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Abstract. This note contributes to a circle of ideas that we have been devel-
oping recently in which we view certain abstract operator algebras H∞(E),
which we call Hardy algebras, and which are noncommutative generalizations
of classical H∞, as spaces of functions defined on their spaces of representa-
tions. We define a generalization of the Poisson kernel, which “reproduces”
the values, on D((Eσ)∗), of the “functions” coming from H∞(E). We present
results that are natural generalizations of the Poisson integral formula. They
also are easily seen to be generalizations of formulas that Popescu developed.
We relate our Poisson kernel to the idea of a characteristic operator function
and show how the Poisson kernel identifies the “model space” for the canon-
ical model that can be attached to a point in the disc D((Eσ)∗). We also
connect our Poisson kernel to various “point evaluations” and to the idea of
curvature.
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1. Introduction

This note contributes to a circle of ideas that we have been developing recently in
which we view certain abstract operator algebras, which we call Hardy algebras,
and which are noncommutative generalizations of classical H∞, as spaces of func-
tions defined on their spaces of representations [14–17]. This perspective leads to
a number of pleasant formulas that are very reminiscent of formulas from complex
function theory on the unit disc. More important, however, they help to reveal
structural properties of the algebras and they help to clarify the interplay among
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various constructs that are at work in their analysis. Even in the classical set-
ting of complex functions of one variable, insight is sometimes gained by viewing
classical H∞ as a space of functions on its space of representations, which are pa-
rameterized, essentially, by all the completely non-unitary contractions. Another
source of motivation is the work of Popescu, Davidson and Pitts, and others who
have done extensive work on free semigoup algebras.1 Indeed, many of the results
that we prove here have been been anticipated in this work. What is novel about
our approach, however, is the systematic use of “duality of correspondences” to
put into evidence the effectiveness of viewing elements of our Hardy algebras as
functions on operator discs. When this is done, proofs in the free semigroup picture
often become simpler, shorter and more perspicuous. And they extend to a wide
variety of additional situations in the literature that are of interest.

In the next section, we introduce the basic players in our theory: a W ∗-
algebra M , a W ∗-correspondence E over M and the Hardy algebra they gener-
ate: H∞(E). We then describe how a normal representation σ : M → B(Hσ)
gives rise to a “dual” correspondence, denoted Eσ and we describe how elements
of H∞(E) may be realized as functions defined on the unit ball of the space of
adjoints of Eσ, D((Eσ)∗). In Section 3, we define a generalization of the Pois-
son kernel, which “reproduces” the values on D((Eσ)∗) of the “functions” coming
from H∞(E). When M = E = C and σ is the one dimensional representation
of M , then H∞(E) is classical H∞ realized as analytic Toeplitz operators, and
our Poisson kernel is easily seen to be the classical Poisson kernel formulated in
terms of operators on Hilbert space. Our representation theorems, Theorems 13
and 15 are easily seen to be natural generalizations of the Poisson integral formula.
They also are easily seen to be generalizations of formulas that Popescu developed
in [18] and elsewhere, and they are closely related to formulas that Arveson de-
veloped in [2]. In the fourth section, we relate our Poisson kernel to the idea of
a characteristic operator function and show how the Poisson kernel identifies the
“model space” for the canonical model that can be attached to a point in the
disc D((Eσ)∗) – a structure we developed in [15]. We were inspired here by [20], in
particular. In the next section, Section 5, we consider a Poisson kernel on the unit
ball of E, D(E). Owing to our duality theorem [14, Theorem 3.9], one can think of
this ball as the place to evaluate elements in H∞(Eσ), but in addition, it captures
ideas about “(left) point evaluations” that appear in the systems theory literature,
cf. [1]. Finally, in Section 6, we connect our Poisson kernel to the idea of curvature
and complement results that we proved in [12]. Again, our analysis extends parts
of the theory of curvature for not-necessarily-commuting row contractions that
was developed by Popescu in [19] and Kribs [8]. This work, in turn, was based
on investigations by Arveson [2] in which he introduced a notion of curvature to
study properties of commuting row contractions.

1For a nice survey of the basics of free semigroup algebras, we recommend Ken Davidson’s
article [7].
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2. Preliminaries

We recall a few key ideas from [14] and we refer to that paper for further discussion
and references about the setup with which we will be working here. Throughout
this note M will be a fixed W ∗-algebra. We also fix a W ∗-correspondence E over M .
This means that E is a self-dual Hilbert C∗-module over M and that there is a nor-
mal homomorphism ϕ from M into the W ∗-algebra of all continuous module maps
on E, L(E), giving E an action of M that makes E a bimodule over M . We shall
form the (balanced) tensor powers of E, E⊗n, which are all W ∗-correspondences
over M , and we shall denote the left action of M on E⊗n by ϕn. It is defined by
the formula

ϕn(a)(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn) =
(
ϕ(a)ξ1

)
⊗ (ξ2 ⊗ · · · ⊗ ξn) .

We shall write E⊗0 = M , viewed as a bimodule over itself, so in particular,
ϕ0(a)ξ = aξ. The direct sum E⊗0 ⊕ E⊗1 ⊕ E⊗2 ⊕ · · · is a W ∗-correspondence
over M in an obvious and natural way, which we shall denote by F(E) and call
the Fock space over E. The left action of M on F(E) is the direct sum of the ϕn

and will be denoted ϕ∞. Thus, for a ∈ M ,

ϕ∞(a) = diag
(
ϕ0(a), ϕ1(a), ϕ2(a), . . .

)
,

when we view operators as matrices on F(E) as we shall. An element ξ ∈ E
defines a creation operator Tξ on F(E) via the formula Tξη = ξ⊗η. This operator is
bounded, with adjoint given by the formula T ∗

ξ (ζ⊗η) = ϕ∞(〈ξ, ζ〉)η. Matricially, Tξ

has a form of an operator-valued weighted shift:

Tξ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
T

(1)
ξ 0 0
0 T

(2)
ξ 0

0 T
(3)
ξ

. . .

0
. . . . . . . . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where T
(n)
ξ maps E⊗(n−1) into E⊗n by tensoring with ξ. The ultraweakly closed

subalgebra of L(F(E)) generated by the Tξ, ξ ∈ E, and the ϕ∞(a), a ∈ M , is
called the Hardy algebra of E and is denoted H∞(E). Numerous examples of Hardy
algebras may be found in the literature that we cite, and elsewhere, so we won’t
go into detail here. However, we do want to point out that when M = E = C, the
complex numbers, then H∞(E) is the classical Hardy space of bounded analytic
functions on the open unit disc, H∞, realized as the algebra of all (bounded)
analytic Toeplitz operators on the space �2(Z+). Hence the terminology.

A fundamental feature of our theory is that the ultraweakly continuous com-
pletely contractive representations of H∞(E) can be parametrized by the normal
representations of M and certain contraction operators in a fashion that we want
to describe in some detail. Let σ : M → B(H) be a normal representation of M on
a Hilbert space H. Then σ induces a normal representation σE of L(E) on E⊗σ H,
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defined via the formula σE(X) = X ⊗ IH . In fact, σE is called the induced rep-
resentation of L(E) determined by σ, and we refer to [21] for a discussion of the
general theory. If we form σE ◦ ϕ we obtain a new representation of M that we
denote simply by ϕ⊗I and refer to as the induced representation of M determined
by σ (and E). Suppose that T is an operator from E ⊗σ H to H of norm at most
one that intertwines the induced representation of M and σ, i.e., suppose

T
(
ϕ(a) ⊗ IH

)
= σ(a)T (1)

for all a ∈ M , then T determines an ultraweakly continuous, completely contractive
bimodule map T̂ from E to B(H) via the formula

T̂ (ξ)h = T (ξ ⊗ h) , (2)

ξ ∈ E and h ∈ H. That is, T̂ : E → B(H) is completely contractive, where E
is regarded as an operator space in the operator space structure it inherits as
a subspace of its linking algebra [9, p. 398], and is continuous with respect to
the natural so-called σ-topology of [6] and the ultraweak topology on B(H). The
bimodule property refers to the equation T̂ (ϕ(a)ξb) = σ(a)T̂ (ξ)σ(b), which is
satisfied for all a, b ∈ M and ξ ∈ E. We call the pair (T̂ , σ) an (ultraweakly
continuous completely contractive) covariant representation of E (and M) on H.
Conversely, given such a representation of E and M on a Hilbert space H, (S, σ),
the formula

S̃(ξ ⊗ h) := S(ξ)h , (3)
ξ ⊗ h ∈ E ⊗σ H defines an operator of norm at most 1 from E ⊗σ H to H that
satisfies (1). We denote this operator by S̃, i.e., S̃(ϕ(a) ⊗ IH) = σ(a)S̃ for all

a ∈ M . Clearly, we have ˜̂
T = T and ˆ̃T = T .

The key point is that each ultraweakly continuous, completely contractive
representation ρ, say, of H∞(E) on a Hilbert space H determines a completely
contractive covariant representation of E and M on H through the formulas

σ(a) = ρ
(
ϕ∞(a)

)

and
T (ξ) = ρ(Tξ) ,

and conversely, (almost) every completely contractive covariant representation
(T, σ) “integrates” to an ultraweakly continuous, completely contractive repre-
sentation ρ through these formulas. We say “almost” because while every (T, σ)
“integrates” to a norm-continuous, completely contractive representation ρ of the
norm-closed algebra generated by {Tξ}ξ∈E and ϕ∞(M), which we denote by T+(E)
and call the tensor algebra of the correspondence, the representation ρ need not
extend all the way to H∞(E). (We will say more about this in a moment.) We
write σ×T for the representation determined by (T, σ) on the norm-closed algebra
whether or not it extends to H∞(E)2. If ‖T̃‖ < 1, then σ × T does extend to an

2In some of our papers, we have written “T×σ′′instead of “σ×T”. We apologize for any confusion
this may create.
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ultraweakly continuous, completely contractive representation of H∞ [14, Corol-
lary 2.14]. Thus we can say that once a normal representation σ of M on H is
given, then there is a bijective correspondence between the strictly contractive
intertwiners of σ and ϕ ⊗ I and the ultraweakly continuous, completely contrac-
tive representations ρ of H∞(E) on H such that ρ ◦ (ϕ∞ ⊗ IH) = σ and such
that ‖ρ(Tξ)‖ < c‖ξ‖ for all ξ ∈ E, where c is a prescribed constant less than 1.
This observation suggests that we may adopt the perspective of viewing elements
of H∞(E) as functions on the space of (ultraweakly continuous, completely con-
tractive) representations of H∞(E) in a concrete and transparent fashion. This
suggestion was the principal point of [14] and has been the focus of much of
our subsequent work. To help explain further the functional perspective initiated
in [14], we require the following definition.

Definition 1. If σ : M → B(H) is a normal representation of M on the Hilbert
space H, then we define Eσ to be the space of bounded operators η : H → E⊗σ H
with the property that ησ(a) = (ϕ(a)⊗ IH)η for all a ∈ M . We call Eσ the σ-dual
of E. We write D(Eσ) for the open unit ball in Eσ.

Evidently, the elements of Eσare precisely the adjoints of the space of op-
erators that satisfy (1). Suppose η ∈ D(Eσ) is given. Then η∗ satisfies (1) and
determines an ultraweakly, completely contractive covariant representation (η̂∗, σ)
of E on H. Further, with the aid of [14, Corollary 2.14], the formulas

ϕ∞(a) → σ(a)

and
Tξ → η̂∗(ξ)

extend to give an ultraweakly continuous, completely contractive representation
σ × η̂∗ of H∞(E) on H. On elements of the form (T ξ1

⊗ IH)(T ξ2
⊗ IH) · · · (T ξn

⊗
IH) = (T ξ1⊗ξ2⊗···ξn

⊗ IH), for example, σ × η̂∗ is given by the formula

σ × η̂∗(T ξ1⊗ξ2⊗···ξn
⊗ IH) = η̂∗(ξ1)η̂∗(ξ2) · · · η̂∗(ξn) . (4)

Following [15], we introduce the following terminology.

Definition 2. For η ∈ D(Eσ) and for X ∈ H∞(E), we define

X̂(η∗) := σ × η̂∗(X) . (5)

The resulting function X̂ : D(Eσ)∗ → B(H) is called the Fourier transform of X.

Perhaps the term “Z-transform” is preferable to “Fourier transform”, but
both conjure up formulas such as X̂Y (η∗) = X̂(η∗)Ŷ (η∗) that are clearly evident
from (4).

Remark 3. Suppose M = E = C and that H also is C. Then of course σ can
only be the identity representation of M = C on H, Eσ also may be identified
with C. In this situation, then, D(Eσ) is just the open unit disc D in the complex



226 P. S. Muhly and B. Solel Comp.an.op.th.

plane. The Fourier transform takes an X in H∞(E), which by our definition is an
infinite, lower-triangular, Toeplitz matrix on �2(Z+)

X =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a0 0 0 . . . . . .

a1 a0 0
. . . . . .

a2 a1 a0 0
. . .

a3 a2 a1
. . . . . .

...
. . . . . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

that represents a bounded operator, to a function from D to operators on H = C,
i.e., to numbers. To compute them, simply note that for η ∈ D, η∗ is just the
complex conjugate of η, η, and (5) implies that X̂(η∗) is nothing but multiplication
by the complex number

∑∞
k=0 akηk on C, i.e., for c ∈ C, X̂(η∗)c = (

∑∞
k=0 akηk)c.

It is clear in this example, that for no η on the boundary of D does σ× η̂∗ extend to
an ultraweakly continuous representation of H∞(E). If, next, H = C

n, and again
if σ(a)ξ = aξ, for a ∈ M = C, then Eσ may be viewed as the n × n matrices
over C, and D(Eσ) consists of all those n× n matrices of norm less than 1. If T is
such a matrix, then X̂(T ∗) is the operator on H = C

n given by a similar formula:

X̂(T ∗)ξ =

( ∞∑

k=0

akT ∗k

)

ξ . (6)

It is clear in this case, that for ‖T‖ = 1, σ×T̂ ∗ extends to an ultraweakly continuous
representation of H∞(E) on H if and only if the spectral radius of T is less than
one. Finally, if H is an infinite dimensional Hilbert space, so that σ(a)ξ = aξ,
as before, then Eσ may be identified with B(H) and D(Eσ) may be viewed as
the collection of all operators on H of norm less than one. In this case, X̂(T ∗)
again is given by the formula (6). Now, however, the T ’s of norm one for which
σ×T̂ ∗ extends to an ultraweakly continuous representation of H∞(E) are precisely
those whose minimal unitary dilations are absolutely continuous with respect to
Lebesgue measure on the circle. Such a contraction splits into a completely non-
unitary contraction and an absolutely continuous unitary operator. The value of
X̂(T ∗) for such a T is given by the Sz.-Nagy–Foiaş functional calculus. In [14,
Section 7] we showed, in general, that if η ∈ D(Eσ) is such that η∗ is “completely
noncoisometric”, then σ× η̂∗ extends to an ultraweakly continuous representation
of H∞(E). Beyond this, it is a mystery to us about how to identify points η on
the boundary of D(Eσ) in general such that σ × η̂∗ extends to an ultraweakly
continuous representation of H∞(E).

The reason we focus on Eσ rather than on the space of its adjoints, (Eσ)∗, at
least for some purposes, is that Eσ is a W ∗-correspondence over the commutant
of σ(M), σ(M)′. The point to keep in mind is that the commutant of σE(L(E))
is IE ⊗ σ(M)′ [21, Theorem 6.23], and so Eσ becomes a bimodule over σ(M)′
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according to the formula

a · η · b := (IE ⊗ a)ηb ,

a, b ∈ σ(M)′, ξ ∈ Eσ. The σ(M)′-valued inner product on Eσ is given simply by
operator multiplication:

〈η, ζ〉 := η∗ζ ,

η, ζ ∈ Eσ. For more details about the structure of Eσand examples, see Sections 3
and 4 of [14].

One of the important points for us in this note is that for the representa-
tions ρ of H∞(E) that we defined in [10] and called induced representations, the
commutant of ρ(H∞(E)) can be expressed in terms of induced representations
of H∞(Eσ).

Definition 4. Let σ : M → B(H) be a normal representation of M on a Hilbert
space H and form the Hilbert space F(E)⊗σ H. The induced covariant represen-
tation of E determined by σ is the representation (V, ϕ∞ ⊗ IH) where V : E →
B(F(E) ⊗σ H) is defined by the equation

V (ξ)(η ⊗ h) := (ξ ⊗ η) ⊗ h ,

ξ ∈ E, and η⊗h ∈ F(E)⊗σH. The integrated form of (V, ϕ∞⊗IH), (ϕ∞⊗IH)×V ,
is called the representation of H∞(E) induced by σ. We shall usually write σF(E)

for (ϕ∞⊗IH)×V , and most frequently, we will simply write X⊗IH for σF(E)(X),
X ∈ H∞(E).

The map V is essentially the map defining the tensor powers of E and the
associated map Ṽ : E ⊗ (F(E) ⊗ H) → F(E) ⊗H appears to be just the identity
map embedding

∑∞
k=1 (E⊗k ⊗σ H) into F(E) ⊗σ H. However, it is a bit more

complicated. There is a shift involved, as we shall see later in (24) and subsequent
analysis.

Observe that if η ∈ Eσ, then for each k ≥ 0, IE⊗k ⊗ η may be viewed as a
map from E⊗k ⊗σ H to E⊗(k+1) ⊗σ H. Further, due to the balanced nature of the
tensor products,

(IE⊗k ⊗ η)
(
ϕk(a) ⊗ IH

)
=
(
ϕk+1(a) ⊗ IH

)
(IE⊗k ⊗ η) . (7)

Consequently, we may define a map U : F(Eσ) ⊗ι H → F(E) ⊗σ H, where ι
denotes the identity representation of σ(M)′ in B(H), so that on elements of the
form η1 ⊗ η2 ⊗ · · · ηn ⊗ h ∈ F(Eσ) ⊗ι H, U is given by the formula

U(η1 ⊗ η2 ⊗ · · · ηn ⊗ h) = (IE⊗(n−1) ⊗ η1)(IE⊗(n−2) ⊗ η2) · · · (IE ⊗ ηn−1)ηnh . (8)

In [15], we called U the (inverse) Fourier transform mapping F(Eσ) ⊗ι H to
F(E) ⊗σ H determined by E and σ. It plays a fundamental role in our theory,
as demonstrated by the following theorem, which is a restatement of parts of
Lemma 3.8 and Theorem 3.9 of [14].
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Theorem 5. Let σ : M → B(H) be a faithful normal representation of M on the
Hilbert space H. Then the inverse Fourier transform U : F(Eσ)⊗ιH → F(E)⊗σH
is a Hilbert space isomorphism such that the map

X → UιF(Eσ)(X)U∗ (9)

from H∞(Eσ) to B(F(E)⊗σ H) is an ultraweakly homeomorphic, completely iso-
metric isomorphism from H∞(Eσ) onto the commutant of σF(E)(H∞(E)). Like-
wise, the map

X → U∗σF(E)(X)U (10)

is an ultraweakly continuous, completely isometric isomorphism from H∞(E) onto
the commutant of ιF(Eσ)(H∞(Eσ)).

There is a formula for U−1, but it is somewhat involved, as may be seen
from the proof of [14, Corollary 3.10] and one of our goals is to circumvent it in
calculations. Consequently, we shall not develop it here.

The thrust of Proposition 5.1 of [14] is that one can also express X̂(η∗) in
terms of the map defined by (10) and a “Cauchy” kernel expressed in terms of η
that we define as follows. Write η(n) : H → E⊗n ⊗σ H for the operator given by
the formula:

η(n) = (IE⊗(n−1) ⊗ η)(IE⊗(n−2) ⊗ η) · · · (IE ⊗ η)η , (11)

and write η(0) = IH . Clearly we have the recursive relation:

η(n+1) = (IE ⊗ η(n))η = (IE⊗n ⊗ η)η(n) , (12)

which is a consequence of the formulas first proved in [10, Lemmas 2.1 and 2.2].

Definition 6. The Cauchy kernel defined by an element η ∈ D(Eσ), C(η), is the
operator from H to F(E) ⊗σ H given by the equation

C(η) :=
[
η(0), η(1), η(2), . . .

]ᵀ
.

Observe that since the norm of η is less than 1, C(η) is bounded with norm
at most 1

1−‖η‖ . Observe, too, that from the definition of η(n) in (11) and (7), we
see immediately that C(η) is an element of F(Eσ) when η ∈ D(Eσ). The following
proposition is a restatement of Proposition 5.1 of [14]. It is the starting point of
our analysis.

Proposition 7. Let σ : M → B(H) be a normal representation of M on a Hilbert
space H and let η ∈ D(E) be given. Further, let ρ be the representation of H∞(E)
on F(Eσ) ⊗ι H defined by (10) and let ιH be the embedding of H in F(Eσ) ⊗ι H
as the zeroth summand. Then

X̂(η∗) = C(η)∗Uρ(X)ιH .
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3. The Poisson kernel

We continue with the notation established above and let E be a fixed W ∗-corres-
pondence over a von Neumann algebra M and we let σ be a normal representation
on a Hilbert space H.

Definition 8. For η in D(Eσ), we write Δ∗(η) := (IH − η∗η)
1
2 and we define the

Poisson kernel, K(η), by the formula,

K(η) =
(
IF(E) ⊗ Δ∗(η)

)
C(η) =

(
IF(E) ⊗ Δ∗(η)

)[
η(0), η(1), η(2), . . .

]ᵀ
,

mapping H to F(E) ⊗σ H.

Remark 9. Note that Δ∗(η) commutes with σ(M) and so IF(E)⊗Δ∗(η) commutes
with σF(E)(H∞(E)) = {X ⊗ IH | X ∈ H∞(E)}. Consequently, like the Cauchy
kernel, C(η), the Poisson kernel K(η) lies in F(E)σ. It will be useful to recall
that F(E)σ is a W ∗-correspondence over σ(M)′. Since the action of σ(M)′ on
H is given by the identity representation ι, we shall denote the left action of
σ(M)′ on F(E)σ by ϕ∞,ι to distinguish it from ϕ∞. Likewise, we write ϕι and
ϕk,ι to distinguish between the representations induced from σ and those induced
from ι. So for c ∈ σ(M)′ and η ∈ F(E)σ, ϕ∞,ι(c)η = (IF(E) ⊗ c)η. In particular,
we may write K(η) = ϕ∞,ι(Δ∗(η))C(η). The inner product on F(E)σ is simply
〈X,Y 〉 = X∗Y . So, for a ∈ σ(M)′ and η, ζ ∈ D(Eσ),
〈
C(η), ϕ∞,ι(a)C(ζ)

〉
=
∑

k

〈
η⊗k, ϕk,ι(a)ζ⊗k

〉
=
∑

k

θk
η,ζ(a) = (id − θη,ζ)−1(a)

where θη,ζ(a) = 〈η, ϕι(a)ζ〉. This equation shows that the Szegö-like kernel (id −
θη,ζ)−1 that we introduced in [14, p. 383] is a completely positive definite kernel on
D(Eσ) in the sense of [6, Definition 3.2.2] and that the Cauchy kernel C(η) provides
a “Kolmogorov factoring” of it, just like in the classical setting of function theory
on the disk. This fact was used implicitly in our generalization of the Nevanlinna–
Pick interpolation theorem [14, Theorem 5.3]. It results that F(E)σ may be viewed
as a reproducing kernel Hilbert correspondence in the sense of [5], which in turn
is based substantially upon [14].

Proposition 10. For all η ∈ D(Eσ), K(η) is an isometry mapping H to F(E)⊗σH.

Proof.

K(η)∗K(η) = C(η)∗
(
IF(E) ⊗

(
Δ(η)

)2)
C(η)

=
[
η(0)∗, η∗, η(2)∗, . . .

](
IF(E) ⊗

(
Δ(η)

)2)[
η(0), η, η(2), . . .

]T

=
∑

n

η(n)∗(IE⊗n ⊗ Δ(η)
)2

η(n) = lim
N→∞

N∑

n=0

η(n)∗η(n) − η(n+1)∗η(n+1)

= IH − lim
N→∞

η(N+1)∗η(N+1) = IH . (13)

The passage from the second line to the third is a consequence of (12). �
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Remarks 11. The proof of Proposition 10 shows that for η in the closed unit disk
D(Eσ) the operator

(
IF(E) ⊗ Δ∗(η)

)[
η(0), η(1), η(2), . . .]ᵀ ,

is a contraction mapping H to F(E)⊗σ H. Thus, in the language of [4], ((IF(E) ⊗
Δ∗(η)),

[
η(0), η(1), η(2), · · ·

]ᵀ
) is what is known as an output-stable pair. We may

thus extend K to all of D(Eσ). This extension will be useful in Section 6 where
K(η), for η ∈ D(Eσ), will play a role in the study of the “curvature of η”.

The following lemma shows that the values of the Poisson kernel are “operator
eigenvectors” for the adjoints of the creation operators. The “operator eigenvalue”
for T ∗

ξ ⊗ I determined by η ∈ D(Eσ) is η̂∗(ξ)∗. It extends part (1) of [4, Theo-
rem 2.8].

Lemma 12. For all ξ ∈ E and all η ∈ D(Eσ),

(T ∗
ξ ⊗ I)K(η) = K(η)η̂∗(ξ)∗ .

Proof. Since ‖η‖ < 1, the operator on H, Δ∗(η), is invertible. Also, I ⊗ Δ∗(η)
commutes with (Tξ ⊗ I)∗ so it suffices to prove that η̂∗(ξ)C(η)∗ = C(η)∗(Tξ ⊗ I)
as operators from F(E)⊗σ H to H. To prove equality, it suffices to evaluate both
sides on an element of the form ζ ⊗ h ∈ E⊗n ⊗ H. By definition of C(η) and the
formula (11),

C(η)∗(ζ ⊗ h) = η(n)∗(ζ ⊗ h)

= η∗(IE ⊗ η)∗ · · · (IE⊗(n−1) ⊗ η)∗(ζ ⊗ h) .

Consequently,

η̂∗(ξ)C(η)∗(ζ ⊗ h) = η̂∗(ξ)η∗(IE ⊗ η)∗ · · · (IE⊗(n−1) ⊗ η)∗(ζ ⊗ h)

= η∗
(
ξ ⊗

(
η∗(IE ⊗ η)∗ · · · (IE⊗(n−1) ⊗ η)∗(ζ ⊗ h)

))

= η∗(IE ⊗ η)∗ · · · (IE⊗(n−1) ⊗ η)∗(IE⊗n ⊗ η)∗(ξ ⊗ ζ ⊗ h)

= C(η)∗(ξ ⊗ η ⊗ h)

= C(η)∗(Tξ ⊗ I)(ζ ⊗ h) . �

Theorem 13. For all η ∈ D(Eσ) and all X ∈ H∞(E),

K(η)X̂(η∗)∗ = (X∗ ⊗ IH)K(η) (14)

and
X̂(η∗) = K(η)∗(X ⊗ I)K(η) . (15)

Proof. Remark 9 and Lemma 12 show that formula (14) holds for all X of the form
X = Tξ and X = ϕ∞(a), ξ ∈ E and a ∈ M . (Note that η̂∗(ξ) = T̂ξ(η∗)). Further
these two results show that the range of K(η) is invariant under all these operators.
Thus the formula holds for the ultraweakly closed algebra of operators generated
by all the Tξ and all the ϕ∞(a), ξ ∈ E and a ∈ M . Thus the formula (14) holds for
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all X ∈ H∞(E). See the discussion on page 384 of [14] and [14, Corollary 2.14].
Equation (15) follows from (14) since K(η) is an isometry. �

Remark 14. Formula (14) is can also be derived from [5, Corollary 4.6 (2)]. For-
mula (15) gives another proof that the minimal isometric dilation of the repre-
sentation of H∞(E) on H determined by η in the open disc D(Eσ) is an induced
representation of H∞(E) acting on F(E) ⊗σ H: X �→ X ⊗ I [14, Theorem 2.13].

The following theorem is our replacement for [14, Proposition 5.1]. It captures
more clearly the roles played by the various constructs. We let ιH denote the
embedding of H into F(E) ⊗σ H, and we write PH for its adjoint. Also, ρ is the
representation of H∞(Eσ) defined in (9).

Theorem 15. For all η ∈ D(Eσ) and all X ∈ H∞(E), K(η) = ρ(Δ(η)(I −
Tη)−1)ιH , and

X̂(η∗) = K(η)∗(X ⊗ I)K(η)

= PHρ
(
Δ∗(η)(I − Tη)−1

)∗(X ⊗ IH)ρ
(
Δ∗(η)(I − Tη)−1

)
ιH

= PH

{
ρ
(
(I − Tη)−1

)∗(
IF(E) ⊗ Δ∗(η)2

)
ρ
(
(I − Tη)−1)

)}
(X ⊗ IH)ιH .

Proof. Since IF(E) ⊗ Δ∗(η) = ρ(Δ∗(η)) by [14, Theorem 3.9], it suffices to prove
that C(η) = ρ((I−Tη)−1)ιH . Since (I − T η)−1 =

∑∞
n=0 Tn

η , it suffices to note that
for h ∈ H, ρ(Tn

η )h = U(η ⊗ η · · · ⊗ η ⊗ h) = (IE⊗(n−1) ⊗ η)(IE⊗(n−2) ⊗ η) · · · (IE ⊗
η)ηh = η(n)h. �

4. Characteristic operator functions and canonical models

In [15] we studied canonical models for representations of the Hardy algebras.
So, given η ∈ D(Eσ), it makes sense and is of interest to investigate how the
canonical model of the representation σ× η̂∗ is related to the Poisson kernel K( · ).
We shall see that they are closely related. We fix η ∈ D(Eσ) for the rest of this
section and in the computations that follow, we write Δ∗ = Δ∗(η), which recall
is (IH − η∗η)1/2, and we write Δ = Δ(η) := (IE⊗H − ηη∗)1/2 for the defect
operators associated with η̂∗.3 Note that since η has norm strictly less than one,
the operators Δ and Δ∗ are invertible. Therefore their ranges are all of E⊗H and
H, respectively. Nevertheless, to be consistent with the literature, we continue to
denote the range of Δ by D and the range of Δ∗ by D∗. We already have noted that
Δ∗ commutes with σ(M) and it is immediate that Δ commutes with ϕ(M)⊗ IH .
The characteristic operator of η̂∗ (or, of (η̂∗, σ)) is defined in [15, Equation (12)]
to be an operator Θη̂∗ : F(E) ⊗ρ D → F(E) ⊗ρ D∗ whose complete development
need not be rehearsed here (in particular, the subscript ρ in the notation need

3We apologize to those familiar with Sz.-Nagy–Foiaş model theory. At first glance, one might
expect that the roles of Δ∗(η) and Δ(η) should be reversed. However, this choice is forced upon
us because of our focus on η∗, rather than η.
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not concern us). We will give a different definition whose equivalence with the one
in [15] will follow easily from the next lemma. It will have the advantage that it
leads immediately to a matrix representation that is useful for our purposes. To
simplify notation, we shall write Θη for Θη̂∗ .

Lemma 16. For i = 1, 2 let σi be a faithful normal representation of M on the
Hilbert space Ei and let Y be a bounded linear transformation mapping F(E) ⊗σ1

E1 → F(E)⊗σ2 E2. If Y intertwines σ
F(E)
1 and σ

F(E)
2 , then Y is completely deter-

mined by its values on E1. Conversely, given an operator Y0 from E1 to F(E)⊗σ2E2,
the formula

Y (ξ ⊗ e) = ξ ⊗ Y0e ,

ξ ⊗ e ∈ F(E) ⊗σ1 E1 defines a bounded operator Y : F(E) ⊗σ1 E1 → F(E) ⊗σ2 E2

that intertwines σ
F(E)
1 and σ

F(E)
2 .

Proof. The proof is immediate from Theorem 5. The only thing that might be at
issue is how to handle different spaces and different representations of M , (σi, Ei),
i = 1, 2. One simply forms the direct sum of σ1 and σ2 and induces that. Operators
on the resulting space F(E) ⊗ (E1 ⊕ E2) = F(E) ⊗ (E1) ⊕ F(E) ⊗ (E2) have a
2 × 2 matrix representation, and operators that intertwine σ

F(E)
1 and σ

F(E)
2 can

be realized as matrices of the form ( 0 0
Y 0 ). �

To define the characteristic operator, Θη, determined by an element η ∈
D(Eσ), we note that the analysis found in [15, pp. 429–430] shows that the oper-
ator θη defined on D by the formula,

θηd = −η∗d + (I1 ⊗ Δ∗)Δd +
∞∑

k=2

(Ik ⊗ Δ∗)(I1 ⊗ η(k−2))Δd (16)

for d ∈ D, is a bounded linear operator from D to F(E) ⊗σ D∗.

Definition 17. For η ∈ Eσ, the characteristic operator determined by η is the
operator Θη : F(E) ⊗ϕ⊗I|D D → F(E) ⊗σ D∗defined by the formula

Θη(ξ ⊗ d) = ξ ⊗ θηd , (17)

for d ∈ D and ξ ∈ F(E).

Our next objective is to prove the following theorem which is the principal
result of this section. It was inspired in part by Popescu’s analysis in [19] and [20].
See [20, Theorem 3.2], in particular.

Theorem 18. For η ∈ D(Eσ), the Poisson kernel K(η) and the characteristic
operator Θη are related by the equation

I = K(η)K(η)∗ + ΘηΘ∗
η

on F(E)⊗σD∗ Consequently, for η ∈ D(Eσ), the Poisson kernel K(η) implements
a unitary equivalence between the representatin σ×η̂∗ and its canonical model given
in terms of Θη.
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Proof. With respect to the decompositions F(E)⊗D = D⊕E⊗D⊕E⊗2⊗D⊕· · ·
and F(E)⊗D∗ = D∗⊕E ⊗D∗⊕E⊗2 ⊗D∗⊕ . . ., Θη can be written in a matricial
form Θη = (Θi,j)∞i,j=0 where Θi,j : E⊗j ⊗ D → E⊗i ⊗ D∗. It follows from (17)
that, for i < j, Θi,j = 0. For i = j, we have Θj,j = Ij ⊗ (−η∗) and, for i > j,
Θi,j = Ij ⊗ (Ii−j ⊗ Δ∗)(I1 ⊗ η(i−j−1))Δ|D. This enables us to write the matricial
form of ΘηΘ∗

η (with respect to the decomposition F(E) ⊗ D∗ = D∗ ⊕ E ⊗ D∗ ⊕
E⊗2 ⊗D∗ ⊕ . . .). We start with the diagonal entries.

(ΘηΘ∗
η)k,k =

k∑

l=0

Θk,lΘ∗
k,l

= Ik ⊗ η∗η +
k∑

m=1

Ik−m ⊗ (Im ⊗ Δ∗)(I1 ⊗ η(m−1))

× Δ2(I1 ⊗ η(m−1)∗)(Im ⊗ Δ∗) .

But (I1 ⊗ η(m−1))Δ2(I1 ⊗ η(m−1)∗) = (I1 ⊗ η(m−1))(IE⊗H − ηη∗)(I1 ⊗ η(m−1)∗) =
I1 ⊗ η(m−1)η(m−1)∗ − η(m)η(m)∗ and we get

(ΘηΘ∗
η)k,k = Ik ⊗ η∗η +

k∑

m=1

Ik−m+1 ⊗ (Im−1 ⊗ Δ∗)η(m−1)η(m−1)∗(Im−1 ⊗ Δ∗)

−
k∑

m=1

Ik−m ⊗ (Im ⊗ Δ∗)η(m)η(m)∗(Im ⊗ Δ∗)

= Ik ⊗ η∗η + Ik ⊗ Δ2
∗ − (Ik ⊗ Δ∗)η(k)η(k)∗(Ik ⊗ Δ∗)

= IE⊗k⊗H − (Ik ⊗ Δ∗)η(k)η(k)∗(Ik ⊗ Δ∗) .

Now, fix l < k. Then (ΘηΘ∗
η)k,l =

∑l
m=0 Θk,mΘ∗

l,m. When m = l we get

Θk,lΘ∗
l,l = Il ⊗ (Ik−l ⊗ Δ∗)(I1 ⊗ η(k−l−1))Δ(−η)

= −Il ⊗ (Ik−l ⊗ Δ∗)(I1 ⊗ η(k−l−1))ηΔ∗

= −Il ⊗ (Ik−l ⊗ Δ∗)η(k−l)Δ∗ .

For m < l, Θk,mΘ∗
l,m =

Im ⊗ (Ik−m ⊗ Δ∗)(I1 ⊗ η(k−m−1))Δ2(I1 ⊗ η(l−m−1)∗)(Il−m ⊗ Δ∗) .

But (I1⊗η(k−m−1))Δ2(I1⊗η(l−m−1)∗) = I1⊗η(k−m−1)η(l−m−1)∗−η(k−m)η(l−m)∗.
Hence

Θk,mΘ∗
l,m = Im ⊗ (Ik−m ⊗ Δ∗)(I1 ⊗ η(k−m−1)η(l−m−1)∗)(Il−m ⊗ Δ∗)

− Im ⊗ (Ik−m ⊗ Δ∗)(I1 ⊗ η(k−m)η(l−m−)∗)(Il−m ⊗ Δ∗) .
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Thus

(ΘηΘ∗
η)k,l = −Il ⊗ (Ik−l ⊗ Δ∗)η(k−l)Δ∗ + Il−1 ⊗ (Ik−l+1 ⊗ Δ∗)(I1 ⊗ η(k−l))

× (I1 ⊗ Δ∗) − (Ik ⊗ Δ∗)η(k)η(l)∗(Il ⊗ Δ∗)

= −(Ik ⊗ Δ∗)η(k)η(l)∗(Il ⊗ Δ∗) .

It is easy to check, using the definition of K(η), that the matricial form of
K(η)K(η)∗ is

(
K(η)K(η)∗

)
k,l

= (Ik ⊗ Δ∗)η(k)η(l)∗(Il ⊗ Δ∗)

and we conclude
ΘηΘ∗

η + K(η)K(η)∗ = I .

For the last assertion, observe that Theorem 13 and Definition 2 show that the
Poisson kernel K(η) implements a unitary equivalence between σ × η̂∗ and the
representation of the Hardy algebra obtained by compressing X ⊗ IH ∈ H∞(E)⊗
IH to the range of K(η). The first assertion of the theorem shows that that range
is the orthogonal complement of the range of Θη in F(E)⊗σD∗. The result follows
from Theorem 3.25 of [16]. �

5. Point evaluations on D(E)

Recall from [14, Theorem 3.6] that there is a natural isomorphism between E
and (Eσ)ι, where ι denotes the identity representation of σ(M)′ on H. Thus we
may identify E and (Eσ)ι and view elements of H∞(Eσ) as functions on D(E).
This will help to shed some light on the relation between our work and [1] and
it will enable us to (anti)represent H∞(E) in the algebra of completely bounded
maps on M , CB(M). For this purpose, we adopt the convention that when X ∈
H∞(E) and when we write X1, 1 is understood to be the identity of M viewed
as a vector of F(E) = M ⊕ E ⊕ · · · . So X1 ∈ F(E). We write C(ξ) and K(ξ),
for ξ ∈ D(E), using the obvious modifications of Definitions 6 and 8, and note
that K(ξ) = ϕ∞(Δ∗)C(ξ) where Δ∗ = (I − 〈ξ, ξ〉)1/2. Also, we write E0 for the
conditional expectation of H∞(E). This map is defined as Φ0 on page 336 of [14].
It picks off the zeroth coefficient of an element X ∈ H∞(E) calculated with respect
to the gauge automorphism group.

Theorem 19. For ξ ∈ D(E), and X ∈ H∞(E), we define the map Φξ
X : M → M

by the formula
Φξ

X(a) =
〈
C(ξ), ϕ∞(a)X1

〉
, (18)

for all a ∈ M . Then
(1) For each a ∈ M , Φξ

X(a) is the unique element of M such that

(I − T ∗
ξ )−1

(
ϕ∞(a)X − ϕ∞

(
Φξ

X(a)
))

∈ H∞
0 (E) ,

where H∞
0 (E) :=

∨
{T ξX | ξ ∈ E, X ∈ H∞(E)} = H∞(E) ∩ Ker(E0).
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(2) We have
X∗ϕ∞(a)C(ξ) = ϕ∞

(
Φξ

X(a)∗
)
C(ξ)

and, in particular,

X∗K(ξ) = ϕ∞
(
Φξ

X(Δ∗)∗Δ−1
∗
)
K(ξ) .

So that K(ξ) is an eigenvector of X∗ (cf. Corollary 13).
(3) For each ξ ∈ D(E), the map Φ : X �→ Φξ

X is an algebra antihomomorphism
from H∞(E) into CB(M).

Proof. First note that, since ‖ξ‖ < 1, I − T ∗
ξ is an invertible operator on F(E)

with inverse equal to I +T ∗
ξ +T ∗2

ξ + · · · . We claim that for X ∈ H∞(E), (I +T ∗
ξ +

T ∗2
ξ + · · · )(ϕ∞(a)X − ϕ∞(Φξ

X(a))) lies in H∞
0 (E). If X = Tg for some g ∈ E⊗n,

then

(I + T ∗
ξ +T ∗2

ξ + · · · )
(
ϕ∞(a)X − ϕ∞

(
Φξ

X(a)
))

= (I + T ∗
ξ + T ∗2

ξ + · · · )
(

ϕ∞(a)Tg − ϕ∞
(〈

ξ⊗n, ϕn(a)g
〉)
)

.

Note, too, that T ∗k
ξ ϕ∞(a)Tg = T

∗(k−n)
ξ ϕ∞(〈ξ⊗n, ϕn(a)g〉), for k ≥ n. Thus

(I + T ∗
ξ + T ∗2

ξ + · · · )
(
ϕ∞(a)X − ϕ∞

(
Φξ

X(a)
))

= ϕ∞(a)Tg + T ∗
ξ ϕ∞(a)Tg + T ∗2

ξ ϕ∞(a)Tg

+ · · · + T
∗(n−1)
ξ ϕ∞(a)Tg ∈ H∞

0 (E) . (19)

It follows that the result holds for all operators in a ultraweakly-dense subalgebra
of H∞(E). Since the map taking X ∈ H∞(E) to Φξ

X(a) is ultraweakly-continuous,
(I + T ∗

ξ + T ∗2
ξ + · · · )(ϕ∞(a)X − ϕ∞(Φξ

X(a))) lies in H∞
0 (E) for all X ∈ H∞(E).

To prove uniqueness we need to show that, if c ∈ ϕ∞(M) satisfies (I − T ∗
ξ )−1c ∈

H∞(E)0, then c = 0. But, since (I − T ∗
ξ )−1c = (I + T ∗

ξ + T ∗2
ξ + · · · )c, this is clear

and (1) follows.
To prove (2), fix X ∈ H∞(E), a ∈ M and write Y for (I −T ∗

ξ )−1(ϕ∞(a)X −
ϕ∞(Φξ

X(a))) (in H∞
0 (E)). Then (ϕ∞(a)X−ϕ∞(Φξ

X(a)))∗ = Y ∗(I−Tξ). Since (I−
Tξ)C(ξ) = 1 ∈ F(E), and Y ∈ H∞

0 (E), we have (ϕ∞(a)X − ϕ∞(Φξ
X(a)))∗C(ξ) =

Y ∗(I−Tξ)C(ξ) = 0. This, together with the observation that K(ξ) = ϕ∞(Δ∗)C(ξ),
completes the proof of (2).

Finally, note that the linearity of the map X → Φξ
X is obvious and anti-

multiplicativity follows from the computation Φξ
XZ(a) = 〈X∗ϕ∞(a∗)C(ξ), Z1〉 =

〈ϕ∞(Φξ
X(a)∗)C(ξ), Z1〉 = Φξ

Z(Φξ
X(a)). �

Remark 20.
(i) When we fix X and ξ and let a = I ∈ M , we find that Φξ

X(I) is very closely
related to the concept of “left point evaluation” of X at ξ that was defined
for the special case of upper triangular operators in [1] and studied there
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and in subsequent papers by various authors. (Compare [1, Theorem 3.3]
with Theorem 19(1)). If one adopts the “reproducing kernel correspondence”
point of view discussed in Remark 9, this indeed can be viewed as a point
evaluation. Note, however, that the map X �→ Φξ

X(I) is not multiplicative in
general. (See also [16, Example 2.25]).

(ii) It follows from Theorem 19 that, for each ξ ∈ D(E), the kernel of the map
X → Φξ

X is a two-sided ideal in H∞(E) .

6. Curvature

In this section we express the curvature invariant that we attached to completely
positive maps on semifinite factors [12] in terms of the Poisson kernel. This provides
a further connection between that work, the analyses of Popescu [19] and Kribs [8],
and the study by Arveson [2]. We suppose from now on that M is a semifinite factor
and we fix a faithful normal semifinite trace τ on M . We recall that once τ is fixed,
we may define a dimension for any representation and we can assign a natural trace
to the commutant of the representation (cf. [12, Definition 2.1]). Specifically, if σ
is a normal representation of M on H, then there is a Hilbert space isometry u
from H to L2(M, τ)⊗�2(N), where L2(M, τ) is the L2-space canonically associated
with τ , i.e., the GNS-space, such that uσ(a) = λ(a)⊗I	2(N)u, for all a ∈ M , where λ

is the left representation of M on L2(M, τ). The range projection of u, e, lies in
the commutant of λ(M) ⊗ I	2(N), which is ρ(M) ⊗ B(�2(N)), where ρ is the right
(anti) representation of M on L2(M, τ). The usual trace on ρ(M) ⊗ B(�2(N)) is
τ ⊗tr, where tr is the standard trace on B(�2(N)), i.e., the one that assigns to each
projection in B(�2(N)) its rank. Then, while u and e are not unique, the Murray-
von Neumann equivalence class of e in ρ(M) ⊗ B(�2(N)) is uniquely determined
by σ and so, therefore, τ ⊗ tr(e) ∈ [0,∞] is unique. This number is called the
dimension of H (or of σ) as a module over M . We write this number dimσ H.
It will be important to remember, too, that the commutant of σ(M) is spatially
isomorphic to e(ρ(M)⊗B(�2(N)))e via u and so we can refer to the natural trace
on σ(M)′ as the restriction of τ ⊗ tr to e(ρ(M)⊗B(�2(N)))e. We shall do this and
we shall denote it by trσ(M)′ . If E is a W ∗-correspondence over M of the kind we
have been studying, then the (left) dimension of E is defined to be the dimension
of the representation ϕ ⊗ I, representing M on E ⊗λ L2(M, τ). We denote this
dimension by diml(E). (See [12, Definition 2.5].)

An η ∈ D(Eσ) defines a completely positive map P = Pη on σ(M)′ via the
formula P (a) = η∗(IE ⊗ a)η, a ∈ σ(M)′. Alternatively, given the formula for the
inner product in Eσ, P (a) = 〈η, aη〉. And conversely, given a completely positive
map P on σ(M)′ there a W ∗-correspondence E over M and an η ∈ D(Eσ) such
that P = Pη [11, Corollary 2.23].

Definition 21. Let E be a W ∗-correspondence over the von Neumann algebra M
with diml(E) := d, and let σ be a representation of M on the Hilbert space H.



Vol. 3 (2009) The Poisson Kernel for Hardy Algebras 237

Then for η ∈ D(Eσ), the curvature of η is defined to be the curvature of Pη in the
sense of [12, Definition 3.1], which is the limit

lim
N→∞

trσ(M)′
(
I − PN+1

η (IH)
)

∑N
k=0 dk

,

and will be denoted κ(η).

The limit exists, as was shown in [12, Theorem 3.3], where alternate formulas
for κ(η) may also be found. The basis for the calculations we make here is the
following lemma, whose proof may be assembled easily from [12].

Lemma 22. Let E and F be W ∗-correspondences over M and let σ be normal
representation of M on a Hilbert space H. Then

1. diml(E ⊗ F ) = diml E × diml F .
2. If η, ζ ∈ Eσ, then

trσ(M)′(ζ
∗
η) = tr(ϕ(M)⊗IH)′(ηζ∗) (20)

where ϕ denotes the left action of M on E.
3. For all positive x in σ(M)′, tr(ϕ(M)⊗IH)′(IE ⊗ x) = trσ(M)′(x) · diml E.
4. dimϕ⊗IH

(E ⊗σ H) = diml(E) · dimσ H.

Proof. The first assertion is proved as Corollary 2.8 in [12]. The second assertion
is embedded in the proof of [12, Proposition 2.12]. For the sake of clarity we repeat
the salient part of it here. Form the direct sum H⊕(E⊗σH) and let σ̃ = σ⊕(ϕ⊗IH)
be the representation of M acting on this space. Then the commutant of σ̃(M)
is the set of all matrices of the form

(
a b
c d

)
where a ∈ σ(M)′, d ∈ (ϕ(M) ⊗ IH)′,

bϕ(x) ⊗ IH = σ(x)b and cσ(x) = ϕ(x) ⊗ IHc for all x ∈ M . Further, it is easy to
see that trσ̃(M)′

(
a b
c d

)
= trσ(M)′(a) + tr(ϕ(M)⊗IH)′(d). Thus we find that

trσ(M)′(ζ
∗
η) = trσ̃(M)′

(
ζ∗η 0
0 0

)

= trσ̃(M)′

((
0 ζ∗

0 0

)(
0 0
η 0

))

= trσ̃(M)′

((
0 0
η 0

)(
0 ζ∗

0 0

))

= trσ̃(M)′

(
0 0
0 ηζ∗

)
= tr(ϕ(M)⊗IH)′(ηζ∗) .

The third assertion is [12, Lemma 2.7], and the last assertion follows from the
third by taking x = IH . �

Let E and σ be fixed, now, write d for diml E, and write Pm for the projection
of F(E) onto E⊗m. Also, write P≤m for the sum

∑
k≤m Pk. Then it is evident from

Lemma 22 that

tr(ϕ∞(M)⊗IH)′Pm ⊗ IH = dim(ϕ∞⊗IH) E⊗m ⊗σ H = dm dimσ H .
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Also, we want to remind the reader that we may view the Poisson kernel as defined
on the entire closed unit ball of D(Eσ) (see Remarks 11.)

Theorem 23. If η ∈ D(Eσ), then:
1. If d := diml E is finite, then

κ(η) = lim
N→∞

∑N
k=0 trσ(M)′

[
K(η)∗(Pk ⊗ IH)K(η)

]

(1 + d + d2 + · · · + dN )

= lim
N→∞

tr(ϕ∞(M)⊗IH)′
[
(P≤N ⊗ IH)

(
K(η)K(η)∗

)
(P≤N ⊗ IH)

]

(1 + d + d2 + · · · + dN )
. (21)

2. If d ≥ 1, then

κ(η) = lim
N→∞

trσ(M)′
[
K(η)∗(PN ⊗ IH)K(η)

]

dN

= lim
N→∞

tr(ϕ∞(M)⊗IH)′
[
(PN ⊗ IH)K(η)K(η)∗(PN ⊗ IH)

]

dN
. (22)

3. If d < 1, and if dimσ H is finite or more generally if trσ(M)′(IH −Pη(IH)) is
finite, then tr(ϕ∞(M)⊗IH)′(K(η)K(η)∗) is finite and

κ(η) = (1 − d) · tr(ϕ∞(M)⊗IH)′
(
K(η)K(η)∗

)

= (1 − d) · trσ(M)′
(
K(η)∗K(η)

)
. (23)

In particular, if ‖η‖ < 1 and d < 1, then κ(η) = (1 − d) · dimσ(H) is inde-
pendent of η.

Proof. By definition,

κ(η) = lim
N→∞

trσ(M)′
(
I − PN+1

η (IH)
)

∑N
k=0 dk

,

and by definition of Pη and (13), the numerator in the definition of κ(η) is
∑N

k=0 trσ(M)′ [K(η)∗(Pk⊗IH)K(η)]. This proves the equality of the first two terms
in (21). The equality of the third term with the first two is immediate from (20) in
Lemma 22 (when F(E) is used in place of E). For the second equation, write the
sum

∑N
k=0 trσ(M)′ [K(η)∗(Pk ⊗ IH)K(η)] as trσ(M)′ [K(η)∗(P≤N ⊗ IH)K(η)], then

the two numerators in (22) are the same by Lemma 22. But

lim
N→∞

∑N
k=0 trσ(M)′

[
K(η)∗(Pk ⊗ IH)K(η)

]

(1 + d + d2 + · · · + dN )
= lim

N→∞

trσ(M)′
[
K(η)∗(PN ⊗ IH)K(η)

]

dN

and

lim
N→∞

tr(ϕ∞(M)⊗IH)′
[
(P≤N ⊗ IH)

(
K(η)K(η)∗

)
(P≤N ⊗ IH)

]

(1 + d + d2 + · · · + dN )

= lim
N→∞

tr(ϕ∞(M)⊗IH)′
[
(PN ⊗ IH)K(η)K(η)∗(PN ⊗ IH)

]

dN
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using [12, Lemma 3.2] (first noted in [19, p. 280]) and the arguments from the
proof of [12, Theorem 3.3]. This proves (22). Finally, for (23), observe that when
d < 1 and trσ(M)′(IH − Pη(IH)) < ∞, the argument in the last paragraph of
the proof of [12, Theorem 3.3] shows that the traces trσ(M)′(IH − PN

η (IH)) in-
crease to a finite limit. Since each of these traces equals tr(ϕ∞(M)⊗IH)′ [(P≤N−1 ⊗
IH)(K(η)K(η)∗)(P≤N−1 ⊗ IH)] by Lemma 22, the normality of the trace,
tr(ϕ∞(M)⊗IH)′ , implies that tr(ϕ∞(M)⊗IH)′(K(η)K(η)∗) < ∞. As in the proof
of [12, Theorem 3.3], the proof of (23) is immediate from the definition of κ(η),
the formula for the partial sums of a geometric series, and the fact that d < 1. �

Our final goal is to relate the curvature, κ(η), with the trace of the “curvature
operator” naturally associated to η. To define this operator, we need to say a bit
more about the induced covariant representations of E, Definition 4. Recall that
it is (V, ϕ∞ ⊗ IH), where V : E → B(F(E) ⊗σ H) is defined by the formula
V (ξ) = Tξ ⊗ IH . The associated map Ṽ : E⊗F(E)⊗σ H → F(E)⊗σ H is “simply
multiplication”: Ṽ (ξ ⊗ (η ⊗ h)) = (ξ ⊗ η) ⊗ h. As we remarked earlier, while this
map looks like the identity embedding of

∑∞
k=1 E⊗k ⊗ H into F(E) ⊗σ H, there

is, in fact, a shift involved. Specifically, if Pk is the projection of F(E) onto the
summand E⊗k, then a simple calculation shows that

Ṽ
(
IE ⊗ (P k ⊗ IH)

)
= (P k+1 ⊗ IH)Ṽ (24)

(see [10, Corollary 2.4]). Alternatively, we may say that Ṽ ∗is a coisometric map in
Eϕ∞⊗IH . We shall write Ṽ0 := IF(E)⊗σH and recursively define Ṽk+1 := Ṽ (IE ⊗
Ṽk). The map Ṽ induces a non-unital endomorphism of (ϕ∞(M) ⊗ IH)′ by the
formula ΦV (X) = Ṽ (IE ⊗ X)Ṽ ∗ and the powers of ΦV are given by the formula
Φn

V (X) = Ṽn(IE⊗n ⊗ X)Ṽ ∗
n [10, Lemma 2.3].4 We also define δV : (ϕ∞(M) ⊗

IH)′ → (ϕ∞(M) ⊗ IH)′ by the formula δV (X) := X − ΦV (X) and we define
N :=

∑∞
k=0 d−k(Pk ⊗ IH), where, recall, d = diml E. Thus ΦV , δV , and N are

analogues of Popescu’s operators, φS⊗I , dS⊗I and N , defined on pages 271 and
272 of [19]. Note that N is bounded only when d ≥ 1.

Definition 24. For η ∈ D(Eσ), the curvature operator determined by η is defined
to be

δV

[
K(η)K(η)∗

]
N .

Our goal is to prove the following analogue of [19, Theorem 2.3].

Theorem 25. If d := diml E ≥ 1, then for η ∈ D(Eσ) ,

κ(η) = tr(ϕ∞(M)⊗IH)′

{
δV

[
K(η)K(η)∗

]
N
}

.

4It may be helpful to keep in mind that expressions like IE ⊗σ X need not represent bounded
operators unless X is a (bounded) operator in the commutant of σ(M). That is why the formula
for ΦV does not make sense unless the argument is from (ϕ∞(M) ⊗ IH)′.
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Proof. We begin by proving an analogue of [19, Theorem 1.1]. For Y ∈ (ϕ∞(M)⊗
IH)′,

∑m
k=0 Φk

V (δV (Y )) =
∑m

k=0 Ṽk(IE⊗k ⊗ Y )Ṽ ∗
k − Ṽk+1(IE⊗k+1 ⊗ Y )Ṽ ∗

k+1 =
Y − Ṽm+1(IE⊗m+1 ⊗ Y )Ṽ ∗

m+1. Since (V, ϕ∞ ⊗ IH) is an induced representation
in the sense of [10, p. 854], [10, Corollary 2.10] implies that the ultra-strong limit,
limn→∞ Ṽn(IE⊗n ⊗Y )Ṽ ∗

n = 0. Thus Y =
∑∞

k=0 Φk
V (δV (Y )), where the convergence

is in the ultra-strong topology. Thus for each m ≥ 0, we have on the basis of (24),

(Pm ⊗ IH)Y (Pm ⊗ IH) =
∑

k≥0

(Pm ⊗ IH)Ṽk

(
IE⊗k ⊗ δV (Y )

)
Ṽ ∗

k (Pm ⊗ IH)

=
∑

k≥0

Ṽk(IE⊗k ⊗ Pm−k ⊗ IH)
(
IE⊗k ⊗ δV (Y )

)

×
(
IE⊗k ⊗ Pm−k ⊗ IH

)
Ṽ ∗

k

=
m∑

k=0

Ṽk

(
IE⊗k ⊗ (Pm−k ⊗ IH)δV (Y )(Pm−k ⊗ IH)

)
Ṽ ∗

k .

Thus, since tr(ϕ∞(M)⊗IH)′restricts to tr(ϕm(M)⊗IH)′ on (Pm ⊗ IH)(ϕ∞(M)⊗ IH)′

(Pm ⊗ IH), we see that for any operator Y that has finite trace calculated with
respect to tr(ϕ∞(M)⊗IH)′ and for any positive operator Y in (ϕ∞(M) ⊗ IH)′,

tr(ϕ∞(M)⊗IH)′
(
(Pm ⊗ IH)Y (Pm ⊗ IH)

)

=
m∑

k=0

tr(ϕm(M)⊗IH)′

(
Ṽk

(
IE⊗k ⊗ (Pm−k ⊗ IH)δV (Y )(Pm−k ⊗ IH)

)
Ṽ ∗

k

)

=
m∑

k=0

tr(ϕk(M)⊗I
E⊗(m−k)⊗H

)′
(
IE⊗k ⊗ (Pm−k ⊗ IH)δV (Y )(Pm−k ⊗ IH)

)

=
m∑

k=0

tr(ϕm−k(M)⊗IH)′
(
(Pm−k ⊗ IH)δV (Y )(Pm−k ⊗ IH)

)
dk .

We can pass from the first line in this equation to the second and eliminate the Ṽk,
since they simply identify E⊗k ⊗ (E⊗(m−k) ⊗H) with E⊗m ⊗H, and in so doing
transform the trace on (ϕm(M) ⊗ IH)′, tr(ϕm(M)⊗IH)′ , to the trace on (ϕk(M) ⊗
IE⊗(m−k)⊗H)′, tr(ϕk(M)⊗I

E⊗(m−k)⊗H
)′ . The passage to the last line is justified by

part 3. of Lemma 22. Here, ϕk plays the role of ϕ in the lemma, while ϕm−k ⊗
IH plays the role of σ. Also, of course, part 1. of that lemma guarantees that
diml E

⊗k = dk. So, if we divide the equation by dm and then change variables in
the last sum, m − k → k, we conclude that

tr(ϕ∞(M)⊗IH)′
(
(Pm ⊗ IH)Y (Pm ⊗ IH)

)

dm

=
m∑

k=0

tr(ϕk(M)⊗IH)′
(
(P k ⊗ IH)δ

V
(Y )(Pk ⊗ IH)

)
d−k
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=
m∑

k=0

tr(ϕ∞(M)⊗IH)′
(
δV (Y )(Pk ⊗ IH)

)
d−k

= tr(ϕ∞(M)⊗IH)′

(

δV (Y )

(
m∑

k=0

(Pk ⊗ IH)d−k

))

. (25)

The passage from the first line to the second simply reflects the properties of the
trace and the fact that tr(ϕ∞(M)⊗IH)′ restricts to tr(ϕk(M)⊗IH)′ on Pk(ϕ∞(M) ⊗
IH)′Pk. Equation (25) is an analogue of Popescu’s equation (1.4) in [19]. If d ≥ 1,
and if we replace Y by K(η)K(η)∗ in (25), then we may take the limit as m → ∞.
The left hand side tends to κ(η) by Theorem 23 (22), while the right hand side
tends to tr(ϕ∞(M)⊗IH)′{δV [K(η)K(η)∗]N}. �
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