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(1) Reminder: Synthesis in abelian Banach algebras. Let1 (A, ‖·‖A) be a unital regular
Banach algebra with spectrum (=set of nonzero characters) K. Thus A can (and will) be identified
with a subalgebra of C(K) and ‖f‖∞ ≤ ‖f‖A for all f ∈ A. Regularity means that if F ⊆ K is
closed and x /∈ F there is f ∈ A with f(x) = 1 and f |K = 0. Thus for instance the disk algebra is
not regular (if f vanishes on a set of positive measure in the circle it must vanish identically).

If J ⊆ A is a closed ideal, set

Z(J ) = {t ∈ K : f ∈ J ⇒ f(t) = 0}

a closed subset of K. If E ⊆ K is closed, set

K(E) = {f ∈ A : t ∈ E ⇒ f(t) = 0}.

a closed ideal of A. Note that
Z(K(E)) = E.

Indeed, obviously if t ∈ E then every f ∈ K(E) vanishes at t, so E ⊆ Z(K(E)); and if t /∈ E
regularity gives f ∈ A s.t. f(t) 6= 0 but f |E = 0, i.e. f ∈ K(E); hence t /∈ Z(K(E)) and equality
holds.

Definition 1 A closed set E ⊆ K is called synthetic if for any closed ideal J ⊆ A,

Z(J ) = E ⇒ J = K(E).

Reformulation: Let
J (E) = {f ∈ A : supp f ∩ E = ∅}

be the (possibly non-closed) ideal of all functions that vanish near E (f vanishes on the open
neighbourhood (supp f)c of E). Then

E is synthetic ⇐⇒ J (E)
‖·‖A = K(E).

2nd Reformulation: Say a continuous linear functional φ ∈ A∗ vanishes on an open set U ⊆ K if
f ∈ A and supp f ⊆ U implies φ(f) = 0. Then the support of φ is the complement of the largest
open set on which it vanishes. Equivalently, say φ is supported in a closed set E ⊆ K if f ∈ A
and supp f ∩ E = ∅ implies φ(f) = 0. Note that a Dirac functional δt is supported in E iff t ∈ E.
In this terminology,

E is synthetic ⇐⇒ (suppφ ⊆ E ⇒ φ ∈ {δt : t ∈ E}
w∗

).

1sprtur, March 4, 2011

1



(2) Reminder: The support of an operator. Let H = `2(I), H ′ = `2(J) where I, J are
index sets. Every T ∈ B(H,H ′) gives a matrix [aji] ∈ `∞(J × I) so that (Tx)j =

∑
i ajixi, or

〈Tei, ej〉 = aji. The support of the operator T is the set {(i, j) ∈ I × J : aji 6= 0}. (note the flip
(j, i) (i, j))

Now let H = L2(X,m), H ′ = L2(Y, n) where (for now) X, Y are compact metric spaces and
m,n regular Borel measures.

Definition 2 Say an operator T ∈ B(H,H ′) vanishes on an open rectangle U × V ⊆ X × Y if
P (V )TP (U) = 0, where P (U) = MχU

. Equivalently, T vanishes on U × V if 〈Tf, g〉 = 0 for all
f ∈ L2(X,m) s.t. f(s) = 0 a.e on U c and all g ∈ L2(Y, n) s.t. g(t) = 0 a.e on V c.

Say T is supported in a closed set K ⊆ X × Y if T vanishes on any open rectangle U × V
disjoint from K:

suppT ⊆ K ⇐⇒ [(U × V ) ∩K = ∅ ⇒ P (V )TP (U) = 0].

For example, if T is an integral operator with kernel h ∈ L2(Y ×X,n⊗m),

〈Tf, g〉 =

∫
Y

(∫
X

h(y, x)f(x)dm(x)

)
g(y)dn(y) f ∈ L2(X,m), g ∈ L2(Y, n)

then P (V )TP (U) = 0 iff χV (y)h(y, x)χU(x) = 0 a.e., that is, iff h(y, x) = 0 for a.a. (x, y) ∈ U × V
(note the flip (y, x) (x, y)). 2

More generally, if µ is a (regular, Borel, complex) measure on Y ×X such that the operator Tµ
defined by the sesquilinear form

〈Tµf, g〉 =

∫
Y×X

f(x)g(y)dµ(y, x) f ∈ L2(X,m), g ∈ L2(Y, n)

is bounded 3, then P (V )TµP (U) = 0 iff |µ|(V × U) = 0.

(3) Reminder: The support of a convolution operator. Now specialise to the case where
X = Y = G is a compact (metrisable) abelian group (for example, G = T) and m = n is Haar
measure.

If φ ∈ L1(G) the convolution operator is given by

〈Cφf, g〉 =

∫
G

(∫
G

φ(y − x)f(x)dx

)
g(y)dy =

∫
G

(∫
G

f(y − x)φ(x)dx

)
g(y)dy f, g ∈ L2(G).

Suppose that φ is continuous and let E = suppφ = {t ∈ G : φ(t) 6= 0}; so E is the complement of the
largest open set on which φ vanishes. Let U×V ⊆ X×Y be an open rectangle. If P (V )CφP (U) = 0
then χV (y)φ(y − x)χU(x) = 0, so if E∗ = {(x, y) : y − x ∈ E} then (U × V ) ∩ E∗ = ∅: for if
(x, y) ∈ U × V then φ(y − x) = 0, so y − x /∈ E, i.e. (x, y) /∈ E∗. And conversely, if U × V is an
open rectangle disjoint from E∗ then χV (y)φ(y − x)χU(x) = 0 for all (x, y), so P (V )CφP (U) = 0.

Conclusion: If E ⊆ G is the support of φ, then the support of Cφ is

E∗ = {(x, y) : y − x ∈ E}.

More generally if µ ∈M(G) (i.e. µ is a (complex) regular Borel measure on G) define

〈Cµf, g〉 =

∫
G

(∫
G

f(y − x)dµ(x)

)
g(y)dy f, g ∈ L2(G).

If E = suppµ, then the support of Cµ is E∗.

2This is really a matter of convention: for example Davidson in ‘Nest Algebras’ [3], p. 343 uses P (U)TP (V ) = 0
in his definition of support.

3the condition used by Arveson [1] is: there exists C < ∞ s.t. for all Borel E ⊆ X and F ⊆ Y we have
|µ|(Y × E) ≤ Cm(E) and |µ|(F ×X) ≤ Cn(F )



(4) The case of A(T). Specialise further to the case G = T and recall the definition

A(T) = {f ∈ C(T) :
∑
n∈Z

|f̂(n)| <∞}, ‖f‖A :=
∥∥∥f̂∥∥∥

1
=
∑
n∈Z

|f̂(n)|.

So (A(T), ·) is isometrically isomorphic, as a Banach algebra, with (`1(Z), ∗).
Now observe that any a ∈ `1 can be factorised as the pointwise product of two `2 sequences. So

if f ∈ A(T), writing f̂ = b · c where b, c ∈ `2(Z), we have f = g ∗ h where g = F−1b, h = F−1c are
in L2(T) (recall that the Fourier transform F : L2(T)→ `2(Z) is an onto isometry).

Explicitly,

f(s) =

∫
G

g(s− t)h(t)dt =

∫
g[(t− s)h(t)dt (g[(x) = g(−x))

=

∫
(λsg

[)(t)h(t)dt (λsφ(x) = φ(x− s))

=
〈
λsg

[, h̄
〉
L2(T) .

Note here that the maps g → g[ and λs are unitary.
Conclusion: f ∈ A(T) if and only if there are φ1, φ2 ∈ L2(T) s.t. f(s) = 〈λsφ1, φ2〉L2(T) for all

s ∈ T.
But this latter property does not use the fact that T is abelian; so we may define:

Definition 3 (Eymard) If G is any locally compact group,

A(G) = {f : G→ C : there are φ1, φ2 ∈ L2(G) s.t. f(s) = 〈λsφ1, φ2〉L2(G) for all s ∈ G}.

Remark 1 If f ∈ A(T) then ‖f‖A = inf{‖φ‖2 ‖ψ‖2 : φ1, φ2 ∈ L2(T), f(s) = 〈λsφ1, φ2〉}.

Proof By the calculation above, f(s) = 〈λsφ1, φ2〉 for all s iff f = φ∗ψ where φ1 = φ[ and φ2 = ψ̄.
Now if f = φ ∗ ψ then

‖f‖A =
∥∥∥f̂∥∥∥

1
=
∥∥∥φ̂ ∗ ψ∥∥∥

1
=
∥∥∥φ̂ψ̂∥∥∥

1

≤
∥∥∥φ̂∥∥∥

`2

∥∥∥ψ̂∥∥∥
`2

= ‖φ‖L2 ‖ψ‖L2 .

For the reverse inequality, write f̂ = u|f̂ | where |u| = 1 and put b(n) = u(n)|f̂(n)|1/2 and c(n) =
|f̂(n)|1/2. Then b, c ∈ `2(Z) so g = F−1b and h = F−1c are in L2(T). Moreover ‖g‖2L2 = ‖b‖2`2 =∑
|f̂(n)| =

∥∥∥f̂∥∥∥
1

and ‖h‖2L2 =
∥∥∥f̂∥∥∥

1
tambien. It follows that

‖f‖A =
∥∥∥f̂∥∥∥

1
= ‖g‖L2 ‖h‖L2 . 2

(5) The paper of Spronk-Turowska [6]. Let G be a compact metrisable group (possibly non-
abelian). Define A(G) as in Definition 3. Also define the Varopoulos algebra:

V (G) = C(G)⊗h C(G)

where C(G) = {f : G → C : f continuous}. This is the (complete) projective tensor product, but
equipped with the Haagerup norm. More precisely: V (G) is defined to be the completion of the



algebraic tensor product C(G)⊗ C(G) with respect to the norm

‖u‖h = inf


∥∥∥∥∥∑

k

eke
∗
k

∥∥∥∥∥
1/2 ∥∥∥∥∥∑

k

f ∗kfk

∥∥∥∥∥
1/2

: all repr’s u =
∑
k

ek ⊗ fk


= inf

‖(e1, en, . . . , en)‖

∥∥∥∥∥∥∥∥∥


f1
f2
...
fn


∥∥∥∥∥∥∥∥∥ : all repr’s u =

n∑
k=1

ek ⊗ fk

 .

Since ‖e⊗ f‖h ≤ ‖ee∗‖
1/2 ‖f ∗f‖1/2 = ‖e‖ ‖f‖, it is easy to see that ‖u‖h ≤

∑
k ‖ek‖ ‖fk‖ for every

representation u =
∑n

k=1 ek ⊗ fk, and so

‖u‖h ≤ ‖u‖γ := inf

{∑
k

‖ek‖ ‖fk‖ : u =
n∑
k=1

ek ⊗ fk

}
.

Grothendieck’s inequality states that there is a universal constant KG so that ‖u‖γ ≤ KG ‖u‖h, and
so the two norms are in fact equivalent, hence they give the same completion.

It is a fact (see Blecher - Le Merdy [2, Proposition 1.5.6]) that each u ∈ V (G) can be written
as a ‖·‖h-convergent series

u =
∞∑
k=1

ek ⊗ fk where
∑
k

|ek|2 and
∑
k

|fk|2 converge4 uniformly.

Let u =
∑∞

k=1 ek ⊗ fk ∈ V (G). Given any S ∈ B(L2(G)) the sum

∞∑
k=1

MekSMfk

converges in the norm of B(L2(G)) to an element Tu(S) ∈ B(L2(G)). The map Tu : B(L2(G)) →
B(L2(G)) is in fact w*-w* continuous and it can be shown that ‖Tu‖ = ‖u‖h. In particular, u→ Tu
is injective.

On the other hand, the uniform convergence of
∑

k |ek|2 and
∑

k |fk|2 shows, by Cauchy-Schwarz,
that the series

∑
k ek(s)fk(t) also converges uniformly in (s, t) ∈ G×G and thus defines a function

ũ(s, t) =
∑

k ek(s)fk(t) which is continuous on G×G.
I claim that the (clearly linear) map u→ ũ is also injective.
Indeed, if S is the rank one operator Sξ = φ 〈ξ, ψ〉, then for all η ∈ L2(G),

Tu(S)ξ =
∞∑
k=1

Mekφ 〈Mfkξ, ψ〉 =
∞∑
k=1

(ekφ) 〈(fkξ), ψ〉

so 〈Tu(S)ξ, η〉 =
∞∑
k=1

〈(ekφ) 〈(fkξ), ψ〉 , η〉 =
∞∑
k=1

〈(fkξ), ψ〉 〈(ekφ), η〉

=
∞∑
k=1

∫
fk(t)ξ(t)ψ̄(t)dt

∫
ek(s)φ(s)η̄(s)ds

=

∫∫ ( ∞∑
k=1

ek(s)fk(t)

)
ξ(t)ψ̄(t)φ(s)η̄(s)dtds .

It follows that if ũ(s, t) = 0 then Tu = 0 and so u = 0, which proves that u→ ũ is injective.
Thus we may delete the tilde and identify V (G) with its image in C(G×G).

4it is not claimed that
∑

k e
2
k or

∑
k f

2
k converge



Thus we identify u =
∑∞

k=1 ek ⊗ fk with u(s, t) =
∑

k ek(s)fk(t).

Note that V (G) is a subalgebra of C(G×G); this follows from the fact that Tuv = TuTv
(since u→ Tu is injective): indeed if u(s, t) = e(s)f(t) and v = g(s)h(t) then uv(s, t) =
(eg)(s)(fh)(t) so for all S ∈ B(L2(G)),

TuTv(S) = Tu(MgSMh) = MeMgSMhMf = MegSMhf = Tuv(S)

since C(G) is abelian; the same argument works for general u, v ∈ V (G).

The invariant part of V (G) is defined to be

Vinv(G) = {u ∈ V (G) : u(sr, tr) = u(s, t) for all s, t, r ∈ G}.

This is a closed subalgebra of V (G).

Theorem 2 The map
N : A(G)→ Vinv(G)

given by
(Nu)(s, t) = u(st−1) u ∈ A(G)

is an isometric isomorphism.

(6) Spectral synthesis and Operator Synthesis. Let T (G) = L2(G)⊗̂L2(G).

Thus T (G) consists of all

u =
∑
i

fi ⊗ gi, fi, gi ∈ L2(G) such that
∑
i

‖fi‖2 ‖gi‖2 <∞

and the norm ‖u‖γ = ‖u‖1 is the infimum of these sums over all such representations of
u.

Each u ∈ T (G) gives rise to a w*-continuous linear functional ωu on B(L2(G)) defined
by

ωu(T ) =
∑
i

〈Tfi, ḡi〉 , T ∈ B(L2(G))

and in fact ‖ωu‖ = ‖ω‖1. Each φ ∈ (L2(G)⊗̂L2(G))∗ defines an operator Tφ ∈ B(L2(G))
through φ(f ⊗ g) = 〈Tf, ḡ〉, and the map φ → Tφ is an isometric isomorphism of the
space (L2(G)⊗̂L2(G))∗ onto B(L2(G)).

The element u ∈ T (G) also gives rise to a function

ũ(s, t) =
∑
i

fi(s)gi(t), (s, t) ∈ G×G

which is well defined marginally almost everywhere (m.a.e.); this means that ũ is defined
up to a marginally null set, i.e. a set of the form (N ×G) ∪ (G×N) where N ⊆ G is a
null set. We will again use the same symbol for u and ũ.

For u ∈ T (G) define

suppu = {(s, t) ∈ G×G : u(s, t) 6= 0}

(nb. no closure); this is defined up to a marginally null set.



Now given a closed set F ⊆ G×G we put

Φ(F ) = {u ∈ T (G) : suppu ∩ F = ∅}
= {u ∈ T (G) : uχF = 0 m.a.e.}

Ψ(F ) = {u ∈ T (G) : suppu ∩ F = ∅}

Φ0(F ) = Ψ(F )
‖·‖1 .

The subspace Φ(F ) is ‖·‖1-closed and contains the subspace Ψ(F ), which consists of all
u which vanish m.a.e. near F (in the open neighbourhood (suppu)c of F .)

Definition 4 (Shulman – Turowska [5]) The set F is said to be operator syn-
thetic if

Φ0(F ) = Φ(F ).

Theorem 3 (Spronk – Turowska) A closed set E ⊆ G is a n S-set (i.e. satisfies
spectral synthesis) if and only if the set

E∗ = {(s, t) ∈ G×G : st−1 ∈ E}

is operator synthetic.

This is due to Froelich [4] in the abelian case.
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