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We obtain a representation theorem for module maps defined on the algebra 
K(H) of compact operators. This is used to show that the Haagerup tensor product 
of two operator algebras enjoys strong versions of Tomita’s commutant theorem 
and the slice map property. We also give a general theorem concerning the 
automatic complete boundedness of module maps. (‘ 1991 Academic Press, Inc. 

1. INTRODUCTION 

If d and 39 are algebras of operators in B(H) and d is a left-d 
right-9 submodule of B(H) then 4: & -+ B(H) is called a module map if 
q5(aeb) = a&e)b for UE &, h ~~23, eE b. Such maps arise naturally in 
various contexts and so it is important to determine their structure. The 
most satisfactory answers have been obtained when restricting to the class 
of completely bounded module maps, and so we seek conditions on d and 
39 which imply that module maps are automatically completely bounded. 
This has been featured in several recent papers and we summarize the 
results below in chronological order. 

A module map 4: d --+ B(H) is completely bounded and 11&j = /1&j Ch in 
the following circumstances: 

(i) &= B(H), q5 is normal, ~2 =9= ~2, where ~2’ is a von 
Neumann algebra whose commutant .&’ has the property that all normal 
states are vector states (Haagerup [S]). 

(ii) Same conditions as (i) except that 4 need not be normal (Effros 
and Kishimoto [7]). 

(iii) H is finite dimensional and LXZ = &? = 9, the algebra of diagonal 
operators in B(H) (Paulsen, Power, and Smith [ 141). 
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(iv) &’ and 2 are maximal abelian C*-subalgebras of B(H) 
(Davidson and Power [4]). 

If H is finite dimensional then, of course, all linear maps on B(H) are 
completely bounded. The object of (iii) was to give a short proof of 
11411 = llf#llch for a special case of (i). 

The aim of the first part of this paper is to present a theorem which 
includes the cases cited above, and which has a simpler proof, based on a 
technique developed by Christensen [2]. The second part focuses on a 
structure theorem for completely bounded module maps. Haagerup [S] 
has obtained the representation 

f)(x) = 1 a;xb: 

in the case where d and B are von Neumann algebras, 4 is normal, and 
the elements a( and h,! lie in the commutants of d and 59’. The extension 
to non-normal maps was discussed in [7]. In the third section we obtain 
Haagerup’s representation theorem, but with no restrictions on d and B. 
This more general version is needed for applications to cohomology theory 
which we outline at the end of the section. In the last part of the paper we 
investigate the Haagerup tensor product B(H) @,, B(H). The main results 
are Corollaries 464.8 where we show that this algebra satisfies strong 
versions of Tomita’s cornmutant theorem for von Neumann algebras and 
the slice map property. These results usually fail in other tensor products, 
making the Haagerup tensor product special in this regard. 

For background material the reader should consult the book by Paulsen 
[ 131 and the survey paper by Christensen and Sinclair [3]. Taken 
together they provide a comprehensive overview of the theory of complete 
boundedness. 

2. AUTOMATIC COMPLETE BOUNDEDNESS 

Throughout this section d and 9# will be unital C*-subalgebras of B(H) 
and 6 will be a norm closed subspace of B(H) which is both a left-d 
module and a right-g module. We consider module maps 4: & --* B(H) 
which satisfy 

qS(aeb) = a#(e)b 

for a E d, e E b, h E 9. The main result is the following: 

THEOREM 2.1. Suppose that d and L# have cyclic vectors q and 5, respec- 
tively, and let 4: d + B(H) be a bounded module map. Then q4 is completely 
bounded and 11 q3 II <.,, = 11 q3 11. 
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Proof: We assume without loss of generality that 11411 = 1 and, to reach 
a contradiction, we assume that for some integer n the norm of 
4,: M,(b) + M,(B(H)) exceeds one. Then there exists an element 
(e,)EM,(b) of unit norm such that Il(~J(e~~))ll > 1. Then vectors 

may be chosen from ‘.. OH such that 

> 1. (2.1) 

Since d and 93 have cyclic vectors we may choose elements a,~ d, 
6,~g such that lla,q-qill and llbj5-rill are so small that 

<l 

and 

>l. (2.2) 

We will assume temporarily that a = C a,+ ai and b = C b: bi are invertible 
elements, and remove this restriction at the end of the proof. 

Let v = a”*q, z= bl’*(, ci = a,a - ‘12, and d, = b, b ~ ‘I*. Then, by definition, 

ciq = a;q and d;5”= b,5, 

and (2.2) may be rewritten as 

using the module properties of 4. Now 

(2.3) 
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and a similar calculation shows that 11q11 < 1. The element & clelidj may 
be expressed as the matrix product 

and so has norm at most one since C CT ci = C dTdi = 1. It follows from 
(2.3) that 11411 > 1 and the desired contradiction is reached. 

A modification is necessary if either C a*a, or C h*b, fails to be inver- 
tible. Replace (eV) E M,(d) by (e,-) 00 E M, + ,(a) and replace the vectors 

respectively, for some sufficiently small E > 0. The new vectors will still have 
norms less than one, and the proof proceeds exactly as above. 

Remark 2.2. The most convenient formulation of Theorem 2.1 is in 
terms of cyclic vectors, but it is clear from the proof that the result remains 
valid if the following weaker hypothesis is substituted: 

Given two finite dimensional subspaces K, and K, of H, - 
there exist vectors q, 5 E H such that K, c dq and K, GB~ 
(norm closures). (2.4) 

In order to relate Theorem 2.1 to previous results on module maps we 
require the following lemma, which is close to [S, p. 223-J. 

LEMMA 2.3. Let A! s b(H) bq a von Neumann algebra with commutant 
A?‘, and consider the following conditions: 

(i) Every normal state of A’ is a vector state, 

(ii) Given a finite dimensional subspace K of H, there exists a vector 
5 E H such that KE A<. 

Then (i) implies (ii). 
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ProoJ: Suppose that (i) is satisfied and let K be a finite dimensional 
subspace of H with an orthonormal basis {<i, . . . . r,>. Define a normal 
state by 

and let 5 be a unit vector which implements w. The space .A?‘5 is an 
invariant subspace for A! and so the associated projection p lies in A!‘. 
Then 

and so ( pti, 5;) = 1 for 16 i < n. Thus tie A’( and so KE A[. 
In view of Lemma 2.3 and Remark 2.2 it is clear that Theorem 2.1 

includes the previously known cases. We conclude this section by showing 
that this C*-algebra theorem cannot be deduced from von Neumann 
algebra results. The details are easy and are left to the reader. 

EXAMPLE 2.4. Let H = L’[O, l] and let d = &? = C[O, 11, acting as an 
algebra of multiplication operators on H. Let p denote Lebesgue measure 
on [0, 11. There exists a measurable set Sz such that for any open inter- 
val 1, 

0 < PL(Q n 1) < P(Z) 

[ 163. Let UE L”[O, l] be the self-adjoint unitary 1 - 2~~. Then 
&’ n du = 0 and d = d + &U is a closed d-bimodule in B(H). The map 
4: 8 + B(H) defined by &f+ gu) =f is bounded. Then 4 is a bounded 
&-bimodule map and, since & has a cyclic vector, is also completely 
bounded by Theorem 2.1. It thus extends to an d-bimodule map 
$: B(H)+B(H) [17, 201. Since $(u)=&u)=O, while u$(l)=z&l)=u, it 
is clear that $ is a C[O, 1 ]-bimodule map, but not an L”[O, I]-bimodule 
map. 

3. THE STRUCTURE OF MODULE MAPS 

We begin this section by considering the structure of left-d right-9 
completely bounded module maps 4: K(H) + B(H) where & and GB are 
arbitrary norm closed unital subalgebras of B(H). For notational simplicity 
we will restrict to separable Hilbert spaces although the results remain true 
in general with arbitrary index sets replacing the integers. We will have 
many occasions to consider infinite sums of the form C siktj, and we 
remark that for any fixed k E K(H) the convergence is always in the strong 
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operator topology. When referring to closed subspaces or the closures of 
subspaces we will always mean in the norm topology. The theorem to be 
proved is the following: 

THEOREM 3.1. If 4: K(H) + B(H) is a completely bounded left-d 
right-g module map then there exist sequences (si} and { ti} in the com- 
mutants d’ and a’, respectively, such that C, s,sF, xi t,f+ tie B(H), 

IICf~~.~,*Il llCi t,*t,ll = ll4llf, and,.for all kEK(W, 

d(k) = C sikt;. 

In the case where d and 98 are von Neumann algebras this result was 
established by Haagerup in [S]. There the theorem was formulated in 
terms of normal maps on B(H), which is equivalent to our situation. The 
von Neumann algebra case was further refined in [6, 73 but these proofs 
do not appear to generalize, and we need the full result for the applications 
we have in mind. 

If H is a Hilbert space then H”, 1 <n < co, will denote the n-fold direct 
sum of copies of H, while if x E B(H) then xn will denote the n-fold direct 
sum of copies of x, acting as an operator on H”. We will have no occasion 
to consider powers of an operator and so no confusion should arise. An 
operator t E B(H, H”) may be viewed as a column matrix of operators 
t,E B(H) where xi t,Ttjc B(H), and if 1= {J-i, &, . ..} ~1~ then h. t will 
mean the operator C, J., t, E B(H), where the sum converges in the norm 
topology. In the same way an operator SE B(H”, H) may be viewed as 
a row matrix of operators si E B(H) where xi ~~$7 E B(H). It will be 
convenient to make the following definition. 

DEFINITION 3.2. Let W be a norm closed subspace of B(H). A set of 

operators { ti}, t,E B(H), C, tf  tie B(H), is said to be strongly independent 
over W if I = 0 whenever I E 1, and 3, . t E W. If W is the zero subspace then 
we will say simply that the set { ti} is strongly independent. 

LEMMA 3.3. Suppose that SE B(H”, H), t E B(H, H”), {ti} is strongly 
independent over #, and 

sk”tb - sk”b”t = 0 (3.1) 

for k E K(H), b E 9J. Then s = 0. 

ProoJ Let {~i}~=, b e arbitrary vectors in H. If k is the rank one 
operator 5, @ t2 then (3.1) becomes 

C ((tib-bt,)t,, L)<S,~I, 4,)=0 (3.2) 
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for all b E g. Thus xi (sic,, t4) tj E # (letting t2 and 43 vary over H), and 
so (sit1 , t4) = 0 by the strong independence of {t;} over &9’. The two 
vectors 4, and t4 were arbitrary and so s=O. 

Proof of Theorem 3.1. The representation theorem for completely 
bounded maps, obtained independently by Haagerup [S] and Paulsen 
[ 121, allows us to write such a map 4: K(N) + B(H) in the form 

4(k) = Nk)Y> kEK(H) 

where rr is a representation of K(H) on some Hilbert space H, , y: H -+ HI, 
x: H, -+ H, and llxll I(yll = Il#Ilrb. All irreducible representations of K(H) 
are unitarily equivalent to the identity representation and so in this case 4 
has the form 

d(k) = xk”y, k E K(H), 

where XE B(H”, H) and y E B(H, H”) [S]. Under the assumption that 4 
is a left-d right-g module map, we first show that y may be chosen to 
have components in 49’. 

Decompose 1, as the orthogonal sum L, @L,@ L3 where 
L, = {~EZ~: l.y=O}, L, is the orthogonal complement of L, in {IE/~: 
1. y E a’}, and L, is the orthogonal complement of L, 0 L2 in 1,. The case 
in which all three subspaces are infinite dimensional is typical. Form an 
orthonormal basis (cc;} for I, so that {a,, u4, CL,, . ..}. {a,, u5, a,, . ..}. and 
{ u3, u6, a,, . ..} are bases for L,, L,, and L,, respectively. Let u be the 
unitary matrix whose ith row is a, and observe that u* commutes with k”. 
Thus 

d(k) = xk”y = xk%*uy = xu*k%y 

where 2 = xu* and y = uy. 
Since ji = a, .y it is clear from the construction that jX1+ 2 = 0 and 

jj3,+ r E 99’ for i> 1. We claim that { jj,i} is strongly independent over &?’ 
and that (j3ip, } is strongly independent. The methods are the same in 
both cases and so we look only at the first. Suppose that C, JAij2 < co and 
xi E,jj3i~%?‘. Then (xi Aiusi) .~EB’ and so xi ~,u,,E L, 0 L,, forcing 
ii = 0 since { u3;} is a basis for L,. 

Now 4 is a right-9 module map, and so 

d(k)b -d&b) = 0, for kEK(H), bs@. 

It follows that 

c .fik(jib - bj,) = 0 (3.3) 
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which reduces to 

1 Ijik( jgJ - &;) = 0 (3.4) 

since j3iP2 = 0 and jXi- i EB’. We have already shown that { j,i} is 
strongly independent over a’ and so Lemma 3.3 allows us to conclude that 
ZX, = 0. Thus 4(k) = 1, ZXim, kjXi-, , which has the form 

(b(k) = sk”t, (3.5) 

where the components of t lie in g’ and are strongly independent. 
We now wish to show that the components of s lie in &“. We claim that 

the span of vectors of the form k”tt, kEK(H), (E H, is dense in H”. If 
not, there exists a non-zero vector (<,) E H” such that 

C <kti5,4,> ~0, kEK(H), <EH. (3.6) 

Without loss of generality suppose that 5, # 0, and let k = ll 0 9 where 
q E H is arbitrary. Then (3.6) becomes 

(3.7) 

and so 

Since ((5,,ti)) is a non-zero element of l,, we have contradicted the 
strong independence of { ti}. 

The left-&’ module property of 4 may be expressed as 

(us - sa’=)k’=t~ = 0, a~cd, kEK(H), ~EH 

and so, from above, the operator as -SF annihilates H”. It follows from 
this that si E ~2’. Since s and t are submatrices of XU* and uy, respectively, 
it is clear that ilsll (1 tll = Il&lcb and the proof is complete. 

Remark 3.4. As a consequence of Theorem 3.1, a completely bounded 
left-d right-a module map 4: K(H) -+ B(H) is automatically a left-d” 
right-g” module map. If &’ and &? are not C*-algebras then this is perhaps 
surprising, since in general &” and 5Y’ can be much larger than d and .!8 
even if d and G? are a-weakly closed (see Example 3.5 below). 

It was shown in [ 17, 19, 203 that if & and g are C*-algebras, d is a 
left-d right-@ module in B(H), and I$: 8 + B(H) is a completely bounded 
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module map then 4 has a completely bounded module extension on B(H). 
As we now show, no such extension theorem is possible in general. 

EXAMPLE 3.5. Let S& EM, be the algebra of matrices 

l 0 * * * 0 0 0 0 0 0 0 * 

o***oo 
ooo*oo 
ooo*** 
ooooo* 

where stars denote arbitrary entries. Let u denote the unitary matrix (19 2) 
where I, is the identity on C3. It is easy to check that J& and J&U are 
disjoint subspaces of M,. Let & = d6 @ z&u and define 4: 8 --f M, by 

(b(a + bu) = a, a, bEd6. 

Then 4 is a left-de right-C module map, and it of course completely 
bounded since we are working on a finite dimensional Hilbert space. If C$ 
had a module map extension $ then it would necessarily have the form 

*(xl = xt, 

by Theorem 3.1, since &k = C. But then 

0 = l+qu) = ut, 

and so t = 0, an impossibility. 
Our interest in module maps stems from some joint work with F. L. 

Gilfeather on the cohomology of operator algebras. This will appear else- 
where and so we only briefly indicate the connection. If S? and &J are 
algebras of operators in B(H) then a new algebra {(t t) : a ES/, b E 93, 
t E B(H)} may be formed. If 4: B(H) + B(H) is a left-&’ right-g module 
map then 

is a derivation. It very often happens that such maps are automatically 
normal and completely bounded using Theorem 2.1, and so the first 
cohomology group may be determined using Theorem 3.1. 
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4. PROPERTIES OF THE HAACERUP TENSOR PRODUCT 

If & and 9 are subspaces of B(H) then the algebraic tensor product 
6 0 9 may be given a norm in the following manner. If o = x7= I eiOf, is 
an element of 8 0 9 then 

where the intimum is taken over all representations of u as a finite sum of 
elementary tensors. This norm was introduced in [7] where it was called 
the Haagerup norm. It was shown in [lS] that if d c&i and 9 E& then 
the Haagerup norm of an element in & 0 9 coincides with its norm in 
8r 0 Fr. Thus &Oh 9, the completion of 6 0 9, may be regarded as a 
subspace of B(H) @,, B(H). It was observed in [l] that B(H)@, B(H) 
is a Banach algebra under any one of the four multiplications 
(a 0 b)(c 0 d) = UC 0 bd, ac 0 db, ca 0 bd, or ca 0 db, and our results are 
valid in all cases, although we choose to work with the first. Thus if d and 
&J are subalgebras of B(H) then d Oh 98 is a Banach subalgebra of 
B(H) Qh B(H). We wish to investigate some properties of this algebra, but 
must first establish some notation and four technical results which lead to 
Theorem 4.5. 

If (e,} is a set of operators in B(H) then [ei] will denote the closed 
linear span of these elements. If $ E B(H)* then the right slice map 
R, : B(H) Oh B(H) + B(H) is defined on sums of elementary tensors by 

and the left slice map L, is defined similarly by applying $ to the elements 
bi. Since linear functionals are completely bounded [ 133, it follows from 
the definition of the Haagerup norm that R, and L, are bounded maps 
and so extend uniquely to B(H) Oh B(H). Given subspaces &i E E2 and 
Fr c F2 the Fubini product F(c?, ,9,; &2;0, F2) of 8r and 9, relative to 
&2,0, 4 is defined to be 

In the case cfT2 = 4 = B(H) we will write F( &, , g, ) for 
F(&, , q ; B(H) oh B(H)). Such Fubini products have been considered 
for other tensor norms [ 10, 181. It is clear from the definition that 
E’(8,, g,; g2Bh 4) must contain ~5~ O,, F,, and we will establish equality 
below, a property not enjoyed by other tensor products. 
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If v E& QF then we may associate a map dL’~ CB(K(H)), the space of 
completely bounded maps on K(H) in the &-norm, by 

d,(k) = i e,kh, k E K(H), 
r=l 

where v = C1=, e; Of,. When v has norm less than one there is a represen- 
tation v = Cy= r Pi@yz where /Ix e”,e”,*ji < 1 and III: j‘;*yill < 1, by defintion. 
Writing e” and 7 for the row and column matrices (cl, . . . . e”,) and 

we may represent 4, as the map k -+ Zk”?, from which it is clear that 
11~,11 cb < 1. Thus v + 0, is a contractive map on d 0 9’ and so has a unique 
extension to a contractive map of &Bh F into CB(K(H)). If e and f are 
respectively row and column matrices with components e, and f, then maps 
in CB(K(H)) will be written ek”f or 2 eikfi as convenient. As in Section 3 
we will assume that H is separable for notational simplicity, although the 
theorems are valid in general. 

All results in this section depend on the following: 

LEMMA 4.1. Let SE B(H”, H) and t E B(H, H”) have components 
s,, tiE B(H), respectively, and let W be a closed subspace of B(H). 
Then there exist unitaries u, , u2 E B(I,) and disjoint decompositions 
M, u M2 u M3, N, v N2 v N3 of N such that the components Si and 1, of 

S = su2 and 1= u, t satisfy 

(i) S,=Ofor iEM,, li=Ofor iEN,, 

(ii) i;~Wn [si] for iEM2, ii~%'"n [ti] for iEN2, and {Si}itMz, 

{iilich are strongly independent, 

(iii) s”i~ [si] for iEM3, iiE [t;] for iEN3, and {S”i}itMi, {ir}itN, are 

strongly independent over W, 

(iv) II4 = llsll and llill = Iltll, 
(v) If W is finite dimensional then M, and N, are finite sets. 

Proof: The fourth part is clear since ur and u2 are unitaries. We will 
only consider the case of column matrices. Once this is established we may 
apply it to s* E B(H, H”) and the subspace ?V* to obtain the result for 
row matrices. 

Decompose lz as an orthogonal sum LlOL2OL, where 
L,={31.E12:I..t=O}, L, is the orthogonal complement of L, in 
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{ 3, E I, : I.. t E W}, and L3 is the orthogonal complement of L, CDL, in 1,. 
Amalgamate orthonormal bases for L,, L,, and L, into an orthonormal 
basis (a;} for 1,. Amalgamate orthonormal bases for L,, L,, and L, into 
an orthonormal basis {ai} for I,. Then there exists a decomposition N = 
N,uNzuN, so that {cx~}~~~, is a basis for L,, 1 d Y d 3. Let U, be the 
unitary matrix whose ith row is ai and write i= U, t. Then it is clear that 
the components Zj lie in [t;] and their remaining properties (i)-(iii) are 
verified by following the proof of Theorem 3.1. 

Let W be finite dimensional with dimension j. Suppose that the 
cardinality of N, exceeds j, and choose integers i,, . . . . i,+ r in N,. Then 
a,, . t E W” for 1 <r <j+ 1 and so there must exist a non-trivial linear 
dependence 

J+l 

c 
&air. t = 0. 

r=, 

By definition C:L: ~,u~,E L,, contradicting the disjointness of L, and L,. 
Thus N, has at most j elements and (v) is verified. 

COROLLARY 4.2. Zf SEB(H~,H), teB(H, H”), eE(H”, H), and 
f  E B( H, H”) satisfy 

f s,kt,- i e,kf,=O, kEK(H) 
i=l I=1 

and IIsII, lltll d 1, then there exist .FEB(H”, H) and ~EB(H, H”) such that 

f s”,kS,-- i eikf, = 0, 
i= 1 ,=I 

IISII, 11211 < 1 and SiE [ei] n [si], 7,~ [fi] n [ti]. 

Pro05 Apply Lemma 4.1 to t with W chosen to be the finite dimen- 
sional space [fi]. Then there exists a unitary matrix u and three sets of 
integers N,, N,, and N, such that the components of t’ = ut satisfy 

(a) tj=O, iEN, 

(b) ti E [fi] n [ti], ie N,, a finite set of cardinality m, 

Cc) (tjJitN* are linearly independent and { t,!}i, N, are strongly inde- 
pendent over [fj]. 

Put s’ = SU* and observe that 

sk”t = skwu*ut = su*kmut = s’kmt’ 

from which it follows that 

f’ slktj- i e,kf,=O. 
;= 1 i=l 

(4.1) 
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This reduces, by (a), to 

1 slkt: + c s,!kt( - i eikfi =O. (4.2) 
ieN iENj i= 1 

Let [i, . . . . t4 be arbitrary vectors in H, put k = 5, @ t2 in (4.2), and take 
the inner product to obtain 

C 
reN>uN, 

(4.3) 

Letting t3 and l2 vary, this becomes 

itN3 ,=I ieN> 

and so (s( <i, t4) = 0 for i E N, by the strong independence of {t,};, N, 
over [fi]. The two vectors r, and t4 were arbitrary and so S; = 0 for i E N,. 
Thus (4.2) becomes 

1 sjkt( - i eikfi = 0. (4.5) 
itN2 i=l 

Let {i,, . . . . i,} be the integers in N, and define S,= s; and 7, =sk. Then 
SE B(H”, H), IE B(H, H”), and 

i ?,ki,- i e,kf,=O. (4.6) 
;= I ,=I 

It is clear that llSll 6 IIsu*II = llsll d 1 and a similar inequality holds for 2. It 
only remains to show that Fj~ [ei] since clearly gin [s;]. The set {ii} is 
linearly independent in [fi] by (c), and so extends to a basis {ii};=, for 
[fi]. After expressing each fi in terms of this basis (4.6) may be rewritten 

: S,ki,- i P;ki,=O, (4.7) 
r-1 ,=l 

where e”,~ [ei]. Thus 

f (Si-Zi) kii- i tTjki, =0 
,=I i=m+l 

from which it follows that Si = gi E [ei], as above. This completes the proof. 

The following theorem allows us to study the Haagerup tensor product 
in terms of completely bounded maps. We have been unable to provide a 



COMPLETELYBOUNDED MODULEMAPS 169 

reference which includes a proof, although the result is mentioned in [ll]. 
(We thank Professor Vern Paulsen for drawing our attention to Mathieu’s 
work on elementary operators and their generalizations.) Christensen and 
Sinclair [3] point out that the case of a finite dimensional Hilbert space 
may be deduced from a result in [9]. A closely related characterization of 
the Haagerup norm was given in [ 151, and Blecher [ 1 ] has also obtained 
an isometric representation of d Oh SY, but on a different Hilbert space. 
None of these seem to imply the general case and, since it is an easy conse- 
quence of our previous work, we include a proof. 

THEOREM 4.3. The map v  * 4,. from B(H) O,, B(H) into CB(K(H)) is an 
isome try. 

Proof: We remarked in the introduction to this section that 
l14,11cb6 llullh and so we need only establish the reverse inequality. Let 
U=Cysl e,@f, E B(H) 0 B(H) and suppose that \ld,l1 ch = 1. Then, as in 
the third section, there exist s E B(H”, H), t E B(H, H”), both of unit 
norm, such that 

or equivalently 

h,(k) = sk5t, kE K(H) 

f  s,kti- i e,kf,=O. 
i= I ,=l 

By Corollary 4.2, there exist SE B( H”, H) and iE B( H, H”) satisfying 
IlSll, IIill G 1 such that 

,g, s,ki,- i e,kf=O. 
i= 1 

From this it is clear that u=x;=, SiOii and that liullhd IlSll l[ilj d 1. 
We will also require a result which may be viewed as an asymptotic 

version of Corollary 4.2. We identify H” 0 H” and H”, and regard H” as 
a subspace of H”. 

LEMMA 4.4. Suppose that operators s, c E B(H”, H), t, dg B(H, H”), 
e E B( H”, H), and f  E B( H, H”) satisfy 

sk”t+ck”d-ek”f=O, kE K(H) (4.8) 

and the norm inequalities 

IId> lltll d 1, Ilcll, II4 d E < 1 
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Then there exist operators F, Z E B(H”, H) and i, C?E B(H, W) with the 
following properties: 

(i) S;E [si] and i, E [ ti], 

(ii) IId, Ilill d 1 and ll~ll ll~ll d (3c)‘12, 
(iii) r?k”F+Zkk”;i-ekmf=O, kEK(H). 

ProoJ Equation (4.8) may be written 

(s@c)k” (t@d)-ek”f=O. 

By Lemma 4.1 and the proof of Corollary 4.2 with -Iy- = [fj] there exists a 
unitary matrix u such that (S 0 c) U* and u( t 0 d) have only finitely many 
simultaneously non-zero components. Thus there exists a finite rank 
diagonal projection p E B(1,) such that 

Write 5 = (s @ 0) u*p, i= pu( t 0 0). These matrices have only finitely many 
non-zero entries, the components lie in [si] and [t;], respectively, and IlSll, 
11711 d 1. In addition the map 

q5(k)=(s@c)u*pk”pu(t@d)-Sk”? 

= (O@c)u*pk”pu(t@O)+ (s@O)u*pkmpu(OOd) 

+(O@c)u*pk”pu(O@d) 

has &norm at most E + E + &2 < 3~ and so may be represented as Fkk”d 
where IlFll, liall G (3~)“~. Thus 

Sk”7+Zk%?= ($@c)km (t@d) 

and the result follows from making this substitution in (4.8). 

If 5, and t2 are vectors in H then L,, and R,, will denote respectively 
the left and right slice maps on B(H)@, B(H) with respect to the vector 
functional (.[,, t2). If u=zy=, ai@biE B(H) 0 B(H) then 

(4.9) 
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and by continuity this also holds for v E B(H) Oh B(H). In the same way 

(RIZ(U)53,54) = (4Ai”l Q54)53r 52). (4.10) 

THEOREM 4.5. Let v  E B(H) Qh B(H), and let & and 9 be closed sub- 
spaces of B(H). Then the following statements are equivalent. 

(i) VE&Qh.F, 

(ii) R,(v) E F and L,(v) Ed for all $ E B(H)*, 

(iii) 4, has a representation 

4,,(k) = ek”.L k E K(H), 

where e E B(H”, H) with components in I, f  E B( H, H”) with components in 

9, and II4 = llfll = ll~ll,?‘. 
Proof: (i) 3 (ii) is obvious. Suppose now that (ii) is true, and assume 

without loss of generality that /Iv~/~= 1. Then ~IqJollCh= 1 by Theorem4.3, 
and so 4, has a representation 

d,.(k) = ek”L kEK(W, 

where llell = llfli = 1. By Lemma 4.1 there exists a unitary matrix u and a 
decomposition N = N, v N, u N, so that, writing C = eu* and 7= uf, 

h.(k) = e”k”=,z kE K(H), 

x = 0 for i E N, , x. E 8 for i E N,, and {I.}, t N) is a strongly independent set 
over F. Then, using (4.10), 

Since R12( u) E 9 by hypothesis and 7; E 9 for i E N, by construction, (4.1 
implies that 

which forces Pi = 0 for i E N, since {yi}iE N1 is strongly independent over 9. 
Thus 
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which has the form 

(b,(k) = eky kEmff)> 

where the components off lie in 9. The proof is completed by applying the 
same argument on the left, using Lemma 4.1 and the hypothesis that 
L,,(u) E 8, and observing that iffhas components in F then so does uffor 
any unitary matrix UE B(I,). The norm estimates are clear from the 
construction. Thus (ii) implies (iii). 

Now suppose that /lull ,, = 1 and 

d,(k) = ek”f, kEK(H), 

where the components of e and f lie in d and 9, respectively. Let 0 < E < 1 
and choose u,=C:=, a,@b,~l?(If)~B(H) so that /~u--u,~~,ds2. Put 
u, = uO- U. Then IIvJ~ GE’ so Il~Jc,,ds2, by Theorem 4.3, and thus c$,, 
may be represented by 

h,(k) = ck”d, 

where Ilcll, lIdI/ GE. Since u + o1 -u,,=O, we have 

f e,kfi+ f. c,kd,- i aikbi=O. 
r=l i=l i=l 

By Lemma 4.4 there exist e” E B( H”‘, H), f~ B(H, H”), c” E B(H”, H), 
~EB(H, H”) such that llell, llfll d 1, 11211, Ilall d (3~)“~~ 

.Zk”T+ Fkkoca- ak”b = 0 (4.12) 

and the components of 0 and 7 lie in 8 and F-, respectively. 
Let u,=~~=~~~@~EE~O. Then by (4.12) 

q&,,(k)= -Ek-il 

so 

Ilo2 - UOllh = l14c.2~t10/l’.6 d IlZll llall 6 3E 

from above. Thus 

llV-u2llh= Ilu--v,+%--2ll,~ llu--v,llh+ II%-U2Ilh 

< E2 + 3E < 4E. 

Since E > 0 was arbitrary, u E 6’ Oh 9, and we have proved that (iii) * (i). 
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We are now able to prove the main results of this section which we state 
as corollaries of Theorem 4.5. We remark that they are all false for other 
tensor product norms, which highlights the special nature of the Haagerup 
tensor product. 

COROLLARY 4.6. !f c$, $, 6, 4 are closed subspaces of B(H) then 

(& Oh %) n (4 Oh 4) = (4 n 42) @A% n 4). 

Proof. If UE (&, @,, F,)n (82@o,F2) and $E B(H)* then clearly 
Rti(u)~FlnF2 and &(u)E~, n&. It follows from Theorem 4.5 that 
u E (&i n &) Oh (& n F2), and he reverse inclusion is trivial. 

The next result may be viewed as a strong version in the Haagerup 
tensor product of Tomita’s cornmutant theorem for von Neumann 
algebras. Below, E?(d) will denote the center of an algebra d. 

COROLLARY 4.7. Let d G ~2~ and a G a, be unital subalgebras of B( H). 
Then 

(i) (LZ~@~~)‘=&‘@~#, 

(ii) the relative cornmutant of d oh 929 in 22, oh C.3, is 
(d’nsB,)O, (B’nBl), 

(iii) a(& oh &I) = LJZ(222) oh Z(9). 

Proof (i) If u E (~20, $9) then u commutes with a@ 1 and 1 @b for 
a E d, b E L!S:. If w  = C:=, ei @fi E B(H) 0 B(H) and k E K(H) then 

while 

O(oO ,,w(k) = i aeikfi = af$,,(k). 
i= I 

By continuity these relations hold for w  E B(H) ah B(H) and so, replacing 
w  by u, 0, is a left-d module map. A similar calculation shows that it is 
also a right-98 module map and so, by Theorem 3.1, 4, may be represented 
as 

where si E d’ and ti E L!.#‘. It follows from Theorem 4.5 that u E -c4’Oh ?8’ 
and so (LZZ Oh %9)’ is contained in d’ Oh 29’. The reverse inclusion is trivial. 

(ii) The relative cornmutant of d @,, 59 is (&Oh g)’ n (d, Oh CA?,) 
which, by part (i) and Corollary 4.6, is (&’ n d, ) Oh (92’ n LB,). 
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(iii) This is a special case of (ii) with XZ’, = ~2 and $?, = %?, since 
a(d) = d f-l d’. 

The last result concerns a strong slice map property of the Haagerup 
tensor product. Many papers have been written on slice maps, the most 
recent being [lo] where the idea of synthesis is discussed (the author 
thanks Professor David Larson for drawing his attention to this). This may 
be roughly stated as the property that elements of B(H)@, B(H) may be 
reconstituted from their left and right slices (see (ii) below). The Fubini 
product was introduced at the beginning of the section and we will also 
need the following definition. If u E B(H)@,, B(H), let BU be the closed 
linear span of the images of all right slice maps applied to u, with a similar 
definition for 2” in terms of left slices. 

COROLLARY 4.8. (i) Suppose that &I E C& and e c 4 are closed sub- 
spaces of B(H). Then 

(ii) IfosB(H)ah B(H) then u~dc~@~9~. 

Proof Part (i) is immediate from the equivalence of (i) and (ii) in 
Theorem 4.5. By definition v E F(Y”:, go’,), so by (i) u E 2” O,, a,, proving the 
second assertion. 

Remark 4.9. The previous three corollaries are valid without change in 
B(H,) Q,, B(H,) where H, and H, are possibly distinct Hilbert spaces, and 
this may be seen by working within the algebra B(H, @ H,) a,, B( H, @ Hz). 
Elements of B(H, 0 Hz) may be viewed as square matrices of operators 
relative to H, and H,. Subspaces d c B(H,) and B G B( H,) may be 
identified respectively with the subspaces 

{(: i):e,&} and {(g y) :feS} 

of B(H, @Hz), while unital subalgebras G? c B(H,) and g c B(H,) may be 
embedded respectively in the unital subalgebras 

of B( H, @ H,). 

Note added in proof An unpublished manuscript by U. Haagerup entitled “The x-Tensor 
Product of C*-Algebras” contains an earlier proof of Theorem 4.3. 
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