Operator Systems in Quantum Contextuality and Nonlocality

Alexandros Chatzinikolaou National and Kapodistrian University of Athens

Thesis presentation Athens, 2025

- Motivation
- Preliminaries
- $\textbf{3 Operator } \mathcal{A}\text{-systems}$
- Quantum Contextuality
- 6 References

1 Motivation

Preliminaries

3 Operator A-systems

Quantum Contextuality

6 References

Nonlocality

Fix A, B, X, Y finite sets.

Alice's lab:

Questions: X Answers: A Measurements: $\{E_{a,x}\}_{a \in A}, x \in X$ Bob's lab:

Questions: YAnswers: BMeasurements: $\{F_{b,y}\}_{b\in B}, y \in Y$

Correlations
$$\rightsquigarrow p = \{(p(a, b|x, y))_{a,b} : x, y\}$$

Local correlations: Convex combinations of $p_A(a|x) \cdot p_B(b|y)$. Notation: C_{loc} .

<u>Quantum</u>: Assuming the tensor paradigm $p(a, b|x, y) = \langle E_{a,x} \otimes F_{y,b} \psi, \psi \rangle$, with

 $\psi \in H_A \otimes H_B, \quad \{E_{a,x}\}_{a \in A} \subseteq \mathcal{B}(H_A), \quad \{F_{b,y}\}_{b \in B} \subseteq \mathcal{B}(H_B) \text{ POVM's.}$

*We assume H_A , H_B finite dimensional. Notation: C_q .

Alexandros Chatzinikolaou

Quantum commuting: Assuming the commutativity paradigm

$$p(a, b|x, y) = \langle E_{a,x}F_{y,b}\psi, \psi \rangle \text{ such that}$$

$$\psi \in H, \quad \{E_{a,x}\}_{a \in A}, \{F_{b,y}\}_{b \in B} \subseteq \mathcal{B}(H) \text{ POVM's}, \quad E_{a,x}F_{b,y} = F_{b,y}E_{a,x}.$$

Notation: C_{qc} .

 $\mathcal{C}_{\mathit{loc}} \subseteq \mathcal{C}_{\mathit{q}} \subseteq \mathcal{C}_{\mathit{qc}}$.

Nonlocality: Correlations p with $p \in C_q \setminus C_{loc}$ (Bell's Theorem, CHSH inequality)

Tsirelson's Problem (TP): Is $\overline{C_q} = C_{qc}$? (No, MIP*=RE 20')

We denote $C_{qa} := \overline{C_q}$.

Connes, Tsirelson, and Kirchberg's problems

Kirchberg's Problem (KP): Is $C^*(\mathbb{F}_2) \otimes_{min} C^*(\mathbb{F}_2) = C^*(\mathbb{F}_2) \otimes_{max} C^*(\mathbb{F}_2)$?

 $\mathsf{Tsirelson's Problem} \Leftrightarrow \mathsf{Kirchberg's Problem} \Leftrightarrow \mathsf{Connes Embedding Problem}$

 $\mathsf{KP} \Rightarrow \mathsf{TP}:\mathsf{Passes}$ through the following characterisation

<u>**Theorem**</u> [Fritz 10']: Set $\mathbb{F}_{X,A} = \underbrace{\mathbb{Z}_A * \cdots * \mathbb{Z}_A}_{X-times}$ (similarly $\mathbb{F}_{Y,B}$). A correlation p is

in the set:

 $\bigcirc C_{qa}$ if and only if there exists a state s of $C^*(\mathbb{F}_{X,A}) \otimes_{min} C^*(\mathbb{F}_{Y,B})$ such that

$$p(a,b|x,y) = s(e_{x,a} \otimes e_{y,b})$$

2 \mathcal{C}_{qc} if and only if there exists a state s of $C^*(\mathbb{F}_{X,A}) \otimes_{max} C^*(\mathbb{F}_{Y,B})$ such that

$$p(a,b|x,y) = s(e_{x,a} \otimes e_{y,b})$$

Set
$$\mathcal{A}_{X,A} = \underbrace{\ell_A^{\infty} *_1 \cdots *_1 \ell_A^{\infty}}_{X-times}$$
 and $\mathcal{S}_{X,A} = \underbrace{\ell_A^{\infty} \oplus_1 \cdots \oplus_1 \ell_A^{\infty}}_{X-times}$ where $\mathcal{S}_{X,A} \subseteq \mathcal{A}_{X,A}$.
Using $C^*(\mathbb{F}_{X,A}) = \mathcal{A}_{X,A}$ and the theory of tensor products for operator systems:

<u>Theorem</u> [Paulsen-Todorov 13']: A correlation p is in the set: **1** C_{qa} if and only if there exists a state s of $S_{X,A} \otimes_{min} S_{Y,B}$ such that

$$p(a,b|x,y) = s(e_{x,a} \otimes e_{y,b})$$

2 C_{qc} if and only if there exists a state *s* of $S_{X,A} \otimes_c S_{Y,B}$ such that

$$p(a,b|x,y) = s(e_{x,a} \otimes e_{y,b})$$

Motivation

Preliminaries

 $\textcircled{\textbf{O}} \text{ Operator } \mathcal{A} \text{-systems}$

Quantum Contextuality

G References

We denote the algebra of bounded operators on a Hilbert space H by B(H).

<u>Definition</u>: A concrete operator system is a unital self-adjoint subspace $S \subseteq B(H)$, meaning:

$$\mathcal{S}^* = \mathcal{S}, \quad I_H \in \mathcal{S}.$$

<u>Definition</u>: An **abstract operator system** is a *-vector space S equipped with:

- a matrix ordering $\{C_n\}_{n\in\mathbb{N}}$ (cones $C_n \subseteq M_n(\mathcal{S})_{sa}$), and
- an Archimedean matrix order unit $e \in S$.

<u>Definition</u>: Let S, T be operator systems. A linear map $\phi : S \to T$ is **unital** completely positive (u.c.p.) if

$$\phi^{(n)}: M_n(\mathcal{S}) \to M_n(\mathcal{T}), \quad [s_{ij}] \mapsto [\phi(s_{ij})]$$

is positive for all n and $\phi(e_S) = e_T$. We say that ϕ is a **complete order** isomorphism (c.o.i.), if ϕ is a completely positive bijection and ϕ^{-1} is completely positive and a **complete order embedding (c.o.e.)**, if ϕ is a complete order isomorphism onto its range.

Choi–Effros Representation Theorem: The concrete and abstract definitions of operator systems coincide.

• A state of an operator system S is a unital positive linear functional.

Arveson's Extension Theorem: Let $S \subseteq T$ be operator systems and $\phi : S \to \mathcal{B}(H)$ a unital completely positive map. Then there exists a u.c.p. map $\tilde{\phi} : T \to \mathcal{B}(H)$ such that $\tilde{\phi}|_S = \phi$ and $\|\tilde{\phi}\| = \|\phi\|$.

Stinespring's Dilation Theorem: Let \mathcal{A} be a unital C^* -algebra and $\phi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ a unital completely positive map. Then there exists a Hilbert space K, an isometry $V : \mathcal{H} \to K$, and a unital *-homomorphism $\pi : \mathcal{A} \to \mathcal{B}(K)$ such that

$$\phi(x) = V^* \pi(x) V, \quad \forall x \in \mathcal{A}.$$

• If $\phi(x) = V^*\pi(x)V$ with V an isometry, and H is identified with V(H), then $\phi(x) = P_H\pi(x)|_H$, i.e., ϕ is the compression of a *-homomorphism.

• Given an operator system S, a C^* -cover is a pair (C, ι) , where C is a unital C^* -algebra and $\iota : S \to C$ is a unital complete order embedding such that $\iota(S)$ generates C as a C^* -algebra.

Let A, B be unital C*-algebras.

• There is a minimal and a maximal C*-algebra tensor product, denoted by $A \otimes_{\min} B$ and $A \otimes_{\max} B$ respectively.

• For any appropriate norm $\|\cdot\|_{\gamma}$ on $A\otimes B$ that turns its completion into a C*-algebra we have:

 $\|x\|_{\min} \le \|x\|_{\gamma} \le \|x\|_{\max}$

• A C*-algebra A is **nuclear** if

$$A \otimes_{\min} B = A \otimes_{\max} B \quad \forall C^*-algebras B$$

<u>**Remark**</u>: The minimal tensor product is injective: If $A_0 \subseteq A$, $B_0 \subseteq B \implies$

$$A_0 \otimes_{\min} B_0 \subseteq A \otimes_{\min} B.$$

Operator System Tensor Products

Let \mathcal{S}, \mathcal{T} be operator systems.

• An **operator system structure** on $S \otimes T$ is a family of cones $\{C_n^{\tau}\}_{n=1}^{\infty} \subseteq M_n(S \otimes T)$ satisfying some reasonable properties such that

 $\mathcal{S} \otimes_{\tau} \mathcal{T} := (\mathcal{S} \otimes \mathcal{T}, \{\mathcal{C}_n^{\tau}\}, e_{\mathcal{S}} \otimes e_{\mathcal{T}})$ is an operator system.

• We may write $C_n = M_n(S \otimes_{\tau} T)^+$ and given two structures τ_1, τ_2 , we write $\tau_1 \ge \tau_2$ if

$$M_n(\mathcal{S} \otimes_{\tau_1} \mathcal{T})^+ \subseteq M_n(\mathcal{S} \otimes_{\tau_2} \mathcal{T})^+$$

• An operator system tensor product is a map τ assigning to each pair (S, T) a structure $S \otimes_{\tau} T$.

• Let α and β be two operator system tensor products. An operator system S is called (α, β) -nuclear if for every operator system \mathcal{T} :

$$\mathcal{S} \otimes_{lpha} \mathcal{T} \cong \mathcal{S} \otimes_{eta} \mathcal{T}$$

Minimal tensor product:

For $S \subseteq \mathcal{B}(H)$, $\mathcal{T} \subseteq \mathcal{B}(K)$, then

 $\mathcal{S} \otimes_{\min} \mathcal{T} \subseteq \mathcal{B}(\mathcal{H} \otimes \mathcal{K})$

Maximal tensor product:

$$D_n^{\max} = \left\{ \alpha(P \otimes Q) \alpha^* \in M_n(S \otimes T) : P \in M_k(S)^+, Q \in M_m(T)^+, \alpha \in M_{n,km} \right\}$$
$$C_n^{\max} = \left\{ A \in M_n(S \otimes T) : re_n + A \in D_n^{\max} \text{ for all } r > 0 \right\}$$

$$\mathcal{S} \otimes_{\mathsf{max}} \mathcal{T} := (\mathcal{S} \otimes \mathcal{T}, \{C_n^{\mathsf{max}}\}, e_1 \otimes e_2)$$

Commuting and Essential tensor product

We have two extremal C*-covers:

- The C*-envelope C^{*}_e(S) is the unique C*-cover having the following universal property: For any C*-cover ι : S → A there exists a unique unital *-homomorphism π : A → C^{*}_e(S) such that π(ι(s)) = s for every s ∈ S.
- The universal C*-cover is the unique C*-algebra C^{*}_u(S) generated by S such that for any other C*-algebra B and unital completely positive map φ : S → B, there exists a *-homomorphism π_φ : C^{*}_u(S) → B that extends φ.
 Commuting tensor product:

 $\mathcal{S} \otimes_{\mathsf{c}} \mathcal{T} \subseteq \mathcal{C}^*_u(\mathcal{S}) \otimes_{\max} \mathcal{C}^*_u(\mathcal{T})$

Essential tensor product:

 $\mathcal{S} \otimes_{\mathsf{ess}} \mathcal{T} \subseteq \mathcal{C}^*_e(\mathcal{S}) \otimes_{\max} \mathcal{C}^*_e(\mathcal{T})$

 $\mathsf{min} \leq \mathsf{ess} \leq \mathsf{c} \leq \mathsf{max}$

Coproducts

<u>Definition</u>: In a category C, a **coproduct** of objects A and B is an object $A \sqcup B$ together with morphisms

$$i_A: A \to A \sqcup B, \quad i_B: B \to A \sqcup B$$

such that for any object X and morphisms $f_A : A \to X$, $f_B : B \to X$, there exists a unique morphism $f : A \sqcup B \to X$ making the following diagram commute:

Unital C*-algebras: The coproduct $A *_1 B$ identifies the units of A and B. More generally, if $\mathcal{D} \subseteq A$, B, then $A *_{\mathcal{D}} B$ amalgamates over \mathcal{D} .

<u>Operator systems</u>: The coproduct $S \oplus_1 T$ is the universal operator system for unital completely positive maps from S and T.

Let X, A be finite sets.

• ℓ_A^{∞} encodes POVM's:

 $\{E_a\}_{a\in A}$ POVM on $H \longleftrightarrow \phi : \ell^{\infty}_A \to \mathcal{B}(H) : \phi(\delta_a) = E_a$ is ucp.

• $S_{X,A} := \underbrace{\ell_A^{\infty} \oplus_1 \cdots \oplus_1 \ell_A^{\infty}}_{|X| - times}$ encodes families of POVM's:

 $\{E_{a,x}\}_{a\in A}$ POVM on $H, \forall x \in X \longleftrightarrow \phi : S_{X,A} \to \mathcal{B}(H) : \phi(\delta_{a,x}) = E_{a,x}$ is ucp

where $\{\delta_{a,x}\}_{a\in A}$ is the canonical basis of the x-th copy of ℓ_A^{∞} .

<u>Motivation</u>: The measurements $\{E_{x,a}\}_{a \in A}, x \in X$ considered are disjoint. We want to encode measurements with shared entries (e.g. in contextuality).

Motivation

Preliminaries

 $\textbf{3 Operator } \mathcal{A}\text{-systems}$

Quantum Contextuality

G References

Operator A-systems

Definition: Let S be an operator system and A a unital C*-algebra. We say that S is an (abstract) operator A-system if:
S is an A-bimodule
(a ⋅ s)* = s* ⋅ a*
a ⋅ e = e ⋅ a
[a_{i,j}] ⋅ [s_{i,j}] ⋅ [a_{i,j}]* ∈ M_n(S)⁺
for all [a_{i,j}] ∈ M_{n,m}(A), [s_{i,j}] ∈ M_m(S)⁺, s ∈ S, a ∈ A.

Concretely: Suppose

$$1 \in \mathcal{A} \subseteq \mathcal{S} \subseteq \mathcal{B}(H),$$

where S is a concrete operator system and A is a C*-algebra such that the operator multiplication satisfies $A \cdot S \subseteq S$. Then

$$\mathcal{S} \cdot \mathcal{A} = \mathcal{S}^* \cdot \mathcal{A}^* = (\mathcal{A} \cdot \mathcal{S})^* \subseteq \mathcal{S}^* = \mathcal{S},$$

and hence ${\mathcal S}$ is an operator ${\mathcal A}\text{-system}.$

<u>**Theorem</u></u>: Let \mathcal{A} be a unital \mathcal{C}^*-algebra and \mathcal{S} an operator \mathcal{A}-system. Then there exist a Hilbert space \mathcal{H}, a unital complete order embedding \phi: \mathcal{S} \to \mathcal{B}(\mathcal{H}), and a unital *-homomorphism \pi: \mathcal{A} \to \mathcal{B}(\mathcal{H}) such that</u>**

$$\phi(\mathbf{a} \cdot \mathbf{s}) = \pi(\mathbf{a}) \phi(\mathbf{s}), \quad \forall \mathbf{a} \in \mathcal{A}, \ \mathbf{s} \in \mathcal{S}.$$

• Consider the category whose objects are operator A-systems and whose morphisms are unital completely positive (ucp) A-bimodule maps; that is, maps

$$\phi: \mathcal{S} \to \mathcal{T}$$

that satisfy:

- ϕ is unital and completely positive,
- $\phi(a \cdot s) = a \cdot \phi(s)$ and $\phi(s \cdot a) = \phi(s) \cdot a$, for all $a \in \mathcal{A}, s \in \mathcal{S}$.

<u>**Remark**</u>: Operator systems = operator A-systems with $A = \mathbb{C}$.

No coproducts in the category

• Let $\mathcal{A} = \mathbb{C} \oplus \mathbb{C}$, and define operator \mathcal{A} -systems

$$\mathcal{S} = \mathbb{C} \oplus \mathbf{0}, \quad \mathcal{T} = \mathbf{0} \oplus \mathbb{C}$$

with actions

$$a \cdot s = a_1 s$$
, $a \cdot t = a_2 t$, $a = (a_1, a_2) \in \mathcal{A}$.

• Assume that X is a coproduct with ucp A-bimodule maps $\phi_1 : S \to X$, $\phi_2 : T \to X$.

• For $a' = (0, a_2)$, $a' \cdot e_S = 0 \implies a' \cdot e_X = 0$. Similarly, for $a'' = (a_1, 0)$, $a'' \cdot e_T = 0 \implies a'' \cdot e_X = 0$.

• For all $a \in \mathcal{A}$,

$$a \cdot e_X = 0,$$

but $1_{\mathcal{A}} \cdot e_X = e_X \neq 0$.

Conclusion: No coproduct exists.

<u>Definition</u>: Let S be an operator A-system with module action $a \cdot s$. We say S is faithful if

$$a \cdot e \neq 0$$
, for all $a \in \mathcal{A} \setminus \{0\}$.

<u>Remark</u>: If S is faithful, then by the representation Theorem there exist

$$H, \phi: S \to \mathcal{B}(H)$$
 (unital c.o.e.), $\pi: \mathcal{A} \to \mathcal{B}(H)$ (faithful *-rep.)

such that

$$\phi(\mathbf{a} \cdot \mathbf{s}) = \pi(\mathbf{a}) \phi(\mathbf{s}), \quad \forall \mathbf{a} \in \mathcal{A}, \mathbf{s} \in \mathcal{S}.$$

We can then identify

$$1 \in \mathcal{A} \subseteq \mathcal{S} \subseteq \mathcal{B}(H)$$

and view the module action as operator multiplication.

Coproducts of Faithful Operator \mathcal{A} -Systems

<u>**Theorem**</u> [C.]: Let S_1 and S_2 be faithful operator A-systems. Then their coproduct exists in the category of operator A-systems with morphisms the ucp A-bimodule maps. Moreover:

- The coproduct is itself a faithful operator \mathcal{A} -system.
- It is unique up to a complete order isomorphism that is also an \mathcal{A} -bimodule map.

<u>Proof</u> (sketch)

- Let $S_1 \subseteq \mathcal{B}(H_1)$ and $S_2 \subseteq \mathcal{B}(H_2)$ be faithful operator \mathcal{A} -systems with faithful *-representations $\pi_i : \mathcal{A} \to \mathcal{B}(H_i)$.
- Consider the amalgamated free product $\mathcal{B}(H_1) *_{\mathcal{A}} \mathcal{B}(H_2)$, the universal C^* -algebra amalgamated over \mathcal{A} .
- Define the operator system:

$$S_1 + S_2 := \{s_1 + s_2 : s_i \in S_i\} \subseteq \mathcal{B}(H_1) *_{\mathcal{A}} \mathcal{B}(H_2).$$

• $S_1 + S_2$ is an operator A-system with module action given by multiplication inside the free product.

Universal Property

• Given an operator A-system $\mathcal{T} \subseteq \mathcal{B}(K)$ and unital completely positive A-bimodule maps

 $\psi_i: \mathcal{S}_i \to \mathcal{T},$

extend them via Arveson's extension theorem to

$$\tilde{\psi}_i: \mathcal{B}(H_i) \to \mathcal{B}(K),$$

agreeing on \mathcal{A} .

• By Boca's theorem, there exists a unital completely positive map

$$\Psi: \mathcal{B}(H_1) *_{\mathcal{A}} \mathcal{B}(H_2) \to \mathcal{B}(K),$$

extending $\tilde{\psi}_i$.

• Restricting Ψ to $\mathcal{S}_1+\mathcal{S}_2$ yields a unital completely positive $\mathcal{A}\text{-bimodule}$ map Φ with

$$\Phi|_{\mathcal{S}_i}=\psi_i.$$

• Hence, $S_1 + S_2$ satisfies the universal property of the coproduct.

Alexandros Chatzinikolaou

<u>Theorem</u> [C.]: Let \mathcal{A} be a unital C^* -algebra, and let \mathcal{S}, \mathcal{T} be faithful operator \mathcal{A} -systems. Define the subspace

$$\mathcal{J} := \{ a \oplus (-a) : a \in \mathcal{A} \} \subseteq \mathcal{S} \oplus \mathcal{T}.$$

Then:

- The quotient $\mathcal{S}\oplus\mathcal{T}/\mathcal{J}$ admits an operator \mathcal{A} -system structure.
- There is a complete order isomorphism

$$\mathcal{S}\oplus_{\mathcal{A}}\mathcal{T}\cong\mathcal{S}\oplus\mathcal{T}\,/\mathcal{J},$$

which preserves the \mathcal{A} -bimodule structure.

$$\mathcal{S} \oplus_{\mathcal{A}} \mathcal{T}$$
 denotes the amalgamated coproduct.

Definition: Let G = (V, E) be a graph on n vertices. Define an operator system $S_G \subseteq M_n$ as

$$\mathcal{S}_{G} = \operatorname{span} \{ E_{i,j} : i = j \text{ or } (i,j) \in E \}.$$

This is called the graph operator system of G.

- Each S_G is a D_n -bimodule, so it is a faithful operator D_n -system.
- Conversely, any operator subsystem of M_n that is a D_n-bimodule arises this way from a graph G with

$$E = \{(i, j) : i \neq j \text{ and } E_{i,i} S E_{j,j} \neq \{0\}\}.$$

Question: Is the coproduct of two graph operator systems itself a graph operator system?

Unique Extension Property. Let S be an operator system and (A, ι) a C^* -cover of S. A unital completely positive map $\phi : S \to \mathcal{B}(H)$ has the *unique extension* property with respect to (A, ι) if it extends uniquely to a completely positive map $\tilde{\phi} : A \to \mathcal{B}(H)$ that is also a *-representation.

Definition (Hyperrigidity). Let $S \subseteq A$ be an operator system and (A, ι) a C^* -cover. S is *hyperrigid* in A if for every representation $\pi : A \to \mathcal{B}(H)$, the restriction $\pi|_S$ has the unique extension property.

Proposition. If S is hyperrigid in A, then $A \cong C_e^*(S)$.

<u>**Theorem**</u> [C.]: Let S_1 and S_2 be faithful operator A-systems that are hyperrigid in their respective C^* -envelopes. Then:

$$C_e^*(\mathcal{S}_1 \oplus_{\mathcal{A}} \mathcal{S}_2) \cong C_e^*(\mathcal{S}_1) *_{\mathcal{A}} C_e^*(\mathcal{S}_2).$$

Proposition [C.]: The coproduct of two graph operator systems is not necessarily a graph operator system.

There exist graph operator systems whose coproduct is not completely order isomorphic to any operator system $\mathcal{S}_{G'} \subseteq M_k$ that is a bimodule over \mathcal{D}_k for some $k \in \mathbb{N}$.

Outline of the proof:

- Let G be the complete graph on 2 vertices; then $S_G = M_2$.
- Consider the coproduct $S_G \oplus_{D_2} S_G = M_2 \oplus_{D_2} M_2$.
- Assume this is completely order isomorphic to a graph operator system $\mathcal{S}_{G'} \subseteq M_k$.
- M₂ is hyperrigid
- From the previous theorem

$$M_2 *_{\mathcal{D}_2} M_2 \cong C^*_e(M_2 \oplus_{\mathcal{D}_2} M_2) \cong C^*_e(\mathcal{S}_{G'}) \cong C^*(\mathcal{S}_{G'})/\mathcal{I}.$$

- But $M_2 *_{D_2} M_2$ is infinite-dimensional (contains words of any length).
- Contradiction as $C^*({\mathcal S}_{G'})\subseteq M_k$

Motivation

- Preliminaries
- **3** Operator A-systems
- Quantum Contextuality

G References

Introduction

A hypergraph is a pair $\mathbb{G} = (V, E)$, where V is a finite set and E is a finite set of subsets of V.

<u>Definition</u>: A contextuality scenario is a hypergraph $\mathbb{G} = (V, E)$ such that $\bigcup_{e \in E} e = V$.

Vertices represent the "outcomes" and edges represent the "measurements".

<u>Definition</u>: Let $\mathbb{G} = (V, E)$ be a contextuality scenario. A **probabilistic model** on \mathbb{G} , is an assignment $p: V \to [0, 1]$ such that

$$\sum_{x\in e} p(x) = 1, \;\; ext{for every} \;\; e\in E.$$

<u>Notation</u>: $\mathcal{G}(\mathbb{G})$.

*Not all scenarios admit probabilistic models. We restrict to the ones that do.

• This hypergraph theoretic framework was introduced by *A. Acín, T. Fritz, A. Leverrier, A. B. Sainz 15'* to study contextuality.

Figure 1: Example of a scenario that does not admit a probabilistic model.

<u>Definition</u>: Let $\mathbb{G} = (V, E)$ be a contextuality scenario. A **Projective Representation (PR)** of \mathbb{G} on a Hilbert space H is a collection of projections $(P_x)_{x \in V} \subseteq \mathcal{B}(H)$ such that $\sum_{x \in e} P_x = 1$, for every $e \in E$.

Consider the scenario $\mathbb{B}_{X,A}$ such that

$$V = X \times A$$
 and $E = \{\{x\} \times A : x \in X\},\$

then a PR $E = (E_{x,a})_{x \in X, a \in A}$ is a family of PVM's. Such scenarios are called Bell scenarios.

<u>Definition</u>: Let $\mathbb{G} = (V, E)$ be a contextuality scenario. A probabilistic model $p \in \mathcal{G}(\mathbb{G})$ is called

- **1** deterministic, if $p(x) \in \{0, 1\}$, $\forall x \in V$.
- **2** classical, if it is a convex combination of deterministic ones. <u>Notation</u>: $\mathcal{C}(\mathbb{G})$
- **3** quantum, if there exists a Hilbert space H, a PR $(P_x)_{x \in V}$ on H and a state $\psi \in H$ such that

$$p(x) = \langle P_x \psi, \psi \rangle \quad \forall x \in V$$

<u>Notation</u>: $\mathcal{Q}(\mathbb{G})$

$$\mathcal{C}(\mathbb{G})\subseteq\mathcal{Q}(\mathbb{G})\subseteq\mathcal{G}(\mathbb{G})$$

<u>Theorem</u> [Kochen-Specker]: There exists a contextuality scenario \mathbb{G}_{KS} , such that $\mathcal{C}(\mathbb{G}_{KS}) = \emptyset$, while $\mathcal{Q}(\mathbb{G}_{KS}) \neq \emptyset$.

Figure: The scenario $\mathbb{G}_{\textit{KS}}$ proving the Kochen-Specker Theorem.

• Also, $\mathcal{Q}(\mathbb{G}) \subsetneq \mathcal{G}(\mathbb{G})$

The **free hypergraph C*-algebra** $C^*(\mathbb{G})$ [AFLS15] is the universal C*-algebra generated by orthogonal projections p_X , $x \in V$ such that $\sum_{x \in e} p_x = 1$ for every $e \in E$. e.g. $C^*(\mathbb{B}_{X,A}) = \underbrace{\ell_A^{\infty} *_1 \cdots *_1 \ell_A^{\infty}}_{X-times}$.

The *-representations $\pi : C^*(\mathbb{G}) \to \mathcal{B}(H)$ correspond precisely to PR's $(P_x)_{x \in V}$ of \mathbb{G} on H via $\pi(p_x) = P_x$, $x \in V$. Hence quantum models arise as

$$p(x) = \langle \pi(p_x)\xi, \xi \rangle.$$

<u>Definition</u>: Let $\mathbb{G} = (V, E)$ be a contextuality scenario. A **Positive Operator Representation (POR)** of \mathbb{G} on a Hilbert space H is a collection $(A_x)_{x \in V} \subseteq \mathcal{B}(H)^+$ such that

$$\sum_{x\in e} A_x = 1, \;\; ext{for every} \;\; e\in E.$$

A PR, is a POR such that A_x is a projection for every $x \in V$.

• For the Bell scenarios $\mathbb{B}_{X,A}$ a POR $E = (E_{x,a})_{x \in X, a \in A}$ is a family of POVM's.

<u>Remark</u>: A family of POVM's always dilates to a family of PVM's. It's not true for POR's as we will see.

We will construct an operator system universal for positive operator representations.

• Fix a scenario $\mathbb{G} = (V, E)$, and write $E = \{e_1, e_2, \dots, e_d\}$. For each $e \in E$ we set

$$\mathcal{S} := \ell_{e_1}^\infty \oplus \cdots \oplus \ell_{e_d}^\infty$$
.

For $x \in V$, denote by $\delta_x^e \in \ell_e^\infty$ the element with 1 in the x-th, and zero in the remaining ones.

Define

$$\mathcal{J} := \operatorname{span}\{(1 \oplus -1 \oplus \cdots \oplus 0), (1 \oplus 0 \oplus -1 \oplus \cdots \oplus 0), \dots, (1 \oplus 0 \oplus \cdots \oplus -1), \\ (0 \oplus \cdots \oplus \delta_x^{e_i} \oplus \cdots \oplus -\delta_x^{e_j} \oplus \cdots 0) : \forall i \neq j \in \{1, \dots, n\} \text{ s.t. } x \in e_i \cap e_j\}.$$

• By taking an appropriate quotient we turn $\mathcal{S} \, / \, \mathcal{J}$ into an operator system.

<u>Remark</u>: If the hyperedges in \mathbb{G} are mutually disjoint, S / \mathcal{J} is simply the unital coproduct $\ell_{e_1}^{\infty} \oplus_1 \ell_{e_2}^{\infty} \oplus_1 \cdots \oplus_1 \ell_{e_d}^{\infty}$.

For $e \in E$, let $\iota_e : \ell_e^{\infty} \to \bigoplus_{f \in E} \ell_f^{\infty}$ be the natural embedding let $i_e : \ell_e^{\infty} \to S / \mathcal{J}$ be the map given by

$$i_e(u) = |E|(q \circ \iota_e)(u), \quad u \in \ell_e^{\infty}.$$

The maps i_e are ucp but may not always be complete order embeddings so set

$$a_x := i_e(\delta^e_x), \ \ x \in V$$

and thus $\mathcal{S} / \mathcal{J} = \operatorname{span} \{ a_x : x \in V \}.$

Proposition [Anoussis, C., Todorov]: If $\Phi : S / \mathcal{J} \to \mathcal{B}(H)$ is a unital completely positive map then $(\Phi(a_x))_{x \in V}$ is a POR of \mathbb{G} . Conversely, if $(A_x)_{x \in V} \subseteq \mathcal{B}(H)$ is a POR of \mathbb{G} then there exists a unique unital completely positive map $\Phi : S / \mathcal{J} \to \mathcal{B}(H)$ such that $\Phi(a_x) = A_x, x \in V$. Moreover, it is the unique operator system with this property.

We set
$$\mathcal{S}_{\mathbb{G}} := \mathcal{S} / \mathcal{J}$$
.

The operator system for dilatable POR's

Recall the **free hypergraph C*-algebra** $C^*(\mathbb{G})$,

e.g.
$$C^*(\mathbb{B}_{X,A}) = \underbrace{\ell_A^{\infty} *_1 \cdots *_1 \ell_A^{\infty}}_{X-times}$$
 while $\mathcal{S}_{\mathbb{B}_{X,A}} = \underbrace{\ell_A^{\infty} \oplus_1 \cdots \oplus_1 \ell_A^{\infty}}_{X-times}$

Consider

$${\mathcal T}_{\mathbb G} := \operatorname{span}\{p_x : x \in V\} \subseteq C^*({\mathbb G}).$$

• We say that a POR $(A_x)_{x \in V} \subseteq \mathcal{B}(H)$ of \mathbb{G} dilates to a PR, if there exist a Hilbert space \mathcal{K} , an isometry $V : H \to \mathcal{K}$ and a PR $(P_x)_{x \in V}$ of \mathbb{G} such that $A_x = V^* P_x V, x \in V$.

• $\mathcal{T}_{\mathbb{G}}$ is universal for dilatable POR's.

<u>Definition</u>: We say that a POR $(A_x)_{x \in V}$ is **classically dilatable** if there exists a Hilbert space \mathcal{K} and an isometry $V : H \to \mathcal{K}$ and a PR $(P_x)_{x \in V}$ with commuting entries such that $A_x = V^* P_x V$, $x \in V$.

• We can define an operator system $\mathcal{R}_{\mathbb{G}}$ inside an abelian C*-algebra $\mathcal{D}_{\mathbb{G}}$, which is *universal* for classically dilatable POVM representations.

The following diagram of canonical u.c.p. maps arises from their universal properties:

$$\mathcal{S}_{\mathbb{G}} \xrightarrow{\Phi} \mathcal{T}_{\mathbb{G}} \xrightarrow{\Psi} \mathcal{R}_{\mathbb{G}}$$

As a consequence, we obtain the following correspondence:

Prob. models	~~~ `	States on OpSys	
$\mathcal{G}(\mathbb{G})$	$\leftrightarrow \rightarrow$	${\mathcal S}_{\mathbb G}$	
$\mathcal{Q}(\mathbb{G})$	$\leftrightarrow \rightarrow$	${\mathcal T}_{\mathbb G}$	
$\mathcal{C}(\mathbb{G})$	$\leftrightarrow \rightarrow$	$\mathcal{R}_{\mathbb{G}}$	

Dilations

<u>Definition</u>: We say that a scenario \mathbb{G} is dilating (resp. classically dilating), if every POR of \mathbb{G} dilates to a PR (resp. PR with commuting entries) of \mathbb{G} . • e.g. $\mathbb{B}_{X,A}$ is dilating.

<u>**Theorem**</u> [Anoussis, C., Todorov]: Let $\mathbb{G} = (V, E)$ be a contextuality scenario. Then,

- \mathbb{G} is dilating if and only if $\mathcal{S}_{\mathbb{G}} = \mathcal{T}_{\mathbb{G}}$;
- \mathbb{G} is classically dilating if and only if $\mathcal{S}_{\mathbb{G}} = \mathcal{R}_{\mathbb{G}}$

Proposition [Anoussis, C., Todorov]: Scenarios $\mathbb{G} = (V, E)$ such that $e' \cap e'' = \bigcap_{e \in E} e \neq \emptyset$ for all $e', e'' \in E$ with $e' \neq e''$ are dilating.

Proof of Proposition:

• To each edge e_j we associate $\ell_{e_j}^{\infty}$, and view these as (faithful) operator \mathcal{A} -systems over the C*-algebra \mathcal{A} generated by vectors of length equal to the size of $f = \bigcap e_i$ in $\ell_{\mathcal{V}}^{\infty}$ adjoined with a unit.

• A POR corresponds to POVM's of sizes e_j that overlap on f, so they give rise to u.c.p. maps $\phi_{e_i} : \ell_{e_i}^{\infty} \to \mathcal{B}(H)$ that agree on \mathcal{A} .

• By the universal property of the coproduct $\bigoplus_{\mathcal{A}} \ell_{e_j}^{\infty}$ we obtain a ucp map $\phi : \bigoplus_{\mathcal{A}} \ell_{e_j}^{\infty} \to \mathcal{B}(\mathcal{H})$ which extends to a u.c.p. map Φ on the amalgamated free product of C*-algebras $*_{\mathcal{A}} \ell_{e_j}^{\infty}$.

• A Stinespring dilation theorem for Φ yields a dilation of the POR into a PR.

Quantum magic squares

<u>Definition</u> $A = [a_{i,j}] \in M_n(\mathcal{B}(\mathbb{C}^s))$ is called a **quantum magic square**, if $a_{i,j} \in \mathcal{B}(\mathbb{C}^s)^+$, $\forall i, j$ and all rows and columns sum to 1. It's called a **quantum permutation matrix** if moreover $a_{i,j}$ are projections.

Given $n \in \mathbb{N}$ define a hypergraph \mathbb{G}_n by

$$V = [n] \times [n]$$
 and $E = \{\{i\} \times [n], [n] \times \{j\} : i, j = 1, ..., n\},\$

so that a quantum magic square $A = [a_{i,j}]_{i,j=1}^n$, is a POR $(a_{i,j})_{(i,j)\in V}$ on $H = \mathbb{C}^s$ (PR if A was a quantum permutation matrix).

[De las Coves, Drescher, Netzer 20']: For every $n \ge 3$ there exists a quantum magic square of size n that does not dilate to a quantum permutation matrix.

Proposition [Anoussis, C., Todorov]: For every $n \ge 3$ there is a POR of \mathbb{G}_n , that doesn't admit a dilation into a PR. That is, \mathbb{G}_n are not dilating for $n \ge 3$ and $\mathcal{S}_{\mathbb{G}_n} \neq \mathcal{T}_{\mathbb{G}_n}$.

Let $\mathbb{G} = (V, E)$ and $\mathbb{H} = (W, F)$ and $\mathbb{G} \times \mathbb{H} = (V \times W, E \times F)$. A probabilistic model p on $\mathbb{G} \times \mathbb{H}$ is called:

(1) deterministic, if $p(x, y) \in \{0, 1\}$ for all $(x, y) \in V \times W$.

2 classical, if it's a convex combination of deterministic models

$$p(x,y) = p^1(x)p^2(y), \ x \in V, \ y \in W$$

where $p^1 \in \mathcal{G}(\mathbb{G})$, $p^2 \in \mathcal{G}(\mathbb{H})$. <u>Notation</u>: $\mathcal{C}(\mathbb{G}, \mathbb{H})$.

generalised tensor probabilistic model (resp. tensor probabilistic models), if

$$p(x,y) = \langle (A_x \otimes B_y)\psi, \psi \rangle, \quad (x,y) \in V \times W$$

for POR's (resp. PR's) $(A_x)_{x \in V} \subseteq \mathcal{B}(H_{\mathbb{G}})$ and $(B_y)_{y \in W} \subseteq \mathcal{B}(H_{\mathbb{H}})$, dim $H_{\mathbb{G}}$, dim $H_{\mathbb{H}} < \infty$ and $\psi \in H_{\mathbb{G}} \otimes H_{\mathbb{H}}$ unit vector. Notation: $\tilde{\mathcal{Q}}_q(\mathbb{G}, \mathbb{H})$ (resp. $\mathcal{Q}_q(\mathbb{G}, \mathbb{H})$).

generalised commuting probabilistic model (resp. commuting probabilistic models), if

$$p(x,y) = \langle (A_x B_y)\psi, \psi \rangle, \quad (x,y) \in V \times W$$

for POR's (resp. PR's) $(A_x)_{x \in V} \subseteq \mathcal{B}(H)$ and $(B_y)_{y \in W} \subseteq \mathcal{B}(H)$ that commute and $\psi \in H$ unit vector. Notation: $\tilde{\mathcal{Q}}_{qc}(\mathbb{G}, \mathbb{H})$ (resp. $\mathcal{Q}_{qc}(\mathbb{G}, \mathbb{H})$).

Bell Scenarios and Correlations

A correlation

 $p = \{p(a, b \mid x, y)\}_{a \in A, b \in B}^{x \in X, y \in Y}$

gives rise to a **probabilistic model** \tilde{p} on $\mathbb{B}_{X,A} \times \mathbb{B}_{Y,B}$ via:

$$p(a, b \mid x, y) \longmapsto \tilde{p}((x, a), (y, b))$$

and vice versa.

Correlations 🛶	Probabilistic Models
$\mathcal{C}_{\mathrm{loc}}(X,Y,A,B)$	$= \mathcal{C}(\mathbb{B}_{X,A},\mathbb{B}_{Y,B})$
$\mathcal{C}_q(X, Y, A, B)$	$= \mathcal{Q}_q(\mathbb{B}_{X,A},\mathbb{B}_{Y,B})$
$\mathcal{C}_{qa}(X,Y,A,B)$	$= \mathcal{Q}_{qa}(\mathbb{B}_{X,A},\mathbb{B}_{Y,B})$
$\mathcal{C}_{qc}(X,Y,A,B)$	$= \mathcal{Q}_{qc}(\mathbb{B}_{X,A},\mathbb{B}_{Y,B})$

Note: $Q_{qa}(\mathbb{G},\mathbb{H}) = \overline{Q_q(\mathbb{G},\mathbb{H})}.$

Theorem [Anoussis, C., Todorov]:

Prob. Models	\longleftrightarrow	States on OpSys	$\leftrightarrow \rightarrow$	States on C^* -alg
$ ilde{\mathcal{Q}}_{qc}(\mathbb{G},\mathbb{H})$	\longleftrightarrow	${\mathcal S}_{\mathbb G} \otimes_{{\boldsymbol{c}}} {\mathcal S}_{\mathbb H}$	\longleftrightarrow	$\mathcal{C}^*_u(\mathcal{S}_\mathbb{G}) \otimes_{max} \mathcal{C}^*_u(\mathcal{S}_\mathbb{H})$
$ ilde{\mathcal{Q}}_{qa}(\mathbb{G},\mathbb{H})$	\longleftrightarrow	${\mathcal S}_{\mathbb G} \otimes_{min} {\mathcal S}_{\mathbb H}$	\longleftrightarrow	$\mathcal{C}^*_u(\mathcal{S}_\mathbb{G})\otimes_{min}\mathcal{C}^*_u(\mathcal{S}_\mathbb{H})$
$\mathcal{Q}_{qc}(\mathbb{G},\mathbb{H})$	\longleftrightarrow	${\mathcal T}_{\mathbb G} \otimes_{ess} {\mathcal T}_{\mathbb H}$	\longleftrightarrow	$C^*(\mathbb{G})\otimes_{\sf max} C^*(\mathbb{H})$
$\mathcal{Q}_{qa}(\mathbb{G},\mathbb{H})$	\longleftrightarrow	${\mathcal T}_{\mathbb G} \otimes_{min} {\mathcal T}_{\mathbb H}$	\longleftrightarrow	$C^*(\mathbb{G})\otimes_{min} C^*(\mathbb{H})$
$\mathcal{C}(\mathbb{G},\mathbb{H})$	\longleftrightarrow	$\mathcal{R}_{\mathbb{G}} \otimes_{min} \mathcal{R}_{\mathbb{H}}$	\longleftrightarrow	$\mathcal{D}_{\mathbb{G}}\otimes_{min}\mathcal{D}_{\mathbb{H}}$

Where $\tilde{\mathcal{Q}}_{qa}(\mathbb{G},\mathbb{H}) = \overline{\tilde{\mathcal{Q}}_{q}(\mathbb{G},\mathbb{H})}.$

Remarks:

- C^{*}_u(S_G) is the universal C^{*}-cover of S_G and corresponds also to the universal C^{*}-algebra generated by positive elements a_x, x ∈ V that ∑_{x∈E} a_x = 1, for all e ∈ E,
- $c^*(\mathbb{G}) = C^*_e(\mathcal{T}_{\mathbb{G}}).$

Equivalence with Connes embedding problem

Theorem [Anoussis, C., Todorov]: The following are equivalent:

- CEP has an affirmative answer
- $\tilde{\mathcal{Q}}_{qa}(\mathbb{G},\mathbb{G}) = \tilde{\mathcal{Q}}_{qc}(\mathbb{G},\mathbb{G})$ for every scenario \mathbb{G} .
- $C^*_u(\mathcal{S}_{\mathbb{G}}) \otimes_{\min} C^*_u(\mathcal{S}_{\mathbb{G}}) = C^*_u(\mathcal{S}_{\mathbb{G}}) \otimes_{\max} C^*_u(\mathcal{S}_{\mathbb{G}})$ for every scenario \mathbb{G} .
- $\mathcal{S}_{\mathbb{G}} \otimes_{\min} \mathcal{S}_{\mathbb{G}} = \mathcal{S}_{\mathbb{G}} \otimes_{c} \mathcal{S}_{\mathbb{G}}$ for every scenario \mathbb{G} .

and also

- CEP has an affirmative answer
- $\mathcal{Q}_{qa}(\mathbb{G},\mathbb{G}) = \mathcal{Q}_{qc}(\mathbb{G},\mathbb{G})$ for every dilating scenario \mathbb{G} .
- $C^*(\mathbb{G}) \otimes_{\min} C^*(\mathbb{G}) = C^*(\mathbb{G}) \otimes_{\max} C^*(\mathbb{G})$ for every dilating scenario \mathbb{G} .
- $\mathcal{T}_{\mathbb{G}} \otimes_{\min} \mathcal{T}_{\mathbb{G}} = \mathcal{T}_{\mathbb{G}} \otimes_{c} \mathcal{T}_{\mathbb{G}}$ for every dilating scenario \mathbb{G} .

Equivalence with Connes embedding problem

Theorem [Anoussis, C., Todorov]: The following are equivalent:

- CEP has an affirmative answer
- $\tilde{\mathcal{Q}}_{qa}(\mathbb{G},\mathbb{G}) = \tilde{\mathcal{Q}}_{qc}(\mathbb{G},\mathbb{G})$ for every scenario \mathbb{G} .
- $C^*_u(\mathcal{S}_{\mathbb{G}}) \otimes_{\min} C^*_u(\mathcal{S}_{\mathbb{G}}) = C^*_u(\mathcal{S}_{\mathbb{G}}) \otimes_{\max} C^*_u(\mathcal{S}_{\mathbb{G}})$ for every scenario \mathbb{G} .
- $\mathcal{S}_{\mathbb{G}} \otimes_{\min} \mathcal{S}_{\mathbb{G}} = \mathcal{S}_{\mathbb{G}} \otimes_{c} \mathcal{S}_{\mathbb{G}}$ for every scenario \mathbb{G} .

and also

- CEP has an affirmative answer
- $\mathcal{Q}_{qa}(\mathbb{G},\mathbb{G}) = \mathcal{Q}_{qc}(\mathbb{G},\mathbb{G})$ for every dilating scenario \mathbb{G} .
- $C^*(\mathbb{G}) \otimes_{\min} C^*(\mathbb{G}) = C^*(\mathbb{G}) \otimes_{\max} C^*(\mathbb{G})$ for every dilating scenario \mathbb{G} .
- $\mathcal{T}_{\mathbb{G}} \otimes_{\min} \mathcal{T}_{\mathbb{G}} = \mathcal{T}_{\mathbb{G}} \otimes_{c} \mathcal{T}_{\mathbb{G}}$ for every dilating scenario \mathbb{G} .

Thank you!

Motivation

- Preliminaries
- **3** Operator A-systems
- Quantum Contextuality

6 References

Antonio Acín, Tobias Fritz, Anthony Leverrier, and Ana Belén Sainz. A combinatorial approach to nonlocality and contextuality. *Communications in Mathematical Physics*, 334:533–628, 2015.

Roy M. Araiza and Travis B. Russell. An abstract characterization for projections in operator systems. arXiv: Operator Algebras, 2020.

Isabel Leonie Beckenbach. *Matchings and Flows in Hypergraphs.* Dissertation, 2019.

Claude Berge.

Hypergraphs: combinatorics of finite sets, volume 45. Elsevier, 1984.

Adán Cabello.

Experimentally testable state-independent quantum contextuality. *Phys. Rev. Lett.*, 101:210401, Nov 2008.

Adán Cabello, José M. Estebaranz, and Guillermo García-Alcaine. Bell-kochen-specker theorem: A proof with 18 vectors. *Physics Letters A*, 212(4):183–187, 1996.

Alexandros Chatzinikolaou.

On coproducts of operator *A*-systems. *Operators and Matrices*, 17(2):435–468, 2023.

Gemma De las Cuevas, Tom Drescher, and Tim Netzer. Quantum magic squares: Dilations and their limitations. *Journal of Mathematical Physics*, 61(11):111704, 2020.

Tobias Fritz.

Tsirelson's problem and kirchberg's conjecture. *Reviews in Mathematical Physics*, 24:1250012, 2010.

Tobias Fritz.

Curious properties of free hypergraph C^* -algebras. Journal of Operator Theory, 2020.

Marius Junge, Miguel Navascués, Carlos Palazuelos, David Pérez-García, Volkher B. Scholz, and Reinhard F. Werner. Connes' embedding problem and tsirelson's problem. *Journal of Mathematical Physics*, 52:012102–012102, 2010.

Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen.

Mip*=re, 2022.

Ali Samil Kavruk.

Nuclearity related properties in operator systems. Journal of Operator Theory, 71(1):95–156, feb 2014.

- Se-Jin Kim, Vern Paulsen, and Christopher Schafhauser. A synchronous game for binary constraint systems. Journal of Mathematical Physics, 59(3):032201, 03 2018.
- Ali Samil Kavruk, Vern I. Paulsen, Ivan G. Todorov, and Mark Tomforde. Quotients, exactness, and nuclearity in the operator system category. *Advances in Mathematics*, 235:321–360, 2010.
- Martino Lupini, Laura Mancinska, Vern I. Paulsen, David E. Roberson, G. Scarpa, Simone Severini, Ivan G. Todorov, and Andreas J. Winter. Perfect strategies for non-local games. Mathematical Physics, Analysis and Geometry, 23, 2018.
 - M. Lupini, L. Mančinska, V. I. Paulsen, D. E. Roberson, G. Scarpa, S. Severini, I. G. Todorov, and A. Winter.
 Perfect strategies for non-local games.
 Mathematical Physics, Analysis and Geometry, 23(1), 2020.

Vern I. Paulsen and Mizanur Rahaman. Bisynchronous games and factorizable maps. Annales Henri Poincaré, 22:593-614, 2019.

Vern I. Paulsen, Simone Severini, Daniel Stahlke, Ivan G. Todorov, and Andreas Winter. Estimating quantum chromatic numbers.

Journal of Functional Analysis, 270(6):2188–2222, 2016.

Vern I. Paulsen and Ivan G. Todorov. Quantum chromatic numbers via operator systems. Quarterly Journal of Mathematics, 66:677–692, 2013.

Vern I. Paulsen, Ivan G. Todorov, and Mark Tomforde. Operator system structures on ordered spaces. *Proceedings of the London Mathematical Society*, 102(1):25–49, 2011.