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The weakly closed algebras generated by certain sets of composition operators 
are shown to be reflexive. A structure theorem for invertible composition operators 
on H’ is obtained and used to show that such operators are reflexive. The structure 
theorem shows that invertible hyperbolic composition operators are similar to 
cosubnormal operators built up from bilateral weighted shifts. Another consequence 
of the structure theorem is that the composition operators induced by hyperbolic 
disc automorphisms are universal. Thus the general invariant subspace problem for 
Hilbert space operators is contained in the problem of determining the invariant 
subspace lattices of these operators. ( 1987 Academx Press. Inc 

1. INTRODUCTION 

Each analytic function Q that maps the unit disk into itself induces a 
composition operator C, on the Hardy space HP (p 3 1); C, is defined by 
(C,f)(z) =f(&z)) for f E HP and 1~1 < 1. The study of composition 
operators, which began with the work of Ryff [28], Nordgren [20], and 
Schwartz [30], has generated an extensive literature (see [21] and [8]). 

Our main results in this paper concern the structure of certain com- 
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position operators and reflexivity of algebras generated by composition 
operators. Cima and Wogen [S] showed that the weakly closed algebra 
generated by the group of all invertible composition operators on H2 is the 
set of all operators that leave the space of constant functions invariant. In 
Section 2 we give a simpler proof of the Cima-Wogen theorem and also 
give some answers to their question of which other groups of composition 
operators generate this algebra. As a consequence we obtain a strengthen- 
ing of known results giving sufficient conditions that the linear span of a set 
of linear fractional transformations be uniformly dense in the disk algebra. 
In Section 3 we show that certain composition operators generate the 
algebra of upper triangular matrices relative to the standard basis of HP. 
Section 4 contains a complete description of the common invariant sub- 
spaces of the backwards shift and a composition operator induced by an 
inner function. In Section 5 we derive a structure theorem for parabolic and 
hyperbolic composition operators and prove that the strongly closed 
algebra generated by a single invertible composition operator on HZ is 
always reflexive, and in Section 6 we show that every hyperbolic com- 
position operator on HZ is cosubnormal and has universal translates. It 
follows that every operator on Hilbert space has an invariant subspace if 
and only if the minimal invariant subspaces of the operator C, for 
d(z) = (2: - 1)/(2 - Z) are one dimensional. 

2. ALGEBRAS GENERATED BY INVERTIBLE COMPOSITION OPERATORS 

The only nontrivial subspace of HP that is obviously invariant under all 
composition operators is the set of C of constant functions in HP. Cima 
and Wogen proved in [S] that in fact C is the only nontrivial common 
invariant subspace of all the invertible composition operators. They also 
showed that the strongly closed unital algebra generated by the invertible 
composition operators on HZ is Alg{ {0}, C, H2}, the algebra of all 
operators leaving (01, C and HZ invariant, and they raised the question of 
which subgroups of the group of invertible composition operators have this 
property. We will give a somewhat improved version of their theorem with 
a shorter proof and provide some information on their question. 

Schwartz [30] showed that a composition operator C, is invertible if 
and only if 4 is a disc automorphism, i.e., 4 is a linear fractional transfor- 
mation carrying the unit disc onto itself. A disc automorphism other than 
the identity either has one fixed point in the open unit disc, or one fixed 
point on the unit circle or two fixed points on the unit circle (see, e.g., 
[4, 123). The three types are called elliptic, parabolic and hyperbolic 
respectively. We will apply the same labels to the composition operators 
induced by each of these types of disc automorphism. If 4 is elliptic and 
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there exists an n such that the composite of 4 with itself n times is the iden- 
tity, then 4 is said to have finite order. Otherwise 4 is said to have infinite 
order. 

A basic fact we will use is that algebras which contain an infinite order 
elliptic composition operator also contain many projections. Define P,, on 
HP for 1 < p < co as follows: iff(z) = C,“=O a,,~“, then (P,,,f)(z) = a,,~‘~. 

LEMMA 2.1. If a strongly closed algebra of operators on HP for 
1 6 p < 00 contains an infinite order elliptic disc automorphism, then it is 
similar to an algebra containing P,, for n = 0, I,... . 

Proof: Let q5 be an infinite order elliptic disc automorphism, and let ‘8 
be a strongly closed unital algebra of operators on HP that contains C,. If 
7 is the fixed point of 4 in the open unit disc and w is a disc 
Gtomorphism that moves z0 to 0, then C,; ‘C,C,,, = C,, where lcll = 1 (see 
[20]). Since 4 has infinite order, CI is not a root of unity. Thus the 
similarity induced by C,,, transforms 2I into an algebra containing C,,. 

It will be shown that if a strongly closed algebra contains C,,, then it 
contains P,, for n = 0, 1, 2 ,... . This follows from a theorem of Wermer in the 
HZ case (see [33]), and it follows from the mean ergodic theorem in the 
general case. The following elementary argument was shown to us by Don 
Hadwin. Let C,, = cC”C,,, and let A, = (l/k)(C,, + C’z + . .. + Cf:). Then 
{A, - P,,};= , is a bounded sequence of operators on HP for 1 < p < x. It 

is easy to see that (.f~ HP: lim, _ ,.(A, - P,,),f = 0) is a closed subspace of 
HP that contains z’ for every .j and thus equals HP. In other words, P,, is 
the strong limit of {Ak}. Since Ak is in the algebra for every k, it follows 
that P,, is in the algebra. 

THEOREM 2.2. Jf q5 is an infinite order elliptic disc automorphism, then, 
,for 1 d p < m, every strongly closed algebra of operators on HP containing 
C, is reflexive. 

Proof By Lemma 2.1, if a strongly closed algebra contains C,, then a 
similarity can be used to transform it to an algebra ‘% containing P,, for 
n=O, l,... . It suffices to prove that such an Cu is reflexive. 

The following argument is essentially the proof of Theorem 1 of [9]. 
Suppose B is an operator such that every invariant subspace of 2I is 
invariant under B. For arbitrary n, Bz” is in the cyclic subspace of 2I deter- 
mined by z”, and thus there is a sequence {A, > in 2I such that 
Bz” = lim, _ a AkzH. It follows that BP,, is the strong limit of {A, Pm};= 1, 
and hence BP, E 2l. Let ok be the kth Cesaro mean of the series C,“+ P,, 
i.e., CT,=~:=, [(k+ 1 -m)/(k+ l)] P,. From the fact that{a,f) con- 
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verges to fin HP for every f in HP (see, e.g., [ 171) it follows that { Ba, > 
converges strongly to B. Since Ba, E 2I, BE 9l. 

THEOREM 2.3. Let q5 be an elliptic disc automorphism of infinite order 
and let + be any disc automorphism that does not commute with q4 under 
composition, Then the only nontrivial common invariant subspace of C, and 
CtionHP(l<p<co)is@. 

Proof Let ‘9I be the strongly closed algebra generated by C, and C,. 
As in the proof of Lemma 2.1, ‘8 can be transformed by a similarity into an 
algebra containing C,; and all the P,,. The transformed algebra has the 
constants as its only nontrivial invariant subspace if and only if the original 
one does, so from here on we let ‘8 be the transformed algebra. 

Let & be an invariant subspace of VI other than (0) and C. Thus 
P,, J%’ # (0) for some n > 0, and since & is invariant under P,, .H contains 
2” . Thus P,C,z” is also in JH. But P, Cj,zl’ = P, $” = az, where 
a = (&P)(O), D being the differentiation operator. Since neither $(O) nor 
$‘(O) is 0, it follows from the chain rule that a # 0, and hence z E JY. Thus 
$=C,z E &! and P,,II/ E &Y for every n, and, since all the Taylor coefftcients 
of II/ are nonzero, z’ E &? for every n. We have shown that .A = HP. 

We are grateful to M. D. Choi for showing us part of the above sim- 
plification of our earlier simplification of the proof. 

COROLLARY 2.4. [f q5 is an infinite order elliptic disc automorphism and 
$ is any disc automorphism that does not commute with 4 under composition, 
then the weakly closed algebra generated by C, and C, is Alg{ (01, C, HP}. 

Proof. This is an immediate consequence of Theorems 2.2 and 2.3. It 
strengthens the result of [S], which was obtained as a consequence of 
~241. 

We remark that Cima and Wogen obtain the following corollary (an 
improvement of a result of Fisher [ 111): the uniformly closed linear span 
of the set of all disc automorphisms is the disc algebra, the set of functions 
continuous on the closed unit disc and analytic on its interior. Our 
Corollary 2.4 implies another improvement. 

COROLLARY 2.5. Let qi be an infinite order elliptic disc automorphism 
and I(/ be any disc automorphism that does not commute with 4. If B is the 
group of disc automorphisms generated by q5 and +, then the uniform closure 
of the linear span of 99 is the disc algebra. 

Proof. We begin by noting that the proof of Cima and Wogen [S] 
applies to the case $9 contains all the disc automorphisms. In our case 9, 

580/73/2-7 
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being countable, is a proper set of disc automorphisms, but, as we show 
below, the uniform closure 5!? of ?? contains all disc automorphisms. (Thus 
Theorem 2.3 can be obtained as a consequence of the result of Cima and 
Wogen, but our proof is considerably shorter.) For this it suffices to con- 
sider the case where 0 is an irrational rotation: d(z) = cxz with lcll = 1. Since 
the powers of c1 are uniformly dense in the unit circle, it follows that B 
contains all rotations. Since Cc, does not commute with d, we have 

l)(z) = e”(2 - a)/( 1 - az) 

with 0 < /a( < 1. Composing $ with ~/[a[ on the right and em”tiz/Jal on the 
left, we see that g contains w  here 

o(z)=(z--)/(I -rz) 

and Y = lal. On composing w  with itself sufhciently many times, we see that 
9 contains transformations of the same form as o but with Y arbitrarily 
close to I. If 

o,,(z) = (z - re”‘)/( 1 - re ‘I’:), 

then o,, E B. A calculation shows that o c o,, has the same form as II/, with 
Jai depending continuously on p and covering the range from 0 to 
2r/( 1 + r’). It follows that 9 contains (Z - s)/( 1 - SZ) for all s with 0 <s < 1, 
and hence 9 contains all disc automorphisms. 

Now the proof given by Cima and Wogen [S, p. 12391 can be applied to 
show that the linear span of g is dense in the disc algebra. 

COROLLARY 2.6. Let Y he a nonabelian group of disc automorphisms. 
The composition operators induced by Y generate Alg{ {0}, @, HP} as a 
strongIll closed algebra lf ,Y contains an infinite order elliptic disc 
automorphism. 

Proof: This follows immediately from Corollary 2.4. 

We remark that there exist nonabelian groups of composition operators 
having two dimensional invariant subspaces. Let 

f+qz)= -z 

and 

for any fixed nonzero r between - 1 and 1. Then 4 is elliptic of order two 
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and $ is hyperbolic, so 4 and $ generate a nonabelian group of disc 
automorphisms. For a E C and - + < Re a < i and /I(z) = i( 1 + z)/( 1 - z), 

Put 

Then f, E HZ and f, are eigenvectors for C, corresponding to eigenvalues 
((l+r)/(l -r))*” (see [20]). Note pod= -l/p, so f+oq5=e'""y,. 
Hence the two-dimensional subspace spanned by f, and fp is invariant 
under both C, and C, and under the group they generate. 

The operators C, can be defined on LP(m), where m is normalized 
Lebesque measure on the unit circle in @, as well as on HP (see [20]), and 
minor modification of our proofs yield analogous results in this setting. We 
content ourselves with stating two results. 

THEOREM 2.1. Let 4 he an infinite order elliptic disc automorphism, and 
let $ he any disc automorphism that does not commute with 4 under com- 
position, The only nontrivial common invariant subspaces of C, and C, on 
LP(m) (1 6 p < co) are @, HP, and HP*, where HP* is the set of complex 
conjugates of,functions in Hp. 

COROLLARY 2.8. If q5 and $ are as in Theorem 2.7, then the strongly 
closed algebra generated by C, and C, is Alg( {0}}, C:, HP, HP*, LP(m)}. 

3. OTHER REFLEXIVE ALGEBRAS 

Lemma 2.1 and Theorem 2.2 also yield the following two results. 

THEOREM 3.1. Let ,? be a nonzero complex number in the closed unit disc 
that is not a root of unity. Also let a and b be nonzero complex numbers that 
satisfy (al + lb1 < 1. Then for 16 p < co the strongly closed algebra 
generated by (1, C;.,, CuZ+,,) is the algebra of all operators in ‘B(HP) that 
leave the subspaces JY~ = Vk=, {z”} invariant for k = 0, 1,2,... 

Proof. If ?I is the strongly closed algebra generated by { 1, Cj.=, CuZ+h}, 
then ‘9l contains all the diagonal operators, by Lemma 2.1. (The case where 
IE-1 < 1 is elementary.) Consequently, the invariant subspaces of ‘$I are all 
spanned by basis vectors zk. If J?’ is invariant under 2l and zk E A, then J%? 
contains CrrT++ zk = (az + b)k. Since neither a nor b is zero, CUZ+h~k is not 
orthogonal to any basis vector z/ with j< k. Hence & contains Ak 
whenever it contains zk, and thus the invariant subspace lattice of ‘$I con- 
sists of {0}, HP and JZk for k = 0, 1, 2 ,... . By Theorem 2.2 2I is reflexive, 
and thus %!I contains all upper triangular matrices in d(HP). 
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THEOREM 3.2. Suppose A, a, b are as above and let C, be a composition 
operator with Ic/ not linear. Then the weakly closed algebra generated bJ1 
11, C;.:, Cu:+ht C,} is Alg{ {0}, C=, HP}. 

ProoJ As above, we need only show that the only nontrivial common 
invariant subspace of Ciz, C,, + ,,, and C, is @. Suppose J?’ is invariant 
under Cj.;, Coz+h, and C,, so JZ = J& for some k, as above. If k 3 1, then 
we have that II/ = Ctie, EM’, and thus $ is a polynomial. It is not linear by 
hypothesis, so k > 1. Thus $k = Ctizk E Jk. But $” has degree greater than 
k, which is impossible, and hence the only common invariant subspace is 
62. 

4. COMMON INVARIANT SUBSPACES OF CERTAIN OPERATORS 
AND THE BACKWARD SHIFT 

In this section we will consider an inner 4 and determine the invariant 
subspaces that C, has in common with the adjoint of the unilateral shift S 
(Sf(z) = zf(z) on Hz). If 4 has a fixed point in the open unit disc, then C, 
is similar to an isometry [20] and all the invariant subspaces of C, are 
known via the Beurling-LaxxHalmos theory. We will write do for 
4(O) = Cd> 1). 

THEOREM 4.1. Suppose 4 is inner and 4, # 0. Then the common invariant 
subspaces of C, and S* are the subspaces HZ 0 zgH’ where g is inner and 
g 0 q5 is a divisor of g. 

Proof: Let & be a proper subspace of HZ that is invariant under both 
C, and S*. By Beurling’s theorem, JY = HZ 0 @HZ for some nonconstant 
inner function $. Since S*d EM it follows C,S*II/ E 4. We have 

~,s**=~~~(lcI-~o)=d(lc/~$-~o)~ 

where $,, = ($, 1). Consequently 

d(lCIod-$o) 1 II/H*: 

thus 



INVERTIBLE COMPOSITION OPERATORSON HP 331 

for some h in HZ. This implies 

and taking inner products of both sides of the above with the constant 
functions 1 yields 

If +0 # 0, then, since &, #O, we would conclude on cancelling 1,9~ and & 
that 1 = rj,$(&,), which by the maximum principle would imply II/ is con- 
stant. Thus tiO = 0, and $ = zg for inner g. By (*), 

which implies g 0 4 is a divisor of g. 
Conversely, suppose .4 = HZ @ zgH2, where g is inner and 

for some inner w. If ,f I zgH2, then gf I zH2 and hence &f~ H2. Con- 
sequently, g 0 @q E HZ, which implies f 0 d I z( g 0 4) H2. Since z( g o 4) HZ 
includes oz( g 0 4) H2, fo 4 is orthogonal to wz( g 0 4) H2 = zgH2. Hence J&’ 
is Cd-invariant. 

COROLLARY 4.2. Let C, be invertible and let g be an inner function. Then 
the following are equivalent: 

(1) gH2 is doubly invariant under C,, i.e., is invariant under both C, 
and C;‘; 

(2) HZ 0 zgH2 is doubly invariant under C, ; 

(3) g is an eigenvector of Cm. 

Proof Given (1 ), C, g = gh and C; ‘g = gh,. This implies g 0 4 and 
g 0 I$ -’ both divide g, which by the theorem implies H2 0 zgH2 is 
invariant under both C, and CT l, and conversely. Thus (1) and (2) are 
equivalent. Also, given (1 ), h and h, are inner and g = (g 0 b)(h, 0 4) = 
gh(hl o d), which implies h(hl 0 4) = 1, and thus h is constant. Hence g is an 
eigenvector. Thus (1) implies (3), and the converse is trivial. 
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5. STRUCTURE AND REFLEXIVITY 
OF INVERTIBLE COMPOSITION OPERATORS 

In this section we will examine composition operators on HZ induced by 
hyperbolic and parabolic disc automorphisms and show that they are 
reflexive. The only other invertible composition operators are those 
induced by elliptic disc automorphisms, and it is easy to see that they are 
reflexive. For if 4 is a disc automorphism with a fixed point q, in the open 
unit disc, then C, is similar to a composition operator of the form CEz 
where jell = 1 (see [20] ). The operator C,= is reflexive because it is unitary, 
and all normal operators are reflexive [29]. 

Let us describe canonical hyperbolic and parabolic disc automorphisms 
(see [4, 121). Define a linear fractional transformation j that carries the 
unit disc to the upper half plane by 

P(z)=i(l +z)/(l -z). 

The hyperbolic disc automorphism with fixed points - 1 and 1 such that 1 
is attracting may be obtained by choosing a > 1 and defining 4 by 
d=jP’(a/3); thus &z)=(z+~)/(l +rz) where r=(a- l)/(a+ 1). A 
parabolic disc automorphism with fixed point 1 is obtained by choosing 
real s#O and defining 4 by q6=bP’(/?+s); thus d(z)= [(s-2i) 
z- S]/(SZ --s - 2i). Given an arbitrary hyperbolic or parabolic 4, there 
exists a disc automorphism w  that moves the fixed points of q5 to the special 
ones. Then C,; ‘C, C,, = C,, q3 cr,-‘> i.e., C, is similar to a composition 
operator of the special type. 

For any disc automorphism 4, define q3(“) as follows: 

qs’“‘(z) = 2 

and for n = 1, 2,..., 

p)=~o$$(“-~I) and ~(~n)=~~-lo~(~~“+l’. 

Let z,, = Q’“‘(O), so in the hyperbolic case 

z,, = (a” - 1 )/(a” + 1 ), (1) 

and in the parabolic case 

z,, = ns/(ns + 29 (2) 

We record two facts for later use. From (1) and (2) /z,,/ = Jz-,I, and hence 
for n#O 

Z, z-z-, 
Pvz) = -c 1 -z_,,z’ 
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Consequently 

P)(z)-zz,= -+(l-lz,*J2)1-; _. (4) 
--n -n’ 

LEMMA 5.1. Let {z,,},y= ~ ~ be the orbit of zero under the iterates of a 
hyperbolic or parabolic disc automorphism. Then {z,,} is an interpolating 
sequence. 

Proof. It suffices to consider the special cases where the fixed points are 
- 1 and 1 for hyperbolic 4 and 1 for parabolic 4. By Carleson’s 
theorem [3], it suffices to show that n,:= _ K,,,fk I(z,,--~~)/(l -Z,z,)l is 
bounded away from zero independently of k. Note that by (3) 

and thus all that needs to be shown is that n,;=, Iz,,~ > 0, or, equivalently 
{z,,} is a Blaschke sequence. In the hyperbolic case 

1 - Iz,~/ = 2/(al”l + 1) 

and in the parabolic case 

1 - I:,,1 = ((ns + 2il - jnsl)/lns + 2il 

=4/[Ins+2i( (lns+2il + jnsl)] 

< 2/n’s’. 

Hence {z,?} is a Blaschke sequence in either case. This establishes the 
lemma. 

Before proceeding to the reflexivity results, we will examine the structure 
of hyperbolic and parabolic composition operators. Let B be the Blaschke 
product with {zn} as its sequence of zeros. Thus B = n,, l Z jlll#“‘), where 
A,, = 1 and A, = 1,/jz,,j if n # 0. It follows that 

Bod=rB, (5) 

where T = n,, z A,,/&,+ 1 = (lim,, -. oc A,)/(lim,, ac A,,). Thus r = -1 in the 
hyperbolic case and T = 1 in the parabolic case. Because of the - 1, the 
hyperbolic case contains some complications that can be avoided in the 
parabolic case, but we will treat both cases in the same way as much as 
possible. 

Let X0 = H2 0 zBH2. By Theorem 4.1, X0 is invariant under both C, 
and C;‘. This also follows from the fact, which we now demonstate, that 
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X0 is the subspace spanned by (4’“‘: n E h}. Since taking the inner product 
of an H2 function with l/( 1 - Wz) is the same as evaluating the function at 
w, it follows that z/(1 -Z.-,z) is in X0. Hence by (4), every 4(n) is in X0. 
Since Ill/(1 -Wz)ll =(l - [w[*)-“~, it also follows from (4) that 
1% + m (4’“’ - z,) = 0. Thus lim, _ 3. 4cn) = 1, and hence the subspace span- 
ned by Cd(“): n E Z} contains the constant functions. Suppose f is 
orthogonal to every 4 . (n) Then f is orthogonal to both the constants and to 
4”‘(z) =z, so f has a zero of order two at the origin. Further, it follows 
from (4) that f is orthogonal to z/( 1 - 2,~) for every n. Thus 

for every n # 0, and it follows that f has a zero at every z,. Hence f is a 
multiple of zB; i.e.,fis orthogonal of X0. We have shown that X0 is span- 
ned by the 4 . M’ Understanding how C, behaves on X0 is the key to the 
other results. Note that X0 includes the constants, so we may write 
X0= C@9, where 9 is semi-invariant for C,. 

THEOREM 5.2. Suppose 4 is a disc automorphism, and q5 is parabolic with 
fixed point 1 or 4 is hyperbolic with fixed points 1 and - 1. Let B be the 
Blaschke product with zeros $‘“‘(O), n E Z, and let X0 be the subspace 
spanned by (q5”“: n E Z}. Then X0 = (zBH’)’ = @ @ 9, and the compression 
qf C, to 9 is similar to a bilateral weighted shijt. 

Proof: The fact that (zBH2)’ is equal to the span of {@‘! n E Z} was 
shown above. Let W be the compression of C, to 9, i.e., if Q is the 
orthogonal projection of X0 onto 9, then W= QC, 1.9. Obviously 
C14’“’ = 4(” + I’, and by the C,-invariance of the projection 1 - Q, we have 

WQqj’“’ = QC,Q@‘t) = QC,@“’ = Q&“+ I’. 

Thus iff n = (l/llQ~“‘li) Q#“‘, and if 

w, = IIQ~~~+l’II/IIQ~‘“‘ll~ (6) 

then Wf,z = w, f,, + , . Since Q#‘“’ = d(R) - z,, it follows from (4) that 

IlQ#“‘ll =(l - Iz-,~*)-~‘* 

and 

(7) 

By Lemma 5.1, {zn) is an interpolating sequence, and hence a result of 
Shapiro and Shields [31] implies that {(l- [~-~~*)‘/*/(l -Z-,z)} is 
similar to an orthonormal set (see also Cowen [6, p. 231). Since 
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multiplication by z is an isometry and 1 -z,/z-,,I = 1, it follows that {fn} is 
similar to an orthonormal set. Hence W is similar to the bilateral weighted 
shift with weight sequence {w,}. 

We remark that one could avoid an appeal to interpolation theory to 
obtain the similarity of {fn} to an orthonormal set if one could show the 
Grammian of {f,,} is a boundedly invertible matrix. Calculation shows that 
this Grammian is a Laurent matrix in the hyperbolic case and unitarily 
equivalent to such a matrix in the parabolic case. The Laurent matrix in 
the hyperbolic case is induced by the function whose Fourier series is 
c,“= - 30 C2/(a’1’2 + a -“‘*)] eine and in th e parabolic case by the function 
-4ne-‘*‘““/s(l -eea4”/“) for O< 0 < 27~. It is easy to see that both these 
functions are in L”(O,27c) and that the latter is invertible. Unfortunately, it 
is not immediate that the former is nonvanishing and hence invertible 
(since it is continuous) for every positive a ( # 1 ), but of course the fact 
established above that {f,,} is similar to an orthonormal set and hence its 
Grammian is invertible implies that it is. It would be desirable to have a 
direct proof. 

In the following corollaries we identify W and draw some conclusions 
concerning C, 1 X0. 

COROLLARY 5.3. Let I$ be a hyperbolic disc automorphism with fixed 
points 1 and - 1 and 4(O) = (a - 1 )/(a + 1) for a > 1. The compression W of 
C, to 9 is similar to the bilateral weighted shift with weight sequence {w,,} 
where w,, = & (a” + 1 )/(a”+ ’ + 1). 

Proof. The only thing that still needs to be verified is the formula for 
u’,,, and this follows easily from (6) (7) and (1). 

COROLLARY 5.4. If 4 satisfies the hypotheses of Corollary 5.3, then 
C, 1 X0 has a s anning set 
satisfying I&< 121 <J;;. 

of eigenvectors, and (C, - i”) X0 = X0 for every 1. 

Proof. Since C, is the identity on @, we have C, / X0 = [A $1 relative 
to the decomposition X0= COY. The sequence {w,!} is decreasing and 
has limits & at - cc and I/,:’ t a a co. In what follows we will make use of 
results on weighted shifts due to Gellar [13, 141, Kelley [18], and 
Ridge [26], but for convenience we will cite references to Shield’s paper 
[32]. By Theorem 9, p. 71, and Proposition 15, p. 72 of [32], the point 
spectrum of W includes the interior of the zero centered annulus with inner 
radius l/& and outer radius J a. Let T* be the weighted shift similar to 
W. Then T is also a weighted shift, and T may be represented as mul- 
tiplication by z on a weighted sequence space L*(p) (see [32, Sect. 33). By 
Theorem 10, p. 79 of [32], all eigenvalues of T* are bounded point 
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evaluations on L’(p), the reproducing kernels associated with these eigen- 
values being the eigenvectors of T* (see [32, Sect. 61). Since every vector in 
L’(p) can be represented as an analytic function on the annulus, the only 
vector in L2(/?) that can be orthogonal to all the eigenvectors, or to any 
“large” set of eigenvectors, is 0. Thus the eigenvectors of W’ corresponding 
to eigenvalues A# 1 span 2. If I = 1, then 10 0 is a corresponding eigen- 
value for C, in X0. If A is an eigenvalue for W, A # 1, and f is a 
corresponding eigenvalue, then ,U 0 f is a corresponding eigenvector for C, 
in X0 provided p = Xfl(L - 1). By the preceding remarks, the eigenvectors 
100 and all the ,u@f spank”. 

To see that l/& < l1.l < ,,& implies (C, - ;1) 1 X0 is onto we first observe 
that W- 1 is onto. For by Proposition 15, p. 72, and Theorem 7, p. 70 of 
[32], the approximate point spectrum of W* consists of the circles with 
center 0 and radii 4 and l/h. Thus W* - 2 has a left inverse, which 
implies W- 1 has a right inverse, and hence W- i is onto. If A # 1, then 
clearly the constants are in (C, - A) X0, and thus (C, - A) Xi, 3 
C@(W-%)~=Xo. 

The case 3, = 1 requires a slightly different argument, for although the 
above shows that W- 1 is onto, it is not immediate that the constants are 
in (C, - 1) X0. For this we need only show that if h is an eigenvector of W 
corresponding to eigenvalue 1, then X/z # 0. Suppose h is in dp, Wh = h and 
Xh =O. This implies ho4 = h, and hence h(z,) = h(0) = 0 for every n. It 
follows that B divides h, and thus Z/I I X0. But H2 = @@dp@ 
zB@ 0 z2BH2, and thus z,X, = .Y GjzBC. It follows that zXO n X,i = 
(Z@zB@) n (zBH’)’ = zB@, i.e., zh = CXZB for some u in @. Hence h = MB, 
which implies c( = 0 since h = h 0 4 = MB 0 4 = -crB. Thus h = 0. 

COROLLARY 5.5. Let 4 be a parabolic disc automorphism with fixed point 
1 and d(O) = s/(s + 2i) with real s # 0. The compression W of C, to Y is 
similar to the bilateral weighted shift with weight sequence {w,,} where 
w, = [ (n2s2 + 4)/((n -t 1)2 s2 + 4)] “2. 

Proof: This follows from Theorem 5.2 and a simple calculation based 
on (6), (7), and (2). 

COROLLARY 5.6. If I$ satisfies the hypotheses of Corollary 5.5, then 
C, ( X0 has a spanning set of eigenvectors. 

Proof: The bilateral shift with weight sequence (We} has the unit circle 
for its spectrum (see [32, Theorem 9, p. 71 and Proposition 15, p, 721). 
Corresponding to each A on the unit circle one obtains an eigenvector 
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fi = bL Z? where a, = I -“(n*,s* + 4) - ‘j2. The set Offj, with J. # 1 form a 
spanning set. For if g= {b”} is orthogonal to this set, then 

Writing i = eiB, we see that the series is an absolutely convergent Fourier 
series, and hence it can vanish on a dense subset of the unit circle only if all 
its coefficients vanish, i.e., only if g = 0. As in the hyperbolic case, it now 
follows that C,l-X, has a spanning set of eigenvectors. This completes the 
proof. 

THEOREM 5.1. Let 4 be a parabolic or hyperbolic disc automorphism with 
fixed points in { - 1, 1 }, let X0 be the span of {1+5”“: nE Z}, and let B be the 
Blaschke product with zeros 4’“‘(O). Define X = & + BXO. Then 
X = (zB*H’)*, B”X is invariant under C, for n = 0, 1, 2,..., and 
B2”X -L BZmX whenever In - ml 2 2. Zf Jr’ = I,:= 0 @ B4”.X and 
M=CzZo@B 4”+2X, then A and -4’ are invariant under C,, C,I A and 
C, / M are unitarily equivalent to inflations of C, 1 X, and JZ? + ,I’ = HZ. 

Proof: Since X0 = (zBH*)’ (see the remarks preceding Theorem 5.2), it 
follows that X0 I zB’H* and B-X, I zB*H*. Thus Xc (zB2H2)l. To 
obtain the reverse inclusion observe lirst that 

H2=X0@zBH2=(BH2)‘@BX0@zB2H’. 

Also observe that BH* 2 zBH2 implies ( BH2)’ c X’. Thus 

(zB*H~)~ = (BH*)’ GJ B&c jr, + BXj, 

which is the desired inclusion. Hence X = (zB2H2)‘-. 
It is a consequence of (5) that if M, is the analytic Toeplitz operator of 

multiplication by B, then 

cp, = tM,C,, 

and hence C, commutes with M& The last equality also implies that B”X 
is invariant under C, for every n. Since M, is an isometry, the com- 
mutativity of C, with Mi implies that C, 1 X is unitarily equivalent to 
C,l B*“X for every It. If k > 3, then BkX c zB*H*, and it follows that 
B*“X I B*“X whenever In - mJ 3 2. 

On putting A = C,“=O GJ B4”X and JV = C,“=O @ B4”+ 2.X, we obtain 
invariant subspaces for C, such that the restriction of C, to any summand 
of &! or J is unitarily equivalent to C, I X. Hence C, I.& and C, I JV are 
unitarily equivalent to inflations, and thus C, 1 J? and C, 1 N are reflexive 



338 NORDGREN,ROSENTHAL, AND WINTROBE 

(see [25, p. 1791). Finally, to see that &Z+,Y‘= H2 observe that 
(B2H2)l c X, and hence 

H2= f @B2”(B2H2)l c f B2”X~A++V 
,, = 0 n=O 

COROLLARY 5.8. If d is a disc automorphism, then C, has a spanning set 
of eigenvectors. 

Proof An operator has the asserted property if and only if it is similar 
to an operator with the property. Thus it suffices to consider elliptic 4 with 
fixed point 0 and parabolic or hyperbolic 4 with fixed points in ( - I, 1). In 
the elliptic case all the basis vectors z’ are eigenvectors. Thus we may 
suppose d is parabolic or hyperbolic, and Theorem 5.7 applies. 

To see that H2 is spanned by eigenvectors of C, it suffices to show that 
Jz’ and N are spanned by eigenvectors of C,. Since C, 1 J? and C, 1 .Af are 
unitarily equivalent to inflations of C, 1 X, it is enough to show that X is 
spanned by eigenvectors of C,. Because of the relation C,M, = rM,C,, it 
will follow that BXO is spanned by eigenvectors of C, if X0 is. Thus the 
problem reduces to showing that X0 is spanned by eigenvectors of C,. But 
this is the content of Corollaries 5.4 and 5.6. 

COROLLARY 5.9. If d is hyperbolic and A is in the interior of a(C,), then 
C, - I is onto. 

Proof: It suffices to consider the case where 4 has fixed points - 1 and 
1, since every hyperbolic C, is similar to such a special one. In the notation 
of Corollary 5.3 the spectrum of C, is the zero centered annulus with inner 
radius l/h and outer radius & (see [20]). Hence for every 2 in the 
interior of a(C,), Corollary 5.4 may be applied to obtain (C, - A) X0 = X0 
and also (C, + 1) X0 = X0. Thus by using A4, C, = -C,M,, we see that 

(+I.) B-x,= -MB(C4+A)X0= BX& 

and it follows that (C, - ,I)X = X. Since C, I&?’ and C, 1 JV are unitarily 
equivalent to inflations of C, 1 X, and HZ = Jz’ + N, we obtain that C, - ,! 
is onto, which completes the proof. 

For 4 parabolic or hyperbolic with fixed points in { - 1, 1 } we know by 
Theorem 5.7 that C, 1 Jfl is unitarily equivalent to an inflation. Thus C, I .I& 
is reflexive (see [25, p. 1791). These observations almost put in a position 
to use the following theorem to show that C, is reflexive in both the hyper- 
bolic and parabolic cases. 

THEOREM 5.10. Let ‘u be a weakly closed unital algebra in 23(X) with 
invariant subspaces A and JV such that 
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(a) there exists an invertible operator T: 4! + JV satisfying 
T(A/JY)=(A(N)T~o~ all A in 2I, 

(b) the weak closure of 9l) 4 is reflexioe, 

(c) ~2’ is spanned by one dimensional invariant subspaces of ‘?I, and 

(d) Jz’++=X. 

Then 2I is reflexive. 

Proof. Suppose B is an operator such that every invariant subspace of 
‘3 is B-invariant. Then by (b), there exists a net {A,} in A such that 
lim, A,lJz’= BIJZ. Hence lim, T(A,jA) T-‘= T(B(.&‘) T-‘. It will suf- 
lice to show that T(BJA) T-‘=BIN. For then lim,AXI&=BII and 
by (a), lim, A, I JV = BI JV, which implies lim, A, = B, by (d). 

Consider an f in 4 such that @f is invariant under ‘%. If A E 2I and 
Af = AJ then ATf = TAf = E.Tf, and consequently the restriction of CLI to 
the subspace spanned by f and Tf consists only of scalar operators, Hence 
the restriction of B to this subspace is also a scalar. Thus 

BTf = BTf =(TBT-‘) Tf 

By (c), the one-dimensional invariant subspaces of Yl span J&‘, and hence 
B( N = T(Bl 4) T- ‘. This completes the proof. 

Our goal is to use the above theorem to prove that hyperbolic and 
parabolic disc automorphisms induce reflexive composition operators. We 
will in fact obtain a stronger result. An algebra 2I of operators is called 
superflexive in case every weakly closed unital subalgebra of ‘?I is reflexive, 
and an operator is called superreflexive in case the weakly closed unital 
algebra that it generates is superreflexive. Sarason [29] showed that nor- 
mal operators and the unilateral shift are superreflexive. (See [ 151 and 
[19] for more on this concept.) Every inflation is in fact superreflexive 
(see [ 151). Thus if ~4’ is the invariant subspace of C, described in 
Theorem 5.7, then C,I 4 is superreflexive. It is easy to see that if 
hypothesis (b) of Theorem 5.10 is strengthened by changing reflexive to 
superreflexive, then the conclusion may be corresponding strengthened. 
Therefore the following holds. 

THEOREM 5.11. Let ‘8 we weakly closed unital algebra in 23(X) with 
invariant subspaces &? and Jf such that 

(a) there exists an invertible operator T: Jt? --) M satisfying 
T(A I&‘)= (AIN)Tfor all A in ‘?I, 

(b) the weak closure of Cu I&? is superreflexive, 
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(c) A? is spanned by one-dimensional invariant s&spaces I$‘$ and 

(d) A+&“=*. 

Then 2l is superrejlexive. 

THEOREM 5.12. Every composition operator C, induced by a hyperbolic 
or parabolic disc automorphism q4 is superreflexive. 

ProoJ Let 2I be the weakly closed unital algebra generated by a hyper- 
bolic or parabolic composition operator. If JV and M are the subspaces 
defined in Theorem 5.7, then condition (d) of Theorem 5.11 is satisfied. The 
restriction of A4: to J is an invertible operator from J@ onto N satisfying 
M~(C,)~)=(C,/Jlr)(M:,/~), so if we take T=MiI&, then part (a) of 
the hypothesis of Theorem 5.11 is satisfied. As noted before the statement 
of Theorem 5.11, the weak closure of (111 J&! is superreflexive, so (b) is 
satisfied. Hypothesis (c) follows from the proof of Corollary 5.8. Hence C, 
is superreflexive. 

COROLLARY 5.3. Every invertible composition operator is superrtlflexive. 

Proof: If 4 is an elliptic disc automorphism, then C, is superreflexive by 
the discussion at the beginning of this section. The theorem covers the 
remaining cases. 

6. SUBNORMALITY AND UNIVERSALITY OF HYPERBOLIC OPERATORS 

We conclude this paper with two additional properties of composition 
operators induced by hyperboiic disc automorphisms. It will be shown they 
are similar to cosubnormal operators, and hence, by the result of Olin and 
Thompson [22] that all subnormal operators are reflexive, we obtain a 
second proof of reflexivity in this case. We also show that they have trans- 
lates that are universal, so the invariant subspace problem can be refor- 
mulated as a problem about composition operators. Carl Cowen has 
obtained Theorem 6.1 by different methods. 

THEOREM 6. I. The adjoint of a composition operator induced by a hyper- 
bolic disc automorphism is similar to a subnormal operator. 

Proof: If 4 is a hyperbolic disc automorphism, then, as before, there is 
no loss of generality in assuming that the fixed points of 4 are 1 and - 1 
and that 1 is attracting. Hence 

42) = (2 + r)/( 1 + rz), 
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where 0 < r < 1. The space H2 may be regarded as a subspace of L’(T), 
where T is the unit circle with normalized Lebesque measure, and C, may 
be extended to L2(T) in the obvious way. We will also denote the extension 
by C,. The proof of subnormality depends on transforming L*(U) to 
L*(R), where R is the real line, and applying the Halmos-Bram criterion 
Cl& 11. 

We obtain a unitarity operator 52 from L’(U) to L*(R) as follows: for 
fE L*(T) put 

where /I is the mapping defined at the beginning of Section 5 (see [ 171). If 
p 0 d = aj?, then define II/ on II2 by $(t) = at, and let C, be the operator on 
L*(R) defined by C,F=Fo$. Thus d~/I~‘=fi-‘o$, and forfEL*(T) we 
obtain 

= [(~(t)+i)/(r+i)]f~P~‘~1Cl(t)/n”2(rC/(r)+i). 

Let A4 be the operator “multiplication by (at + i)/(t + i)” on L*(R). We 
have QC, = MC&Q, and thus it suffices to show that C$M* is subnormal. 
To do this we employ the Halmos-Bram criterion: T is subnormal if and 
only if (T*“‘T’);, = o > 0 for every n [ 16, 11. 

Let M, be “multiplication by (akt + i)/( t + i)” on L*(R). We claim that if 
T* = MC,, then T*” = M,,C;. The case m = 1 is obvious, so suppose the 
asserted formula is true for a given m. Note that if w  E L”(R) and M, 
is “multiplication by 0” on L’(R), then C,,,M,,, = M,, 3 C,. If 
o = (amt + i)/( t + i), then we have 

T*““+“= MC,M,,C~ 

=MM,, ,+cT;+’ 

=N,+‘q!+‘, 

as required. 
To compute T *mT’ it is convenient to introduce some additional 

notation. Write M(o) for M,, let t++,(t) = a’t, and let o,(t) = (a’t f  i)/(t + i). 
Then 

T*mT’= M(o,) C$+l4(o,)* 

= M(o,) C,*‘C$%if(ti,) 

= q’ws 0 $,) M(o,o II/,) CT. 
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It follows that if D = diag( 1, C, ,..., C;), then 

and hence verifying that C, satisfies the Halmos-Bram criterion amounts 
to showing that the matrix (0,0$,(t) G,o$,J~));~~=~ is positive for each 
real t. Let $/, be the 1, m entry of this matrix, so 

Note $o(t) = t, so Ic/,O = o,(r), and $Oo = 1. Hence if d = 
diag( ( t - i) - ’ , (at - i) ’ . . . (a”? - i) ’ ), then 

($,n,);l,n=o=d*(~ 2(‘+n7’t2 + 1 );T,,, = ,d, 

and the problem reduces to proving positivity of (aZ(‘+m)t2 + l);,=O. The 
latter matrix is just t2(a *(‘+ “‘))rnl = 0 plus the identity, and (a*“+ “‘)ym = ,, = 
V@ V, where V is the vector with components 1, a ,..., a”. The asserted 
positivity is now obvious, and the proof is complete. 

We remark that the similarity of hyperbolic composition operators to 
cosubnormal operators distinguishes them from the other types of inver- 
tible composition operators. Elliptic composition operators are similar to 
unitary operators, whereas a parabolic composition operator can not be 
similar even to a seminormal operator. For if C, is parabolic and similar to 
a seminormal operator T, then since a(C,) is the unit circle [20], Putnam’s 
theorem [23] implies that T is unitary. Further, every point of the unit cir- 
cle is an eigenvalue for C, [20], and hence the same is true of T. But a 
unitary operator on a separable space cannot have uncountably many 
eigenvalues. 

An operator U is called universal in case for every operator T, some mul- 
tiple of T is similar to the restriction of U to some invariant subspace. Rota 
showed in [27] that the adjoint of the unilateral shift of infinite multiplicity 
is universal, and Caradus [2] showed that an operator U is universal 
whenever U is onto and has an infinite dimensional kernel. Recall that the 
spectrum of a hyperbolic composition operator is an annulus with 
interior [20]. 

THEOREM 6.2. If q!~ is a hyperbolic disc automorphism and 3. is in the 
interior of the spectrum of C,, then C, - A is universal. 

Proof Since every operator similar to a universal operator is universal, 
it suffices to consider the case where 4 has fixed points - 1 and 1 as before. 
Let 1 be in the interior of the spectrum of C,. Then i is in the point spec- 
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trum of C, see [20]). Iff is an eigenvector of C, corresponding to A and B 
is the Blaschke product defined earlier, then B*“f is also an eigenvector of 
C, corresponding to i for every integer n B 0. Thus C, - 1 has an infinite 
dimensional kernel. It is onto by Corollary 5.9, and hence C, - 1 is univer- 
sal by Caradus’ theorem. 

COROLLARY 6.3. Let C, be an invertible composition operator that is 
hyperbolic. Every operator has an invariant subspace if and only If the 
minimal nontrivial invariant subspaces of C, are all one dimensional. 

Proof: Choose any J. in the interior of a(C,). Let T be any operator. By 
Theorem 6.2, T is similar to a restriction of C, - E. to an invariant subspace 
~4’. If (C, - A) 1 A! has a proper invariant subspace, then so does T; if not, 
then A is minimal invariant subspace of C,. 
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