Semi-crossed Products of C^{*}-Algebras

Justin Peters
Department of Mathematics, Iowa State University, Ames, Iowa 50011
Communicated by the Editors

Received November 25, 1983

Abstract

Given a C^{*}-algebra $\mathfrak{9}$ and endomorphism α, there is an associated nonselfadjoint operator algebra $\mathbb{Z}^{+} \times_{\alpha} \mathscr{U}$, called the semi-crossed product of \mathfrak{A} with α. If α is an automorphism, $\mathbb{Z}^{+} X_{a}{ }^{21}$ can be identified with a subalgebra of the C^{*}-crossed product $\mathbb{Z} X_{a} \mathfrak{U}$. If \mathfrak{U} is commutative and α is an automorphism satisfying certain conditions, $\mathbb{Z}^{+} X_{a} 2$ is an operator algebra of the type studied by Arveson and Josephson. Suppose S is a locally compact Hausdorff space, $\phi: S \rightarrow S$ is a continuous and proper map, and α is the endomorphism of $\mathfrak{A}=C_{0}(S)$ given by $\alpha(f)=f \circ \phi$. Necessary and sufficient conditions on the map ϕ are given to insure that the semi-crossed product $\mathbb{Z}^{+} \times_{a} C_{0}(S)$ is (i) semiprime; (ii) semisimple; (ii) strongly semisimple. ic 1984 Academic Press, Inc.

Introduction

In this paper a class of Banach algebras is studied which we call semicrossed products of C^{*}-algebras. These are nonselfadjoint norm closed algebras of operators on hilbert space. They include certain nonselfadjoint subalgebras of C^{*}-crossed products, and in particular they include the class of operator algebras considered by Arveson and Josephson in [1].

In constructing a semi-crossed product we begin with a pair (\mathfrak{H}, α) where \mathfrak{U} is a C^{*}-algebra and α is a star endomorphism of \mathfrak{A}. An appropriate substitute for the notion of covariant representation is needed in which unitaries are replaced by isometries. This is done as follows: we call a pair (ρ, V) an isometric covariant representation of ($\mathcal{U}, \alpha)$ if ρ is a representation of \mathscr{H} on a Hilbert space \mathscr{R} and V is an isometry on \mathscr{R} such that $V \rho(\alpha x)=$ $\rho(x) V, x \in \mathfrak{A}$. Such a pair (ρ, V) yields a representation of the Banach algebra $l^{1}\left(\mathbb{Z}^{+}, \mathfrak{U}, \alpha\right)$, and an operator norm on this algebra is defined by taking the supremum over all such pairs. The completion of $l^{1}\left(\mathbb{Z}^{+}, \mathfrak{N}, \alpha\right)$ in this enveloping norm is called the semi-crossed product of \mathfrak{U} with α, and is denoted $\mathbb{Z}^{+} \times_{\alpha} \mathfrak{A}$. If α is an injective endomorphism of \mathfrak{A}, there is a C^{*} algebra \mathscr{B} containing \mathfrak{A} as a subalgebra and an automorphism β of \mathscr{B} such that $\beta(x)=\alpha(x), x \in \mathfrak{A}$. In that case, $\mathbb{Z}^{+} \times_{a} \mathfrak{U}$ is isomorphic with a nonselfadjoint subalgebra of the C^{*}-crossed product $\mathbb{Z} \times_{B} \mathscr{B}$.

For commutative C^{*}-algebras $\mathfrak{A}=C_{0}(S), S$ locally compact hausdorff, each continuous and proper mapping $\phi: S \rightarrow S$ defines an endomorphism α of $C_{0}(S)$ by $\alpha(f)=f \circ \phi, f \in C_{0}(S)$. It is natural to wonder how the ringtheoretic properties of the semi-crossed product $\mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$ reflect properties of the mapping ϕ, and conversely. For example, what are necessary and sufficient conditions on the dynamical system (S, ϕ) for the semi-crossed product $\mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$ to be (i) semiprime; (ii) semisimple; (iii) strongly semisimple? In fact, the question of the semisimplicity of the Arveson-Josephson algebras was already raised in [1], although apparently no results in this direction were obtained until recently, when a sufficient condition was given in [12]. These questions are answered here, and, more generally, an explicit description of each of the three radicals (i.e., the prime radical, Jacobson radical, and the strong radical) is given. In special cases we can determine the strong structure space of $\mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$: this is done when S has only periodic points, and, for the opposite extreme, when S has no periodic points. (In the periodic case, our results can be compared with those of [11], in the W^{*}-algebra setting.) For the C^{*}-crossed product of a commutative C^{*}-algebra $C_{0}(S)$ with a freely acting automorphism α, the primitive ideal space of $\mathbb{Z} \times_{\alpha} C_{0}(S)$ corresponds to the orbit closures of S under $\phi[5,8]$. The situation for semi-crossed products appears to be more complex, and even in the semisimple case we do not know how to describe the primitive dual.

If S_{i} is locally compact hausdorff and $\phi_{i}: S_{i} \rightarrow S_{i}$ continuous and proper, $i=1,2, \quad\left(S_{1}, \phi_{1}\right),\left(S_{2}, \phi_{2}\right)$ are said to be conjugate if there is a homeomorphism $\Theta: S_{2} \rightarrow S_{1}$ such that $\Theta \circ \phi_{2}=\phi_{1} \circ \Theta$. If $\left(S_{1}, \phi_{1}\right),\left(S_{2}, \phi_{2}\right)$ are conjugate it is not hard to see that the semi-crossed products $\mathbb{Z}^{+} \times_{\alpha_{1}} C_{0}\left(S_{1}\right), \mathbb{Z}^{+} \times_{\alpha_{2}} C_{0}\left(S_{2}\right)$ are isomorphic (II.12). The converse proposition is proved under the additional assumptions that S_{i} is compact and ϕ_{i} has no periodic points, $i=1,2$. In the context of the ArvesonJosephson algebras, these results are similar to, though not identical with, those obtained in [1].

Section I covers some elementary representation theory for a C^{*}-algebra with endomorphism. Semi-crossed products are defined and basic properties are explored in Section II. From II. 6 on, only semi-crossed products with commutative C^{*}-algebras are considered. Section III deals with pairs (S, ϕ) for which each $s \in S$ is periodic. In Section IV, the prime radical, Jacobson radical, and strong radical of $\mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$ are described. Finally, the question of the isomorphism of semi-crossed products implying conjugacy is taken up in Section V.
I.

If α is an automorphism of a C^{*}-algebra \mathfrak{A}, then (ρ, V, \mathscr{H}) is called a covariant representation of (\mathfrak{A}, α) if ρ is a representation of \mathfrak{A} in the hilbert space \mathscr{H} and V is unitary on \mathscr{H} satisfying $\rho(\alpha x)=V \rho(x) V^{*}$ for all x in \mathfrak{A}. But suppose α is a star endomorphism of \mathfrak{A}. If (ρ, V, \mathscr{H}) is to be a covariant representation of (\mathfrak{A}, α) in the above sense, then $\operatorname{ker} \rho \supseteq \operatorname{ker} \alpha$. If we weaken the requirement that V be unitary and ask only that it be an isometry, then there are two ways in which V could intertwine the representations ρ and $\rho \circ \alpha$:
(i) $\rho(\alpha x) V=V \rho(x)$, or
(ii) $V \rho(\alpha x)=\rho(x) V, x \in \mathfrak{M}$.

Notice that (i) forces ker $\rho \supseteq$ ker α. Relation (ii), however, imposes no such requirement, and we will see that there is always a faithful representation (ρ, \mathscr{H}) and an isometry V on \mathscr{H} such that (ii) holds. But first notice that there can be representations (ρ, \mathscr{Z}) which admit an isometry V on \mathscr{H} satisfying (i) but not (ii).
I.1. Example. Let S be a compact hausdorff space and $\phi: S \rightarrow S$ be continuous and onto. Let μ be a regular borel measure on S such that $\mu \circ \phi^{-1}$ is absolutely continuous with respect to μ, and let $\delta=d \mu \circ \phi^{-1} / d \mu$ be the Radon-Nikodym derivative. Define an isometry V on $L^{2}(S, \mu)$ by $V f(s)=1 / \sqrt{\delta \circ \phi(s)} f \circ \phi(s)$. If ϕ is constant on a set of positive μ-measure, V is not unitary. If $\rho(f) g=f g$ for $f \in C(S), g \in L^{2}(S, \mu)$ and $\alpha: C(S) \rightarrow C(S)$ is given by $\alpha(f)(s)=f(\phi(s)), \quad \alpha$ is an (injective) endomorphism of $C(S)$. Now

$$
\begin{aligned}
(\rho(\alpha f) V) g(s) & =(\alpha f)(s)(V g)(s) \\
& =\frac{1}{\sqrt{\delta \circ \phi(s)}} f \cap \phi(s) g \cap \phi(s) \\
& =V(f g)(s) \\
& =V(\rho(f)) g(s)
\end{aligned}
$$

Thus $\rho(\alpha f) V=V \rho(f)$. Suppose there were an isometry U satisfying $U \rho(\alpha f)=\rho(f) U$ for all $f \in C(S)$. Then $\rho(f) U V=U \rho(\alpha f) V=U V \rho(f)$, so $U V \in \rho(C(S))^{\prime}=L^{\infty}(S, \mu)$. $U V$ is an isometry, and since $L^{\infty}(S, \mu)$ is commutative, $U V$ must be unitary. But that would imply $I=U V(U V)^{*}=$ $U V V^{*} U^{*}$, which is impossible if V is a proper isometry.
I.2. Example. Let \mathfrak{A} be an arbitrary C^{*}-algebra, and α a star endomorphism of \mathfrak{U}. Let (π, \mathscr{K}) be a representation of \mathfrak{A}, and let
$\mathscr{H}=H^{2}(\mathscr{K})$ denote the hilbert space of all sequences $\left(\xi_{0}, \xi_{1}, \xi_{2}, \ldots\right)$ with $\xi_{n} \in \mathscr{R}(n \geqslant 0)$ and $\sum_{n \geqslant 0}\left\|\xi_{n}\right\|^{2}<\infty$. Define a representation ρ of \mathfrak{U} in \mathscr{X} by

$$
\rho(x)\left(\xi_{0}, \xi_{1}, \xi_{2}, \ldots\right)=\left(\pi(x) \xi_{0}, \pi(\alpha x) \xi_{1}, \pi\left(\alpha^{2} x\right) \xi_{2}, \ldots\right)
$$

If U_{+}is the unilateral shift on \mathscr{H},

$$
U_{+}\left(\xi_{0}, \xi_{1}, \xi_{2}, \ldots\right)=\left(0, \xi_{0}, \xi_{1}, \xi_{2}, \ldots\right),
$$

then $U_{+} \rho(\alpha x)=\rho(x) U_{+}$.
I.3. Notation. We will write $\rho=\tilde{\pi}$ for the representation constructed in I.2.

Suppose now that α is an endomorphism of a C^{*}-algebra \mathfrak{A}, and ρ is a representation of \mathfrak{A} on a hilbert space \mathscr{H} such that $V \rho(\alpha x)=\rho(x) V$ for an isometry V on \mathscr{H}. Set $\mathscr{H}_{1}=\bigcap_{n>0} V^{n} \mathscr{H}^{\prime} . \mathscr{H}_{1}$ is a $\rho(\mathscr{A})$-invariant subspace: let $\eta \in \mathscr{H}_{1}$; there exist $\eta_{n} \in \mathscr{H}$ such that $\eta=V^{n} \eta_{n}, n=0,1,2, \ldots$. Then $\rho(x) \eta=$ $\rho(x) V^{n} \eta_{n}=V^{n} \rho\left(\alpha^{n} x\right) \eta_{n}$, so $\rho(x) \eta \in$ Range $V^{n}, n \geqslant 0$, hence $\rho(x) \eta \in \mathscr{H}_{1}$. Thus ρ may be decomposed as $\rho_{1} \oplus \rho_{2}$, where $\rho_{1}(x)=\rho(x) \mid \mathscr{H}_{1}, \rho_{2}(x)=$ $\rho(x) \mid \mathscr{H}_{2}, \mathscr{H}_{2}=\mathscr{H}_{1}^{\perp}$. Also V may be decomposed as $V_{1} \oplus V_{2}$, where $V_{1}=V \mid \mathscr{H}_{1}$ is unitary (if it is nonzero) and $V_{2}=V \mid \mathscr{H}_{2}$ is a pure isometry (if it is nonzero).

Furthermore, $V_{i} \rho_{i}(\alpha x)=\rho_{i}(x) V_{i}, \quad i=1,2$. Suppose $V_{2} \neq 0$. Change notation and replace ρ_{2} by ρ, \mathscr{H}_{2} by \mathscr{H}, V_{2} by V. Thus we assume V is a pure isometry such that $V \rho(\alpha x)=p(x) V$. Set $\mathscr{K}=(V \mathscr{K})^{\prime}=\operatorname{ker} V^{*}$ and $W: H^{2}(\mathscr{K}) \rightarrow \mathscr{H}$ by

$$
W\left(\xi_{0} \cdot \xi_{1}, \xi_{2}, \ldots\right)=\sum_{n \geqslant 0} V^{n} \xi_{n}
$$

Then $V W=W U_{+}\left[6\right.$, pp. 15-16], where U_{+}is the unilateral shift on $H^{2}(\mathscr{K})$. Notice \mathscr{R} is a $\rho(\mathscr{H})$-invariant subspace. From the relation $V \rho(\alpha x)=$ $\rho(x) V$ we obtain $\rho(\alpha x)^{*} V^{*}=V^{*} \rho(x)^{*}$, or, using the fact that ρ is a *. representation and replacing x^{*} by $x, \rho(\alpha x) V^{*}=V^{*} \rho(x)$. Thus, if $\xi \in \mathscr{K}$, $V^{*} \rho(x) \xi=\rho(\alpha x) V^{*} \xi=0$.

Let π be the restriction of ρ to \mathscr{K}; i.e., $\pi(x)=\rho(x) \mid \mathscr{K}$. Let $\tilde{\pi}$ be the representation constructed from π on $H^{2}(\mathscr{K})$. (See notation I.3.) Then

$$
\begin{aligned}
W \tilde{\pi}(x)\left(\xi_{0}, \xi_{1}, \xi_{2}, \ldots\right) & =W\left(\pi(x) \xi_{0}, \pi(\alpha x) \xi_{1}, \pi\left(\alpha^{2} x\right) \xi_{2}, \ldots\right) \\
& =\sum_{n \geqslant 0} V^{n} \pi\left(\alpha^{n} x\right) \xi_{n} \\
& =\sum_{n \geqslant 0} V^{n} \rho\left(\alpha^{n} x\right) \xi_{n} \\
& =\sum_{n \geqslant 0} \rho(x) V^{n} \xi_{n} \\
& =\rho(x) W\left(\xi_{0}, \xi_{1}, \xi_{2}, \ldots\right)
\end{aligned}
$$

Hence $W \tilde{\pi}(x)=\rho(x) W$. We collect the forgoing facts in
I.4. Proposition. Let α be an endomorphism of a C^{*}-algebra \mathfrak{A}, and (ρ, \mathscr{H}) a representation of \mathfrak{A} such that for some isometry V of \mathscr{H}

$$
V \rho(\alpha x)=\rho(x) V \quad(x \in \mathfrak{U})
$$

Then \mathscr{X} can be decomposed as $\mathscr{H}=\mathscr{H}_{1} \oplus \mathscr{H}_{2}$ where \mathscr{X}_{i} is invariant under V and $\rho(x)(x \in \mathscr{U}), \quad i=1,2, \quad$ and $\quad \mathscr{H}_{1}=\bigcap_{n \geqslant 0} V^{n} \mathscr{R}$. If $\quad V_{i}=V \mid \mathscr{H}_{i}$, $\rho_{i}(x)=\rho(x) \mid \mathscr{H}_{i}, i=1,2$, then if $\mathscr{H}_{1} \neq(0), V_{1}$ is unitary, if $\mathscr{H}_{2} \neq(0), V_{2}$ is a pure isometry, and $V_{i} \rho_{i}(\alpha x)=\rho_{i}(x) V_{i}(x \in \mathfrak{U})$. Furthermore, there exists a representation (π, \mathscr{K}) of \mathfrak{A} and an isometry W from $H^{2}(\mathscr{K})$ onto \mathscr{H}_{2} such that $V_{2} W=W U_{+}$and $\rho_{2}(x) W=W \tilde{\pi}(x)$, where U_{+}is the unilateral shift on $H^{2}(\mathscr{K})$.

In each of the next two propositions, \mathfrak{A} denotes a C^{*}-algebra with endomorphism α.
I.5. Proposition. Suppose that ρ is a representation of \mathfrak{U} in $\mathscr{L}(\mathscr{H})$ such that $\rho(\mathfrak{A})^{\prime \prime}$ is maximal abelian. If there does not a unitary operator U in $\mathscr{L}(\mathscr{H})$ such that $p(\alpha x)=U \rho(x) U^{*}$, then there does not exist a pair V_{1}, V_{2} of isometries such that both $\rho(\alpha x) V_{1}=V_{1} \rho(x)$ and $V_{2} \rho(\alpha x)=\rho(x) V_{2}$ $(x \in \mathfrak{U})$.

Proof. The proof is essentially an adaptation of what we did in I.1. Suppose such isometries V_{1}, V_{2} exist. Then $V_{2} V_{1} \in \rho(\mathfrak{A})^{\prime}=\rho(\mathfrak{A})^{\prime \prime}$, since $\rho(\mathscr{U})^{\prime \prime}$ is maximal abelian. But then $\left(V_{2} V_{1}\right)^{*}\left(V_{2} V_{1}\right)=I$, whereas $\left(V_{2} V_{1}\right)\left(V_{2} V_{1}\right)^{*}$ is a proper projection, contradicting the fact that $V_{2} V_{1}$, as an element of a commutative W^{*}-algebra, commutes with its adjoint.
I.6. Proposition. Let ρ be an irreducible representation of \mathfrak{M} in $\mathscr{L}(\mathscr{K})$, and let $\tilde{\rho}$ be the representation of \mathfrak{A} in $\mathscr{L}\left(H^{2}(\mathscr{H})\right.$) contructed from ρ (see I.3).
(i) Then the commutant of the star algebra generated by $\left\{\tilde{\rho}(\mathfrak{U}), U_{+}\right\}$ in $\mathscr{L}\left(H^{2}(\mathscr{O})\right)$ consists of scalars.
(ii) Suppose also that there does not exist an isometry V satisfying $\rho\left(\alpha^{n} x\right) V=V \rho(x)(x \in \mathfrak{A})$ for any positive integer n. Then the commutant of the algebra generated by $\left\{\tilde{\rho}(\mathfrak{A}), U_{+}\right\}$in $\mathscr{L}\left(H^{2}(\mathscr{H})\right)$ consists of scalars.

Proof. (i) If T commutes with U_{+}and U_{+}^{*}, then $T=\operatorname{diag}\left(T_{0}, T_{0}, \ldots\right)$. If T commutes with $\tilde{\rho}(\mathscr{A})$, then T_{0} commutes with $\rho(\mathfrak{A})$; hence T_{0} and T are scalars.
(ii) Identify $H^{2}(\mathscr{P})$ with the set of all power series of the form $\xi(z)=$ $\sum_{n \geqslant 0} \xi_{n} z^{n}$, with $\sum_{n \geqslant 0}\left\|\xi_{n}\right\|^{2}<\infty$ and $|z|<1$. If $T \in \mathscr{L}\left(H^{2}(\mathscr{R})\right)$ is an operator commuting with the unilateral shift, then T is of the form $T(z)=$ $\sum_{n \geqslant 0} z^{n} T_{n}$, where $T_{n} \in \mathscr{L}(\mathscr{H})$ and $\left\|T_{n}\right\| \leqslant\|T\|[6$, p. 47]. We compute

$$
\begin{aligned}
(T \tilde{\rho}(x) \xi)(z) & =T(z)(\tilde{\rho}(x) \xi)(z) \\
& =\sum_{n \geqslant 0} T(z) z^{n} \rho\left(\alpha^{n} x\right) \xi_{n} \\
& =\sum_{n \geqslant 0} \sum_{k \geqslant 0} T_{k} z^{k} z^{n} \rho\left(\alpha^{n} x\right) \xi_{n} \\
& =\sum_{m \geqslant 0} z^{m}\left(\sum_{k=0}^{m} T_{k} \rho\left(\alpha^{m-k} x\right) \xi_{m-k}\right)
\end{aligned}
$$

Also, $(\tilde{\rho}(x) T \xi)(z)=\sum_{m \geqslant 0} z^{m} \rho\left(\alpha^{m} x\right)(T \xi)_{m}$. But

$$
\begin{aligned}
(T \xi)(z)=T(z) \xi(z) & =\left(\sum_{k \geqslant 0} z^{k} T_{k}\right)\left(\sum_{n \geqslant 0} z^{n} \xi_{n}\right) \\
& =\sum_{m \geqslant 0} z^{m}\left(\sum_{k=0}^{m} T_{k} \xi_{m-k}\right) \\
& =\sum_{m \geqslant 0} z^{m}(T \xi)_{m}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
(\tilde{\rho}(x) T \xi)(z) & =\sum_{m \geqslant 0} z^{m} \rho\left(\alpha^{m} x\right)\left(\sum_{k=0}^{m} T_{k} \xi_{m-k}\right) \\
& =\sum_{m \geqslant 0} z^{m}\left(\sum_{k=0}^{m} \rho\left(\alpha^{m} x\right) T_{k} \xi_{m-k}\right) .
\end{aligned}
$$

If T commutes with $\tilde{\rho}(x)$, we have

$$
\sum_{k=0}^{m} T_{k} \rho\left(\alpha^{m-k} x\right) \xi_{m-k}=\sum_{k=0}^{m} \rho\left(\alpha^{m} x\right) T_{k} \xi_{m-k}
$$

for all $\xi(z)=\sum_{n \geqslant 0} z^{n} \xi_{n} \in H^{2}(\mathscr{A}), \quad x \in \mathfrak{A}, \quad$ and $\quad m=0,1,2, \ldots$ These equations yield

$$
T_{m} \rho(x)=\rho\left(\alpha^{m} x\right) T_{m}, \quad m=0,1,2 \ldots
$$

Since ρ was irreducible, it follows (see, e.g., [7, p. 160]) that $T_{m}=\lambda_{m} V_{m}$, where $\lambda_{m} \geqslant 0$ and V_{m} is an isometry. But then $V_{m} \rho(x)=\rho\left(\alpha^{m} x\right) V_{m}$, $m=0,1,2, \ldots$, so by our hypothesis $T_{m}=0, m \geqslant 1$. Also $T_{0}=c I$. Thus $T=c I_{H^{2}(*)}$.
I.7. If α is a continuous endomorphism of a Banach algebra \mathfrak{d}, the ideals $\left\{\operatorname{ker} \alpha^{n}\right\}_{n=0}^{\infty}$ form an increasing chain, and we define
$R_{\alpha}=\overline{\bigcup_{n \geqslant 0} \operatorname{ker} \alpha^{n}}$ to be the α-radical of \mathfrak{A}. Observe that $\alpha\left(R_{\alpha}\right) \subseteq R_{\alpha}$, $\alpha^{-1}\left(R_{\alpha}\right)=R_{\alpha}$. Also α induces an injective endomorphism α^{\prime} on $\mathfrak{X} / R_{\alpha}$ by $\alpha^{\prime}\left(x+R_{\alpha}\right)=\alpha(x)+R_{\alpha}$.

Often it will be convenient to assume that \mathfrak{U} has an identity 1 with $\alpha(1)=1$. If this is not the case, we can embed \mathfrak{U} in $\mathfrak{H} \oplus \mathbb{C} \equiv \mathfrak{U}_{1}$ in the usual way and set $\alpha_{1}(x, \lambda)=(\alpha(x), \lambda)$, so $\left(\mathfrak{A}_{1}, \alpha_{1}\right)$ has the desired property.
I.8. In the next proposition we consider whether it is always possible to "extend" an injective star endomorphism of a C^{*}-algebra to an automorphism (of a larger algebra).

Proposition. Given an injective star endomorphism α of a C^{*}-algebra \mathfrak{U}, there exists a C^{*}-algebra \mathscr{B} containing \mathfrak{U} as a subalgebra and an automorphism β of \mathscr{B} such that $\alpha(x)=\beta(x)$ for all $x \in \mathfrak{U}$.

Proof. If \mathfrak{A} is not unital or if \mathfrak{A} is unital but $\alpha(1) \neq 1$, we can embed \mathfrak{A} in $\mathfrak{A}_{1}=\mathfrak{A} \oplus \mathbb{C}$ and extend α to an endomorphism α_{1} of \mathfrak{N}_{1} such that $\alpha_{1}(1)=1$. Thus we may as well assume \mathfrak{A} is unital and $\alpha(1)=1$.

We construct \mathscr{B} as the inductive limit of a system of C^{*}-algebras $\left\{\mathfrak{A}_{n}, j_{n}\right\}_{n=0}^{\infty}$. To begin, let \mathfrak{A}_{1} be any C^{*}-algebra isomorphic to \mathfrak{A}, and $\psi: \mathfrak{A} \rightarrow \mathfrak{U}_{1}$ be an isomorphism onto \mathfrak{A}_{1}. Then $\left(\psi \circ \alpha \circ \psi^{-1}\right)(\psi \circ \alpha(x))=$ $\psi \circ \alpha(x))$. Changing notation, let $\mathfrak{A}_{0}=\mathfrak{M}, \beta_{0}=\alpha, j_{1}=\psi \circ \alpha$, and $\beta_{1}=$ $\psi \circ \alpha \circ \psi^{-1}$. Then the diagram

commutes and $\beta_{1}\left(\mathfrak{A}_{1}\right)=j_{1}\left(\mathfrak{A}_{0}\right)$. Repeat the above construction with $\left(\mathscr{A}_{1}, \beta_{1}\right)$ in the role of $\left(\mathscr{A}_{0}, \beta_{0}\right)$ and obtain a C^{*}-algebra \mathfrak{A}_{2}, an injection $j_{2}: \mathfrak{A}_{1} \rightarrow \mathfrak{M}_{2}$, and as injective endomorphism β_{2} of \mathfrak{M}_{2} such that

commutes and $\beta_{2}\left(\mathfrak{A}_{2}\right)=j_{2}\left(\mathfrak{H}_{1}\right)$. Continuing in this way, find an inductive $\left(\mathscr{A}_{n}, j_{n}\right)$ of C^{*}-algebras with injective endomorphism β_{n} of \mathfrak{A}_{n} such that the diagram

commutes and $\beta_{n+1}\left(\mathfrak{R}_{n+1}\right)=j_{n+1}\left(\mathscr{A}_{n}\right), n=0,1,2, \ldots$. Let \mathscr{B} be the C^{*}. inductive limit of $\left(\mathfrak{A}_{n}, j_{n}\right)$. Each \mathfrak{A}_{n} corresponds naturally to a subalgebra of \mathscr{A}, and for simplicity of notation call that subalgebra \mathfrak{A}_{n}. (See [15, 1.23.2].) Thus, $\mathscr{B}=\bigcup_{n \geqslant 0} \mathscr{N}_{n}$. Since β_{n} extends $\beta_{n-1}, n \geqslant 1$, we can define an injective endomorphism β : $\bigcup_{n>0} \mathfrak{U}_{n} \rightarrow \bigcup_{n>0} \mathfrak{H}_{n}$. Since $\beta\left(\mathscr{H}_{n}\right)=\beta_{n}\left(\mathscr{H}_{n}\right)=$ $\mathfrak{U}_{n-1}, \beta$ is onto. As each β_{n} is of norm 1 , so is β, hence β admits a unique extension, which we again denote by β, to \mathscr{B}. Also, the extended map is one to one and onto. Thus β is an automorphism of \mathscr{B}. Finally, by construction, β extends each β_{n}, and in particular β extends $\beta_{0}=\alpha$; i.e., $\beta(x)=\alpha(x)$, $x \in \mathfrak{Q}$.

II.

II.1. Definition. Let α be a star endomorphism of a C^{*}-algebra \mathfrak{A}, ρ a representation of \mathfrak{A} in \mathscr{H}, and V an isometry of \mathscr{H}. We say that (ρ, V) is an isometric covariant representation of (\mathfrak{A}, α) if $V \rho(\alpha x)=\rho(x) V$, for all $x \in \mathfrak{U}$.

Suppose that β is an automorphism of a C^{*}-algebra \mathscr{B}; if δ_{n} denotes the Kronecker delta on \mathbb{Z}, the algebra $l^{1}(\mathbb{Z}, \mathscr{B}, \beta)$ consists of all formal sums $\sum_{-\infty}^{\infty} \delta_{n} \otimes x_{n}$ with $x_{n} \in \mathscr{H}, \sum_{-\infty}^{\infty}\left\|x_{n}\right\|<\infty$. The adjoint is given (on simple tensors) by $\left(\delta_{n} \otimes x\right)^{*}=\delta_{-n} \otimes \beta^{-n}\left(x^{*}\right)$, and the multiplication by $\left(\delta_{n} \otimes x\right)\left(\delta_{m} \otimes y\right)=\delta_{n+m} \otimes x \beta^{n}(y)$ [13, 7.6.1]. A multiplication could also be defined by letting the group act on the left side: $\left(\delta_{n} \otimes x\right)\left(\delta_{m} \otimes y\right)=$ $\delta_{n+m} \otimes \beta^{m}(x) y$. If the Banach space $l^{\prime}(\mathbb{Z}, \mathscr{B}, \beta)$ is provided with this alternative multiplication, and the adjoint is left unchanged, we obtain a new Banach algebra, which we will call $l^{1}(\mathbb{Z}, \mathscr{B}, \beta)^{0 p}$. The Banach algebras $l^{1}(\mathbb{Z}, \mathscr{B}, \beta)$ and $l^{1}(\mathbb{Z}, \mathscr{B}, \beta)^{0 p}$ are isomorphic. Indeed, define $\Psi: l^{1}(\mathbb{Z}, \mathscr{B}, \beta) \rightarrow$ $l^{1}(\mathbb{Z}, \mathscr{P}, \beta)^{0 p}, \quad \Psi\left(\sum_{-\infty}^{\infty} \delta_{n} \otimes x_{n}\right)=\sum_{-\infty}^{\infty} \delta_{-n} \otimes \beta^{-n}\left(x_{n}\right)$. Clearly Ψ is a Banach space isomorphism. Furthermore, if $\delta_{n} \otimes x, \delta_{m} \otimes y \in l^{1}(\mathbb{Z}, \mathscr{B}, \beta)$, one checks that $\Psi\left[\left(\delta_{n} \otimes x\right)\left(\delta_{m} \otimes y\right)\right]=\Psi\left(\delta_{n} \otimes x\right) \quad \Psi\left(\delta_{m} \otimes y\right) \quad$ and $\Psi\left[\left(\delta_{n} \otimes x\right)^{*}\right]=\Psi\left(\delta_{n} \otimes x\right)^{*}$.

If α is an endomorphism of a C^{*}-algebra \mathfrak{A}, the absence of an inverse for
α prevents us from mimicking the contruction of $l^{1}(\mathbb{Z}, \mathscr{B}, \beta)$ with (\mathcal{M}, α) in place (\mathscr{B}, β). If, however, we replace \mathbb{Z} by the semigroup \mathbb{Z}^{+}of nonnegative integers, we can define a Banach algebra $l^{1}\left(\mathbb{Z}^{+}, \mathfrak{M}, \alpha\right)$. The elements will be of the form $F=\sum_{n \geqslant 0} \delta_{n} \otimes x_{n}$, with $x_{n} \in \mathfrak{A}$, and $\|F\|_{1}=\sum_{n \geqslant 0}\left\|x_{n}\right\|<\infty$. In analogy with the above paragraph, the multiplication could be defined by letting the semigroup act on the right or on the left. For technical reasons, we choose the left action

$$
\left(\delta_{n} \otimes x\right)\left(\delta_{m} \otimes y\right)=\delta_{n+m} \otimes \alpha^{m}(x) y
$$

as the implication in $l^{1}\left(\mathbb{Z}^{+}, \mathfrak{M}, \alpha\right)$. Thus $l^{1}\left(\mathbb{Z}^{+}, \mathfrak{M}, \alpha\right)$ is a Banach algebra without adjoint.

Let (ρ, V) be an isometric covariant representation of (\mathfrak{A}, α). Then there is a representation Π of $l^{1}\left(\mathbb{Z}^{+}, \mathfrak{A}, \alpha\right)$ in $\mathscr{L}(\mathscr{R})$,

$$
\Pi\left(\sum_{n \geqslant 0} \delta_{n} \otimes x_{n}\right)=\sum_{n \geqslant 0} V^{n} \rho\left(x_{n}\right)
$$

Notice that

$$
\begin{aligned}
\Pi\left(\delta_{n} \otimes x\right) \Pi\left(\delta_{m} \otimes y\right) & =V^{n} \rho(x) V^{m} \rho(y) \\
& =V^{n} V^{m} \rho\left(\alpha^{m}(x)\right) \rho(y) \\
& =V^{n+m} \rho\left(\alpha^{m}(x) y\right) \\
& =\Pi\left(\delta_{n+m} \otimes \alpha^{m}(x) y\right) \\
& =\Pi\left[\left(\delta_{n} \otimes x\right)\left(\delta_{m} \otimes y\right)\right]
\end{aligned}
$$

We denote the representation Π by $V \times \rho$.
Next we wish to define an operator enveloping norm on $l^{1}\left(\mathbb{Z}^{+}, \mathfrak{A}, \alpha\right)$. First note it is possible to embed $l^{1}\left(\mathbb{Z}^{\prime}, \mathfrak{U}, \alpha\right)$ faithfully in some $\mathscr{C}(\mathscr{C})$, for if ρ is a faithful representation of \mathfrak{A} in $\mathscr{L}(\mathscr{K}), U_{+} \times \tilde{\rho}$ will be a faithful representation of $l^{1}\left(\mathbb{Z}^{+}, \mathfrak{X}, \alpha\right)$ in $\mathscr{L}(\mathscr{H}), \mathscr{H}=H^{2}(\mathscr{R})$.
II.2. Definition. For $F \in l^{1}\left(\mathbb{Z}^{+}, \mathfrak{M}, \alpha\right)$ set $\|F\|=\sup \{\|(V \times \rho)(F)\|$: (ρ, V) is an isometric covariant representation of $(\mathfrak{H}, \alpha)\}$. Define $\mathbb{Z}^{+} \times_{\alpha} \mathfrak{2}$ to be the completion of $l^{1}\left(\mathbb{Z}^{+}, \mathfrak{N}, \alpha\right)$ with respect to this norm. $\mathbb{Z}^{+} \times_{\alpha} \mathfrak{U}$ will be called the semi-crossed product of $\mathfrak{a l}$ with α.
11.3. Note that \mathfrak{H} can be embedded isometrically in $l^{1}\left(\mathbb{Z}^{+}, \mathfrak{H}, \alpha\right)$ as a (star) subalgebra by $x \rightarrow^{j} \delta_{0} \otimes x$.

Proposition. Let \mathfrak{A} be a unital C^{*}-algebra with endomorphism α. Then Π is a hilbert space representation of $l^{1}\left(\mathbb{Z}^{+}, \mathfrak{Y}, \alpha\right)$ satisfying
(i) $\Pi\left(\delta_{1} \otimes 1\right)$ is an isometry, and
(ii) $\left.\Pi\right|_{j(9)}$ is a C^{*}-algebra representation
if and only if $\Pi=V \times \rho$, where (ρ, V) is an isometric covariant representation of (\mathfrak{A}, α).

Proof. One direction is trivial. On the other hand, if Π satisfies (i) and (ii), we can set $V=\Pi\left(\delta_{1} \otimes 1\right)$ and $\rho(x)=\Pi\left(\delta_{0} \otimes x\right), x \in \mathscr{U}$. To show that (ρ, V) is an isometric covariant representation of (\mathfrak{U}, α), write the element

$$
\delta_{1} \otimes \alpha(x)=\left(\delta_{1} \otimes 1\right)\left(\delta_{0} \otimes \alpha(x)\right)
$$

and as

$$
=\left(\delta_{0} \otimes x\right)\left(\delta_{1} \otimes 1\right) .
$$

We have

$$
\begin{aligned}
\Pi\left(\delta_{1} \otimes \alpha(x)\right) & =\Pi\left(\delta_{1} \otimes 1\right) \Pi\left(\delta_{0} \otimes \alpha(x)\right) \\
& =V \rho(\alpha(x)) .
\end{aligned}
$$

Also,

$$
\begin{aligned}
\Pi\left(\delta_{1} \otimes \alpha(x)\right) & =\Pi\left(\delta_{0} \otimes x\right) \Pi\left(\delta_{1} \otimes 1\right) \\
& =\rho(x) V .
\end{aligned}
$$

Thus $V \rho(\alpha(x))=\rho(x) V$, as desired.
II.4. Proposition. Let α be an injective endomorphism of a C^{*}-algebra \mathfrak{N}. Let \mathscr{B} be a C^{*}-algebra containing \mathfrak{U} as a subalgebra and β an automorphism of \mathscr{P} such that $\alpha(x)=\beta(x), x \in \mathfrak{U}$ (as in I.8). Then $\mathbb{Z}^{+} \times_{\alpha} \mathfrak{U}$ is isomorphic with a nonselfadjoint subalgebra of the C^{*}-crossed product $\mathbb{Z} X_{\beta} \mathscr{B}$.

Proof. Since $\mathfrak{M} \subseteq \mathscr{B}$, and $\beta \mid \mathfrak{A}=\alpha, l^{1}\left(\mathbb{Z}^{+}, \mathfrak{X}, \alpha\right)$ can be considered as a subalgebra of $l^{1}(\mathbb{Z}, \mathscr{B}, \beta)^{0 p}$ in a natural way. Using the notation introduced following II.I,

$$
l^{1}\left(\mathbb{Z}^{+}, \mathbb{H}, \alpha\right) \rightarrow l^{1}(\mathbb{Z}, \mathscr{B}, \beta)^{0 p} \xrightarrow{\varphi} l^{1}(\mathbb{Z}, \mathscr{B}, \beta) \rightarrow \mathbb{Z} \times_{B} . \mathscr{B}
$$

yields on embedding of $l^{1}\left(\mathbb{Z}^{+}, \mathfrak{Q}, \alpha\right)$ in the crossed product $\mathbb{Z} X_{B} \mathscr{B}$, which we call l. If, for $F \in l^{1}\left(\mathbb{Z}^{+}, \mathfrak{2}, \alpha\right)$, the norm $\|F\|$ as defined in II. 2 is the same as the norm of $t(F)$ in $\mathbb{Z} \times_{B} \mathscr{B}$, then l can be extended to an isometric isomorphism $\hat{i}: \mathbb{Z}^{+} \times_{\alpha} \mathfrak{A} \rightarrow \mathbb{Z} \times_{\beta} \mathscr{B}$ so that the diagram

commutes. In other words, $\mathbb{Z}^{+} \times_{\alpha} \mathfrak{U}$ can be viewed as a nonselfadjoint subalgebra of $\mathbb{Z} X_{\beta} \mathscr{P}$. Thus it remains to show that $\|F\|$ and the norm of $l(F)$ are identical. Since every covariant representation (ρ, V) of (\mathscr{B}, β) restricts to an isometric covariant representation of (\mathcal{A}, α), it follows that $\|F\| \geqslant\|l(F)\|$. Suppose now that (ρ, V) is an isometric covariant representation of (\mathfrak{A}, α). Since by $1.4 \rho=\rho_{1} \oplus \rho_{2}, V=V_{1} \oplus V_{2}$, with $\left(\rho_{i}, V_{i}\right)$ an isometric covariant representation of (\mathcal{A}, α) (if it is nonzero), $i=1,2$, such that V_{1} is unitary and V_{2} a pure isometry, we may treat these cases separately. So assume tat (ρ, V) is an isometric covariant representation of (\mathfrak{A}, α) with V unitary. By the construction of \mathscr{D} in 1.8 , the subalgebra generated by $\left\langle\mathfrak{A}, \beta^{-1} \mathfrak{A}, \beta^{-2} \mathfrak{H}, \ldots\right\rangle$ is dense in \mathscr{B}. Extend ρ to $\left\langle\mathfrak{A}, \beta^{-1} \mathfrak{A}\right.$, $\left.\beta^{-2} \mathfrak{U}, \ldots\right\rangle$ by $\bar{\rho}(x)=V^{n} \rho\left(\beta^{n} x\right) V^{* n}$ if $\beta^{n}(x) \in \mathfrak{U}$. [Note that if x is in this subalgebra, $\beta^{n}(x) \in \mathfrak{A}$ for some $n \geqslant 0$.] Since $\|\bar{\rho}(x)\|=\left\|\rho\left(\beta^{n} x\right)\right\| \leqslant\left\|\beta^{n}(x)\right\|=$ $\|x\|, \bar{\rho}$ extends to a representation of \mathscr{B}, and in fact $(\bar{\rho}, V)$ is a covariant representation of (\mathscr{B}, β).

Next if (ρ, V) is an isometric covariant representation of (\mathscr{A}, α) with V a pure isometry, then by $\mathrm{I} .4(\rho, V)$ is equivalent to some ($\tilde{\pi}, U_{+}$). If $\mathscr{K}^{\prime \prime}$ is the hilbert space of the representation π of \mathfrak{N}, there is a hilbert space $\mathscr{X} \supset \mathscr{K}$ and a representation τ of \mathscr{B} such that $\pi(x)=\left.\tau(x)\right|_{\mathscr{r}}, x \in \mathfrak{A}[3,2.10 .2]$. If $\hat{\tau}$ denotes the representation of \mathscr{B} on $l^{2}(\mathscr{H})$ given by

$$
\begin{aligned}
& \hat{\tau}(x)\left(\ldots, \xi_{-1}, \xi_{0}, \xi_{2}, \ldots\right) \\
& \quad=\left(\ldots, \tau\left(\beta^{-1} x\right) \xi_{-1}, \tau(x) \xi_{0}, \tau(\beta x) \xi_{1}, \tau\left(\beta^{2} x\right) \xi_{2}, \ldots\right)
\end{aligned}
$$

and U the bilaterial shift on $l^{2}(\mathscr{X})$, then

$$
\hat{\tau}(x) U=U \hat{\tau}(\beta x), \quad x \in \mathscr{B}
$$

Now $l_{+}^{2}(\mathscr{K})\left(\right.$ or $\left.H^{2}(\mathscr{K})\right)$ is the subspace of $l^{2}(\mathscr{H})$ consisting of all $\xi=$ $\left(\ldots, \xi_{-1}, \xi_{0}, \xi_{1}, \xi_{2}, \ldots\right) \in l^{2}(\mathscr{H})$ with $\xi_{-n}=0, n=1,2, \ldots$, and $\xi_{n} \in \mathscr{K}$, $n=0,1,2, \ldots$. Furthermore, $\tilde{\pi}(x)=\left.\hat{\tau}(x)\right|_{l_{+}^{2}(\mathscr{X})}(x \in \mathfrak{A})$, and $U_{+}=\left.U\right|_{l_{+}^{2}(X)}$. In other words, the isometric covariant representation ($\tilde{\pi}, U_{+}$) is the restriction of the covariant representation $(\hat{\tau}, U)$ to the (invariant) subspace $l_{+}^{2}(\mathscr{K})$. It follows that $\|t(F)\| \geqslant\|F\|$, and hence $\|t(F)\|=\|F\|$.
II.5. Proposition. Let α be an endomorphism of a C^{*}-algebra \mathfrak{A}. For $F \in \mathbb{Z}^{+} \times_{\alpha} \mathfrak{A}$ we have $\|F\|=\sup \{\|(V \times \rho)(F)\|: \quad(\rho, V)$ is an isometric covariant representation of (\mathfrak{U}, α) with V a pure isometry $\}$.

Proof. First we make the obvious point that if (ρ, V) is an isometric covariant representation of (\mathfrak{A}, α), then by the definition of the norm on $\mathbb{Z}^{+} \times_{\boldsymbol{a}} \mathfrak{A}, V \times \rho$ extends to a bounded hilbert space representation of $\mathbb{Z}^{+} \times_{\alpha} \mathfrak{A}$.

By I. 4 every isometric covariant representation (ρ, V) of (\mathcal{A}, α) can be written as $\rho=\rho_{1} \oplus \rho_{2}, V=V_{1} \oplus V_{2}$, where $\left(\rho_{i}, V_{i}\right)$ is an isometric covariant representation of ($\mathfrak{U}, \alpha)$ and V_{1} is unitary (if it is nonzero) and V_{2} is a pure isometry (if it is nonzero). Thus to prove the proposition it is sufficient to show that if (ρ, V) is an isometric covariant representation with V unitary, then for every $\varepsilon>0$ there exists an isometric covariant representation $\left(\omega, U_{+}\right)$with $U_{+} \quad$ a pure isometry such that $\|(V \times \rho)(F)\| \leqslant$ $\left\|\left(U_{+} \times \omega\right)(F)\right\|+\varepsilon$.

Since V is unitary with $\rho(\alpha x)=V^{*} \rho(x) V$, it follows that the kernel of ρ contains the α-radical R_{α}, so (ρ, V) can be lifted to an isometric covariant representation $\left(\rho^{\prime}, V\right)$ of $\left(\mathfrak{M} / R_{\alpha}, \alpha^{\prime}\right)$, where α^{\prime} is the (injective) endomorphism of $\mathfrak{Q} / R_{\alpha}$ induced by α (see I.7). As in I.8, there exists a C^{*}. algebra \mathscr{B} containing \mathscr{U} / R_{α} as a subalgebra and an automorphism β of \mathscr{B} such that $\beta(x)=\alpha^{\prime}(x), x \in \mathfrak{U} / R_{\alpha}$. Essentially as in II. 4 we can embed $\mathbb{Z}^{+} \times_{\alpha},\left(\mathfrak{A} / R_{\alpha}\right)$ in $\left(\mathbb{Z} \times_{B} \mathscr{P}\right)^{0 p}$ (except here it is convenient to use $\left(\mathbb{Z} X_{B} \mathscr{B}\right)^{0 p}$ in place of $\left.\mathbb{Z} X_{B} \mathscr{B}\right)$. By [13, 7.7.5] and the amenability of \mathbb{Z}, if (π, \mathscr{K}) is any faithful representation of \mathscr{B}, then

$$
\|G\|=\|(U \times \hat{\pi})(G)\|, \quad G \in\left(\mathbb{Z} \times_{\beta} \mathscr{B}\right)^{0 p}
$$

where

$$
\begin{aligned}
& \hat{\pi}(x)\left(\ldots, \xi_{1}, \xi_{0}, \xi_{1}, \xi_{2}, \ldots\right) \\
& \quad=\left(\ldots, \pi\left(\beta^{-1} x\right) \xi_{-1}, \pi(x) \xi_{0}, \pi(\beta x) \xi_{2}, \pi\left(\beta^{2} x\right) \xi_{2}, \ldots\right)
\end{aligned}
$$

and U is the bilateral shift on $l^{2}(\mathbb{Z})$.
Let $F^{\prime} \in \mathbb{Z}^{+} \times_{\alpha^{\prime}}\left(\mathfrak{U} / R_{\alpha}\right)$ be the image of F under the canonical map $\mathbb{Z}^{+} \times_{\alpha} \mathfrak{U} \rightarrow \mathbb{Z}^{+} \times_{\alpha^{\prime}}\left(\mathfrak{U} / R_{\alpha}\right)$. Then $\|(V \times \rho)(F)\|=\left\|\left(V \times \rho^{\prime}\right)\left(F^{\prime}\right)\right\| \leqslant\left\|F^{\prime}\right\|=$ $\left\|(U \times \hat{\pi})\left(F^{\prime}\right)\right\|$. Now the space $l^{2}(\mathscr{K})$ has a chain of subspaces $l_{+n}^{2}(\mathscr{H})$, invariant under $(U \times \hat{\pi})\left(\mathbb{Z}^{+} X_{\alpha}\left(\mathscr{X} / R_{\alpha}\right)\right)$ and such that $U_{n \geqslant 0} l_{+n}^{2}(\mathscr{H})$ is dense in $l^{2}(\mathscr{H})$. Indeed, take $l_{+n}^{2}(\mathscr{H})=\left\{\xi: \xi=\left(\xi_{k}\right)_{k=-\infty}^{\infty} \in l^{2}(\mathscr{H})\right.$, with $\left.\xi_{k}=0, k<-n\right\}$. If n is chosen so that $\left\|\left.(U \times \hat{\pi})\left(F^{\prime}\right)\right|_{l^{2}}\right\|>\left\|F^{\prime}\right\|-\varepsilon$, and if U_{+}is the restriction $\left.U\right|_{l^{2}}(\boldsymbol{*})$, and if $\omega(x)=\left.\hat{\pi}(x)\right|_{t_{+n}^{2}(*)}, x \in \mathfrak{M}$, then $\left.\|(V \times \rho)(F)\| \leqslant \| U_{+} \times \omega\right)(F) \|^{\dagger}+\varepsilon$.
II.6. We now turn our attention to commutative C^{*}-algebras, $\mathfrak{U}=C_{0}(S)$, where S is locally compact hausdorff. In this context, ϕ will be used to denote the continuous and proper mapping, $\phi: S \rightarrow S$, such that $\alpha(f)=f \circ \phi, f \in C_{0}(S)$. Thus if f is a continuous function with compact support (resp. vanishing at infinity) $f \circ \phi$ has the same property. Although not every endomorphism of $C_{0}(S)$ is given by composition by such a ϕ, we will henceforth only consider endomorphism of $C_{0}(S)$ of this form. [Notice that if α is any endomorphism of $C_{0}(S)$ and $S_{1}=S \cup\{\infty\}$ is the one-point compactification, and if α is extended to an endomorphism α_{1} of $C\left(S_{1}\right)$ so
that $\alpha_{1}(1)=1$, then there is a continuous map $\phi_{1}: S_{1} \rightarrow S_{1}$ such that $\alpha_{1}(f)=$ $f \circ \phi_{1}, f \in C\left(S_{1}\right)$.]
II.7. Proposition. Let $F \in l^{1}\left(\mathbb{Z}^{+}, C_{0}(S), \alpha\right), F=\sum_{n \geqslant 0} \delta_{n} \otimes f_{n}$. Then the semi-crossed product norm

$$
\|F\|=\sup _{s \in S} \sup _{\|\xi\|_{2=1}}\left[\sum_{m>0}\left|\sum_{l=0}^{m} f_{m-1}\left(\phi^{l}(s)\right) \xi_{l}\right|^{2}\right]^{1 / 2}
$$

where $\xi=\left\{\xi_{n}\right\}_{n=0}^{\infty}$ is a sequence of complex numbers with $\|\xi\|_{2}=$ $\left(\sum_{n \geqslant 0}\left|\xi_{n}\right|^{2}\right)^{1 / 2}=1$.

Proof. For $s \in S$, consider the one-dimensional representation π_{s} of $C_{0}(S), \pi_{s}(f)=f(s)$. Then $\tilde{\pi}_{s}$ is a representation of $C_{0}(S)$ on H^{2}, the classical Hardy space, which we view as functions $\xi(z)=\sum_{n \geqslant 0} \xi_{n} z^{n}$ holomorphic in the open unit disk D with $\|\xi\|_{2}=\left(\sum_{n \geqslant 0}\left|\xi_{n}\right|^{2}\right)^{1 / 2}$. The unilateral shift on H^{2} becomes the operator M_{z} of multiplication by z. We compute the norm of $\left(M_{z} \times \tilde{\pi}_{s}\right)(F), F=\sum_{n \geqslant 0} \delta_{n} \otimes f_{n} \in l^{1}\left(\mathbb{Z}^{+}, C_{0}(S), \alpha\right)$, as an operator on H^{2}. Since $\left(\tilde{\pi}_{s}, M_{z}\right)$ is an isometric covariant representation of $\left(C_{0}(S), \alpha\right)$, it follows from the definition of the semi crossed product norm that $\|\left(M_{z} \times\right.$ $\left.\tilde{\pi}_{s}\right)(F)\|\leqslant\| F \|$.

Now

$$
\begin{aligned}
{\left[\left(M_{z} \times \tilde{\pi}_{s}\right)\left(\delta_{n} \otimes f_{n}\right)\right] \xi(z) } & =M_{z^{n}} \tilde{\pi}_{s}\left(f_{n}\right)\left(\sum_{k \geqslant 0} \xi_{k} z^{k}\right) \\
& =M_{z^{n}} \sum_{k \geqslant 0} \pi_{s}\left(\alpha^{k}\left(f_{n}\right)\right) \xi_{k} z^{k} \\
& =\sum_{k \geqslant 0} f_{n} \circ \phi^{k}(s) \xi_{k} z^{n+k}
\end{aligned}
$$

Thus

$$
\begin{aligned}
{\left[\left(M_{z} \times \tilde{\pi}_{s}\right)(F)\right] \xi(z) } & =\sum_{n \geqslant 0} \sum_{k \geqslant 0} f_{n} \circ \phi^{k}(s) \xi_{k} z^{n+k} \\
& =\sum_{m \geqslant 0}\left[\sum_{k=0}^{m} f_{m-k} \circ \phi^{k}(s) \xi_{k}\right] z^{m} .
\end{aligned}
$$

It follows that

$$
\left\|\left(M_{z} \times \tilde{n}_{s}\right)(F)\right\|=\sup _{\|\forall\|_{2}=1}\left(\sum_{m>0}\left|\sum_{k=0}^{m} f_{m-k} \circ \phi^{k}(s) \xi_{k}\right|^{2}\right)^{1 / 2}
$$

To complete the proof, we must show that

$$
\|F\| \leqslant \sup _{s}\left\|\left(M_{z} \times \tilde{\pi}_{s}\right)(F)\right\| .
$$

Now $\|F\|=\sup _{(\rho, V)}\|(V \times \rho)(F)\|$, where by II. 5 the supremum may be taken over all isometric covariant representations (ρ, V) of (\mathfrak{H}, α) such that V is a pure isometry. By I. 3 and I .4 , any such pair (ρ, V) is unitarily equivalent to one of the form ($\tilde{\pi}, U_{+}$), where π is a representation of $C_{0}(S)$ on a hilbert space \mathscr{K} and U_{+}is the unilateral shift on $H^{2}\left(\mathscr{K}^{\prime \prime}\right)$. But any cyclic representation π of $C_{0}(S)$ is unitarily equivalent to one of the form π_{μ} on $L^{2}(S, \mu)$ where μ is a positive regular Borel measure on S, and $\pi_{\mu}(f) g(s)=f(s) g(s)$, $g \in L^{2}(S, \mu)$. The argument which follows is a standard one using the direct integral, so it is just outlined here. Let $H_{s}^{2}=H^{2}$ denote the representation space of $\tilde{\pi}_{s}$, and M_{z}^{s} the unilateral shift (multiplication by z) on H_{s}^{2}. Interchanging the operations of direct sum and direct integral gives a natural isomorphism

$$
H^{2}\left(L^{2}(S, \mu)\right) \cong \int^{\oplus} H_{s}^{2} d \mu(s)
$$

and correspondingly of the operators

$$
\tilde{\pi}_{\mu}(f) \cong \int^{\oplus} \tilde{\pi}_{s}(f) d \mu(s), \quad F \in C_{0}(S)
$$

and

$$
M_{z}^{u} \cong \int^{\oplus} M_{z}^{s} d \mu(s) .
$$

Here $H^{2}\left(L^{2}(S, \mu)\right)$ is viewed as the space of $L^{2}(S, \mu)$ valued functions ξ on the open unit disk D,

$$
\xi(z)=\sum_{n \geqslant 0} \xi_{n} z^{n}, \quad z \in D, \xi_{n} \in L^{2}(S, \mu),
$$

with $\|\xi\|_{2}=\left(\sum\left\|\xi_{n}\right\|_{2}^{2}\right)^{1 / 2}$; in this context M_{z}^{μ} is defined by $\left(M_{z}^{\mu} \xi\right)(z)=z \xi(z)$, $\xi \in H^{2}\left(L^{2}(S, \mu)\right)$. If $F=\sum_{n \geqslant 0} \delta_{n} \otimes f_{n} \in l^{1}\left(\mathbb{Z}^{+}, C_{0}(S), \alpha\right)$, then

$$
\begin{aligned}
\left(M_{z}^{\mu} \times \tilde{\pi}_{\mu}\right)(F) & =\sum_{n \geqslant 0} M_{z n}^{\mu} \tilde{\pi}_{\mu}\left(f_{n}\right) \\
& =\int^{\oplus}\left(\sum_{n \geqslant 0} M_{z n}^{s} \tilde{\pi}_{s}\left(f_{n}\right)\right) d \mu(s),
\end{aligned}
$$

and so

$$
\begin{aligned}
\left\|\left(M_{z}^{\mu} \times \tilde{\pi}_{\mu}\right)(F)\right\| & =\underset{s \in S}{\operatorname{ess} \sup }\left\|\sum_{n \geqslant 0} M_{z^{n}}^{s} \tilde{\pi}_{s}\left(f_{n}\right)\right\| \\
& =\underset{s \in S}{\operatorname{ess} \sup }\left\|\left(M_{z}^{s} \times \tilde{\pi}_{s}\right)(F)\right\| \\
& \leqslant \sup _{s \in S}\left\|\left(M_{z}^{s} \times \tilde{\pi}_{s}\right)(F)\right\| .
\end{aligned}
$$

This completes the proof.
II.8. Corollary. With notation as in II.7,

$$
\|F\|=\sup _{s \in S}\left\|M_{z}^{s} \times \tilde{\pi}_{s}(F)\right\|
$$

Proof. This follows from the proof of II.7.
II.9. Notation. As before, let S be locally compact hausdorff and $\phi: S \rightarrow S$ a continuous and proper map defining an endomorphism α of $C_{0}(S)$ by $\alpha(f)=f \circ \phi$. If $F \in l^{1}\left(\mathbb{Z}^{+}, C_{0}(S), \alpha\right), F=\sum_{n \geqslant 0} \delta_{n} \otimes f_{n}$, then $\|F\| \geqslant$ $\sup _{s \in S}\left(\sum_{n \geqslant 0}\left|f_{n}(s)\right|^{2}\right)^{1 / 2}$, as can be seen by taking $\xi_{0}=1, \xi_{n}=0, n>0$, in II.7. In particular, $\sup _{n}\left\|f_{n}\right\| \leqslant\|F\|$. Thus if $\left\{F^{(k)}\right\}_{k=1}^{\infty} \subset l^{1}\left(\mathbb{Z}^{+}, C_{0}(S), \alpha\right)$ is a Cauchy sequence with respect to the semi-crossed product norm, say, $F^{(k)}=$ $\sum_{n \geqslant 0} \delta_{n} \otimes f_{n}^{(k)}$, it follows that for each $n,\left\{f_{n}^{(k)}\right\}_{k=1}^{\infty}$ is Cauchy in $C_{0}(S)$. This means that each element F of the completion $\mathbb{Z}^{+} \times_{a} C_{0}(S)$ is described by a unique sequence $\left\{f_{n}\right\}_{n=0}^{\infty}, f_{n} \in C_{0}(S)$. If $F \in \mathbb{Z}^{+} \times_{a} C_{0}(S)$ corresponds to the sequence $\left\{f_{n}\right\}_{n=0}^{\infty}$, we will write $F=\sum_{n \geqslant 0} M_{z^{n}} f_{n}$.

Let $K\left(\mathbb{Z}^{+}, \mathfrak{A}, \alpha\right)\left(\mathfrak{U}-C_{0}(S)\right)$ be the subalgebra of $l^{1}\left(\mathbb{Z}^{+}, \mathfrak{U}, \alpha\right)$ consisting of functions $F: \mathbb{Z}^{+} \rightarrow \mathfrak{U}$ with finite support. Clearly, $K\left(\mathbb{Z}^{+}, \mathfrak{U}, \alpha\right)$ is dense in $\mathbb{Z}^{+} \times{ }_{\alpha} C_{0}(S)$. This does not imply, however, that if $F \in \mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$ has the representation $F=\sum_{n \geqslant 0} M_{z n} f_{n}$, then F is the limit of the elements $F^{(n)}=$ $\sum_{k=0}^{n} M_{z^{k}} f_{k}$. Indeed, this can be seen when S is a single point (and ϕ the identity map). In that case $\mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$ is the disk algebra \mathscr{A}, and not every function in the disk algebra is the uniform limit of the partial sums of its fourier series. [However, see the remark following IV. 2 for a discussion of summability.]
II.10. Retain the notation of II.9. If $F \in \mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$, $F=\sum_{n \geqslant 0} M_{z^{n}} f_{n}$ (hence $\left\|f_{n}\right\| \leqslant\|F\|, n \in \mathbb{Z}^{+}$) we can associate with each $s \in S$ the holomorphic function $F(s)$ in the unit disk, given by $F(s)(z) \equiv$ $F(s, z)=\sum_{n \geqslant 0} f_{n}(s) z^{n}$.

Corollary. If $f_{n} \circ \phi=f_{n}, n \geqslant 0$, then $\|F\|=\sup _{s \in S} \sup _{|z|<1}|F(s, z)|$.
Proof. By II.8, $\|F\|=\sup _{s \in S}\left\|\left(M_{z} \times \tilde{\pi}_{s}\right)(F)\right\|$. As in II.7,

$$
\begin{aligned}
{\left[\left(M_{z} \times \pi_{s}\right)(F)\right] \xi(z) } & =\sum_{n \geqslant 0} \sum_{k \geqslant 0} \pi_{s}\left(f_{n} \circ \phi^{k}\right) \xi_{k} z^{n+k} \\
& =\left(\sum_{n \geqslant 0} f_{n}(s) z^{n}\right)\left(\sum_{k \geqslant 0} \xi_{k} z^{k}\right),
\end{aligned}
$$

using that $f_{n} \circ \phi=f_{n}$. Thus

$$
\left[\left(M_{z} \times \tilde{\pi}_{s}\right)(F)\right] \xi(z)=F(s, z) \xi(z)
$$

It follows that $\left\|\left(M_{z} \times \tilde{\pi}_{s}\right)(F)\right\|=\sup _{|z|<1}|F(s, z)|$, and hence $\|F\|=\sup _{s c s}$ $\sup _{|z|<1}|F(s, z)|$.

II.11. Proposition. Keep the notations of II.9.

(i) The map $s \rightarrow\left\|\left(M_{z} \times \tilde{\pi}_{s}\right)(F)\right\|$ is lower semicontinuous for each $F \in \mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$.
(ii) Suppose that the family $\left\{\phi^{n}\right\}_{n=0}^{\infty}$ is uniformly equicontinuous, and regard each $M_{z} \times \tilde{\pi}_{s}(s \in S)$ as mapping into the same space $\left(H^{2}\right)$. Then for each $F \in \mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$, the map $s \rightarrow M_{z} \times \tilde{\pi}_{s}(F)$ is continuous in the norm topology in $\mathscr{L}\left(H^{2}\right)$.

Proof. (i) If $F=\sum_{n=0}^{\infty} M_{z n} f_{n}$, by II. $7,\left\|M_{z} \times \tilde{\pi}_{s}(F)\right\|=\sup \left\|_{\xi}\right\|_{2=1}\left[\sum_{m \geqslant 0}\right.$ $\left.\left|\sum_{l=0}^{m} f_{m-l}\left(\phi^{l}(s)\right) \xi_{l}\right|^{2}\right]^{1 / 2}$. If $\left\|M_{z} \times \tilde{\pi}_{s_{0}}(F)\right\|>\alpha$, then there is a $\xi \in H^{2}$, $\|\xi\|_{2}=1$, and a positive integer N such that $g\left(s_{0}\right)>\alpha$, where $g(s) \equiv\left[\sum_{m=0}^{N}\right.$ $\left.\mid \sum_{l=0}^{m} f_{m-l}\left(\phi^{l}(s)\right) \xi_{l}\right]^{1 / 2}$. Since g is clearly continuous, $g\left(s_{0}\right)>\alpha$ implies $g(s)>\alpha$ for all s in some neighborhood U of s_{0}. But $\left\|M_{z} \times \tilde{\pi}_{s}(F)\right\| \geqslant g(s)$ for all s, so $\left\|M_{z} \times \tilde{\pi}_{s}(F)\right\|>\alpha$ for all $s \in U$.
(ii) Given $F=\mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$ and $\varepsilon>0$, there is an $F^{\prime} \in K\left(\mathbb{Z}^{+}, C_{0}(S), \alpha\right), F^{\prime}=\sum_{n=0}^{N} M_{z^{n}} f_{n}$, such that $\left\|F-F^{\prime}\right\|<\varepsilon / 3$. Now if $\xi \in H^{2},\|\xi\|_{2}=1$,

$$
\begin{aligned}
{\left[\left(M_{z}\right.\right.} & \left.\left.\times \tilde{\pi}_{s}\right)\left(F^{\prime}\right)-\left(M_{z} \times \tilde{\pi}_{s^{\prime}}\right)\left(F^{\prime}\right)\right] \xi(z) \\
& =\sum_{m \geqslant 0} z^{m} \sum_{k=0}^{m} \xi_{k}\left[f_{m-k}\left(\phi^{k}(s)\right)-f_{m-k}\left(\phi^{k}\left(s^{\prime}\right)\right)\right] \\
& =\sum_{m \geqslant 0} z^{m} \sum_{k=\max (0, m-N)}^{m} \xi_{k}\left[f_{m-k}\left(\phi^{k}(s)\right)-f_{m-k}\left(\phi^{k}\left(s^{\prime}\right)\right)\right] .
\end{aligned}
$$

Let $\eta=\varepsilon / 3(N+1)$, and let U be a neighborhood of s such that for $s^{\prime} \in U$, $\left|f_{j}\left(\phi^{k}(s)\right)-f_{j}\left(\phi^{k}\left(s^{\prime}\right)\right)\right|<\eta, j=0,1, \ldots, N, k=0,1,2, \ldots$. It follows that

$$
\begin{aligned}
\|\left[\left(M_{z}\right.\right. & \left.\left.\times \tilde{\pi}_{s}\right)\left(F^{\prime}\right)=\left(M_{z} \times \tilde{\pi}_{s^{\prime}}\right)\left(F^{\prime}\right)\right] \xi(z) \|^{2} \\
& <\sum_{m \geqslant 0}\left|\sum_{k=\max (0, m-N)}^{m}\right| \xi_{k}|\cdot \eta|^{2} \\
\leqslant & \left|\xi_{0}\right|^{2} \eta^{2}+2\left(\left|\xi_{0}\right|^{2}+\left|\xi_{1}\right|^{2}\right) \eta^{2}+\cdots \\
& +N\left(\left|\xi_{0}\right|^{2}+\left|\xi_{1}\right|^{2}+\cdots+\left|\xi_{N-1}\right|^{2}\right) \eta^{2} \\
& +\sum_{m \geqslant N}(N+1)\left(\left|\xi_{m-N}\right|^{2}+\left|\xi_{m-N+1}\right|^{2}+\cdots+\left|\xi_{m}\right|^{2}\right) \eta^{2} \\
\leqslant & (N+1)^{2} \eta^{2} \sum_{m \geqslant 0}\left|\xi_{m}\right|^{2}=(N+1)^{2} \eta^{2} \\
\leqslant & \frac{\varepsilon^{2}}{9} \quad\left(s^{\prime} \in U\right)
\end{aligned}
$$

An application of the triangle inequality yields

$$
\left\|\left(M_{z} \times \tilde{\pi}_{s}\right)(F)-\left(M_{z} \times \tilde{\pi}_{s^{\prime}}\right)(F)\right\|<\varepsilon \quad \text { for } \quad s^{\prime} \in U
$$

II.12. Proposition. Let S_{i} be locally compact hausdorff and $\phi_{i}: S_{i} \rightarrow S_{i}$ continuous and proper, $i=1,2$. Let $q:\left(S_{1}, \phi_{1}\right) \rightarrow\left(S_{2}, \phi_{2}\right)$ be a continuous equivariant and proper map; i.e., $q: S_{1} \rightarrow S_{2}$ is continuous, $q^{-1}(K)$ is compact for every compact set $K \subseteq S_{2}$, and the diagram commutes.

Then there is a continuous homomorphism $\tilde{q}: \mathbb{Z}^{+} \times_{\alpha_{2}} C_{0}\left(S_{2}\right) \rightarrow$ $\mathbb{Z}^{+} \times_{\alpha_{1}} C_{0}\left(S_{1}\right)$. If $F \in \mathbb{Z}^{+} \times_{\alpha_{2}} C_{0}\left(S_{2}\right), \quad F=\sum_{n \geqslant 0} M_{z n} f_{n}$, then $\tilde{q}(F)=$ $\sum_{n \geqslant 0} M_{z n} f_{n} \circ q$. Finally, if q is surjective, \tilde{q} is injective. If q is injective, the image of \tilde{q} is dense; if q is injective and $q\left(S_{1}\right)$ is open in S_{2}, then \tilde{q} is surjective.

Proof. Define $\tilde{q} \quad$ on $K\left(\mathbb{Z}^{+}, C_{0}\left(S_{2}\right), \alpha_{2}\right) \quad$ by $\quad \tilde{q}\left(\sum_{n=0}^{N} M_{z^{n}} f_{n}\right)=$ $\sum_{n=0}^{N} M_{z n} f_{n} \circ q$. Note that $f_{n} \circ q \in C_{0}\left(S_{1}\right)$ since q is proper. This is linear; to see that it is a homomorphism, note

$$
\begin{aligned}
\tilde{q}\left(M_{z^{n}} f M_{z^{m}} q\right) & =\tilde{q}\left(M_{z^{n+m}} f \circ \phi_{2}^{m} g\right) \\
& =M_{z^{n+m}} f \circ \phi_{2}^{m} \circ q g \circ g \\
& =M_{z^{n+m}} f \circ q \circ \phi_{1}^{m} g \circ q \\
& =\left(M_{z^{n}} f \circ q\right)\left(M_{z^{m}} g \circ q\right) \\
& =\tilde{q}\left(M_{z^{n}} f\right) \tilde{q}\left(M_{z^{m}} q\right) .
\end{aligned}
$$

If $F=\sum_{n=0}^{N} M_{z^{n}} f_{n} \in K\left(\mathbb{Z}^{+}, C_{0}\left(S_{2}\right), \alpha_{2}\right)$, a straightforward calculation shows that

$$
M_{z} \times \tilde{\pi}_{s_{1}}(\tilde{q}(F))=M_{z} \times \tilde{\pi}_{q\left(s_{1}\right)}(F), \quad s_{1} \in S_{1}
$$

Thus,

$$
\begin{align*}
\|\tilde{q}(F)\| & =\sup _{s_{1} \in S_{1}}\left\|M_{z} \times \tilde{\pi}_{s_{1}}(\tilde{q}(F))\right\| \\
& =\sup _{s_{1} \in S_{1}}\left\|M_{z} \times \tilde{\pi}_{q\left(s_{1}\right)}(F)\right\| \tag{*}\\
& \leqslant \sup _{s_{2} \in S_{2}}\left\|M_{2} \times \tilde{\pi}_{s_{2}}(F)\right\| \\
& \leqslant\|F\| .
\end{align*}
$$

It follows that \tilde{q} extends to a continuous homomorphism $\mathbb{Z}^{+} \times_{\alpha_{2}} C_{0}\left(S_{2}\right) \rightarrow$ $\mathbb{Z}^{+} \times_{\alpha_{1}} C_{0}\left(S_{1}\right)$. Since the formula $\left(M_{z} \times \tilde{\pi}_{s}\right)(\tilde{q}(F))=M_{z} \times \tilde{\pi}_{q(s)}(F)$ is valid for $F \in K\left(\mathbb{Z}^{+}, C_{0}\left(S_{2}\right), \alpha_{2}\right)$, an obvious approximation argument yields the result for all $F \in \mathbb{Z}^{+} \times_{\alpha_{2}} C_{0}\left(S_{2}\right)$.
If q is surjective, then the inequality ($*$) is replaced by an equality, so $\|\tilde{q}(F)\|=\|F\|$, and \tilde{q} is injective.

Suppose q is injective; for simplicity of notation regard S_{1} as a subset of S_{2}. Observe that the image of \tilde{q} contains $K\left(\mathbb{Z}^{+}, K\left(S_{1}\right), \alpha_{1}\right)$, where $K\left(S_{1}\right)$ is the space of continuous functions with compact support on S_{1}. For if $G=$ $\sum_{n=0}^{N} M_{z^{n}} g_{n} \in K\left(\mathbb{Z}^{+}, K\left(S_{1}\right), \alpha_{1}\right)$ and if $f_{n} \in K\left(S_{2}\right)$ is any function such that $\left.f_{n}\right|_{s_{1}}=g_{n}, 0 \leqslant n \leqslant N$, then $\tilde{q}\left(\sum_{n=0}^{N} M_{z_{n}} f_{n}\right)=G$. This shows that the image of \tilde{q} is dense. If $S_{1} \subset S_{2}$ is open, the function f_{n} above must coincide with g_{n}, $0 \leqslant n \leqslant N$. From II. 7 it is easy to see that the norm of F will be $\sup _{s \in s_{2}}\left\|M_{z} \times \tilde{\pi}_{s}(F)\right\|=\|G\|$. Since \tilde{q} is isometric with dense image, it is surjective.

Corollary. If $\Theta: S_{2} \rightarrow S_{1}$ is a homeomorphism such that $\Theta \circ \phi_{2}=$ $\phi_{1} \circ \theta$, then $\mathbb{Z}^{+} \times_{\alpha_{1}} C_{0}\left(S_{1}\right), \mathbb{Z}^{+} \times_{\alpha_{2}} C_{0}\left(S_{2}\right)$ are isometrically isomorphic.
II.13. Corollary. Let S be locally compact, $\phi: S \rightarrow S$ continuous and proper. Let $S_{0} \subseteq S$ be open and assume $\phi^{-1}\left(S_{0}\right)=S_{0}$; let $\phi_{0}=\left.\phi\right|_{s_{0}}$ and $\alpha_{0}(f)=f \circ \phi_{0}, f \in C_{0}\left(S_{0}\right)$. Then $\mathbb{Z}^{+} \times_{\alpha_{0}} C_{0}\left(S_{0}\right)$ is naturally identified with the closed ideal $\mathscr{I}=\left\{F \in \mathbb{Z}^{+} \times_{\alpha} C_{0}(S), F=\sum_{n \geqslant 0} M_{z^{n}} f_{n}:\left\{s: f_{n}(s) \neq 0\right\} \subseteq\right.$ $\left.S_{0}, n \geqslant 0\right\}$.

Proof. Let $S \cup\{\infty\}, S_{0} \cup\left\{\infty_{0}\right\}$ be the one-point compactifications of S, S_{0}, respectively. Let $q: S \cup\{\infty\} \rightarrow S_{0} \cup\left\{\infty_{0}\right\}$ be given by

$$
q(s)= \begin{cases}s, & s \in S_{0}, \\ \infty_{0}, & s \in S \cup\{\infty\} \backslash S_{0} ;\end{cases}
$$

then q is equivariant and surjective, so by II. $12 \tilde{q}: \mathbb{Z}^{+} \times_{\alpha_{0}} C\left(S_{0} \cup\left\{\infty_{0}\right\}\right) \rightarrow$ $\mathbb{Z}^{+} \times_{\alpha} C(S \cup\{\infty\})$ is injective. Now \tilde{q} maps $K\left(\mathbb{Z}^{+}, C_{0}\left(S_{0}\right), \alpha_{0}\right)$, viewed as a subalgebra of $K\left(\mathbb{Z}^{+}, C_{0}\left(S_{0} \cup\left\{\infty_{0}\right\}\right), \alpha_{0}\right)$, onto $K\left(\mathbb{Z}^{+}, C_{0}(S), \alpha\right) \cap \mathscr{I}$, and we claim this is dense in \mathscr{F} : For if $F=\sum_{n \geqslant 0} M_{z^{n}} f_{n} \in \mathscr{F}$, and if F_{n} is the nth arithmetic mean of the series $\sum_{n>0} M_{2 n} f_{n}$, then $\left\|F_{n}-F\right\| \rightarrow 0$ (cf. Remark following IV.2) and $F_{n} \in K\left(\mathbb{Z}^{+}, C_{0}(S), \alpha\right) \cap \mathcal{F}$. Since \tilde{q} is isometric, $\tilde{q}\left(\mathbb{Z}^{+} \times_{a_{0}} C_{0}\left(S_{0}\right)\right)=\mathscr{I}$. To see that \mathscr{F} is an ideal, notice that $f \mathscr{F} \subseteq \mathscr{F}, f \subseteq \mathscr{F}, f \in C_{0}(S)$, and $M_{z}, \mathscr{F} \subseteq \mathscr{F}, M_{z} \mathscr{F} \subseteq \mathscr{F}$; thus \mathscr{F} is invariant under the subalgebra $K\left(\mathbb{Z}^{+}, C_{0}(S), \alpha\right)$ generated by $\left\{f \in C_{0}(S), M_{z}\right\}$. Since \mathscr{F} is closed, it is invariant under left and right multiplication from $\mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$. Alternatively, we could observe that $\mathscr{F}=\bigcap_{s \in S \backslash S_{0}} \operatorname{ker}\left(M_{z}^{s} \times \tilde{\pi}_{s}\right)$.
II.14. Again, let $\phi: S \rightarrow S$ be continuous and proper, and let $S_{0} \subseteq S$ be open. If, instead of assuming $\phi^{-1}\left(S_{0}\right)=S_{0}$ as before, we only assume $\phi^{-1}\left(S_{0}\right) \subseteq S_{0}$, it makes no sense to write $\left.\phi\right|_{s_{0}}$. Still, if we set $\mathscr{F}=\{F \in$ $\left.\mathbb{Z}^{+} \times_{\alpha} C_{0}(S), F=\sum_{n \geqslant 0} M_{z^{n}} f_{n}:\left\{s: f_{n}(s) \neq 0\right\} \subseteq S_{0}, \quad n \geqslant 0\right\}$, essentially the same argument as in II. 13 shows \mathscr{F} is an ideal: \mathscr{F} is a linear subspace such that $M_{z} \mathscr{F} \subseteq \mathscr{F}, \mathscr{F} M_{z} \subseteq \mathscr{F}$ and $f \mathscr{F}, \mathscr{F} f \subseteq \mathscr{F}, f \in C_{0}(S)$. Also, note that $\left\{F \in K\left(\mathbb{Z}^{+}, C_{0}(S), \alpha\right), F=\sum_{n=0}^{p} M_{z^{n}} f_{n}: p \in \mathbb{Z}^{+}, f_{n}\right.$ has compact support in $\left.S_{0}\right\}$ is dense in \mathscr{F}.

III.

III.1. Let \mathscr{A} denote the disk algebra; that is, the commutative Banach algebra of continuous functions on the closed unit disk which are holomorphic in the interior. Fix a positive integer k_{0}, and let $\mathscr{D}_{k_{0}}$ be the algebra of all k_{0} by k_{0} matrices of functions $\left[f_{i j}\right]_{0 \leqslant i, j \leqslant k_{0}-1}, f_{i j} \in \mathscr{A}$, and of the form

$$
f_{i j}(z)=\sum_{n \geqslant 0} a_{n}^{(i j)} z^{l+n k_{0}}
$$

where $0 \leqslant l<k_{0}$ and $l=i-j\left(\bmod k_{0}\right)$. There are various (equivalent) norms under which $\mathscr{R}_{k_{0}}$ is a Banach algebra. We describe one such norm.

Let H^{2} refer to the classical Hardy space of holomorphic functions $\xi(z)=\sum_{n \geqslant 0} \xi_{n} z^{n}$ in the unit disk having nontangential L^{2} boundary values with

$$
\|\xi\|^{2}=\sum_{n \geqslant 0}\left|\xi_{n}\right|^{2}=\frac{1}{2 \pi} \int_{|z|=1}|\xi(z)|^{2} d z
$$

and inner product

$$
(\xi, \eta)=\frac{1}{2 \pi} \int_{|z|=1} \xi(z) \eta(z)^{-} d z \quad\left(\xi, \eta \in H^{2}\right)
$$

Let $H_{j}^{2}\left(0 \leqslant j<k_{0}\right)$ denote the subspace of functions of the form $\xi(z)=\sum_{n \geqslant 0}$ $\xi_{j+n k_{0}} z^{j+n k_{0}}$. The subspaces H_{j}^{2}, H_{k}^{2} are orthogonal if $j \neq k$. The mapping $P_{j}: H^{2} \rightarrow H_{j}^{2}, \quad \xi(z)=\sum_{n \geqslant 0} \xi_{n} z^{n} \rightarrow \sum_{n \geqslant 0} \xi_{j+n k_{0}} z^{j+n k_{0}} \quad$ is the orthogonal projection of H^{2} onto $H_{j}^{2}, 0 \leqslant j<k_{0}$.

Now a matrix $\left[f_{i j}\right] \in \mathscr{D}_{k_{0}}$ maps a vector $\left[\xi^{0}(z), \xi^{1}(z), \ldots, \xi^{k_{0}-1}(z)\right] \in$ $\oplus_{j=0}^{k_{0}-1} H_{j}^{2}$ to a vector $\left[\eta^{0}(z), \eta^{1}(z), \ldots, \eta^{k_{0}-1}(z)\right] \in\left(\oplus_{j=0}^{k_{0}-1} H_{j}^{2}\right.$ in the natural way

$$
\eta^{k}(z)=\sum_{j=0}^{k_{0}-1} f_{k j}(z) \xi^{j}(z)
$$

It is by means of this natural representation of $\mathscr{B}_{k_{0}}$ on $\oplus_{j=0}^{k_{0}-1} H_{j}^{2}$ that the norm in $\mathscr{D}_{k_{0}}$ is defined; it is the operator norm associated with this representation. Of course when $k_{0}=1$, we just obtain $\mathscr{B}_{1}=\mathscr{A}$. For $k_{0} \geqslant 2$, $\mathscr{B}_{k_{0}}$ is a noncommutative, nonselfadjoint operator algebra.
III.2. Theorem. Let k_{0} be a positive integer, $S=\left\{s_{0}, s_{1}, \ldots, s_{k_{0}-1}\right\}$, and $\phi: S \rightarrow S, \phi\left(s_{j}\right)=s_{j+1\left(\bmod k_{0}\right)}$. Then the semi-crossed product $\mathbb{Z}^{+} \times_{\alpha} C(S)$ is isomorphic to $\mathscr{B}_{k_{0}}$.

Proof. Let $F=\sum_{n \geqslant 0} M_{z^{n}} f_{n} \in \mathbb{Z}^{+} \times_{\alpha} C(S), \xi(z)=\sum_{n \geqslant 0} \xi_{n} z^{n} \in H^{2}$. We compute

$$
\left[\left(M_{z} \times \tilde{\pi}_{s_{0}}\right)(F)\right] \xi(z)=\sum_{n \geqslant 0} \sum_{k \geqslant 0} f_{n} \circ \phi^{k}\left(s_{0}\right) \xi_{k} z^{n+k}
$$

Make the substitution $k \rightarrow m k_{0}+j$, and use $\phi^{k}=\phi^{j}$ to get

$$
\begin{aligned}
& =\sum_{j=0}^{k_{0}-1} \sum_{n \geqslant 0} f_{n} \circ \phi^{j}\left(s_{0}\right)\left(\sum_{m \geqslant 0} \xi_{m k_{0}+j} z^{m k_{0}+j}\right) z^{n} \\
& =\sum_{j=0}^{k_{0}-1}\left(\sum_{n \geqslant 0} f_{n} \circ \phi^{j}\left(s_{0}\right) z^{n}\right) \xi^{j}(z) \\
& =\sum_{j=0}^{k_{0}-1} F\left(\phi^{j}\left(s_{0}\right), z\right) \xi^{j}(z),
\end{aligned}
$$

where $\xi^{j}(z)=\sum_{m \geqslant 0} \xi_{m k_{0}+j} z^{m k_{0}+j}$, and $F\left(\phi^{j}\left(s_{0}\right), z\right) \xi^{j}(z)$ denotes the pointwise product. Next write $\sum_{j=0}^{k_{0}-1} F\left(\phi^{j}\left(s_{0}\right), z\right) \xi^{j}(z)=\sum_{i=0}^{k_{0}-1} \sum_{j=0}^{k_{0}-1} P_{i} F\left(\phi^{j}\left(s_{0}\right), z\right)$ $\xi^{j}(z)$. The projection onto H_{i}^{2} composed with multiplication by $F\left(\phi^{j}\left(s_{0}\right), z\right)$ restricted to H_{j}^{2}, or $P_{i} F\left(\phi^{j}\left(s_{0}\right), z\right) P_{j}$, is given by the multiplication operator $F_{i j}(z) \equiv P_{i} F\left(\phi^{j}\left(s_{0}\right), z\right) P_{j}=\sum_{n} f_{i-j+n k_{0}}\left(\phi^{j}\left(s_{0}\right)\right) z^{i-j+n k_{0}} P_{j}$, where the sum over n begins with $n=0$ if $i \geqslant j$, and with $n=1$ if $i<j$.

Thus we see that $M_{z} \times \tilde{\pi}_{s_{0}}$ yields a faithful representation of $\mathbb{Z}^{+} \times_{\alpha} C(S)$ onto $\mathscr{B}_{k_{0}}$. Of course if s_{0} had been replaced by any $s_{k} \in S$, the representation $M_{z} \times \tilde{\pi}_{s_{k}}$ would also yield an isomorphism of $\mathbb{Z}^{+} \times_{\alpha} C(S)$ with $\mathscr{B}_{k_{0}}$.
III.3. Next we study the maximal (two sided) ideals of $\mathscr{B}_{k_{0}}$. Clearly, the kernel $M_{0}^{(k)}$ of the homomorphism $\left[f_{i j}\right] \rightarrow f_{k k}(0), 0 \leqslant k \leqslant k_{0}-1$, is maximal, as is the kernel M_{λ} of the map $\left[f_{i j}\right] \rightarrow\left[f_{i j}(\lambda)\right], \lambda \in \bar{D}, \lambda \neq 0$. As we will see, these are the only maximal ideals.

Proposition. Let M be a maximal ideal of $\mathscr{B}_{k_{0}}, \quad M \neq M_{0}^{(k)}$, $0 \leqslant k \leqslant k_{0}-1$. Then $M=M_{\mathcal{A}}=\left\{\left[f_{i j}\right] \in \mathscr{D}_{k_{0}}: f_{i j}(\lambda)=0,0 \leqslant i, j \leqslant k_{0}-1\right\}$, for some $\lambda \in \bar{D}, \lambda \neq 0$.

Proof. Let $E_{i j}$ be the $k_{0} \times k_{0}$ matrix with 1 in the (i, j) entry and zero elsewhere, $0 \leqslant i, j \leqslant k_{0}-1$. Then $z^{j} \otimes E_{j 0}, 0 \leqslant j \leqslant k_{0}-1$, and $z^{k_{0}-i} \otimes E_{0 i}$,
$0 \leqslant i \leqslant k_{0}-1$, belong to $\mathscr{D}_{k_{0}}$. If $F=\left[f_{i j}\right] \in M, F \notin M_{0}^{(0)}$, then $E_{00} F\left(z^{j} \otimes E_{j 0}\right)=z^{j} f_{0 j}(z) \otimes E_{00} \in M$. Likewise $\left(z^{k_{0}-i} \otimes E_{0 i}\right) F\left(z^{j} \otimes E_{j 0}\right)=$ $z^{k 0+j-i} f_{i j}(z) \otimes E_{00} \in M$. Thus M contains all linear combinations $\left[\sum_{j=0}^{k_{0}-1} c_{0 j} z^{j} f_{0 j}(z)+\sum_{i=1}^{k_{0}-1} \sum_{j=0}^{k_{0}-1} z^{k_{0}+j-i} c_{i j} f_{i j}(z)\right] \otimes E_{00}$. Let $\quad \exists$ be the closed ideal in \mathscr{A} generated by the set of all linear combinations $\left\{\sum_{j=0}^{k_{0}-1} c_{0 j} z^{j} f_{0 j}(z)+\sum_{i=0}^{k_{0}-1} \sum_{j=0}^{k_{0}-1} c_{i j} z^{k_{0}+j-i} f_{i j}(z)\right\}$. If \mathscr{y} is proper, it is contained in an ideal of the form $\{f \in \mathscr{A}: f(\lambda)=0\}$ for some $\lambda \in \bar{D}[9$, Corollary, p. 87]. However, $f_{00} \in \mathscr{Y}$ and $f_{00}(0) \neq 0$, since $F \notin M_{0}^{(0)}$; so $\mathscr{I} \not \subset\{f \in \mathscr{A}: f(0)=0\}$. Thus if \mathscr{F} is proper $\mathscr{F} \subset\{f \in \mathscr{A}: f(\lambda)=0\}$ for some $\lambda \in \bar{D}, \lambda \neq 0$. But then $\lambda^{j} f_{0 j}(\lambda)=0$, and $\lambda^{k_{0}+j-i} f_{i j}(\lambda)=0,0 \leqslant j \leqslant k_{0}-1$, $1 \leqslant i<k_{0}$; hence $f_{l j}(\lambda)=0,0 \leqslant i, j \leqslant k_{0}-1$, and $F \in M_{\lambda}$.

If, on the other hand, $\mathscr{J}=\mathscr{A}$, then $E_{00} \in M$. But in that case an analogous argument, making use of the fact that $M \neq M_{0}^{(j)}$, shows that $E_{j j} \in M, \quad 1 \leqslant j \leqslant k_{0}-1$. Hence $I-E_{00}+E_{11}+\cdots+E_{k_{0}-1 k_{0}-1} \in M$, so $M=\mathscr{B}_{k_{0}}$.
III.4. For convenience, write ψ_{s} for $M_{z} \times \tilde{\pi}_{s}$. Let S be a locally compact hausdorff space such that every point of S is periodic under a homeomorphism ϕ. If $S_{0}=\left\{s_{0}, s_{1}, \ldots, s_{k_{0}-1}\right\}$ is the orbit of a point $s_{0} \in S$, then the injection $q: S_{0} \rightarrow S$ determines a surjection $\tilde{q}: \mathbb{Z}^{+} \times_{\alpha} C_{0}(S) \rightarrow$ $\mathbb{Z}^{+} \times_{\alpha_{0}} C\left(S_{0}\right) \cong \mathscr{D}_{k_{0}}$, by II.12, III.2, and the fact that $\mathscr{B}_{k_{0}}$ is strongly semisimple with maximal ideals of finite codimension, so we may view $\psi_{s_{0}}$ as a representation of $\mathbb{Z}^{+} \times{ }_{\alpha} C_{0}(S)$ onto $\mathscr{D}_{k_{0}}$. Thus the maximal ideals of $\mathscr{B}_{k_{0}}$, which are classified in III.3, determine maximal ideals in $\mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$. Say (S, ϕ) has locally bounded order if for each $s \in S$ there is a neighborhood U_{s} and an integer $n_{s}>0$ such that $\phi^{n_{s}}\left(s^{\prime}\right)=s^{\prime}$ for all $s^{\prime} \in U_{s}$.

Proposition. Suppose S has locally bounded order. Then every maximal modular ideal of $\mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$ is of the form $\psi_{s_{0}}^{-1}(M)$, for some $s_{0} \in S$ and maximal ideal M of $\mathscr{B}_{k_{0}}$, where k_{0} is the cardinality of the order s_{0}.

Proof. Suppose $M \subset \mathbb{Z}^{+} \chi_{\alpha} C_{0}(S)$ is a maximal modular ideal such that $\psi_{s}(M)$ is not a maximal ideal in $\psi_{s}\left(\mathbb{Z}^{+} \times_{\alpha} C_{0}(S)\right)$ for any $s \in S$. Then $\psi_{s}(M)=\psi_{s}\left(\mathbb{Z}^{+} \times_{\alpha} C_{0}(S)\right)$, and so there exists, for each $s \in S$, an element $F^{(s)} \in M$ such that $\psi_{s}\left(F^{(s)}\right)$ is the identity in $\psi_{s}\left(\mathbb{Z}^{+} \times_{\alpha} C_{0}(S)\right)$.

Let F be an element of $\mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$. We will show that F can be approximated arbitrarily closely by elements of M; since M is closed, this will imply $F \in M$ and hence $M=\mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$, contradicting that M is proper.

Given $\varepsilon>0$ there exists $G \in \mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$ such that $G=\sum_{n=0}^{p} M_{z^{n}} g_{n}, g_{n}$ has compact support, $0 \leqslant n \leqslant p$, and $\|F-G\|<\varepsilon$. Let $K=\bigcup_{n=0}^{p} \operatorname{supp}\left(g_{n}\right)$. The assumption that S has locally bounded order along with the compactness of K imply there is an open set $U \supset K$ and a positive integer N such that $\phi^{N}(s)=s, s \in U$. Taking $S_{0}=\bigcup_{k-0}^{N} \phi^{k}(U), S_{0}$ is an invariant open set containing K, and $\phi^{N}(s)=s, s \in S_{0}$. If $\alpha_{0}=\left.\alpha\right|_{s_{0}}$, by II. 13 we can consider
$\mathbb{Z}^{+} \times_{\alpha_{0}} C_{0}\left(S_{0}\right)$ as a closed ideal of $\mathbb{Z}^{+} X_{\alpha} C_{0}(S)$. By Il.11, the map $s \in S_{0} \rightarrow \psi_{s}(H)$ is norm continuous for each $H \in \mathbb{Z}^{+} \times_{\alpha_{0}} C_{0}\left(S_{0}\right)$. Let $k \in C_{0}\left(S_{0}\right), \quad 0 \leqslant k \leqslant 1$, such that $k(s)=1$ for $s \in K$. Then $F^{(s)} k \in$ $\mathbb{Z}^{+} \times_{\alpha_{0}} C_{0}\left(S_{0}\right) \quad$ for \quad all $s \in S$. For $s \in K$ set $U_{s}=\left\{s^{\prime} \in S_{0}\right.$: $\left.\left\|\psi_{s^{\prime}}\left(F^{s)} k\right)-I\right\|<\varepsilon\right\}$ (Recall that all ψ_{s} are viewed as mapping into the same space, namely, $\mathscr{P}\left(H^{2}\right)$.) If $\left\{U_{i} \equiv U_{s_{i}}: 1 \leqslant i \leqslant m\right\}$ is a finite sub-cover, let $\left\{h_{i}: 1 \leqslant i \leqslant m\right\}$ be a partition of unity on K subordinate to the $\left\{U_{i}: 1 \leqslant i \leqslant m\right\} ;$ i.e., $\operatorname{supp}\left(h_{t}\right) \subset U_{i}, 0 \leqslant h_{i} \leqslant 1,1 \leqslant i \leqslant m$, and $\sum_{i=1}^{m} h_{i}(s)=1$ for $s \in K$. Set $H=\sum_{i=1}^{m} F^{\left(s_{i}\right)} k h_{i}$; then $H \in M$. We estimate

$$
\begin{aligned}
\|G-H G\| & =\sup _{s \in S_{0}}\left\|\left(I-\psi_{s}(H)\right) \psi_{s}(G)\right\| \\
& =\sup _{s \in K}\left\|\left(I-\psi_{s}(H)\right) \psi_{s}(G)\right\|
\end{aligned}
$$

(since $\left.\psi_{s}(G)=0, s \notin K\right)$

$$
\begin{aligned}
& <\varepsilon\|G\| \\
& <\varepsilon(\|F\|+\varepsilon),
\end{aligned}
$$

because

$$
\begin{aligned}
\left\|I-\psi_{s}(H)\right\| & =\left\|I-\psi_{s}\left(\sum_{i=1}^{m} F^{\left(s_{s}\right)} k h_{i}\right)\right\|=\left\|\sum_{i=1}^{m} h_{i}(s)\left[I-\psi_{s}\left(F^{\left(s_{i}\right)}\right)\right]\right\| \\
& \leqslant \sum_{i=1}^{m} h_{i}(s)\left\|I-\psi_{s}\left(F^{\left(s_{i}\right)}\right)\right\| \\
& <\sum_{i=1}^{m} h_{i}(s) \varepsilon=\varepsilon .
\end{aligned}
$$

It follows that

$$
\|F-H G\| \leqslant\|F-G\|+\|G-H G\|<\varepsilon+\varepsilon(\|F\|+\varepsilon) .
$$

This completes the proof.
III.5. Next we study the topology on the strong structure space of $\mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$.

If (S, ϕ) is such that every point $s \in S$ is periodic and has locally bounded order, then as in III. 4 each ψ_{s} can be viewed as a map of $\mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$ onto $\mathscr{D}_{k_{0}}$, where $k_{0}=k_{0}(s)$ is the cardinality of the orbit of s. Denote by $\psi_{s, \lambda}$ the composition of ψ_{s} with the map which sends $\left[f_{i j}\right] \in \mathscr{E}_{k_{0}} \rightarrow\left[f_{i j}(\lambda)\right], \lambda \in \bar{D}$. From III. 3 we know that the maximal ideals of $\mathscr{D}_{\kappa_{0}}$ are of the form $M_{0}^{(j)}$, $0 \leqslant j \leqslant k_{0}-1$, and $M_{\lambda}, \lambda \in \bar{D}, \lambda \neq 0$. However, the M_{λ} 's are not necessarily
distinct. For let ω be a primitive k_{0} th root of unity. If $\left[F_{i j}\right] \in \mathscr{B}_{k_{0}}$, then $F_{i j}$ satisfies $F_{i j}(\omega z)=\omega^{i-j} F_{i j}(z)$. Thus, the ideals $M_{\lambda}, M_{\omega \lambda}, \ldots, M_{\omega^{k} 0-1 / \lambda}$ are identical. On the other hand, it is clear that if $\lambda, \lambda^{\prime} \in \bar{D} \backslash\{0\}$ and $\left(\lambda / \lambda^{\prime}\right)^{k_{0}} \neq 1$, then M_{λ}, M_{λ}, are distinct. Now let (S, ϕ) be as in III.4, and let Θ_{s} denote the orbit of s under ϕ, and $\left|\Theta_{s}\right|$ the cardinality of Θ_{s}. From what we know about the maps $\psi_{s, \lambda}$, we can assert that $\operatorname{ker} \psi_{s, \lambda}=\operatorname{ker} \psi_{s^{\prime}, \lambda^{\prime}}$ if and only if either
(i) $s^{\prime} \in \theta_{s}$ and $\lambda=\lambda^{\prime}=0$; or
(ii) $s^{\prime} \in \theta_{s},|\lambda|=\left|\lambda^{\prime}\right| \neq 0$, and $\left(\lambda^{\prime} / \lambda\right)^{\left|\theta_{s}\right|}=1$.

Also, as has been mentioned, $\operatorname{ker} \psi_{s, \lambda}(\lambda \neq 0)$ is a maximal ideal, whereas ker $\psi_{s, 0}$ is not. If $F \in \mathbb{Z}^{+} \times_{\alpha} C_{0}(S), F=\sum_{n \geqslant 0} M_{z^{n}} f_{n}$, then

$$
\psi_{s, 0}(F)=\left[\begin{array}{llll}
f_{0}(s) & & & \\
& f_{0}(\phi(s)) & & \\
& & \ddots & \\
& & & f_{0}\left(\phi^{k_{0}-1}(s)\right)
\end{array}\right]
$$

We define an equivalence relation on $S \times \bar{D}$ (\bar{D} is the closed unit disk) by $(s, \lambda) \sim\left(s^{\prime}, \lambda^{\prime}\right)$ if and only if either (i) $s=s^{\prime}$ and $\lambda=\lambda^{\prime}=0$, or (ii) $s^{\prime} \in \theta_{s}$, $|\lambda|=\left|\lambda^{\prime}\right| \neq 0$, and $\left(\lambda^{\prime} / \lambda\right)^{\left|\theta_{s}\right|}=1$. We have shown that there is a one to one correspondence between the maximal modular ideals M of $\mathbb{Z}^{+} \times{ }_{\alpha} C_{0}(S)$ and equivalence classes in $S \times \bar{D}$.

Next, recall the hull-kernel topology (Rudin topology) on the closed unit disk determined by the algebra \mathscr{A}. The closed sets $V \subset \bar{D}$ in this topology are of the following form:
(i) $V \cap D$ is either finite or countable; if $V \cap D$ is countable, say, $\left\{\lambda_{1}, \lambda_{2}, \ldots\right\}$, then $\sum_{n=1}^{\infty}\left(1-\left|\lambda_{n}\right|\right)<\infty$.
(ii) $V \cap \partial D$ (i.e., the intersection of V with the unit circle) is a closed subset (in the usual topology of the circle) of Lebesgue measure zero, and contains every accumulation point of $V \cap D$ [9, p. 89].

Let the locally compact topology of S be metrizable, and \bar{D} have the topology just mentioned, and the product $S \times \bar{D}$ the product topology. Let $q: S \times \bar{D} \rightarrow S \times \bar{D} / \sim=\mathscr{M}$ be the quotient map, and endow \mathscr{M} with the quotient topology: the open sets $W \subset \mathscr{C}$ are precisely those for which $q^{-1}(W) \subset S \times \bar{D}$ is open.

Proposition. Let (S, ϕ) be as in III.4. Then the hull-kernel topology on the maximal ideal space of $\mathbb{Z}^{+} X_{\alpha} C_{0}(S)$ is stronger than the quotient topology.

Proof. An open base for the product topology on $S \times \bar{D}$ consists of sets of the form $A \times B$, where $A \subset S$ is relatively compact open and $B \subset \bar{D}$ is open (in the Rudin topology). Thus, a closed set in $S \times \bar{D}$ is the intersection
of a family of closed sets of the form $(A \times B)^{c}$, with A, B as above. Now $(A \times B)^{c}=\left(A^{c} \times \bar{D}\right) \cup\left(S \times B^{c}\right)$. Since S is locally compact metric, A^{c} is the zero set of some continuous function with compact support: say, $A^{c}=Z(f)$. Also, since every closed ideal of \mathscr{A} is the principal closed ideal generated by a function in $\mathscr{A}[9$, Corollary, p. 88], there is a $g \in \mathscr{A}$ with $Z(g)=B^{c}$. If $g(z)=\sum_{n \geqslant 0} a_{n} z^{n},|z|<1$, set $F=\sum_{n \geqslant 0} M_{z^{n}} a_{n} f$. Clearly, $F \in \mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$, and $Z(F)=\left\{(s, \lambda): F(s, \lambda)=\sum_{n \geqslant 0} \lambda^{n} a_{n} f(s)=\right.$ $f(s) g(\lambda)=0\}=(A \times B)^{c}$.

We have shown that if $C \subset S \times \bar{D}$ is closed in the product topology, there is a family $\left\{F_{v}: F_{v} \in \mathbb{Z}^{+} \times_{\alpha} C_{0}(S), v \in \Lambda\right\}$ with $C=\bigcap_{v \in A} Z\left(F_{v}\right)$. Suppose in addition that $C=q^{-1}(q(C))$. Then by the way we defined the quotient map, each maximal modular ideal M of $\mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$ in $q(C)$ contains all the $F_{v}, v \in \Lambda$. Hence, $\operatorname{ker}(q(C)) \supset\left\{F_{v}: v \in \Lambda\right\}$, and so hull $(\operatorname{ker}(q(C))) \subset$ hull $\left\{F_{v}: v \in \Lambda\right\}=q(C)$. Since hull $(\operatorname{ker}(q(C)))$ necessarily contains $q(C)$, it must coincide with $q(C)$. Thus $q(C)$ is closed in the hull-kernel topology, which completes the proof.
III.6. Remark. Let (S, ϕ) be as in III. 4 and suppose in addition that the zero set of each $F \in \mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$ is closed in the product topology on $S \times \bar{D}$. Then, if $C \subset S \times \bar{D}$ is such that $q(C)$ is closed in the hull-kernel topology, C is the zero set of a certain collection of elements in $\mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$ (namely, $\operatorname{ker}(q(C)$), and hence C is closed in the product topology of $S \times \bar{D}$. From this observation it follows, for instance, that the quotient topology on $\mathscr{M}=S \times \bar{D} / \sim$ coincides with the hull-kernel topology if S is a finite set. In particular, this allows us to describe the hull-kernel topology on the maximal ideal space of $\mathscr{B}_{k_{0}}$. Let $\lambda, \lambda^{\prime}$ in the punctured closed unit disk $\bar{D} \backslash\{0\}$ be equivalent if $\left(\lambda / \lambda^{\prime}\right)^{k_{0}}=1$. If the topology on \bar{D} is the hull-kernel topology of the disk algebra, and that on $\bar{D} \backslash\{0\}$ the relative topology, endow ($\bar{D} \backslash\{0\} / \sim$ with the quotient topology. Then the maximal ideal space \mathscr{M} can be identified with $(\bar{D} \backslash\{0\}) / \sim \cup\left\{M_{0}^{(0)}, \ldots, M_{0}^{\left(k_{0}-1\right)}\right\}$. An open set in \mathscr{M} is either open in $(\bar{D} \backslash\{0\}) / \sim$, or else it is an open neighborhood of $M_{0}^{(j)}\left(0 \leqslant j \leqslant k_{0}-1\right)$. The open neighborhoods of $M_{0}^{(j)}$ are of the form $(U \backslash\{0\}\} / \sim \cup\left\{M_{0}^{(j)}\right\}$, where U is an open neighborhood of 0 in \bar{D}.
III.7. Example. Again, let (S, ϕ) be as in III.4. We show that in general the hull-kernel topology on $\mathscr{A}=S \times \bar{D} / \sim$ is strictly stronger than the quotient topology. Following the idea of the proof of III.5, if $C \subset S \times \bar{D}$ is closed in the product topology and $\left(s_{0}, \lambda_{0}\right) \notin C$, there are open sets $A \subset S$, $B \subset \bar{D}$, with $\left(s_{0}, \lambda_{0}\right) \in A \times B \subset C^{c}$. Or, $C \subset(A \times B)^{c},\left(s_{0}, \lambda_{0}\right) \notin(A \times B)^{c}$. Also, there is an $f \in C_{0}(S), g \in \mathscr{A}, g(z)=\sum_{n \geqslant 0} a_{n} z^{n}$, with $Z(F)=(A \times B)^{c}$, where $F=\sum_{n \geqslant 0} M_{z^{n}} a_{n} f$.

Suppose now $S=\bar{D}$, the closed unit disk (in the Euclidean topology), and ϕ is the identity map. Let $G \in \mathbb{Z}^{+} \times_{a} C(S), G(s, z)=s-z$. Since $Z(G)=$ $\{(s, s): s \in \bar{D}\}$, this shows that the diagonal in $\bar{D} \times \bar{D}$ is closed in the hull-
kernel topology. (Note that since ϕ is the identity, the maximal ideal space of $\mathbb{Z}^{+} \times_{\alpha} C(S)$ is $\bar{D} \times \bar{D}$.) If the diagonal is closed in the product topology, there is an $F \in \mathbb{Z}^{+} \times_{\alpha} C(S), F(s, z)=f(s) g(z)$, not identically zero, such that $Z(F)$ contains the diagonal of $\bar{D} \times \bar{D}$. Say $F\left(s_{0}, \lambda_{0}\right) \neq 0$, so there is a neighborhood U of s_{0} in \bar{D}, open with respect to the Euclidean topology, with $f(s) \neq 0, s \in U$. Since $F(s, s)=0$ for all $s \in U$, this forces $g(s)=0$. But then g must vanish identically, and $F=0$. This shows that the diagonal is not closed in the product topology.

IV.

IV.1. We turn now from the special case considered in Section III, in which each $s \in S$ was periodic under ϕ, to the general case, in which we only assume $\phi: S \rightarrow S$ is continuous and proper. Unlike the periodic case, the algebras $\mathbb{Z}^{+} \times_{\alpha} C(S)$ need not in general be strongly semisimple; indeed, they need not even be semiprime. Our goal in this section will be to give necessary and sufficient conditions on the dynamical system (S, ϕ) for $\mathbb{Z}^{+} \times_{\alpha} C(S)$ to be (i) semiprime; (ii) semisimple; and (iii) strongly semisimple.

We recall some standard facts and terminology [2, 10, 14]. All ideals will be assumed to be two sided unless otherwise stated. An ideal P is said to be prime if, for any ideals, $I, J, I J \subseteq P$ implies either $I \subseteq P$ or $J \subseteq P$; it is called primitive if P is the kernel of an irreducible representation of \mathfrak{A}, and P is called modular if \mathfrak{N} / P has an identity. A maximal modular ideal is primitive, and a primitive ideal is prime. The prime radical (resp., Jacobson radical, strong radical) is the intersection of all prime ideals of \mathfrak{U} (resp., all primitive ideals, all maximal modular ideals). \mathfrak{A} is said to be semiprime (resp. semisimple, strongly semisimple) if the prime radical (resp., Jacobson radical, strong radical) is (0). \mathfrak{A} is semiprime iff \mathfrak{A} has no nontrivial nilpotent ideals. If \mathfrak{A} is a Banach algebra, \mathfrak{U} is semisimple iff \mathfrak{A} has no nontrivial left or right ideals consisting of quasinilpotent elements. Of course there are various other characterizations of semisimplicity.

Suppose S is locally compact hausdorff and $\phi: S \rightarrow S$ is continuous and proper. We want to define the notions of near recurrence and near periodicity, which are slightly weaker than recurrence and almost periodicity, respectively. Recall that a point $s_{0} \in S$ is recurrent under \mathbb{Z}^{+}if, for every neighborhood U of $s_{0},\left\{\phi^{n}\left(s_{0}\right)\right\}_{n=0}^{\infty} \cap U$ is infinite. We will say s_{0} is nearly recurrent if for every neighborhood U of s_{0} there exists a point $s_{1} \in U$, depending on both s_{0} and U, such that $U \cap\left\{\phi^{n}\left(s_{1}\right)\right\}_{n=0}^{\infty}$ is infinite. A set $A \subseteq \mathbb{Z}^{+}$is syndetic if there exists a finite set $F \subseteq \mathbb{Z}^{+}$such that $\mathbb{Z}^{+}=A+F$. (Note that this is the same definition as in [4], except that there it is given in the context of groups.) $s_{0} \in S$ is almost periodic if, given a neighborhood U
of $s_{0},\left\{k \in \mathbb{Z}^{+}: \phi^{k}\left(s_{0}\right) \in U\right\}$ is syndetic. We will say s_{0} is nearly periodic if, given a neighborhood U of s_{0}, there exists $s_{1} \in U$, which may depend on both s_{0} and U, such that $\left\{k \in \mathbb{Z}^{+}: \phi^{k}\left(s_{1}\right) \in U\right\}$ is syndetic. It is an easy consequence of the definitions that the subsets of nearly recurrent points and nearly periodic points are closed in S. Of course, the set of periodic points need not be closed. We are now ready to state our main result.

Theorem. Let S be locally compact hausdorff, and $\phi: S \rightarrow S$ continuous and proper.
(i) $\mathbb{Z}^{+} \times_{\alpha} C(S)$ is semirpime if and only if every point of S is nearly recurrent;
(ii) $\mathbb{Z}^{+} \times_{\alpha} C(S)$ is semisimple if and only if every point of S is nearly periodic;
(iii) $\mathbb{Z}^{+} \times_{\alpha} C(S)$ is strongly semisimple if and only if the subset of S consisting of periodic points is dense.

It is not hard to show that s_{0} is a nearly recurrent point of S iff there is no neighborhood U of s_{0} with $U, \phi^{-1}, \phi^{-2}(U), \ldots$ pairwise disjoint. This is related to the term "nonwandering": if ϕ is a homeomorphism, s_{0} is nonwandering if there is no neighborhood U of s_{0} with $\left\{\phi^{n}(U)\right\}_{n \in \mathbb{Z}}$ pairwise disjoint.

In the course of establishing the Theorem we will actually provide an explicit characterization of each of the three radicals.
IV.2. Although the proofs of (i), (ii), and (iii) will be done separately, there are certain invariance properties which are shared by all three radicals, which we now discuss.

Lemma. $F=\sum_{n \geqslant 0} M_{z^{n}} f_{n} \in \mathbb{Z}^{+} \times_{\alpha} C(S)$ belongs to the prime radical (resp., to the Jacobson radical, to the strong radical) if and only if $f_{0} \equiv 0$ and $M_{z^{n}} f_{n}$ belongs to the prime radical (resp., to the Jacobson radical, to the strong radical) for $n \geqslant 1$.

Proof. Since each of the radicals is a closed linear subspace, the "if" direction is clear.

Define an automorphism $\tau_{t}(t \in \mathbb{R})$ of the dense subalgebra $K\left(\mathbb{Z}^{+}, C_{0}(S), \alpha\right)$ by $\tau_{t}\left(\sum_{n=0}^{p} M_{z^{n}} g_{n}\right)=\sum_{n=0}^{p} M_{z^{n}} e^{i n t} g_{n}$. Now τ_{t} is normpreserving, for

$$
\left(M_{z} \times \tilde{\pi}_{s}\right)\left(\tau_{t}\left(\sum_{n=0}^{p} M_{z^{n}} g_{n}\right)\right)(\xi)(z)=\sum_{m \geqslant 0}\left[\sum_{k=0}^{m} g_{m-k} \circ \phi^{k}(s) e^{i(m-k) t} \xi_{k}\right] z^{m}
$$

where $\quad \xi \in H^{2}, \quad \xi(z)=\sum_{k \geqslant 0} z^{k} \xi_{k}, \quad$ and $\quad g_{k} \equiv 0, \quad k>p$. If we view $\left(M_{z} \times \tilde{\pi}_{s}\right)(G)(\xi)$ (for $G \in K\left(\mathbb{Z}^{+}, C_{0}(S), \alpha\right)$ as a continuous function on the circle, then

$$
\left(M_{z} \times \tilde{\pi}_{s}\right)\left(\tau_{t}(G)\right)(\xi)\left(e^{i \theta}\right)=\left(M_{z} \times \tilde{\pi}_{s}\right)(G)\left(\xi^{\prime}\right)\left(e^{i(\theta+t)}\right)
$$

where $\xi^{\prime} \in H^{2}, \quad\left(\xi^{\prime}\right)_{k}=e^{-i k t} \xi_{k}$. It follows that $\left\|\left(M_{z} \times \tilde{\pi}_{s}\right)\left(\tau_{t}(G)\right)\right\|=$ $\left\|\left(M_{z} \times \tilde{\pi}_{s}\right)(G)\right\|, s \in S$, and consequently $\left\|\tau_{t}(G)\right\|=\|G\|, G \in K\left(\mathbb{Z}^{+}, C_{0}(S), \alpha\right)$. Thus τ_{t} extends to an automorphism of the semi-crossed product $\mathbb{Z}^{+} \times{ }_{\alpha} C(S)$, which will also be denoted τ_{t}. Note that if α is injective, and hence extends to an automorphism β of a (commutative) C^{*}-algebra \mathscr{B}, say, $\mathscr{B}=C_{0}\left(S^{\prime}\right)$, then $\left\{\tau_{t}\right\}_{\in \mathbb{R}}$ is just the restriction of the dual automorphism group of the C^{*}-crossed product $\mathbb{Z} \times_{B} C_{0}\left(S^{\prime}\right)$ to $\mathbb{Z}^{+} \times_{\alpha} C(S)$.

Now the mapping $t \rightarrow \tau_{t}(F), F \in \mathbb{Z}^{+} \times_{\alpha} C(S)$, is norm continuous, and the Bochner integral $(1 / 2 \pi) \int_{0}^{2 \pi} e^{-i n t} \tau_{t}(F) d t$ converges in norm to $M_{z n} f_{n}$, if $F=\sum_{n=0}^{\infty} M_{z^{n}} f_{n}$. These facts are easily seen to hold for $F \in K\left(\mathbb{Z}^{+}, C_{0}(S), \alpha\right)$, and can then be extended to $\mathbb{Z}^{+} \times_{\alpha} C(S)$. Since any automorphism of $\mathbb{Z}^{+} \times_{\alpha} C(S)$ maps each of the three radicals of $\mathbb{Z}^{+} \times_{\alpha} C(S)$ onto itself, it follows that if $F=\sum_{n \geqslant 0} M_{z n} f_{n}$ belongs to one of the radicals, so does $f_{0}, M_{z} f_{1}, M_{z^{2}} f_{2}, \ldots$.

Finally, observe that if $F=\sum_{n \geqslant 0} M_{z^{n}} f_{n} \in \mathbb{Z}^{+} \times_{\alpha} C(S)$, the mapping $F \rightarrow \chi_{s}(F)=f_{0}(s)$ is a continuous homomorphism $\mathbb{Z}^{+} \times_{\alpha} C(S) \rightarrow \mathbb{C}$, so ker χ_{s} $(s \in S)$ is a maximal modular ideal. To complete the Lemma it is only necessary to notice that if $F \in R$, the strong radical, then $f_{0} \in R$ and $f_{0} \in \bigcap_{s \in S}$ ker χ_{s}, so f_{0} must vanish identically.

Remark. If k_{n} is the Fejer kernel on $[0,2 \pi]$, then $(1 / 2 \pi) \int_{0}^{2 \pi} k_{n}(t) \tau_{t}(F) d t$ converges to $F, F \in \mathbb{Z}^{+} \times_{a} C(S)$. Indeed, this can be easily verified for $F \in K\left(\mathbb{Z}^{+}, C_{0}(S), \alpha\right)$, and then by approximation for general F. Note that $(1 / 2 \pi) \int_{0}^{2 \pi} k_{n}(t) \tau_{t}(F) d t$ is just the nth arithmetic mean of the series $\sum_{n \geqslant 0} M_{z^{n}} f_{n}=F$. (This same observation is made in [12] in the context of the Arveson-Josephson algebras.)
IV.3. If in II. 12 we take $S_{1}=S_{2}=S$ and $g=\phi_{1}=\phi_{2}=\phi$, we obtain a continuous endomorphism of $\mathbb{Z}^{+} \times_{\alpha} C(S)$, which we denote by $\hat{\alpha}$, given by $\hat{\alpha}\left(\sum_{n \geqslant 0} M_{z^{n}} f_{n}\right)=\sum_{n \geqslant 0} M_{z^{n}} f_{n} \circ \phi$. Set $S_{0}=S \backslash \bigcap_{n \geqslant 0} \phi^{n}(S)$, and let $R_{\hat{\alpha}}$ denote the $\hat{\alpha}$-radical of $\mathbb{Z}^{+} \times_{\alpha} C(S)$ (cf. I. 7).

Proposition. $\quad R_{\dot{\alpha}}=\left\{F \in \mathbb{Z}^{+} \times_{\alpha} C(S), F=\sum_{n \geqslant 0} M_{z^{n}} f_{n}:\left\{s: f_{n}(s) \neq 0\right\} \subseteq\right.$ $\left.S_{0}, n=0,1,2, \ldots\right\}$. In particular, if α is injective (equivalently, ϕ is surjective), $R_{\hat{\alpha}}=(0)$, so $\hat{\alpha}$ is injective.

Proof. The argument in IV. 2 can also be used to show $F=$ $\sum_{n>0} M_{z^{n}} f_{n} \in R_{\hat{\alpha}}$ iff $M_{z^{n}} f_{n} \in R_{\hat{\alpha}}, n=0,1,2, \ldots$ But $M_{z n} f_{n} \in R_{\hat{\alpha}}$ iff $f_{n} \in R_{\alpha}$, which in turn holds iff $\left\{s: f_{n}(s) \neq 0\right\} \subseteq S_{0}, n=0,1,2, \ldots$.
IV.4. Let $S_{n r}$ denote the set of nearly recurrent points of S, and set $S_{0}=S \backslash S_{n r} . \quad$ Let $\quad R=\left\{F \in \mathbb{Z}^{+} \times{ }_{\alpha} C(S), \quad F=\sum_{n \geqslant 1} M_{z^{n}} f_{n}:\left\{s: f_{n}(s) \neq\right.\right.$ $\left.0\} \subseteq S_{0}\right\}$.

Proposition. $\quad R$ is the prime radical of $\mathbb{Z}^{+} \times_{\alpha} C(S)$.
Proof. Let R^{\prime} denote the prime radical of $\mathbb{Z}^{+} \times_{\alpha} C(S)$, and let $F=\sum_{n \geqslant 1} M_{z^{n}} f_{n} \in R^{\prime}$. Suppose for some k_{0}, there exists $s_{0} \in S_{n r}$ such that $f_{k_{0}}\left(s_{0}\right) \neq 0$. By IV.2, $M_{z^{k_{0}}} f_{k_{0}} \in R^{\prime}$, as is $\left(M_{z^{*} 0} f_{k_{0}}\right) \bar{f}_{k_{0}}$, so we assume $f_{k_{0}} \geqslant 0$ and set $G=\sum_{k \geqslant k_{0}} M_{z^{k}} g_{k}$, where $g_{k}=r^{k} f_{k_{0}}$. Here r is fixed, $0<r<1$; thus $G \in R^{\prime}$. [Note that G is the limit of the partial sums $\sum_{k=k_{0}}^{n} M_{z^{k}} g_{k}$, each of which is in R^{\prime}, and that R^{\prime} is closed.] Claim that G is not nilpotent; i.e., $G^{n} \neq 0, n=1,2, \ldots$ Let U be a neighborhood of s_{0} such that $f_{k_{0}}(s)>0$, $s \in U$; then $g_{k}(s)>0, s \in U, k \geqslant k_{0}$. Let $k_{0}<k_{1}<k_{2}<\cdots$ be a sequence of nonnegative integers and $s_{1} \in U$ bc such that $\phi^{k_{m}}\left(s_{1}\right) \in U, m \geqslant 1$. Now G^{n} consists of sums of terms of the form
$M_{z^{l_{1}}} g_{l_{1}} M_{z^{l_{2}}} g_{l_{2}} \cdots M_{z^{l_{n}}} g_{l_{n}}=M_{z^{l_{1}}+\cdots+l_{n}} g_{l_{1}} \circ \phi^{l_{2}+\cdots+l_{n}} g_{l_{2}} \circ \phi^{l_{3}+\cdots+l_{n}} \cdots g_{l_{n}}$,
where $l_{1}, \ldots, l_{n} \geqslant k_{0}, n$ a positive integer. Suppose in addition that $l_{j}+l_{j+1}+\cdots+l_{n} \in\left\{k_{i}\right\}_{i=1}^{\infty}, 1 \leqslant j \leqslant n$. (There will always be at least one term in the expansion of G^{n} for which this is true.) Since

$$
g_{l_{1}} \circ \phi^{l_{2}+\cdots+l_{n}}\left(s_{1}\right) g_{l_{2}} \circ \phi^{l_{3}+\cdots+l_{n}}\left(s_{1}\right) \cdots g_{l_{n}}\left(s_{1}\right)
$$

is positive, $G^{n} \neq 0$.
A subset $\mathscr{F} \subset \mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$ is said to be an m-system (generalized multiplicative system) if $F_{1}, \quad F_{2} \in \mathscr{E}$ implies $F_{1} F_{3} F_{2} \in \mathscr{E}$ for some $F_{3} \in \mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$. An element $F \in \mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$ is said to have the zero property if every m-system that contains F also contains 0 . Now the prime radical R^{\prime} is the set of all elements of $\mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$ that have the zero property [10, Exercise 1, p. 449]. Let G be as in the previous paragraph; consider the m-system $\left\{G^{n}: n=1,2, \ldots\right\}$. We showed it does not contain zero, and hence $G \notin R^{\prime}$. Thus if $F=\sum_{n \geqslant 1} M_{z^{n}} f_{n} \in R^{\prime},\left\{s: f_{n}(s) \neq 0\right\} \subseteq S_{0}, n \geqslant 1$, so $R^{\prime} \subseteq R$.

To prove the reverse inclusion, let $s_{0} \in S_{0}$ and let U be an open relatively compact neighborhood of s_{0} such that for every infinite subset $A \subset \mathbb{Z}^{+}$, $\bigcap_{k \in A} \phi^{-k}(U)=\varnothing$. Let $0=k_{0}<k_{1}<k_{2}<\cdots<k_{n}$ be any finite sequence such that $U_{m}=\bigcap_{j=0}^{m} \phi^{-k_{j}}(U)$ is nonempty, $m=0, \ldots, N$, and such that $U_{N} \cap$ $\phi^{-k}(U)=\varnothing$ for every $k>k_{N}$. Set $V=U_{N}=\bigcap_{j=0}^{N} \phi^{-k_{j}}(U)$; then V is an open relatively compact neighborhood of s_{0} with $V \cap \phi^{-n}(V)=\varnothing, n \geqslant 1$. Let \mathscr{N} be the linear subspace consisting of all elements of the form $F=\sum_{n \geqslant 1} M_{2 n} f_{n} \in \mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$ such that $\operatorname{supp}\left(f_{n}\right) \subseteq V \cup \phi^{-1} V \cup \ldots \cup$ $\phi^{-(n-1)} V$. It is easy to verify that \mathscr{N} is in fact an ideal in $\mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$. (Note that $\phi^{-1}\left(S_{0}\right) \subseteq S_{0}$.) Now $\mathscr{N}^{2}=(0)$: let $F=\sum_{n \geqslant 1} M_{z^{n}} f_{n}$, $G=\sum_{n>1} M_{z^{n}} g_{n} \in \mathscr{N}$. Then $F G=H$, where $H=\sum_{n \geqslant 2} M_{z^{n}} h_{n}$, and each h_{n} is the sum of terms of the form $\left(M_{z^{k}} f_{k}\right)\left(M_{z^{\prime}} g_{l}\right)$ with $k+l=n$. But this is the same as $M_{z^{n}} f_{k} \circ \phi^{l} g_{l}$, and

$$
\begin{aligned}
\operatorname{supp}\left(f_{k} \circ \phi^{l}\right) & \subseteq \phi^{-l}\left(\bigcup_{j=0}^{k-1} \phi^{-j}(V)\right) \\
& \subseteq \bigcup_{j=1}^{n-1} \phi^{-j}(V)
\end{aligned}
$$

and

$$
\operatorname{supp}\left(g_{l}\right) \subseteq \bigcup_{j=1}^{t-1} \phi^{-j}(V)
$$

Thus $\operatorname{supp}\left(f_{k} \circ \phi^{l}\right) \cap \operatorname{supp}\left(g_{l}\right)=\varnothing, f_{k} \circ \phi^{l} g_{l}=0, h_{n}=0, n \geqslant 2$, and $H=0$.
Since the prime radical contains all nilpotent ideals, $\mathscr{N} \subseteq R^{\prime}$. Let $F=\sum_{n=1}^{p} M_{2^{n}} f_{n} \in R$ and assume $\operatorname{supp}\left(f_{n}\right)$ is compact and contained in S_{0}, $1 \leqslant n \leqslant p$. Since elements of this form are dense in R, the proof will be complete if we can show $F \in R^{\prime}$. Let $K=\bigcup_{n=1}^{p} \operatorname{supp}\left(f_{n}\right)$, and for each $s \in K$ let V_{s} be an open relatively compact neighborhood of $s, V_{s} \in S_{0}$, such that $V_{s} \cap \phi^{-n}\left(V_{s}\right)=\varnothing, n \geqslant 1$. The existence of such a V_{s} was demonstrated above. Let $V_{i} \equiv V_{s_{i}}, 1 \leqslant i \leqslant m$, be a finite subcover of K, and let $\left\{g_{i}\right\}_{i=1}^{m}$ be a partition of unity for K subordinate to the $\left\{V_{i}\right\}_{i=1}^{m}$: thus, $0 \leqslant g_{i} \leqslant 1$, $\operatorname{supp}\left(g_{i}\right) \subseteq V_{i}, \quad 1 \leqslant i \leqslant m$, and $\sum_{i=1}^{m} g_{i}(s)=1, s \in K$. Then $F=\sum_{i=1}^{m} F g_{i}=$ $\sum_{i=1}^{m}\left(\sum_{n=1}^{p} M_{z^{n}} f_{n} g_{i}\right)$. Let \mathscr{N}_{i} be the ideal in $\mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$ consisting of all $H=\sum_{n \geqslant 1} M_{2 n} h_{n}$, with h_{n} supported in $\bigcup_{j=0}^{n-1} \phi^{-j}\left(V_{i}\right)$. Then \mathscr{N}_{i} is an ideal, and $F g_{i} \in \mathscr{N}_{i}, 1 \leqslant i \leqslant n$. Thus $F=\sum_{i-1}^{m} F g_{i} \in \mathscr{N}_{1}+\cdots+. \mathscr{N}_{m}$. But $\mathscr{N}_{1}, \ldots, \mathscr{N}_{m}$ are contained in R^{\prime}, so $\mathscr{N}_{1}+\cdots+\mathscr{N}_{m} \subseteq R^{\prime}$, and finally $F \in R^{\prime}$.
IV.5. In order to study the Jacobson radical of semi-crossed products we will need a couple of lemmas of a combinatorial nature. As before, we assume that $\phi: S \rightarrow S$ is continuous and proper and S is locally compact hausdorff.

Sublemma. Let $U \subseteq S$ be a compact neighborhood such that for every syndetic set $A \subseteq \mathbb{Z}^{+}, \bigcap_{k \in A} \phi^{-k}(U)=\varnothing$. Then given a positive integer p there exists a positive integer N such that for every syndetic set $A=\left\{m_{j}\right\}_{j=0}^{\infty}$ with $0 \leqslant m_{0} \leqslant p, 1 \leqslant m_{j}-m_{j-1} \leqslant p, j \geqslant 1, \bigcap_{j=0}^{N} \phi^{-m_{j}}(U)=\varnothing$.

Proof. Let X_{j} denote $\{1,2, \ldots, p\}, j=1,2, \ldots$. Notice there is a one to one correspondence between the collection of all syndetic sets $A=\left\{m_{j}\right\}_{j=0}^{\infty}$ with $m_{0}=0,1 \leqslant m_{j}-m_{i-1} \leqslant p, j \geqslant 1$, and elements of the product space $\prod_{j=1}^{\infty} X_{j}$; this is given by $A=\left\{m_{j}\right\}_{j=0}^{\infty} \rightarrow\left\{m_{1}, m_{2}-m_{1}, \ldots, m_{n}-m_{n-1}, \ldots\right\}$. Since $\bigcap_{k \in A} \phi^{-k}(U)=0$ and $\phi^{-k}(U)$ is compact, there is a finite subset of A for which the intersection is empty; thus define a function $e: \prod_{j=1}^{\infty} X_{j} \rightarrow \mathbb{Z}^{+}$ by $e\left(\left\{m_{j}-m_{j-1}\right\}_{j=1}^{\infty}\right)=\inf \left\{n \in \mathbb{Z}^{+}: \bigcap_{j=0}^{n} \phi^{-m_{j}}(U)=\varnothing\right\}$. Now $e^{-1}(n)$ is either empty or else consists of certain sequences in $\prod_{j=0}^{\infty} X_{j}$ which are arbitrary beyond the nth coordinate. If $\prod_{j=1}^{\infty} X_{j}$ is equipped with the product topology, it follows that e is continuous, and hence has a maximum value, N.

Let A be syndetic, $A=\left\{m_{j}\right\}_{j=0}^{\infty}$, with $0 \leqslant m_{0} \leqslant p, 1 \leqslant m_{j}-m_{j-1} \leqslant p, j \geqslant 1$. Then $\bigcap_{j=0}^{N} \phi^{-j}(U)=\phi^{-m_{0}}\left(\bigcap_{j=0}^{N} \phi^{-\left(m_{j}-m_{0}\right)}(U)\right)=\varnothing$.

Lemma. Let m be a positive integer, U_{j} a compact neighborhood in S such that $\bigcap_{k \in A} \phi^{-k}\left(U_{j}\right)=\varnothing$ for every syndetic set $A \subseteq \mathbb{Z}^{+}, 1 \leqslant j \leqslant m$. Set $T_{j}=\{1,2, \ldots, m\}, 1,2, \ldots$ Then given a positive integer p there exists a positive integer N such that for all syndetic sets $A=\left\{m_{j}\right\}_{j=0}^{\infty}, 0 \leqslant m_{0} \leqslant p$, $1 \leqslant m_{j}-m_{j} \leqslant p, j \geqslant 1$, and all sequences $\left\{i_{j}\right\}_{j-0}^{\infty} \in \prod_{j-0}^{\infty} T_{j}$, it follows $\bigcap_{j=0}^{N} \phi^{-m_{j}}\left(U_{i_{j}}\right)=\varnothing$.

Proof. The proof is by induction on m. Note that for $m=1$, the statement of the Lemma reduces to that of the sublemma.

Now suppose $m>1$ and that the conclusion of the Lemma holds for $m-1$ in place of m; specifically, we assume there is an integer N^{\prime} such that for all syndetic sets $A=\left\{m_{j}\right\}_{j=0}^{\infty}, 0 \leqslant m_{0} \leqslant p, 1 \leqslant m_{j}-m_{j-1} \leqslant p, j \geqslant 1$, and all sequences $\left\{i_{j}\right\}_{j=0}^{\infty}$ with $1 \leqslant i_{j} \leqslant m-1$, for all $j, \bigcap_{j=0}^{N^{\prime}} \phi^{-m_{j}}\left(U_{i_{j}}\right)=\varnothing$.

Given $\left\{i_{j}\right\}_{j=0}^{\infty} \in \prod_{j=0}^{\infty} T_{j}$, either $B=\left\{k: i_{k}=m\right\}$ is syndetic, or else B has arbitrarily large gaps. If B is syndetic and $A=\left\{m_{j}\right\}_{j=0}^{\infty}$ is any syndetic set, observe that $\left\{m_{j}: j \in B\right\}$ is also syndetic. Thus $\bigcap_{j=0}^{\infty} \phi^{-m_{j}}\left(U_{i_{j}}\right) \subseteq$ $\bigcap_{j \in B} \phi^{-m_{j}}\left(U_{m}\right)=\varnothing$. Suppose on the other hand that B has arbitrarily large gaps, and that $0 \leqslant m_{0} \leqslant p, 1 \leqslant m_{j}-m_{j-1} \leqslant p, j \geqslant 1$. Then there exist integers $j_{0}, j_{1} \geqslant 0, j_{1}-j_{0} \geqslant N^{\prime}$, with $\left\{i_{j}\right\}_{j=j_{0}}^{j=j_{1}} \subseteq\{1,2, \ldots, m-1\}$. In that case

$$
\bigcap_{j=0}^{\infty} \phi^{-m_{j}}\left(U_{i_{j}}\right) \subseteq \bigcap_{j=j_{0}}^{j=j_{1}} \phi^{-m_{j}}\left(U_{i_{j}}\right) \subseteq \phi^{-m_{j 0}}\left(\bigcap_{j=0}^{j_{1}-j_{0}} \phi^{-\left(-m_{j}-m_{0}\right)}\left(U_{i_{j}}\right)\right)=\varnothing
$$

by the induction hypothesis.
With the induction hypothesis still in force, we have shown that for any $\left\{i_{j}\right\}_{j=0}^{\infty} \in \prod_{j=0}^{\infty} T_{j} \quad$ and any syndetic set $A=\left\{m_{j}\right\}_{j=0}^{\infty}, \quad 0 \leqslant m_{0} \leqslant p$, $1 \leqslant m_{j}-m_{j-1} \leqslant p, j \geqslant 1$, that $\bigcap_{j=0}^{\infty} \phi^{-m_{j}}\left(U_{i j}\right)=\varnothing$. Set $X_{j}=\{1,2, \ldots, p\}, j \geqslant 1$, and define a function $d:\left(\prod_{j-1}^{\infty} X_{j}\right) \times\left(\prod_{j-0}^{\infty} T_{j}\right) \rightarrow \mathbb{Z}^{+}$, by $d\left(\left\{m_{j}-m_{j-1}\right\}_{j-1}^{\infty}\right.$, $\left.\left\{i_{j}\right\}_{j=0}^{\infty}\right)=\inf \left\{n \in \mathbb{Z}^{+}: \bigcap_{j=0}^{n} \phi^{-m_{j}}\left(U_{i_{j}}\right)=\varnothing\right\}$. For each n, either $d^{-1}(n)$ is empty, or else consists of certain pairs of sequences which are arbitrary beyond the nth coordinate. If the domain of d is equipped with the product topology, d is continuous, and hence it has a maximum value, N. This N has the desired properties.
IV.6. Proposition. Let $S_{n p}$ denote the nearly periodic points of S, and $S_{0}=S \backslash S_{n p}$. Set $R=\left\{F=\sum_{n \geqslant 1} M_{z^{n}} f_{n} \in \mathbb{Z}^{+} \times_{\alpha} C_{0}(S):\left\{s: f_{n}(s) \neq 0\right\} \subseteq S\right\}$. Then R is the Jacobson radical of $\mathbb{Z}^{+} \times_{\alpha} C(S)$.

Proof. Let R^{\prime} be the Jacobson radical of $\mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$. We show first that $R \subseteq R^{\prime}$. Let p be a positive integer, $f_{n} \in C_{0}(S)$ with $\operatorname{supp}\left(f_{n}\right)$ compact and contained in $S_{0}, 1 \leqslant n \leqslant p$, and set $F=\sum_{n=1}^{p} M_{z^{n}} f_{n}$. Since elements of
this form are dense in R, and since R^{\prime} is closed, it will be enough to show $F \in R^{\prime}$.

Let $K=\bigcup_{j=1}^{p} \operatorname{supp}\left(f_{j}\right)$; for each $s \in K$, let U_{s} be a compact neighborhood of s with the property that for every syndetic set $A \subset \mathbb{Z}^{+}, \bigcap_{k \in A} \phi^{-k}\left(U_{s}\right)=\varnothing$. Since the interiors $\left\{U_{s}^{0}\right\}_{s \in K}$ form an open cover of K, there is a finite subcover $\left\{U_{i} \equiv U_{s_{i}}\right\}_{i=1}^{m}$. Let $\left\{g_{i}\right\}_{i=1}^{m}$ be a partition of unity for K subordinate to $\left\{U_{i}\right\}_{i=1}^{m} ;$ i.e., $0 \leqslant g_{i} \leqslant 1, \operatorname{supp}\left(g_{i}\right) \subseteq U_{i}, \quad 1 \leqslant i \leqslant m$, and $\sum_{i=1}^{m} g_{i}(s)=1$, $s \in K$. If $n \geqslant 1$, expand

$$
F^{n}=\left(\sum_{j=1}^{p} M_{z^{j}} f_{j}\right)^{n}=\left(\sum_{j=1}^{p} \sum_{k=1}^{m} M_{z j} f_{j} g_{k}\right)^{n}=\sum_{k=n}^{n p} M_{z^{k}} h_{k}
$$

where each h_{k} is a sum of terms of the form

$$
\begin{gather*}
\left(f_{j_{0}} g_{k_{0}}\right) \circ \phi^{m_{0}}\left(f_{j_{1}} g_{k_{1}}\right) \circ \phi^{m_{1}} \cdots\left(f_{j_{n-1}} g_{k_{n-1}}\right) \circ \phi^{m_{n-1}} \\
j_{0}, j_{1}, \ldots, j_{n-1} \in\{1, \ldots, p\}, k_{0}, k_{1}, \ldots, k_{n-1} \in\{1, \ldots, m\}, \tag{*}
\end{gather*}
$$

and $m_{0}=0,1 \leqslant m_{j}-m_{j-1} \leqslant p, \quad j \geqslant 1$. Since $(*)$ is supported in $\bigcap_{j=0}^{n-1} \phi^{-m_{j}}\left(U_{k_{j}}\right)$, it follows from the lemma that $(*)$ is zero for $n \geqslant N+1$ (here N is as in the Lemma). Hence $F^{n}=0, n \geqslant N+1$, so $F \in R^{\prime}$.

To show the reverse inclusion, let $F=\sum_{n \geqslant 1} M_{z^{n}} f_{n} \in R^{\prime}$. By IV.2, $M_{z^{n}} f_{n} \in R^{\prime}, n \geqslant 1$; so if $F \neq 0$ there is a $k_{0}>0$ such that $f_{k_{0}} \neq 0$, $M_{z^{k} 0} f_{k_{0}} \in R^{\prime}$. We must show that $\left\{s: f_{n}(s) \neq 0\right\} \subseteq S_{0}$; suppose to the contrary there is a nearly periodic point s_{0} such that $\int_{k_{0}}\left(s_{0}\right) \neq 0$. Since $M_{z k_{0}} \lambda f_{k_{0}} \bar{f}_{k_{0}} \in R^{\prime}$ for any constant λ, we may suppose $f_{k_{0}} \geqslant 0$ and $f_{k_{0}}\left(s_{0}\right)=1$. Set $U=\left\{s \in S: f_{k_{0}}(s) \geqslant \frac{1}{2}\right\} . U$ is a compact neighborhood of s_{0}, so there is a syndetic set $A=\left\{m_{j}\right\}_{j=0}^{\infty}, m_{0}=0,1 \leqslant m_{j}-m_{j-1} \leqslant p$ (for some positive integer p) and a point $s_{1} \in U$ such that $\left\{\phi^{m_{j}}\left(s_{1}\right): j \in \mathbb{Z}^{+}\right\} \in U$. Writing f in place of $f_{k_{0}}$, observe $M_{z j} f \in R^{\prime}, j \geqslant k_{0}$, and compute $\left(\sum_{j=k_{0}}^{k_{0}+p} M_{z^{i}} f\right)^{n}=$ $\sum_{j=n k_{0}}^{n\left(k_{0}+p\right.} M_{z i} h_{j}$, where each h_{j} is a sum of terms of the form $f f \circ \phi^{j_{1}} \cdots$ $f \circ \phi^{j_{n-1}}$, where $k_{0} \leqslant j_{i}-j_{i-1} \leqslant k_{0}+p, 1 \leqslant i \leqslant n-1\left(j_{0}=0\right)$. Also, given any sequence $\left\{j_{i}\right\}_{i=0}^{p}$ satisfying $j_{0}=0, k_{0} \leqslant j_{i}-j_{i-1} \leqslant k_{0}+p, 1 \leqslant i \leqslant p$, there is an h_{j} with $f f \circ \phi^{j_{i}} \cdots f \circ \phi^{j_{n-1}}$ as a summand. Since any sequence of p consecutive integers intersects A, there is at least one choice of $\left\{j_{i}\right\}_{i=1}^{p} \subset A$. Furthermore, since

$$
\left\|\left(\sum_{j=k_{0}}^{k_{0}+p} M_{z} f\right)^{n}\right\| \geqslant\left\|h_{j}\right\|, \quad n k_{0} \leqslant j \leqslant n\left(k_{0}+p\right)
$$

and since $f \geqslant 0$,

$$
\begin{aligned}
\left\|\left(\sum_{j=k_{0}}^{k_{0}+p} M_{z} f\right)^{n}\right\| & \geqslant\left\|f f \circ \phi^{j_{1}} \cdots f \circ \phi^{j_{n-1}}\right\| \\
& \geqslant f\left(s_{1}\right) f\left(\phi^{j_{1}}\left(s_{1}\right)\right) \cdots f\left(\phi^{j_{n-1}}\left(s_{1}\right)\right) \\
& \geqslant\left(\frac{1}{2}\right)^{n}, \quad \text { since } \phi^{j_{i}}\left(s_{1}\right) \in U
\end{aligned}
$$

$0 \leqslant i \leqslant n-1$. Thus the spectral radius of $\sum_{j=k_{0}}^{k_{0}+p} M_{z j} f$ is $\geqslant \frac{1}{2}$, contradicting that it belongs to the Jacobson radical. Thus $R^{\prime} \subseteq R$, and hence $R^{\prime}=R$.
IV.7. Finally, we characterize the strong radical of $\mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$. Let S_{p} denote the periodic points of S, and set $S_{0}=S \backslash \bar{S}_{p}$. Set $R=\{F=$ $\left.\sum_{n \geqslant 1} M_{z^{n}} f_{n} \in \mathbb{Z}^{+} \times_{\alpha} C_{0}(S):\left\{s: f_{n}(s) \neq 0\right\} \subseteq S_{0}\right\}$.

Proposition. R is the strong radical of $\mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$.
Proof. Let R^{\prime} denote the strong radical of $\mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$, and let $F=\sum_{n \geqslant 1} M_{z n} f_{n} \in R^{\prime}$; then by IV. $2 M_{z n} f_{n} \in R^{\prime}, n \geqslant 1$. If $F \notin R$, then there is an integer k_{0} and a periodic point s_{0} such that $f_{k_{0}}\left(s_{0}\right) \neq 0$. If $T=\left\{s_{0}, s_{1}, \ldots, s_{m-1}\right\}$ is the orbit of s_{0}, the inclusion $q: T \rightarrow S$ yields a mapping $\tilde{q}: \mathbb{Z}^{+} \times_{\alpha} C_{0}(S) \rightarrow \mathbb{Z}^{+} \times_{\alpha_{0}} C(T)$ by II. 12 (here $\alpha_{0}=\left.\alpha\right|_{T}$) for which $\tilde{q}\left(M_{z_{0}} f_{k_{0}}\right) \neq 0$. By the results of Section III, $\mathbb{Z}^{+} \times_{\alpha_{0}} C(T)$ is strongly semisimple; if M is a maximal ideal of $\mathbb{Z}^{+} \times_{\alpha_{0}} C(T)$, it follows from the fact that \tilde{q} has dense range and the finite codimensionality of M that $\tilde{q}^{-1}(M)$ is a maximal modular ideal of $\mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$. Since $\tilde{q}\left(M_{z^{k 0}} f_{k_{0}}\right) \neq 0, M_{z^{k 0}} f_{k_{0}}$ is not in the strong radical R^{\prime}. This contradiction shows that $R^{\prime} \subseteq R$.

To prove the reverse inclusion, let $\mathscr{F}=\left\{F \in \mathbb{Z}^{+} \times_{\alpha} C_{0}(S)\right.$, $\left.F=\sum_{n \geqslant 0} M_{z^{n}} f_{n}:\left\{s: f_{n}(s) \neq 0\right\} \subseteq S_{0}\right\}$. Although S_{0} may not be invariant under ϕ, it is true that $\phi^{-1}\left(S_{0}\right) \subseteq S_{0}$, so by II. $14 \mathscr{F}$ is an ideal of $\mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$. Thus there is a one to one correspondence between the maximal modular ideals of $\mathbb{Z}^{+} \times{ }_{\alpha} C_{0}(S)$ not containing \mathscr{F} and those of \mathscr{F}. By the following Lemma (IV.8), the maximal modular ideals of \mathscr{F} are all of the form ker $\chi_{s}, s \in S_{0}$. Thus $R^{\prime} \supseteq R$, and so $R^{\prime}=R$.
IV.8. Recall that $\chi_{s}: \mathbb{Z}^{+} \times_{\alpha} C_{0}(S) \rightarrow \mathbb{C}$ is the (continuous) homomorphism $\chi_{s}\left(\sum_{n \geqslant 0} M_{z^{n}} f_{n}\right)=f_{0}(s)$.

Lemma. With notation as in IV.7, the maximal modular ideals of \mathscr{F} are of the form ker $\chi_{s}, s \in S_{0}$.

Proof. Let $M \subseteq \mathbb{Z}^{+} \times_{a} C_{0}(S)$ be a maximal modular ideal of \mathscr{F}, and assume $M \neq \operatorname{ker} \chi_{s}, s \in S_{0}$. Then for each $s \in S_{0}$ there is an element $F^{(s)} \in M$ such that $\chi_{s}\left(F^{(s)}\right) \neq 0$, and adjusting by a scalar we may assume that $\chi_{s}\left(F^{(s)}\right)=1$. Given $\varepsilon>0$ and a compact set $K \subseteq S_{0}$, let U_{s} be the open neighborhood of s consisting of all $s^{\prime} \in S_{0}$ with $\left|\chi_{s^{\prime}}\left(F^{(s)}\right)-1\right|<\varepsilon$. The open cover $\left\{U_{s}: s \in K\right\}$ of K has a finite subcover, say, $\left\{U_{j} \equiv U_{s_{j}}: 1 \leqslant j \leqslant m\right\}$. Let $\left\{g_{i}\right\}_{j=1}^{m}$ be a partition of unity for K subordinate to the cover $\left\{U_{j}\right\}_{j=1}^{m}$; i.e., $\quad 0 \leqslant g_{i} \leqslant 1, \quad \operatorname{supp}\left(g_{i}\right) \subseteq U_{i}, \quad 1 \leqslant i \leqslant m, \quad \sum_{i=1}^{\infty} g_{i}(s)=1, \quad s \in K$, and $\sum_{i=1}^{m} g_{i}(s) \leqslant 1, s \in S_{0} \backslash K$.

Set $F=\sum_{j=1}^{m} F^{\left(s_{j}\right)} g_{j}$, and $u \equiv u_{(K, \varepsilon)}=\sum_{j=1}^{m} g_{j}$; for $s \in S_{0}$ we estimate

$$
\begin{aligned}
\left|\chi_{s}(F)-u(s)\right| & =\left|\chi_{s}\left[\sum_{j=1}^{m}\left(F^{\left(s_{j}\right)} g_{j}-g_{j}\right)\right]\right| \\
& =\left|\sum_{j=1}^{m}\left(\chi_{s}\left(F^{s_{j}}\right)-1\right) g_{j}(s)\right| \\
& \leqslant \sum_{j=1}^{m}\left|\chi_{s}\left(F^{s_{j}}\right)-1\right| g_{j}(s)<\varepsilon .
\end{aligned}
$$

Let $F=\sum_{n \geqslant 0} M_{z^{n}} f_{n}$ and choose $F^{\prime}=\sum_{n=0}^{N} M_{z^{n}} f_{n}^{\prime} \in K\left(\mathbb{Z}^{+}, C_{0}(S), \alpha\right)$ such that $\left\|F-F^{\prime}\right\|<\varepsilon$ and $\operatorname{supp}\left(f_{n}^{\prime}\right) \subseteq S_{0}$. Momentarily fix $s_{0} \in K$ and let V be a compact neighborhood of s_{0}; given $k>0$ we may assume $s_{0} \notin \phi^{-k}(V)$. Otherwise $\phi^{k}\left(s_{0}\right)$ would belong to every neighborhood of s_{0}, so $s_{0}=\phi^{k}\left(s_{0}\right)$. But that contradicts the fact that S_{0} has no periodic points. Thus we may assume that $s_{0} \notin \phi^{-k}(V), 1 \leqslant k \leqslant N$. Since ϕ is proper, $\phi^{-k}(V)$ is compact, and so $V \backslash \phi^{-k}(V)$ is a neighborhood of s_{0}. Changing notation from the first paragraph, let $U_{s_{0}}$ be a compact neighborhood of $s_{0}, U_{s_{0}} \subset \bigcap_{j=1}^{N}\left(V \backslash \phi^{-k}(V)\right)$. Thus, $U_{s_{0}}, \phi^{-1}\left(U_{s_{0}}\right), \ldots, \phi^{-N}\left(U_{s_{0}}\right)$ are pairwise disjoint. If we do this for each point $s \in K$, we obtain an open cover of K, from which we extract a finite subcover $\left\{U_{j}\right\}_{j=1}^{m}$. Let $\left\{g_{j}\right\}_{j=1}^{m}$ be a partition of unity for K subordinate to $\left\{U_{j}\right\}_{j=1}^{m}$; in particular, if $u \equiv \sum_{j=1}^{m} g_{j}, u(s)=1, s \in K$ and $0 \leqslant u(s) \leqslant 1$, $s \in S$. Let $\left\{h_{j}\right\}_{j=1}^{m} \subset C_{0}(S)$ have properties
(a) $h_{j}(s)=\left(f_{0}^{\prime}(s)\right)^{-1}, s \in \operatorname{supp}\left(g_{j}\right) \cap K$;
(b) $\operatorname{supp}\left(h_{j}\right) \subset U_{j}, 1 \leqslant j \leqslant m$, and

$$
\left\|h_{j}\right\|=\sup \left\{\left|f_{0}^{\prime}(s)\right|^{-1}: s \in \operatorname{supp}\left(g_{j}\right) \cap K\right\}
$$

Define $G \in K\left(\mathbb{Z}^{+}, C_{0}(S), \alpha\right)$ by

$$
\begin{aligned}
G= & \sum_{j=1}^{m} h_{j} F^{\prime} g_{j}=\sum_{n-0}^{N} M_{z^{n}} h_{1} \circ \phi^{n} f_{n}^{\prime} g_{\mathbf{1}}+\sum_{n=0}^{N} M_{z^{n}} h_{2} \circ \phi^{n} f_{n}^{\prime} g_{2} \\
& +\cdots+\sum_{n=0}^{N} M_{z^{n}} h_{m} \circ \phi^{n} f_{n}^{\prime} g_{m} .
\end{aligned}
$$

We claim $\psi_{s}(G)=1, s \in K$. (Here we write ψ_{s} in place of $M_{z}^{s} \times \tilde{\pi}_{s}$.) Notice that by the construction of h_{j}, g_{j} we have

$$
\begin{aligned}
& h_{1}(s) f_{0}^{\prime}(s) g_{1}(s)+h_{2}(s) f_{0}^{\prime}(s) g_{2}(s)+\cdots+h_{m}(s) f_{0}^{\prime}(s) g_{m}(s) \\
& \quad-g_{1}(s)+g_{2}(s)+\cdots+g_{m}(s)=1
\end{aligned}
$$

for all $s \in K$. Also, for $1 \leqslant k \leqslant N$ and $s \in K, h_{j} \circ \phi^{k}(s) f_{k}^{\prime}(s) g_{j}(s)=0$, $1 \leqslant j \leqslant m$. For clearly if $s \notin U_{j}, h_{j} \circ \phi^{k}(s) f_{k}^{\prime}(s) g_{j}(s)=0$. But if $s \in U_{j}$, $\phi^{k}(s) \notin U_{j}$, and since $\operatorname{supp}\left(h_{j}\right) \subseteq U_{j}, h_{j}\left(\phi^{k}(s)\right)=0$. This proves the claim.

Now for any $s \in S, \psi_{s}(G)=\psi_{s}\left(\sum_{j=1}^{m} h_{j} F^{\prime} g_{i}\right)=\sum_{j=1}^{m} h_{j}(s) \psi_{s}\left(F^{\prime}\right) g_{j}(s)$, so $\left\|\psi_{s}(G)\right\| \leqslant \sum_{j=1}^{m} \sup \left\{\left|f_{0}^{\prime}\left(s^{\prime}\right)\right|^{-1}: s^{\prime} \in K\right\} \quad\left\|F^{\prime}\right\| g_{j}(s) \leqslant(1-2 \varepsilon)^{-1}(\|F\|+\varepsilon)$. We have used that $\left\|f_{0}-f_{0}^{\prime}\right\|<\varepsilon$ and $\left|f_{0}(s)-1\right|<\varepsilon, s \in K$. Thus $\|G\| \leqslant$ $(1-2 \varepsilon)^{-1}(\|F\|+\varepsilon)$.

Let $H=\sum_{j-1}^{m} h_{j} F g_{j}$; since $F \in M, H \in M$. We estimate, for any $s \in S$,

$$
\begin{aligned}
\left\|\psi_{s}(H-G)\right\| & =\left\|\psi_{s}\left[\sum_{j-1}^{m} h_{j}\left(F-F^{\prime}\right) g_{j}\right]\right\| \\
& \leqslant \sum_{j=1}^{m}\left\|h_{j}\right\|\left\|F-F^{\prime}\right\| g_{j}(s) \\
& <\frac{\varepsilon}{1-2 \varepsilon}
\end{aligned}
$$

Consequently, $\|H-G\|<\varepsilon /(1-2 \varepsilon)$. But then M contains an approximate identity $\left\{H_{(K, \varepsilon)}\right\}$ for \mathscr{F} so M is not a proper ideal in \mathscr{F}, contrary to our assumption.
IV.9. Corollary. The strong structure space of $\mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$ is homeomorphic to S if and only if (S, ϕ) has no periodic points.

Proof. If (S, ϕ) has no periodic points, then by IV. 8 the strong structure space is in one to one correspondence with S under $s \rightarrow \operatorname{ker} \chi_{s}$. But it is clear that the hull-kernel topology on S is the same as the hull-kernel topology determined by $C_{0}(S)$, which is the topology of S.

If $s_{0} \in S$ is a periodic point with (finite) orbit T, then the inclusion $q: T \rightarrow S$ yields by II. $12 \tilde{q}: \mathbb{Z}^{+} \times_{\alpha} C_{0}(S) \rightarrow \mathbb{Z}^{+} \times_{\alpha_{0}}(T)$. (Here $\phi_{0}=\left.\phi\right|_{T}$, and $\alpha_{0}(f)=f \circ \phi_{0}, f \in C(T)$.) This gives rise to a continuous injection of the strong structure space of $\mathbb{Z}^{+} \times_{\alpha_{0}}(T)$ into the strong structure space of $\mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$. Since the strong structure space of $\mathbb{Z}^{+} \times_{\alpha_{0}}(T)$ is nonhausdorff by III.5, it follows that the strong structure space of $\mathbb{7}^{+} \times_{\alpha} C_{0}(S)$ is nonhausdorff, and in particular not homeomorphic with S.
IV.10. Exлmple. Arveson-Josephson algebras. Let S be locally compact, ϕ a homeomorphism of S, and assume there exists a separable regular Borel probablity measure m on S satisfying
(i) (quasi-invariance) $m \circ \phi$ is mutually absolutely continuous with respect to m;
(ii) $m(U)>0$ for every nonemepty open set U;
(iii) the set of periodic points has measure zero.

Define a unitary V on $L^{2}(S, m)$ by $\left.V g=((d m \circ \phi)) / d m\right)^{1 / 2} g \circ \phi$, $g \in L^{2}(S, \phi)$, where $m \circ \phi(E)=m(\phi(E))$. Let L_{f} be the multiplication
operator $L_{f} g=f g, f \in C_{0}(S), g \in L^{2}(S, m)$. The Arveson-Josephson algebra $\mathfrak{U}(S, \phi)$ is defined as the norm closure in $\mathscr{L}\left(L^{2}(S, \phi)\right)$ of the algebra of all finite sums

$$
L_{f_{0}}+L_{f_{1}} V+\cdots+L_{f_{n}} V^{n}, \quad f_{j} \in C_{0}(S)
$$

Since $V L_{f} V^{-1}=L_{f \circ \phi}, \mathcal{M}(S, \phi)$ is also the norm closure of the algebra of all finite sums $L_{f_{0}}+V L_{f_{1}}+\cdots+V^{n} L_{f_{n}}, f_{1} \in C_{0}(S)$. If $\alpha(f)=f \circ \phi, f \in C_{0}(S)$, then (L, V) is an isometric covariant representation of $\left(C_{0}(S), \alpha\right)$. By II.4, $\mathbb{Z}^{+} \times{ }_{\alpha} C_{0}(S)$ isomorphic with a nonselfadjoint subalgebra of the C^{*}-crossed product $\mathbb{Z} \times_{\alpha} C_{0}(S)$. It follows from [1, Sect. 5] that $\mathfrak{A}(S, \phi)$ is isomorphic with $\mathbb{Z}^{+} \times_{\alpha} C_{0}(S)$. In particular, all the results we have obtained regarding the prime radical, radical, and strong radical of semi-crossed products pertain to the Arveson-Josephson algebras. The authors of [1] wondered if these algebras are semisimple, since they were concerned with the boundedness of the automorphisms. If ϕ acts on $S=\mathbb{Z}$ by translation, we see from IV. 4 that $\mathbb{Z}^{+} \times_{\alpha} C_{0}(\mathbb{Z})=\mathfrak{A}(\mathbb{Z}, \phi)$ is equal to its prime radical. (Nevertheless, as is mentioned in [12], the automorphisms of this algebra are all bounded.) If we consider only those algebras $\mathfrak{H}(S, \phi)$ where the measure is invariant, as is done in most of [1], it follows easily from IV. 4 that these algebras are semiprime. However, the invariance of the measure m does not seem to be enough to imply that (S, ϕ) is nearly periodic (even if m is ergodic), although we have not constructed a counterexample.

V.

V.1. Let S_{i} be a locally compact hausdorff and $\phi_{i}: S_{i} \rightarrow S_{i}$ continuous and proper ($i=1,2$). As in [1], we say (S_{1}, ϕ_{1}) is conjugate to $\left(S_{2}, \phi_{2}\right)$ if there is an equivariant homeomorphism $\Theta:\left(S_{2}, \phi_{2}\right) \rightarrow\left(S_{1}, \phi_{1}\right)$; that is, the diagram

commutes. It follows from II. 12 that if $\left(S_{1}, \phi_{1}\right),\left(S_{2}, \phi_{2}\right)$ are conjugate, then $\mathbb{Z}^{+} \times{ }_{\alpha_{1}} C_{0}\left(S_{1}\right), \mathbb{Z}^{+} \times_{\alpha_{2}} C_{0}\left(S_{2}\right)$ are isomorphic. In this section we consider the converse proposition. In Theorem 3.11 of [1] it is proved that if ϕ_{i} is a homeomorphism of $S_{i}(i=1,2)$ and if there exist probability measures m_{i} on S_{i} satisfying 4.10 (i), (ii), and (iii) ($i=1,2$) with m_{2} invariant and ergodic, then $\mathfrak{A}\left(S_{1}, \phi_{1}\right), \mathfrak{A}\left(S_{2}, \phi_{2}\right)$ isomorphic implies that $\left(S_{1}, \phi_{1}\right),\left(S_{2}, \phi_{2}\right)$ are conjugate. We, on the other hand, will assume that S_{i} is compact and ϕ_{i} has
no periodic points, but make no stringent assumptions about the existence of an invariant measure. In addition, ϕ_{i} is only assumed to be continuous and proper.

Theorem. Assume that S_{i} is compact hausdorff and that ϕ_{i} has no periodic points, $i=1,2$. Then $\mathbb{Z}^{+} \times{ }_{\alpha_{1}} C\left(S_{1}\right)$ isomorphic to $\mathbb{Z}^{+} \times_{\alpha_{2}} C\left(S_{2}\right)$ implies that $\left(S_{1}, \phi_{1}\right)$ is conjugate to $\left(S_{2}, \phi_{2}\right)$.

Proof. For convenience we write \mathscr{U}_{i} for $\mathbb{Z}^{+} \times_{\alpha_{i}} C\left(S_{i}\right), i=1,2$. Let $\psi: \mathfrak{A}_{1} \rightarrow \mathfrak{A}_{2}$ be an isomorphism (not necessarily continuous); then ψ maps the maximal modular ideals of \mathfrak{N}_{2} bijectively onto those of $\mathfrak{N}_{1}, M \rightarrow \psi^{-1}(M)$; furthermore, this mapping is a homeomorphism for the respective hull-kernel topologies. Since by Corollary IV. 9 the strong structure space of \mathfrak{A}_{i} is S_{i}, $i=1,2$, we obtain a homeomorphism $\Theta: S_{2} \rightarrow S_{1}$ defined by $\Theta(s)=s^{\prime}$ if $\psi^{-1}\left(\operatorname{ker} \chi_{s}\right)=\operatorname{ker} \chi_{s^{\prime}}$. Now the strong radical of \mathfrak{N}_{i} is $M_{z}^{i} \mathfrak{A}_{i}$, and since ψ maps the strong radical onto the strong radical, $\psi\left(M_{z}^{1} \mathfrak{A}_{1}\right)=M_{z}^{2} \mathfrak{A}_{2}$. Let P^{i} be the projection $\mathfrak{Q}_{i}, C\left(S_{i}\right), P^{i}\left(\sum_{n \geqslant 0} M_{z}^{i} f_{n}\right)=f_{0}\left(f_{n} \in C\left(S_{i}\right)\right), i=1,2 . P^{i}$ is a norm one homomorphism (and in this setting can be identified with the canonical mapping of \mathfrak{A}_{i} onto the quotient of \mathfrak{A}_{i} modulo the strong radical of \mathfrak{A}_{i}). Define a mapping $\lambda: C\left(S_{1}\right) \rightarrow C\left(S_{2}\right)$ by $\lambda=\left.P^{2} \circ \psi\right|_{C\left(S_{1}\right)}$. We claim λ is a * algebra isomorphism. Let $f \in C\left(S_{1}\right)$ and write $\psi(f)=\lambda(f)+F^{\prime}$, $F^{\prime} \in M_{z}^{2} \mathfrak{A}_{2}$. Since for $s \in S_{2}, \chi_{s}\left(F^{\prime}\right)=0$, we have $\chi_{s}(\lambda(f))=\chi_{s}\left(\lambda(f)+F^{\prime}\right)=$ $\chi_{s}(\psi(f))=\chi_{\Theta(s)}(f)$. Thus, $\lambda(f)(s)=f(\Theta(s))$, or $\lambda(f)=f \circ \Theta$.

Notice that $\psi\left(M_{z^{2}}^{1} \mathfrak{A}_{1}\right)=M_{z^{2}}^{2} \mathfrak{H}_{2} ;$ for $\psi\left(M_{z^{2}}^{1} \mathfrak{A}_{1}\right)=\psi\left(M_{z}^{1}\right) \psi\left(M_{z}^{1} \mathfrak{A}_{1}\right) \subseteq$ $\left(M_{z}^{2} \mathfrak{A}_{2}\right)\left(M_{z}^{2} \mathfrak{A}_{2}\right) \subseteq M_{z^{2}}^{2} \mathfrak{A}$. Apply the same argument with ψ^{-1} in place of ψ to get the other containment. Let $\psi\left(M_{z}^{1}\right)=M_{z}^{2} g+G, G \in M_{z^{2}}^{2} \mathfrak{N}_{2}$; also let $\psi^{-1}\left(M_{z}^{2}\right)=M_{z}^{1} h+H, H \in M_{z^{2}}^{1} \mathfrak{A}_{1}$. Then $M_{z}^{2}=\psi\left(\psi^{-1}\left(M_{z}^{2}\right)\right)=\psi\left(M_{z}^{1} h+H\right)=$ $\psi\left(M_{z}^{1}\right) \psi(h)+\psi(H)=\left(M_{z}^{2} g+G\right) \psi(h)+\psi(H)$. Now modulo $M_{z^{2}}^{2} \mathfrak{U}_{2}$, the right-hand side is $M_{z}^{2} g h \circ \Theta$. It follows that $g h \circ \Theta=1$, and in particular that g, h do not vanish at any point. Next let $f \in C\left(S_{1}\right)$ be arbitrary, and compute

$$
\begin{aligned}
\psi\left(f M_{z}^{1}\right)+M_{z^{2}}^{2} \mathfrak{N}_{2} & =\psi\left(M_{z}^{1} f \circ \phi_{1}\right)+M_{z^{2}}^{2} \mathfrak{N}_{2} \\
& =\psi\left(M_{z}^{1}\right) \psi\left(f \circ \phi_{1}\right)+M_{z^{2}}^{2} \mathfrak{N}_{2} \\
& =\left(M_{z}^{2} h\right)\left(f \circ \phi_{1} \circ \Theta\right)+M_{z^{2}}^{2} \mathfrak{N}_{2} \\
& =M_{z}^{2}\left(h f \circ \phi_{1} \circ \Theta\right)+M_{z^{2}}^{2} \mathfrak{N}_{2} .
\end{aligned}
$$

Also,

$$
\begin{aligned}
\psi\left(f M_{z}^{1}\right)+M_{z^{2}}^{2} \mathfrak{U}_{2} & =\psi(f) \psi\left(M_{z}^{1}\right)+M_{z^{2}}^{2} \mathfrak{U}_{2} \\
& =(f \circ \Theta) M_{z}^{2} h+M_{z z}^{2} \mathfrak{U}_{2} \\
& =M_{z}^{2}\left(f \circ \Theta \circ \phi_{2} h\right)+M_{z^{2}}^{2} \mathfrak{U}_{2} .
\end{aligned}
$$

It follows that $f \circ \Theta \circ \phi_{2} h=h f \circ \phi_{1} \circ \Theta$; since h never vanishes, $f \circ \Theta \circ \phi_{2}=$ $f \circ \phi_{1} \circ \Theta$. Finally, since $f \in C\left(S_{1}\right)$ was arbitrary,

$$
\Theta \circ \phi_{2}=\phi_{1} \circ \Theta
$$

V.2. It would be interesting to know if the conclusion of V. 1 carries over to the periodic case as well. One very weak conclusion can be gotten from III.5: suppose S_{i} is locally compact hausdorff, and $\phi_{i}: S_{i} \rightarrow S_{i}$ is a homomorphism such that (S_{i}, ϕ_{i}) has locally bounded order, $i=1,2$. Then $\mathbb{Z}^{+} \times_{\alpha_{1}} C_{0}\left(S_{1}\right), \mathbb{Z}^{+} \times_{\alpha_{2}} C_{0}\left(S_{2}\right)$ isomorphic implies S_{1}, S_{2} are homeomorphic. As in V.1, we note that the strong structure spaces are homeomorphic in their respective hull-kernel topologies, and hence the complete regularization of these spaces are homeomorphic. But by the description of the topology on the strong structure space of $\mathbb{Z}^{+} \times_{\alpha_{i}} C_{0}\left(S_{i}\right)$ given in III.5, it follows that the complete regularization of this space is homeomorphic with S_{i}. (See [2] for a discussion of complete regularization.)
V.3. The results of Section IV suggest that it should be possible to express other ring-theoretic properties of semi-crossed products $\mathbb{Z}^{+} \times_{a} C_{0}(S)$ in terms of the dynamical system (S, ϕ). Also, it would be interesting to have a description of the primitive ideal space, at least in the semisimple case.

References

1. W. Arveson and K. Josephson, Operator algebras and measure preserving automorphisms II, J. Funct. Anal. 4 (1969), 100-134.
2. J. Dauns and K. Hofmann, "Representation of Rings by Sections," A.M.S. Memoir No. 83, Amer. Math. Soc., Providence, R.I., 1968.
3. J. Dixmier, "Les C^{*}-algebres et leurs representations," Gauthier-Villars, Paris, 1964.
4. R. Ellis, "Lectures on Topological Dynamics," Benjamin, New York, 1969.
5. D. Evans and H. Takal, Simplicity of crossed products of GCR algebras by abelian groups, Math. Ann. 243 (1979), 55-62.
6. P. Fillmore, "Notes on Operator Theory." Van Nostrand, New York. 1970.
7. S. Gaal, "Linear Analysis and Representation Theory," Springer-Verlag, New York, 1973.
8. E. Gootman and J. Rosenberg, The structure of crossed product C^{*}-algebras: A proof of the generalized Effros-Hahn conjecture, Invent. Math. 52 (1979), 283-298.
9. K. Hoffman, "Banach Spaces of Analytic Functions," Prentice-Hall, Englewood Cliffs, N.J., 1962.
10. T. Hungerford, "Algebra," Holt, Rinehart \& Winston, New York, 1974.
11. M. McAsey, Canonical models for invariant subspaces, Pacific J. Math. 91 (1980), 377-395.
12. P. Muhly, Radicals, crossed products, and flows, Ann. Polon. Math. 43 (1983), 35-42.
13. G. Pederson, " C^{*}-Algebras and Their Automorphism Groups, "Academic Press, London/New York 1979.
14. C. Rickart, "General Theory of Banach Algebras," Van Nostrand, Princeton, N.J., 1960.
15. S. Sakal, "C*-Algebras and W^{*}-Algebras," Springer-Verlag, New York, 1971.
