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ABSTRACT. Let X be a Hilbert bimodule over a C∗-algebra A.
We analyse the structure of the associated Cuntz-Pimsner alge-
bra OX and related algebras using representation-theoretic meth-
ods. In particular, we study the ideals I(I) in OX induced by
appropriately invariant ideals I in A, and identify the quotients
OX/I(I) as relative Cuntz-Pimsner algebras of Muhly and Solel.
We also prove a gauge-invariant uniqueness theorem for OX , and
investigate the relationship between OX and an alternative model
proposed by Doplicher, Pinzari and Zuccante.

Let A be a C∗-algebra, and let X be a Hilbert bimodule over A, in the sense
that X is a right Hilbert A-module with a left action of A by adjointable operators.
In [27], Pimsner constructed C∗-algebras OX in such a way that, for particular
choices of A and X, one recovers the Cuntz-Krieger algebras or crossed products
by Z or N. Since then, other important classes of C∗-algebras have been shown
to fit Pimsner’s model (see, for example, [12, 16, 30]). Thus the Cuntz-Pimsner
algebras OX have recently attracted a good deal of attention.

The algebras OX were originally constructed in a very concrete way: Pimsner
introduced first a Toeplitz algebra TX acting on an analogue of Fock space, and
took forOX a particular quotient ofTX . Nevertheless, one of his main results iden-
tifies a universal property of OX ; in our language, he shows that Cuntz-Pimsner
covariant representations (ψ,π) of X give representationsψ×π ofOX [27, Theo-
rem 3.12]. Here we study these covariant representations. We use representation-
theoretic methods to analyse ideals and quotients of Cuntz-Pimsner algebras, and
give criteria under which a given representation ψ×π is faithful.

Our interest in Cuntz-Pimsner algebras derives partly from their connection
with the graph algebras of [19, 4, 28], and our analysis is motivated by what we
know to be true for graph algebras. Thus we seek not just a class of X-invariant
ideals I in A which give rise to ideals I(I) in OX , but also to identify Cuntz-
Pimsner algebras which are, respectively, Morita equivalent to I(I) and isomorphic
to OX/I(I). This we can do when A acts on the left by compact operators, but
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in general the quotient is one of the relative Cuntz-Pimsner algebras introduced
in [25] rather than a Cuntz-Pimsner algebra. The appropriate setting for our
analysis, therefore, is that of relative Cuntz-Pimsner algebras, and we work in this
generality from the start.

Much of the current literature on Cuntz-Pimsner algebras concerns bimodules
which satisfy additional hypotheses, and of course this is often appropriate for the
particular examples or applications authors have in mind. For the bimodules asso-
ciated to graph algebras, however, these additional hypotheses always seem to im-
pose substantial restrictions on the underlying graph. Thus, for example, A acts on
the left by compact operators precisely when the graph is row-finite, and A has an
identity only when the graph has finitely many vertices; the effect of other standard
hypotheses is analysed in [12, Section 5]. So we have tried to avoid making any
additional assumptions on the bimodules we consider. Thus our main theorem
about faithful representations, for example, is an analogue of the gauge-invariant
uniqueness theorem for graph algebras, which requires no structural hypotheses
on the graph (see [4, Theorem 2.1] and [28, Theorem 2.7]).

We begin in Section 1 with a review of the relative Cuntz-Pimsner algebras
and their representation theory. We take the universal approach of [12], so that
the Cuntz-Pimsner algebra is by definition the C∗-algebra generated by a universal
Cuntz-Pimsner covariant representation of X, and one studies OX by analysing its
representations. We describe the main sets of examples of interest to us, namely
the bimodules associated to graphs and endomorphisms. In Section 2, we dis-
cuss X-invariant ideals in A; this notion was introduced by Kajiwara, Pinzari and
Watatani in [16]. To each such ideal is associated a submodule XI which is a
Hilbert bimodule over I, and whose quotient X/XI is a bimodule over A/I.

Our main theorem (Theorem 3.1) says that the ideal I(I) in OX generated
by an X-invariant ideal is Morita equivalent to OXI , and identifies the quotient
as a relative Cuntz-Pimsner algebra for the bimodule X/XI. This result extends
Theorem 4.3 of [16], by identifying the Morita equivalence class of I(I), and by
lifting structural hypotheses from the algebra and bimodule (in [16], A is unital
and X is full, finitely generated projective, and satisfies an analogue of Cuntz’s
Condition (II)). The main ingredient in our proof is a construction, something
like dilation, which allows us to extend a covariant representation of XI to one of
X.

Our analogue of the gauge-invariant uniqueness theorem is Theorem 4.1; it
extends part of [9, Theorem 3.3] as well as the various gauge-invariant uniqueness
theorems for graph algebras. In Section 5, we give some applications. In particular,
we use Theorem 4.1 to identify the C∗-envelope of the tensor algebra of X, thus
settling a problem left open in [25, Section 6]. In the final section, we consider the
alternative approach to OX taken in [9]. We show that the algebra DRX in [9],
which is modelled on Doplicher-Roberts algebras rather than Cuntz algebras, is in
general larger than the Cuntz-Pimsner algebra, and identify the representations of
OX which extend to DRX (Theorem 6.6).
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Conventions. If X is a right Hilbert A-module, we denote by L(X) the C∗-
algebra of adjointable operators on X. For x, y ∈ X, we define ΘXx,y(z) :=
x · 〈y,z〉A; we drop the superscript X if ambiguity seems unlikely. Then Θx,y ∈
L(X) with Θ∗x,y = Θy,x, and K(X) := span{Θx,y : x, y ∈ X} is an ideal in
L(X). In general, if M is a subobject of N, we write qM for the quotient map of
N onto N/M.

1. REPRESENTATIONS OF HILBERT BIMODULES

Let A be a C∗-algebra, let X be a right Hilbert A-module, and let ϕ : A → L(X)
be a homomorphism. Then a · x := ϕ(a)x defines a left action of A on X,
and we call X a Hilbert bimodule over A. A Toeplitz representation (ψ,π) of X in a
C∗-algebra B consists of a linear mapψ : X → B and a homomorphism π : A→ B
such that

ψ(x·a) = ψ(x)π(a), ψ(x)∗ψ(y) = π(〈x,y〉A), and ψ(a·x) = π(a)ψ(x)
for x, y ∈ X and a ∈ A. (It is important in our applications that we do not
require π to be nondegenerate: see the comments in [12, page 178] and Example
3.13 below. In allowingπ to be degenerate, we are departing from the conventions
in [25].) Given such a representation, there is a homomorphism π(1) : K(X)→ B
which satisfies

(1.1) π(1)(ΘXx,y) = ψ(x)ψ(y)∗ for all x,y ∈ X,

and we then have

π(1)(T)ψ(x) = ψ(Tx) for all T ∈K(X) and x ∈ X.
(See [27, page 202], [16, Lemma 2.2], and [12, Remark 1.7] for details.) If
ρ : B → C is a homomorphism of C∗-algebras, then (ρ◦ψ, ρ◦π) is a Toeplitz
representation of X, and since

(ρ ◦π)(1)(Θx,y) = ρ ◦ψ(x)ρ ◦ψ(y)∗ = ρ ◦π(1)(Θx,y) for all x, y ∈ X,
by linearity and continuity we have

(1.2) (ρ ◦π)(1) = ρ ◦π(1).
Definition 1.1. If X is a Hilbert bimodule over A, we define

J(X) := ϕ−1(K(X)),
which is a closed two-sided ideal in A. Let K be an ideal in J(X). We say that a
Toeplitz representation (ψ,π) of X is coisometric on K if

(1.3) π(1)(ϕ(a)) = π(a) for all a ∈ K.
When (ψ,π) is coisometric on all of J(X), we say it is Cuntz-Pimsner covariant.
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Remark 1.2. Our use of the term “coisometric” follows [25], and is motivated
in part by the simplest possible example, in which X = A = C: if (ψ,π) is a
Toeplitz representation, then ψ(1) is an isometry, and ψ(1) is a coisometry if and
only if (ψ,π) is Cuntz-Pimsner covariant. See Example 1.6 for further discussion.

Proposition 1.3. Let X be a Hilbert bimodule over A, and let K be an ideal in
J(X). Then there is a C∗-algebraO(K,X) and a Toeplitz representation (kX, kA) : X →
O(K,X) which is coisometric on K and satisfies:

(a) for every Toeplitz representation (ψ,π) of X which is coisometric on K, there
is a homomorphism ψ ×K π of O(K,X) such that (ψ ×K π) ◦ kX = ψ and
(ψ×K π) ◦ kA = π ; and

(b) O(K,X) is generated as a C∗-algebra by kX(X)∪ kA(A).
The triple (O(K,X), kX, kA) is unique: if (B, k′X, k

′
A) has similar properties, there

is an isomorphism θ : O(X,K) → B such that θ ◦ kX = k′X and θ ◦ kA = k′A.
There is a strongly continuous gauge action γ : T → AutO(K,X) which satisfies
γz(kA(a)) = kA(a) and γz(kX(x)) = zkX(x) for a ∈ A, x ∈ X.

Remark 1.4. The algebra O({0}, X) is the Toeplitz algebra TX , and
O(J(X),X) is the Cuntz-Pimsner algebra OX . The algebra O(K,X) is called the
relative Cuntz-Pimsner algebra determined by K, and was introduced by Muhly and
Solel in [25]. In [27] and [25], the Toeplitz algebra TX was studied in its Fock
representation, and OX and O(K,X) were quotients by ideals generated by certain
adjointable operators on the Fock module

⊕∞
n=0X⊗n. Our approach here, as in

[12], is somewhat different: we define these algebras abstractly by their universal
properties, and one of our goals is to give conditions which determine whether or
not a given representation is faithful. This is accomplished for the Toeplitz algebra
in [12, Theorems 2.1 and 3.1], and for OX in our Theorem 4.1.

Proof of Proposition 1.3. This is proved for the Toeplitz algebra in [12, Propo-
sition 1.3]; we write (iX, iA) : X → TX for the universal Toeplitz representation of
X. Let I be the ideal in TX generated by {iA(k)−i(1)A (ϕ(k)) : k ∈ K}, and define
O(K,X) := TX/I. Let q be the quotient map of TX onto O(K,X), and define
kX := q ◦ iX and kA := q ◦ iA. Using (1.2), we see that (kX, kA) is a Toeplitz
representation such that

kA(k)− k(1)A (ϕ(k)) = q(iA(k)− i(1)A (ϕ(k))) = 0 for all k ∈ K;

that is, (kX, kA) is coisometric on K. To see that it is universal, suppose (ψ,π)
is another Toeplitz representation of X which is coisometric on K. Then (ψ,π)
induces a representationψ×π ofTX such that (ψ×π)◦iX = ψ and (ψ×π)◦iA =
π . By (1.2) we have

ψ×π(iA(k)− i(1)A (ϕ(k))) = π(k)−π(1)(ϕ(k)) = 0 for all k ∈ K,
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so ψ×π annihilates the ideal I and hence descends to a homomorphismψ×K π
of O(K,X) with the required properties. The assertions regarding uniqueness and
the gauge action are established as in [12, Proposition 1.3]. ❐

Example 1.5 (Graph algebras). Let E = (E0, E1, r , s) be a directed graph
with vertex set E0, edge set E1, and range and source maps r , s : E1 → E0. A
Toeplitz-Cuntz-Krieger E-family in a C∗-algebra B consists of partial isometries
{Se : e ∈ E1} with commuting range projections and mutually orthogonal projec-
tions {Pv : v ∈ E0} satisfying S∗e Se = Pr(e) and SeS∗e ≤ Ps(e). If {Se, Pv} also
satisfies

(1.4) Pv =
∑

{e : s(e)=v}
SeS∗e

for every vertex v with 0 < #{e : s(e) = v} < ∞, we call {Se, Pv} a Cuntz-
Krieger E-family [18, 19, 11]. The graph algebra C∗(E) is generated by a universal
Cuntz-Krieger E-family {se, pv}.

Recall from [12, Example 1.2] that the Cuntz-Krieger bimodule X(E) is the
set of functions x : E1 → C such that

v ∈ E0 ,
∑

{e∈E1 : r(e)=v}
|x(e)|2

takes finite values and belongs to A := c0(E0), with Hilbert-bimodule structure
given by

(x · a)(e) := x(e)a(r(e)) for e ∈ E1,

〈x,y〉A(v) :=
∑

{e∈E1 : r(e)=v}
x(e)y(e) for v ∈ E0, and

(a · x)(e) := a(s(e))x(e) for e ∈ E1.

If (iX, iA) is the universal Toeplitz representation of X(E) in the Toeplitz alge-
bra TX(E), then {iX(δe), iA(δv)} is a universal Toeplitz-Cuntz-Krieger E-family
which generates TX(E) [12, Theorem 4.1]. Then

J(X(E)) = span{δv : |s−1(v)| <∞}

[12, Proposition 4.4], and hence when E has no sinks, the Cuntz-Pimsner algebra
OX(E) is canonically isomorphic to C∗(E) [11, Proposition 12].

The relative Cuntz-Pimsner algebras of X(E) interpolate between TX(E) and
OX(E). Let K / J(X(E)), let (O(K,X(E)), kX, kA) be universal for Toeplitz rep-
resentations of X(E) which are coisometric on K, let se := kX(δe), and let
pv := kA(δv). Then K = KF = span{δv : v ∈ F} for some set F of ver-
tices which emit finitely many edges, and (O(K,X(E)), se, pv) is universal for
Toeplitz-Cuntz-Krieger E-families which satisfy (1.4) for every v ∈ F .
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Example 1.6 (Crossed products by endomorphisms). Let α be an endomor-
phism of a C∗-algebra A. We assume for simplicity that A has an identity 1,
though it suffices that α extends to an endomorphism ᾱ of M(A): just replace
α(1) by ᾱ(1M(A)) throughout. We consider the Hilbert bimodule over A with
underlying space X := α(1)A and

a · x := α(a)x, x · a := xa, and 〈x,y〉A = x∗y.

Suppose (ψ,π) is a Toeplitz representation of X on H . We notice first that
for each x, we have ψ(x) = ψ(α(1)x1) = ψ(1 · x · 1) = π(1)ψ(x)π(1), so
both ψ and π vanish on the complement of π(1)H, and it suffices to consider
pairs (ψ,π) in which π is nondegenerate. Then V := ψ(α(1))∗ satisfies

π(α(a)) = π(〈α(1),α(a)〉A) = ψ(α(1))∗ψ(α(a))(1.5)

= Vψ(a ·α(1)) = Vπ(a)V∗.

Taking a = 1 in (1.5) shows that Vn(V∗)n = π(αn(1)) is a projection, so Vn is
a partial isometry for all n; in other words, V is a power partial isometry. Another
computation shows that

V∗π(α(a)) = ψ(α(1)α(a)) = ψ(α(a)α(1)) = π(a)ψ(α(1)) = π(a)V∗;

this implies, first, by taking adjoints, that π(α(a))V = Vπ(a) for all a ∈ A, and,
second, that V∗V commutes with π(a). Conversely, it is not hard to verify that
if π : A → B(H ) is nondegenerate and V is a power partial isometry such that
V∗V commutes with each π(a), then setting ψ(x) := V∗π(x) gives a Toeplitz
representation (ψ,π); see [23] for further discussion of such pairs (π,V).

We next observe that the operator ϕ(a) : x , a · x is just Θα(a),α(1). Thus
J(X) = A, and the Toeplitz representation (ψ,π) corresponding to (π,V) is
Cuntz-Pimsner covariant if and only if

(1.6) π(a) = π(1)(Θα(a),α(1)) = ψ(α(a))ψ(α(1))∗ = V∗π(α(a))V
for all a ∈ A;

in view of (1.5), this is equivalent to π(a) = V∗Vπ(a)V∗V = V∗Vπ(a), and
hence to V∗V = 1. Thus (ψ,π) is Cuntz-Pimsner covariant if and only if V =
ψ(α(1))∗ is an isometry. (We wrote V for ψ(α(1))∗ rather than ψ(α(1)) to
make (1.5) look like the usual covariance relation for semigroup crossed products.
However, we could equally say that (ψ,π) is Cuntz-Pimsner covariant if and only
if ψ(α(1)) is a coisometry.)

In conclusion: the Cuntz-Pimsner algebra OX is the semigroup crossed prod-
uct A×αN, as in, for example, [2] or [21] (see also [26, Lemma 12]). The Toeplitz
algebra TX is one of the crossed products A×N of [23], in which N acts by partial
isometries rather than isometries. As we shall see in the next example, there can
be lots of relative Cuntz-Pimsner algebras in between.
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Example 1.7. We consider the forward shift endomorphism τ on the C∗-
algebra c of convergent sequences, and the bimodule X := τ(1)c of the preced-
ing example. It is shown in the proof of [12, Proposition 5.3] that (ψ,π) ,
ψ(τ(1))∗ sets up a bijection between the Toeplitz representations of X and the
power partial isometries V on Hilbert space: for this X, the operator V deter-
mines the representation π because c is spanned by the functions τn(1) and
π(τn(1)) = Vn(V∗)n. As in the previous example, (ψ,π) is Cuntz-Pimsner co-
variant if and only if V∗V = 1. Thus the Cuntz-Pimsner algebra OX is universal
for isometries, and hence is isomorphic to the usual Toeplitz algebra.

Now let K be the ideal c0 in J(X) = c. The Toeplitz representation (ψV ,πV)
determined by V is coisometric on K when πV(a) = V∗πV(τ(a))V for all a ∈
K, or equivalently for all a of the form τn(1) − τn+1(1). Since πV(τn(1)) =
Vn(V∗)n, and since the range and source projections of the Vn form a commuting
family, it follows that (ψV ,πV) is coisometric on K if and only if

(1.7) V∗V(Vn(V∗)n − Vn+1(V∗)n+1) = Vn(V∗)n − Vn+1(V∗)n+1

for all n ≥ 0. The structure theorem for power partial isometries in [13] says
that V is a direct sum of a unitary, a multiple of the unilateral shift S, a multiple
of S∗, and multiples of the truncated shifts Jm on Cm. Unitaries, isometries
and coisometries all satisfy (1.7). However, for the truncated shift Jm, we have
Jmm = 0, J∗mJm is the projection on the first m− 1 variables, and Jnm(J∗m)n is the
projection on the lastm−n variables, so (1.7) is satisfied for n 6=m− 1 but not
for n =m− 1. Thus the relative Cuntz-Pimsner algebra O(c0, X) is universal for
power partial isometries which are direct sums of an isometry and a coisometry
(we can absorb a unitary factor into either the isometry or the coisometry).

More generally, suppose R is a subset of N and

KR := {x ∈ c0 : xn = 0 when n ∉ R} = span{1n − 1n+1 : n ∈ R}.

Then (ψV ,πV) is coisometric on KR if and only if (1.7) holds for all n ∈ R. Since
Jm satisfies (1.7) for n 6=m − 1, the relative Cuntz-Pimsner algebra O(KR,X) is
universal for power partial isometries which have no summands equivalent to Jm
form− 1 ∈ R.

Example 1.8. We now consider the truncated shift endomorphism τm of the
C∗-algebra Cm of sequences of length m. As in the previous example, Toeplitz
representations (ψ,π) of the bimodule τm(1)Cm are determined by a power par-
tial isometry V = ψ(τm(1))∗, which because τmm = 0 has to satisfy Vm = 0. A
non-trivial example is provided by taking for π the representation of Cm by mul-
tiplication operators on Cm, and for V the truncated shift Jm. The representation
(ψ,π) is Cuntz-Pimsner covariant precisely when π(a) = V∗π(a)V for all a;
however, this is only possible if π(a) = (V∗)mπ(τmm(a))Vm = 0 for all a ∈ A.
Thus for this bimodule, OX = 0.
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We will need the following spatial characterization of coisometric representa-
tions.

Lemma 1.9. Let (ψ,π) be a Toeplitz representation of X on a Hilbert spaceH ,
and let K be an ideal in J(X). Then (ψ,π) is coisometric on K if and only if

π(K)H ⊆ ψ(X)H := span{ψ(x)h : x ∈ X, h ∈H}.

Proof. Since π(1)(Θx,y) = ψ(x)ψ(y)∗ for all x, y ∈ X, the essential sub-
space of π(1) is contained in ψ(X)H . Hence if (ψ,π) is coisometric on K, then

π(K)H = π(1)(ϕ(K))H ⊆ π(1)(K(X))H ⊆ ψ(X)H .

On the other hand, for all a ∈ K and x ∈ X we have

π(1)(ϕ(a))ψ(x) = ψ(ϕ(a)x) = π(a)ψ(x),

so if π(K)H ⊆ ψ(X)H , then (ψ,π) is coisometric on K. ❐

2. INVARIANT IDEALS

Let I be an ideal in A. The closed submodule

XI := {x ∈ X : 〈x,y〉A ∈ I for all y ∈ X}

is a right Hilbert I-module. We claim that XI = XI := {x · i : x ∈ X, i ∈ I}.
Indeed, since 〈x · i,y〉A = i∗〈x,y〉A ∈ I, we have XI ⊆ XI , and by the Hewitt-
Cohen Factorization Theorem each x ∈ XI can be written as x = y · i for some
y ∈ XI and i ∈ I, so we also have XI ⊆ XI.

Let qI : A→ A/I and qXI : X → X/XI be the quotient maps.

Lemma 2.1. X/XI is a right Hilbert A/I-module with

qXI(x) · qI(a) := qXI(x · a) for x ∈ X and a ∈ A, and

〈qXI(x), qXI(y)〉A/I := qI(〈x,y〉A) for x,y ∈ X.

Proof. When X is full, this is standard [29, Proposition 3.25]. When X is
not full, it is still routine to check that the action and inner product are well-
defined, so we only need to show that X/XI is complete in the A/I-norm. Let
A0 := span{〈x,y〉A : x,y ∈ X}, and let I0 be the ideal I ∩A0. Since

XI0 = {x ∈ X : 〈x,y〉A ∈ I0 for all y ∈ X}(2.1)

= {x ∈ X : 〈x,y〉A ∈ I for all y ∈ X} = XI,
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we can view X/XI as either an A/I-module or an A0/I0-module. But X is full as
a Hilbert A0-module, so X/XI0 is complete as an inner-product A0/I0-module;
it therefore suffices to show that the A/I-norm on X/XI agrees with the A0/I0-
norm. The map a ∈ A0 , qI(a) ∈ A/I has kernel I0, and hence induces an
isometric homomorphism A0/I0 → A/I; thus

‖qI(a)‖ = ‖qI0(a)‖ for a ∈ A0.

For each x ∈ X we thus have
∥∥qXI(x)∥∥2

A/I = ‖〈qXI(x), qXI(x)〉A/I‖ = ‖qI(〈x,x〉A)‖
= ‖qI0(〈x,x〉A0)‖ = ‖〈qXI(x), qXI(x)〉A0/I0‖
=
∥∥qXI(x)∥∥2

A0/I0 ,

so the two norms on X/XI coincide. ❐

For any ideal I in A, ϕI(i) := ϕ(i)|XI defines a homomorphism ϕI : I → L(XI)
which gives XI the structure of a Hilbert bimodule over I. To define a left action
on X/XI, more structure is required.

Definition 2.2. An ideal I in A is X-invariant if ϕ(I)X ⊆ XI.
Lemma 2.3 ([16, Proposition 4.2]). If I is an X-invariant ideal in A, then

there is a homomorphism ϕA/I : A/I → L(X/XI) satisfying

ϕA/I(qI(a))(qXI(x)) = qXI(ϕ(a)x) for a ∈ A and x ∈ X,

so that X/XI is a Hilbert bimodule over A/I.

Proof. For fixed a ∈ A we have ϕ(a)XI ⊆ XI, and hence qXI(x) ,
qXI(ϕ(a)x) is well-defined on X/XI. When I is X-invariant, this map depends
only on the equivalence class of a in A/I, so ϕA/I is well-defined. It is routine to
check that each ϕA/I(qI(a)) is adjointable with adjoint ϕA/I(qI(a∗)), and that
ϕA/I is a homomorphism. ❐

Example 2.4. Let X = X(E) be the Cuntz-Krieger bimodule of a directed
graph E, as in Example 1.5. Each ideal I in A = c0(E0) has the form IV =
span{δv : v ∈ V} for some subset V of E0, and then

XIV = span{δe · δv : e ∈ E1, v ∈ V} = span{δe : r(e) ∈ V},

and similarly
ϕ(IV )X = span{δe : s(e) ∈ V}.

Thus IV is X-invariant if and only if V is hereditary in the sense that s(e) ∈ V ⇒
r(e) ∈ V . When V ⊆ E0 is hereditary, E\V := (E0\V, r−1(E0\V)) is a subgraph
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of E, and it is easy to see that X/XIV is canonically isomorphic to X(E \ V). As it
stands, the submodule XIV differs slightly from the bimodule of a subgraph of E:
XIV contains the functions δe supported on edges e with r(e) ∈ V but s(e) ∉ V .

Remark 2.5. We have been careful not to assume that ϕ is injective, or that
X is essential as a left A-module (i.e., X = span{ϕ(a)x : a ∈ A, x ∈ X}), and
the previous example shows why. If r(e) ∈ V and s(e) 6∈ V , then δe ∈ XI is
orthogonal to ϕI(i)x for every i ∈ I and x ∈ XI, and hence XI is not essential
as a left I-module.

The following lemma is the key to understanding the relations among coiso-
metric Toeplitz representations of the bimodules X, XI and X/XI.

Lemma 2.6. Suppose X is a right Hilbert A-module and I / A.
(1) There is an isometric embedding ιK : K(XI)→K(X) such that

ιK(ΘXIx,y) = ΘXx,y for x,y ∈ XI.

Moreover, for T ∈ K(XI), ιK(T) is the unique extension of T to an operator in
L(X) whose range is contained in XI.

(2) There is a surjective homomorphism qK : K(X)→K(X/XI) such that

qK(R)(qXI(x)) = qXI(Rx) for R ∈K(X) and x ∈ X,

and then

(2.2) qK(ΘXx,y) = ΘX/XIqXI(x),qXI(y) for all x,y ∈ X.

(3) 0 →K(XI) ι
K
-→K(X) qK-→K(X/XI)→ 0 is exact.

Proof.
(1) We have∥∥∥∑ΘXxi,yi

∥∥∥ = sup
{∥∥∥∑ΘXxi,yi(x)

∥∥∥ : x ∈ X, ‖x‖ ≤ 1
}
,

and since
∑ΘXxi,yi(x) =∑xi · 〈yi,x〉A ∈ X · I ⊆ XI, it follows that∥∥∥∑ΘXxi,yi
∥∥∥

= sup
{∥∥∥〈∑ΘXxi,yi(x),y〉A

∥∥∥ : x ∈ X, ‖x‖ ≤ 1, y ∈ XI, ‖y‖ ≤ 1
}

= sup
{∥∥∥〈x,∑ΘXyi,xi(y)〉A

∥∥∥ : x ∈ X, ‖x‖ ≤ 1, y ∈ XI, ‖y‖ ≤ 1
}

= sup
{∥∥∥∑ΘXyi,xi(y)

∥∥∥ : y ∈ XI, ‖y‖ ≤ 1
}

= sup
{∥∥∥∑ΘXIyi,xi(y)

∥∥∥ : y ∈ XI, ‖y‖ ≤ 1
}

=
∥∥∥∑ΘXIyi,xi

∥∥∥.
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We deduce that
∑ΘXIxi,yi ,∑ΘXxi,yi is well-defined and extends to an isomet-

ric linear map ιK on K(XI), and it is obvious that ιK is a homomorphism.
When T = ∑ΘXIxi,yi as above, observe that ιK(T) extends T and maps X
into XI; by continuity these properties hold for every T ∈ K(XI). Suppose
S ∈ L(X) also extends T and maps X into XI. Let (eλ) be an approximate
identity for I. For any x ∈ X we have Sx ∈ XI, so Sx = lim(Sx) · eλ =
limS(x · eλ) = limT(x · eλ); similarly, ιK(T)x = limT(x · eλ). Thus
S = ιK(T).

(2) Let A0 := span{〈x,y〉A : x, y ∈ A} and I0 := I ∩ A0, and consider the
imprimitivity bimodule K(X)XA0 . Since XI0 = XI (see Equation 2.1), the
image ιK(K(XI)) is the ideal in K(X) which corresponds to I0 under the
Rieffel correspondence, and we deduce that X/XI0 is a K(X)/ιK(K(XI))–
A0/I0 imprimitivity bimodule. Since K((X/XI0)A0/I0) = K((X/XI)A/I),
the desired map qK is simply the composition of the quotient map

K(X)→K(X)/ιK(K(XI))

with the left action of K(X)/ιK(K(XI)) as compact operators on X/XI.
Verifying (2.2) is routine: for every z ∈ X,

qK(ΘXx,y)(qXI(z)) = qXI(ΘXx,y(z)) = qXI(x · 〈y,z〉A)
= qXI(x) · qI(〈y,z〉A)
= qXI(x) · 〈qXI(y), qXI(z)〉A/I
= ΘX/XIqXI(x),qXI(y)(q

XI(z)).

(3) Since X/XI is full as a left HilbertK(X)/ιK(K(XI))-module, the left action
of K(X)/ιK(K(XI)) is injective, and hence kerqK = ιK(K(XI)). ❐

Lemma 2.7. Let I be an X-invariant ideal in A. Then

(2.3) ϕ(a) = ιK(ϕI(a)) for a ∈ J(XI),

and J(XI) = J(X)∩ I. Also,

(2.4) ϕA/I ◦ qI(a) = qK ◦ϕ(a) for a ∈ J(X),

and qI(J(X)) ⊆ J(X/XI). If ϕ(A) ⊆ K(X), then qI(J(X)) = J(X/XI).
Proof. Suppose a ∈ J(XI). Since a belongs to the X-invariant ideal I, ϕ(a)

maps X into XI; since ϕ(a) extends the compact operator ϕI(a), (2.3) follows
from the uniqueness assertion of Lemma 2.6(1). By (2.3), we have J(XI) ⊆
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J(X) ∩ I. For the reverse inclusion, suppose a ∈ J(X) ∩ I. Then ϕ(a) belongs
to K(X), the domain of qK ; moreover, since a belongs to the X-invariant ideal
I, we have ϕ(a) ∈ kerqK . By Lemma 2.6(3), this means that ϕ(a) = ιK(T)
for some T ∈ K(XI), and sinceϕ(a) extends ϕI(a), we have T =ϕI(a). Thus
a ∈ J(XI).

Equation (2.4) follows immediately from the definition of qK , and shows that
qI(J(X)) ⊆ J(X/XI); the reverse inclusion is trivial if ϕ(A) ⊆K(X). ❐

Example 2.8. As in Example 2.4, let X = X(E) be the Cuntz-Krieger bimod-
ule of a directed graph E, let V be a hereditary subset of E0, and identify X/XIV
with X(E \ V). If u ∈ E0 \ V , then δu ∈ J(X/XIV ) if and only if u emits at
most finitely many edges in (E0 \ V, r−1(E0 \ V)) [12, Proposition 4.4]. Since
u may emit infinitely many edges in the original graph E, δu may not belong to
the ideal J(X); hence the inclusion qI(J(X)) ⊆ J(X/XI) of Lemma 2.7 can be
proper when ϕ(A) 6⊆ K(X).

For a specific example, consider the graph

• •............................................................................................................................................. ............
....................

......................................................................................................................................................................................
............

.......................... ..................................................................................
.................
................
..................

................................................................................. ........................................................
..............................................................................................

............... ............

...u v

with infinitely many edges from u to v. Then I := Cδv is X-invariant, and
since J(X) = I, the ideal qI(J(X)) vanishes. But the subgraph (E0 \ V, r−1(E0 \
V)) consists of just the one vertex u with a loop, and hence J(X/XI) = Cδu
is nontrivial. Observe that this example exhibits no pathology other than that
ϕ(A) 6⊆ K(X): X is full and essential as a left A-module and the left action is
injective.

Lemma 2.9. Let I be an X-invariant ideal in A, let K be an ideal in J(X), and
let B be a C∗-algebra.
(1) If (ψ,π) is a Toeplitz representation of X in B, then (ψ|XI ,π|I) is a Toeplitz

representation of XI such that

(2.5)
(
π
∣∣
I
)(1) = π(1) ◦ ιK.

If (ψ,π) is coisometric on K, then (ψ|XI,π|I) is coisometric on K ∩ I.
(2) Suppose ψ0 : X/XI → B is linear and π0 : A/I → B is a homomorphism. Then

(ψ0, π0) is a Toeplitz representation of X/XI if and only if (ψ0 ◦ qXI,π0 ◦ qI)
is a Toeplitz representation of X, in which case

(2.6) (π0 ◦ qI)(1) = π(1)0 ◦ qK .

Moreover, (ψ0 ◦ qXI,π0 ◦ qI) is coisometric on K if and only if (ψ0, π0) is
coisometric on qI(K).
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Proof.
(1) It is obvious that (ψ|XI,π|I) is a Toeplitz representation of XI. If x, y ∈ XI,

then
(
π
∣∣
I
)(1)(ΘXIx,y) = ψ∣∣XI(x)ψ∣∣XI(y)∗ = ψ(x)ψ(y)∗

= π(1)(ΘXx,y) = π(1) ◦ ιK(ΘXIx,y),
and (2.5) follows by linearity and continuity. If (ψ,π) is coisometric on K,
then for any a ∈ K ∩ I we have from (2.5) and (2.3) that

(
π
∣∣
I
)(1)(ϕI(a)) = π(1) ◦ ιK(ϕI(a)) = π(1)(ϕ(a)) = π(a) = π∣∣I(a),

so (ψ|XI,π|I) is coisometric on K ∩ I.
(2) It is routine to check that (ψ0, π0) is a Toeplitz representation of X/XI if and

only if (ψ0 ◦qXI,π0 ◦qI) is a Toeplitz representation of X. For any x, y ∈ X
we have

(π0 ◦ qI)(1)(ΘXx,y) = (ψ0 ◦ qXI(x)
)(
ψ0 ◦ qXI(y)

)∗(2.7)

= π(1)0 (ΘX/XIqXI(x),qXI(y)) = π
(1)
0 ◦ qK(ΘXx,y),

and (2.6) follows by linearity and continuity. This and (2.4) give

(2.8) (π0◦qI)(1)(ϕ(k)) = π(1)0 ◦qK(ϕ(k)) = π(1)0 (ϕA/I(qI(k))) for k ∈ K.

If (ψ0, π0) is coisometric on qI(K), then the right-hand side equalsπ0◦qI(k),
and hence (ψ0 ◦ qXI,π0 ◦ qI) is coisometric on K. If (ψ0 ◦ qXI,π0 ◦ qI) is
coisometric on K, then the left-hand side equals π0(qI(k)), and therefore
(ψ0, π0) is coisometric on qI(K). ❐

3. A STRUCTURE THEOREM

We can now state our main theorem.

Theorem 3.1. Suppose X is a Hilbert bimodule over A, K is an ideal in J(X),
and I is an X-invariant ideal in A. Then the ideal I(I) in O(K,X) generated by
kA(I) is Morita equivalent to O(K∩I, XI), and the quotient O(K,X)/I(I) is canon-
ically isomorphic to O(qI(K),X/XI).

In particular, taking K = {0} and K = J(X) gives us results about the Toeplitz
algebra and the Cuntz-Pimsner algebra.

Corollary 3.2. If I is an X-invariant ideal in A, then the ideal I(I) of TX gen-
erated by kX(I) is Morita equivalent to TXI , and the quotient TX/I(I) is canonically
isomorphic to TX/XI .
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Corollary 3.3. If I is an X-invariant ideal in A, then the ideal I(I) of OX gen-
erated by kX(I) is Morita equivalent to OXI , and the quotient OX/I(I) is canonically
isomorphic to the relative Cuntz-Pimsner algebra O(qI(J(X)),X/XI). If ϕ(A) ⊆
K(X), then OX/I(I) � OX/XI .

Proof. The last statement follows from Lemma 2.7. ❐

In the proof of Theorem 3.1, the main problem is to show that O(K ∩ I, XI)
embeds in O(K,X). To prove this, we show how to extend a representation of
O(K ∩ I, XI) to a representation of O(K,X).

Proposition 3.4. Let X be a Hilbert bimodule over A, let I be an X-invariant
ideal in A, and let K be an ideal in J(X). If (ψ,π) is a Toeplitz representation of XI
on H which is coisometric on (K ∩ I), then there are a Hilbert space M, an isometry
U : H → M, and a Toeplitz representation (ψ̄, π̄) of X on M which is coisometric
on K and satisfies

ψ̄
∣∣
XI = AdU ◦ψ,
π̄
∣∣
I = AdU ◦π.(3.1)

Of particular interest are the Cuntz-Pimsner covariant representations.

Corollary 3.5. If I is an X-invariant ideal in A, then every Cuntz-Pimsner
covariant representation of XI can be extended to a Cuntz-Pimsner covariant repre-
sentation of X.

Proof. Immediate from Lemma 2.7 since J(XI) = J(X)∩ I. ❐

Before proving Proposition 3.4, we establish some useful notation and identify a
collection of monomials which span O(K,X). Recall that for each n ≥ 1, the
n-fold tensor product X⊗n := X ⊗A · · · ⊗A X is also a Hilbert bimodule over A;
see [25, Section 2.2] for details.

Lemma 3.6.
(1) Suppose (ψ,π) is a Toeplitz representation of X in a C∗-algebra B. For each

n ≥ 1, there is a linear map ψ⊗n : X⊗n → B which satisfies

ψ⊗n(x1 ⊗A · · · ⊗A xn) = ψ(x1) · · ·ψ(xn) for all x1, . . . , xn ∈ X,

and (ψ⊗n,π) is a Toeplitz representation ofX⊗n. By convention, we take X⊗0 :=
A and ψ⊗0 = π .

(2) Let K be an ideal in J(X). If (kX, kA) is universal for Toeplitz representations of
X which are coisometric on K, then

O(K,X) = span{k⊗rX (x)kA(a)k⊗sX (y)∗ : r , s ≥ 0, x ∈ X⊗r , y ∈ X⊗s , a ∈ A}.

Proof. (1) is a special case of [12, Proposition 1.8(1)], and (2) is proved ex-
actly as in [12, Lemma 2.4]. ❐
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Remark 3.7. When m ≥ 1, we have natural isomorphisms X⊗m ⊗A X⊗n �
X⊗(m+n) which carry ψ⊗m ⊗A ψ⊗n into ψ⊗(m+n). Whenm = 0 we have to be a
little careful because A ⊗A X is isomorphic to the essential subspace A · X rather
than X.

Proof of Proposition 3.4. We will show that TXI embeds naturally as a hered-
itary subalgebra of TX , and obtain ψ̄ × π̄ by inducing ψ × π from TXI to TX .
Let (TX, iX, iA) be universal for Toeplitz representations of X. We claim that

ι := iX
∣∣
XI × iA

∣∣
I : TXI → TX

is injective. For this, let (ω,ρ) be a Toeplitz representation of X on a Hilbert
space H such that ρ acts faithfully on (ω(X)H )⊥; for the existence of such a
representation, see [12, Corollary 2.2]. Then ρ|I acts faithfully on the larger space
(ω(XI)H )⊥, so by [12, Theorem 2.1],ω|XI×ρ|I : TXI → B(H ) is faithful. But
ω|XI × ρ|I = (ω× ρ) ◦ ι, so ι is injective.

Let B := ι(TXI), and let

L := span{i⊗rX (x)iA(i)i⊗sX (y)∗ : r , s ≥ 0, x ∈ X⊗r , y ∈ (XI)⊗s , i ∈ I}.

We claim that L is a closed left ideal in TX such that L∗L = B and BL ⊆ B.
Since TX is generated by iX(X) ∪ iA(A), to see that L is a left ideal it suffices to
check that the generating monomials of L are invariant under left multiplication
by iX(X), iA(A), and iX(X)∗. Most cases are routine since (iX, iA) is a Toeplitz
representation and I is an ideal; the only subtle case is when a monomial of the
form iA(i)i⊗sX (y)∗ is multiplied by iX(z)∗ for some z ∈ X:

iX(z)∗iA(i)i⊗sX (y)
∗ = iX(ϕ(i∗)z)∗i⊗sX (y)∗ = i⊗(s+1)

X (y ⊗ϕ(i∗)z)∗

which belongs to i⊗(s+1)
X ((XI)⊗(s+1))∗ because I is X-invariant, and hence to L

because iX(XI)∗ = iA(I)iX(XI)∗. Thus L is a left ideal.
Next we prove that L∗L = B. By Lemma 3.6(2), B is spanned by monomials

of the form i⊗rX (x)iA(i)i
⊗s
X (y)∗ with r , s ≥ 0, x ∈ (XI)⊗r , y ∈ (XI)⊗s and

i ∈ I, from which it is obvious that B ⊆ L; hence B = B∗B ⊆ L∗L. For the reverse
inclusion, it suffices to check that `∗1 `2 ∈ B whenever `1 and `2 are generating
monomials of L, which reduces to checking that

iA(j)i⊗tX (w)
∗i⊗rX (x)iA(i) ∈ B

whenever r , t ≥ 0, x ∈ X⊗r , w ∈ X⊗t , and i, j ∈ I. This is trivial if r = t = 0,
and the relation iX(x)∗iX(y) = iA(〈x,y〉A) allows us to assume that either
r = 0 or t = 0. Without loss of generality t = 0, and then

iA(j)i⊗tX (w)
∗i⊗rX (x)iA(i) = iA(j)i⊗rX (x · i).
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An elementary argument using the X-invariance of I and the equality I = I2 allows
us to deduce that iA(j)i⊗rX (x · i) ⊆ i⊗rX ((XI)⊗r ) ⊆ B, completing the proof that
L∗L = B.

Since a typical generating monomial i⊗rX (x)iA(i)i
⊗s
X (y)∗ ∈ L belongs to B

if r = 0, to prove that BL ⊆ B it suffices to show that BiX(X) ⊆ B. Since I is
X-invariant we have

iA(I)iX(X) = iX(ϕ(I)X) ⊆ iX(XI) ⊆ B;

iX(XI)iX(X) = iX(XI)iA(I)iX(X)
⊆ iX(XI)iX(ϕ(I)X) ⊆ iX(XI)2 ⊆ B;

iX(XI)∗iX(X) = iA(〈XI,X〉A) ⊆ iA(I) ⊆ B.

Since B is generated as an algebra by iA(I) ∪ iX(XI) ∪ iX(XI)∗, we deduce that
BL ⊆ B.

Since L is a closed left ideal in TX such that L∗L = B, L is a right-Hilbert
TX–B bimodule. Inducing the representation σ := (ψ × π) ◦ ι−1 : B → B(H )
gives a representation Indσ of TX on M := L ⊗B H , and we let (ψ̄, π̄) be the
Toeplitz representation of X defined by

ψ̄ := (Indσ) ◦ iX and π̄ := (Indσ) ◦ iA.

There is no harm in assuming that (ψ,π) (and hence σ ) is nondegenerate, in
which case there is a unique isometry U : H →M which satisfies

Uσ(b)h = b ⊗B h for b ∈ B and h ∈H .

Since ψ̄|XI × π̄|I = ((Indσ)|B) ◦ ι, the essential subspace of ψ̄|XI × π̄|I is

(Indσ)(B)(L⊗BH ) = BL⊗BH ⊆ B ⊗BH = UH .

Hence to verify (3.1) it suffices to prove that

(3.2) ψ̄(x)U = Uψ(x) for x ∈ XI, and π̄(i)U = Uπ(i) for i ∈ I.

Suppose x ∈ XI. Then for b ∈ B and h ∈H we have

ψ̄(x)Uσ(b)h = Indσ(iX(x))(b ⊗B h) = iX(x)b ⊗B h
= ι(iXI(x))⊗B σ(b)h
= Uψ×π(iXI(x))σ(b)h = Uψ(x)σ(b)h,

and since σ is nondegenerate this gives the first equation in (3.2); a similar calcu-
lation gives the second.
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It remains to show that (ψ̄, π̄) is coisometric on K, for which we use Lemma
1.9; that is, we will show that

π̄(K)M⊆ ψ̄(X)M := span{ψ̄(x)m : x ∈ X, m ∈M}.

For this, it suffices to show that

(3.3) π̄(k)(` ⊗B h) ∈ ψ̄(X)M for all k ∈ K, ` ∈ L, and h ∈H .

We consider two cases.
CASE 1: ` = iX(x)`′ with x ∈ X and `′ ∈ L. Then

π̄(k)(` ⊗B h) = iA(k)iX(x)`′ ⊗B h = iX(ϕ(k)x)`′ ⊗B h
= ψ̄(ϕ(k)x)(`′ ⊗B h) ⊆ ψ̄(X)M.

CASE 2: ` = iA(i)b with i ∈ I and b ∈ B. Since ki ∈ KI = K ∩ I, we can
express ki = cd with c, d ∈ K ∩ I, and then

π̄(k)(` ⊗B h) = iA(k)iA(i)b ⊗B h
= iA(c)iA(d)⊗B σ(b)h
= iA(c)ι(iI(d))⊗B σ(b)h
= iA(c)⊗B ψ×π(iI(d))σ(b)h
= iA(c)⊗B π(d)σ(b)h
∈ iA(I)⊗B ψ(XI)H (by Lemma 1.9)

= iA(I)⊗B ψ×π(iXI(XI))H
⊆ iA(I)iX(XI)⊗BH
⊆ iX(XI)iA(I)⊗BH
⊆ iX(X)L⊗BH
= ψ̄(X)M.

Since the vectors ` considered in these two cases span a dense subspace of L, this
gives (3.3), and hence (ψ̄, π̄) is coisometric on K. ❐

Corollary 3.8. If I is an X-invariant ideal in A and K is an ideal in J(X), then
O(K ∩ I, XI) embeds canonically in O(K,X).

Proof. Let (O(K,X), kX, kA) be universal for Toeplitz representations of X
which are coisometric on K. By Lemma 2.9, (kX|XI, kA|I) is a Toeplitz represen-
tation of XI which is coisometric on K ∩ I, and hence induces a homomorphism

kX
∣∣
XI ×K∩I kA

∣∣
I : O(K ∩ I, XI)→ O(K,X).
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Let (ψ,π) be a (K∩ I)-coisometric Toeplitz representation of XI onH such that
ψ ×K∩I π : O(K ∩ I, XI) → B(H ) is faithful, and let (ψ̄, π̄) be its extension to
a Toeplitz representation of X which is coisometric on K, as in Proposition 3.4.
Since

(ψ̄×K π̄) ◦
(
kX
∣∣
XI ×K∩I kA

∣∣
I
) = (AdU) ◦ (ψ×K∩I π)

is faithful, kX|XI ×K∩I kA|I is injective. ❐

Corollary 3.9. If I is an X-invariant ideal in A, then OXI embeds canonically
in OX .

Proof. By Lemma 2.7, O(J(X)∩ I, XI) = O(J(XI),XI) = OXI . ❐

Proof of Theorem 3.1. Let (O(K,X), kX, kA) be the relative Cuntz-Pimsner
algebra determined by K, and let

L := span{k⊗rX (x)kA(i)k⊗sX (y)∗ : r , s ≥ 0, x ∈ X⊗r , y ∈ XI⊗s , i ∈ I}.

From the proof of Proposition 3.4, we deduce that L is a closed left ideal in
O(K,X) such that L∗L is the canonical embedded image of O(K ∩ I, XI) in
O(K,X) (see Corollary 3.8). Moreover, LL∗ is a two-sided ideal which contains
kA(I), and since L ⊆ I(I), this implies that LL∗ = I(I). Thus L implements a
Morita equivalence between I(I) and O(K ∩ I, XI).

Let ψ := kX/XI ◦qXI and π := kA/I ◦qI . By Lemma 2.9, (ψ,π) is a Toeplitz
representation of X which is coisometric on K. The induced homomorphism
ψ×K π : O(K,X) → O(qI(K),X/XI) annihilates the ideal I(I) since

ψ×K π(kA(I)) = π(I) = kA/I ◦ qI(I) = {0},

and hence induces a map (ψ ×K π)∗ : O(K,X)/I(I) → O(qI(K),X/XI). To see
that (ψ×K π)∗ is an isomorphism, we construct its inverse.

Since kX(XI) = kX(X)kA(I) ⊆ I(I), there is a linear map ψ0 : X/XI →
O(K,X)/I(I) such that ψ0 ◦ qXI = q ◦ kX . Similarly, since I ⊆ ker(q ◦ kA),
there is a homomorphism π0 : A/I → O(K,X)/I(I) such that π0 ◦ qI = q ◦ kA.
Certainly (q ◦ kX, q ◦ kA) is a Toeplitz representation of X, and it is coisometric
on K because (1.2) gives

(q ◦ kA)(1)(ϕ(k)) = q ◦ k(1)A (ϕ(k)) = q ◦ kA(k) for all k ∈ K.

By Lemma 2.9(2), we deduce that (ψ0, π0) is a Toeplitz representation of X/XI
which is coisometric on qI(K). The induced homomorphism

ψ0 ×qI(K) π0 : O(qI(K),X/XI) → O(K,X)/I(I)

is surjective since it maps the generating set kX/XI(X/XI) ∪ kA/I(A/I) onto the
generating set q(kX(X))∪ q(kA(A)). By checking on generators, it is routine to
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check that (ψ×K π)∗ ◦(ψ0×qI(K) π0) is the identity on O(qI(K),X/XI), so that
(ψ×K π)∗ and ψ0 ×qI(K) π0 are isomorphisms. For example,

(ψ ×K π)∗ ◦ (ψ0 ×qI(K) π0) ◦ kX/XI ◦ qXI = (ψ ×K π)∗ ◦ψ0 ◦ qXI
= (ψ ×K π)∗ ◦ q ◦ kX
= (ψ ×K π) ◦ kX
= ψ
= kX/XI ◦ qXI,

so (ψ ×K π)∗ ◦ (ψ0 ×qI(K) π0) is the identity on the range of kX/XI . We can see
in similar fashion that it is the identity on the range of kA/I , and hence on all of
O(qI(K),X/XI). ❐

Example 3.10. Suppose that X = X(E) is the bimodule of a graph E, V is
a hereditary subset of E0, and IV is the X-invariant ideal discussed in Example
2.4. Let X(V) be the bimodule of the graph V := (V , s−1(V)). We claim that
there is a natural isomorphism of TX(V) onto a full corner in TXIV . To justify this
claim, consider the universal Toeplitz representation (iXIV , iIV ) in TXIV . Then the
elements {iXIV (δe) : s(e) ∈ V} and {iIV (δv) : v ∈ V} form a Cuntz-Krieger V -
family in TXIV , and hence there is a homomorphism µ of TX(V) into TXIV . To see
that µ is injective, we show that every representation of TX(V) factors through µ.
So let {Se, Pv} be a Toeplitz-Cuntz-Krieger V -family on H with corresponding
representation πS,P : TX(V) → B(H ). For each e ∈ E1 with r(e) ∈ V but s(e) ∉
V , we choose a unitary isomorphism Se of Pr(e)H onto a new Hilbert space
He. As in [12, Example 1.2], there is a Toeplitz representation (ψ,π) of XIV
on H ⊕ (⊕e∈r−1(V)\s−1(V)He

)
such that ψ(δe) = Se for all e ∈ r−1(V) and

π(δv) = Pv for all v ∈ V , and then πS,P is the restriction of (ψ ×π) ◦ µ to the
invariant subspaceH . Thus µ is injective. The image of µ is the corner associated
to the projection p := ∑

v∈V iIV (δv) in M(TXIV ), which is full because all the
generators b for TXIV satisfy b = bp and hence lie in the ideal generated by p.
We have now proved the claim.

As we saw in Example 1.5, the ideals K in J(X) have the form KF for some set
F of vertices which emit finitely many edges, and K∩ IV = KF∩V . Since passing to
the relative Cuntz-Pimsner algebra O(KF∩V ,X(V)) involves imposing relations at
the vertices in F ∩V , the embedding of TX(V) in TXIV induces an isomorphism of
O(KF∩V ,X(V)) onto a full corner in O(KF∩V ,XIV ). Thus Theorem 3.1 implies
that O(KF ,X(E)) contains an ideal Morita equivalent to O(KF∩V ,X(V)) with
quotient isomorphic to O(KF\V ,X(E \ V)). This generalises results for the graph
algebras of row-finite graphs in [4, Theorem 4.1, parts (2) and (3)].

Remark 3.11. When E is a row-finite graph there is a bijection between the
saturated hereditary subsets of E0 and the gauge invariant ideals in C∗(E) [4,
Theorem 4.1, part (1)]. Since the ideals I(I) in OX associated to X-invariant
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ideals are certainly gauge-invariant, it is natural to ask for a concept ofX-saturation
under which one can prove an analogue of [4, Theorem 4.1, part (1)]. One such
concept is used in [16] in the context of finitely generated Hilbert modules: they
ask that

(3.4) a ∈ A and ϕ(a)X ⊂ XI ⇒ a ∈ I.

If IV is the ideal in X(E) corresponding to a hereditary subset V in a row-finite
graph, then IV has this property precisely when V is saturated in the sense of [4].
For non-row-finite graphs this concept is inappropriate: for example, consider the
graph

• • •.................................................................................................................. ............................................................................................................................................. ............ ........................... ............
....................

......................................................................................................................................................................................
............

.......................... ..................................................................................
.................
................
..................

................................................................................. ........................................................
..............................................................................................

............... ............

...u v w

with infinitely many edges from v to w. Here Iw is X(E)-invariant and does not
satisfy (3.4), but generates a gauge-invariant ideal which is strictly smaller than
the ideal Iv,w which does satisfy (3.4). This example and the analyses of ideals in
graph algebras in [10] and [5] suggest that this question could be quite subtle.

Example 3.12. Let X = α(1)A be the bimodule associated to an endomor-
phism α of A, as in Example 1.6. If I is an ideal in A, then α(I)X = α(I)A,
XI = α(1)I, and hence I is X-invariant precisely when α(I) ⊂ I. To get from
an invariant ideal to an ideal in the crossed product, we need to know that the
ideal is extendibly invariant: the endomorphism α|I extends to an endomorphism
ᾱ of M(I) in such a way that ᾱ(1M(I)) coincides with the canonical image of
α(1) ∈ A in M(I) (see [1, 22]). If so, XI is the bimodule ᾱ(1M(I))I associ-
ated to α|I , and OXI � I ×α N. The quotient map qI carries X/XI onto the
module αA/I(1)(A/I) associated to the induced endomorphism αA/I of A/I, and
OX/OXI � (A/I) ×αA/I N, as predicted by the results in [1] and [22]. When the
invariant ideal is not extendibly invariant, quite different things can happen, as
the next example shows.

Example 3.13. For an extreme example of a non-extendibly invariant ideal,
we consider A := c0(Z ∪ {∞}), the forward shift τ on A, and the ideal I � c
of sequences whose negative terms are all zero. The bimodule associated to α is
X = AA, with a·x = α(a)x as usual, and XI is the Hilbert bimodule II in which
the left action is given by τ|I . This is not quite the usual bimodule for the one-
sided shift—indeed, if (ψ,π) is a Toeplitz representation and π is nondegenerate,
then π has to vanish on c0. (The element e0 := 1I−τ(1I) satisfies a·e0 = 0 for all
a ∈ I, so π(1I)ψ(e0) = ψ(τ(1I)e0) = 0. If π is nondegenerate, thenψ(e0) = 0,
π(e0) = π(〈e0, e0〉I) = 0, and π(τn(e0)) = Vnπ(e0)(V∗)n = 0 for all n ≥ 0.
In general, ψ(e0) is a partial isometry with initial projection π(1I − τ(1I)) and
range projection orthogonal to π(1I).) However, the Cuntz-Pimsner algebra OXI
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contains c ×τ N as the full corner determined by kXI(1I). Since c ×τ N is a full
corner in A×τ Z, it follows that the ideal I(I) generated by OXI is all of OX .

Theorem 3.1 therefore implies that the Cuntz-Pimsner algebra OX/XI is triv-
ial. To confirm this, note that X/XI is (A/I)A/I with left multiplication given
by the induced endomorphism τA/I of A/I. Suppose (ψ,π) is a Cuntz-Pimsner
covariant representation of X/XI, and V is the isometry ψ(τA/I(1A/I))∗. For
b ∈ τ−n(I), (τA/I)n(qI(b)) = 0, and the covariance relation (1.5) implies that
π(qI(b)) = (V∗)nπ((τA/I)n(qI(b)))Vn = 0; since

⋃
n τ−n(I) is dense in A,

it follows that π = 0. Thus X/XI has no nonzero covariant representations, and
OX/XI = 0.

This example is not an anomalous one: the same analysis applies whenever
(A,α) is the minimal dilation of (I,α|I), as in [20]. The moral is that extendible
invariance is important.

We next identify the kernel of the quotient mapO(qI(K),X/XI) ontoOX/XI ,
which is isomorphic to the subquotient ker{(O(K,X) → OX/XI)}/I(I) of Theo-
rem 3.1.

Proposition 3.14. Suppose X is full and L / K / J(X). The kernel of the
quotient map Θ : O(L,X) → O(K,X) is Morita equivalent to K/L.

Remark 3.15. If X is not full, then ker(O(L,X) → O(K,X)) is Morita equiv-
alent to (K ∩A0)/(L∩A0), where A0 = span{〈x,y〉A : x, y ∈ X}.

Proof of Proposition 3.14. Let (T ,ϕ∞) be the Fock representation ofX. Thus,
(T ,ϕ∞) is the Toeplitz representation of X as adjointable operators on the Fock
module F(X) :=⊕∞

n=0X⊗n in which T(x) tensors on the left by x, and ϕ∞(a)
is the diagonal left action induced byϕ(a); see [27, Section 1], [25, Section 2.2],
and [12, Example 1.4 and Remark 1.5] for more details. Let τK : TX → O(K,X)
be the quotient map. We claim that

(3.5) T ×ϕ∞(kerτK) = ι(K(F(X)K)),

where ι is the canonical embedding of K(F(X)K) in K(F(X)); see Lemma 2.6.
Pimsner proves this in a bit less generality in [27, Theorem 3.13], and we essen-
tially follow his proof. Let Q0 be the projection of F(X) onto A = X⊗0. Since
kerτK is the ideal generated by {iA(k)− i(1)A (ϕ(k)) : k ∈ K}, and since

T ×ϕ∞(iA(k)− i(1)A (ϕ(k))) =ϕ∞(k)−ϕ(1)∞ (ϕ(k)) =ϕ∞(k)Q0

for every k ∈ K, T ×ϕ∞(kerτK) is generated as an ideal by {ϕ∞(k)Q0 : k ∈ K}.
But T ×ϕ∞(TX) is spanned by monomials of the form T⊗r (x)ϕ∞(a)T⊗s(y)∗,
and since Q0T(x′) = 0 for x′ ∈ X, we deduce that T ×ϕ∞(kerτK) is

span{T⊗r (x)ϕ∞(k1)Q0ϕ∞(k∗2 )T
⊗s(y)∗ :

r , s ≥ 0, x ∈ X⊗r , y ∈ X⊗s , a, b ∈ K}.
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Since T⊗r (x)ϕ∞(k1)Q0ϕ∞(k∗2 )T⊗s(y)∗ = ΘF(X)x·k1,y·k2
, this gives (3.5). We

have Θ ◦ τL = τK , and since these maps are all surjections we have kerΘ �
kerτK/kerτL. Since T × ϕ∞ is injective by [27, Theorem 3.4] or [12, Corol-
lary 2.2], we deduce from (3.5) that

(3.6) kerΘ � kerτK
kerτL

� ι(K(F(X)K))
ι(K(F(X)L)) �

K(F(X)K)
ι0(K(F(X)L))

,

where ι0 is the canonical embedding of K(F(X)L) in K(F(X)K). Since X is
full, so is F(X), and hence F(X)K is full as a Hilbert K-module. The ideal in
K(F(X)K) which corresponds to L under the Rieffel correspondence is
ι0(K(F(X)L)), and hence F(X)K/F(X)L is a K(F(X)K)/ι0(K(F(X)L))–K/L
imprimitivity bimodule. The result now follows immediately from (3.6). ❐

4. A GAUGE-INVARIANT UNIQUENESS THEOREM

Recall that we denote by γ the gauge action of T on OX .

Theorem 4.1. Suppose that X is a Hilbert bimodule overA. Suppose that (ψ,π)
is a Cuntz-Pimsner covariant representation of X in a C∗-algebra B such that π is
faithful, and that there is a strongly continuous action β : T→ Aut(ψ×π(OX)) such
that βz ◦ (ψ × π) = (ψ × π) ◦ γz for z ∈ T. Then the homomorphism ψ × π of
OX into B is injective.

This result was motivated by the gauge-invariant uniqueness theorems for
graph algebras in [15] and [4]. The important point here is that the theorem
requires no structural hypothesis on the bimodule, as opposed to the uniqueness
theorems of Cuntz-Krieger type which have hypotheses on the graph or matrix
but no hypothesis on the gauge action. (Though notice that the existence of such
a covariant representation forcesϕ : A→ L(X) to be injective.) This theorem also
generalises Theorem 3.3 of [9] (where we think the authors may have intended to
impose a left-annihilator condition—see Remark 6.12). We can also deduce from
this result that Pimsner’s concretely defined algebra is isomorphic to ours.

Our basic strategy is a familiar one: we show that the representation ψ × π
is faithful on the fixed-point algebra OγX for the gauge action, and then extend
this to OX by averaging over the action β. Carrying out the first step requires a
careful analysis of the fixed-point algebra OγX . Throughout we write (iX, iA) for
the universal Cuntz-Pimsner covariant representation of X in OX .

In the following Lemma we reorganize some results from [27, Section 3].

Lemma 4.2. Suppose X and Y are right Hilbert A-modules and ϕ : A→ L(X)
is injective. Then:
(1) θ : S , S ⊗A 1 is an isometric homomorphism of L(Y) into L(Y ⊗A X);
(2) if S ⊗A 1 ∈K(Y ⊗A X), then S is compact, and ranS ⊆ YJ(X).
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Proof.
(1) Let π be a faithful representation of A on Hilbert space. Then X -Indπ is

faithful becauseϕ is, and the representation (Y ⊗A X) -Indπ of L(Y), which
is unitarily equivalent to (Y -Ind(X -Indπ)) ◦ θ, is also faithful. Thus θ is
injective, hence isometric.

(2) Let (uλ) be an approximate identity for K(Y). Since K(Y) acts nondegen-
erately on Y , uλ converges to 1 in the strong operator topology on L(Y).
Calculations like

(uλ ⊗A 1)Θy1⊗Ax1,y2⊗Ax2 = Θuλy1⊗Ax1,y2⊗Ax2 → Θy1⊗Ax1,y2⊗Ax2

show that (uλ ⊗A 1) converges strictly to 1 ∈ L(Y ⊗A X) =M(K(Y ⊗A X)).
Thus if S ⊗A 1 is compact, then by part (1) we have

0 = lim‖S ⊗A 1− (uλ ⊗A 1)(S ⊗A 1)‖ = lim‖S −uλS‖,

so S is compact. For each ξ ∈ Y , define Tξ : X → Y ⊗A X by Tξ(x) := ξ⊗x.
Calculations like

T∗ξ Θy1⊗Ax1,y2⊗Ax2Tη = Θϕ(〈ξ,y1〉A)x1,ϕ(〈η,y2〉A)x2 ∈K(X)

show that T∗ξ KTη ∈ K(X) for every K ∈ K(Y ⊗A X) and ξ, η ∈ Y . Thus
if S ⊗A 1 is compact, then T∗ξ (S ⊗A 1)Tη = ϕ(〈ξ, Sη〉A) is compact, and
〈ξ, Sη〉A ∈ J(X). We deduce that ran S ⊆ YJ(X). ❐

We will need the following notation in some of our spatial arguments.

Notation 4.3. Suppose (ψ,π) is a Toeplitz representation of X on a Hilbert
space H . By Lemma 3.6(1), (ψ⊗n,π) is a Toeplitz representation of X⊗n, so
there is a representation π(n) : K(X⊗n) → B(H ) such that

π(n)(Θx,y) = ψ⊗n(x)ψ⊗n(y)∗ for x,y ∈ X⊗n.

Let π(n) be the extension ofπ(n) to L(X⊗n) =M(K(X⊗n)) with the same essen-
tial subspace as π(n); π(n) is precisely the representation ρψ⊗n,π of [12, Proposi-
tion 1.6]. Denote by Pn the projection onto the essential subspace of π(n). Since
K(X⊗n) acts nondegenerately on X⊗n, we have

PnH = span{ψ⊗n(x)h : x ∈ X⊗n, h ∈H}.

Write 1k for the identity operator on X⊗k, and for S ∈ L(X⊗n) write S ⊗A 1k for
the adjointable operator on X⊗(n+k) which satisfies

S ⊗A 1k(x ⊗A y) = Sx ⊗A y for x ∈ X⊗n and y ∈ X⊗k.
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The following Lemma collects some results from [12].

Lemma 4.4. Let (ψ,π) be a Toeplitz representation of X on a Hilbert spaceH ,
and suppose n ≥ 1, S ∈ L(X⊗n), x ∈ X⊗n, and k ≥ 0. Then

(1) π(n)(S)ψ⊗n(x) = ψ⊗n(Sx);
(2) π(n)(S)Pn+k = π(n+k)(S ⊗A 1k) = Pn+kπ(n)(S);
(3) ψ⊗n(x)Pk = Pn+kψ⊗n(x).

Proof. See [12, Proposition 1.6(1), Proposition 1.8(2), Lemma 2.5(2)]. ❐

Lemma 4.5 ([27, Lemma 3.10]). Suppose (ψ,π) is a Cuntz-Pimsner covariant
representation of X in a C∗-algebra B. Let n ≥ 1. If S ∈ L(X⊗n) and S ⊗A 1 ∈
K(X⊗(n+1)), then S ∈K(X⊗n) and π(n+1)(S ⊗A 1) = π(n)(S).

Proof. By Lemma 4.2, S is compact and S(X⊗n) ⊆ X⊗nJ(X). Represent B
faithfully on a Hilbert space H , and adopt Notation 4.3. Since (ψ,π) is Cuntz-
Pimsner covariant, Lemma 1.9 gives π(J(X))(1− P1) = 0, and hence

π(n)(S)(I − Pn+1)ψ⊗n(X⊗n)

= π(n)(S)ψ⊗n(X⊗n)(I − P1) = ψ⊗n(S(X⊗n))(I − P1)

⊆ ψ⊗n(X⊗nJ(X))(I − P1) = ψ⊗n(X⊗n)π(J(X))(I − P1) = {0}.

Thus 0 = π(n)(S)(I − Pn+1)Pn = π(n)(S) − π(n)(S)Pn+1, and Lemma 4.4(2)
gives π(n)(S) = π(n+1)(S ⊗A 1), as required. ❐

We now aim to identify the coreOγX . Whenn ≥ 1, writeA⊗A1n forϕ(A)⊗A
1n−1 ⊆ L(X⊗n), and define

Cn := A⊗A 1n +K(X)⊗A 1n−1 + · · · +K(X⊗n) for all n ≥ 0;

then Cn is a C∗-subalgebra of L(X⊗n).
Proposition 4.6 (cf. [27, Proposition 3.11]). Suppose (ψ,π) is a Cuntz-

Pimsner covariant representation of X in a C∗-algebra B. Then there is a homo-
morphism κn = κψ,πn : Cn → B such that

κn(k0 ⊗A 1n + k1 ⊗A 1n−1 + · · · + kn) = π(k0)+π(1)(k1)+ · · · +π(n)(kn).

If π is faithful, so is κn.

Proof. First suppose n ≥ 1 and c := k0 ⊗A 1n + k1 ⊗A 1n−1 + · · · + kn is
compact; we claim that

(4.1) π(n)(c) = π(k0)+π(1)(k1)+ · · · +π(n)(kn).
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When n = 1, c = ϕ(k0) + k1 ∈ K(X) implies that k0 ∈ J(X), and hence
π(1)(c) = π(k0)+π(1)(k1) as required. Assume inductively that (4.1) holds for
n−1 for some n ≥ 2. Since (k0⊗A 1n−1+· · ·+kn−1)⊗A 1 = c−kn is compact,
by Lemma 4.5 k0 ⊗A 1n−1 + · · · + kn−1 is compact and

π(n)((k0 ⊗A 1n−1 + · · · + kn−1)⊗A 1) = π(n−1)(k0 ⊗A 1n−1 + · · · + kn−1).

By induction we thus have

π(n)(c − kn) = π(k0)+π(1)(k1)+ · · · +π(n−1)(kn−1),

and the claim follows. Applying the claim to c = 0 gives

π(k0)+π(1)(k1)+ · · · +π(n)(kn) = π(n)(c) = 0,

from which it is clear that κn is a well-defined ∗-linear map.
It remains to show that κn is multiplicative. For this we represent B faithfully

on H and resume Notation 4.3. Using Lemma 4.4 we can see that

(4.2) κn−1(c)Pn = π(n)(c ⊗A 1) = Pnκn−1(c) for n ≥ 1 and c ∈ Cn−1.

Thus if c ∈ Cn−1 and k ∈K(X⊗n), then

κn(k)κn−1(c) = π(n)(k)Pnκn−1(c) = π(n)(k)π(n)(c ⊗A 1)(4.3)

= π(n)(k(c ⊗A 1)) = κn(k(c ⊗A 1)),

and taking adjoints gives

(4.4) κn((c ⊗A 1)k) = κn−1(c)κn(k).

Also, observe that

(4.5) κn(c ⊗A 1) = κn−1(c) for c ∈ Cn−1.

To prove that κn is multiplicative we induct on n. For n = 0, recall that C0 = A
and κ0 = π . Assume inductively that κn−1 is multiplicative for some n ≥ 1. Let
c, c′ ∈ Cn−1 and k, k′ ∈ K(X⊗n), so that c⊗A 1+k and c′ ⊗A 1+k′ are typical
elements of Cn. Using (4.3)-(4.5), we have

κn((c ⊗A 1+ k)(c′ ⊗A 1+ k′))
= κn(cc′ ⊗A 1+ k(c′ ⊗A 1)+ (c ⊗A 1)k′ + kk′)
= κn−1(c)κn−1(c′)+ κn(k)κn−1(c′)+ κn−1(c)κn(k′)+ κn(k)κn(k′)
= (κn−1(c)+ κn(k))(κn−1(c′)+ κn(k′))
= κn(c ⊗A 1+ k)κn(c′ ⊗A 1+ k′).
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Hence κn is multiplicative.
Finally, suppose π is faithful. Then π(n) is also faithful; see [12, Proposition

1.6(2)]. If κn(c) = 0, then by (4.2) we have π(n)(c) = Pnκn(c) = 0, and hence
c = 0. Thus κn is also faithful. ❐

Definition 4.7. Let C denote the inductive limit lim
-→ Cn under the isometric

homomorphisms c ∈ Cn , c ⊗A 1 ∈ Cn+1.

Corollary 4.8. Suppose (ψ,π) is a Cuntz-Pimsner covariant representation of
X in a C∗-algebra B. The homomorphisms κψ,πn : Cn → B induce a homomorphism
κψ,π : C → B, and κψ,π is faithful if π is.

Proof. Immediate since κψ,πn (c ⊗A 1) = κψ,πn−1(c) for every c ∈ Cn−1. ❐

For the following corollary we need to know that the universal map iA : A →
OX is injective when ϕ is injective. This is proved in [25, Proposition 2.21], and
we give another proof in Corollary 6.2.

Corollary 4.9. There is a homomorphism κ : C → OX which satisfies

κ(k0 ⊗ 1n + k1 ⊗ 1n−1 + · · · + kn) = iA(k0)+ i(1)A (k1)+ · · · + i(n)A (kn).

Moreover, κ is injective and maps onto the fixed-point algebra OγX .

Proof. Apply Corollary 4.8 to the universal representation (iX, iA) of X in
OX and take κ := κiX,iA . Since iA is injective so is κ. Define e : OX → OγX
by e(d) :=

∫
T γz(d)dz. Since OX is spanned by monomials of the form d :=

i⊗rX (x)iA(a)i
⊗s
X (y)∗, and since e(d) = d if r = s and e(d) = 0 if r ≠ s, we

deduce from the continuity of e that OγX is spanned by the monomials in which
r = s. But i⊗rX (x)iA(a)i

⊗r
X (y)∗ = κ(Θx·a,y), so κ maps onto OγX . ❐

Proof of Theorem 4.1. The homomorphism κψ,π : C → B is faithful by
Corollary 4.8, and since κψ,π = (ψ×π)◦κiX,iA , this shows thatψ×π is faithful
on OγX . Define E : B → Bβ by E(b) :=

∫
T βz(b)dz. Since ψ × π intertwines

γ and β, and since e : OX → OγX is faithful on positive elements, we deduce that
ψ×π is injective from the following chain:

(4.6) ψ×π(d) = 0 ⇒ E(ψ×π(d∗d)) = 0⇒ ψ×π(e(d∗d)) = 0

⇒ e(d∗d) = 0 ⇒ d∗d = 0 ⇒ d = 0. ❐

Corollary 4.10. Ifϕ : A→ L(X) is injective, then every nonzero gauge-invariant
ideal in OX has nonzero intersection with iA(A).
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5. APPLICATIONS OF GAUGE-INVARIANT UNIQUENESS

We first apply Theorem 4.1 to the graph algebra C∗(E) discussed in Example 1.5.
The resulting gauge-invariant uniqueness theorem is stronger than the one in [4];
it can also be deduced from the version in [4] using the approximation techniques
of [28] (see [28, Theorem 2.7]).

Corollary 5.1. Let E be a directed graph with no sinks. Suppose {Se, Pv} is a
Cuntz-Krieger E-family in a C∗-algebra B such that each Pv 6= 0, and suppose there
is a strongly continuous action β : T → AutB such that βz(Se) = zSe for all e ∈ E1

and βz(Pv) = Pv for all v ∈ E0. Then the homomorphism πS,P : C∗(E) → B is
injective.

For an application of Theorem 4.1 to the C∗-algebras of continuous graphs,
see [7].

We can also apply Theorem 4.1 to the bimodule α(1)A associated to an en-
domorphism of A, where it yields the following variant of [6, Proposition 2.1].

Corollary 5.2. Suppose α is an injective endomorphism of a C∗-algebra A, and
(π,V) is a covariant homomorphism of the semigroup dynamical system (A,N, α)
into a C∗-algebra B. If π is injective and there is an action β : T → AutB such that
βz(π(a)) = π(a) and βz(V) = zV , then π × V is an injective homomorphism of
A×α N into B.

As our most important new application of Theorem 4.1, we settle a problem
left open in [25]. We recall some terminology and background. Let A be a
non-self-adjoint subalgebra of a C∗-algebra B. We shall assume that A is either
unital or contains a contractive approximate identity. We shall also assume thatA
generates B as a C∗-algebra and thatA acts essentially on B, meaning thatAB :=
span{ab : a ∈ A, b ∈ B} and BA := span{ba : a ∈ A, b ∈ B} are dense in
B. We shall simply say that A is an essential subalgebra of B to describe this
situation. Of course, if A is an essential subalgebra of B and if A is unital, then
so is B and the unit of A is the unit of B. If A is only approximately unital, then
an approximate unit for A serves as a (not-necessarily-self-adjoint) contractive
approximate unit for B. A (2-sided) ideal J of B is called a boundary ideal for A
in case the quotient map q : B → B/J is completely isometric when restricted to
A. There is a boundary ideal J0 that contains all other boundary ideals; it is called
the Shilov boundary ideal, and the quotient B/J0 is called the C∗-envelope of A.
This terminology is due to Arveson [3], who proved the existence of the Shilov
boundary ideal and the C∗-envelope in special cases. The complete result was
proved by Hamana in [14]. (Actually, both Arveson and Hamana worked only in
the unital setting. The details for non-unital algebras do not differ substantially
from the those for unital algebras, but they are scattered throughout the literature.
See [24] for references.) The C∗-envelope of A is unique in the following sense:
Suppose j : A → B1 is a completely isometric homomorphism of A onto an
essential subalgebra of a C∗-algebra B1 and suppose that the Shilov boundary
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ideal in B1 for j(A) vanishes. Then there is a C∗-isomorphism π : B/J0 →
B1 such that π ◦ q|A = j. In particular, we see that all completely isometric
automorphisms of A are restrictions to A of ∗-automorphisms of B/J0.

In the setting of this paper, suppose we are given a C∗-bimodule X over a
C∗-algebra A, let (jX, jA) be the universal Toeplitz representation of X in TX
and let T+X denote the closed subalgebra of TX generated by jA(A) and jX(X).
Then T+X is called the tensor algebra of X. It is clear that T+X is an essential
subalgebra of TX : it generates TX as a C∗-algebra. Also, if A is unital, then the
image under jA of 1A is the common unit of T+X and TX ; similarly, jA carries
an approximate unit for A to an approximate unit for both T+X and TX . In
Theorem 6.4 of [25], the authors consider a module X which is both faithful, in
the sense that ϕ is injective, and strict, in the sense that the esssential submodule
ϕ(A)X is a summand of X; they prove that I(J(X)) is a boundary ideal in TX for
T+X . Consequently, the quotient map q : TX → TX/I(J(X)) = OX restricts to a
completely isometric homomorphism on T+X and so the C∗-envelope of T+X is
a quotient of OX .

Theorem 5.3. If X is a faithful, strict Hilbert bimodule over A, then I(J(X)) is
the Shilov boundary ideal for T+X in TX and OX is the C∗-envelope of T+X .

Proof. We may identifyT+X with its image under the quotient map q : TX →
TX/I(J) = OX , and then we may think of T+X as the closed algebra OX gen-
erated by iX(X) and iA(A), where (iX, iA) = (q ◦ jX, q ◦ jA) is the universal
Cuntz-Pimsner covariant Toeplitz representation of X. Observe that the gauge
automorphism group of OX fixes T+X . Suppose I0 is the Shilov boundary ideal
in OX for T+X . We want to show that I0 = 0. Since each gauge automorphism
γz maps T+X onto T+X , γz(I0) is a boundary ideal in OX for T+X . However, I0
contains all boundary ideals. Therefore γz(I0) ⊆ I0, z ∈ T, and so I0 is gauge
invariant. By Corollary 4.10 and the fact that iA is injective (Corollary 6.2), we
conclude that I0 ∩ iA(A) is non-zero, unless I0 = 0. Since the quotient map from
OX onto OX/I0 is completely isometric when restricted to T+X , it is faithful when
restricted to iA(A). Thus I0 ∩ iA(A) vanishes and so, then, does I0. ❐

Remark 5.4. One can weaken the hypothesis in Theorem 5.3 that X is faith-
ful to conclude that the C∗-envelope of T+X is a relative Cuntz-Pimsner algebra
O(K,X). (Indeed, that is why the authors of [25] introduced the concept of
relative Cuntz-Pimsner algebras.) However, when this is done, it appears that a
stronger hypothesis than “strict” is necessary. Whether this is simply an artifact
of the proofs in [25], we do not know. The analysis of ideals in relative Cuntz-
Pimsner algebras that we have given may help to clarify the situation.

6. THE DOPLICHER-ROBERTS ALGEBRA OF A HILBERT BIMODULE

When the homomorphism ϕ : A → L(X) given by the left action on X is
injective, so are the maps T , T ⊗A 1 of L(X⊗n,X⊗(n+k)) into
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L(X⊗(n+1), X⊗(n+k+1)). For k ∈ Z, let DR(k)X be the Banach-space direct limit

DR(k)X := lim
-→ L(X

⊗n,X⊗(n+k))

under the embeddings T , T⊗A1. Form, n ≥ 1, we write ιm,n for the canonical
embedding of L(X⊗m,X⊗n) inDR(n−m)X . The algebraic direct sum

⊕
k∈ZDR(k)X

has a natural structure as Z-graded ∗-algebra (see [8, page 180]); the Doplicher-
Roberts algebraDRX of X is the C∗-algebra obtained by completing

⊕
k∈ZDR(k)X

in the unique C∗-norm for which the automorphic action of T defined by the
grading is isometric (see [8, Theorem 4.2]). We identify DR(k)X with its canonical
image in DRX .

Our study of DRX was motivated by [9] (where DRX is denoted OXA ), and
our aim is to generalize [9, Theorem 4.1]. We begin as in [9] by demonstrating
that OX embeds in DRX . Define L : X → L(X,X⊗2) by Lx(y) := x ⊗A y , and
set

jX := ι1,2 ◦ L : X →DRX and jA := ι1,1 ◦ϕ : A→DRX.
Lemma 6.1. (jX, jA) is a Cuntz-Pimsner covariant representation of X inDRX .

Proof. For x, y ∈ X and a ∈ A, we have

jX(x · a) = ι1,2(Lx·a) = ι1,2(Lxϕ(a))
= ι1,2(Lx)ι1,1(ϕ(a)) = jX(x)jA(a),

jX(x)∗jX(y) = ι1,2(Lx)∗ι1,2(Ly) = ι2,1(L∗x)ι1,2(Ly)
= ι1,1(L∗xLy) = ι1,1(ϕ(〈x,y〉A)) = jA(〈x,y〉A),

and

jX(ϕ(a)x) = ι1,2(Lϕ(a)x) = ι1,2((ϕ(a)⊗A 1)Lx)

= ι2,2(ϕ(a)⊗A 1)ι1,2(Lx) = ι1,1(ϕ(a))ι1,2(Lx) = jA(a)jX(x).

Thus (jX, jA) is a Toeplitz representation of X in DRX . To see that (jX, jA) is
Cuntz-Pimsner covariant, we first establish

(6.1) j(1)A = ι1,1|K(X).

For any x, y ∈ X,

j(1)A (Θx,y) = jX(x)jX(y)∗ = ι1,2(Lx)ι1,2(Ly)∗
= ι2,2(LxL∗y) = ι2,2(Θx,y ⊗A 1) = ι1,1(Θx,y),

and (6.1) follows by linearity and continuity. Thus for a ∈ J(X), we have
j(1)A (ϕ(a)) = ι1,1(ϕ(a)) = jA(a), and (jX, jA) is Cuntz-Pimsner covariant. ❐
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Corollary 6.2 ([25, Proposition 2.21]). If ϕ is injective, then the universal
map iA : A→ OX is injective.

Proof. Since jA = (jX × jA) ◦ iA is injective, so is iA. ❐

Proposition 6.3 ([9, Proposition 3.2]). jX × jA : OX →DRX is injective.

Proof. jA is injective, and jX × jA intertwines the gauge actions on OX and
DRX , so the result follows from Theorem 4.1. ❐

Definition 6.4. A Toeplitz representation (ψ,π) of X on H is called fully
coisometric if ψ(X)H is total in H .

Remark 6.5. By Lemma 1.9, fully coisometric Toeplitz representations are
Cuntz-Pimsner covariant. For n ≥ 1, let Pn be the orthogonal projection of H
onto spanψ⊗n(X⊗n)H . Then (ψ,π) is fully coisometric if and only if P1 = 1,
in which case it is easy to see that Pn = 1 for every n ≥ 1.

Since the left action of K(X⊗n) on X⊗n is nondegenerate, the essential sub-
space of the representation π(n) : K(X⊗n) → B(H ) is precisely PnH . Thus
(ψ,π) is fully coisometric if and only if π(1) is nondegenerate, in which case
π(n) is nondegenerate for every n ≥ 1.

We denote by γ the gauge actions of T on both OX and DRX ; this should
cause no problems since the embedding jX × jA is equivariant.

Theorem 6.6. Suppose (ψ,π) is a fully coisometric Toeplitz representation of X
on a Hilbert space H .
(1) There is a unique representation ψ×π of DRX on H such that

(6.2) (ψ×π) ◦ (jX × jA) = ψ×π.

(2) A representation ρ ofDRX has the formψ×π for some fully coisometric Toeplitz
representation (ψ,π) of X if and only if ρ ◦ ι1,1|K(X) is nondegenerate.

(3) If π is faithful and

(6.3)
∥∥∥∥ψ×π

(∫
T
γz(b)dz

)∥∥∥∥ ≤ ‖ψ×π(b)‖ for b ∈ OX,

then ψ×π is faithful.

To prove this theorem, we need some preliminary results.

Lemma 6.7. Let {A(k) : k ∈ Z} be a Z-graded C∗-algebra. Endow
⊕
k∈ZA(k)

with the unique C∗-norm for which the automorphic action of T defined by the grad-
ing is isometric, as in [8, Theorem 4.2]. Then every ∗-homomorphism of

⊕
k∈ZA(k)

into a C∗-algebra is contractive.
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Proof. Suppose σ is a ∗-homomorphism of
⊕
A(k) into a C∗-algebra. If

a =⊕ak ∈
⊕
A(k), then

‖σ(γz(a))‖ =
∥∥∥⊕zkσ(ak)

∥∥∥ ≤∑‖σ(ak)‖

for each z ∈ T, so

‖a‖′γ := sup
({‖a‖γ} ∪ {‖σ(γz(a))‖ : z ∈ T})

defines a C∗-norm ‖ ‖′γ on
⊕
A(k). Since ‖γz(a)‖′γ = ‖a‖′γ for a ∈⊕A(k) and

z ∈ T, it follows from [8, Theorem 4.2] that ‖ · ‖′γ = ‖ · ‖γ . Thus

‖σ(a)‖ = ‖σ(γ0(a))‖ ≤ ‖a‖′γ = ‖a‖γ

for every a ∈⊕A(k). ❐

Lemma 6.8. Let X, Y and Z be Hilbert A-modules, and suppose π is a represen-
tation of A on a Hilbert space H . Then there is a contractive linear map T , T ⊗A 1
of L(X, Y) into B(X ⊗AH , Y ⊗AH ) such that

T ⊗A 1(x ⊗A h) := Tx ⊗A h.

We then have (T ⊗A 1)∗ = T∗ ⊗A 1, and if S ∈ L(Y , Z), then

(6.4) (S ⊗A 1)(T ⊗A 1) = ST ⊗A 1.

Remark 6.9. Since X ⊗AH is canonically isomorphic to X ⊗A π(A)H , we
do not need to assume that π is nondegenerate.

Proof of Lemma 6.8. The proof of [29, Proposition 2.66] carries over pro-
vided we use Remark 2.23 instead of Corollary 2.22 to see that T∗T ≤ ‖T‖2 in
L(X). If x ∈ X, y ∈ Y and h, k ∈H , then

(
T ⊗A 1(x ⊗A h) | y ⊗A k

)
= (Tx ⊗A h | y ⊗A k) = (h | π(〈Tx,y〉A)k)
= (x ⊗A h | T∗y ⊗A k) = (x ⊗A h | T∗ ⊗A 1(y ⊗A k)

)
,

so (T ⊗A 1)∗ = T∗ ⊗A 1, and (6.4) follows from

(S ⊗A 1)(T ⊗A 1)(x ⊗A h) = (S ⊗A 1)(Tx ⊗A h)
= STx ⊗A h = ST ⊗A 1(x ⊗ h). ❐
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Definition 6.10. Let C be the C∗-category with object set N and morphisms
Hom(m,n) := L(X⊗m,X⊗n). (See [8, Section 1] for the definition of a C∗-
category.) A ∗-representation of C on a Hilbert space H is a collection of linear
maps ρm,n : Hom(m,n) → B(H ) such that

(6.5) ρn,p(S)ρm,n(T) = ρm,p(ST) and ρm,n(T)∗ = ρn,m(T∗).

Proposition 6.11. Let (ψ,π) be a Toeplitz representation of X on a Hilbert
space H . With the convention that ψ⊗0 := π , there is a unique ∗-representation
[ψ,π] of C on H such that, for T ∈ L(X⊗m,X⊗n),

[ψ,π]m,n(T)ψ⊗m(x)h = ψ⊗n(Tx)h for x ∈ X⊗m, h ∈H ,
[ψ,π]m,n(T)k = 0 for k ⊥ {ψ⊗m(x)h : x ∈ X⊗m, h ∈ H}.

Proof. For n ∈ N, let U(n) : X⊗n ⊗AH →H be the isometry given by

U(n)(x ⊗A h) := ψ⊗n(x)h for x ∈ X⊗n, h ∈H .

We obtain a linear map [ψ,π]m,n with the stated properties by defining

[ψ,π]m,n(T) := U(n)(T ⊗A 1)(U(m))∗ for T ∈ L(X⊗m,X⊗n),

and (6.5) follows immediately from Lemma 6.8. ❐

Proof of Theorem 6.6.
(1) First we claim that the ∗-representation of Proposition 6.11 satisfies

(6.6) [ψ,π]m+1,n+1(T ⊗A 1) = [ψ,π]m,n(T) for T ∈ L(X⊗m,X⊗n).

Since (ψ,π) is fully coisometric, it suffices to check this equation on vectors
of the form ψ⊗(m+1)(x ⊗A y)h, where x ∈ X⊗m, y ∈ X, and h ∈H :

[ψ,π]m+1, n+1(T ⊗A 1)ψ⊗(m+1)(x ⊗A y)h
= ψ⊗(n+1)(Tx ⊗A y)h
= ψ⊗n(Tx)ψ(y)h
= [ψ,π]m,n(T)ψ⊗m(x)ψ(y)h
= [ψ,π]m,n(T)ψ⊗(m+1)(x ⊗A y)h,

justifying the claim.
Since [ψ,π] is a∗-representation of a C∗-category, the linear maps [ψ,π]m,n

are contractive. Thus by (6.6) there is a contractive linear map [ψ,π](k) :
DR(k)X → B(H ) such that

[ψ,π](k) ◦ ιn,n+k = [ψ,π]n,n+k.
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We claim that σ :=⊕k∈Z[ψ,π](k) is a ∗-representation of
⊕
k∈ZDR(k)X on

H . For T ∈ L(X⊗m,X⊗(m+k)), we have

[ψ,π](k)(ιm,m+k(T))∗ = [ψ,π]m,m+k(T)∗ = [ψ,π]m+k,m(T∗)
= [ψ,π](−k)(ιm+k,m(T∗)),

so if tj → t ∈ DR(k)X and tj ∈ ιm,m+k(L(X⊗m,X⊗(m+k))), then by norm
continuity of [ψ,π](k), [ψ,π](−k) and the involution, we have

σ(t)∗ = [ψ,π](k)(t)∗ = lim[ψ,π](k)(tj)∗

= lim[ψ,π](−k)(t∗j ) = σ(t∗).

Similarly, for T ∈ L(X⊗m,X⊗n) and S ∈ L(X⊗n,X⊗p), we have

[ψ,π](p−m)(ιn,p(S)ιm,n(T))
= [ψ,π](p−m)(ιm,p(ST))
= [ψ,π]m,p(ST) = [ψ,π]n,p(S)[ψ,π]m,n(T)
= [ψ,π](p−n)(ιn,p(S))[ψ,π](n−m)(ιm,n(T)),

and by norm continuity we conclude that σ(st) = σ(s)σ(t) whenever s ∈
DR(p−n)X and t ∈ DR(n−m)X . By Lemma 6.7, σ is contractive, and hence
extends to a representation ψ×π of DRX on H .

We now verify (6.2). Let (iX, iA) be the universal representation in OX .
Since (ψ,π) is fully coisometric, the calculation

[ψ,π]1,2(Lx)ψ(y)h = ψ⊗2(x ⊗A y)h = ψ(x)ψ(y)h

shows that [ψ,π]1,2 ◦ L = ψ. But

ψ×π ◦ (jX × jA) ◦ iX = ψ×π ◦ jX = σ ◦ ι1,2 ◦ L = [ψ,π]1,2 ◦ L,

so ψ×π ◦ (jX × jA) ◦ iX = ψ. Similarly, the calculation

[ψ,π]1,1(ϕ(a))ψ(y)h = ψ(ϕ(a)y)h = π(a)ψ(y)h

shows that [ψ,π]1,1 ◦ϕ = π , and since

ψ×π ◦ (jX × jA) ◦ iA = ψ×π ◦ jA = σ ◦ ι1,1 ◦ϕ = [ψ,π]1,1 ◦ϕ,

we also have ψ×π ◦ (jX × jA) ◦ iA = π and (6.2) follows.
For the uniqueness assertion, we require the following generalization of

(6.1), which can be easily checked on elementary tensors:

j⊗nX (x)j
⊗m
X (y)∗ = ιm,n(Θx,y) for all x ∈ X⊗n and y ∈ X⊗m.
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It follows that

(6.7) j(m)A = ιm,m
∣∣K(X⊗m) for allm ≥ 1,

and that

(6.8) ιm,n(K(X⊗m,X⊗n)) ⊆ jX × jA(OX).

Suppose ρ is a representation of DRX such that ρ ◦ (jX × jA) = ψ × π ;
that is, such that ρ ◦ jX = ψ and ρ ◦ jA = π . We will show that for T ∈
L(X⊗m,X⊗n), the operator ρ(ιm,n(T)) is determined by the restriction of ρ
to jX × jA(OX). Since the operators ιm,n(T) span a dense subspace of DRX ,
it will then follow that ρ = ψ×π .

Since (ψ,π) is fully coisometric, the representation π(m) of K(X⊗m) is
nondegenerate; hence ρ(ιm,n(T)) is determined by its action on vectors of
the form π(m)(K)h for K ∈K(X⊗m). Applying ρ to (6.7) gives π(m)(K) =
ρ(ιm,m(K)), and hence

(6.9) ρ(ιm,n(T))π(m)(K) = ρ(ιm,n(T)ιm,m(K)) = ρ(ιm,n(TK)).

Since TK ∈ K(X⊗m,X⊗n), (6.9) and (6.8) show that ρ(ιm,n(T)) is indeed
determined by the restriction of ρ to jX × jA(OX), as claimed.

(2) Suppose ρ is a representation of DRX on H . Then ψ := ρ ◦ jX and π :=
ρ◦jA form a Cuntz-Pimsner covariant representation of X such thatψ×π =
ρ ◦ (jX × jA). Since π(1)ρ ◦ ι1,1|K(X), (ψ,π) is fully coisometric if and only
if ρ ◦ ι1,1|K(X) is nondegenerate, in which case ρ = ψ×π by uniqueness of
ψ×π .

(3) If π is faithful, then each [ψ,π]n,n : L(X⊗n)→ B(H ) is faithful [12, Propo-
sition 1.6], and hence so is [ψ,π](0). To complete the proof it thus suffices
to show that

(6.10) ‖ψ×π(E(b))‖ ≤ ‖ψ×π(b)‖ for b ∈ DRX,

where E is the expectation on DRX obtained by averaging over γ; given this,
a chain like (4.6) shows that ψ×π is faithful.

It suffices to prove (6.10) for b ∈ span{ιm,n(L(X⊗m,X⊗n)) : m, n ≥ 0}.
Given such a b, there exists r ≥ 1 such that b is the finite sum

∑
bn of

elements bn = ιr ,r+n(Bn) for some Bn ∈ L(X⊗r , X⊗(r+n)). Suppose K ∈
K(X⊗r ), and let k := ιr ,r (K). Then if e is the expectation onto OX ,

bnk = ιr ,r+n(BnK) ∈ ιr ,r+n(K(X⊗r , X⊗(r+n))),

so by (6.8) and the injectivity of jX × jA (Proposition 6.3), there is a unique
cn ∈ OX such that bnk = jX × jA(cn). Let c := ∑ cn. Then

b0k = E(bk) = E(jX × jA(c)) = jX × jA(e(c)),
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so

‖ψ×π(b0k)‖ = ‖ψ×π(jX × jA(e(c)))‖ = ‖ψ×π(e(c))‖
≤ ‖ψ×π(c)‖ = ‖ψ×π(jX × jA(c))‖
= ‖ψ×π(bk)‖.

Now suppose ξ ∈ H and ε > 0. Since (ψ,π) is fully coisometric, π(r) =
ψ×π ◦ ιr ,r |K(X⊗r ) is nondegenerate, so by the Hewitt-Cohen Factorization
Theorem ξ = ψ×π(k)η for some k = ιr ,r (K) and η ∈H satisfying

‖ψ×π(k)‖‖η‖ ≤ (1+ ε)‖ξ‖.

Then

‖ψ×π(E(b))ξ‖ = ‖ψ×π(b0)ψ×π(k)η‖
≤ ‖ψ×π(b0k)‖‖η‖‖ψ ×π(bk)‖‖η‖
≤ ‖ψ×π(b)‖‖ψ×π(k)‖‖η‖
≤ ‖ψ×π(b)‖(1+ ε)‖ξ‖,

so ‖ψ×π(E(b))‖ ≤ (1 + ε)‖ψ×π(b)‖. Since ε was arbitrary, this gives
(6.10), completing the proof. ❐

Remark 6.12. Our theorem is a generalisation of [9, Theorem 4.1]: we do
not assume that π is faithful, nor do we require any sort of basis for X, and
their left-annihilator condition says that (ψ,π) is fully coisometric. To see this
last point, let (ψ,π) be a Toeplitz representation of X on H which is nonde-
generate in the sense that the C∗-algebra C∗(ψ,π) generated by ψ(X) ∪ π(A)
is nondegenerate. (If ϕ : A → L(X) is nondegenerate, then this is equivalent
to requiring that π be nondegenerate.) Let D be the C∗-algebra generated by
{[ψ,π]m,n(L(X⊗m,X⊗n)) : m, n ≥ 0}. We claim that the left annihilator of
ψ(X) in D is zero if and only if (ψ,π) is fully coisometric.

First suppose that T ∈ D is in the left annihilator of ψ(X). Then Tψ(x)h=0
for every x ∈ X and h ∈ H , and when (ψ,π) is fully coisometric this forces
T = 0.

Conversely, suppose the left annihilator of ψ(X) in D is zero and T ∈ D.
Then

T[ψ,π]1,1(1)ψ(x) = Tψ(x), x ∈ X,
so that T[ψ,π]1,1(1) = T . Hence [ψ,π]1,1(1) is an identity for D. Since
C∗(ψ,π) is nondegenerate so is D, and thus [ψ,π]1,1(1) is the identity on H .
But [ψ,π]1,1(1) = UU∗, where U : X ⊗A H → H is the isometry given by
U(x ⊗A h) := ψ(x)h, so P1 = UU∗ = [ψ,π]1,1(1) is the identity. Thus (ψ,π)
is fully coisometric.
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