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We show that a a-weakly closed subspace Y of the bounded operators B(Z) on 
an infinite dimensional Hilbert space X has Property S, (the Fubini product 
F(Y, I) = .Y @ .F for all u-weakly closed subspaces .F c B(Z)) if and only if .4p 
satisfies a certain approximation property, which we call the a-weak approximation 
property. The a-weak approximation property is implied by (but does not imply) 
the (weak-*) completely bounded approximation property. Moreover, if .Y’ has the 
u-weak approximation property, then the predual Ye has the approximation 
property for Banach spaces. We also prove analagous results for Property S (and 
variations of Property S) for C*-algebras. As an application of our characterization 
of subspaces with Property S,, we show that the reflexive algebra tensor product 
formula 

is not always valid. In fact, we show that for each of the types II,. II,, and III; 
(0 <I $ l), there is a separably acting factor J = alg pi of that type and a reflexive 
algebra d =alg YZ such that alg 9, @ alg U, is strictly contained in 

alg( 6/; 0 Z2 1. (r‘i 1991 Academic Press, Inc. 

0. INTRODUCTION 

One of the fundamental results in the theory of tensor products of von 
Neumann algebras is Tomita’s commutation theorem: if A’, and ~4’~ are 
von .Neumann algebras, then 

(A,) 0 (A>)‘= (Jzl, OJt%$)‘. (0.1) 

Gilfeather, Hopenwasser, and Larson observed in [22] that if we let -4c: 
denote the projection lattice of A; (i= 1, 2), then (0.1) can be rewritten as 

alg gI @ alg Y* = alg(9, @ &), (0.2) 

* This research was partially supported by grants from the National Science Foundation. 
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where Z’i 0 L$ denotes the subspace lattice generated by (e, 0 e2 1 ei E z). 
Equation (0.2) makes sense for arbitrary pairs of reflexive algebras, and the 
following reflexive algebra tensor product problem was raised in [22]: For 
which pairs of reflexive algebras alg spl and alg SC; is (0.2) valid? Slice maps 
have proved to be very useful in studying this problem [29, 30, 34-361. 

If X1 and X2 are Hilbert spaces, and cp is a a-weakly continuous linear 
functional on B(4) (so cp E B(4),), the right slice map R, associated 
with cp is the (unique) g-weakly continuous linear map from 
B(4) @ B(X2) to B(X2) such that 

R,(aOb)= (a, cp)b (a E B(@ L b E B(M). 

The left slice maps L @: B(Xl) @ B(s$) -+ B(Xl) (Ic/ E B(X*),) are similarly 
defined. If Y c B(Xl) and F c B(X2) are o-weakly closed subspaces, the 
Fubini product F(Y, r) of Y and Y is the set of all operators x in 
B(Xl) @ B(H2) all of whose right slices R,(x) are in Y-, and all of whose 
left slices L,(x) are in Y. It is immediate from its definition that F(Y, Y) 
contains the algebraic tensor product Y @Y of Y and r-, and it is easy 
to show that F(LY’, Y) is a-weakly closed. Hence F(Y, Y/I) always contains 
the o-weak closure Y 8 Y of Y 0 Y-. The slice map problem is to find all 
pairs of subspaces .Y and Y for which 

~@9-=F(~,~). (0.3) 

The slice map problem is of interest because a number of questions con- 
cerning tensor products of a-weakly closed subspaces are special cases of 
the slice map problem. Tomiyama proved in [52] that Tomita’s theorem 
is equivalent to the fact that (0.3) is valid whenever Y and Y are von 
Neumann algebras. Moreover, it was shown by the author in [34] that 

flak 6”1, alg SC;) = alg(,rY; 0 %) (0.4) 

for all pairs of reflexive algebras alg L?, and alg L&. Hence the tensor 
product problem for reflexive algebras is a special case of the slice map 
problem. Other special cases of the slice map problem are discussed in [29, 
34-36-J 

A a-weakly closed subspace Y c B(Xl) is said to have Property S, [34] 
if (0.3) is valid for all o-weakly closed subspaces 5 c B(Z2) (where p1 can 
be any Hilbert space). It follows from (0.4) that if alg 2, has Property S,, 
then (0.2) is valid for alg 9, and all reflexive algebras alg LZ’*. The author 
showed in [36] that the converse is true. (See also Remark 1 .l below.) A 
number of classes of reflexive algebras have been shown to have Property 
S, [29, 34-361. However, it has remained an open question whether every 
reflexive algebra has Property S,, and hence whether (0.2) is always valid. 
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One of the main results of this paper is that not only are there reflexive 
algebras without Property S,, but there are von Neumann algebras 
without Property S,. It was shown in [34] that all type I von Neumann 
algebras have Property S,. In contrast to this we show that for each of the 
types II,, IL, and III, (0 d ;1 d 1 ), there is a separably acting factor of that 
type without Property S,. It follows that the reflexive algebra tensor 
product formula (0.2) can fail even when one of the reflexive algebras is a 
von Neumann algebra. 

Section 1 contains a discussion of the previously known results con- 
cerning the tensor product problem for reflexive algebras, as well as some 
basic definitions and notation. 

The main result in Section 2 is that a subspace Y has Property S, if and 
only if it has a certain approximation property, which we call the a-weak 
approximation property. The completely bounded approximation property 
(CBAP) implies the a-weak approximation property (Theorem 2.10) but 
there are von Neumann algebras which have the a-weak approximation 
property (and so have Property S,), but do not have the CBAP (Example 
2.11). 

In Section 3 we prove the result concerning von Neumann algebras 
without Property S, mentioned above. We first show that if Y is a 
o-weakly closed subspace of B(2) for some Hilbert space 2, and Y has 
Property S,, then 9, (the Banach space of a-weakly continuous linear 
functionals on 9) has the approximation property for Banach spaces. 
Since B(Z) does not have the approximation property if Y? is infinite 
dimensional [48], B(X)* also does not have the approximation property, 
and so B(s)** is a von Neumann algebra without Property S,. Of course 
B(W ** is not a factor, and is not separably acting. In order to prove the 
existence of separably acting factors without Property S,, we use various 
stability properties of the class of von Neumann algebras with Property S, 
to prove that if for any of the types II,, II,, and III, (0 d L d 1) all 
separably acting factors of that type have Property S,, then every von 
Neumann algebra has Property S,, which contradicts our result about 
B(X)**. A stability result which we prove in Section 3 which is of interest 
in its own right is that if almost all the factors in the central decomposition 
of a separably acting von Neumann algebra J%’ have Property S,, then .,L! 
has Property S,. The proof of this result makes use of the direct integral 
theory for strongly closed algebras developed by Azoff, Fong, and 
Gilfeather in [2]. 

In Section 4 we consider the question of which singly generated unital 
algebras have Property S,. The author showed in [36] that if f E B(X) is 
a subnormal operator or an operator of class A(X) [3 J, then the a-weakly 
closed unital algebra zZ( t) generated by t has Property S,. Using a 
technique of Wogen [60], we show that the existence of a subspace of 
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B(X) without Property S, implies that there is an operator t for which 
d(t) does not have Property S,. We also show, in a positive direction, 
that if t is a injective weighted shift, then d(t) has the CCAP, and so has 
Property S,. 

In Section 5 we consider the slice map problem for C*-algebras. We 
define subspace versions of the slice map conjecture and of Property S 
(which were defined for C*-subalgebras in [57]), and prove that a 
C*-algebra A has Property S for subspaces of the compact operators K 
(i.e., (A, K, T) verifies th e s ice map conjecture whenever T is a norm closed 1’ 
subspace of K) if and only if A has the approximation property for 
operator spaces defined by Effros and Ruan in [21]. This result is of 
interest because Effros and Ruan show in [21] that their approximation 
property is the natural analogue for operator spaces of Grothendieck’s 
approximation property for Banach spaces. In particular, just as there are 
a number of properties of Banach spaces that are equivalent to the 
approximation property, there are a number of analogous properties of 
operator spaces that are equivalent to Effros and Ruan’s approximation 
property. Moreover, as noted in [21], the c-weak approximation property 
(which we called the complete pointwise approximation property in [37]) 
is just the normal version of the approximation property for operator 
spaces. 

The main results in this paper were announced in [37]. 

1. PRELIMINARIES AND NOTATION 

Let Y c B(X) be a c-weakly closed subspace, and let X be a Hilbert 
space. Then for any IJI E Y? and any XE Y @B(X)), the map 
$ + (x, cp @ II/) is a continuous linear functional on B(X).,., and so 
defines an element R,(x) of B(X). It is easily checked that R, is a 
o-weakly continuous linear map from Y a B(X) to B(X)), and that 

R&Ob)= (s, cp)b (s E 9, b E B(X)). (1.1) 

If Y #B(X) and (pfY*, then cp does not have a unique extension to a 
a-weakly continuous linear functional on B(X). However, if p is any 
element of B(s), that extends cp, then it follows from (1.1) that the right 
slice map R, (from B(X) @ B(X) to B(X)) agrees with $+, on Y @ B(X). 
Moreover, since B(X) has Property S,, F(Y, 5) c Y 0 B(X) whenever 
F is a a-weakly closed subspace of B(X) [ 34, Remark 1.51. Hence for any 
a-weakly closed subspace 9 c B(X) we have that 
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If Yc B(Z) is a a-weakly closed subspace, and Jf c B(X) is a von 
Neumann algebra, we say that 9’ has Property S, for Af if F(Y, Y) = 
~7 @ Y for all o-weakly closed subspaces of Jf. (An argument similar to 
that in the preceding paragraph shows that this definition does not depend 
on what Hilbert space JV” is realized on. See also Remark 1.2 in [34].) This 
concept is of interest because we will show in Section 3 that 9, has the 
approximation property if and only if Y has Property S, for I”(N). Of 
course Y has Property S, in the usual sense if and only if it has Property 
S, for all von Neumann algebras. There are no examples known of sub- 
spaces which have Property S, for 1 “(N) but do not have Property S,, 
although it seems likely that such examples exist. However, we will show 
in Section 2 that if X is a separable infinite dimensional Hilbert space, and 
if Y has Property S, for JV” = B(X)), then Y has Property S,. 

Let X be a Hilbert space. A collection 2 of (orthogonal) projections on 
2 is said to be a subspace lattice if it is strongly closed, contains 0 and the 
identity operator 1, and is closed under the usual lattice operations for 
projections. If the elements of 6p pairwise commute, -Y’ is said to be a 
commutative s&space lattice (or CSL). If 044 is a subspace lattice, 
alg 2 denotes the set of operators in B(X) that leave the ranges of all the 
projections in 2 invariant. It is easily checked that alg ?Z is a a-weakly 
closed unital subalgebra of B(X), and that 

algd;p= {aEB(X) 1 ae=eae for all eEY} 

If 2 is a CSL, alg 55’ is said to be a CSL algebra. 
A subalgebra d of B(Z) is said to be refexiue if d = alg lat &, where 

lat d denotes the subspace lattice consisting of the projections left 
invariant by all the operators in d. The reflexive algebras are precisely the 
algebras of the form alg 9 for some subspace lattice 2. Every von 
Neumann algebra is reflexive, and every self-adjoint reflexive algebra is a 
von Neumann algebra. 

If &‘r and G?* are reflexive algebras, we say that the reflexive algebra 
tensor product formula (the RTPF) is valid for &, and J&* if F(dl, J&‘~) = 
&, @ z$*. It follows from Eq. (0.4) that the RTPF is valid for ~2, and G$ 
if and only if alg 2, @ alg dtp2 = alg(Yr 0 dpz) whenever 2, and Z1 are 
subspace lattices such that &i = alg 3, and ~4~ = alg -4”. As noted in the 
Introduction, Tomita’s theorem is equivalent to the statement that the 
RTPF is valid for every pair of von Neumann algebras. 

If & is a reflexive algebra with Property S,, and if a is any reflexive 
algebra, then F(&, B) = JZZ @ %?, and so the RTPF is valid for z&’ and B. 
It was shown in [35] that alg 58 has Property S, whenever dp is a com- 
pletely distributive CSL. This generalized results in [22, 30, 331. It was 
shown in [29] that if J# is a von Neumann algebra such that ./lr’ n A’ has 
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Property S, whenever M is an abelian von Neumann subalgebra of A?’ (in 
which case A! is said to have Property RC), and if 9 c A is a finite width 
CSL (i.e., if .JZ is generated by a finite number of commuting chains of 
projections in A!), then the reflexive algebra (alg 9) n A’ has Property S,. 
It was also shown in [29] that the class of von Neumann algebras with 
Property RC is closed under taking direct sums, and includes all injective 
von Neumann algebras and all finite von Neumann algebras with Property 
S,. In particular, B(Z) has Property RC, and so alg Y has Property S, 
whenever 2 is a finite width CSL. It is also known that certain classes of 
reflexive algebras that are singly generated (as unital a-weakly closed 
algebras) have Property S,. These results are discussed in Section 4 below. 

Remark 1.1. Let d be a reflexive algebra without Property S,, and let 
X be a separable infinite dimensional Hilbert space. We will show in 
Section 2 that there is a a-weakly closed subspace Y c B(X) such that 
F(&‘, Y) # JZZ’ 0 Y. The subspace Y need not be a reflexive algebra. 
However, it was shown in the proof of Theorem 2.2 in [36] that one can 
associate an abelian reflexive subalgebra 9 c B(X) to Y which has the 
property that if F(Y, Y) #Y 0 Y (where Y is a o-weakly closed 
subspace of B(X) for some Hilbert space X), then F(Y, %?) # Y 0 .@. In 
particular, the RTPF is not valid for s9 and &?. Hence to find a pair of 
reflexive algebras for which the RTPF is not valid, it suffices to find a 
reflexive algebra without Property S,, which we will do in Section 3. In the 
proof of Theorem 3.10 below we will need to use the fact that B has the 
additional property that if F(Y, Y) = ,4p 0 Y-, then F(Y, 28) = Y 0 g. 
For the convenience of the reader, we will review the construction of g and 
give a proof of this fact. 

Let Y c B(X) be a a-weakly closed subspace, let 2, denote the direct 
sum of two copies of X”, and let Hz = 4 0 2. Viewing the elements of 
B(&) as 2 x 2 matrices with entries in B(.X) in the usual way, we first 
define an algebra B,, c B(4) by 

%= iCh,l I h,, =h,, ECU, b,, =O, and b,,~r}. 

Let g, = g,, 0 Cl. Then B, is a an abelian reflexive subalgebra of B(Xz) 
(see the proof of Theorem 2.2. in [36]). Let X be a Hilbert space, and let 
Y c B(X) be a a-weakly closed subspace. Then it is easy to see that each 
element of Y 0 B(q) 0 Cl can be written uniquely in the form x @ 1, 
where x = [x,] is a 2 x 2 matrix with entries in .Y 0 B(p), and that 

.4u@~,={xOlI x,,=x,,~.Y~Cl, .vz,=O, and x,~EY@Y}. (1.2) 

For cp E B(X),, let R, (respectively r?) denote the associated right slice 
map from .4p 0 B( 8 ) 0 C 1 to B( <q ) @ C 1 (respectively from .Y 0 B( Y?) 
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to B(%)). A straightforward calculation shows that if xii is in the algebraic 
tensor product Y 0 B(X) for 1 d i, j d 2, and if x = [x,], then 

qx 0 1) = [r,(xij)lo 1. (1.3) 

Since R, and rq are a-weakly continuous linear maps, it is immediate that 
(1.3) is valid for any operator x = [xii] in Y @ B(&). Hence, by the 
definition of a,, R,(x@ l)~g, if and only if Y,+,(x,,)=T~(x~~)ECI, 
rJxz,) =O, and YJx,,)EY. Since this is true for every cp in B(X),, and 
since F(Y, Cl)=Y @Cl and F(Y, {O})= {0}, we have that 

%%%)={x01 I x,1 =Xz*EY @ Cl, x21 = 0, and x,~ E F(Y, Y)}. (1.4) 

A comparison of ( 1.2) and (1.4) shows that F(9, @, ) = 9’ 0 &?I if and only 
if F(Y, Y) = Y @ Y. Now let u be a unitary operator from Z onto X2, 
and let 99 = u*Z#, U. Then it is easily checked that 98 is an abelian reflexive 
subalgebra of B(Z) and that F(9’, 99) = Y @ 5Y if and only if F(Y, Y) = 
Y & Y, as claimed. 

If we assume further that Y is a reflexive algebra, then 9’ 0 9Y1 is a 
reflexive algebra (see Remark 2.4 of [36]), and hence Y 0 59 is also a 
reflexive algebra, since it is unitarily equivalent to 9’ 0 gl. 

Remark 1.2. An important open question concerning the reflexive 
algebra tensor product problem is whether the RTPF is valid for every pair 
of CSL algebras. Of course if every CSL algebra has Property S,, then this 
is true. However, the RTPF is valid for every pair of von Neumann 
algebras, even though there are von Neumann algebras without Property 
S,. Hence it is possible that there are CSL algebras without Property S, 
(so that (0.2) can fail even when one of YI or 9; is a CSL), but that the 
RTPF is valid for every pair of CSL algebras (so (0.2) always holds when 
both 9, and pz are CSLs). 

2. AN APPROXIMATION PROPERTY EQUIVALENT TO PROPERTY S, 

For a norm closed subspace S of B(X), we let M,(S) denote the space 
of n x n matrices with entries in S, with the norm inherited from 
M,(B(Z)). If S c B(q) and Tc B(#z) are norm closed subspaces, and @ 
is a bounded (linear) map from S to T, then for each positive integer n we 
let @,, denote the map from M,(S) to M,(T) defined by @,( [sii]) = 
[@(so)]. The map @ is said to be completely positive if each an is positive, 
completely contractive if each @,, is a contraction, and completely bounded 
if sup { I(@,,ll : n E N} < co. If @ is completely bounded then its completely 
bounded norm is defined by I/ @IIch = sup{ /I@,,11 : n EN}. We denote the 
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space of all completely bounded maps from S to T by CB(S, T), and write 
CB(S) for CB(S, S). A net { @, f in CB(S, T) is said to be bounded if 
SUP lI@Alcb < 03. 

Now suppose that Y c B(Xi) and 5 c B(G$) are a-weakly closed 
subspaces. Then we denote the space of all u-weakly continuous maps 
in CB(Y, F) by CB,(Y, F), and the space of all o-weakly continuous 
maps in CB(Y) by CB,(Y). If JV” is a von Neumann algebra and 
@ E CB,(Y, F), it follows from a straightforward modification of the proof 
of Lemma 1.5 in [13] that there is a (unique) a-weakly continuous map 
8 from ,4p @ JV to F @ JV such that 

&(s@b)=@(.s)@b (sEY, bEA’-). 

Moreover, 118\1 < I\@\1 <*, with equality if JV is infinite dimensional. (Of 
course $ depends on JV as well as @, but it will always be clear from 
context what the domain of 8 is.) 

If It/EM*, SEY?, and bEM, then 

L~(~(sOb))=(b,~)~(s)=~((b,~)s)=~(L~(sOb)). (2.1) 

Since L,, @, and & are a-weakly continuous linear maps, it follows 
immediately from (2.1) that 

L,@(x)) = @(L&)) (XE~~O,II/E~*,~ECB,(~,~)). (2.2) 

Let FO(Y) denote the collection of all o-weakly continuous finite rank 
maps from Y to Y. Then @ E F,(Y) if and only if for some n E N there are 
Sl , ‘.., S, in Y and cpi, . . . . (P,, in Y! such that 

i=n 

@Cs)= C Cs, Vi> si 

i= 1 

for all s in Y. It follows immediately from this and Corollary 3.4 in [ 191 
that F,(Y) c CB,(SP). If XE Y @ Jf, we let F,(x) denote the a-weak 
closure of the linear space {s(x) ) @ E Fg(Y)}. 

A subspace Y is said to have the (a-weak) completely bounded 
approximation property (CBAP) if there is a bounded net {GM} in FJSP) 
such that 

@ch) + s o-weakly for all s E Y. (2.3) 

If the @,‘s can be chosen to be complete contractions, then Y is said to 
have the (u-weak) completely contractive approximation property (CCAP), 
and if the @,‘s can be chosen to be completely positive and completely 
contractive, then Y is said to have the (a-weak) completely positive 
approximation property (CPAP). 
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It is immediate that if Y has the CPAP then it has the CCAP, and if it 
has the CCAP then it has the CBAP. Moreover, if Y is a von Neumann 
algebra, then the existence of a net { @%} of completely positive maps in 
F,(Y) satisfying (2.3) implies that Y is semidiscrete [ 181, i.e., that the @,‘s 
can be chosen so that we also have @,( 1) = 1 [55, p. 1051. Since any unital 
completely positive map is completely contractive [41, Proposition 3.51, 
semidiscreteness in turn implies the CPAP. De Canniere and Haagerup 
have shown there are von Neumann algebras with the CCAP which do not 
have the CPAP [ 13,241, and Cowling and Haagerup have shown that 
there are von Neumann algebras with the CBAP which do not have the 
CCAP [12]. For example, the group von Neumann algebra &(F,) of the 
free group on two generators has the CCAP but not the CPAP, and if r 
is a lattice in Sp(1, n) (with n > 2) then A(r) has the CBAP but not the 
CCAP. 

Let Y c B(Z) be a o-weakly closed subspace, and let X be an Hilbert 
space. We say that 9’ has the (a-weak) complete pointwise approximation 
property (CPWAP) for X if there is a net { aa) in F,(Y) such that 

dqx) +x a-weakly for every x E 9 @ B(X)). 

It is clear that if .Y has the CPWAP for a Hilbert space X, then it has the 
CPWAP for every norm closed subspace of X. It is also clear that if & 
and X2 are Hilbert spaces that are unitarily equivalent, then 9’ has the 
CPWAP for X, if and only if it has the CPWAP for X2. We will show 
below that if Y has the CPWAP for a separable infinite dimensional 
Hilbert space, then it has the CPWAP for all Hilbert spaces. The main 
result of this section is that .Y has Property S, if and only if it has the 
CPWAP. The next two propositions give some useful equivalent conditions 
for the CPWAP. 

PROPOSITION 2.1. Let Y c B(X) be a a-weakly closed subspace and let 
X be an infinite dimensional Hilbert space. The following are equivalent. 

(a) 9 has the CPWAP for ~$7. 

(b) x~F,(x) for every XEY @ B(X). 

(c) For every x E 9 @ B(X), there is a net { @,} in F,(Y) such that 
SE(x) + x a-weakly. 

Proof: It is immediate that (a) * (b) and that (b) 3 (c). 
Suppose that (c) holds, and let x,, . . . . x, be any elements of Y @ B(X). 

Let x = x1 @x2 0 . . . 0 x,. Then x is an element of Y @ B(X’“‘), where 
s(H) denotes the direct sum of n copies of X. Since Xx’“’ is unitarily 
equivalent to Y, condition (c) is also valid when X is replaced by X’“‘, 
and so there is a net {Qa} in F,(Y) such that &Jx) converges to x 
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a-weakly. It follows easily from this that $Jxi) + xi a-weakly for all i. 
Hence if F is any finite subset of Y 0 B(X) and % is any o-weak 
neighborhood of 0 in Y 0 B(X)), then there is a map QCF, *) E F,(Y) such 
that 

&.(I;. e,,(x) E @ + x for all XGF. (2.4) 

Let 9 denote the set of all pairs (F, a). Define a partial order on .a by 
(F,,~~)b(F,,ull,)ifF,cF2and~~ c 9Y,. Then .a is a directed set, and it 
follows immediately from (2.4) that 6 CF, *,(x) -+ x a-weakly for every 
x E 9’ @ B(X). Hence (a) holds. 1 

If Y c B(X) is a a-weakly closed subspace, we denote the set of all 
norm continuous finite rank maps from 9?? to itself by F(9??). If @ E FG(Y), 
then the restriction @* of @* to Y!! is in F(SQ, and if YE F(9??), then 
Y* E F,(Y). If JV is a von Neumann algebra, if YE F(9!!), and if we set 
@ = Y*, then 

(6, ((POti)= Yv((P)O$ (cPECY?*? IC/EJc). 

Hence if we set p= (6)*, then !? is an extension of Y@id to (9 @ JV”)*, 
and 

{PI -%Yf)) = {@,, I @-F,(W). (2.5) 

If PE (Y 0 Jo,, we let F(p) denote the norm closure (= the weak 
closure) of the subspace {9((p) 1 YE F(sP,)} of (9 @ ,V)*. 

PROPOSITION 2.2. Let Y c B(X) be a o-weakly closed subspace, and let 
X be an infinite dimensional Hilbert space. The following are equivalent: 

(a) Y has the CPWAP for Xx. 

(b) p E F(p)for every P E (9 63 B(X)),. 

(c) For every p E (y @ B(X)), there is a net {Y,} in F(9!!) such 
that YE(p) + p in norm. 

(d) There is a net {Y,} in F(9ZZ) such that Y’,(p)-p in norm for 
every p E (Y @ B(X)),. 

Proof (b)*(c) and (d)-(b) are immediate, and the proof of 
(c) => (d) is similar to the proof of (c)*(a) in Proposition 2.1. 

Next observe that it follows from (2.5) that if XE Y @ B(X) and 
p E (9 @ B(X)), , then x annihilates F(p) if and only if p annihilates 
F,(x). Using the duality between Y @ B(X) and (9 0 B(X)),, it follows 
easily from this and Proposition 2.1 that (a) and (b) are equivalent. 1 
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PROPOSITION 2.3. Let Y c B(Z) be a a-weakly closed subspace. If 9’ 
has the CP WAP for some infinite dimensional Hilbert space, then it has the 
CPWAP for all infinite dimensional Hilbert spaces. 

Proof: Let X be an infinite dimensional Hilbert space, and let 
p E (Y B B(X)),. Then since p is a countable sum of vector functionals, 
and each vector in 2 0 X is a linear combination of a countable number 
of basis vectors, there is a projection e in B(X) with at most countably 
infinite dimensional range such that 

((1 @e)x(l Be), p> = (4 P> for all x E 9’ @ B(X). (2.6) 

Let X0 denote the range of e, and let p0 denote the restriction of p to 
Y 0 B(&). Since Y has the CPWAP for some infinite dimensional 
Hilbert space Xi, and since X0 is unitarily equivalent to a norm closed 
subspace of &;, 9’ has the CPWAP for X0. Hence, by Proposition 2.2, 
there is a net { Ya} in F(Y?) such that pJpO) --) pO in norm. It follows from 
(2.6) that 

((l@e)dl@e), ~hd)=(x, PAP)> for all XEY 0 B(X) 

(where we view (1 Be) x( 1 @e) as an element of 9’ @ B(XO)). Hence 
pa(p) + p weakly, and so p E F(p). Thus Y has the CPWAP for X by 
Proposition 2.2. 1 

If Y c B(X) is a a-weakly closed subspace, and X0 is a separable infinite 
dimensional Hilbert space, then 9’ @ B(&) can be viewed as a space of 
co x co matrices with entries in Y. Following [20], we let M,(Y) denote 
the linear space of matrices [sir] i, js N with entries in Y which are bounded 
in the sense that 

II~Il~~~P{IIC~ll]~,j~nll :nEN} (2.7) 

is finite. We can identify M,(Y) in the obvious way with the space of 
bounded operators s = [si,] on X’(=) with entries in 9’. The norm given by 
(2.7) is then the operator norm. 

If Y c B(SI) and Y c 9J(Xz) are a-weakly closed subspaces and 
@E CB,(Y, Y), we can define a map Qm from M,(Y) to M,(Y) by 
@,([sjj]) = [@(sij)]. Then I/@,11 = IJ@IJch. Moreover, under the natural 
isomorphisms, M,(Y) is isomorphic (and a-weakly homeomorphic) to 
9’ 0 B(SO), M,(Y) is isomorphic to Y @ B(XO), and @, is sent to 8,. In 
analogy with [21], we say that a net {QoL} in CBJY, F) converges to 
GE CBJY, Y) in the stable point a-weak topology if and only if 
[(Q,),](s) converges c-weakly to Gi,(s) for every s in M,(Y). We say 
that Y has the o-weak approximation property if the identity map from Y 
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to Y is the limit of finite rank a-weakly continuous completely bounded 
maps in the stable point a-weak topology. 

Remark 2.4. It follows immediately from the above discussion and 
Proposition 2.3 that Y has the a-weak approximation property if and only 
if has the CPWAP for some infinite dimensional Hilbert space if and only 
if it has the CPWAP for all infinite dimensional Hilbert spaces. 

The next proposition plays a crucial role in the proof that the o-weak 
approximation property is equivalent to Property S,. 

PROPOSITION 2.5. Let .Y c B(X) be a a-weakly closed subspace, and let 

JV be a von Neumann algebra. Let x E Y @ JV, and let Y denote the o-weak 
closure of the linear space {R,(x) 1 cp E <U;, }. Then F,,(x) = Y 0 Y. 

Proof. Let @E FJY). Then, as noted above, for some n E N there are 
s,, . . . . s, in Y and (p,, . . . . cp,, in 9, such that 

i= ,, 
Q(s) = c (S> cp,> s, 

,=l 

for all s in Y. Hence if b E JV, then 

Since $( .) and cj: 7 si @ R,, ( .) are both a-weakly continuous linear maps, 
it follows from (2.8) that they are equal on all of 9’ 0 JV. In particular, 
s(x) =Cj:l si@ R,,(x), and so $(x)EY 0 5. Since Y @ Y is a-weakly 
closed, F,(x) c 9 0 Y. 

Now let s,, E Y and cp E 9!!. For s E 9, let Q(s) = (s, cp) s,,. Then 
@E FJY), and so s,@ R,(x)= &X)E F,(x). Since F,,(x) is a o-weakly 
closed subspace of Y a JV”, Y @ Y c FJx). Hence 9’ @ Y = F,(x). 1 

THEOREM 2.6. Let Y c B(Z) be a o-weakly closed subspace. Then the 
following are equivalent: 

(a) 9 has Property S,. 

(b) ,Y has the a-weak approximation property. 

(c) Y has the CP WAP for some infinite dimensional Hilbert space 

(d) Y has the CPWAP for every Hilbert space. 

Proof: By Remark 2.4, (b), (c), and (d) are equivalent, so it suffices to 
show that (a) and (d) are equivalent. 
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(a) * (d). Let X be a Hilbert space, let x E Y 0 B(X)), and let F 
denote the o-weakly closed linear span of {R,(x) 1 cp E Y*}. Since Y has 
Property S,, F(9, F) = 9’ @ F-. But x E F(Y, F) by the definition of 5, 
and Y @ F = F,(x) by Proposition 2.5, so x E FJx). Hence Y has the 
CPWAP for X by Proposition 2.1. 

(d) = (a). Let X be a Hilbert space, let F be a a-weakly closed 
subspace of B(X)), and let x E F(Y, F). Then {R,(x) 1 cp E 9, } c Y-, so 
F,(x) c 9’ 0 F by Proposition 2.5. Since Y has the CPWAP for X, 
x E F,(x). Hence F(Y, F) c Y @ F. The reverse inclusion is always valid, 
and so F(Y, .F) = 9’ 0 F. Hence Y has Property S,. 1 

Remark 2.7. Suppose Y c B(Z) is a a-weakly closed subspace without 
Property S,, and let 3” be an infinite dimensional Hilbert space. By 
Theorem 2.6, Y does not have the CPWAP for X. Hence it follows from 
Proposition 2.1 that there is an x in 9 @ B(X) such that x is not in F,(x). 
Let F denote the a-weakly closed linear span of {R,(x) 1 cp E Y!}. Then 
x E F(Y, F) by definition, while x is not in 9.0 F-, since F,(x) = Y @ Y 
by Proposition 2.5. Hence if Y does not have Property S,, then for any 
infinite dimensional Hilbert space X there is a o-weakly closed subspace 
F c B(X) such that Y @ F # F(.Y, Y). 

The proof of the next result can be obtained by making obvious 
modifications to the proofs of Proposition 2.2 and Theorem 2.6, and is left 
to the reader, 

THEOREM 2.8. Let Y c B(X) be a a-weakly closed subspace, and let .K 
be a von Neumann algebra. The following are equivalent: 

(a) Y has Property S, for JV. 

(b) xEFJx)for every XEY @ JV. 

(c) pEF(p)for every p~(y@O)*. 

We will make use of the next proposition a number of times in applica- 
tions of Theorems 2.6 and 2.8. 

PROPOSITION 2.9. Let Y c B(& ) and 9 c B(sl) be a-weakly closed 
subspaces, and suppose that { @,} is a bounded net in CB,(Y, Y) that 
converges pointwise a-weakly to an element @ of CB,(Y, Y). Then for any 
von Neumann algebra A’” we have that s=(x) -+ 6(x) o-weakly for every 
XEY@JV-. 

Proof Let JV be a von Neumann algebra, let x E 9’ @ 1, and let 
$ EM*. Then L,(x)EY, so @,(L+(x)) --+ @(L,(x)) a-weakly. Combining 
this fact with (2.2) and the definition of L,, we get that 

<&(x)2 cpOti)+ <%4, cpO$) (cPEY*, $EJc*). (2.9) 
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Since jj8N11 < (I@Jch for every a, the net { &Jx)} is bounded in norm, and 
so (2.9) implies that (5),(x), p) + (8(x), p) for every p in the norm 
closure of the algebraic tensor product Y* @MS. But Y.. @ JK* is norm 
dense in (Y @ JV),, so s),(x) -+ s(x) o-weakly. 1 

The next result is an immediate consequence of Proposition 2.9 (and 
Theorem 2.6). 

THEOREM 2.10. Let Y c B(X) be a o-weakly closed subspace. If 9’ has 
the CBAP, then Y has the a-wleak approximation property, and so has 
Property S,. 

EXAMPLE 2.11. Let r denote the semidirect product of 2’ with 
SL(2, Z) under the natural action of SL(2, Z) on 2’. Haagerup has shown 
[25] that the group von Neumann algebra A(r) does not have the CBAP. 
He has also shown that there is a bounded net {@=> in CB,(&(T)) such 
that @,(a) -+ a o-weakly for every a in J(r), and such that each @, is the 
limit in the pointwise a-weak topology of a bounded net in F,(&(T)). 
(More generally, such a net exists whenever r is the semidirect product of 
two discrete groups whose group von Neumann algebras have the CBAP 
[26].) Hence if 3” is any Hilbert space and XE ,,“;e(r) @ B(X)), then by 
Proposition 2.9, x is in the a-weak closure of {&X(x) 1. It also follows from 
Proposition 2.9 that 3%(x) E F,(x) for all a. Thus x~I;,(x) for all 
x E J(Z) @ B(X)), and so J(Z) has the a-weak approximation property 
by Proposition 2.1 and Remark 2.4. Hence the g-weak approximation 
property does not imply the CBAP. 

Remark 2.12. We will show in the next section that there ‘are separably 
acting factors without Property S,, and hence without the g-weak 
approximation property. However, the proof that such factors exist is very 
indirect, and it would be of great interest to find concrete examples of 
separably acting von Neumann algebras without the c-weak approxima- 
tion property. A good place to look for such examples is among the group 
von Neumann algebras of discrete groups. In [26] it is shown that if r is 
a discrete group, then J&?(Z) has the o-weak approximation property if and 
only if for every locally compact group H, there is a net { cp,} of functions 
in the Fourier algebra A(T) of r with finite support such that 
(cp, x lH)< + [ in the A(Tx H) norm for every <E A(Tx H). (This should 
be compared with Haagerup’s characterization in [25] of those discrete 
groups (called weakly amenable groups in [ 123) whose group von 
Neumann algebras have the CBAP.) It is also shown in [26] that the class 
of discrete groups whose group von Neumann algebras have the o-weak 
approximation property is closed under taking semidirect products. (This 
is not true of the smaller class of weakly amenable discrete groups, as 
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Example 2.11 shows.) We do not know of any examples of discrete groups 
whose group von Neumann algebras do not have the a-weak approxima- 
tion property, but a likely candidate is X(3, Z). 

PROPOSITION 2.13. Let Y he a o-weakly closed subspace of B(Z), and 
let A’” be a von Neumann algebra. Suppose that { Xz c B(XZ)} is a net of 
o-weakly closed subspaces with Property S, for JV, and that there are nets 
I@%) in CBAy, Sp,) and {yM> in CB,(Y;, Y) such that (p&0$,,)(x) -+ x 
a-weakly for every x in 9 @ JV. Then Y has Property S, for M. 

Proof: Let x E Y @ JV. Then by assumption, 

( !Fz 0 6*)(x) + x o-weakly. (2.10) 

For each a, $‘ol(x) E YU @ A’“, and YE has Property S, for A’“, so by 
Theorem 2.8, s%(x) is in the o-weak closure of {(G 0 $)ll)(x) 1 @E F,(YX)}. 
Since ‘?, is g-weakly continuous, (pa 0 s,)(x) is in the o-weak closure of 
{(!t$&&“,)(x) 1 @eF,(Y7,)}. M oreover, Ys 0 @ 0 Dm is in F,(Y) whenever 
CD EF,(Y~). Hence ( pz 0 sa)(x) EF,(x) for all M. But F,(x) is a-weakly 
closed, so it follows from (2.10) that x E F,(x). Hence Y has Property S, 
for JV by Theorem 2.8. 1 

COROLLARY 2.14. Let Y be a o-weakly closed subspace of B(X), and let 
JV be a von Neumann algebra. Suppose that {YE c B(pU)} is a net of 
u-weakly closed subspaces with Property S, for M, and that there are nets 
{Qa} in CBO(9’, x) and { !Pz} in CB6(5$, 9) such that the net { Y’,o@,} 
is bounded and converges pointwise o-weakly to the identity map of Y. Then 
Y has Property S, for M. 

Proof: This follows immediately from Propositions 2.9 and 2.13. 1 

We will make use of the next result in Section 3. 

PROPOSITION 2.15. Let A! and JV be von Neumann algebras, and 
suppose A? is o-finite. If every von Neumann subalgebra of A with separable 
predual has Property S, for JV, then AZ has Property S, for Af. 

Proof: Since A! is a-finite, it has a faithful normal state o [SO, Proposi- 
tion 11.3.191. Moreover, one can find an increasing family {J&} of von 
Neumann subalgebras of J’Z’ such that each AU has separable predual and 
is invariant under the modular automorphism group CY of o, and such 
that the union of the Am’s is a-weakly dense in A [27, proof of Proposi- 
tion 9.71. Since Aa is invariant under c~, there is a normal conditional 
expectation E, from A’ onto J& [47, Theorem 10.11, and since the union 
of the Am’s is a-weakly dense in A, E,(a) -+ a c-weakly for every a E A! 
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[ 11, Lemma 21. The E,‘s are completely positive and of norm one [47, 
Propositions 9.2 and 9.31, and so are complete contractions [41, Proposi- 
tion 3.51. Finally, each J& has separable predual, and so has Property S, 
for N. Hence it follows from Corollary 2.14 (setting Y= JZ, Ye = JE&, 
@I = E,, and letting Yy, denote the inclusion map from JV~ to A) that J%’ 
has Property S, for JV. 1 

The next result and its corollary generalize results in [35, Sect. 21. 

PROPOSITION 2.16. Let Y be a o-weakly closed subspace of B(X). 
Suppose there is a net {ra> offnite rank operators in B(X) such that rr + 1 
o-weakly and such that r,Y c .Y and Yr, c Y for all 01. Then Y has 
Property S,. 

Proof Let X be a separable infinite dimensional Hilbert space, and let 
rB be a fixed element of the net {r,}. For each ~1, let YE = r,9’rg, let 
@,(srg) =rasrg, and let Y’, denote the inclusion map from yj to Yr,. 
Since r, and rD are finite rank, Y$ is finite dimensional, and so has 
Property S, [34, Proposition 1.73. Moreover, 8’,(x) = (rz@ 1)x for all 
x E (Yrs) 0 B(X) (where we also let 1 denote the identity operator on X), 
and so (!?‘, 0 sa)(x) -+x g-weakly for every x E (Yrg) @ B(X). Hence Yr, 
has Property S, by Proposition 2.13. Another application of Proposition 
2.13 (setting Y, = Yrl, @Js) =sr, (s E Y), and letting Y’, denote the 
inclusion map from YZ to 9) shows that Y has Property S,. 1 

COROLLARY 2.17. Let 9 be a completely distributive commutative 
subspace lattice on a separable Hilbert space X”, and let d = alg 2. Let 
Y c B(X) be a o-weakly closed d-bimodule. Then Y has Property S,. 

Proof By a result of Laurie and Longstaff [38], the set of finite rank 
operators in d is c-weakly dense in d. Hence, since 1 E&, there is a net 
{ rz} of finite rank operators in d such that ror --) 1 o-weakly. Since Y is an 
&‘-bimodule, dY c Y and YJZZ c Y. Hence the net (r,} satisfies the 
hypotheses of Proposition 2.16, and so Y has Property S,. 1 

3. SUBSPACES WITHOUT PROPERTY S, 

The main result of this section is that for each of the types II,, II,, and 
III, (0 < 1 d l), there is a separably acting factor of that type without 
Property S,. The proof of this result requires a number of steps, but the 
key ingredient is the observation, due to Uffe Haagerup, that if a subspace 
Y has the a-weak approximation property, then its predual Y.. has the 
(Banach space) approximation property. 
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Recall that a Banach space X has the approximation property (AP) if for 
every compact subset K of X and every E > 0 there is a finite rank norm 
continuous linear map T from X to itself such that /I TX -x/J <E for all 
XE K. The approximation property was introduced by Grothendieck in 
[23], where a number of equivalent conditions for the AP are given. 

For a Banach space X, we let IP(N, X) denote the space of X-valued 
functions x( .) on N such that the functions { 11x{ .)I/ } are IP(N), 1 < p < co. 
With the obvious norm, IP(N, X) is a Banach space. If 2 is a Hilbert 
space, then Z”(N, B(Z)) is a von Neumann algebra, and 

(l”(N B(=@o))), = [‘(N, B(=W,), 

where the duality is given by 

(3.1 

(4 cp> =I (x(n), v(n)> (xE~~U’L B(W), ~PEI~(N, WW,)). (3.2) 

Moreover, there is a *-isomorphism /1 from B(2) @ 1 “(N) onto 
Z”(N, B(2)) such that 

A(x@l(.))=q.)x (x E B(X), A(.) E Z”(N)). (3.3) 

(Proofs of these facts can be found in Section IV.7 of [SO].) In what 
follows we will use n to identify B(2) 0 1”(N) and 1”(N, B(Z)). 

Let 9’ c B(X’) be a a-weakly closed subspace. Then it follows easily 
from (3.1) and (3.2) that 

Y @ l”(N) = l”(N, Y). (3.4) 

Since for each cp EY;, we can choose a p E B(s), such that p = cp on 9’ 
and such that IIpIJ < 2 I[pII (see, e.g., Lemma 2.4 in [28]), it also follows 
from (3.1) and (3.2) (and (3.4)) that 

(9 @ I”(N)), = l’(N, Ye). (3.5) 

As noted above, the next result is essentially due to Uffe Haagerup, as 
are Example 3.2 and Theorem 3.3. We are grateful to Professor Haagerup 
for allowing us to include these results in this paper. 

THEOREM 3.1. Let Y be a o-weakly closed subspace of B(X). Then 9’ 
has Property S, for IO0 (N) if and only if Y? has the approximation property. 

ProoJ: Let L = L(Y!, Y;) denote the space of all bounded linear 
operators from Y; to itself, and put on L the topology z of uniform con- 
vergence on compact sets in Y;. Then Y, has the AP if and only if the 
identity map id from Y; to itself is in the t-closure of F(Y*). Grothendieck 
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proved in [23] that the dual of (L, z) can be identified with the projective 
tensor product Y* 6 Y. The identification is described as follows. If 
[EY*@Y, then there is a cp=cp(.) in I’(N,Y*) and an s=s(.) in 
I”(N, Y) such that 

[=I cp(n)Os(n) (3.6) 

[45, Theorem 111.6.41. Using the representation (3.6) of [, we can define a 
linear functional i, on L by 

(3.7) 

Grothendieck’s theorem is that c, is a z-continuous linear functional and 
that every t-continuous linear functional is of the form [, for some 
[EJP..&Y. 

Next observe that if YEF(Y*), then it follows from the definition of p, 
from (3.5) and from the way we are identifying Y @ I”(N) and I”(N, Y), 
that 

Cwm4 = Vcp(n)) (~PE~‘W> yf),. 

Hence if [ is given by (3.6), then 

cc i,) = c-5 @wP)>. 

Thus Y! has the AP if and only if whenever cp E l’(N, Y?) and 
s E Zm(N, 9) and 

(s, R(cp)> =o for all YE F(Y!), (3.8) 

then 

c <s(n), (Wcp(n))) =I (s(fl), v(n)> = <s, cp> =a (3.9) 

Moreover, it follows from the duality between E ‘(N, Y;) and 1 “(N, Y) that 
(3.8) implies (3.9) for all pairs cp~/‘(N, Y%) and s~l”(N, Y) if and only 
if cp~F(cp) for all ~PEI’(N,~*)=(Y~~~(N))*. Hence it follows 
immediately from Theorem 2.8 that Y! has the AP if and only if Y has 
Property S, for E”(N). 1 

EXAMPLE 3.2. Let X be any Banach space without the AP. Let K 
denote the closed unit ball of X, and define a map @ from X* to Z”(K) by 

c@(x*)l(x) = (4 x* > (x* E X*, x E K). 
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Then @ is obviously an isometric linear map, and it’s easy to show that the 
restriction of @ to the unit ball of X* is weak*-continuous. It follows from 
this and standard facts about the dual of Banach spaces (see, e.g., Section 
VS.5 of [16] or Section 3 of [20]) that @ is a weak*-homeomorphism of 
X* onto a weak* (= a-weakly) closed subspace of 1 “(K). Let Y = @(X*). 
Then Y is a a-weakly closed subspace of B(12(K)), and the restriction of 
@* to 9, is an isometric isomorphism from 5?! onto X. Hence Sp, doesn’t 
have the AP, and so Y does not have Property S, for I”(N). If X is 
separable, then we can replace Kin the above construction by a countable 
dense subset of K, in which case Y c I”(N). Since there are separable 
Banach spaces without the AP (in fact separable C*-algebras without the 
AP [48]), there are subspaces of I”(N) without Property S, for I”(N). 
Hence there exist subspaces Y and F of I”(N) such that Y @ Y # 
F(9, F). 

In [48], Szankowski proved the remarkable result that B(H) does not 
have the AP if 2 is infinite dimensional. Using this result, Christensen and 
Sinclair proved in [9] that if JZY is an injective von Neumann algebra with 
separable predual and J&’ is not finite type I of bounded degree, then JZ 
does not have the AP. Their result has been generalized by Robertson and 
Wassermann, who prove in [43] that a von Neumann algebra has the AP 
if and only if it is the finite direct sum of finite type I von Neumann 
algebras. It is a standard fact that if X* has the AP, then so does X [39, 
Theorem l.e.71. Combining these facts with Theorem 3.1 and Theorem 2.6 
we obtain our next result. 

THEOREM 3.3. If 4 is a van Neumann algebra which is not the finite 
direct sum of finite type I von Neumann algebras, then A’** does not have 
Property S, for 1 Jz (N). Hence A? ** does not have Property S, and so does 
not have the a-weak approximation property. 

None of the von Neumann algebras A** of Theorem 3.3 are factors, 
and since none of them have separable predual, none of them have a faith- 
ful representation on a separable Hilbert space. As noted above, we will 
show that there are separably acting factors without Property S,. The 
proof will involve a number of steps, and makes use of the stability proper- 
ties of the class of von Neumann algebras with Property S,. Most of these 
stability properties are also valid for the class of von Neumann algebras 
with Property S, for M, where J” is some fixed (infinite dimensional) 
von Neumann algebra. The case of most interest, of course, is when 
x = I”(N). (We will in fact show that there are separably acting factors 
without Property S, for 1 “(N).) One of the stability properties that we will 
make use of several times below concerns tensor products. We state it here 
for convenient reference. 
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PROPOSITION 3.4. Let 9, c B(q) and Y; c B(,Y&) be nonzero a-weakly 
closed subspaces, and let Jlr be an infinite dimensional von Neumann algebra. 
If Y; @ Y; has Property S, for M, then Y1 and Y; both have Property S, 
for .N. If sf has Property S, and Y; has Property S, for Jlr, then $ @ Y; 
has Property S, for JV. 

Proof: The first statement of the proposition follows from the proof of 
the “only if” direction of Proposition 1.15 in [34]. So assume that 9, has 
Property S, and Y; has Property S, for JV. Let .Y be a a-weakly closed 
subspace of ,V, and let XE F(Yi @ Y;, Y). It suffices to show that 
x E -4pI @ Y; 0 r. It follows from the proof of Lemma 14 in [57] (replacing 
C*-algebras by a-weakly closed subspaces, duals by preduals, and spatial 
C*-tensor products by von Neumann algebra tensor products) that 
R,(x)EF(Y~, Y) for all cp E B(X1), (where R, is the right slice map 
from cq @ Y; 0 JV to Y; 0 JV). Since $ has Property S, for A?, 
R,(x)E~~@~ for all qeB(X,)*, so x E F(Y’, , Y; 0 Y). Since Y, has 
Property S,, x E Y’, @ Y; @ 5, as required. 1 

The next result is the first step in our proof that there are separably 
acting factors without Property S, for I”(N). 

LEMMA 3.5. Let 2 be a separable infinite dimensional Hilbert space. 
Then there is a von Neumann algebra A c B(X) which does not have 
Property S, for l”(N). 

Proof: By Theorem 3.3, there is a von Neumann algebra without 
Property S, for I”(N). Moreover, every von Neumann algebra is the direct 
sum of von Neumann algebras of the form JV 0 B(X)), where A’” is 
a-finite (combine Lemma 7 of [ 15, Part III, Chap. 1 ] with Proposition 
5(ii) of [ 15, Part I, Chap. 2]), and the direct sum of von Neumann 
algebras with Property S, for I”(N) has Property S, for f”(N), as the 
proof of Proposition 1.12 in [34] shows. Hence there is a a-finite von 
Neumann algebra A’” and a Hilbert space X such that A” @ B(X) does 
not have Property S, for I”(N). By Proposition 3.4, JV does not have 
Property S, for 1 “(N). Since JV is a-finite, it follows from Proposition 2.15 
that there is a von Neumann subalgebra A of A’” with separable predual 
which does not have Property S, for 1 “(N). Finally, since A! has separable 
predual, A? has a faithful normal representation on 2”. 1 

Remark 3.6. Let 2 be a separable infinite dimensional Hilbert space, 
and suppose A! c B(Z) is a von Neumann algebra without Property S,. 
Let S,(A) denote the collection of all a-weakly closed subspaces 9 of 
B(X) for which F(A, Y) = J%’ @ Y. Then S,(A) obviously contains all 
subspaces with Property S,. However, it also contains subspaces without 
Property S,, since it contains all von Neumann subalgebras of B(X) by 
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Tomita’s Theorem. In particular, jae itself is in S,(A). Let V(X) (resp. 
R(2); resp. S(X)) denote the collection all von Neumann algebras (resp. 
reflexive algebras; resp. o-weakly closed operator systems) acting on 2. 
(Recall that a subspace of B(Z) is said to be an operator system if 
it is self-adjoint and contains the identity operator [S].) Then 
R(X) n S(X) = V’(X) is contained in S,(&). By Remark 1.1, S,(4) does 
not contain R(Z). It also does not contain S(Z). To see this, let F be any 
o-weakly closed subspace of B(Z) that is not in S,(A), and (using the 
notation of Remark 1.1) let Y0 denote the subspace of B(q) consisting of 
all 2 x 2 operator matrices a= [aij] with a,, =a,,~Cl, u,,E~, and 
uzl E F* (where Y* = {t* / te F}). Then it is obvious that YOc S(q). 
Moreover, it is easy to modify the arguments in Remark 1.1 to show that 
if we write the elements of JY @ B(4) as 2 x 2 operator matrices x = [xii] 
with x~,E~? a B(Z), then 

l-(&Y, 90) = {x ( x ,,=x,,E~~CZ,X,,EF(~,~)~~~X,,EF(~,~*)}. 
(3.10) 

Since F(JZ, Y) # 4? G Y-, it follows from (3.10) that F(&, YO) # JZ 0 YO. 
Now let u be any unitary operator from 2 onto ;X;, and let Y = u*y?,u. 
Then it is easily checked that YE S(X), but Y is not in S,(J). 

Finally, we note that S,(&%‘) is closed under taking adjoints. To see this, 
first observe that if x E B(H) @ B(s) and if cp and $ are in B(X),, then 

(R,(x*),*)=(x*,cpO*)=(,~,cp*O**) 

= <R,*(x), ** > = ((&o*(x))*, 9 > 

so R,(x*) = (R,*(x))*. The same formula is valid for left slice maps, so 

F(Yp*, ?F*) = (F(Y, 9-))* (3.11) 

for all pairs of a-weakly closed subspaces Y and F of B(Z). Applying 
(3.11) with Y=Jz’=&*, we conclude that YE S,(d) if and only if 
Y* E S,(d), as claimed. 

By Lemma 3.5, there is a separably acting von Neumann algebra without 
Property S, for E”(N). It is clear that to show there is a factor without 
Property S, for I”(N), one needs to make use of direct integral theory. In 
fact, it suffices to show that if ,4 + J.&‘(A) is the central decomposition of a 
separably acting von Neumann algebra &!, and if the factors &‘(A) all have 
Property S, for I”(N), then 4 also has Property S, for 1”(N). If all the 
A(n)‘s have Property S, for I”(N), and if Y is a a-weakly closed 
subspace of Z”(N), then F(&(A), Y)=&‘(I1) @ F for all i. If f is a 
von Neumann algebra, then one can show, using the usual direct integral 



THE SLICE MAP PROBLEM 137 

theory, that the direct integral decomposition of the von Neumann algebra 
F(J#, 9) with respect to the center of JZ @ B(/‘(N)) is J” -+ F(A(A), Y) = 
&!(E,) @ Y-, and it follows from this that E;(J&, .?)=A 0 Y-. The 
problem with this argument, of course, is that if F(&‘, Y) Z J%’ a Y, then 
F can’t be a von Neumann algebra. The way around this difficulty is to 
make use of Remark 1.1, which implies that if all the &!(J)‘s have Property 
S, for 1”(N), but & does not have Property S, for I”(N), then there is 
a separably acting reflexive algebra g such that F(4(1), SJ) = A(%) @ 98 
for all i, but F(&Y, S?) # JZ @ 9ZJ’. Since 49 is a strongly closed algebra, we 
can make use of the direct integral theory for strongly closed algebras 
developed by Azoff, Fong, and Gilfeather in [2]. Using results from [2], 
we will show below that since F(&(n), g) = A(%) & a for all I, we must 
have that F(A’, S?) = J# @ C8, and this contradiction shows that J%’ has 
Property S, for 1 “(N). 

We will assume the reader is familiar with [2], as well as the usual direct 
integral theory for von Neumann algebras. All of the facts about direct 
integral theory for von Neumann algebras that we use without giving a 
specific reference can be found in [ 15, Part II]. 

Recall that if &Z is a von Neumann algebra acting on a separable infinite 
dimensional Hilbert space 2, then there is a compact metrizable space (1, 
a (complete) a-finite regular Bore1 measure p on /i, a measurable field 
J. -+ Z”(n) of Hilbert spaces, and a measurable field 2 + J%!(A) of factors 
(where J%‘(A) acts on %‘(A)) such that 2 is the direct integral of the 
Z’(n),s, and JZ is the direct integral of the &(n)‘s. We will refer to this as 
the central decomposition of A. Let X be a separable Hilbert space, 
and let 3. -+ ,X(J”) = X be the corresponding constant field over A. Then 
A --f X(1*) @ X is a measurable field of Hilbert spaces, and we can identify 

Moreover, with this identification we have that 

yd @ B(X) = A(A) Lip(A) 
> 

(3.12) 

It follows from (3.12) that for every operator x E JZ 8 B(X) there is an 
essentially bounded measurable field of operators 1 --,x(A) such that 
x(n)~&(A) @ B(X) almost everywhere and such that 
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is in A’, if bEB(X)), and if x=aOb, then 

x= s @ (a(A) 0 b) Ml). (3.13) 

By Proposition 8.34 in [SO, Chap. IV], for any cp E A”* there is a unique 
integrable field ,I--* cp(l) E A&‘(,?), of normal functionals such that 

for all a = 1” a(A) &(,I) in JZZ, and, conversely, if 2 + q(k) is an integrable 
field of normal functionals, then (3.14) defines an normal linear functional 
cp on A. 

The proof of the next lemma is a straightforward exercise in direct 
integral theory, and is left to the reader. 

LEMMA 3.7. Let cp E AC”, and let ;1--) q(A) E A(l), be the integrablefield 
of normal functionals such that (3.14) holds for all a E A. Let II/ E B(X). 
Then 1 --t q(A)@ Ic/ E (A’(i) 0 B(X)), is an integrable field of normal 
functionals, and 

for all x = 1” x(i) dp(ll) in ~2’ @ B(X). 

LEMMA 3.8. Let F c B(X) be a a-weakly closed subspace. Then 
x = s” x(A) d,u(1) is in F(A, F) ifand only ifx(A) E F(A(A), F) for almost 
all A. 

ProoJ: First suppose that x(A) E F(A(,I), Y) for almost all A, and that 
$ EYE (where Y1 denotes the annihilator of Y in B(Y),). Let cp E&‘*, 
and let II + q(A) E A(A), be the associated field of normal functionals. 
Then since R,,j.J(~(A))~Y for almost all 1, 
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for almost all A. It follows immediately from this and (3.15) that 

Hence R,(x) E Y for all cp E A*, and so x E F(A, Y). 
Next suppose that x E F(A’, Y). By Theorem 8.13 in [SO, Chap. IV], for 

each A E A there exists an isometry u(A) of &?(A) into A? such that for each 
vector 

the functions A---f (u(A) c(i) 1 q) are measurable for all q E #“. It follows 
easily from this that for any q E X’“, the mapping A -+ u(A)* q E Z’(A) is a 
measurable vector field (although not square integrable in general). 

Let i, q E Z”, and let oi. ‘1 denote, as usual, the element of B(X), defined 
by wi,Ja) = (a{ 1 q). For each AEA, let p(A) denote the restriction of 
o,*(~.)~ U.(j,)q to A?‘(A). Then P(A)EJ@(A)*, and since A + u(A)* [ and 
A-+ u(i)* q are measurable vector fields, 

2. -+ (42)> P(J”)) = (a(A) u(i)* i I u(n)* fl) 

is a measurable function for every measurable operator field 
2 + u(A) E A?(i). Hence A --f p(A) is a measurable field of normal func- 
tionals. The field p(.) need not be integrable, but it is obvious that \Ip(.)li 
is bounded by li[ll l(qll. Hence if E is any subset of A with finite measure, 
and xE denotes the characteristic function of E, then A --t x,(A) p(A) is an 
integrable field of normal functionals and so defines an element of A’*, 
which we will denote by pE. 

Now let II/ E FL. Since x E F(J%‘, Y), 

(XT P,O$) = <&&h $>=O 

for every E c A with finite measure. Hence by (3.15) we have that 

for every E c A with finite measure, and so (x(A), p(A) @ t+b ) = 0 for almost 
all A. 

Since X is separable, we can choose a countable dense subset $i, $2, . . . 
of FL. For i=1,2 ,..., let 

N,= {AEn I <x(i), P(n)o$;>#o}, 
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and let N, 1 denote the union of the N:s. Then N, ~ is a set of measure 
zero, and (R,(,,(x(l)), iji) = (x(n), p(i)@ $,) = 0 for all 1 not in Ni,V 
and for all i E N. Hence if A q! N;, ‘I, then (R,,,,(x(A)), II/) = 0 for all II/ E ,Y1, 
and so R,,,,(x(;l)) E Y-. 

Now let [, , cr, . . . be an orthonormal basis for X, and for each A E A, let 
P~,~(A) denote the restriction of o,*(~)~,, U*cn,i, to A(A). Let N denote the 
union of the sets N,,,;. Then N is a set of measure zero, and 
R ,l,,(j,,(x(A)) ~9 for all i’not in N. Suppose that 1-g N. Since u(A) is an 
isometry, X’(A) is the norm closed linear span of {u(A)* ii 1 in N}. It 
follows easily from this that A(A), is the norm closed linear span of the 
P,~(%)‘s. Hence R,(x(;l)) E Y for all cp E A(A),, since R,,,,(2.,(x(lv)) E 9 for 
all i and j, and since cp + R,(x(A)) is a bounded linear map from &(;I)* 
to B(X). Thus x(~.)EF(A(/Z), Y) for all A$ N, and so x(A)EF(A(A), Y) 
for almost all A. 1 

PROPOSITION 3.9. Let A! be a uon Neumann algebra acting on a 
separable Hilbert space A?, and let d be a o-weakly closed unital subalgebra 
of B(S). Suppose that the components A(A) of A in its central decomposi- 
tion satisfy F(A(A), &) = A(A) @ & f or almost all 2, that A! 0 .zZ is 
strongly closed, and that A&‘(A) 0 SZZ is strongly closedfor almost all A. Then 
F(A’,d)=M@d. 

Proof: Since the A(A)‘s are the components of A in its central decom- 
position, we are in the situation described above, with X = Y?. Set 
$9 = A’ @ S. Then g is a strongly closed algebra by assumption, so 
the direct integral theory developed in [2] applies to 98. Since 
9J c A! @ B(H), all the operators in B are decomposable. 

Let (sjj be a countable a-weakly dense complex-rational unital 
*-subalgebra of J,#, let {t,} be a countable a-weakly dense subset of ~2, 
and let B0 denote the complex-rational linear span of {s, @ t,}. Then B0 is 
a-weakly dense in g, and hence is strongly dense in &Y, since %? is strongly 
closed. Let {bk} be an enumeration of the elements of 9&,. Then it follows 
from Propositions 3 and 8 in [ 15, Part II, Chap. 21 that, for almost all A, 
{s,(A)} is a complex-rational unital *-algebra and (hk(A)} is the complex- 
rational linear span of {s;(A) @ t,}. Moreover, by Theorem 1 and Proposi- 
tion 1 in [15, Part II, Chap. 31, the set {s;(A)} generates A!(A) as a von 
Neumann algebra for almost all A. Hence { bk(A)} is a o-weakly dense com- 
plex-rational linear subspace of A(A) @ .d for almost all 3,. Finally, since 
A’(A) 0 JZ? is strongly closed for almost all 2, A’(A) 0 d is the strongly 
closed algebra generated by {6,(A)} for almost all i. 

Let Z(A) denote the center of A’, let 9 = Z(d) @ Cl, and let 

93 -j-” .3?(n) dp(l) 
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be the decomposition of g with respect to 9. (See Section 3 of [2].) Since 
(bk} is a generating set for a (as a strongly closed algebra), %?(A) is, by 
definition, the strongly closed algebra generated by (bk(l)}. Hence 

for almost all 1. (3.16) 

Since gcg, it follows from (3.16) and Proposition 3.3 in [2] that 

s 
CT3 x= x(A) dp(A) E 39 -x(l) E d@(i) @ d for almost all 2. (3.17) 

Now suppose that x= j” x(i) &(A) is in F(d, G?). Then x(~)E 
Q&(n), &) for almost all ,I by Lemma 3.8. Moreover, by assumption, 
F(J(i), d) = J!(A) @ d for almost all ,I. Hence x(,I)EJZ(A) @ d for 
almost all 2, and so x is in g = 4 @ .d by (3.17). Thus F(&, &‘) c 
J# 0 d. But the reverse inclusion is always valid, so F(&, ,&) = 
JzifQd. 1 

THEOREM 3.10. Let A? and Jf be separably acting von Neumann 
algebras, and suppose that the components A%‘(A) of A in its central decom- 
position have Property S, for Jf for almost all 1. Then AG! has Property S, 
for ,V. 

Proof: Suppose that J&Z does not have Property S, for Jf. Let Y be a 
o-weakly closed subspace of JV such that F(A, 5) # ~2’ @ Y-. Let g be 
the reflexive algebra associated with Y as in Remark 1.1. Then 4 a %? 
and all of the algebras JzY(,I) 0 &? are reflexive, and so strongly closed. 
Moreover, if &Z(%) has Property S, for JV, then F(A(A), Y) = &‘(A) @ r-, 
so F(A(A), &3) = Jz’(A) @ a by Remark 1.1. Hence F(A!(A), &!I’) = 
J%!‘(A) @ g for almost all I, and so F(A, g) = J%’ @ .?&!I by Proposition 3.9. 
But this implies that F(A, F) = JX 0 Y by Remark 1.1, so we have a 
contradiction. Hence JZ has Property S, for .,V. 1 

Remark 3.11. Suppose that .,zZ? is a separably acting von Neumann 
algebra, and suppose that the components A(n) of JZ in its central decom- 
position have Property S, for almost all 1. Let X be a separable infinite 
dimensional Hilbert space. Then almost all of the &(i)‘s have Property S, 
for B(Z)), and hence A has Property S, for B(X)). Thus, by Theorem 2.6, 
JZ has Property S,. Moreover, since the a-weak approximation property 
is equivalent to Property S,, it follows that if almost all of the &(n)‘s have 
the a-weak approximation property, then so does A. Finally, we note that 
if follows from Theorems 3.1 and 3.10 that if &‘(A), has the AP for almost 
all d, then J& has the AP. 
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It follows immediately from Lemma 3.5 and Theorem 3.10 that there is 
a separably acting factor without Property S, for I”(N). In order to show 
that there are separably acting factors of each of the types II,, II,, and 
III, (0 d A < 1) without Property S, for I”(N), we need to make use of the 
fact that if a von Neumann algebra A’ does not have Property S, for 
Z”(N), then its crossed product by its modular automorphism group also 
does not have Property S, for I”(N). This is a special case of the following 
result in [26]: if A and -N are von Neumann algebras, and if the crossed 
product A?‘@, G of A’ by an action M of a locally compact group G has 
Property S, for A”, then A!’ has Property S, for JV. 

THEOREM 3.12. For each of the types II,, II,, and HZ1 (0 6 1 d 1 ), there 
is a separably acting factor J# of that type such that J& does not have 
Property S, for I”(N) (and so JZ* does not have the AP). 

Proof We will show that for each of the types II,, II,, and III, 
(0 < 1” < I), if there is a separably acting factor of that type without 
Property S, for I”(N), then there are separably acting factors of all of the 
types II,, II,, and III, (0 ,< A< 1) without Property S, for l”(N). Since 
there is a separably acting factor without Property S, for 1”(N), and since 
it can’t be type I, this will complete the proof. In the rest of the proof X 
will always denote a separable infinite dimensional Hilbert space. We will 
split the proof into cases. 

Case 1. Suppose that there is a factor A! c B(H) of type II, without 
Property S, for l”(N). Then A! @ B(X) is a factor of type II, [32, 
Theorem 6.7.101, and does not have Property S, for f”(N) by Proposition 
3.4. Moreover, if JV” c B(X) is any factor of type III, (0 d A Q l), then 
A? @ JV” is also a factor of type III, [ 10, Corollaire 3.2.8.1, and another 
application of Proposition 3.4 shows that & 0 JV does not have Property 
S, for I”(N). 

Case 2. Suppose that there is a factor &c B(X) of type II, without 
Property S, for Im(N). Then by Theorem 6.7.10 in [32], there is a factor 
JV of type 11, such that A is isomorphic to JV @ B(Z). Since B(Z) has 
Property S,, it follows from Proposition 3.4 that JV does not have 
Property S, for f”(N). Hence there is a separably acting factor of type II, 
without Property S, for I”(N), and so by Case 1 there are separably acting 
factors of type III, without Property S, for all A (0 d % < 1). 

Case 3. Suppose that 0 <A < 1, and that there is a factor A’ c B(Z) of 
type III, without Property S, for I”(N). Let r~ be the modular 
automorphism group of A%’ corresponding to some faithful normal state of 
A?, and let ,/̂  = A! 0, R be the associated crossed product. By the result 
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mentioned above, M does not have Property S, for Z”(N). Moreover, JV 
is separably acting and is of type II, [32, Theorem 13.3.71. Let A+ M(n) 
be the central decomposition of JV. Then M(1) is a type II, factor for 
almost all J. [32, Corollary 14.2.33, and by Theorem 3.10 there is a set 
EC ,4 with positive measure such that N(A) does not have Property S, for 
I”(N) for any 2 E E. Hence there is a separably acting type II, factor 
without Property S, for 1 “(N), and so, by Case 2, there are also separably 
acting factors of type II, and type III, (for all 1, 0 <I < 1) without 
Property S, for I”(N). 1 

The next result is an immediate consequence of Theorem 3.12 and 
Remark 1.1 (or apply Corollary 2.3 in [ 361). 

THEOREM 3.13. Let 2 be a separable infinite dimensional Hilbert space. 
Then for each of the types II,, II,, and III2 (0 < 2 < 1 ), there is a factor 
A c B(2) of that type and a reflexive algebra .@ c B(X) such that if 
alg 9, = Jr’ and alg 2, = g, then 

Remark 3.14. As noted in Remark 1.1, the reflexive algebras g in 
Theorem 3.13 can be chosen so that alg Y, @ alg Yz = J%! 0 a is a 
reflexive algebra. Thus, although F(‘(d, ?J) is always a reflexive algebra 
whenever G! = alg Y1 and g = alg J& are reflexive algebras (since it equals 
alg(pi 0 5&)), it need not be the smallest reflexive algebra containing 
d @ g, even when one (but not both) of d and G? are von Neumann 
algebras. It remains an open question (first raised by Radjavi and 
Rosenthal in 1969 in [42]) whether the tensor product of reflexive algebras 
is always reflexive. 

Every abelian von Neumann algebra is type I, so every abelian von 
Neumann algebra has Property S,. However, there are abelian reflexive 
algebras without Property S,. In fact, we have the following result. 

PROPOSITION 3.15. Let # be a separable infinite dimensional Hilbert 
space. Then there are abelian reflexive subalgebras d and 49 of B(X) such 
that d @ S? # F(d, S?). 

Proof. Since there is a o-weakly closed subspace of B(X) without 
Property S,, there is an abelian reflexive algebra ~4 c B(z) without 
Property S, [36, Theorem 2.11. By Remark 2.7, there is a o-weakly closed 
subspace F c B(S) such that d @ F # F(zZ, F). It follows from this and 
Remark 1.1 that there is an abelian reflexive algebra g c B(X) such that 
z&‘&S?#F(&,~). 1 

540’102 I-10 
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Remark 3.16. If d c B(2) and 92 c B(X) are a-weakly closed abelian 
algebras, then J$’ @ 98 is also an abelian algebra, since multiplication is 
separately continuous in the a-weak topology. However, it can be shown 
that if Z and X are both infinite dimensional, then multiplication is not 
separately continuous in the locally convex topology on B(X) @ B(X) 
generated by the seminorms of the form p(x)= I(cp@Il/)(x)l (q E B(2),, 
$ E B(X),). Since F(d, 98) is the closure of d 0 99 in this topology, we 
can’t imitate the argument for & @ B to show that F(&‘, g) is an abelian 
algebra. 

It is not known whether F(&, B) is always abelian. However, as was 
pointed out to the author by Professor Tadasi Huruya, F(d, 9#) is always 
an algebra, since 

F(,QI, 59) = F(&, B(X)) n F(B(X’), .%9) = (-“4 @ B(X)) n (B(2) @ @) 

and JZZ 0 B(X) and B(X) 0 93 are algebras. 1 

4. SINGLY GENERATED ALGEBRAS AND PROPERTY S, 

In this section only, we will denote elements of B(X) by upper-case italic 
letters. For TE B(X), let d(T) denote the a-weakly closed unital sub- 
algebra of B(Z) generated by T. It was shown in [36] that for many 
“nice” operators T, d(T) has Property S,. This is the case if T is a subnor- 
mal operator or if T is in the class A(%?). When T is subnormal, d(T) is 
reflexive [40], and d(T) is also reflexive for many of the operators in 
A(%‘) (see [4]). Hence in these cases, alg 9, @ alg Y2 = alg(9, 0 &) 
when 9’i is the lattice of projections left invariant by T (in which case 
d(T) = alg Z,)), and when Y2 is any subspace lattice. We will show below 
that if T is an injective weighted shift, then JZ?( T) has the CCAP, and so 
has Property S,. First, however, we show that there is an operator T 
acting on a separable Hilbert space for which d(T) does not have 
Property S,. The proof makes use of a construction of Wogen that allows 
one to obtain “bad” &(T)‘s from “bad” subspaces [60]. 

PROPOSITION 4.1. Let .X be a separable infinite dimensional Hilbert 
space. Then there is a TE B(Y) such that d(T) does not have Property S,. 

Proof. Let 9’ c B(Z) be a o-weakly closed subspace which does not 
have Property S,. Let X be the direct sum of a countable number of 
copies of Z. Let P, be the orthogonal projection of X 0 X onto the first 
summand of &? in X, and let P, be the orthogonal projection of X 0 X 
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onto 0 @ tic. Each operator A in B(X @ X) admits a matrix representa- 
tion A = [Aij],Gj,,Gm where A,EB(X). Let 

ca ~,,=(AW~X~H4,, ~9 and FI,~=O if (i,j)#(l, cc)}. 

In Example 2 in [60], Wogen shows how to construct an operator 
SEB(X@O) such that P,&‘(S) P, = [sP]i,,. Suppose that d(S) has 
Property S,. Then P, d(S) P, has Property S, by Proposition 1.10 in 
[34], and so Y has Property S, by Proposition 4.2 in [36]. But this con- 
tradicts the choice of Y, so d(S) does not have Property S,. Since X is 
infinite dimensional, there is a unitary operator U from X onto X 0 X. 
Let T= U*SU. Then J&‘(T) = U*.&(S) U, so another application of 
Proposition 4.2 in [36] shows that d(T) does not have Property S,. 1 

Let &’ be a Hilbert space with orthonormal basis {e,}. An operator 
TE B(X) is a weighted shif if there are complex numbers {w,} such that 
Te,=w,e,,,. T is called a unilateral weighted shif if the index n runs over 
the nonnegative integers, and T is called a bilateral weighted shif if n runs 
over all the integers. We refer the reader to Shields excellent survey article 
[46] for a detailed treatment of shifts. All of the results quoted without 
proof in what follows are from this article. 

THEOREM 4.2. rf‘ T is an injective unilateral weighted shift, then d(T) 
has the CCAP, and so has Property S,. 

Proof: Let {w,} be the weight sequence of T. Define a sequence {p(n)} 
by b(O) = 1 and /I(n) = wO.. w,- , (n 20). Let H’(p) denote the Hilbert 
space whose elements are the functions f = {f(n)} such that 

C If( CP(n)12 < a, (4.1) 

and whose inner product is given by 

(f I 8) = C f(n) k3nKB(n)l’. 

Let M, denote the operator defined by 

(MZf)-(n)=.h-l) (n b 1 ), 
=o (n = 0). 

(4.2) 

Then T is unitarily equivalent to MZ [46, Proposition 71. Hence d(T) is 
unitarily equivalent to d(MJ, so it suffices to show that ,d(Mz) has the 
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CCAP. The elements of H*(p) can be considered as formal power series 
in z, i.e., we can write 

“f(z) = 1 m zn. (4.3) 

Then we can multiply f by another formal power series by using the con- 
volution product (see [46, Sect. 43). Let H”(B) denote the set of formal 
power series cp such that cpH*(/?)cH*(/I). We will identify cp with the 
operator of multiplication by cp on H*(B). Then H”(P) is the cornmutant 
of M, in B(H*(/?)) [46, Theorem 33. It follows immediately from 
Theorem 12 in [46] that H”(b) c &(M,). Moreover, since T is injective, 
the cornmutant of MZ is a maximal abelian sublagebra of B(H*(B)) [46, 
Corollary 1, p. 63). Hence d(MZ)cH”(fi), so d(MZ)=H”(/3). Thus it 
suffices to show that H”(b) has the CCAP. 

For n30 and for cp E H”(P), let a,(q) denote the nth Cesaro mean of 
the partial sums of cp (see [46, p. 903). By definition, (T, is a finite rank 
linear map from H”(P) to itself. Furthermore, since cp + @j(n) is a-weakly 
continuous for each n, cm is also a-weakly continuous for each n. Let T be 
the circle group {WEC 1 /WI = l}, and for WET and cp E H*(B) let 
cp,(z) = cp(wz). If we let U,.(cp) = cpw, then U, is a unitary operator, and for 
(PE H”(p) we have 

u,.du,.)* = cpw,. (4.4) 

For n 2 0 let K, denote the Fejer kernel, and let ds denote normalized 
Lebesgue measure on T. It is shown in the proof of Theorem 12 in [46] 
that 

a,(cp) = j” cp,,JL(~) ds. (4.5) 

It follows easily from (4.4) and (4.5) that en is a complete contraction. 
Finally, if cp E H”(B), then a,(q) + cp strongly [46, Theorem 121 and so 
u-weakly. Hence &‘(MJ has the CCAP. u 

THEOREM 4.3. Let T be an injective bilateral shift. Then d(T) has the 
CCAP, and so has Property S,. If T is invertible, then &(T, T-l) (the 
a-weakly closed unital algebra generated by T and T- ’ ) also has the CCAP, 
and so has Property S,. 

Proof The proof is similar to that of Theorem 4.2. Let { w,,l be the 
weight sequence of T. Define a sequence {B(n)} by p(n) = wO. .. w,_ , 
(n>O), p(O)=l, and fi(-n)=(w-,...w-.))’ (n>O). Let L*(p) denote 
the Hilbert space whose elements are the functions {p(n)} (where n runs 
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over all integers) such that (4.1) holds, and whose inner product is given 
by (4.2). Let MI denote the operator on L*(b) defined by 

wJr(4=.f(- 1) (all n), 

Then T is unitarily equivalent to M, [46, Proposition 71, and so to show 
d(T) has the CCAP it suffices to show that d(MJ has the CCAP, and 
to show that d(T, T-l) has the CCAP it suffices to show that 
&(M,, M;‘) has the CCAP. We let L”(b) denote the set of formal 
Laurent series cp such that cpL*(/I) c L*(p) (where the elements of L,‘(b) are 
viewed as formal Laurent series using (4.3), and multiplication of formal 
Laurent series is given by the convolution product). We will identify cp with 
the operator of multiplication by cp on L*(p). Then L”(b) is the commu- 
tant of M, in L2(fi) [46, Theorem 31, and is a maximal abelian subalgebra 
of B(L*(/?)) [46, Corollary 1, p. 631. The argument in the last paragraph of 
the proof of Theorem 4.2 (with H*(b) replaced by L2(p) and H”(p) 
replaced by L”(b)) shows that L”(b) has the CCAP. 

If T is not invertible and 9 E L”(p), then @5(n) = 0 for n <O [46, 
Theorem lo’], and hence o,(q) is in &‘(MZ) for all n > 0. Since a,(q) + cp 
o-weakly, cp E &(MJ. Combining this with the fact that L”(b) is maximal 
abelian, we conclude that &(M,) = L”(b), and so &‘(M,) has the CCAP. 

Finally, suppose that T is invertible. Since L”(p) is maximal abelian, 
d(M=, M;‘) c L”(b). Moreover, if (PE L”(b) then cr,(cp) is in 
d(M=, MI-‘) for all n 30, and so cp EJ&‘(M~, M;‘). Hence 
&(M,, M-l)= L”(b), and so d(M;, MT’) has the CCAP. Since the 0,‘s 
are a-weakly continuous, a,(d(M,)) c d(M=) for all n > 0. The restriction 
of each rrn to d(M;) is a finite rank o-weakly continuous contraction from 
d(M;) to itself, and o,(cp) --f cp a-weakly for all cp E d(MJ. Hence d(M,) 
also has the CCAP. [ 

5. THE SLICE MAP PROBLEM FOR C* ALGEBRAS 

Many of the results in Section 2 and some of the results in Section 3 have 
analogues for C*-algebras. We will discuss these and related results in this 
section. In this section only, if A and B are C*-algebras, A @B will denote 
the spatial (or minimal) C*-tensor product of A and B rather than the 
algebraic tensor product. Note that if A c B(S) and Bc B(X)), then 
u@~EB(S@O) for all asA and bEB, and A@B is just the norm 
closed linear span of {a@b 1 UEA and beB} in B(X’@X). 

If A and B are C*-algebras, and cp E A *, there is a unique bounded linear 
map R, from A @ B to B such that 

R,(aOb)= (a, cp)b (uEA, btz B), 
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and if $ E B*, there is a unique bounded linear map L, from A @B to A 
such that 

L,JaOb)= (6, $>a (aEA, bEB) 

[51]. As in the case of von Neumann algebras, the maps R, are called 
right slice maps and the maps L, are called left slice maps. Slice maps have 
proved to be very useful in studying tensor products of C*-algebras (see, 
e.g., [l, 31, 51-54, 57-591). 

If S c A and T c B are norm closed (linear) subspaces, we will denote by 
SO T the norm closed linear span of {SO t 1 s E S and t E T} in A @B. 
Note that if A c B(X) and B c B(X), then S@ T is also the norm closed 
linear span of (.r @ t 1 s E S and t E T} in B(Z @ X). The Fubini product of 
S and T with respect to A @B is defined to be {x E A 0 B 1 R,(x) E T, 
L,(x)ES for all (PEA*, $ E B*}, and is denoted by F(S, T, A@ B). (See 
[53], where S and Tare assumed to be C*-subalgebras of A and B.) Note 
that if follows easily from the definitions that we always have that S@ TC 
F(S, T, A @ B). 

Remark 5.1. If Y c B(X) and Y c B(X) are a-weakly closed sub- 
spaces, and if Jz’ and M are any von Neumann algebras containing Y and 
Y, respectively, then with the obvious notation, 

F(Y, Y, ~2 @ N) = F(.Y, r-, B(X) @ B(X)). (5.1) 

Equation (5.1) is an easy consequence of Tomita’s theorem (see Remark 1.2 
in [34]). However, the analogue of Tomita’s theorem does not hold for 
C*-algebras! In particular, Wassermann showed in [59] that if 2 is a 
separable infinite dimensional Hilbert space, and if K = K(X) denotes the 
algebra of compact operators on Z’“, then 

B(YOOK#F(B(Z), K, B(Af)OB(Z)). 

On the other hand, we obviously have that 

B(X)@K= F(B(%), K, B(X’)@K). 

Hence the analogue of Eq. (5.1) does not even hold for C*-subalgebras of 
C*-algebras. (However, two C*-algebras always have a “largest” Fubini 
product. See [31].) 

Let A and B be C*-algebras, and let T be a norm closed subspace of B. 
Following Wassermann [57], we say that the triple (A, B, T) uerzpes the 
slice map conjecture if F(A, T, A @ B) = A 0 T. We say that A has Property 
Sfor subspaces of B if (A, B, T) verifies the slice map conjecture whenever 
T is a norm closed subspace of B, and that A has Property S for B if 
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(A, B, D) verifies the slice map conjecture whenever D is a C*-subalgebra 
of B. If A has Property S (resp. Property S for subspaces) for B for all 
C*-algebras B, we say that A has Property S (resp. Property S for sub- 
spaces). Wassermann defined Property S in [57], and gave the first 
examples of C*-algebras without Property S in [SS], where he showed 
that the only von Neumann algebras with Property S are the finite sums 
of finite type 1’s. 

For a norm closed subspace SC A, we let M,(S) denote the space of 
n x n matrices with entries in S, with the norm inherited from M,,(A). If rr 
is any faithful representation of A on a Hilbert space Z’“, then M,(A) is 
isomorphic to M,(z(A)), so identifying S with rc(S), we can consider S as 
a subspace of B(Z). Then, as in Section 2, we let CB(S) denote the space 
of all completely bounded maps from S to itself. If @ E CB(S), and if B is 
a C*-algebra, then it follows from a straightforward modification of the 
proof of Lemma 1.5 in [13] that there is a (unique) bounded linear map 
Qi, from S@ B to itself such that 

@B(~Ob)=@(~)Ob (s E S, b E B). 

Moreover, ll@Bll d Il@llch. 
For a norm closed subspace S contained in a C*-algebra A, we let F(S) 

denote the collection of all bounded finite rank maps from S to S. Then 
@ E F(S) if and only if for some n E N there are s, , . . . . s, in S and cp i , . . . . (Pi 
in A* such that 

,=n 
Q(s)= c ($3 Vi> s, 

,=l 

for all s in S. It follows immediately from this and Corollary 3.4 in [ 193 
that F(S) c CB(S). If B is a C*-algebra and x E SO B, we let F,(x) denote 
the norm closure of the linear space { GB(x) 1 @ E F(S)}. 

In our next result, we will make use of the notion of a stable C*-algebra. 
Recall that a C*-algebra B is said to be stable [6] if B is *-isomorphic to 
B@ K, where K denotes the C*-algebra of compact operators on a 
separable infinite dimensional Hilbert space. Since K is *-isomorphic to 
K@M,(C) for any integer n, it follows from Proposition 4.22 in [SO, 
Chap. IV] and the associativity of the minimal tensor product that if B is 
stable, then B is *-isomorphic to B@M,(C) for any integer n. 

THEOREM 5.2. Let S be a norm closed subspace of a C*-algebra A, and 
let B he a stable F-algebra. The,following are equivalent: 
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(a) x~F~(.x)fo~ every XES@B. 

(b) For every x E S@ B, there is a sequence {a,,} in F(S) such that 
(@,)B (x) + x in norm. 

(c) There is a net { @,} in F(S) such that (@,)B (x) --f x in norm for 
every XESQB. 

Proof: It is immediate that (a) + (b) and that (c) * (a). 
Suppose that (b) holds, and let xi, . . . . x, be any elements of SQ B. Let 

C= B@ M,(C). Since B is stable, there is a *-isomorphism rr from B onto 
C. By Proposition 4.22 in [SO, Chap. IV], there is a *-isomorphism i? from 
A @B onto A 0 C such that 

77(a@b)=a@7c(b) (aEA,bEB). (5.2) 

It follows immediately from (5.2) that E maps SOB onto SO C, and that 

EO@,E@,Oil (GE CB(S)). 

Let y=C;I; xi@eij, where {eij},Gr,,Gn are the matrix units for M,,(C), 
and where we are identifying A 0 (B@ M,,(C)) and (A @B)@ M,(C) in 
the usual way using the associativity of the minimal tensor product. Since 
y = E(x) for some XE SO B, there is a sequence {Qm} in F(S) such that 
(GQ,)~ (y) + y in norm, from which it follows easily that (@m)B (xi) + xi 
in norm for each i. The proof of (b) +- c can now be completed by an ( ) 
argument similar to that in the last part of the proof of (c)a (a) in 
Proposition 2.1. 1 

We do not know if the requirement that B be stable in Theorem 5.2 is 
necessary. However, Theorem 5.2 as stated in sufficient for our applications 
(Theorems 5.4 and 5.5). 

The proofs of the next two results are similar to the proofs of Proposi- 
tion 2.5 and Theorem 2.6, and are left to the reader. 

PROPOSITION 5.3. Let A and B be C*-algebras. Let XE A Q B, and 
let T denote the norm closure of the linear space {R,(x) 1 cp E A*}. Then 
F,(x) = A @ T. 

THEOREM 5.4. Let A and B be C*-algebras. Consider the following condi- 
tions: 

(a) A has Property S for subspaces of B. 

(b) x E FB(x) for every x E A @B. 

(c) There is a net {GE} in F(A) such that (@or)B (x)-+x in norm for 
every x E A @ B. 
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Cd) A has Property S for B. 

(e) x is in the C*-algebra generated by FJx) for every x E A Q B. 

Then (a ) and (b) are equivalent, (d) and (e) are equivalent, and 
(c) =z. (a) + (d). If we also assume that B is stable, then (c) is equivalent to 
(a) and (b). 

As noted in the Introduction, Effros and Ruan have defined an 
approximation property for the category of operator spaces that is the 
natural analogue of Grothendieck’s approximation property for the 
category of Banach spaces. As in Section 3, we will write AP for Grothen- 
dieck’s approximation property. We will refer to Effros and Ruan’s 
approximation property as the “operator space AP.” A C*-algebra A has 
the operator space AP if and only if there is a net { @,} in F(A) such that 
(@X)K (x) --) x in norm for every x E A OK. Since K is a stable C*-algebra, 
our next result is an immediate consequence of Theorem 5.4. 

THEOREM 5.5. Let A be a (?-algebra. Then A has the operator space AP 
if and only if A has Property S for subspaces of K. 

We do not know whether Property S implies Property S for subspaces, 
or whether Property S for subspaces of K implies Property S for subspaces. 
(However, it is shown in [26] that if A is locally reflexive [ 171, or if A is 
the reduced C*-algebra of a discrete group, then A has Property S for sub- 
spaces if it has Property S for subspaces of K.) The next result (which is 
essentially due to Archbold and Batty), is of interest in connection with 
these two problems. 

THEOREM 5.6. Every C*-algebra has Property S for K. 

Proof. Let A be a C*-algebra. Since K is nuclear, it follows from 
Theorems 3.1 and 3.4 in [I] that (A, B, K) verifies the slice map conjec- 
ture whenever B is a nuclear C*-subalgebra of K. However, every 
C*-subalgebra of K is liminal (CCR) [14, Proposition 4.2.41, and hence 
type I [14, Theorem 5.5.21, and so is nuclear [49, Theorem 33. Hence A 
has Property S for K. 1 

If B is any nuclear C*-algebra all of whose C*-subalgebras are nuclear, 
then it follows from the proof of Theorem 5.6 that every C*-algebra has 
Property S for B. However, there are nuclear C*-algebras with non-nuclear 
C*-subalgebras [7]. It is an open question whether every C*-algebra has 
Property S for every nuclear C*-algebra. 

Remark 5.1. Let JY be a von Neumann algebra which is not the finite 
sum of finite type I von Neumann algebras. Then, as noted above, & does 
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not have Property S. In view of Theorem 5.6, it is not obvious that this 
implies that J& does not have Property S for subspaces of K However, as 
noted in Section 3, J&? also does not have the AP. It follows from this and 
Theorem 5.8 below that J&’ does not have Property S for subspaces 
of c,(N) (where, as usual, c,(N) denotes the C*-subalgebra of I”(N) 
consisting of those sequences {xIl> satisfying J/xJ + 0 as n -+ co). If we 
realize K as the compact operators on Z2(N), and if we let the elements of 
c,(N) act on 12(N) in the usual way as multiplication operators, then c,(N) 
is a norm closed subspace of K. Hence JZ? does not have Property S for 
subspaces of K. 

The next result is the analogue for C*-algebras of Theorem 3.1. It should 
also be compared to Tomiyama’s result that (with the obvious definitions) 
a Banach space X has Property S for subspaces of Y for every Banach 
space Y (where the tensor product is the injective tensor product) if and 
only if X has the AP [54, Theorem 5.11. 

THEOREM 5.8. Let A be a C*-algebra. Then A has the AP zyand only if 
A has Property S for subspaces of c,(N). 

Proof: Since c,(N) is an abelian C*-algebra, the minimal C*-norm 
coincides with the injective norm on the algebraic tensor product of A and 
c,(N) [SO, Theorem IV.4.141. Hence, if T is any norm closed subspace of 
c,(N), then A@ T= A @ T, where A 6 T denotes the injective tensor 
product of A and T. Following Waelbroeck [56], we denote by APT the 
space of linear mappings of A* into T whose restrictions to the unit ball 
of A* are weak-* continuous. With the obvious norm, AqT is a Banach 
space. For aE A and b E c,(N), define an element $a@ b) in Acpc,(N) by 
z(a@b)(cp)= (a, cp)b (VE A*). It is shown in [56] that r extends to an 
isometric isomorphism of A 6 c,(N) = A @c,(N) onto Aqq,(N), and that 
A has the AP if and only t(A 6 T) = AqT for all norm closed subspaces 
T of c,(N). On the other hand, it is easy to see that 

7(x)(cp) = R,(x) (x~A@co(N), VEA*), 

and so z(x) is in AqT (i.e., r(x) maps A* into T) if and only if 
x E F(A, T, A 0 c,(N)). Hence 2(F(A, T, A @c,(N))) = AqT for all norm 
closed subspaces T of c,(N), and thus A has the AP if and only if A has 
Property S for subspaces of c,(N). [ 

Remark 5.9. As noted in Remark 5.7, we can view c,(N) as a norm 
closed subspace of K. Hence if A is a C*-algebra, then if A has Property 
S for subspaces of K, A has Property S for subspaces of c,(N). It follows 
from this and Theorems 5.5 and 5.8 that if A has the operator space AP, 
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then A has the AP. It seems likely that there are C*-algebras which have 
the AP but not the operator space AP, but we know of no examples of 
such C*-algebras. 
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