and so $\tau(u) = 0$. We have shown that $\tau \in \mathcal{J}(E)^{\perp}$. \Box

Let

$$VN(G) = \{\lambda_s : s \in G\}'' \subseteq B(L^2(G))$$

For $u(s) = \langle \lambda_s f, g \rangle \in A(G)$ cal $S = \lambda_s$ and define $\tau_S(u) = \langle Sf, g \rangle$ Note that this is independent of f, g and depends only on u. Further $|\tau_S(u)| \leq ||S|| ||f||_2 ||g||_2$ for each such repr. of u so $|\tau_S(u)| \leq ||S|| ||u||_A$. Thus $\tau_S \in (A(g)^*$ and $||\tau_S||_{A^*} \leq ||S||$. Since the map $S \to \tau_S$ is WOT-w^{*}continuous it extends to a contraction $S \to \tau_S : VN(G) \to A(G)^*$. In fact this is an onto isometry and a w^{*}-homeo (?).

Lemma 9 If $S \in VN(G)$, then supp $S \subseteq ((\text{supp } \tau_S)^{-1})^*$ i.e. if $(t, s) \in \text{supp } S$ then $st^{-1} \in \text{supp } \tau_S$.

Proof Let $(t, s) \in \operatorname{supp} S$. If $st^{-1} \notin \operatorname{supp} \tau_S$ there is W open with $st^{-1} \in W$ but $W \cap \operatorname{supp} \tau_S = \emptyset$. Find U, V open in G with $t \in U, s \in V$ and $\overline{VU^{-1}} \subseteq W$.

Since $(t, s) \in \text{supp } S$, have $P(V)SP(U) \neq 0$, so there are $f, g \in L^2(G)$ with supp $f \subseteq U$, supp $g \subseteq V$ and $\langle Sf, g \rangle \neq 0$.

But if $u(s) = \langle \lambda_s f, g \rangle$ then $u \in A(G)$ and $\langle Sf, g \rangle = \tau_S(u)$.

If $u(s) \neq 0$ then $\int_G f(s^{-1}y)\overline{g}(y)dy \neq 0$ so there must exist $y \in V$ so that $s^{-1}y \in U$, i.e. $y^{-1}s \in U^{-1}$ i.e. $s \in yU^{-1}$ or $s \in VU^{-1}$. It follows that $\operatorname{supp} u \subseteq \overline{VU^{-1}} \subseteq W$; but $W \cap \operatorname{supp} \tau_S = \emptyset$ and so $\tau_S(u) = 0$, a contradiction. \Box

Proof of Theorem Let $E \subseteq G$ be closed. Assume $E^* \subseteq G \times G$ is operator synthetic. To show that E is an S-set, fix $u \in \mathcal{K}(E)$ and show that $u \in \overline{\mathcal{J}(E)}$. By Remark 8, this is equivalent to showing that if $\tau \in A(G)^*$ has $\operatorname{supp} \tau \subseteq E$ then $\tau(u) = 0$. Now $\tau = \tau_S$ where $S \in VN(G)$ satisfies $\operatorname{supp} S \subseteq ((\operatorname{supp} \tau_S)^{-1})^* \subseteq (E^{-1})^*$ (Lemma 9).

Recall that we have embedded A(G) isometrically into V(G) by $u \to Nu$ where $(Nu)(s,t) = u(st^{-1})$ (proof missing!). If

$$Nu(s,t) = \sum_{i} \phi_i(t)\psi_i(s)$$

is a representation of Nu, then we have defined a map

$$T_{Nu}: B(H) \to B(H): A \to \sum_{i} M_{\phi_i} A M_{\psi_i}$$

where the sum converges an the weak* topology (and boundedly? mallon). We shorten $T_{Nu}(A)$ to $\Phi(A)$ (recall u is fixed).

Claim For all $A \in VN(G)$,

$$\tau_{\Phi(A)}(v) = \tau_A(uv), \qquad (v \in A(G)).$$

Proof Assume first $A = \lambda_s$ ($s \in G$ fixed). Then for all $v \in A(G)$ of the form $v(s) = \langle \lambda_s f, g \rangle$ we have

$$\begin{aligned} \tau_{\Phi(A)}(v) &:= \langle \Phi(\lambda_s)f,g \rangle = \left\langle \sum_i M_{\phi_i}\lambda_s M_{\psi_i}f,g \right\rangle \\ &= \left\langle \sum_i M_{\phi_i}\lambda_s(\psi_i f),g \right\rangle = \int \sum_i \phi_i(t)(\lambda_s(\psi f))(t)\bar{g}(t)dt \\ &= \int \sum_i \phi_i(t)\psi(s^{-1}t)f(s^{-1}t)\bar{g}(t)dt \\ &= \int (Nu)(t,s^{-1}t)f(s^{-1}t)\bar{g}(t)dt = \int u(tt^{-1}s)f(s^{-1}t)\bar{g}(t)dt \\ &= \int u(s)(\lambda_s f(t)\bar{g}(t)dt = \langle u(s)\lambda_s f,g \rangle = u(s) \langle \lambda_s f,g \rangle \\ &= u(s)v(s) = (uv)(s). \end{aligned}$$

But by definition, when $w(s) = \langle \lambda_s \xi, \eta \rangle$ is in A(G) then for $A = \lambda_s$ we have $\tau_A(w) = \langle A\xi, \eta \rangle = \langle \lambda_s \xi, \eta \rangle = w(s)$; thus $(uv)(s) = \tau_A(uv)$ and the Claim is proved for the generators $A = \lambda_s$ of VN(G).

Thus, for each fixed $v \in A(G)$, the maps $A \to \tau_{\Phi(A)}(v)$ and $A \to \tau_A(uv)$ agree on the generators. Since they are both weak*-continuous (or WOT continuous on the unit ball) and VN(G) is the w*-closed linear span of the set $\{\lambda_s : s \in G\}$ (it is already a semigroup), these two maps must agree on the whole of VN(G).

Now let $\omega(A) = tr(\Theta_{fg^*}A)$ where Θ_{fg^*} is the rank one operator $\Theta_{fg^*}\xi = \langle \xi, g \rangle f$. Then

$$\omega(\Phi(A)) = tr(\Theta_{fg^*} \sum_i M_{\phi_i} A M_{\psi_i}) = tr(\sum_i M_{\psi_i} \Theta_{fg^*} M_{\phi_i} A M_{\psi_i})$$
$$= tr(\Psi(\Theta_{fg^*}) A) = \omega_1(A)$$

where

$$\Psi(B) = \sum_{i} M_{\psi_i} B M_{\phi_i}$$

so, when ω comes from the function $f(t)\bar{g}(s)$, ω_1 comes from the function

$$\sum_{i} \psi_i(t) f(t) \bar{g}(s) \phi_i(s) = \sum_{i} \psi_i(t) f(t) \bar{g}(s) \phi_i(s) f(t) \bar{g}(s) = (Nu)(t,s) f(t) \bar{g}(s)$$

i.e. $\omega_1 = m_{N\check{u}}\omega$ (recall $\check{u}(s) = u(s^{-1})$). But u vanishes on E, so \check{u} vanishes on E^{-1} and hence $N\check{u}$ vanishes on $(E^{-1})^*$, which is a set of operator synthesis, by assumption. On the other hand supp $S \subseteq (E^{-1})^*$ and therefore

$$\omega_1(S) = 0$$

(you need a Lemma like Lemma 9 for that). By the previous calculation it follows that $\omega(\Phi(S)) = 0$ or $\langle \Phi(S)f,g \rangle = 0$. Since f,g are arbitrary, we have shown that $\Phi(S) = 0$.

Now form the claim we have

$$\tau_S(uv) = \tau_{\Phi(S)}(v) = 0 \quad \text{for all } v \in A(G)$$

and so in particular $\tau_S(u) = \tau_S(u\mathbf{1}) = 0$, ce qu'il fallait démontrer.

References

- David P. Blecher and Roger R. Smith. The dual of the Haagerup tensor product. J. London Math. Soc. (2), 45(1):126–144, 1992.
- [2] Edwin Hewitt and Kenneth A. Ross. Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups. Die Grundlehren der mathematischen Wissenschaften, Band 152. Springer-Verlag, New York, 1970.
- [3] Aristides Katavolos and Vern I. Paulsen. On the ranges of bimodule projections. Canad. Math. Bull., 48(1):97–111, 2005.
- [4] R. R. Smith. Completely bounded module maps and the Haagerup tensor product. J. Funct. Anal., 102(1):156–175, 1991.
- [5] N. Spronk and L. Turowska. Spectral synthesis and operator synthesis for compact groups. Journal of the London Mathematical Society, 66(2):361, 2002.