## Seminar 28 Feb 2011

AK
(1) Reminder: Synthesis in abelian Banach algebras. $\operatorname{Let}^{1}\left(\mathcal{A},\|\cdot\|_{A}\right)$ be a unital regular Banach algebra with spectrum (=set of nonzero characters) $K$. Thus $\mathcal{A}$ can (and will) be identified with a subalgebra of $C(K)$ and $\|f\|_{\infty} \leq\|f\|_{A}$ for all $f \in \mathcal{A}$. Regularity means that if $F \subseteq K$ is closed and $x \notin F$ there is $f \in \mathcal{A}$ with $f(x)=1$ and $\left.f\right|_{K}=0$. Thus for instance the disk algebra is not regular (if $f$ vanishes on a set of positive measure in the circle it must vanish identically).

If $\mathcal{J} \subseteq \mathcal{A}$ is a closed ideal, set

$$
Z(\mathcal{J})=\{t \in K: f \in \mathcal{J} \Rightarrow f(t)=0\}
$$

a closed subset of $K$. If $E \subseteq K$ is closed, set

$$
\mathcal{K}(E)=\{f \in \mathcal{A}: t \in E \Rightarrow f(t)=0\} .
$$

a closed ideal of $\mathcal{A}$. Note that

$$
Z(\mathcal{K}(E))=E .
$$

Indeed, obviously if $t \in E$ then every $f \in \mathcal{K}(E)$ vanishes at $t$, so $E \subseteq Z(\mathcal{K}(E))$; and if $t \notin E$ regularity gives $f \in \mathcal{A}$ s.t. $f(t) \neq 0$ but $\left.f\right|_{E}=0$, i.e. $f \in \mathcal{K}(E)$; hence $t \notin Z(\mathcal{K}(E))$ and equality holds.

Definition $1 A$ closed set $E \subseteq K$ is called synthetic if for any closed ideal $\mathcal{J} \subseteq \mathcal{A}$,

$$
Z(\mathcal{J})=E \quad \Rightarrow \quad \mathcal{J}=\mathcal{K}(E)
$$

Reformulation: Let

$$
\mathcal{J}(E)=\{f \in \mathcal{A}: \operatorname{supp} f \cap E=\emptyset\}
$$

be the (possibly non-closed) ideal of all functions that vanish near $E$ ( $f$ vanishes on the open neighbourhood $(\operatorname{supp} f)^{c}$ of $\left.E\right)$. Then

$$
E \text { is synthetic } \quad \Longleftrightarrow \quad \overline{\mathcal{J}}(E)^{\|\cdot\|_{A}}=\mathcal{K}(E)
$$

2nd Reformulation: Say a continuous linear functional $\phi \in \mathcal{A}^{*}$ vanishes on an open set $U \subseteq K$ if $f \in \mathcal{A}$ and $\operatorname{supp} f \subseteq U$ implies $\phi(f)=0$. Then the support of $\phi$ is the complement of the largest open set on which it vanishes. Equivalently, say $\phi$ is supported in a closed set $E \subseteq K$ if $f \in \mathcal{A}$ and $\operatorname{supp} f \cap E=\emptyset$ implies $\phi(f)=0$. Note that a Dirac functional $\delta_{t}$ is supported in $E$ iff $t \in E$. In this terminology,

$$
E \text { is synthetic } \Longleftrightarrow \quad\left(\operatorname{supp} \phi \subseteq E \Rightarrow \phi \in{\overline{\left\{\delta_{t}: t \in E\right\}}}^{w *}\right)
$$

[^0](2) Reminder: The support of an operator. Let $H=\ell^{2}(I), H^{\prime}=\ell^{2}(J)$ where $I, J$ are index sets. Every $T \in \mathcal{B}\left(H, H^{\prime}\right)$ gives a matrix $\left[a_{j i}\right] \in \ell^{\infty}(J \times I)$ so that $(T x)_{j}=\sum_{i} a_{j i} x_{i}$, or $\left\langle T e_{i}, e_{j}\right\rangle=a_{j i}$. The support of the operator $T$ is the set $\left\{(i, j) \in I \times J: a_{j i} \neq 0\right\}$. (note the flip $(j, i) \rightsquigarrow(i, j))$

Now let $H=L^{2}(X, m), H^{\prime}=L^{2}(Y, n)$ where (for now) $X, Y$ are compact metric spaces and $m, n$ regular Borel measures.

Definition 2 Say an operator $T \in \mathcal{B}\left(H, H^{\prime}\right)$ vanishes on an open rectangle $U \times V \subseteq X \times Y$ if $P(V) T P(U)=0$, where $P(U)=M_{\chi_{U}}$. Equivalently, $T$ vanishes on $U \times V$ if $\langle T f, g\rangle=0$ for all $f \in L^{2}(X, m)$ s.t. $f(s)=0$ a.e on $U^{c}$ and all $g \in L^{2}(Y, n)$ s.t. $g(t)=0$ a.e on $V^{c}$.

Say $T$ is supported in a closed set $K \subseteq X \times Y$ if $T$ vanishes on any open rectangle $U \times V$ disjoint from $K$ :

$$
\operatorname{supp} T \subseteq K \quad \Longleftrightarrow \quad[(U \times V) \cap K=\emptyset \Rightarrow P(V) T P(U)=0]
$$

For example, if $T$ is an integral operator with kernel $h \in L^{2}(Y \times X, n \otimes m)$,

$$
\langle T f, g\rangle=\int_{Y}\left(\int_{X} h(y, x) f(x) d m(x)\right) \overline{g(y)} d n(y) \quad f \in L^{2}(X, m), g \in L^{2}(Y, n)
$$

then $P(V) T P(U)=0$ iff $\chi_{V}(y) h(y, x) \chi_{U}(x)=0$ a.e., that is, iff $h(y, x)=0$ for a.a. $(x, y) \in U \times V$ (note the flip $(y, x) \rightsquigarrow(x, y)$ ). ${ }^{2}$

More generally, if $\mu$ is a (regular, Borel, complex) measure on $Y \times X$ such that the operator $T_{\mu}$ defined by the sesquilinear form

$$
\left\langle T_{\mu} f, g\right\rangle=\int_{Y \times X} f(x) \overline{g(y)} d \mu(y, x) \quad f \in L^{2}(X, m), g \in L^{2}(Y, n)
$$

is bounded ${ }^{3}$, then $P(V) T_{\mu} P(U)=0$ iff $|\mu|(V \times U)=0$.
(3) Reminder: The support of a convolution operator. Now specialise to the case where $X=Y=G$ is a compact (metrisable) abelian group (for example, $G=\mathbb{T}$ ) and $m=n$ is Haar measure.

If $\phi \in L^{1}(G)$ the convolution operator is given by

$$
\left\langle C_{\phi} f, g\right\rangle=\int_{G}\left(\int_{G} \phi(y-x) f(x) d x\right) \overline{g(y)} d y=\int_{G}\left(\int_{G} f(y-x) \phi(x) d x\right) \overline{g(y)} d y \quad f, g \in L^{2}(G) .
$$

Suppose that $\phi$ is continuous and let $E=\operatorname{supp} \phi=\overline{\{t \in G: \phi(t) \neq 0\}}$; so $E$ is the complement of the largest open set on which $\phi$ vanishes. Let $U \times V \subseteq X \times Y$ be an open rectangle. If $P(V) C_{\phi} P(U)=0$ then $\chi_{V}(y) \phi(y-x) \chi_{U}(x)=0$, so if $E^{*}=\{(x, y): y-x \in E\}$ then $(U \times V) \cap E^{*}=\emptyset$ : for if $(x, y) \in U \times V$ then $\phi(y-x)=0$, so $y-x \notin E$, i.e. $(x, y) \notin E^{*}$. And conversely, if $U \times V$ is an open rectangle disjoint from $E^{*}$ then $\chi_{V}(y) \phi(y-x) \chi_{U}(x)=0$ for all $(x, y)$, so $P(V) C_{\phi} P(U)=0$.

Conclusion: If $E \subseteq G$ is the support of $\phi$, then the support of $C_{\phi}$ is

$$
E^{*}=\{(x, y): y-x \in E\} .
$$

More generally if $\mu \in M(G)$ (i.e. $\mu$ is a (complex) regular Borel measure on $G$ ) define

$$
\left\langle C_{\mu} f, g\right\rangle=\int_{G}\left(\int_{G} f(y-x) d \mu(x)\right) \overline{g(y)} d y \quad f, g \in L^{2}(G) .
$$

If $E=\operatorname{supp} \mu$, then the support of $C_{\mu}$ is $E^{*}$.

[^1](4) The case of $A(\mathbb{T})$. Specialise further to the case $G=\mathbb{T}$ and recall the definition
$$
A(\mathbb{T})=\left\{f \in C(\mathbb{T}): \sum_{n \in \mathbb{Z}}|\hat{f}(n)|<\infty\right\}, \quad\|f\|_{A}:=\|\hat{f}\|_{1}=\sum_{n \in \mathbb{Z}}|\hat{f}(n)|
$$

So $(A(\mathbb{T}), \cdot)$ is isometrically isomorphic, as a Banach algebra, with $\left(\ell^{1}(\mathbb{Z}), *\right)$.
Now observe that any $a \in \ell^{1}$ can be factorised as the pointwise product of two $\ell^{2}$ sequences. So if $f \in A(\mathbb{T})$, writing $\hat{f}=b \cdot c$ where $b, c \in \ell^{2}(\mathbb{Z})$, we have $f=g * h$ where $g=\mathcal{F}^{-1} b, h=\mathcal{F}^{-1} c$ are in $L^{2}(\mathbb{T})$ (recall that the Fourier transform $\mathcal{F}: L^{2}(\mathbb{T}) \rightarrow \ell^{2}(\mathbb{Z})$ is an onto isometry).

Explicitly,

$$
\begin{aligned}
f(s) & =\int_{G} g(s-t) h(t) d t=\int g^{b}(t-s) h(t) d t \quad\left(g^{b}(x)=g(-x)\right) \\
& =\int\left(\lambda_{s} g^{b}\right)(t) h(t) d t \quad\left(\lambda_{s} \phi(x)=\phi(x-s)\right) \\
& =\left\langle\lambda_{s} g^{b}, \bar{h}\right\rangle_{L^{2}(\mathbb{T})}
\end{aligned}
$$

Note here that the maps $g \rightarrow g^{b}$ and $\lambda_{s}$ are unitary.
Conclusion: $f \in A(\mathbb{T})$ if and only if there are $\phi_{1}, \phi_{2} \in L^{2}(\mathbb{T})$ s.t. $f(s)=\left\langle\lambda_{s} \phi_{1}, \phi_{2}\right\rangle_{L^{2}(\mathbb{T})}$ for all $s \in \mathbb{T}$.

But this latter property does not use the fact that $\mathbb{T}$ is abelian; so we may define:
Definition 3 (Eymard) If $G$ is any locally compact group,

$$
A(G)=\left\{f: G \rightarrow \mathbb{C}: \text { there are } \phi_{1}, \phi_{2} \in L^{2}(G) \text { s.t. } f(s)=\left\langle\lambda_{s} \phi_{1}, \phi_{2}\right\rangle_{L^{2}(G)} \text { for all } s \in G\right\}
$$

Remark 1 If $f \in A(\mathbb{T})$ then $\|f\|_{A}=\inf \left\{\|\phi\|_{2}\|\psi\|_{2}: \phi_{1}, \phi_{2} \in L^{2}(\mathbb{T}), f(s)=\left\langle\lambda_{s} \phi_{1}, \phi_{2}\right\rangle\right\}$.
Proof By the calculation above, $f(s)=\left\langle\lambda_{s} \phi_{1}, \phi_{2}\right\rangle$ for all $s$ iff $f=\phi * \psi$ where $\phi_{1}=\phi^{b}$ and $\phi_{2}=\bar{\psi}$. Now if $f=\phi * \psi$ then

$$
\begin{aligned}
\|f\|_{A} & =\|\hat{f}\|_{1}=\|\widehat{\phi * \psi}\|_{1}=\|\hat{\phi} \hat{\psi}\|_{1} \\
& \leq\|\hat{\phi}\|_{\ell^{2}}\|\hat{\psi}\|_{\ell^{2}}=\|\phi\|_{L^{2}}\|\psi\|_{L^{2}} .
\end{aligned}
$$

For the reverse inequality, write $\hat{f}=u|\hat{f}|$ where $|u|=1$ and put $b(n)=u(n)|\hat{f}(n)|^{1 / 2}$ and $c(n)=$ $|\hat{f}(n)|^{1 / 2}$. Then $b, c \in \ell^{2}(\mathbb{Z})$ so $g=\mathcal{F}^{-1} b$ and $h=\mathcal{F}^{-1} c$ are in $L^{2}(\mathbb{T})$. Moreover $\|g\|_{L^{2}}^{2}=\|b\|_{\ell^{2}}^{2}=$ $\sum|\hat{f}(n)|=\|\hat{f}\|_{1}$ and $\|h\|_{L^{2}}^{2}=\|\hat{f}\|_{1}$ tambien. It follows that

$$
\|f\|_{A}=\|\hat{f}\|_{1}=\|g\|_{L^{2}}\|h\|_{L^{2}} .
$$

(5) The paper of Spronk-Turowska [6]. Let $G$ be a compact metrisable group (possibly nonabelian). Define $A(G)$ as in Definition 3. Also define the Varopoulos algebra:

$$
V(G)=C(G) \otimes^{h} C(G)
$$

where $C(G)=\{f: G \rightarrow \mathbb{C}: f$ continuous $\}$. This is the (complete) projective tensor product, but equipped with the Haagerup norm. More precisely: $V(G)$ is defined to be the completion of the
algebraic tensor product $C(G) \otimes C(G)$ with respect to the norm

$$
\begin{aligned}
\|u\|_{h} & =\inf \left\{\left\|\sum_{k} e_{k} e_{k}^{*}\right\|^{1 / 2}\left\|\sum_{k} f_{k}^{*} f_{k}\right\|^{1 / 2}: \text { all repr's } u=\sum_{k} e_{k} \otimes f_{k}\right\} \\
& =\inf \left\{\left\|\left(e_{1}, e_{n}, \ldots, e_{n}\right)\right\|\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right) \|: \text { all repr's } u=\sum_{k=1}^{n} e_{k} \otimes f_{k}\right\} .
\end{aligned}
$$

Since $\|e \otimes f\|_{h} \leq\left\|e e^{*}\right\|^{1 / 2}\left\|f^{*} f\right\|^{1 / 2}=\|e\|\|f\|$, it is easy to see that $\|u\|_{h} \leq \sum_{k}\left\|e_{k}\right\|\left\|f_{k}\right\|$ for every representation $u=\sum_{k=1}^{n} e_{k} \otimes f_{k}$, and so

$$
\|u\|_{h} \leq\|u\|_{\gamma}:=\inf \left\{\sum_{k}\left\|e_{k}\right\|\left\|f_{k}\right\|: u=\sum_{k=1}^{n} e_{k} \otimes f_{k}\right\}
$$

Grothendieck's inequality states that there is a universal constant $K_{G}$ so that $\|u\|_{\gamma} \leq K_{G}\|u\|_{h}$, and so the two norms are in fact equivalent, hence they give the same completion.

It is a fact (see Blecher - Le Merdy [2, Proposition 1.5.6]) that each $u \in V(G)$ can be written as a $\|\cdot\|_{h}$-convergent series

$$
u=\sum_{k=1}^{\infty} e_{k} \otimes f_{k} \quad \text { where } \sum_{k}\left|e_{k}\right|^{2} \text { and } \sum_{k}\left|f_{k}\right|^{2} \text { converge }^{4} \text { uniformly. }
$$

Let $u=\sum_{k=1}^{\infty} e_{k} \otimes f_{k} \in V(G)$. Given any $S \in B\left(L^{2}(G)\right)$ the sum

$$
\sum_{k=1}^{\infty} M_{e_{k}} S M_{f_{k}}
$$

converges in the norm of $B\left(L^{2}(G)\right)$ to an element $T_{u}(S) \in B\left(L^{2}(G)\right)$. The map $T_{u}: B\left(L^{2}(G)\right) \rightarrow$ $B\left(L^{2}(G)\right)$ is in fact $\mathrm{w}^{*}-\mathrm{w}^{*}$ continuous and it can be shown that $\left\|T_{u}\right\|=\|u\|_{h}$. In particular, $u \rightarrow T_{u}$ is injective.

On the other hand, the uniform convergence of $\sum_{k}\left|e_{k}\right|^{2}$ and $\sum_{k}\left|f_{k}\right|^{2}$ shows, by Cauchy-Schwarz, that the series $\sum_{k} e_{k}(s) f_{k}(t)$ also converges uniformly in $(s, t) \in G \times G$ and thus defines a function $\tilde{u}(s, t)=\sum_{k} e_{k}(s) f_{k}(t)$ which is continuous on $G \times G$.

I claim that the (clearly linear) map $u \rightarrow \tilde{u}$ is also injective.
Indeed, if $S$ is the rank one operator $S \xi=\phi\langle\xi, \psi\rangle$, then for all $\eta \in L^{2}(G)$,

$$
\begin{aligned}
T_{u}(S) \xi & =\sum_{k=1}^{\infty} M_{e_{k}} \phi\left\langle M_{f_{k}} \xi, \psi\right\rangle=\sum_{k=1}^{\infty}\left(e_{k} \phi\right)\left\langle\left(f_{k} \xi\right), \psi\right\rangle \\
\text { so } \quad\left\langle T_{u}(S) \xi, \eta\right\rangle & =\sum_{k=1}^{\infty}\left\langle\left(e_{k} \phi\right)\left\langle\left(f_{k} \xi\right), \psi\right\rangle, \eta\right\rangle=\sum_{k=1}^{\infty}\left\langle\left(f_{k} \xi\right), \psi\right\rangle\left\langle\left(e_{k} \phi\right), \eta\right\rangle \\
& =\sum_{k=1}^{\infty} \int f_{k}(t) \xi(t) \bar{\psi}(t) d t \int e_{k}(s) \phi(s) \bar{\eta}(s) d s \\
& =\iint\left(\sum_{k=1}^{\infty} e_{k}(s) f_{k}(t)\right) \xi(t) \bar{\psi}(t) \phi(s) \bar{\eta}(s) d t d s
\end{aligned}
$$

It follows that if $\tilde{u}(s, t)=0$ then $T_{u}=0$ and so $u=0$, which proves that $u \rightarrow \tilde{u}$ is injective.
Thus we may delete the tilde and identify $V(G)$ with its image in $C(G \times G)$.

[^2]Thus we identify $u=\sum_{k=1}^{\infty} e_{k} \otimes f_{k}$ with $u(s, t)=\sum_{k} e_{k}(s) f_{k}(t)$.
Note that $V(G)$ is a subalgebra of $C(G \times G)$; this follows from the fact that $T_{u v}=T_{u} T_{v}$ (since $u \rightarrow T_{u}$ is injective): indeed if $u(s, t)=e(s) f(t)$ and $v=g(s) h(t)$ then $u v(s, t)=$ $(e g)(s)(f h)(t)$ so for all $S \in B\left(L^{2}(G)\right)$,

$$
T_{u} T_{v}(S)=T_{u}\left(M_{g} S M_{h}\right)=M_{e} M_{g} S M_{h} M_{f}=M_{e g} S M_{h f}=T_{u v}(S)
$$

since $C(G)$ is abelian; the same argument works for general $u, v \in V(G)$.
The invariant part of $V(G)$ is defined to be

$$
V_{i n v}(G)=\{u \in V(G): u(s r, t r)=u(s, t) \text { for all } s, t, r \in G\}
$$

This is a closed subalgebra of $V(G)$.
Theorem 2 The map

$$
N: A(G) \rightarrow V_{i n v}(G)
$$

given by

$$
(N u)(s, t)=u\left(s t^{-1}\right) \quad u \in A(G)
$$

is an isometric isomorphism.
(6) Spectral synthesis and Operator Synthesis. Let $T(G)=L^{2}(G) \hat{\otimes} L^{2}(G)$.

Thus $T(G)$ consists of all

$$
u=\sum_{i} f_{i} \otimes g_{i}, \quad f_{i}, g_{i} \in L^{2}(G) \quad \text { such that } \quad \sum_{i}\left\|f_{i}\right\|_{2}\left\|g_{i}\right\|_{2}<\infty
$$

and the norm $\|u\|_{\gamma}=\|u\|_{1}$ is the infimum of these sums over all such representations of $u$.

Each $u \in T(G)$ gives rise to a $\mathrm{w}^{*}$-continuous linear functional $\omega_{u}$ on $B\left(L^{2}(G)\right)$ defined by

$$
\omega_{u}(T)=\sum_{i}\left\langle T f_{i}, \bar{g}_{i}\right\rangle, \quad T \in B\left(L^{2}(G)\right)
$$

and in fact $\left\|\omega_{u}\right\|=\|\omega\|_{1}$. Each $\phi \in\left(L^{2}(G) \hat{\otimes} L^{2}(G)\right)^{*}$ defines an operator $T_{\phi} \in B\left(L^{2}(G)\right)$ through $\phi(f \otimes g)=\langle T f, \bar{g}\rangle$, and the map $\phi \rightarrow T_{\phi}$ is an isometric isomorphism of the space $\left(L^{2}(G) \hat{\otimes} L^{2}(G)\right)^{*}$ onto $B\left(L^{2}(G)\right)$.
The element $u \in T(G)$ also gives rise to a function

$$
\tilde{u}(s, t)=\sum_{i} f_{i}(s) g_{i}(t), \quad(s, t) \in G \times G
$$

which is well defined marginally almost everywhere (m.a.e.); this means that $\tilde{u}$ is defined up to a marginally null set, i.e. a set of the form $(N \times G) \cup(G \times N)$ where $N \subseteq G$ is a null set. We will again use the same symbol for $u$ and $\tilde{u}$.
For $u \in T(G)$ define

$$
\operatorname{supp} u=\{(s, t) \in G \times G: u(s, t) \neq 0\}
$$

(nb. no closure); this is defined up to a marginally null set.

Now given a closed set $F \subseteq G \times G$ we put

$$
\begin{aligned}
\Phi(F) & =\{u \in T(G): \operatorname{supp} u \cap F=\emptyset\} \\
& =\left\{u \in T(G): u \chi_{F}=0 \text { m.a.e. }\right\} \\
\Psi(F) & =\{u \in T(G): \overline{\operatorname{supp} u \cap F=\emptyset\}} \\
\Phi_{0}(F) & =\overline{\Psi(F)} \overline{\| \cdot}_{1} .
\end{aligned}
$$

The subspace $\Phi(F)$ is $\|\cdot\|_{1}$-closed and contains the subspace $\Psi(F)$, which consists of all $u$ which vanish m.a.e. near $F$ (in the open neighbourhood $(\overline{\operatorname{supp} u})^{c}$ of $F$.)

Definition 4 (Shulman - Turowska [5]) The set $F$ is said to be operator synthetic if

$$
\Phi_{0}(F)=\Phi(F) .
$$

Theorem 3 (Spronk - Turowska) A closed set $E \subseteq G$ is a n $S$-set (i.e. satisfies spectral synthesis) if and only if the set

$$
E^{*}=\left\{(s, t) \in G \times G: s t^{-1} \in E\right\}
$$

is operator synthetic.

This is due to Froelich [4] in the abelian case.

## References

[1] William Arveson. Operator algebras and invariant subspaces. Ann. of Math. (2), 100:433-532, 1974.
[2] David P. Blecher and Christian Le Merdy. Operator algebras and their modules-an operator space approach, volume 30 of London Mathematical Society Monographs. New Series. The Clarendon Press Oxford University Press, Oxford, 2004. Oxford Science Publications.
[3] Kenneth R. Davidson. Nest algebras, volume 191 of Pitman Research Notes in Mathematics Series. Longman Scientific \& Technical, Harlow, 1988. Triangular forms for operator algebras on Hilbert space.
[4] J. Froelich. Compact operators, invariant subspaces, and spectral synthesis. Journal of functional analysis, 81(1):1-37, 1988.
[5] Victor Shulman and Lyudmila Turowska. Operator synthesis. i. synthetic sets, bilattices and tensor algebras. JFA, 209:293-331, 2004.
[6] N. Spronk and L. Turowska. Spectral synthesis and operator synthesis for compact groups. Journal of the London Mathematical Society, 66(2):361, 2002.


[^0]:    ${ }^{1}$ sprtur, March 4, 2011

[^1]:    ${ }^{2}$ This is really a matter of convention: for example Davidson in 'Nest Algebras' [3], p. 343 uses $P(U) T P(V)=0$ in his definition of support.
    ${ }^{3}$ the condition used by Arveson [1] is: there exists $C<\infty$ s.t. for all Borel $E \subseteq X$ and $F \subseteq Y$ we have $|\mu|(Y \times E) \leq C m(E)$ and $|\mu|(F \times X) \leq C n(F)$

[^2]:    ${ }^{4}$ it is not claimed that $\sum_{k} e_{k}^{2}$ or $\sum_{k} f_{k}^{2}$ converge

