
A note

Remark 1 Let X 1 be a compact Hausdorff space and µ a regular Borel measure
on X (i.e. the measure ν := |µ| is regular). Then for every open set U ⊆ X,

|µ|(U) = sup

{∣∣∣∣∫ fdµ

∣∣∣∣ : f ∈ C(X), supp f ⊆ U compact, ‖f‖∞ ≤ 1

}
.

Proof We write ν := |µ|. It is clear that if f ∈ C(X) with ‖f‖∞ ≤ 1 is
supported in U then∣∣∣∣∫ fdµ

∣∣∣∣ ≤ ∫ |f |dν ≤ ‖f‖∞ |µ|(U) ≤ |µ|(U).

We prove the reverse inequality.
By the Radon-Nikodym theorem (see Rudin, Real and Complex Analysis, Theo-
rem 6.12)

|µ|(U) =

∫
χUdν =

∫
χUhdµ

where h̄ = dµ
dν

is in L1(X, ν) and |h| = 1 a.e. wrt ν.
The space Cc(U) of continuous functions f : U → C with compact support
(contained in U) is dense in L1(U, ν) and g := h|U ∈ L1(U, ν); hence there exists

fn ∈ Cc(U) with

∫
U

|fn − g|dν → 0. Extending fn to gn : X → C by setting

gn = 0 on U c, we obtain gn ∈ Cc(X) with compact support contained in U such
that∣∣∣∣∫
X

(gn − hχU)dµ

∣∣∣∣ ≤ ∫
X

|gn− hχU |d|µ| =
∫
X

|(gn− h)χU |d|µ| =
∫
U

|fn− g|dν → 0

and so

∫
gndµ→

∫
hχUdµ = ν(U).

Remark 2 Now take X = T (or any locally compact abelian group, for that
matter). We claim that

|µ|(U) = sup

{∣∣∣∣∫ fdµ

∣∣∣∣ : f ∈ A(T), supp f ⊆ U compact, ‖f‖∞ ≤ 1

}
.

We will need the following lovely
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Lemma Given a compact K and open U s.t. K ⊆ U ⊆ T, there exists φ ∈ A(T)
with χK ≤ φ ≤ χU . 2

It follows that

Ac(U) := {f ∈ A(T) : supp f is compact and contained in U}
has the properties:
(a) It does not vanish on U : indeed given λ ∈ U , choose an open V with V
compact s.t. λ ∈ V ⊆ V ⊆ U ; since {λ} is compact there is φ ∈ A(T) with
φ(λ) = 1 and φ|V c = 0, so φ has compact support contained in U .
(b) It separates points of U : indeed given λ, λ′ ∈ U with λ 6= λ′, letting W be an
open neighbourhood of λ′ not containing λ and letting U ′ = W ∪ U , choose an
open V with V compact s.t. λ ∈ V ⊆ V ⊆ U ′; there is φ ∈ A(T) with φ(λ) = 1
and φ|V c = 0, so φ ∈ Ac(U), and φ(λ) = 1 6= 0 = φ(λ′).
(c) It is a self adjoint subalgebra of Cc(U) ⊆ C0(U).
By the Stone-Weierstrass Theorem, Ac(U) is ‖·‖∞-dense in C0(U).

Therefore: Given ε > 0, by Remark 1 there is a compact K ⊆ U and a continuous

f : T → C with supp f ⊆ K such that

∣∣∣∣|µ|(U)−
∫
fdµ

∣∣∣∣ < ε. Now choosing

φ ∈ Ac(U) so that ‖f − φ‖∞ < ε we get∣∣∣∣|µ|(U)−
∫
φdµ

∣∣∣∣ ≤ ∣∣∣∣|µ|(U)−
∫
fdµ

∣∣∣∣+

∫
|φ− f |d|µ| < ε+ ε|µ|(U)

which proves Remark 2.

Proof of the Lemma Choose ε so that K2ε := {z ∈ T : dist(z,K) < 2ε} is
contained in U . Let χε be the characteristic function of (−ε, ε) and define

f(s) =
1

2ε
(χε ∗ χKε)(s) =

1

2ε

∫
χε(t)χKε(s− t)dt =

1

2ε

∫ ε

−ε
χKε(s− t)dt.

Clearly, 0 ≤ f ≤ 1. If s ∈ K then for all t with |t| < ε we have s ∈ Kε + t and so
χKε(s− t) = 1 hence f(s) = 1. If f(s) > 0 there must exist t with |t| < ε so that
s ∈ Kε + t ⊆ K2ε, hence s ∈ U . Thus f vanishes in U c.
Finally, since χε and χKε are in L2(T), their Fourier transforms χ̂ε and χ̂Kε are
in `2(Z), and so the pointwise product χ̂εχ̂Kε is in `1(Z). Hence

f̂ =
1

2ε
̂(χε ∗ χKε) = χ̂εχ̂Kε ∈ `1(Z)

which means that f ∈ A(T).

Note Essentially the same proof works in any locally compact abelian group,
replacing the open set (−ε, ε) with an open neighbourhood W of 0 of finite measure
s.t. W = −W and replacing K2ε with K +W +W .

2This means that 0 ≤ f ≤ 1 everywhere, f |K = 1 and f |Uc = 0.


