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Given a C*-algebra !?I and endomorphism a, there is an associated nonselfadjoint 
operator algebra Z + X, ‘11, called the semi-crossed product of 21 with a. If a is an 
automorphism, B f X, YI can be identified with a subalgebra of the C*-crossed 
product % X, 11. If VI is commutative and a is an automorphism satisfying certain 
conditions, Hi X, ‘u is an operator algebra of the type studied by Arveson and 
Josephson. Suppose S is a locally compact Hausdorff space, 4: S-S is a 
continuous and proper map, and a is the endomorphism of ?I = C,(S) given by 
a(f) =f o 4. Necessary and suffkient conditions on the map $ arc given to insure 
that the semi-crossed product L + X, C,(S) is (i) semiprime; (ii) semisimple; (ii) 
strongly semisimple. SC 1984 Academic Press, Inc. 

In this paper a class of Banach algebras is studied which we call semi- 
crossed products of C*-algebras. These are nonselfadjoint norm closed 
algebras of operators on hilbert space. They include certain nonselfadjoint 
subalgebras of C*-crossed products, and in particular they include the class 
of operator algebras considered by Arveson and Josephson in [ 11. 

In constructing a semi-crossed product we begin with a pair (3, a) where 
‘u is a C*-algebra and a is a star endomorphism of VI. An appropriate 
substitute for the notion of covariant representation is needed in which 
unitaries are replaced by isometries. This is done as follows: we call a pair 
@, V) an isometric covariant representation of (?I, a) if p is a representation 
of ‘u on a Hilbert space 2’ and V is an isometry on X such that Vp(ax) = 
p(x)V, x E 3. Such a pair @, V) yields a representation of the Banach 
algebra 1’(L +, VI, a), and an operator norm on this algebra is defined by 
taking the supremum over all such pairs. The completion of Z’(Z +, ‘VI, a) in 
this enveloping norm is called the semi-crossed product of ‘3 with a, and is 
denoted Zc X, 31. If a is an injective endomorphism of ‘21, there is a C*- 
algebra 28 containing ‘u as a subalgebra and an automorphism p of 9 such 
that p(x) = a(x), x E U. In that case, L’ X, ‘3 is isomorphic with a 
nonselfadjoint subalgebra of the C*-crossed product Z x, 2’. 

498 
0022.1236/84 $3.00 
Copyright 0 1984 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



SEMI-CROSSED PRODUCTS OF C *-ALGEBRAS 499 

For commutative C*-algebras ‘u = C,,(S), S locally compact hausdorff, 
each continuous and proper mapping 4: S + S defines an endomorphism a of 
C,(S) by a(f) =fo 4, fE C,(S). It is natural to wonder how the ring- 
theoretic properties of the semi-crossed product 77’ X, C,(S) reflect 
properties of the mapping 4, and conversely. For example, what are 
necessary and sufficient conditions on the dynamical system (S, 4) for the 
semi-crossed product Z + X, C,,(S) to be (i) semiprime; (ii) semisimple; (iii) 
strongly semisimple? In fact, the question of the semisimplicity of the 
Arveson-Josephson algebras was already raised in [ 11, although apparently 
no results in this direction were obtained until recently, when a sufficient 
condition was given in [ 121. These questions are answered here, and, more 
generally, an explicit description of each of the three radicals (i.e., the prime 
radical, Jacobson radical, and the strong radical) is given. In special cases 
we can determine the strong structure space of Z ’ X, C,,(S): this is done 
when S has only periodic points, and, for the opposite extreme, when S has 
no periodic points. (In the periodic case, our results can be compared with 
those of [Ill, in the W*-algebra setting.) For the C*-crossed product of a 
commutative C*-algebra C,(S) with a freely acting automorphism a, the 
primitive ideal space of Z X, C,(S) corresponds to the orbit closures of S 
under $ [5, 81. The situation for semi-crossed products appears to be more 
complex, and even in the semisimple case we do not know how to describe 
the primitive dual. 

If Si is locally compact hausdorff and #i: Si -P Si continuous and proper, 
i= LZ (s,,#,), (S,,h) are said to be conjugate if there is a 
homeomorphism 0: S, -+ S, such that 0 o $* = #i o 0. If (S,, #r), (S,, $2) 
are conjugate it is not hard to see that the semi-crossed products 
L ’ X,, C,(S,), L’ X,, C,(S,) are isomorphic (11.12). The converse 
proposition is proved under the additional assumptions that Si is compact 
and #i has no periodic points, i = 1, 2. In the context of the Arveson- 
Josephson algebras, these results are similar to, though not identical with, 
those obtained in [ 11. 

Section I covers some elementary representation theory for a C*-algebra 
with endomorphism. Semi-crossed products are defined and basic properties 
are explored in Section II. From II.6 on, only semi-crossed products with 
commutative C*-algebras are considered. Section III deals with pairs (S, 4) 
for which each s E S is periodic. In Section IV, the prime radical, Jacobson 
radical, and strong radical of L ’ X, C,(S) are described. Finally, the 
question of the isomorphism of semi-crossed products implying conjugacy is 
taken up in Section V. 
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I. 

If a is an automorphism of a C*-algebra VI, then @, V,&Y) is called a 
covariant representation of (U, a) if p is a representation of U in the hilbert 
space A?+ and V is unitary on 3 satisfying p(ax) = VP(X) V* for all x in ‘3. 
But suppose a is a star endomorphism of ?I. If @, V,X) is to be a covariant 
representation of (a, a) in the above sense, then ker p 2 ker a. If we weaken 
the requirement that V be unitary and ask only that it be an isometry, then 
there are two ways in which I/ could intertwine the representations p and 
p 0 a: 

(i) p(ax)V= VP(X), or 
(ii) Vp(ax) = p(x)V, x E ?I. 

Notice that (i) forces ker p 2 ker a. Relation (ii), however, imposes no such 
requirement, and we will see that there is always a faithful representation 
@,Z) and an isometry V on Z such that (ii) holds. But first notice that 
there can be representations @,2) which admit an isometry V on A? 
satisfying (i) but not (ii). 

1.1. EXAMPLE. Let S be a compact hausdorff space and 4: S + S be 
continuous and onto. Let p be a regular bore1 measure on S such that 
,uo#-’ isabs o u e y 1 t 1 continuous with respect to ~1, and let 6 = dp 0 4 -‘/dp be 
the Radon-Nikodym derivative. Define an isometry V on L*(S, ,u) by 
v-(s) = wm “f-0 $@I- If 4 is constant on a set of positive p-measure, 
V is not unitary. If p(f)g =fg for fE C(S), g E L*(S, ,u) and 
a: C(S)+ C(S) is given by a(f)(s) =f(#(s)), a is an (injective) 
endomorphism of C(S). Now 

Thus p(af)V= VP(~). Suppose there were an isometry U satisfying 
Up(af) = p(f)17 for all fE C(S). Then p(f) UV = Up(af)V = UVp(f), so 
UV E p(C(S))’ = La’(S,p). UV is an isometry, and since L”O(S,p) is 
commutative, UV must be unitary. But that would imply I = UV(UV)* = 
UVV*U*, which is impossible if V is a proper isometry. 

1.2. EXAMPLE. Let U be an arbitrary C*-algebra, and a a star 
endomorphism of VI. Let (n,X) be a representation of ‘3, and let 
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X = H”(X) denote the hilbert space of all sequences (<,,, {i, &,...) with 
t,EX (n>/O> and Cn~OIl~nll’ < co. Define a representation p of U in Z 
by 

P(x)(r,, t-1, r2,“‘) = ($x1 to, ex> 4 3 $a24 r*Y-)* 

If U, is the unilateral shift on 2, 

u+(r,> r,, <2,...) = (0, to, Cl, r*,...), 
then U, p(ax) = p(x) U, . 

1.3. Notation. We will write p = n’ for the representation constructed 
in 1.2. 

Suppose now that a is an endomorphism of a C*-algebra ‘?I, and p is a 
representation of ‘u on a hilbert space Z such that Vp(ax) =p(x)V for an 
isometry V on Z. Set Xi = n,,, V”Z. & is a p(U)-invariant subspace: let 
v E 4 ; there exist v,, E Z’ such that V= V”v,, , 12 = 0, I,2 ,... . Then p(x)q = 
p(x) V”q,, = V”p(a”x) rn, so p(x)r E Range V”, n > 0, hence p(x)r E & . 
Thus p may be decomposed as p1 0 p2, where p,(x) = p(x)1 4, p*(x) = 
p(x) 1 RZ, & = 8:. Also V may be decomposed as V, @ V,, where 
V, = V 13 is unitary (if it is nonzero) and V, = VI q is a pure isometry (if 
it is nonzero). 

Furthermore, V,p,(ax) = p,(x) Vi, i = 1,2. Suppose V, # 0. Change 
notation and replace p2 by p, 3 by Z, V, by V. Thus we assume V is a 
pure isometry such that Vp(ax) =p(x)V. Set Z’= (VGP)‘= ker V* and 
w: H*(X) + d%” by 

wcto. 4, r*,‘..) = 1 VY,. 
n>0 

Then VW = WU, [6, pp. 15-161, where U, is the unilateral shift on 
H2(X). Notice Z is a p(‘U)-invariant subspace. From the relation Vp(ax) = 
p(x)V we obtain p(ax)* V* = V*p(x)*, or, using the fact that p is a *- 
representation and replacing x * by x, p(ax) V* = V*p(x). Thus, if { E X, 
V*p(x)< = p(ax) V*< = 0. 

Let 71 be the restriction of p to X; i.e., X(X) = p(x) IX. Let 75 be the 
representation constructed from rc on H*(X). (See notation 1.3.) Then 

Wf(x)(t,, 4, t2,...) = W(n(x> lo, +x> &, 7+*x> t,,...) 

= C V%(a”x) (I, 
n>o 

= C V”p(a”x> <, 
n>o 

= p(x) wo 9 {I, r2 Y..>. 

Hence WE(x) = p(x) W. We collect the forgoing facts in 
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1.4. PROPOSITION. Let a be an endomorph&m of a C*-algebra U, and 
@, A?) a representation of ‘u such that for some isometry V of 3’ 

Vp(ax> = P(x>V (x E a>. 

Then 3 can be decomposed as 2 = q @ ZI where & is invariant under V 
and p(x)(x E 9l), i = 1,2, and & = n,,, V”Z If Vi = VI&, 
p,(x) = p(x) 1 <q’, i = 1, 2, then if& # (0), V, is unitary, ifR* # (0), V, is a 
pure isometry, and Vipi(ax) = p,(x) Vi(x E ‘3). Furthermore, there exists a 
representation (x,X) of ‘3 and an isometry W from H’(X) onto X2 such 
that V, W = WU, and p,(x)W = W?(x), where U, is the unilateral shift on 
H*(X). 

In each of the next two propositions, ‘?I denotes a C*-algebra with 
endomorphism a. 

1.5. PROPOSITION. Suppose that p is a representation of ‘u in 9(R) such 
that p(a)” is maximal abelian. If there does not a unitary operator U in 
9(R) such that p(ax) = Up(x) U*, then there does not exist a pair V,, V, 
of isometries such that both p(ax) V, = V,p(x) and Vzp(ax) =p(x) V, 
(x E ‘11). 

Proof The proof is essentially an adaptation of what we did in 1.1. 
Suppose such isometries V,, Vz exist. Then V, V, E p(‘z[)’ = p(B)“, since 
PW is maximal abelian. But then (V, V,)* (V, VI) = I, whereas 
(V, V,)(V, V,)* is a proper projection, contradicting the fact that V, V, , as 
an element of a commutative W*-algebra, commutes with its adjoint. 

1.6. PROPOSITION. Let p be an irreducible representation of ‘II in Y(Z’), 
and let p” be the representation of ‘u in Y(H*(Z)) contructed from p (see 
1.3). 

(i) Then the commutant of the star algebra generated by {p’(U), U,} 
in Y(H*(R’)) consists of scalars. 

(ii) Suppose also that there does not exist an isometry V satisfying 
p(a”x)V = VP(X) (x E a) for any positive integer n. Then the commutant of 
the algebra generated by {$2l), U,} in L?(H*(R)) consists of scalars. 

Proof. (i) If T commutes with U, and UT , then T = diag(T,, T,,...). If 
T commutes with @I), then T,, commutes with p(U); hence T,, and T are 
scalars. 

(ii) Identify H*(Z) with the set of all power series of the form r(z) = 

Cn>o rnzn, with CnaO lM* < co and (zl < 1. If TEY(H*(R)) is an 
operator commuting with the unilateral shift, then T is of the form T(z) = 
c n>,, z”T,, where T, EL?(R) and II TJ < (I TII [6, p. 471. We compute 
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= \’ x Tkzkz”p(a”x)<, 
ny0 k>O 

= L- zm e 

ZO k=O 

Tkp(am-kx)tm-k 

Also, (j(x) R)(z) = &o z”~(a*x)(T&,,. But 

G?P) = T(z) t(z) = (k;o Z”Tk) ( x Z%r) 
n>O 

= x z”‘(Wi,. 
m>o 

Thus, 

(j(X) T<)(z)= x zmp(amx) 
ma0 

If T commutes with P(x), we have 

+ Tkp(Ctm-kX) ‘&,mk = ? p(amx)Tktm-k 
k=O kc0 

for all T(z)= EnhO z"<,EH~(A?'), ~~21, and m=O, 1,2 ,.... These 
equations yield 

T,~(x)=p(a"x)T,, 112 = 0, 1, 2... . 

Since p was irreducible, it follows (see, e.g., [7, p. 1601) that T,,, = 1, V,, 
where A,,, > 0 and I’, is an isometry. But then V,p(x) = p(a”x) V,, 
m = 0, 1, 2 ,..., so by our hypothesis T,,, = 0, m > 1. Also To = cl. Thus 
T=cIHzca. 

1.7. If a is a continuous endomorphism of a Banach algebra ‘u, 
the ideals {ker a”}:=, form an increasing chain, and we define 
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R, = Un>o ker a” to be the a-radical of ‘II. Observe that a(R,) c R,, 
a-‘(R,) = R,. Al so a induces an injective endomorphism a’ on ‘U/R, by 
a’(x + R,) = a(x) + R,. 

Often it will be convenient to assume that 2I has an identity 1 with 
a( 1) = 1. If this is not the case, we can embed 11 in ‘I[ @ C = VI, in the usual 
way and set aI(x, A) = (a(x), A), so (?I,, a,) has the desired property. 

1.8. In the next proposition we consider whether it is always 
possible to “extend” an injective star endomorphism of a C*-algebra to an 
automorphism (of a larger algebra). 

PROPOSITION. Given an injective star endomorphism a of a (Y-algebra 
‘3, there exists a C*-algebra 9 containing ‘u as a subalgebra and an 
automorphism /I of 9 such that a(x) = p(x) for all x E 2I. 

ProoJ: If 9l is not unital or if ?I is unital but a(l)# 1, we can embed ‘?I 
in 8, = 2I @ C and extend a to an endomorphism a, of ?I, such that 
a,(l) = 1. Thus we may as well assume U is unital and a(1) = 1. 

We construct 2 as the inductive limit of a system of C*-algebras 
{‘?I,, j,},“=,. To begin, let ‘?I, be any C*-algebra isomorphic to ‘11, and 
rq VI-+ ‘?I, be an isomorphism onto ‘3,. Then (w 0 a 0 v/-‘)(v/ 0 a(x)) = 
I//O a(x)). Changing notation, let VI, = 3, b, = a, j, = w 0 a, and /I1 = 
v/ o a 0 v/-l. Then the diagram 

j, 
I 

jl 
i 

'u, 61 'u, 

commutes and /3,(Vl,) = j,&). Repeat the above construction with (a,, /I,) 
in the role of (2I,,,&) and obtain a C*-algebra ?I,, an injection j,: 3, --f ?I,, 
and as injective endomorphism & of ‘11, such that 

commutes and &(‘?I,) = j,(U,). Continuing in this way, find an inductive 
(VI,, j,) of C*-algebras with injective endomorphism p, of ‘LI, such that the 
diagram 
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in+2 I 

commutes and ~,+1(91,+,)=j,+,(VI,), II =O, 1, 2,.... Let 9 be the C*- 
inductive limit of (U,,j,). Each ‘u, corresponds naturally to a subalgebra of 
9, and for simplicity of notation call that subalgebra ‘u,. (See [ 15, 1.23.21.) 
Thus, 9 = &>,, ?I, . Since /I, extends p,- i, n > 1, we can define an 
injective endomorphism /I: UnhO 911, -+ lJn>O VI,. Since /3(2I,) =/3,(9I,) = 
‘u n-1, /I is onto. As each p, is of norm 1, so is /I, hence /I admits a unique 
extension, which we again denote by p, to 9. Also, the extended map is one 
to one and onto. Thus p is an automorphism of 9. Finally, by construction, 
/I extends each /3,, and in particular ,f3 extends /3, = a; i.e., /3(x) = c.r(x), 
x E ‘11. 

II. 

II. 1. DEFINITION. Let CY be a star endomorphism of a C*-algebra ‘u, p a 
representation of ‘?I in R, and V an isometry of 2. We say that @, I’) is an 
isometric covariant representation of (a, a) if Vp(ax) =p(x)V, for all x E ‘I[. 

Suppose that /I is an automorphism of a C*-algebra 9; if 6, denotes the 
Kronecker delta on Z, the algebra I’(Z, S,p) consists of all formal sums 
~~m06,0x, withx,E’U, ~tOm)Ix,ll< co. The adjoint is given (on simple 
tensors) by (6, ax)* = 6-, @p-“(x*), and the multiplication by 
(~“ow,oY)=4+, @ x/P(y) [ 13, 7.6.11. A multiplication could also 
be defined by letting the group act on the left side: (6, @ x)(6, @ y) = 
6 n+m @ /?“(x)y. If the Banach space I’@, 9, /I) is provided with this alter- 
native multiplication, and the adjoint is left unchanged, we obtain a new 
Banach algebra, which we will call I’(& 9,/I)““. The Banach algebras 
1’(Z, 9, /I) and I’(Z, 9, /I)“” are isomorphic. Indeed, define Y: I’(& 9, /I) + 
Z’(C 9, P)OP, Y(y(c~co 6, ox,) = C?, &, @p-“(x,). Clearly Y is a 
Banach space isomorphism. Furthermore, if 6, @ x, 6, @ y E I’(& 9, p) , 
one checks that ‘u[ (6, @ x)(6, @ y)] = Y(S, @ x) ‘Y(6,@ y) and 
Y[(S, ox>*] = Y(d, ox>*. 

If a is an endomorphism of a C*-algebra ‘u, the absence of an inverse for 
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a prevents us from mimicking the contruction of I’(& A?‘, ,8) with (‘$I, a) in 
place (9, /?). If, however, we replace Z by the semigroup Z + of nonnegative 
integers, we can define a Banach algebra 1’(Z+, VI, a). The elements will be 
of the form F = Cn>O 6, @ x,, with X, E ?I, and llFll, = CnZ,, (Ix,I/ < co. In 
analogy with the above paragraph, the multiplication could be defined by 
letting the semigroup act on the right or on the left. For technical reasons, 
we choose the left action 

as the implication in Z’(Z ‘, ?I, a). Thus I’(Z ‘, VI, a) is a Banach algebra 
without adjoint. 

Let @, V) be an isometric covariant representation of (‘?I, a), Then there is 
a representation n of P(L +, VI, a) in Y(R), 

Notice that 

II c s, ox, = \‘ V”p(x,). 
c n>O 1 n>O 

ws, 0 x) m, 0 Y> = V”P(X> V”P(Y> 

= V”V”P(aYx)) P(y) 

= Vntmp(am(x)y) 

= w4l+m 0 a”CW 

= n[(& 0 xl@, OY)]. 

We denote the representation n by V X p. 
Next we wish to define an operator enveloping norm on Z’(Z +, U, a). First 

note it is possible to embed I’@ ‘, ‘?I, a) faithfully in some !P(R’), for if p is 
a faithful representation of VI in P(X), U, X p will be a faithful represen- 
tation of I’(Z +, ?I, a) in S?(R), A?= H*(X). 

11.2. DEFINITION. For FE Z’(Z+, 24 a) set llFl\ = sup{ll(Vx p)(F)II: 
@, V) is an isometric covariant representation of (?I, a)]. Define L ’ X, ?I to 
be the completion of Z’(L +, ‘u, a) with respect to this norm. Z ’ X, ‘11 will be 
called the semi-crossed product of II with a. 

11.3. Note that ‘u can be embedded isometrically in Z’(Z +, 24 a) as 
a (star) subalgebra by x A 6, @ x. 

PROPOSITION. Let ‘u be a unital C*-algebra with endomorphism a. Then 
17 is a hilbert space representation of Z’(Z +, 3, a) satisfying 

(i) IZ(r3, 0 1) is an isometry, and 

(ii> %%I) is a C*-algebra representation 
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ly and only if II= V x p, where @, V) is an isometric covariant represen- 
tation of (a, a). 

ProoJ One direction is trivial. On the other hand, if 17 satisfies (i) and 
(ii), we can set V = ZZ(6, @ 1) and p(x) = ZZ(6, @ x), x E II. To show that 
@, V) is an isometric covariant representation of (a, a), write the element 

6,O a(x) = (6, 0 l>(d, 0 a(x)>, 

and as 

= (600 x)(4 0 1). 

We have 

Also, 

fl(4 0 a(x)) = n(40 1) I@, 0 a(x)) 

= Vp(a(x)>. 

W, 0 a(x)> = fl(d, 0 x) n(J, 0 1) 

= p(x) v. 

Thus Vp(a(x)) = p(x)V, as desired. 

11.4. PROPOSITION. Let a be an injective endomorphism of a C*-algebra 
3. Let 3 be a C*-algebra containing U as a subalgebra and jl an 
automorphism of 9 such that a(x) =/3(x), x E ‘3 (as in 1.8). Then k ’ X, ‘11 
is isomorphic with a nonselfadjoint subalgebra of the C*-crossed product 
z x, 28. 

Proof. Since % c 3, and /I j ‘?I = a, I’(Z ‘, ?I, a) can be considered as a 
subalgebra of I’(& 9, /I)“” in a natural way. Using the notation introduced 
following II. 1, 

yields on embedding of I’(?! +, 3, a) in the crossed product Z x0 ~‘8, which 
we call 1. If, for FE l’(L +, ‘11, a), the norm jFJ/ as defined in II.2 is the same 
as the norm of z(F) in Z x6 9, then I can be extended to an isometric 
isomorphism i: B + X, YI -+ Z X, 9 so that the diagram 

l’(Z +, 3, a) 
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commutes. In other words, Zi X, ‘?I can be viewed as a nonselfadjoint 
subalgebra of L X, 9. Thus it remains to show that ]]F]] and the norm of 
r(F) are identical. Since every covariant representation @, V) of (9,/3) 
restricts to an isometric covariant representation of (a, a), it follows that 
]]F]] > ]]@)]]. Suppose now that @, I’) is an isometric covariant represen- 
tation of (3, a). Since by I.4 p = pr @ p2, V = I’, 0 V,, with bi, Vi) an 
isometric covariant representation of (U, a) (if it is nonzero), i = 1,2, such 
that I’, is unitary and V, a pure isometry, we may treat these cases 
separately. So assume tat @, V) is an isometric covariant representation of 
(a, a) with V unitary. By the construction of 9 in 1.8, the subalgebra 
generated by (?I, p-‘%, ,Z-“a,...) is dense in 9. Extend p to (Y&B-“$I, 
p-2U,...) by /7(x) = V”p(J3”x) V *n if p”(x) E 2I. [Note that if x is in this 
subalgebra, /P(x) E ‘u for some n > 0.1 Since i]p(x)]/ = ]]@“x)]] < ]]/Y(x)]] = 
i]x]], p extends to a representation of 9, and in fact @, V) is a covariant 
representation of (59, p). 

Next if @, V) is an isometric covariant representation of (VI, a) with V a 
pure isometry, then by I.4 @, V) is equivalent to some (z, U,). If .X is the 
hilbert space of the representation 71 of ‘u, there is a hilbert space &“zJ? 
and a representation r of 9 such that 11(x) = z(x)]~, x E ‘u [3,2.10.2]. If ? 
denotes the representation of 9 on Z’(R) given by 

and U the bilaterial shift on Z’(z), then 

f(x) u = lJqj3x), XE9. 

Now Z:(X) (or H2(X)) is the subspace of Z2(GP) consisting of all r = 
(..., &, , lo, <, , & ,...) E Z2(P) with <-, = 0, n = 1, 2 ,..., and <,, E X, 
n = 0, 1) 2 )... . Furthermore, 7?(x) = z”(x) ],iCjp) (x E a), and U, = UIlzcJp). In 
other words, the isometric covariant representation (75, U,) is the restriction 
of the covariant representation (2, U) to the (invariant) subspace Z:(X). It 
follows that /] r(F)]] > ]]3]], and hence ]] z(F)]] = ]]F]]. 

11.5. PROPOSITION. Let a be an endomorphism of a C*-algebra 3. For 
FEZ+ X, U we have IlFll = sup{l/(Vxp)(F)ll: @, V) is an isometric 
covariant representation of (?I, a) with V a pure isometry}. 

Proof. First we make the obvious point that if @, V) is an isometric 
covariant representation of (‘u, a), then by the definition of the norm on 
Z + X, U, V X p extends to a bounded hilbert space representation of 
z+ x,u. 
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By I.4 every isometric covariant representation @, I’) of (?I, a) can be 
written as p = pr @ pz, V= I’, @ V,, where ki, Vi) is an isometric covariant 
representation of (VI, a) and I’, is unitary (if it is nonzero) and V, is a pure 
isometry (if it is nonzero). Thus to prove the proposition it is sufficient to 
show that if @, I’) is an isometric covariant representation with V unitary, 
then for every E > 0 there exists an isometric covariant representation 
(w, U,) with U, a pure isometry such that Il(Vx p)(F)11 < 

IW+ x ~>(F>ll + E* 
Since V is unitary with p(ax) = V*p(x)V, it follows that the kernel of p 

contains the a-radical R,, so @, I’) can be lifted to an isometric covariant 
representation @‘, V) of ((u/R,, a’), where a’ is the (injective) 
endomorphism of ‘u/R, induced by a (see 1.7). As in 1.8, there exists a C*- 
algebra 9 containing ‘u/R, as a subalgebra and an automorphism /I of 9 
such that /3(x) = a’(x), x E U/R,. Essentially as in II.4 we can embed 
L+ x,, (‘u/R,) in (Z ~~59)~~ (except here it is convenient to use 
(Z X, 9)Op in place of Z X, 9). By [ 13, 7.7.51 and the amenability of Z, if 
(n,R) is any faithful representation of 9, then 

II GII = IW x bill G E (Z xD S)““, 

where 

= (-3 w ‘x> L ,1 x(x> to, dpx) r*, 7r@x) r* ,...> 

and U is the bilateral shift on Z’(Z). 
Let F’ E Z + X,, (‘u/R,) be the image of F under the canonical map 

LC X,%-Z’ Xml((u/R,). Then Il(vXp)(F)(I=I((Vxp’)(F’)(lgJIF’II= 
IIV x W’>ll. N ow the space f*(R) has a chain of subspaces Z:&P), 
invariant under (U x Z)(Z’ x,, (a/R,)) and such that lJn)O 1:,(R) is 
dense in f*(P). Indeed, take I:,&%@) = {<: t= (&J~Z-oo E /*(&?‘), with 
& = 0, k < -n}. If n is chosen so that Il(U x i2)(F’)(p 11 > l/F’I) - E, and if 
U, is the restriction U/p fx), and if o(x) = $(xx,ifl,,, x E ‘3, then 
IO” x PW)II < II t-J+ x 4P)iilt E. 

11.6. We now turn our attention to commutative C*-algebras, 
?I = C,(S), where S is locally compact hausdorff. In this context, 4 will be 
used to denote the continuous and proper mapping, 4: S --, S, such that 
a(f) =f o 4, f E C,(S). Thus if f is a continuous function with compact 
support (resp. vanishing at infinity) fo 0 has the same property. Although 
not every endomorphism of C,(S) is given by composition by such a 4, we 
will henceforth only consider endomorphism of C,(S) of this form. [Notice 
that if a is any endomorphism of C,(S) and S, = S U { 00 } is the one-point 
compactification, and if a is extended to an endomorphism a, of C(S,) SO 
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that a,(l) = 1, then there is a continuous map 4,: S, -+ S, such that ai = 
s O h9.fE WJI 

11.7. PROPOSITION. Let FEZ’(H~,C,(S),~), F=Cnao6,@f,,. Then 
the semi-crossed product norm 

IIFII = sup sup 
sss M2= 1 

where 5= {<,),“=0 is a sequence of complex numbers with 11</12 = 
Et>0 M2Y’* = 1. 

ProoJ For s E S, consider the one-dimensional representation rc, of 
Co(S), df> =f(s)- Th en ZS is a representation of C,(S) on HZ, the classical 
Hardy space, which we view as functions r(z) = C,,> o &zn holomorphic in 
the open unit disk D with ll<li2 = (Cn>o l<n12)1’2. The unilateral shift on HZ 
becomes the operator M, of multiplication by z. We compute the norm of 
(M, x Q(F), F = 2 nao 6, Of, E I’@+, C,(S), a), as an operator on HZ. 
Since (rS,, M,) is an isometric covariant representation of (C,(S), a), it 
follows from the definition of the semi-crossed product norm that lI(Mz X 

fs)~o)~” llJ-7. 

IW, x fJ4 Of”)1 r(z) = ~P&Un> ( F‘ 
k;O 

w) 

=M,, \‘ 

kT0 
~s(ak(fn>) lkzk 

= 1 f" 0 #k(s) &zn+k. 

k>O 

Thus 

(@‘f, x %W’)l t(Z) = n;o go fn o #k(s> rkZntk 
, 

= I [ ' f,,-k o $k(s)<k 
\‘ 

ma0 kr0 

It follows that 

ll(M, x %W’)ll = SUP 
l11112= ’ 

f- fmPk o 4”(s) rk 
k=O 

To complete the proof, we must show that 

IIFII G syp ll(M, x W% 
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Now IlFll = suP(,,Y) I[( V x p)(F)(I, where by II.5 the supremum may be taken 
over all isometric covariant representations @, V) of (?I, a) such that V is a 
pure isometry. By I.3 and 1.4, any such pair (p, V) is unitarily equivalent to 
one of the form (75, U,), where 71 is a representation of C,(S) on a hilbert 
space X and U, is the unilateral shift on H2(X). But any cyclic represen- 
tation z of C,(S) is unitarily equivalent to one of the form rr, on L2(S, ~1) 
where p is a positive regular Bore1 measure on S, and rep(f) g(s) =f(s) g(s), 
g E L2(S, p). The argument which follows is a standard one using the direct 
integral, so it is just outlined here. Let Hf = H2 denote the representation 
space of 7?,, and Mi the unilateral shift (multiplication by z) on Hf. 
Interchanging the operations of direct sum and direct integral gives a natural 
isomorphism 

H2(L 2(S, p)) E f-@ Hi Q(s), 

and correspondingly of the operators 

and 

Here H2(L ‘(S, p)) is viewed as the space of L’(S, p) valued functions r on 
the open unit disk D, 

with lItlIz = CZ llLll:>““; in this context Mr is defined by (M:<)(z) = z<(z), 
< E H2(LZ(S, p)). If F = C nZO 6, Of, E l’(L ‘, C,(S), a), then 

and so 

This completes the proof. 
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11.8. COROLLARY. With notation as in 11.7, 

Proof: This follows from the proof of 11.7. 

11.9. Notation. As before, let S be locally compact hausdorff and 
4: S -+ S a continuous and proper map defining an endomorphism a of C,,(S) 
by a(f) =f 0 9. If FE z’(z ‘, C,(S), a), F = Cn>O 6, Of,, then II FIl > 
suPsEs (En>0 lf,(~)12)1’2~ as can be seen by taking &-, = 1, <, = 0, n > 0, in 
11.7. In particular, sup,, Ilf,ll < IlFll. Thus if {F(“)}F= i c Z’(Z +, C,(S), a) is a 
Cauchy sequence with respect to the semi-crossed product norm, say, Fk’ = 
xna,, 6, of:“, it follows that for each n, {fF’},“=, is Cauchy in C,(S). This 
means that each element F of the completion H + X, C,,(S) is described by a 
unique sequence {fn}FEO,fn E C,(S). If F E L + x, C,(S) corresponds to the 
sequence {fn}FzO, we will write F= JTn>,,M,,,f,. 

Let K(Z +, 3, a) (2I = C,(S)) be the subalgebra of I’(L ‘, 3, a) consisting 
of functions F: L + + ‘u with finite support. Clearly, K(H +, 3, a) is dense in 
Z + x, C,(S). This does not imply, however, that if FE L ’ X, C,(S) has 
the representation F = C, > O M,, f, , then F is the limit of the elements F(“) = 
CizO Mzkfk. Indeed, th is can be seen when S is a single point (and 4 the 
identity map). In that case Z ’ X, C,,(S) is the disk algebra &, and not 
every function in the disk algebra is the uniform limit of the partial sums of 
its fourier series. [However, see the remark following IV.2 for a discussion of 
summability.] 

11.10. Retain the notation of 11.9. If FE Zt X, C,(S), 
F = CnaoMrnfn (hence Ilf,ll < /1F/l, n E Z ‘) we can associate with each 
s E S the holomorphic function F(s) in the unit disk, given by F(s)(z) = 
f’(s, z> = Cn>oUs> z”. 

COROLLARY. Iffn 0 i =f,, 12 > 0, then IIFII = supses ~~~~~~~~ IF@, 41. 

ProoJ: By 11.8, l/Fll = supsEs li(Mz X 7?,)(F)li. As in 11.7, 

[CM, x d(F)1 0) = 1 x n,(f, 0 4") &zntk 
n>O k>O 

= n;ofn,bn)(~o c,zk), 
( 

using that f, 0 4 = f,, . Thus 

[(M, x %>(Vl t(z) = F(s, z) t(z). 
It follows that ll(Mz X fs)(F)jl = suplr,<, JF(s, z)l, and hence lJF\J = supxEs 
su~jrl< i IF& z>l. 
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II. 11. PROPOSITION. Keep the notations of 11.9. 

6) The map s + IIW, x %>(F)ll is lower semicontinuous for each 
FE L + x, C,,(S). 

(ii) Suppose that the family (4” } FzO is uniformly equicontinuous, and 
regard each M, X T?~ (s E S) as mapping into the same space (Hz). Then fir 
each FE L + X, C,(S), the map s j M, x 7?,(F) is continuous in the norm 
topology in Y(H*). 

Pro@ (9 If F= CEo Mznfn, by 11.7, llMz x W>ll = s~~ll~ll,, [Cm>o 
IC;"=ofm-r(#'(s)) ~1]2]“2. If IIM, x ZJF)ll > a, then there is a {E ti, 
/]<]]z = 1, and a positive integer N such that g(s,,) > a, where g(s) = [CiEO 
ICLfm-rww r,l”‘. Since g is clearly continuous, g(sO) > (r implies 
g(s) > a for all s in some neighborhood U of s,,. But IIM, x Z$(F)ll > g(s) for 
all s, so IlM, x 7s,(F)ll > a for all s E U. 

(ii) Given F= Z+ x, C,(S) and E > 0, there is an 
F’ E K(Z +, C,(S), a), F’ = CEzO Mznfn, such that IIF - F’I) < 43. Now if 
tEH*, Iltll2= 1, 

[CM, x %W”) - W, x 7s,,P”)l t(z) 

= T Zm 2 &[fm-k(#k(s)) -fm-k(#k(s’>>l 
ltl>O k=O 

ZZ \‘ z” 
- 
m>O 

k;.ax?-N, rk[fm-k(#k(S)) -fmpk(tik(s’))l. 

Let q = s/3(N + l), and let U be a neighborhood of s such that for s’ E U, 
]fi($“(s)) -&@“(s’))] < v, j = 0, l,..., N, k = 0, 1, 2 ,... . It follows that 

ll[(M, x fW> = CM, x 7s,O(F’)l W2 

<y 
m>O 1 k=“,a$,j,-N) IrkI * ’ ! * 

< IKOI’ r2 + 2(Ko12 + 15,l’) v2 + ... 

+wto12 + K12 + *** + IrN-112)r2 

+ y v+ l)(lLN12 + 16-N+112 + ... + lL12) ?* 
m>N 

<(N+ 1)2?f2 K- m>O ILIZ = w+ I)* r* 

<; (s’ E U). 
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An application of the triangle inequality yields 

11.12. PROPOSITION. Let Si be locally compact hausdorff and #i: Si -+ Si 
continuous and proper, i = 1,2. Let q: (S,, 4,) + (S,, #*) be a continuous 
equivariant and proper map; i.e., q: S, -+ S, is continuous, q-‘(K) is compact 
for every compact set KG S,, and the diagram commutes. 

s, q ’ s2 
01 

I 
02 

I 
s, q ’ s2 

Then there is a continuous homomorphism 4: L ’ x,, C,(S,) + 
Z+ x,, C&S,). If FE Z+ x,,C,(S,), F= Cn>OM,,f,, then 4(F)= 
Cn>o M,. f, o q. Finally, if q is surjective, q is injective. If q is injective, the 
image of q is dense; if q is injective and q(S,) is open in S,, then 4’ is 
surjective. 

Proof: Define 4’ on W +, G(s,h aJ by K%o MznfrJ = 
CC=0 Mznfn 0 q. Note that f, 0 q E C,(S,) since q is proper. This is linear; to 
see that it is a homomorphism, note 

qt”znmo4) = 4t”zn+mfo 9Y g> 

=M*.+mf~~!:~qgog 

= M,n+%lf 0 q 0 #yg o 4 

=(MP~' 4)Wcg"4) 

= 4C”znf 1 qC”2m 4). 

If F = C;zo M,.f, E K(Z +, Cc@,), ~4, a straightforward calculation shows 
that 

M, x f&RF)) = M, x %cs,dF), s, E s,. 

Thus, 

llW)ll = ,s,v, IWz x fs,(q”(F))li 

= SUP IIM, x Is,,,,,F’)ll SIPS1 
< SUP IlMz x fs?,,P’>ll SZESZ 
G IlFll. 

(*I 
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It follows that $ extends to a continuous homomorphism Z ’ X,, C,(S,) + 
Z + x,, C,(S,). Since the formula (M, x r&)({(F)) = M, x Z&F) is valid 
for F E K(Z +, C,(S,), a&, an obvious approximation argument yields the 
result for all FE Z + X,, C&3,). 

If 4 is surjective, then the inequality (*) is replaced by an equality, so 
[1@(1;))1 = 11F[[, and 4 is injective. 

Suppose q is injective; for simplicity of notation regard S, as a subset of 
S,. Observe that the image of 4’ contains K(H +, K(S,), a,), where K(S,) is 
the space of continuous functions with compact support on S,. For if G = 
CtzO M,,g,, E K(Z +, K(S,), a,) and iff, E K(S,) is any function such that 
f&, = g,, 0 < n <N, then ~(JJ~=,M,,f,) = G. This shows that the image of 
4 is dense. If S, c S, is open, the function f, above must coincide with g,, 
0 < n <N. From II.7 it is easy to see that the norm of F will be 
supses, IlM, x W’>ll = II Gil. S ince 4 is isometric with dense image, it is 
surjective. 

COROLLARY. If O:S,+S, is a homeomorphism such that 0 o & = 
41 0 0, then zt x,, Co@,), H + x,, C,(S,) are isometrically isomorphic. 

11.13. COROLLARY. Let S be locally compact, 9: S + S continuous and 
proper. Let S, 5 S be open and assume #-‘(S,) = S,; let #,, = #Is, and 
a,(f) =f 0 lo, fE C,(S,). Then Z + x,, C,(S,) is naturally identiJied with 
the closed ideal 3’-= {FEZ+ x, C,(S), F=C,,,M,,f,: {s:f,(s)#O} c 
So, n > 0). 

Proox Let S U {co }, S, U {co,,} be the one-point compactilications of S, 
S,, respectively. Let q: S U { oa } + S, U {a,,} be given by 

q(s) = 
/ 
sY SE&, 

COO, SESU {co}\S,; 

then q is equivariant and surjective, so by II.12 (1”: Z’ x,, C(S, U {co,}) -+ 
z+ x,c(su{oo}) is injective. Now 4’ maps K(E +, C,(S,), ao), viewed as a 
subalgebra of K(Z ‘, Co@, U {co,}), a,), onto K(Z +, C,(S), a) n f-, and 
we claim this is dense in 9: For if F = CnaO MLnfn E ,P, and if F, is the 
nth arithmetic mean of the series ,JJn~oMznfn, then III;, - F/I + 0 (cf. 
Remark following IV.2) and F, E K(L ‘, C,(S), a) n.7. Since 4’ is 
isometric, &E’+ X,, C,(S,)) = Y. To see that X is an ideal, notice that 
fS &.Y, fs.7, f E C,(S), and M,/E~, M,Y cX; thus Y is 
invariant under the subalgebra K(H ‘, C,(S), a) generated by 
{f E C,(S), M,}. Since X is closed, it is invariant under left and right 
multiplication from L + X, C,(S). Alternatively, we could observe that 
2-q seS\S,, ker WS x 0 
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11.14. Again, let 4: S + S be continuous and proper, and let S, c S 
be open. If, instead of assuming #- ‘(S,) = S, as before, we only assume 
#-‘(S,)C_ S,, it makes no sense to write #Is,. Still, if we set Y = {FE 
z+ x, Co(s), F= Cn>o M,,f,: {s:&(s) # 0} c S,, n 2 0}, essentially the 
same argument as in II.13 shows Y is an ideal: X is a linear subspace such 
that MJ c Y, ZM, G Y and fS, Sf5 Y, fE C,(S). Also, note that 
{F E K(Z +, C,,(S), a), F = C”,zO M,,f,:p E Z +, f, has compact support in 
So} is dense in 3. 

III. 

111.1. Let &’ denote the disk algebra; that is, the commutative 
Banach algebra of continuous functions on the closed unit disk which are 
holomorphic in the interior. Fix a positive integer k,, and let Sk0 be the 
algebra of all k, by k, matrices of functions [A>]o<i,j<koP,,Ay E &‘, and of 
the form 

where 0 < I < k, and I = i -j (mod k,). There are various (equivalent) norms 
under which 5Yk, is a Banach algebra. We describe one such norm. 

Let HZ refer to the classical Hardy space of holomorphic functions 
r(z) = EnhO <,z” in the unit disk having nontangential L2 boundary values 
with 

and inner product 

Kz) r(z)- dz (t, rl E H2). Irl=l 

Let Hi” (0 <j < k,) denote the subspace of functions of the form r(z) = En 2 o 
rj+nkoz i+nko. 
Pi: H2 + H,?, 

The subspaces Hf , Hi are orthogonal if j # k. The mapping 
r(z) = xnrO <,z” + Cn>O <j+nko~i+“k~ is the orthogonal 

projection of H2 onto Hi’, 0 Q j < k,. 
Now a matrix [fii] E Sk0 maps a vector [<O(z), r’(z),..., <ko-‘(z)] E 

@,“zi’Hj to a vector [q”(z), q’(z),..., ykO-l(z)] E @T’?;‘Hj’ in the natural 
way 

k,- 1 
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It is by means of this natural representation of ~3’~~ on @T:;’ Hi’ that the 
norm in 9k0 is defined; it is the operator norm associated with this represen- 
tation. Of course when k, = 1, we just obtain 9i = J. For k, > 2, gkO is a 
noncommutative, nonselfadjoint operator algebra. 

111.2. THEOREM. Let k, be a positive integer, S = {so, s, ,..., s~,-~}, and 

4:s+ s, d(Sj)=Sj+lI(modko)* Then the semi-crossed product Z’ X, C(S) is 
isomorphic to A?,,,. 

ProoJ Let F = Cn.+O Mznfn E Z + x, C(S), t(z) = &O tnzn E I-f*. We 
compute 

[(M, x %,,>(F)l ‘t(Z) = x c f, o $k(SO) &Z”+k* 
n>O k>O 

Make the substitution k + mk, +j, and use 4” = 4’ to get 

ko-1 

= c F(#‘(s,), z) l’(z), 
j=O 

where {‘(z) = C,,,2o ~~ka+jZmkot’, and F@j(so), z) cj(z) denotes the pointwise 
product. Next write c,“!?T’ F(#(s,), Z) <j(z) = cf!li’ c,“!ti’ PiF(#‘(So), Z) 

<j(z). The projection onto Hf composed with multiplication by F(#(So), z) 
restricted to $, or PiF(#j(so), z) Pj, is given by the multiplication operator 
Fij(Z> zPiF:(#J(S~)~ Z)Pj= cnfi-j+nko(f’<sO>>Z i-j+nkoPj, where the sum over 
n begins with n = 0 if i >j, and with n = 1 if i <j. 

Thus we see that M, X 7’s, yields a faithful representation of Z ’ X, C(S) 
onto ~3’~~. Of course if s0 had been replaced by any sk E S, the representation 
IV, X Zss, would also yield an isomorphism of P ’ X, C(S) with 2,$,. 

111.3. Next we study the maximal (two-sided) ideals of -%kO. Clearly, 
the kernel Ma’ of the homomorphism [fij] -+fkk(0), 0 < k < k, - 1, is 
maximal, as is the kernel MA of the map [fij] -+ [fij@)], A E 0, A # 0. As we 
will see, these are the only maximal ideals. 

PROPOSITION. Let M be a maximal ideal of Sk,, iV.f f I@,-“‘, 
O<k<ko-1. Then M=M,={[~~]E~k,:~~(~)=O, O<i, j<k,-l}, 
for some A E 0, II f 0. 

ProoJ Let E, be the k, X k, matrix with 1 in the (i,j) entry and zero 
elsewhere, 0 <i, j< k, - 1. Then zi @ Ejo, 0 <j< k, - 1, and zkaPi @ Eoi, 
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0 <i< k, - 1, belong to AYkO. If F = [fii] EM, F 6!! Mr’, then 
E,,F(z’ @ Ej,) = z’&~(z) @ E,, E M. Likewise (zkoFi @ E,J F(z’ @ Ej,) = 
zko+j-xj(z) @ E,, E M. Thus M contains all linear combinations 
[,JJ&’ cojz’foi(z) + J7f:r-I’ C,“:;’ ~~o+j-~c~~J~(z)] OE,,,,. Let 3 be the 
closed ideal in & generated by the set of all linear combinations 
{c&l cojzjf,(z) + Cf:il C,“:i’ cijzko+‘-‘fii(z)}. If .r is proper, it is 
contained in an ideal of the form {fE loP:f(A) = O} for some il E fi 19, 
Corollary, p. 871. However, f,,, E f and f&O) # 0, since F @ Mr’; so 
3 d {fE &: f(0) = O}. Thus if 3 is proper f c {fE d:f(A) = 0} for 
some 1 E fi, A # 0. But then Aif, = 0, and Akoti-xY(A) = 0, 0 <j < k, - 1, 
l<i<k,;hencefii(A)=O,O<i,j<k,-l,andFEM,. 

If, on the other hand, 3 = -oP, then E,, E M. But in that case an 
analogous argument, making use of the fact that Mf My), shows that 
EjjEM, l<j<k,-1. Hence I=E,,+E,,+...+Eko~,ko-IEM, SO 

h’f = 2ko. 

111.4. For convenience, write ws for A4, X 7s,. Let S be a locally 
compact hausdorff space such that every point of S is periodic under a 
homeomorphism 4. If S, = {s,,, s, ,..., sko- ,} is the orbit of a point s, E S, 
then the injection q: S, + S determines a surjection 4: Lt X, C,,(S) + 
’ + xy, c(sO) g 9ko) by 11.12, 111.2, and the fact that gko is strongly 
semisimple with maximal ideals of finite codimension, so we may view v/,, as 
a representation of L + X, C,(S) onto 2k0. Thus the maximal ideals of gko, 
which are classified in 111.3, determine maximal ideals in Z + X, C,(S). Say 
(S, 4) has locally bounded order if for each s E S there is a neighborhood U, 
and an integer n, > 0 such that #“s(s’) = s’ for all s’ E U,. 

PROPOSITION. Suppose S has locally bounded order. Then every maximal 
modular ideal of Z + X, C,(S) is of the form w,‘(M), for some s, E S and 
maximal ideal M of J2Yko, where k, is the cardinality of the order s,,. 

ProoJ: Suppose M c L + X, C,(S) is a maximal modular ideal such that 
v,(M) is not a maximal ideal in I,v,(Z + X, C,(S)) for any s E S. Then 
y/,(M) = v,(Z’ X, C,,(S)), and so there exists, for each s E S, an element 
F@) E M such that v/,(F’“‘) is the identity in y1,(12 + X, C,(S)). 

Let F be an element of Z ’ X, C,,(S). We will show that F can be approx- 
imated arbitrarily closely by elements of M; since M is closed, this will 
imply FE M and hence M = Z ’ X, C,,(S), contradicting that M is proper. 

Given E > 0 there exists G E H ’ X, C,(S) such that G = CzZOMZfl g,, g, 
has compact support, 0 < n <p, and IIF - G ]( < E. Let K = lJ”,=, supp(g,). 
The assumption that S has locally bounded order along with the 
compactness of K imply there is an open set U 2 K and a positive integer N 
such that $N(s) = s, s E U. Taking S, = UC=, #k(v), S, is an invariant open 
set containing K, and tiN(s) = s, s E S,. If a0 = also, by II.13 we can consider 
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L ’ x,,, C,(S,) as a closed ideal of Z ’ X, C,,(S). By 11.11, the map 
s E S,-+ v,(H) is norm continuous for each HE Zt X,, C,(S,). Let 
k E C,(S,), O< k< 1, such that k(s) = 1 for s E K. Then F’“‘k E 
Z+ X, C,(S,) for all s E s. For SEK 
(1 yr,.(FPl’k) - 111 < E} (Recall that all ws are viewed as mi;Ling 

u = {s’ ES,: 
i&o the same 

space, namely, 9(H*).) If {Vi 3 Usi: 1 <i < m} is a finite sub-cover, let 
{hi: 1 <i < m} be a partition of unity on K subordinate to the 
{ Ui: 1 < i < m}; i.e., supp(h,) c Ui, 0 < hi < 1, 1 < i < m, and ~~zl hi(s) = 1 
for s E K. Set H = Cy! i F’“i’kh, ; then H E M. We estimate 

IlG - HGII = ;y IlV - w,(W) w,(G>ll 

= wjV - w,(W) w,(G)/I 

(since w,(G) = 0, s tZ K) 

< E II GII 
< wll + El, 

because 

< ?- hi(S)& = E. - 
i=l 

It follows that 

IIF- HGII < /IF-- GII + IIG - HGII < E + W’ll + E). 

This completes the proof. 

111.5. Next we study the topology on the strong structure space of 
z + x, C,(S). 

If (S, 9) is such that every point s E S is periodic and has locally bounded 
order, then as in III.4 each ws can be viewed as a map of Z ’ X, C,(S) onto 
-PkO, where k, = k,(s) is the cardinality of the orbit of s. Denote by wsqA the 
composition of ws with the map which sends [fii] E 22?k,+ [Jij(;2)], ;I & D. 
From III.3 we know that the maximal ideals of Sk, are of the form Mh”, 
0 <j ,< k, - 1, and M,, A E D, R # 0. However, the MA’s are not necessarily 
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distinct. For let u be a primitive k,th root of unity. If [Fij] E 3k0, then F, 
satisfies F,,(wz) = wi-jFij(z). Thus, the ideals Ml, Zt4+ ,..., MWKO-,* are iden- 
tical. On the other hand, it is clear that if 1, 1’ E D\{O} and (A/A’)kO # 1, 
then MA, MA, are distinct. Now let (S, 4) be as in 111.4, and let 0, denote the 
orbit of s under 4, and IO,1 the cardinality of 0,. From what we know about 
the maps w~,~., we can assert that ker v/s,n = ker v/,,,,., if and only if either 

(i) s’EB, and II=1’=0; or 
(ii) s’ E es, III = II’ 1 # 0, and (n’/n)‘“s’ = 1. 

Also, as has been mentioned, ker w,,,. (A # 0) is a maximal ideal, whereas 
ker ws,O is not. If F E Z + X, C,,(S), F = CnaO MJ,,, then 

We define an equivalence relation on S x fi (D is the closed unit disk) by 
(s, 1) - (s’, A’) if and only if either (i) s = s’ and 3, = 2’ = 0, or (ii) S’ E 8,, 
111= 11’1~ 0, and @‘/A) iesl = 1. We have shown that there is a one to one 
correspondence between the maximal modular ideals M of Z + X, C,(S) and 
equivalence classes in S X 0. 

Next, recall the hull-kernel topology (Rudin topology) on the closed unit 
disk determined by the algebra J/. The closed sets V c D in this topology 
are of the following form: 

(i) Vn D is either finite or countable; if Vn D is countable, say, 
{A,,&,...}, then C,“l (1 -l&l> < ~0. 

(ii) V n 130 (i.e., the intersection of V with the unit circle) is a closed 
subset (in the usual topology of the circle) of Lebesgue measure zero, and 
contains every accumulation point of Vn D [9, p. 891. 

Let the locally compact topology of S be metrizable, and D have the 
topology just mentioned, and the product S X D the product topology. Let 
q: S x fi-+ S x fi//- =J be the quotient map, and endow M with the 
quotient topology: the open sets W CM are precisely those for which 
q-‘(w)cSXDis open. 

PROPOSITION. Let (S, 4) be as in 111.4. Then the hull-kernel topology on 
the maximal ideal space A of H + X, C,,(S) is stronger than the quotient 
topology. 

Proof. An open base for the product topology on S X fi consists of sets 
of the form A X B, where A c S is relatively compact open and B cd is 
open (in the Rudin topology). Thus, a closed set in S X D is the intersection 
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of a family of closed sets of the form (A x B)C, with A, B as above. Now 
(A x B)C = (AC x 0) U (S x BC). S’ mce S is locally compact metric, A’ is 
the zero set of some continuous function with compact support: say, 
A’ = Z(f). Also, since every closed ideal of & is the principal closed 
ideal generated by a function in M’ [9, Corollary, p. 881, there is a g E M 
with Z(g) = BC. If g(z) = Cn>,,~,z”,]z] < 1, set F = JJnaoMz,,a,J 
Clearly, FE H + X, C,(S), and Z(F)= {(~,~):F(s,~)=C~,~~“a,f(s)= 

f(s) g(A) = 0) = (A x B)‘. 
We have shown that if C c S x fi is closed in the product topology, there 

is a family {F,: F, E L ’ X, C,(S), v E /i} with C = n,,,, Z(F,). Suppose in 
addition that C = q-l(q(C)). Then by the way we defined the quotient map, 
each maximal modular ideal M of Zt X, C,(S) in q(C) contains all 
the F,, v E/1. Hence, ker(q(C)) 1 {F,: v En}, and so hull(ker(q(C))) c 
hull{F,: v E A } = q(C). Since hull(ker(q(C))) necessarily contains q(C), it 
must coincide with q(C). Thus q(C) is closed in the hull-kernel topology, 
which completes the proof. 

111.6. Remark. Let (S, $) be as in III.4 and suppose in addition that the 
zero set of each FE Z + _X~ C,(S) is closed in the product topology on 
S x 0. Then, if C c S X D is such that q(C) is closed in the hull-kernel 
topology, C is the zero set of a certain collection of elements in Z ’ X, C,,(S) 
(namely, ker(q(C))), and hence C is closed in the product topology of S X 0. 
From this observation it follows, for instance, that the quotient topology on 
A=SxD/- coincides with the hull-kernel topology if S is a finite set. In 
particular, this allows us to describe the hull-kernel topology on the maximal 
ideal space of 3Yk0. Let 1,1’ in the punctured closed unit disk fi\{O} be 
equivalent if (12/3,‘)k0 = 1. If the topology on fi is the hull-kernel topology of 
the disk algebra, and that on B\{O} the relative topology, endow (D\{O}/- 
with the quotient topology. Then the maximal ideal space J can be iden- 
tified with (D\{O})/- U {Mb’),..., M~ko-l) }. An open set in M is either open 
in (fi\{O})/-, or else it is an open neighborhood of MF’ (0 <j < k, - 1). 
The open neighborhoods of Mhj) are of the form (U\{O}}/- U {Mb”}, where 
U is an open neighborhood of 0 in 0. 

111.7. EXAMPLE. Again, let (S, 4) be as in 111.4. We show that in general 
the hull-kernel topology on M = S x D//- is strictly stronger than the 
quotient topology. Following the idea of the proof of 111.5, if C c S X 5 is 
closed in the product topology and (so, Jo) & C, there are open sets A c S, 
B c 0, with (so, A,) E A x B c Cc. Or, C c (A X B)C, (so, A,,) & (A X B)C. 
Also, there is anfE C,(S), g E &‘, g(z) = Cn>o c(,z”, with Z(F) = (A X B)C, 
where F = Ena0 M,,~,J 

Suppose now S = D, the closed unit disk (in the Euclidean topology), and 
d is the identity map. Let GE Lt X, C(S), G(s, z) = s -z. Since Z(G) = 
{(s, s): s E fi}, this shows that the diagonal in fi x fi is closed in the hull- 
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kernel topology. (Note that since 4 is the identity, the maximal ideal space of 
Z + X, C(S) is fi x fi.) If the diagonal is closed in the product topology, 
there is an FE Z + X, C(S), F(s, z)zf(s_> g(z), not identically zero, such 
that Z(F) contains the diagonal of D X D. Say F(s,, A,,) # 0, so there is a 
neighborhood U of s,, in 0, open with respect to the Euclidean topology, 
withf(s) # 0, s E U. Since F(s, s) = 0 for all s E U, this forces g(s) = 0. But 
then g must vanish identically, and F = 0. This shows that the diagonal is 
not closed in the product topology. 

IV. 

IV.l. We turn now from the special case considered in Section III, 
in which each s E S was periodic under 4, to the general case, in which we 
only assume $: S + S is continuous and proper. Unlike the periodic case, the 
algebras Z ’ X, C(S) need not in general be strongly semisimple; indeed, 
they need not even be semiprime. Our goal in this section will be to give 
necessary and sufficient conditions on the dynamical system (S, 4) for 
Z+ X, C(S) to be (i) semiprime; (ii) semisimple; and (iii) strongly 
semisimple. 

We recall some standard facts and terminology [2, 10, 141. All ideals will 
be assumed to be two sided unless otherwise stated. An ideal P is said to be 
prime if, for any ideals, I, 1, IJ c P implies either I L P or J G P; it is called 
primitive if P is the kernel of an irreducible representation of ‘3, and P is 
called modular if ‘u/P has an identity. A maximal modular ideal is primitive, 
and a primitive ideal is prime. The prime radical (resp., Jacobson radical, 
strong radical) is the intersection of all prime ideals of ‘3 (resp., all primitive 
ideals, all maximal modular ideals). 2I is said to be semiprime (resp. 
semisimple, strongly semisimple) if the prime radical (resp., Jacobson 
radical, strong radical) is (0). ‘ZI is semiprime iff ‘3 has no nontrivial 
nilpotent ideals. If ‘u is a Banach algebra, ‘u is semisimple iff U has no 
nontrivial left or right ideals consisting of quasinilpotent elements. Of course 
there are various other characterizations of semisimplicity. 

Suppose S is locally compact hausdorff and 4: S + S is continuous and 
proper. We want to define the notions of near recurrence and near 
periodicity, which are slightly weaker than recurrence and almost periodicity, 
respectively. Recall that a point s0 E S is recurrent under Z + if, for every 
neighborhood U of s,,, {$“(s,)}F=, f7 U is infinite. We will say s, is nearly 
recurrent if for every neighborhood U of s, there exists a point s, E U, 
depending on both s0 and U, such that Un {~“(s,)}~==, is infinite. A set 
A c Z+ is syndetic if there exists a finite set F G Z’ such that Z ’ =A + F. 
(Note that this is the same definition as in [4], except that there it is given in 
the context of groups.) s, E S is almost periodic if, given a neighborhood U 
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of sO, {k E Z + : @“(s,) E U} is syndetic. We will say s,, is nearly periodic if, 
given a neighborhood U of sO, there exists s, E U, which may depend on 
both s,, and U, such that {k E Z ‘: $k(s,) E V} is syndetic. It is an easy 
consequence of the definitions that the subsets of nearly recurrent points and 
nearly periodic points are closed in S. Of course, the set of periodic points 
need not be closed. We are now ready to state our main result. 

THEOREM. Let S be locally compact hausdor-, and $1 S + S continuous 
and proper. 

(i) Z + X, C(S) is semirpime if and only if every point of S is nearly 
recurrent; 

(ii) L ’ X, C(S) is semisimple if and only if every point of S is nearly 
periodic; 

(iii) Z ’ X, C(S) is strongly semisimple if and only if the subset of S 
consisting of periodic points is dense. 

It is not hard to show that s0 is a nearly recurrent point of S iff there is no 
neighborhood U of s, with U, #-I, 4-‘(U),... p airwise disjoint. This is related 
to the term “nonwandering”: if 4 is a homeomorphism, s, is nonwandering if 
there is no neighborhood U of s,, with {4”(U)},, z pairwise disjoint. 

In the course of establishing the Theorem we will actually provide an 
explicit characterization of each of the three radicals. 

IV.2. Although the proofs of (i), (ii), and (iii) will be done 
separately, there are certain invariance properties which are shared by all 
three radicals, which we now discuss. 

LEMMA. F=Cn>,, M,“f,, E Z ’ X, C(S) belongs to the prime radical 
(resp., to the Jacobson radical, to the strong radical) ifand only iffO K 0 and 
Mznfn belongs to the prime radical (resp., to the Jacobson radical, to the 
strong radical) for n > 1. 

Proof. Since each of the radicals is a closed linear subspace, the “if” 
direction is clear. 

Define an automorphism r, @E RI of the dense subalgebra 
K(L ‘, C,(S), a) by r,(C:zO Mz” g,) = CEzO Mz”ein’gn. Now r, is norm- 
preserving, for 

tMz x %> (T1 (n$o Mzn&)) (t)tz> = x [ kf+ &-k o Ok@) ei(m-k)t tk] Zm2 
m>o 

where r E Hz, r(z) = Ck>O zkrk, and g, z 0, k > p. If we view 
P, x 7S,)(G)(t) (for G E W ‘, G(s), (II as a continuous function on the > 
circle, then 

W, x 7?,)(~,(G)M)(eie) = (ML x 7S,)(Wt’)(ei(et”), 

580/59/3-9 
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where c’ E Hz, (<I), = e-?&. I t o ows f 11 that ]](M, x 7?,)(tt(G))]] = 
KM, x 7?,)(‘% s E ST an d consequently I] r,(G)]] = ]I G]], G E K(Z +, C,(S), a). 
Thus r1 extends to an automorphism of the semi-crossed product 
Z + X, C(S), which will also be denoted rI. Note that if a is injective, and 
hence extends to an automorphism p of a (commutative) C*-algebra 9, say, 
9 = C,(S’), then { tt) E n is just the restriction of the dual automorphism 
group of the C*-crossed product Z X, C,(S’) to Z+ X, C(S). 

Now the mapping t + rt(F), FE E + X, C(S), is norm continuous, and 
the Bochner integral (1/2z) 1:” ePinfr,(F) dt converges in norm to Mznfn, 
if F = CzzO M,.& , These facts are easily seen to hold for 
FE K(Z ‘, C,,(S), a), and can then be extended to Z + X, C(S). Since any 
automorphism of Z + X, C(S) maps each of the three radicals of 
Z ’ X, C(S) onto itself, it follows that if F = En),, Mz,, f, belongs to one of 
the radicals, so does f,, M, fi , Mz2f2 ,... . 

Finally, observe that if F = Cn.+O Mznfn E 12’ X, C(S), the mapping 
F+ xs(F) =.A&) is a continuous homomorphism Z + X, C(S) --f 6, so ker xs 
(s E S) is a maximal modular ideal. To complete the Lemma it is only 
necessary to notice that if FE R, the strong radical, then f0 E R and 
f. E nseS ker xs, so f, must vanish identically. 

Remark. If k, is the Fejer kernel on [0,2n], then (1/27r) Ii” k,(t) z,(F) dt 
converges to F, FE L ’ X, C(S). Indeed, this can be easily verified for 
FE K(H +, C,,(S), a>, and then by approximation for general F. Note that 
(1/27r) 1:” k,(t) r,(F) dt is just the nth arithmetic mean of the series 
Cn>o Mznfn = F. (Th is same observation is made in [ 121 in the context of 
the Arveson-Josephson algebras.) 

IV.3. If in II.12 we take S,=S,=S and g=$1=(62=#, we 
obtain a continuous endomorphism of Z ’ X, C(S), which we denote by 6, 
given by KCn~o Knfn) = Cn>O Mznfn 0 4. Set S, = S\n,,,, d”(S), and let 
R& denote the E-radical of Z ’ X, C(S) (cf. 1.7). 

PROPOSITION. R, = {FE L + x, C(S), F = CnhO Mznfn: {s: f,(s) # 01 c 
S 0’ n = 0, 1, 2,...}. In particular, if a is injective (equivalently, 4 is 
surjective), R, = (0), so Z is injective. 

Proof: The argument in IV.2 can also be used to show F = 
C,,roMr,,f,, E R, iff Mznfn E R,, n = 0, 1, 2 ,.... But Mznfn E R, ifff, E R,, 
which in turn holds iff @f,(s) # 0) 5 So, n = 0, 1, 2 ,... . 

IV.4. Let S,, denote the set of nearly recurrent points of S, and set 
so = s\s,,. Let R = {FE Z+ X, C(S), F= Cn>lM,,f,: (s:f,(s)# 
0) 5 So}. 
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PROPOSITION. R is the prime radical of Z + X, C(S). 

ProoJ Let R’ denote the prime radical of H’ X, C(S), and let 
F= C”>l MJ,, E R’. Suppose for some k,, there exists s, E S,, such that 
fko(s,) # 0. By IV.2 Mr&& E R’, as is (MLk,,fkJ&, so we assume fk,, > 0 
and set G=C,>,o MZkgk, where g, = rkfkO. Here r is fixed, 0 < r < 1; thus 
G E R ‘. [Note that G is the limit of the partial sums ,YiZko MZx g,, each of 
which is in R’, and that R’ is closed.] Claim that G is not nilpotent; i.e., 
G” f 0, n = 1, 2 ,.,. . Let U be a neighborhood of s, such that fku(s) > 0, 
sEU,theng,(s)>O,sEU,k~k,.Letk,<k,<k,<...beasequenceof 
nonnegative integers and s, E U be such that dkm(sl) E U, m > 1. Now G” 
consists of sums of terms of the form 

where I 1 ,a.., 1, > kc,, n a positive integer. Suppose in addition that 
lj + lj+l + . .. + 1, E {ki} e 1, 1 <j < n. (There will always be at least one 
term in the expansion of G” for which this is true.) Since 

g/,0 4 ‘z+. . t’“(q) g/* 0 $4 l3+ . . . +ysl> f- * gJs,) 

is positive, G” # 0. 
A subset g c Zf X, C,(S) is said to be an m-system (generalized 

multiplicative system) if F, , F, E &? implies F, F,F, E d for some 
F, E Z ’ X, C,,(S). An element FE Z ’ X, C,,(S) is said to have the zero 
property if every m-system that contains F also contains 0. Now the prime 
radical R’ is the set of all elements of Z ’ X, C,(S) that have the zero 
property [ 10, Exercise 1, p. 4491. Let G be as in the previous paragraph; 
consider the m-system {G”: n = 1,2,...). We showed it does not contain zero, 
and hence G&R’. Thus ifF=C,>, MI,& E R’, {s:f,(s) # 0) c S,, n > 1, 
so R’cR. 

To prove the reverse inclusion, let s,, E S, and let U be an open relatively 
compact neighborhood of s,, such that for every infinite subset A c H ‘, 
nkeA gek(U)=O. Let O= k, < k, < k, < ... <k, be any finite sequence 
such that U,,, = (Jim=, $-“j(U) is nonempty, m = O,..., ZV, and such that U,,, f~ 
4-“(U) = 0 for every k > kN. Set I’= UN = ny=, $-kj(U); then V is an open 
relatively compact neighborhood of so with Vf7 4-“(V) = 0, n > 1. Let JY 
be the linear subspace consisting of all elements of the form 
F= Cn>1 Mznfn E Zt x, C,(S) such that supp(f,) c: VU $-‘VU .+- U 

#-c”P1)K It is easy to verify that M is in fact an ideal in E + X, C,(S). 
(Note that #-‘(S,)cS,.) Now X’=(O): let F=Cn,,Mz.fn, 
G= Cn>l M,,g,EX Then FG=H, where H=Cn>2M,,h,, and each h, 
is the sum of terms of the form (Mzlrfk)(MzIgJ with k + I= n. But this is the 
same as Mznfk o d/g,, and 
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supp(f, o C’) c 4-l ( YJ’ $-j(v)) 
j=O 

and 
I-1 

supp(g,) E u 4 -‘(I? 
j=l 

Thus supp(f, o 4’) f7 supp(g,) = 0, fk o #‘g, = 0, h, = 0, II > 2, and H = 0. 
Since the prime radical contains all nilpotent ideals, .HG R’. Let 

F = Ci= i M,,f, E R and assume supp(f,) is compact and contained in S,, 
1 < n <p. Since elements of this form are dense in R, the proof will be 
complete if we can show F E R’. Let K = Ut= I supp(f,), and for each s E K 
let Y, be an open relatively compact neighborhood of s, Y, E S,, such that 
V, n #-“(V,) = 0, n > 1. The existence of such a V, was demonstrated 
above. Let Vi = Vsi, 1 < i < m, be a finite subcover of K, and let { gi} y! i be a 
partition of unity for K subordinate to the { V,}y=r: thus, 0 < gi < 1, 
supp(g,)G Vi, 1 <i< m, and CyE1 g,(s)= 1, s E K. Then F= CT=, Fgi= 
Cy= i (Cz=i Mz,,fn gi). Let 4 be the ideal in L+ X, C,(S) consisting of all 

H=C”>l M,,h,, with h, supported in uyzt d-‘(Vi). Then 4 is an ideal, 
andFg,Ed, l<i<n.ThusF=Cyz,FgiE&,+...+&,,.ButJY; ,...,- 4, 
arecontainedinR’,soJI/;+...+~~GR’,andIinallyFER’. 

IV.5. In order to study the Jacobson radical of semi-crossed 
products we will need a couple of lemmas of a combinatorial nature. As 
before, we assume that 4: S --) S is continuous and proper and S is locally 
compact hausdorff. 

SUBLEMMA. Let U G S be a compact neighborhood such that for every 
syndetic set A C_ L ‘, nkEa 4-“(U) = 0. Th en given a positive integer p there 
exists a positive integer N such that for every syndetic set A = {mj}j”,, with 
O~m,~p,l~mj-mj_,~p,j~l,n~=,~-mj(U)=O. 

Proof. Let Xj denote (1, 2 ,..., p}, j = 1, 2 ,... . Notice there is a one to one 
correspondence between the collection of all syndetic sets A = {mj},Y, with 
m,=O, 1 <mj-mj-,<p, j> 1, and elements of the product space 
n,&Xj; this is given by A={mj}J~o-+{m,,m,-m ,,..., m,-rn,- ,,... }. 
Since nkEA #-k(U) = 0 an d d-“(U) is compact, there is a finite subset of A 
for which the intersection is empty; thus define a function e: nz i Xj + Z + 
by e({mj-mj-i},?i)=inf{nE Z+: n~zO#~mj(U)=O}. Now e-‘(n) is 
either empty or else consists of certain sequences in n,TO Xj which are 
arbitrary beyond the nth coordinate. If n,?, Xj is equipped with the product 
topology, it follows that e is continuous, and hence has a maximum value, N. 
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Let A be syndetic, A = {mj}g,, with 0 < m, <p, 1 < mj - mj-, <p, j > 1. 
Then fl,“,, $-j(U) = #-mo(n~Yo ~-(mj-mo)(U)) = 0. 

LEMMA. Let m be a positive integer, Uj a compact neighborhood in S 
such that nk,* $-“(Uj) = 0 for every syndetic set A s Z ‘, 1 <j < m. Set 
Tj = { 1, 2 ,..., m}, 1, 2 ,... . Then given a positive integer p there exists a 
positive integer N such that for all syndetic sets A = {mj}Eo , 0 < m, < p, 
1 < mj - mj- 1 < p, j > 1, and all sequences { ij},E o E nJE, Tj, it follows 
flj”=O $-“j(“ii>=O* 

ProoJ: The proof is by induction on m. Note that for m = 1, the 
statement of the Lemma reduces to that of the sublemma. 

Now suppose m > 1 and that the conclusion of the Lemma holds for 
m - 1 in place of m; specifically, we assume there is an integer N’ such that 
for all syndetic sets A= {mj}z,, O<m,<p, 1 <mj-mjp,<p, j> 1, and 
all sequences { ij}g, with 1 < ij < m - 1, for all j, n,“=r , #-mj(Uij) = 0. 

Given { ij}j”=, E n,TO Tj, either B = {k: i, = m) is syndetic, or else B has 
arbitrarily large gaps. If B is syndetic and A = {mj}J?, is any syndetic set, 
observe that {mj: j E B} is also syndetic. Thus 
CT,,, $-“J(Um> = 0. S 

nj”_ 0 $ “j( Uij) E 
uppose on the other hand that B has arbitrarily large 

gaps, and that 0 < m, <p, 1 < mj - mjp, <p, j > 1. Then there exist integers 
j,,, j, > 0, j, -j, > N’, with {ij};zji’ { 1,2 ,..., m - l}. In that case 

fi #-mj(UiJ s ‘5’ #-“j(ui.J s #-% (‘fi’ $~(-mJ-m~~(ui.J) = 0 
j=O j=h j=O 

by the induction hypothesis. 
With the induction hypothesis still in force, we have shown that for any 

{ij}j”o E nz, Tj and any syndetic set A = {mj}go, 0 < m, <p, 
1 <mj-mj-,<p,j> 1, that n~o#-“j(Uij)=O. SetXj= {1,2 ,..., p},j> 1, 
and define a function d: (nz,Xj) X (n,?, Tj)+ Z+, by d({mj- mjel}j”,, 
{ij}Eo)=inf{n E Z+: n&, $-“J(U,)=0}- F or each n, either d-‘(n) is 
empty, or else consists of certain pairs of sequences which are arbitrary 
beyond the nth coordinate. If the domain of d is equipped with the product 
topology, d is continuous, and hence it has a maximum value, N. This N has 
the desired properties. 

IV.6. PROPOSITION. Let S,, denote the nearly periodic points of S, and 
so = s\s,, . Set R = {F=C,,, M,“f, E z + x, C,(S): {s: f,(s) # 0) 5 S}. 
Then R is the Jacobson radical of E + x, C(S). 

Proof. Let R’ be the Jacobson radical of Z ’ X, C,(S). We show first 
that R c R’. Let p be a positive integer, f, E C,(S) with supp(f,) compact 
and contained in So, 1 < n <p, and set F = Cz = 1 Mz” f, . Since elements of 
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this form are dense in R, and since R’ is closed, it will be enough to show 
FER’. 

Let K = lJjp_, supp(jJ; f or each s E K, let U, be a compact neighborhood 
of s with the property that for every syndetic set A c Z ‘, nkEA #-k(U,) = 0. 
Since the interiors {q},,, form an open cover of K, there is a finite 
subcover {Vi = U,i}y! i . Let { gi}y! i be a partition of unity for K subordinate 
to { U,}y=, ; i.e., O<gi< 1, supp(g,)c Ui, 1 <i<m, and Cy!, g,(s)= 1, 
sEK.Ifn>l,expand 

where each h, is a sum of terms of the form 

. . (*I 
JO,Jl ,*-., j,-, E {LP}, k,, k,,..., k,-, E {L..., m}, 

and mo= 0, 1 < mj - mj-, <p, j > 1. Since (*) is supported in 
ny:d #-Q(Uk,), it follows from the lemma that (*) is zero for n > N + 1 
(hereNisasintheLemma).HenceF”=O,n~N+1,soFER’. 

To show the reverse inclusion, let F = En> I M,“f, E R’. By IV.2, 
M,nf, E R’, n>l; so if F#O there is a k,>O such that fk0#03 
M,,fkOE R’. We must show that {s:f,(s) # 0) G So; suppose to the 
contrary there is a nearly periodic point so such that fk,(so) # 0. Since 
MZkoJ,,jk$kO E R’ for any constant 11, we may supposefkO > 0 andfkO(so) = 1. 
Set U= {s E S:fk,(s) > 4}. U is a compact neighborhood of so, so there is a 
syndetic set A = {mj}j”,,, m, = 0, 1 < mj - mj- i <p (for some positive 
integer p) and a point s, E U such that {Q”j(s,):j E 77’ } E U. Writing f in 
place of fk,, observe M,,f E R’, j > k,, and compute (~~~~~ M,f )" = 
CJLk;c M,hj, where each hj is a sum of terms of the form f f 0 @I ... 
foe-l,whereko<ji-ji-,<k,+ p, 1 < i < n - 1 (j. = 0). Also, given any 
sequence { ji}fTo satisfying j, = 0, k, < ji - ji-, < k, +p, 1 < i <p, there is 
an hj with ff o q@i ..- f 0 4 jn 1 as a summand. Since any sequence of p 
consecutive integers intersects A, there is at least one choice of { j,}y= 1 c A. 
Furthermore, since 

and since f > 0, 

since $ji(sl) E U, 
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0 < i < n - 1. Thus the spectral radius of Cjk!$‘M,,~ is >f, contradicting 
that it belongs to the Jacobson radical. Thus R’ c R, and hence R’ = R. 

IV.7. Finally, we characterize the strong radical >f L + X, C,(S). 
Let S, denote the periodic points of S, and set S, = S\S,. Set R = {F = 
IL>’ ~znfn E 27 + x, cm {s:f,(s) f 01 G Sol. 

PROPOSITION. R is the strong radical of Z + X, C,(S). 

Proof. Let R’ denote the strong radical of L ’ X, C,(S), and let 
F= Co, Mznf,, E R’; then by IV.2 M,.f, E R’, n > 1. If F & R, then there 
is an integer k, and a periodic point s0 such that &(s,) # 0. If 
T= {sO,sl ,..., s,-i} is the orbit of sO, the inclusion q: T-1 S yields a 
mapping 6: Zt X, C,(S) + Z + x,, C(T) by II.12 (here a0 = air) for which 
~(Mrk,-,fkO) # 0. By the results of Section III, Z + x,, C(T) is strongly 
semisimple; if M is a maximal ideal of L’ x,, C(T), it follows from the fact 
that 4 has dense range and the finite codimensionality of M that q-‘(M) is a 
maximal modular ideal of Z ’ X, C,(S). Since @(M,!&) # 0, MZkO& is not 
in the strong radical R’. This contradiction shows that R’ E R. 

To prove the reverse inclusion, let X = {FE .Z + X, C,(S), 
F= Cn>O ML&: {s:&(s) # 0) ES,}. Although S, may not be invariant 
under 4, it is true that d-‘(S,) g S,, so by II.14 X is an ideal of 
L’ X, C,,(S). Thus there is a one to one correspondence between the 
maximal modular ideals of Z ’ X, C,,(S) not containing X and those of Y. 
By the following Lemma (IV.8), the maximal modular ideals of 3 are all of 
the form kerx$, s E S,. Thus R’ 2 R, and so R’ = R. 

IV.& Recall that xs: H + X, C,,(S) + G is the (continuous) 
homomorphism x~(,JJ~>~ MJ,J =.&(s>. 

LEMMA. With notation as in IV.1, the maximal modular ideals of 3 are 
of the form kerxs, s E S,. 

Proof. Let M c Z + X, C,(S) be a maximal modular ideal of X, and 
assume M# kerxs, s E S,. Then for each s E S, there is an element 
F(‘) E M such that xs(F”‘) # 0, and adjusting by a scalar we may assume 
that xJF(“) = 1. Given E > 0 and a compact set K c S,, let U, be the open 
neighborhood of s consisting of all s’ E S, with I,ys,(F”‘) - 1 / < E. The open 
cover {ZJ,: s E K} of K has a finite subcover, say, {Uj- Usj: 1 <j< m}. Let 
{ gi}y! 1 be a partition of unity for K subordinate to the cover { Uj}j”,, ; 
i.e., O<gi< l3 s"PP(gi)z ui* l<i<m, Cz,g,(s)=l, sEK, and 
CL 1 g,(s) < 1, s E S,\K* 

Set F = Cj”=i F”l’gj, and u = u~~,~, = Cy= 1 gj ; for s E S, we estimate 
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IXS(~) - u(s)1 = Xs 
1 [ 

il: tF”“gj - gj> 
j=l I 

= f lj~(~“> - l) k!jts) 
j=l 

I 

< z IXs(F’j) - 11 gj(S) < E. 
j=l 

Let F = Cn>O ML& and choose F’ = Cfzo M,,f:, E K(L ‘, C,(S), a) 
such that IIF - F’II < E and supp(fA) c S,. Momentarily fix so E K and let V 
be a compact neighborhood of s0 ; given k > 0 we may assume s, @ 4 -“(I’). 
Otherwise @(s,-,) would belong to every neighborhood of sO, so s, = #k(s,,). 
But that contradicts the fact that S, has no periodic points. Thus we may 
assume that s0 6Z #-k(V), 1 < k < N. Since 4 is proper, 4-“(V) is compact, 
and so V\q5-“(v) is a neighborhood of s,,. Changing notation from the first 
paragraph, let Us, be a compact neighborhood of s,, , Us, c nj”= i ( V\gek( I’)). 
Thus, Use, #-‘(Us,,),..., V”(u,J are pairwise disjoint. If we do this for each 
point s E K, we obtain an open cover of K, from which we extract a finite 
subcover {Uj}JY1. Let {gj}J’!!i be a partition of unity for K subordinate to 
{"j}j"=li in particular, if u = Cy!, gj, u(s) = 1, s E K and 0 < u(s) < 1, 
s E S. Let {hj}jm= i c C,(S) have properties 

(a) hj(S) = (f6(s>>-‘, s E suPP(gj> n K; 
(b) supp(hj) c Uj, 1 <j < m, and 

llhjll =su~llfb(s)l~‘:sE suPP(gj)nK}. 

Define G E K(L ‘, C,(S), a) by 

G = -f hjF’gj = f M,,h, 0 qYf:,g, + 2 M,.h, 0 Kf:, g, 
j=l n=0 n=0 

+ . . . + f’ M,nh,o $“f:,g,. 
n=0 

We claim I,u,(G) = 1, s E K. (Here we write v/, in place of Ms X Zs.) Notice 
that by the construction of hj, gj we have 

h,(s)fXs) g,(s) + hdS)fXS) g&) + ... + Us)fXs) g,(s) 

= g1(s> + g*(s) + *a’ + g,(s) = 1, 

for all s E K. Also, for 1 < k <N and s E K, h, 0 $k(s)f;(~) gj(s) = 0, 
1 <j < m. For clearly if s 6?J Uj, hj o dk(s)fi(s)gj(s) = 0. But if s E Uj, 
#k(s) & Uj, and since supp(hj)s Uj, hj(dk(s)) = 0. This proves the claim. 
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NOW for any s E S, v,(G) = t//,(Cy! 1 hjF;‘gi) = Cj”= i h,(s) W,(F’) gj(s), so 
II~,(Gl~ Ci”=, su~{K(s’)l-‘1 s’ E K} IIF’ II gj(s) G C1 - 2E)-1 (llFIl + ‘1. 
We have used that l/f0 -fhll < E and I&(s) - 1 I < E, s E K. Thus 11 G/I < 
(1 - 2&)-l (llF[l + E). 

Let H = C’!! i hjFgj ; since FE M, H E M. We estimate, for any s E S, 

G ‘- llhjll IIF-F’II gj(S) ,r, 

Consequently, )I H - Gil < E/( 1 - 2~). But then M contains an approximate 
identity {HtK,Ej} for X so M is not a proper ideal in X, contrary to our 
assumption. 

IV.9. COROLLARY. The strong structure space of Z’ X, C,(S) is 
homeomorphic to S if and only if (S, $) has no periodic points. 

ProoJ If (S, 4) has no periodic points, then by IV.8 the strong structure 
space is in one to one correspondence with S under s + ker xs. But it is clear 
that the hull-kernel topology on S is the same as the hull-kernel topology 
determined by C,,(S), which is the topology of S. 

If s, E S is a periodic point with (finite) orbit T, then the inclusion 
q: T-, S yields by II.12 G: iz’ X, C,(S) + Z’ X,, (T). (Here #,, = #IT, and 
a,(f) =f o #0, fE C(T).) This gives rise to a continuous injection of the 
strong structure space of Z ’ x,, (T) into the strong structure space of 
Z ’ X, C,,(S). Since the strong structure space of Z’ X,, (T) is nonhausdorff 
by 111.5, it follows that the strong structure space of L + X, C,(S) is 
nonhausdorff, and in particular not homeomorphic with S. 

IV.10. EXAMPLE. Arveson-Josephson algebras. Let S be locally 
compact, 4 a homeomorphism of S, and assume there exists a separable 
regular Bore1 probablity measure m on S satisfying 

(i) (quasi-invariance) m o 4 is mutually absolutely continuous with 
respect to m; 

(ii) m(U) > 0 for every nonemepty open set U, 

(iii) the set of periodic points has measure zero. 

Define a unitary V on L2(S, m) by Vg = ((dm 0 #))/dm)“’ g 0 4, 
g (5 J5 2(sY $1, where m o $(E) = m(&??)). Let L, be the multiplication 
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operator L,g =fg, fE C,(S), g E L’(S, m). The Arveson-Josephson algebra 
2I(S, 4) is defined as the norm closure in P(L’(S, 4)) of the algebra of all 
finite sums 

L, + LJ+ *.- + L&V”, 4 E G(S). 

Since VL,V-’ = L,,,, U(S, $) is also the norm closure of the algebra of all 
finite sums L, + VL,, + a-- + V”L,, fi E C,(S). If a(f) =f 0 #, fE C,(S), 
then (L, v) is an isometric covariant representation of (C,(S), a). By 11.4, 
Z + X, C,(S) isomorphic with a nonselfadjoint subalgebra of the C*-crossed 
product H X, C,,(S). It follows from [ 1, Sect. 51 that a(S, 0) is isomorphic 
with Z + x, C,,(S). In particular, all the results we have obtained regarding 
the prime radical, radical, and strong radical of semi-crossed products 
pertain to the Arveson-Josephson algebras. The authors of [l] wondered if 
these algebras are semisimple, since they were concerned with the boun- 
dedness of the automorphisms. If $ acts on S = H by translation, we see 
from IV.4 that Zt X, C,(Z) = ?I(??, 4) is equal to its prime radical. 
(Nevertheless, as is mentioned in [ 121, the automorphisms of this algebra are 
all bounded.) If we consider only those algebras ‘u(S, 4) where the measure 
is invariant, as is done in most of [ 11, it follows easily from IV.4 that these 
algebras are semiprime. However, the invariance of the measure m does not 
seem to be enough to imply that (S, 4) is nearly periodic (even if m is 
ergodic), although we have not constructed a counterexample. 

V. 

V.l. Let Si be a locally compact hausdorff and #i: Si-+ Si 
continuous and proper (i= 1,2). As in [l], we say (S,, 4,) is conjugate to 
(S,, #2) if there is an equivariant homeomorphism 0: (S,, ti2) -+ (S,, 4,); 
that is, the diagram 

s2 e s, 

I 
m2 ml 

I 
s2 -5 s, 

commutes. It follows from II.12 that if (S,, 4i), (S,, #2) are conjugate, then 
P + x,, C,(S,), P + X,, C,(S,) are isomorphic. In this section we consider 
the converse proposition. In Theorem 3.11 of [l] it is proved that if #i is a 
homeomorphism of Si (i = 1,2) and if there exist probability measures m, on 
Si satisfying 4.10(i), (ii), and (iii) (i = 1, 2) with m2 invariant and ergodic, 
then ?I(S,, 41), ‘u(S,, $2) isomorphic implies that (S,, #r), (S,, 4,) are 
conjugate. We, on the other hand, will assume that Si is compact and oi has 
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no periodic points, but make no stringent assumptions about the existence of 
an invariant measure. In addition, #i is only assumed to be continuous and 
proper. 

THEOREM. Assume that Si is compact hausdorfl and that 4; has no 
periodic points, i = 1,2. Then L + X,, C(S,) isomorphic to L + X,, C(S,) 
implies that (S,, 4,) is conjugate to (S,, &). 

Proox For convenience we write ‘Xi for 77’ Xai C(S,), i = 1, 2. Let 
v: U, + 3, be an isomorphism (not necessarily continuous); then w maps the 
maximal modular ideals of ‘3, bijectively onto those of ‘u,, M-+ w-‘(M); 
furthermore, this mapping is a homeomorphism for the respective hull-kernel 
topologies. Since by Corollary IV.9 the strong structure space of Ui is Si, 
i= 1,2, we obtain a homeomorphism 0: S,+ S, defined by O(S) = S' if 
v’-‘(kerXs)= kerXs,. Now the strong radical of ‘ui is Mf21i, and since I 
maps the strong radical onto the strong radical, y(Mi%i) = Mf&. Let Pi be 
the projection ‘lIi -+ C(S,), P’(C,>, Mif,) =f, (f, E C(S,)), i = 1, 2. Pi is a 
norm one homomorphism (and in this setting can be identified with the 
canonical mapping of ‘ui onto the quotient of 21i modulo the strong radical of 
!&). Define a mapping A: C(S,)+ C(S,) by A= P2 0 v/I~(~,). We claim 2 is a 
*-algebra isomorphism. Let fE C(S,) and write w(f) = n(f) + F’, 
F’ E M:‘U,. Since for s E S,, x,(F’) = 0, we have x,@(f)) =x,(,?(f) + F’) = 
x,Cdf>) = xecs,(f>. Thus, W>(s) =fP(s)), or W) =f 0 0. 

Notice that y(M~2’u,) = M$Uz; for ~(M:~?li) = y(Mj) y/(M: au,) c 
(M~(U,)(M~‘U,) c MZ2U. Apply the same argument with ICI- ’ in place of w to 
get the other containment. Let w(M:) = Mf g + G, G E Mz2U2 ; also let 
w-‘(Mi) = M: h + H, H E M:,‘?I, . Then Mf = v(v-‘(Mf)) = w(Mi h + H) = 
y(M:) v(h) + v(H) = (Mz g + G) y(h) + y(H). Now modulo Mz2(UZ, the 
right-hand side is M: gh o 0. It follows that gh o 0 = 1, and in particular 
that g, h do not vanish at any point. Next let JE C(S,) be arbitrary, and 
compute 

Also, 
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It follows that f 0 0 o ti2h = hf o 4, 0 0; since h never vanishes, f 0 0 0 #2 = 
f 0 4, 0 0. Finally, since f E C(S,) was arbitrary, 

V.2. It would be interesting to know if the conclusion of V.1 carries 
over to the periodic case as well. One very weak conclusion can be gotten 
from 111.5: suppose Si is locally compact hausdorff, and 4i: Si + S, is a 
homomorphism such that (Si, di) has locally bounded order, i = 1, 2. 
Then Z + x,, C,(S,), Z + x,, C,(S,) isomorphic implies S,, S, are 
homeomorphic. As in V.1, we note that the strong structure spaces are 
homeomorphic in their respective hull-kernel topologies, and hence the 
complete regularization of these spaces are homeomorphic. But by the 
description of the topology on the strong structure space of Z + x,! C,(S,) 
given in 111.5, it follows that the complete regularization of this space is 
homeomorphic with Si. (See [2] for a discussion of complete regularization.) 

V.3. The results of Section IV suggest that it should be possible to 
express other ring-theoretic properties of semi-crossed products Z ’ X, C,(S) 
in terms of the dynamical system (S, 4). Also, it would be interesting to have 
a description of the primitive ideal space, at least in the semisimple case. 
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