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We wish to prove the following Theorem:

Theorem 1 (Spronk — Turowska [5]) A closed set E C G is a n S-set (i.e. satisfies spectral
synthesis) if and only if the set

E*={(s,t) eGxG:st'€E}
s operator synthetic.
(1) The extended Varopoulos algebra.  The Varopoulos algebra V(G) = C(G) ®@" C(G) was

identified with the space of all continuous functions u : G x G — C which can be represented in the
form

u(s, t) = Z ex(s)fr(t) with ey, fr € C(G) s.t. Z lex|? and Z | fi|? converge uniformly.
k k

k

V(@) is equipped with the norm

> lexl? > O IA?
P p

We now consider the algebra ' V°°(G) consisting of all bounded Borel functions u : G x G — C
which can be represented in the form
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. all such repr’s u = Z er X fr
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< OQ.

u(s,t) = Zek(s)fk(t) with ey, fr € L2(G) s.t.

k
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:5:: | fel?
k

We identify ? two such functions if they coincide marginally almost everywhere.

o0 ‘ o0

N
Note that the condition ||~ |ex|?||,, < oo just means that thereisa C, < oo sothat Y |e,(¢)]* < C.

n=1
for all N and all ¢t € G. If u € V=(G) then for any S € B(L*(G)) the series

converges weak® to an element T,(S) € B(L*(G)). The map T, : B(L*(G)) — B(L?*(G)) is in fact
w*-w* continuous and it can be shown that |7, || = ||u||,, where ||u||, is given by

:E:: lex|” :5:: | fel?
k k

n fact V°°(G) coincides with the w*-Haagerup tensor product L™ @ " L>; see [1].
2L£°(@) consists of bounded measurable functions, as opposed to equivalence classes
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It can be shown that ||T,|| = ||u||, [4] and that T, = 0 if and only if u vanishes marginally almost
everywhere if and only if u vanishes almost everywhere (see for example [3, Theorem 7]). Thus
|ull, is in fact a norm. This also shows that the Varopoulos algebra V(G) embeds isometrically

into V=°(G).

Proposition 2 Any u € V=°(G) defines a multiplier m, on T(G) = L*(G)®L*(G):
if (my(w))(s,t) = u(s,t)w(s,t), the map m, is a bounded operator m, : T(G) — T(G) such that
Il < flull,- ®

Proof Choose a representation u(s,t) = 3", ex(s) fi(t) with [Jull, = |3, el 12, 1 £xl2)12
(such a representation exists). Consider a rank one w(s,t) = ¢(t)y(s) in T(G). Then

(mu(@))(s,8) = Y en(s) fl)o()(s) = > (frd)(t)(ext)(s)

k

> (f20) @ (ext))

k

< Z 17x0llz llextdll
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so [[mu(w)ll; = ‘

1/2
< <Z||fk¢||32||ek¢||§>
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But

Sl = Z/m (1)dt = /Zm (1) [t
_ / (meﬁ) o(0)Pdt < |3 15
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and similarly
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By linearity and continuity, the same inequality holds for any w € T(G). O

Corollary 3 The map J :V>®(G) = T(G) : u— my(1) (i.e. (Ju)(s,t) =u(s,t) considered as
an element of T(G)) is contractive and injective.

Remarks 4 Here 1(s,t) =1 for all s,t € G. This is in T(G) only because G is compact!
Note also that by our conventions if u = e® f € V2(Q), i.e. u(s,t) =e(s)f(t), then (Ju)(s,t) =
e(s)f(t) should be written as Ju = f ®e in T(G)!

Proof Obviously,
[ Tully = {lmu ()]l < [, 11y = llull, -

For the injectivity, if Ju = 0 then w is zero as an element of T'(G) so u(s,t) = 0 marginally a.e. and
so u = 0 as an element of V*°(G). O

3in fact equality holds - see [5]



(2) Isometric embedding of A(G) into T(G). If u € A(G), we define Nu: G x G — C by

(Nu)(s,t) = u(st™).

We will use the fact that the map N : u — Nu given by (Nu)(s,t) = u(st™") maps A(G) contrac-
tively * into V/(G). Note that Nu = JNu. Therefore N maps A(G) contractively into T'(G).
If w e T(G) we define Qw : G — C by

(Qw)(s) :/Gw(sr, r)dr

Proposition 5 The map Q is a well-defined contraction Q : T(G) — A(G) and
(QoNu=u  forallu € AG).

Thus N is in fact an isometric embedding of A(G) into T(G).

Proof First consider w € L*(G) ® L*(G) of the form w(s,t) = > fi(t)gr(s). Then
k=1

By the definition of A(G), each uy is in A(G), hence so is Qw. Furthermore

n
Suf <3 laella < STl el
k=1 A k k

1Qull4 =

and this holds for every representation w(s,t) = > fr(t)gx(s). Thus
k=1

[Qull4 < inf {Z 1filly Ngwlly : w =D ®9k} = [lwlly
k k=1

Hence Q maps the algebraic tensor product L?(G) ® L?(G) contractively into A(G), and so the first
claim follows by continuity.
The second claim is easy: If u € A(G) then

(Q(Nu))(s) = /(Nu)(sr, r)dr = /u(srr_l)dr = u(s)

because the Haar measure of G is 1 (compactness!). O

4Proof next time!



(3) The right action of G and of L'(G) on T(G). For r € G we define a map

w—orew:T(G)—T(G)
by (rew)(s,t) =w(sr,tr).
Using the fact that [ |f(¢tr)]*dt = [ |f(t)|?dt (right-invariance of Haar measure on a compact group)
for all f € L*(G), it is readﬂy verified that ||r e w||; = |lw||; and so this map is an isometric action

of G on T(G). Moreover, it is strongly continuous. Indeed, if w = >}, fx ® gx then, denoting
provisionally by f" the right translate of f, we see that

rew—w= (g~ fr®u) =Y [(i —f)®g+fx® (g~ o]
k

k

so frew—wly <Y (7 = fills lgilla + Lfells gk = gell,)
k

and therefore ||[rew —w|; = 0asr —e.
In fact the action w — r e w extends to a contractive action of (the convolution algebra) L'(G),
defined as follows: °

hew = /Gh('r’)(row)dr ie. (hew)(s,t) = /Gh(r)(row)(s,t)dr: /h(r)w(sr,tr)dr, h e L'(G).

G

Thus

HhoWM::WLh&Xrowﬂr

(4) The image of A(G) in T(G). If

< [ oI ewllydr = [ hidr ol = el fol-
1 G G

%:LWWWiﬁ(%Wﬁ:LMmMW

then Pw € T(G) and in fact clearly Pw is invariant, i.e. r e (Pw) = Pw for all r € G.
Note also that,

I1Pell < [ i oslydr = [ foll dr = il
G G

We put
Tinw(G) ={w € T(G) : w(sr,tr) = w(s,t) for all s,t,r € G}

and it is clear that P is a contractive projection onto T},,(G).

Proposition 6 The range of N consists of all invariant elements of T(G):
N(A(G)) = Tinu(G).

Proof It is clear that Nu is invariant; indeed for all u € A(G) we have

(Nu)(sr, tr) = u(sr(tr)™!) = u(st™!) = (Nu)(s,t)

®The integral converges in the norm of T(G) for every h € L'(G).



for all s,t € G. For the converse, let w € Tj,,(G) and € > 0 be given. First choose w(s,t) =
Z fr(t)gr(s) such that ||w —wq]];, < e. Then approximate each fi,gx by continuous functions:

Choose ek, hy € C(G) such that

€ €
— < — d hy — < —
||€k gk”z an || k fk||2 2n||€

, kE=1,...n.
2n || fill il

Then setting u(s,t) = i ex(s)hi(t) so that u € C(G) ® C(G) C V(G) we have
k=1

Ju—wi =Y (hp@ex— fr®ge) = [(he = fi) @ ex+ fie @ (ex — go)]

k k
so | Ju—willy <D (e = fully lerlly + 11 fullz lew — gelly) < e
k

and so ||Ju — w||; < 2e. It follows that ||PJu — Pwl|, < 2e.
Now put

3

/ Zek sr)hg(r)dr = Z/ x)dxr = (Ashi, €x)
G

k=1 k=1

hence v € A(G) and

n

(Nv)(s,t) = v(st™) = /G > " ew(st @) hy(z)dz

k=1

= /GZek sr)hg(tr)dr = (PJu)(s,t)

k=1

hence PJu = Nv and so HNU —w” = ||PJu — Pwl|; < 2¢ since Pw = w because w is invariant.
1

Thus w € N(A(G)) = N(A(G)) since A(G) is complete and N is isometric. O

(5) Proof of the Theorem: First part.

Proposition 7 Let E C G be a closed set. If E is a set of synthesis, then E* = {(s,t) : st™! € E}
15 a set of operator synthesis.

Proof Let w € ®(E*), i.e. w € T(G) vanishes marginally almost everywhere in E*. It is to be
shown that w € ®g(E*), i.e. that w can be approximated in [-||; by elements of 7'(G) that vanish
m.a.e. in a neighbourhood of E*.

Step 1 Assume additionally that w € Tj,,(G). Then by Proposition 6 there exists u € A(G) such
that Nu = w. Thus w is continuous and hence vanishes everywhere on E*. It follows that u vanishes
in F (i.e. u € K(E)). Indeed, if z € E then (z,e) € E* and so u(z) = (Nu)(z, e) = 0.
Since E is an S-set, u can be approxnnated in |-/, by a sequence (un) vanlshlng near E. If
= Nu, then supp(wn) C (supp u,)*, because if w,(s,t) # 0 then u,(st™') # 0. The complement
U of (suppu,)* is an open neighbourhood of E* and w, vanishes in U,. In the notation of the
previous talk, w, € U(E*). But

lon = wlly = lltn —ally < flun —ull, =0



showing that w € ®y(E*) as required.

Step 2 Now let w € ®(E*) be arbitrary.

For each irreducible representation (mw, H;) of G let {eJ : i = 1,...,d.} be an orthonormal
basis of H, (it is known that dim H, = d, is always finite when G is compact) and consider the
coefficients of the matrix 7(s) € B(H,) given by

UZ;(S) = <7T(S)ej7€i>H7r7 Z’] = 17 s 7d7r’ s€G.

These functions of course depend only on the unitary equivalence class [r] of 7.
[If G were abelian as well as compact then d, = 1 for all m and u™ would be the character corre-
sponding to w. By Plancherel, these characters would form an orthonormal basis of L*(G).]

If G denotes the set of unitary equivalence classes of irreducible representations of GG, the set

S={Vdul:i,j=1,...,ds, [7] € G}

forms an orthonormal basis of L?(G). This is the Peter-Weyl Theorem [2, Theorem 27.40].
For each [7] € G we define
/ sr,tr)m(r)dr

and O™ (s, t) = 7(s)w"(s,t), (s,t) € G x G.

Since each 7(r) is a unitary operator on H,, these are elements of B(H,), i.e. each w™ is a d, X d-
matrix-valued function on G x G. Since w € ®(E*), it follows that the matrix w™(s,t) vanishes for
marginally almost all (s,t) ¢ E* and hence so does @™ (s,t) (multiplying by m(s) cannot increase
the support).

Note that @™ is invariant:

W (sx, txr) = m(sx)w” (sx, tx) = w(sx) /Gw(sxr, ter)m(r)dr

=7(s) /Gw(sm’, ter)m(x)m(r)dr = m(s) /Gw(sy, ty)m(y)dy
=m(s)w"(s,t) = 0" (s, 1)

where we have used the fact that 7 is a group morphism and that 7(r)w(s,t) = w(s,t)r(r) since
w(s,t) € C. It follows that the matrix coefficients

wij(s,t) = (@W(s, t)ej, i)

are also invariant: @7, € Tjy,(G); since they also vanish for marginally almost all (s, t) ¢ E*, by the
first part f; € @o(E™).

However since @™ (s, t) = 7(s)w™(s,t), we have w™(s,t) = (s~ 1)0™(s,t) and therefore the matrix
coefficients satisfy

dr

wfj(S,t) = (W (s, t)ej, e;) = Z €k,€z <Wﬁ<57t)ejaek>

k=1

=D () (s, 1)

where (s) = u(s™!). If we denote by u ® 1 the function (u ® 1)(s,t) = u(s)1(t), the last formula
may be written

Wl = (a7, @ 1)af

k



(pointwise multiplication). Since &f; € ®¢(E*), it follows from this that w]; € ®(E£*).
Thus for each 7 and 4, j the function

(5.1) — /G (P (sr, tr)dr = / w(sr tr) (n(r)e;, ) dr = <( /G w(sr, tr)ﬂ(r)dfr) ej,ei> — W (5.1)

G

which we denote by u; ew, belongs to ®o(E*). Therefore if u is a linear combination of the functions
uf, i.e. if u belongs to [S], then u e w € ®o(L£*). Since ®o(L£*) is closed, to prove that w € ®y(E*)
it therefore remains to prove the

Claim Given € > 0 there ezists u = u,. € [S] such that ||uew —w||; < 2e.

Indeed, since r — rew is continuous, there is a neighbourhood U of e € G such that ||r e w — w]|, < €

for all € U. Then letting y := (here m(U) is the Haar measure of U) we have, since

fG x(r)dr =1,

X
m(U)

/G V() (r 0w — w)dr

||X°w—w||1=‘ < [ X0Vl ow—uldr <
1 G

But observe that since S is an orthonormal basis of L?(G), the linear span [S] is dense in L*(G),
hence also in L'(G) (recall that ||-||, < ||-||, since Haar measure of a compact group is finite). Thus

there is u € [S] such that ||[x —ul|;. < —°_ and therefore

lolly

Ixow—uewl <[x—ulplwll, <e

and the claim follows.
This completes the proof of the first part of Theorem 1.
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Recall for 7 € A(G)*:

supp T = (U{V C G open :Tly = O})C

where 7|y = 0 means: u € A(G),suppu CV = 7(u) =0.
Also recall for £ C G closed:

J(E)={ue A:suppunE =0}
i.e. u vanishes near L.
Remark 8 J(E)t = {r € A(G)* : suppt C E}.

Proof Take T € J(E)*.

Let V be open, VN E = (). Then for all u € A(G) with suppu C V have u € J(F) so 7(u) = 0.
Thus V Nsupp7 = 0.

We have shown that supp ™ C E.

Cvsly spose supp7 C E. Let u € A(G) be s.t. suppuN E = (. Hence there is V' open nhd of
suppu with V' N E = (). (compactness)

Thus 7 vanishes on V and so 7(u) = 0. We have shown that 7 € J(E)=. O

Let
VN(G) ={)\:5€ G} C B(L*(Q))

For u(s) = (\sf,g) € A(G) cal S = A; and define 75(u) = (Sf, g) Note that this is independent
of f,g and depends only on w. Further |7g(u)| < ||S||||f]l5]lgll, for each such repr. of u so
ITs(uw)| < ||S|||u]l,- Thus 75 € (A(g)* and ||7s|la= < ||S]|. Since the map S — 7¢ is WOT-w*-
continuous it extends to a contraction S — 75 : VN(G) — A(G)*. In fact this is an onto isometry
and a w*-homeo (7).

Lemma 9 If S € VN(G), then supp S C ((supp7s)~1)* i.e. if (t,s) € supp S then st™! € supp 7s.

Proof Let (t,s) € supp S. If st™! ¢ supp 7 there is W open with st~! € W but W Nsupp 75 = 0.
Find U,V open in G witht € U, s € V and VU1 C W.

Since (¢, s) € supp S, have P(V)SP(U) # 0, so there are f, g € L*(G) with supp f C U, suppg C
V and (Sf, g) # 0.

But if u(s) = (A\sf, g) then u € A(G) and (Sf, g) = 75(u).

If u(s) # 0 then [, f(s™'y)g(y)dy # 0 so there must exist y € V so that s~'y € U, ie.
ylseUtie se€yUtorse VUL It follows that suppu C VU1 C W; but W Nsupprs = 0
and so 7¢(u) = 0, a contradiction. O

Proof of Theorem Let E C G be closed. Assume E* C G x GG is operator synthetic. To show
that F is an S-set, fix u € K(F) and show that v € J(E). By Remark 8, this is equivalent to
showing that if 7 € A(G)* has supp7 C E then 7(u) = 0. Now 7 = 75 where S € VN(G) satisfies
supp S C ((supp7s) H)* C (E~1)* (Lemma 9).

Recall that we have embedded A(G) isometrically into V(G) by v — Nu where (Nu)(s,t) =

u(st™') (proof missing!). If

Nu(s,t) = Z ¢i(t)i(s)



is a representation of Nu, then we have defined a map

Tyu:B(H) = B(H): A= M, AM,,

where the sum converges an the weak™ topology (and boundedly? mallon). We shorten T, (A) to
O (A) (recall u is fixed).

Claim For all A € VN(G),
To(a) (V) = Ta(uww), (v e A(G)).
Proof Assume first A = As (s € G fixed). Then for all v € A(G) of the form v(s) = (Asf,g) we

have

T‘l’(A)(U) = <(I)()\s)f7 g> = <ZM¢¢)‘SM¢¢fvg>

- <Z M¢iAs<¢if>,g> — / > OO gt
- / > oA a0

= /(Nu)(t, sTH) f(s7i)g(t)dt = /u(tt—ls)f(s—lt)g(t)dt

— /u(s)()\sf(t)g(t)dt = (u(s)Asf, g) = u(s) (A f, 9)
=u(s)v(s) = (uv)(s).

But by definition, when w(s) = (A, n) is in A(G) then for A = \; we have 74(w) = (A&, n) =
(As&,m) = w(s); thus (uv)(s) = 74(uv) and the Claim is proved for the generators A = A\; of VN(G).

Thus, for each fixed v € A(G), the maps A — 7g(4)(v) and A — 74(uv) agree on the generators.
Since they are both weak*-continuous (or WOT continuous on the unit ball) and VN(G) is the

w*-closed linear span of the set {\; : s € G} (it is already a semigroup), these two maps must agree
on the whole of VN(G).

Now let w(A) = tr(©4+A) where Oy is the rank one operator Of,& = (€, g) f. Then
w(P(A)) = tr(@fg* Z Mg, AMy,) = t?“(z My, O sg- My, AMy,)
= tr(V(O,)A) = wi(A)

where

W(B) - Y M B,
so, when w comes from the function f(¢)g(s), wy comes from the function

Z bi(t)f()g(s)ei(s) = Z i) ()g(s)9i(s) f(1)g(s) = (Nu)(t, s) f(£)g(s)

ie. w; = mygw (recall a(s) = u(s™')). But u vanishes on E, so % vanishes on E~! and hence
N1 vanishes on (E~1)*, which is a set of operator synthesis, by assumption. On the other hand
supp S C (E~')* and therefore

(,4)1(5) =0



(you need a Lemma like Lemma 9 for that). By the previous calculation it follows that w(®(S)) =0
or (®(S)f,g) = 0. Since f, g are arbitrary, we have shown that ®(S) = 0.
Now form the claim we have

Ts(uv) = To(s)(v) =0 for all v e A(G)

and so in particular 7¢(u) = 7¢(ul) = 0, ce qu’il fallait démontrer.
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