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Nonlocality

Fix A,B,X ,Y finite sets.

Alice’s lab: Bob’s lab:

Questions: X
Answers: A
Measurements: {Ea,x}a∈A, x ∈ X

Questions: Y
Answers: B
Measurements: {Fb,y}b∈B , y ∈ Y

Correlations ⇝ p = {(p(a, b|x , y))a,b : x , y}

Local correlations: Convex combinations of pA(a|x) · pB(b|y). Notation: C loc .

Quantum: Assuming the tensor paradigm p(a, b|x , y) = ⟨Ea,x ⊗ Fy ,bψ,ψ⟩, with

ψ ∈ HA ⊗ HB , {Ea,x}a∈A ⊆ B(HA), {Fb,y}b∈B ⊆ B(HB) POVM’s.

*We assume HA,HB finite dimensional. Notation: Cq.
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Quantum commuting: Assuming the commutativity paradigm

p(a, b|x , y) = ⟨Ea,xFy ,bψ,ψ⟩ such that

ψ ∈ H, {Ea,x}a∈A, {Fb,y}b∈B ⊆ B(H) POVM’s, Ea,xFb,y = Fb,yEa,x .

Notation: Cqc .

C loc ⊆ Cq ⊆ Cqc .

Nonlocality: Correlations p with p ∈ Cq \ C loc (Bell’s Theorem, CHSH inequality)

Tsirelson’s Problem (TP): Is Cq = Cqc? (No, MIP*=RE 20’)

We denote Cqa := Cq.
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Connes, Tsirelson, and Kirchberg’s problems

Kirchberg’s Problem (KP): Is C∗(F2)⊗min C
∗(F2) = C∗(F2)⊗max C

∗(F2)?

Tsirelson’s Problem⇔ Kirchberg’s Problem⇔ Connes Embedding Problem

KP ⇒ TP : Passes through the following characterisation

Theorem [Fritz 10’]: Set FX ,A = ZA ∗ · · · ∗ ZA︸ ︷︷ ︸
X−times

(similarly FY ,B). A correlation p is

in the set:

1 Cqa if and only if there exists a state s of C∗(FX ,A)⊗min C
∗(FY ,B) such that

p(a, b|x , y) = s(ex,a ⊗ ey ,b)

2 Cqc if and only if there exists a state s of C∗(FX ,A)⊗max C
∗(FY ,B) such that

p(a, b|x , y) = s(ex,a ⊗ ey ,b)
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via operator systems

Set AX ,A = ℓ∞A ∗1 · · · ∗1 ℓ∞A︸ ︷︷ ︸
X−times

and SX ,A = ℓ∞A ⊕1 · · · ⊕1 ℓ
∞
A︸ ︷︷ ︸

X−times

where SX ,A ⊆ AX ,A.

Using C∗(FX ,A) = AX ,A and the theory of tensor products for operator systems:

Theorem [Paulsen-Todorov 13’]: A correlation p is in the set:

1 Cqa if and only if there exists a state s of SX ,A⊗min SY ,B such that

p(a, b|x , y) = s(ex,a ⊗ ey ,b)

2 Cqc if and only if there exists a state s of SX ,A⊗c SY ,B such that

p(a, b|x , y) = s(ex,a ⊗ ey ,b)
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We denote the algebra of bounded operators on a Hilbert space H by B(H).

Definition: A concrete operator system is a unital self-adjoint subspace
S ⊆ B(H), meaning:

S∗ = S, IH ∈ S.

Definition: An abstract operator system is a ∗-vector space S equipped with:

• a matrix ordering {Cn}n∈N (cones Cn ⊆ Mn(S)sa), and
• an Archimedean matrix order unit e ∈ S.

Definition: Let S, T be operator systems. A linear map ϕ : S → T is unital
completely positive (u.c.p.) if

ϕ(n) : Mn(S)→ Mn(T ), [sij ] 7→ [ϕ(sij)]

is positive for all n and ϕ(eS) = eT . We say that ϕ is a complete order
isomorphism (c.o.i.), if ϕ is a completely positive bijection and ϕ−1 is completely
positive and a complete order embedding (c.o.e.), if ϕ is a complete order
isomorphism onto its range.

Choi–Effros Representation Theorem: The concrete and abstract definitions of
operator systems coincide.
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States, Extensions, and Dilations

• A state of an operator system S is a unital positive linear functional.

Arveson’s Extension Theorem: Let S ⊆ T be operator systems and
ϕ : S → B(H) a unital completely positive map. Then there exists a u.c.p. map
ϕ̃ : T → B(H) such that ϕ̃|S = ϕ and ∥ϕ̃∥ = ∥ϕ∥.
Stinespring’s Dilation Theorem: Let A be a unital C∗-algebra and
ϕ : A → B(H) a unital completely positive map. Then there exists a Hilbert space
K , an isometry V : H → K , and a unital *-homomorphism π : A → B(K ) such
that

ϕ(x) = V ∗π(x)V , ∀x ∈ A .

• If ϕ(x) = V ∗π(x)V with V an isometry, and H is identified with V (H), then
ϕ(x) = PHπ(x)|H , i.e., ϕ is the compression of a *-homomorphism.

• Given an operator system S, a C∗-cover is a pair (C, ι), where C is a unital
C∗-algebra and ι : S → C is a unital complete order embedding such that ι(S)
generates C as a C∗-algebra.
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Tensor Products of C*-Algebras

Let A,B be unital C*-algebras.
• There is a minimal and a maximal C*-algebra tensor product, denoted by
A⊗min B and A⊗max B respectively.

• For any appropriate norm ∥ · ∥γ on A⊗ B that turns its completion into a
C*-algebra we have:

∥x∥min ≤ ∥x∥γ ≤ ∥x∥max

• A C*-algebra A is nuclear if

A⊗min B = A⊗max B ∀ C*-algebras B

Remark: The minimal tensor product is injective: If A0 ⊆ A, B0 ⊆ B =⇒

A0 ⊗min B0 ⊆ A⊗min B.
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Operator System Tensor Products

Let S, T be operator systems.

• An operator system structure on S ⊗T is a family of cones
{C τ

n }∞n=1 ⊆ Mn(S ⊗T ) satisfying some reasonable properties such that

S ⊗τ T := (S ⊗T , {C τ
n }, eS ⊗ eT ) is an operator system.

• We may write Cn = Mn(S ⊗τ T )+ and given two structures τ1, τ2, we write
τ1 ≥ τ2 if

Mn(S ⊗τ1 T )+ ⊆ Mn(S ⊗τ2 T )+

• An operator system tensor product is a map τ assigning to each pair (S, T )
a structure S ⊗τ T .
• Let α and β be two operator system tensor products. An operator system S is
called (α, β)-nuclear if for every operator system T :

S ⊗α T ∼= S ⊗β T
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Minimal and maximal tensor products

Minimal tensor product:

For S ⊆ B(H), T ⊆ B(K ), then

S ⊗min T ⊆ B(H ⊗ K )

Maximal tensor product:

Dmax
n =

{
α(P ⊗ Q)α∗ ∈ Mn(S ⊗T ) : P ∈ Mk(S)+,Q ∈ Mm(T )+, α ∈ Mn,km

}
Cmax
n = {A ∈ Mn(S ⊗T ) : ren + A ∈ Dmax

n for all r > 0}

S ⊗max T := (S ⊗T , {Cmax
n }, e1 ⊗ e2)
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Commuting and Essential tensor product

We have two extremal C*-covers:
• The C∗-envelope C∗

e (S) is the unique C∗-cover having the following
universal property: For any C∗-cover ι : S ↪→ A there exists a unique unital
*-homomorphism π : A → C∗

e (S) such that π(ι(s)) = s for every s ∈ S.
• The universal C∗-cover is the unique C∗-algebra C∗

u (S) generated by S such
that for any other C∗-algebra B and unital completely positive map
ϕ : S → B, there exists a *-homomorphism πϕ : C∗

u (S)→ B that extends ϕ.

Commuting tensor product:

S ⊗c T ⊆ C∗
u (S)⊗max C

∗
u (T )

Essential tensor product:

S ⊗ess T ⊆ C∗
e (S)⊗max C

∗
e (T )

min ≤ ess ≤ c ≤ max
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Coproducts

Definition: In a category C, a coproduct of objects A and B is an object A ⊔ B
together with morphisms

iA : A→ A ⊔ B, iB : B → A ⊔ B

such that for any object X and morphisms fA : A→ X , fB : B → X , there exists a
unique morphism f : A ⊔ B → X making the following diagram commute:

Unital C∗-algebras: The coproduct A ∗1 B identifies the units of A and B. More
generally, if D ⊆ A,B, then A ∗D B amalgamates over D.
Operator systems: The coproduct S ⊕1 T is the universal operator system for
unital completely positive maps from S and T .
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Operator systems encode measurements

Let X ,A be finite sets.
• ℓ∞A encodes POVM’s:

{Ea}a∈A POVM on H ←→ ϕ : ℓ∞A → B(H) : ϕ(δa) = Ea is ucp.

• SX ,A := ℓ∞A ⊕1 · · · ⊕1 ℓ
∞
A︸ ︷︷ ︸

|X |−times

encodes families of POVM’s:

{Ea,x}a∈A POVM on H,∀x ∈ X ←→ ϕ : SX ,A → B(H) : ϕ(δa,x) = Ea,x is ucp

where {δa,x}a∈A is the canonical basis of the x-th copy of ℓ∞A .

Motivation: The measurements {Ex,a}a∈A, x ∈ X considered are disjoint. We
want to encode measurements with shared entries (e.g. in contextuality).
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Operator A-systems

Definition: Let S be an operator system and A a unital C*-algebra.
We say that S is an (abstract) operator A-system if:

1 S is an A-bimodule

2 (a · s)∗ = s∗ · a∗

3 a · e = e · a
4 [ai,j ] · [si,j ] · [ai,j ]∗ ∈ Mn(S)+

for all [ai,j ] ∈ Mn,m(A), [si,j ] ∈ Mm(S)+, s ∈ S, a ∈ A.

Concretely: Suppose
1 ∈ A ⊆ S ⊆ B(H),

where S is a concrete operator system and A is a C*-algebra such that the
operator multiplication satisfies A ·S ⊆ S . Then

S ·A = S∗ · A∗ = (A ·S)∗ ⊆ S∗ = S,

and hence S is an operator A-system.
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Representation Theorem for Operator A-systems

Theorem: Let A be a unital C∗-algebra and S an operator A-system.
Then there exist a Hilbert space H, a unital complete order embedding
ϕ : S → B(H), and a unital ∗-homomorphism π : A → B(H) such that

ϕ(a · s) = π(a)ϕ(s), ∀a ∈ A, s ∈ S .

• Consider the category whose objects are operator A-systems and whose
morphisms are unital completely positive (ucp) A-bimodule maps; that is, maps

ϕ : S → T

that satisfy:

• ϕ is unital and completely positive,

• ϕ(a · s) = a · ϕ(s) and ϕ(s · a) = ϕ(s) · a, for all a ∈ A, s ∈ S.

Remark: Operator systems = operator A-systems with A = C.
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No coproducts in the category

• Let A = C⊕ C, and define operator A-systems

S = C⊕ 0, T = 0⊕ C

with actions
a · s = a1s, a · t = a2t, a = (a1, a2) ∈ A .

• Assume that X is a coproduct with ucp A-bimodule maps ϕ1 : S → X ,
ϕ2 : T → X .

• For a′ = (0, a2),

a′ · eS = 0 =⇒ a′ · eX = 0.

Similarly, for a′′ = (a1, 0),

a′′ · eT = 0 =⇒ a′′ · eX = 0.

• For all a ∈ A,
a · eX = 0,

but 1A · eX = eX ̸= 0.
Conclusion: No coproduct exists.
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Faithful Operator A-Systems

Definition: Let S be an operator A-system with module action a · s. We
say S is faithful if

a · e ̸= 0, for all a ∈ A\{0}.

Remark: If S is faithful, then by the representation Theorem there exist

H, ϕ : S → B(H) (unital c.o.e.), π : A → B(H) (faithful *-rep.)

such that
ϕ(a · s) = π(a)ϕ(s), ∀a ∈ A, s ∈ S .

We can then identify
1 ∈ A ⊆ S ⊆ B(H)

and view the module action as operator multiplication.
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Coproducts of Faithful Operator A-Systems

Theorem [C. ]: Let S1 and S2 be faithful operator A-systems. Then their
coproduct exists in the category of operator A-systems with morphisms the
ucp A-bimodule maps. Moreover:

• The coproduct is itself a faithful operator A-system.

• It is unique up to a complete order isomorphism that is also an
A-bimodule map.

Proof (sketch)

• Let S1 ⊆ B(H1) and S2 ⊆ B(H2) be faithful operator A-systems with faithful
*-representations πi : A → B(Hi ).

• Consider the amalgamated free product B(H1) ∗A B(H2), the universal
C∗-algebra amalgamated over A.

• Define the operator system:

S1 +S2 := {s1 + s2 : si ∈ S i} ⊆ B(H1) ∗A B(H2).

• S1 +S2 is an operator A-system with module action given by multiplication
inside the free product.
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Universal Property

• Given an operator A-system T ⊆ B(K ) and unital completely positive
A-bimodule maps

ψi : S i → T ,

extend them via Arveson’s extension theorem to

ψ̃i : B(Hi )→ B(K ),

agreeing on A.
• By Boca’s theorem, there exists a unital completely positive map

Ψ : B(H1) ∗A B(H2)→ B(K ),

extending ψ̃i .

• Restricting Ψ to S1 +S2 yields a unital completely positive A-bimodule map
Φ with

Φ|S i = ψi .

• Hence, S1 +S2 satisfies the universal property of the coproduct.
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Kernel Realization of the Coproduct

Theorem [C. ]: Let A be a unital C∗-algebra, and let S, T be faithful operator
A-systems. Define the subspace

J := {a⊕ (−a) : a ∈ A} ⊆ S ⊕T .

Then:

• The quotient S ⊕T /J admits an operator A-system structure.

• There is a complete order isomorphism

S ⊕A T ∼= S ⊕T /J ,

which preserves the A-bimodule structure.

S ⊕A T denotes the amalgamated coproduct.
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Graph Operator Systems as Operator A-Systems

Definition: Let G = (V ,E ) be a graph on n vertices. Define an operator
system SG ⊆ Mn as

SG = span{Ei,j : i = j or (i , j) ∈ E}.

This is called the graph operator system of G .

• Each SG is a Dn-bimodule, so it is a faithful operator Dn-system.

• Conversely, any operator subsystem of Mn that is a Dn-bimodule arises this
way from a graph G with

E = {(i , j) : i ̸= j and Ei,i S Ej,j ̸= {0}}.

Question: Is the coproduct of two graph operator systems itself a graph operator
system?
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Arveson’s hyperrigidity

Unique Extension Property. Let S be an operator system and (A, ι) a C∗-cover
of S. A unital completely positive map ϕ : S → B(H) has the unique extension
property with respect to (A, ι) if it extends uniquely to a completely positive map

ϕ̃ : A → B(H) that is also a *-representation.

Definition (Hyperrigidity). Let S ⊆ A be an operator system and (A, ι) a
C∗-cover. S is hyperrigid in A if for every representation π : A → B(H), the
restriction π|S has the unique extension property.

Proposition. If S is hyperrigid in A, then A ∼= C∗
e (S).

Theorem [C. ]: Let S1 and S2 be faithful operator A-systems that are
hyperrigid in their respective C∗-envelopes. Then:

C∗
e (S1⊕A S2) ∼= C∗

e (S1) ∗A C∗
e (S2).
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Proposition [C. ]: The coproduct of two graph operator systems is not
necessarily a graph operator system.

There exist graph operator systems whose coproduct is not completely order
isomorphic to any operator system SG ′ ⊆ Mk that is a bimodule over Dk

for some k ∈ N.

Outline of the proof:

• Let G be the complete graph on 2 vertices; then SG = M2.

• Consider the coproduct SG ⊕D2 SG = M2 ⊕D2 M2.

• Assume this is completely order isomorphic to a graph operator system
SG ′ ⊆ Mk .

• M2 is hyperrigid

• From the previous theorem

M2 ∗D2 M2
∼= C∗

e (M2 ⊕D2 M2) ∼= C∗
e (SG ′) ∼= C∗(SG ′)/I.

• But M2 ∗D2 M2 is infinite-dimensional (contains words of any length).

• Contradiction as C∗(SG ′) ⊆ Mk
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Introduction

A hypergraph is a pair G = (V ,E ), where V is a finite set and E is a finite set of
subsets of V .

Definition: A contextuality scenario is a hypergraph G = (V ,E ) such that
∪e∈Ee = V .

Vertices represent the “outcomes” and edges represent the “measurements”.

Definition: Let G = (V ,E ) be a contextuality scenario. A probabilistic model on
G, is an assignment p : V → [0, 1] such that∑

x∈e

p(x) = 1, for every e ∈ E .

Notation: G(G).

*Not all scenarios admit probabilistic models. We restrict to the ones that do.

• This hypergraph theoretic framework was introduced by A. Aćın, T. Fritz, A.
Leverrier, A. B. Sainz 15’ to study contextuality.
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Definition: Let G = (V ,E ) be a contextuality scenario. A Projective
Representation (PR) of G on a Hilbert space H is a collection of projections
(Px)x∈V ⊆ B(H) such that

∑
x∈e Px = 1, for every e ∈ E .

Consider the scenario BX ,A such that

V = X × A and E =
{
{x} × A : x ∈ X

}
,

then a PR E = (Ex,a)x∈X ,a∈A is a family of PVM’s. Such scenarios are
called Bell scenarios.

Definition: Let G = (V ,E ) be a contextuality scenario. A probabilistic model
p ∈ G(G) is called

1 deterministic, if p(x) ∈ {0, 1}, ∀x ∈ V .

2 classical, if it is a convex combination of deterministic ones. Notation: C(G)

3 quantum, if there exists a Hilbert space H, a PR (Px)x∈V on H and a state
ψ ∈ H such that

p(x) = ⟨Pxψ,ψ⟩ ∀x ∈ V

Notation: Q(G)
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We have the following chain of inclusions:

C(G) ⊆ Q(G) ⊆ G(G)

Theorem [Kochen-Specker]: There exists a contextuality scenario GKS , such that
C(GKS) = ∅, while Q(GKS) ̸= ∅.

Figure: The scenario GKS proving the Kochen-Specker Theorem.
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• Also, Q(G) ⊊ G(G)

The free hypergraph C*-algebra C∗(G) [AFLS15] is the universal C*-algebra
generated by orthogonal projections px , x ∈ V such that

∑
x∈e px = 1 for every

e ∈ E . e.g. C∗(BX ,A) = ℓ∞A ∗1 · · · ∗1 ℓ∞A︸ ︷︷ ︸
X−times

.

The *-representations π : C∗(G)→ B(H) correspond precisely to PR’s (Px)x∈V of
G on H via π(px) = Px , x ∈ V . Hence quantum models arise as

p(x) = ⟨π(px)ξ, ξ⟩.
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Our approach

Definition: Let G = (V ,E ) be a contextuality scenario. A Positive Operator
Representation (POR) of G on a Hilbert space H is a collection
(Ax)x∈V ⊆ B(H)+ such that∑

x∈e

Ax = 1, for every e ∈ E .

A PR, is a POR such that Ax is a projection for every x ∈ V .

• For the Bell scenarios BX ,A a POR E = (Ex,a)x∈X ,a∈A is a family of POVM’s.

Remark: A family of POVM’s always dilates to a family of PVM’s. It’s not true
for POR’s as we will see.

We will construct an operator system universal for positive operator
representations.
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The operator system for POR’s

• Fix a scenario G = (V ,E ), and write E = {e1, e2, . . . , ed}. For each e ∈ E we
set

S := ℓ∞e1 ⊕ · · · ⊕ ℓ
∞
ed .

For x ∈ V , denote by δex ∈ ℓ∞e the element with 1 in the x-th, and zero in the
remaining ones.
• Define

J := span{(1⊕−1⊕ · · · ⊕ 0), (1⊕ 0⊕−1⊕ · · · ⊕ 0), . . . , (1⊕ 0⊕ · · · ⊕ −1),
(0⊕ · · · ⊕ δeix ⊕ · · · ⊕ −δ

ej
x ⊕ · · · 0) : ∀i ̸= j ∈ {1, . . . , n} s.t. x ∈ ei ∩ ej}.

• By taking an appropriate quotient we turn S /J into an operator system.

Remark: If the hyperedges in G are mutually disjoint, S /J is simply the unital
coproduct ℓ∞e1 ⊕1 ℓ

∞
e2 ⊕1 · · · ⊕1 ℓ

∞
ed .
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For e ∈ E , let ιe : ℓ
∞
e → ⊕f∈E ℓ

∞
f be the natural embedding let ie : ℓ

∞
e → S /J

be the map given by

ie(u) = |E |(q ◦ ιe)(u), u ∈ ℓ∞e .

The maps ie are ucp but may not always be complete order embeddings so set

ax := ie(δ
e
x ), x ∈ V

and thus S /J = span{ax : x ∈ V }.

Proposition[Anoussis, C., Todorov ]: If Φ : S /J → B(H) is a unital
completely positive map then (Φ(ax))x∈V is a POR of G. Conversely, if
(Ax)x∈V ⊆ B(H) is a POR of G then there exists a unique unital completely
positive map Φ : S /J → B(H) such that Φ(ax) = Ax , x ∈ V . Moreover, it
is the unique operator system with this property.

We set SG := S /J .
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The operator system for dilatable POR’s

Recall the free hypergraph C*-algebra C∗(G),

e.g. C∗(BX ,A) = ℓ∞A ∗1 · · · ∗1 ℓ∞A︸ ︷︷ ︸
X−times

while SBX,A
= ℓ∞A ⊕1 · · · ⊕1 ℓ

∞
A︸ ︷︷ ︸

X−times

Consider
T G := span{px : x ∈ V } ⊆ C∗(G).

• We say that a POR (Ax)x∈V ⊆ B(H) of G dilates to a PR, if there exist a
Hilbert space K, an isometry V : H → K and a PR (Px)x∈V of G such that
Ax = V ∗PxV , x ∈ V .

• T G is universal for dilatable POR’s.
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Definition: We say that a POR (Ax)x∈V is classically dilatable if there exists a
Hilbert space K and an isometry V : H → K and a PR (Px)x∈V with commuting
entries such that Ax = V ∗PxV , x ∈ V .

• We can define an operator system RG inside an abelian C∗-algebra DG, which is
universal for classically dilatable POVM representations.

The following diagram of canonical u.c.p. maps arises from their universal
properties:

SG
Φ−→ T G

Ψ−→ RG

As a consequence, we obtain the following correspondence:

Prob.
models

↭
States on
OpSys

G(G) ↭ SG
Q(G) ↭ T G

C(G) ↭ RG
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Dilations

Definition: We say that a scenario G is dilating (resp. classically dilating), if every
POR of G dilates to a PR (resp. PR with commuting entries) of G.
• e.g. BX ,A is dilating.

Theorem [Anoussis, C., Todorov ]: Let G = (V ,E ) be a contextuality
scenario. Then,

• G is dilating if and only if SG = T G;

• G is classically dilating if and only if SG = RG

Proposition [Anoussis, C., Todorov ]: Scenarios G = (V ,E ) such that
e′ ∩ e′′ =

⋂
e∈E e ̸= ∅ for all e′, e′′ ∈ E with e′ ̸= e′′ are dilating.

Alexandros Chatzinikolaou Operator systems and contextuality June 16, 2025 39 / 46



Proof of Proposition:

• To each edge ej we associate ℓ∞ej , and view these as (faithful) operator
A-systems over the C*-algebra A generated by vectors of length equal to the size
of f =

⋂
ej in ℓ

∞
V adjoined with a unit.

• A POR corresponds to POVM’s of sizes ej that overlap on f , so they give rise to
u.c.p. maps ϕej : ℓ

∞
ej → B(H) that agree on A.

• By the universal property of the coproduct ⊕Aℓ
∞
ej we obtain a ucp map

ϕ : ⊕Aℓ
∞
ej → B(H) which extends to a u.c.p. map Φ on the amalgamated free

product of C*-algebras ∗Aℓ∞ej .

• A Stinespring dilation theorem for Φ yields a dilation of the POR into a PR.
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Quantum magic squares

Definition A = [ai,j ] ∈ Mn(B(Cs)) is called a quantum magic square, if
ai,j ∈ B(Cs)+, ∀i , j and all rows and columns sum to 1. It’s called a quantum
permutation matrix if moreover ai,j are projections.

Given n ∈ N define a hypergraph Gn by

V = [n]× [n] and E =
{
{i} × [n], [n]× {j} : i , j = 1, . . . , n

}
,

so that a quantum magic square A = [ai,j ]
n
i,j=1, is a POR (ai,j)(i,j)∈V on

H = Cs (PR if A was a quantum permutation matrix).

[De las Coves, Drescher, Netzer 20’]: For every n ≥ 3 there exists a quantum
magic square of size n that does not dilate to a quantum permutation matrix.

Proposition [Anoussis, C., Todorov ]: For every n ≥ 3 there is a POR of Gn,
that doesn’t admit a dilation into a PR. That is, Gn are not dilating for n ≥ 3
and SGn ̸= T Gn .
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Let G = (V ,E ) and H = (W ,F ) and G×H = (V ×W ,E × F ). A probabilistic
model p on G×H is called:

1 deterministic, if p(x , y) ∈ {0, 1} for all (x , y) ∈ V ×W .

2 classical, if it’s a convex combination of deterministic models

p(x , y) = p1(x)p2(y), x ∈ V , y ∈W

where p1 ∈ G(G), p2 ∈ G(H). Notation: C(G,H).

3 generalised tensor probabilistic model (resp. tensor probabilistic models), if

p(x , y) = ⟨(Ax ⊗ By )ψ,ψ⟩, (x , y) ∈ V ×W

for POR’s (resp. PR’s) (Ax)x∈V ⊆ B(HG) and (By )y∈W ⊆ B(HH), dimHG,

dimHH <∞ and ψ ∈ HG ⊗ HH unit vector. Notation: Q̃q(G,H) (resp.
Qq(G,H)).

4 generalised commuting probabilistic model (resp. commuting probabilistic
models), if

p(x , y) = ⟨(AxBy )ψ,ψ⟩, (x , y) ∈ V ×W

for POR’s (resp. PR’s) (Ax)x∈V ⊆ B(H) and (By )y∈W ⊆ B(H) that

commute and ψ ∈ H unit vector. Notation: Q̃qc(G,H) (resp. Qqc(G,H)).
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Bell Scenarios and Correlations

A correlation
p = {p(a, b | x , y)}x∈X , y∈Y

a∈A, b∈B

gives rise to a probabilistic model p̃ on BX ,A × BY ,B via:

p(a, b | x , y) 7−→ p̃((x , a), (y , b))

and vice versa.

Correlations ↭ Probabilistic Models

Cloc(X ,Y ,A,B) = C(BX ,A,BY ,B)

Cq(X ,Y ,A,B) = Qq(BX ,A,BY ,B)

Cqa(X ,Y ,A,B) = Qqa(BX ,A,BY ,B)

Cqc(X ,Y ,A,B) = Qqc(BX ,A,BY ,B)

Note: Qqa(G,H) = Qq(G,H).
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Theorem [Anoussis, C., Todorov ]:

Prob. Models ↭ States on OpSys ↭ States on C∗-alg

Q̃qc(G,H) ↭ SG⊗c SH ↭ C∗
u (SG)⊗max C

∗
u (SH)

Q̃qa(G,H) ↭ SG⊗min SH ↭ C∗
u (SG)⊗min C

∗
u (SH)

Qqc(G,H) ↭ T G⊗ess T H ↭ C∗(G)⊗max C
∗(H)

Qqa(G,H) ↭ T G⊗min T H ↭ C∗(G)⊗min C
∗(H)

C(G,H) ↭ RG⊗minRH ↭ DG ⊗min DH

Where Q̃qa(G,H) = Q̃q(G,H).

Remarks:

1 C∗
u (SG) is the universal C∗-cover of SG and corresponds also to the universal

C∗-algebra generated by positive elements ax , x ∈ V that
∑

x∈E ax = 1, for
all e ∈ E ,

2 C∗(G) = C∗
e (T G).
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Equivalence with Connes embedding problem

Theorem [Anoussis, C., Todorov]: The following are equivalent:

• CEP has an affirmative answer

• Q̃qa(G,G) = Q̃qc(G,G) for every scenario G.

• C∗
u (SG)⊗min C∗

u (SG) = C∗
u (SG)⊗max C

∗
u (SG) for every scenario G.

• SG⊗min SG = SG⊗c SG for every scenario G.

and also

• CEP has an affirmative answer

• Qqa(G,G) = Qqc(G,G) for every dilating scenario G.

• C∗(G)⊗min C
∗(G) = C∗(G)⊗max C

∗(G) for every dilating scenario G.

• T G⊗min T G = T G⊗c T G for every dilating scenario G.

Thank you!
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Bell-kochen-specker theorem: A proof with 18 vectors.
Physics Letters A, 212(4):183–187, 1996.

Alexandros Chatzinikolaou Operator systems and contextuality June 16, 2025 46 / 46



Alexandros Chatzinikolaou.
On coproducts of operator A-systems.
Operators and Matrices, 17(2):435–468, 2023.

Gemma De las Cuevas, Tom Drescher, and Tim Netzer.
Quantum magic squares: Dilations and their limitations.
Journal of Mathematical Physics, 61(11):111704, 2020.

Tobias Fritz.
Tsirelson’s problem and kirchberg’s conjecture.
Reviews in Mathematical Physics, 24:1250012, 2010.

Tobias Fritz.
Curious properties of free hypergraph C∗-algebras.
Journal of Operator Theory, 2020.

Marius Junge, Miguel Navascués, Carlos Palazuelos, David Pérez-Garćıa,
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