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A noncommutative Poisson transform associated to a certain class of sequences
of operators on Hilbert spaces, with property (P), is defined on some universal
C*-algebras (resp. nonselfadjoint algebras) generated by isometries. Its properties
are described and used to study these universal algebras and their representations.
As consequences, we obtain a functional calculus, isometric (resp. unitary) dilations,
and commutant lifting theorem for the class of sequences of operators with property
(P). Our ``geometrical'' approach leads also to new and elementary proofs as well
as extensions of some classical results. � 1999 Academic Press

1. INTRODUCTION AND PRELIMINARIES

Let H be a Hilbert space and B(H) be the algebra of all bounded linear
operators on H. Let T # B(H) be a contraction, i.e., &T&�1 and denote
2(T ) :=IH &TT*. It is easy to see that for each 0<r<1,

:
�

n=0

(rT )n 2(rT )(rT*)n=IH (1.1)

Let S be the unilateral shift on l2(C) and [ei]�
i=0 be the canonical basis

in l2(C). Let p(S, S*)=�m, n�0 anmS mS*n be any polynomial in C*(S),
the C*-algebra generated by S. Using (1.1), an easy computation on
monomials of the form S mS*n shows that for any h, k # H,

(p(rT, rT*) h, k)H =( ( p(S, S*)�IH ) K(rT ) h, K(rT ) k) l2(C)�H , (1.2)

where

K(rT ) h= :
�

n=0

en �2(rT )1�2 (rT*)n h, h # H.
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According to the Cauchy�Schwartz inequality and the relation (1.1), we
infer that

|(p(rT, rT*) h, k) |�&p(S, S*)& &h& &k&, for any h, k # H.

Taking r � 1 we obtain

&p(T, T*)&�&p(S, S*)&.

In the particular case when p is any polynomial in one variable we obtain
the classical von Neumann inequality [vN]

&p(T )&�&p(S)&

(see [Pi] for a nice survey and other proofs.)
In this paper we will extend the Poisson transform (1.2) to a more

general setting. Let us consider the full Fock space F 2(Hn)=C1�
�m�1 H �m

n , where Hn is an n-dimensional complex Hilbert space with
orthonormal basis [e1 , e2 , ..., en] (n�1). Let n1 , n2 , ..., nk�1 be integers.
For each i=1, 2, ..., k and j=1, 2, ..., ni let us define the operator Sij on the
Hilbert space F 2(Hn1

)� } } } �F 2(Hnk
) by

Sij=I� } } } �I

i&1 times

�Sj�I� } } } �I

k&i times

,

where Sj is the left creation operator with ej ( j=1, 2, ..., ni) on the full
Fock space F 2(Hni

), i.e., S j!=ej �!, ! # F 2(Hni
).

Let Alg(I, [Sij]) be the smallest closed subalgebra generated by [S ij]
and the identity, and let C*([Sij]) be the C*-algebra generated by [S ij].
We will refer to Alg(I, [Sij]) as the noncommutative polydisc algebra.
Note that when n1=n2= } } } =nk=1 it is isomorphic to the polydisc
algebra A(Dk) (see [R]). On the other hand, if k=1 and n1=n we obtain
the noncommutative disc algebra An (see [Po2, Po4]).

A Cauchy transform on the noncommutative polydisc algebra Alg(I, [Sij])
is defined in Section 2.

In Section 3 we introduce a Poisson transform on C*([Sij]) and describe
some of its properties. A Poisson kernel Kr([Aij]) (0<r<1) is associated
to any sequence of operators [Aij] i=1, 2, ..., k, j=1, 2, ..., ni

/B(H) with property
(P) (see Section 3 for the definition) such that the map

Pr([Aij]): C*([Sij]) � B(H)

defined by

Pr([A ij])[ f ([Sij], [S ij*])]=( f ([Sij], [S ij*]) Kr([Aij]), Kr([Aij])) ,
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for any f ([Sij], [S ij*]) # C*([S ij]), has the following properties:

(i) Pr([Aij])[I]=IH ;

(ii) Pr([Aij]) is linear and completely contractive;

(iii) Pr([Aij])|Alg(I, [Sij ]) is multiplicative.

The Poisson transform of f ([Sij], [S ij*]) # C*([Sij]) at a point [Aij] will
be defined by

P([Aij])[ f ([Sij], [S ij*])] :=lim
r � 1
r<1

Pr([Aij])[ f ([Sij], [S ij*])]

(in the uniform topology).
Let us remark that all the results of this paper hold true if we allow

ni=� for some i # [1, ..., k], in a slightly adapted version.
Using the Poisson transform, we show that a sequence

[Aij] i=1, 2, ..., k, j=1, 2, ..., ni
/B(H) has property (P) if and only if there is a

completely contractive linear map

8: C*([Sij]) � B(H)

such that 8(I )=IH and

8(Si1 j1
} } } Sip jp

S*:1;1
} } } S*:q;q

)=Ai1 j1
} } } Aip jp

A*:1;1
} } } A*:q;q

.

Thus, the Poisson transform provides a functional calculus for sequences of
operators with property (P).

If U # U(Hn), the group of unitaries on Hn , then there is an auto-
morphism ;U on C*(S1 , ..., Sn) (see [BEGJ]), the extension of the Cuntz
algebra On by compacts [Cu], canonically generated. Similarly, one can get
``canonically generated'' automorphisms on C*([Sij]). In Section 4 we
show that the Poisson transform on C*([Sij]) ``commutes'' with the
``canonically generated'' automorphisms.

In Section 5, using the results from Section 3, Stinespring's theorem [S],
and Arveson's extension theorem [A] (see also [Pau]), we obtain an
isometric (resp., unitary) dilation theorem and commutant lifting theorem
for sequences of operators with property (P).

In Section 6 we show that the set of all characters on Alg(I, [Sij]) is
homeomorphic to (Cn1)1 _(Cn2)1_ } } } _(Cnk)1 , where (Cni)1 is the closed
unit ball of Cni (i=1, 2, ..., k). This helps us decide when two noncom-
mutative polydisc algebras are not Banach isomorphic. On the other hand,
the first group of cohomology of Alg(I, [Sij] with coefficients in C is calculated
showing, in particular, that the noncommutative polydisc algebras are not
amenable.
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In Section 7 we present some classes of sequences of operators with
property (P). Using the Poisson transform, we show that Alg(I, [S ij]) and
C*([Sij]) are universal algebras. More precisely, we show that C*([S ij])
is V-isomorphic to a tensor product Tn1

� } } } �Tnk
, of Toeplitz algebras,

and Alg(I, [S ij]) is completely isometrically isomorphic to An1
� min } } }

� min Ank
(the minimal tensor product [Pau, p. 157]), where for each

i=1, 2, ..., k, Ani
is the noncommutative disc algebra [Po4] on ni gener-

ators. The internal characterization of the matrix norm on a universal
algebra [B, BP] leads to factorization theorems. On the other hand, it is
proved that there is an V-representation 8: C*([Sij]) � On1

� } } } �Onk
,

where Oni
is the Cuntz algebra on ni generators. Let us remark that this

result was obtained by Cuntz [Cu] (using different techniques) for k=1.
Other consequences of the Poisson transform are presented in the last

two sections of this paper. In Section 8 we consider the noncommutative
Poisson transform on C*(S1 , ..., Sn), the extension of the Cuntz algebra On

by compacts, associated to the unit ball of B(H)n, i.e.,

(B(H)n)1={(T1 , ..., Tn) # B(H)n: :
n

i=1

TiTi*�IH= .

This provides a new proof for the noncommutative von Neumann inequality
for (B(H)n)1 (see [vN, Po2, Po3, Po4]) as well as an isometric (resp.
unitary) dilation theorems for sequences (T1 , ..., Tn) # (B(H)n)1 (see also
[F, Bu, Po1]).

The last section deals with sequences of commuting operators with
property (P). In the commutative case, operator-valued Poisson kernels
were considered in [Pau, CV, V]. However, our ``geometrical'' approach
leads to extensions of some results obtained in [Pau, CV, V]. We consider
a Poisson transform on C*(M1 , ..., Mn), the C*-algebra generated by the
canonical unilateral shifts on H2(Dn), the Hardy space on polydisc. We
obtain, in particular, the following consequences: commutative von Neumann
inequality for the unit ball of B(H)n (see [D1, D2] for a different approach),
universal algebra generated by n commuting isometries (see [SzF]), and
Itô's theorem [I] for a commutative family of isometries.

The author thanks Gilles Pisier for useful discussions on the subject of
this paper.

2. CAUCHY TRANSFORMS

Let H be a Hilbert space and B(H) the set of bounded linear operators
on H. In the following we fix k # [1, 2, ...]. Let n1 , n2 , ..., nk�1 be integers
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and let [Aij] i=1, 2, ..., k, j=1, 2, ..., ni
/B(H) be a sequence of operators such

that

Ai1A*i1+Ai2A*i2+ } } } +Aini
A*ini

�IH (2.1)

for each i=1, 2, ..., k, and

Aij Apq=ApqA ij (2.2)

if i, p # [1, 2, ..., k], i{ p, and j # [1, 2, ..., ni], q # [1, 2, ..., np].
Let F+

n be the unital free semigroup on n generators: s1 , ..., sn , and let e
be the neutral element in F+

n . If _ # F+
n the length of _ is defined by

|_|={m;
0;

if _=si1
} } } sim

if _=e.

For any i=[1, 2, ..., k] and :i=sj1
} } } sjm

# F+
ni

define Ai, :i
:=A ij1

} } } Aijm
,

and if :i=e then Ai, e :=IH .
Let us consider the full Fock space F 2(Hn)=C1��m�1 H �m

n , where
Hn is an n-dimensional complex Hilbert space with orthonormal basis
[e1 , e2 , ..., en] (n�1) (see [E]). For each j=1, 2, ..., n, Sj # B(F 2(Hn)) is
the left creation operator with ej , i.e., Sj!=ej �!, ! # F 2(Hn). For each
:=sj1

} } } sjm
# F+

n , j1 , ..., jm # [1, 2, ..., n] define e: :=ej1
� } } } �ejm

and
e:=1 if :=e # F+

n . It is easy to see that [e:]: # Fn
+ is an orthonormal basis

for the full Fock space F 2(Hn).
Let n1 , n2 , ..., nk�1 be some fixed integers. For each i=1, 2, ..., k and

j=1, 2, ..., ni let us define the operator Sij on the Hilbert space F 2(Hn1
)

� } } } �F 2(Hnk
) by

Sij=I� } } } �I

i&1 times

�Sj �I� } } } �I

k&i times

(2.3)

where Sj is the left creation operator with ej ( j=1, 2, ..., ni) on the full
Fock space F 2(Hni

).
Let Alg(I, [Sij]) be the smallest closed subalgebra generated by

[Sij] i=1, 2, ..., k, j=1, 2, ..., ni
and the identity, and let C*([Sij]) be the C*-

algebra generated by [Sij] i=1, 2, ..., k, j=1, 2, ..., ni
. Let [Aij] i=1, 2, ..., k, j=1, 2, ..., ni

/B(H) be a sequence of operators satisfying the relation (2.1). The
Cauchy kernel associated to this sequence is a family [Cr([A ij])]0�r<1 of
operators

Cr([A ij]): H � F 2(Hn1
)� } } } �F 2(Hnk

)�H
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defined by

Cr([A ij]) h= :

;i # F+
ni

i # [1, 2, ..., k]

e;1
� } } } �e;k

� (r |;1| + } } } +|;k|A*1, ;1
} } } A*k, ;k

h),

for any h # H. Let 1 :=1� } } } �1

k-times

# F 2(Hn1
)� } } } �F 2(Hnk

).

Theorem 2.1. Let [Aij] i=1, 2, ..., k, j=1, 2, ..., ni
/B(H) be a sequence of

operators satisfying the relation (2.1) and p([Sij]) be any polynomial in
[Sij] i=1, 2, ..., k, j=1, 2, ..., ni

. If 0�r<1 then Cr([Aij]) is a bounded operator
and

(p([rAij]) h, k) =( ( p([Sij])�IH )(1�h), Cr([Aij]) k) , (2.4)

for any h, k # H.

Proof. Since for each i # [1, 2, ..., k], m # [1, 2, ...],

" :

|;i | =m
; # F+

ni

Ai, ;i
A*i, ;i"�" :

|;i |=1

; # F+
ni

Ai, ;i
A*i, ;i"

m

�1,

we infer that

&Cr([Aij]) h&2

= :

;i # F+
ni

i # [1, 2, ..., k]

&r |;1 | + } } } +|;k |A*1, ;1
} } } A*k, ;k

h&2

= :

;i # F+
ni

i # [1, 2, ..., k]

:
�

m=0
\r2m :

|;1|=m
;1 # F+

n1

&A*1, ;1
r�k

p=2 |;p |A*2, ;2
} } } A*k, ;k

h&2+

�
1

1&r2 :

;i # F+
ni

i # [2, ..., k]

&r |;2|+ } } } +|;k |A*2, ;2
} } } A*k, ;k

h&2

�
1

(1&r2)k &h&2.

for any h # H. Therefore Cr([Aij]) is a bounded operator for each
0�r<1.
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It is enough to prove (2.4) for monomials of the form q([Sij])=
S1, :1

} } } Sk, :k
, where :i # F+

ni
(i=1, 2, ..., k). We have

( (S1, :1
} } } Sk, :k

�IH )(1�h), Cr([Aij]) h$)

=�e:1
� } } } �e:k

�h, :

;i # F+
ni

i # [1, 2, ..., k]

e;1
� } } } �e;k

� (r |;1 |+ } } } +|;k |A*1, ;1
} } } A*k, ;k

h$)�
=(h, r |:1 |+ } } } +|:k |A*1, :1

} } } A*k, :k
h$)

=(q([rAij]) h, h$) , for any h, h$ # H.

The proof is complete. K

Using the results from Section 3 one can easily extend the Cauchy trans-
form (2.4) to Alg(I, [Sij]). Let us remark that in the particular case when
k=1, n1=1, and T # B(H) such that &T&�1, the relation (2.4) is equiv-
alent to the following operator-valued Cauchy formula

p(rT )=
1

2? |
2?

0
p(eit)(1&re&itT )&1 dt.

3. POISSON TRANSFORMS

In this section we introduce a noncommutative Poisson transform and
we describe some of its properties. We keep the notation from the previous
sections.

For a given sequence of operators [Aij] i=1, 2, ..., k, j=1, 2, ..., ni
/B(H), let

2([Aij]) # B(H) be the selfadjoint operator defined by

2([Aij])= :

:i # F+
ni

|:i |�1
i # [1, 2, ..., k]

(&1) |:1 | + } } } +|:k | A1, :1
} } } Ak, :k

A*k, :k
} } } A*1, :1

. (3.1)

For each 0�r<1 define 2r([Aij]) :=2([Bij]) where Bij=rAij . We say
that a sequence [Aij] i=1, 2, ..., k, j=1, 2, ..., ni

/B(H) has property (P) if the
relations (2.1), (2.2) are satisfied, and there exists 0�\<1 such that the
operator 2r([A ij]) is positive for any r, 0�\<r<1.

An important role in our investigation is played by the following.
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Lemma 3.1. If [Aij]i=1, 2, ..., k, j=1, 2, ..., ni
/B(H) is a sequence of operators

satisfying the relations (2.1), (2.2) and such that 2r([A ij])�0 (0<r<1)
then

:

;i # F+
ni

i # [1, 2, ..., k]

r2( |;1 |+ } } } +|;k | )A1, ;1
} } } Ak, ;k

2r([Aij]) A*k, ;k
} } } A*1, ;1

=IH ,

(3.2)

where the convergence is in the strong operator topology.

Proof. If X # B(H) is a positive operator and 0<r<1, then for any
h # H, we have

:

;i # F+
ni

i # [1, 2, ..., k]

(r2( |;1 |+ } } } +|;k | )A1, ;1
} } } Ak, ;k

XA*k, ;k
} } } A*1, ;1

h, h)

�&X& :

;i # F+
ni

i # [1, 2, ..., k]

&r |;1 |+ } } } +|;k |A*1, ;1
} } } A*k, ;k

h&2

�
1

(1&r2)k &X& &h&2.

Therefore, the sum in (3.2) converges to a positive operator. On the
other hand, we are allowed to rearrange the sum. Since

2r([Aij])= :

:i # F+
ni

, |:i |�1
i # [1, 2, ..., k]

(&r2)�k
p=1 |:p | A1, :1

} } } Ak, :k
A*k, :k

} } } A*1, :1

we have

:

;i # F+
ni

i # [1, 2, ..., k]

r2 � k
p=1 |;p |A1, ;1

} } } Ak, ;k
2r([Aij]) A*k, ;k

} } } A*1, ;1

= :

$i # F +
ni

i # [1, 2, ..., k] \ :
(:) # 4$1 , ..., $k

(&1)� k
p=1 |:p |+

_r2 � k
p=1 |$p |A1, $1

} } } Ak, $k
A*k, $k

} } } A*1, $1

where the sum

:
(:) # 4$1 , ..., $k

(&1) |:1 | + } } } +|:k |
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is taken over all (:) :=(:1 , ..., :k) with :i # F+
ni

(i=1, 2, ..., k), |:i |�1 such
that ;i:i=$i for some ;i # F+

ni
. It is easy to see that if $1=$2= } } } =

$k=e then

:
(:) # 4e, ..., e

(&1) |:1 | + } } } +|:k |=1.

On the other hand, if $1 , ..., $k are such that $j {e for some i # [1, 2, ..., k],
then

:
(:) # 4$1 , ..., $k

(&1) |:1 | + } } } +|:k |=0.

The proof is complete. K

Throughout this section we assume that [Aij] i=1, 2, ..., k, j=1, 2, ..., ni
/B(H)

is a sequence of operators with property (P), i.e., it satisfies the relations
(2.1), (2.2), and 2r([A ij])�0 for any r such that 0�\<r<1.

Let 2� r([Aij]) # B(F 2(Hn1
)� } } } �F 2(Hnk

)�H) be defined by

2� r([A ij])=I� } } } �I

k times

�2r([A ij]).

Lemma 3.2. If [Aij] i=1, 2, ..., k, j=1, 2, ..., ni
/B(H) is a sequence of

operators with property (P) then the operator

Kr([A ij]): H � F 2(Hn1
)� } } } �F 2(Hnk

)�H

defined by

Kr([A ij])=2� r([A ij])1�2 Cr([Aij]) (3.3)

is an isometry for each r, 0�$<r<1.

Proof. Indeed, for any h # H,

&2� r([A ij])1�2 Cr([Aij]) h&2=(Cr([Aij*]) 2� r([A ij]) Cr([A ij]) h, h)

=� :

;i # F +
ni

i # [1, 2, ..., k]

r2(|;1 |+ } } } +|;k | )A1, ;1
} } } Ak, ;k

_2r([Aij]) A*k, ;k
} } } A*1, ;1

h, h�=&h&2.

The last equality follows from Lemma 3.1. The proof is complete. K
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The family of operators [Kr([Aij])]0�$<r<1 is called the Poisson kernel
associated to the sequence [Aij] i=1, 2, ..., k, j=1, 2, ..., ni

/B(H) with property
(P). For each r, 0�$<r<1 consider the map

Pr([Aij]): C*([Sij]) � B(H)

be defined by

Pr([A ij])[ f ]=Kr([Aij])* ( f�IH ) Kr([Aij]), (3.4)

for any f # C*([Sij]). Let us recall that for any :i=sj1
} } } sjm

# F+
ni

, S i, :i

stands for the product Sij1
} } } S ijm

and if : i=e then S i, e :=I (the identity
operator on F 2(Hn1

)� } } } �F 2(Hnk
)).

According to the relation (2.3), any polynomial in [Sij] i=1, 2, ..., k, j=1, 2, ..., ni
,

[S ij*] i=1, 2, ..., k, j=1, 2, ..., ni
has the form

p([S ij], [S ij*])= :
finite

a(:), (;) S1, :1
} } } Sk, :k

S*1, ;1
} } } S*k, ;k

(3.5)

where a(:), (;) # C and :i , ; i # F+
ni

(i=1, 2, ..., k). If [B ij] i=1, 2, ..., k, j=1, 2, ..., ni

/B(H) and p([Sij], [S ij*]) is given by (3.5), then

p([Bij], [Bij*]) := :
finite

a(:), (;)B1, :1
} } } Bk, :k

B*1, ;1
} } } B*k, ;k

.

Note that p([(Bij], [Bij*]) # B(H).

Theorem 3.3. If [Aij] i=1, 2, ..., k, j=1, 2, ..., ni
/B(H) is a sequence of

operators with property (P), then [Pr([A ij])]0�$<r<1 has the following
properties:

(i) Pr([A ij]) is a completely contractive linear map.

(ii) If p([Sij], [S ij*]) is any polynomial in [Sij], [S ij*], and 0�$<r
<1 then

p([rAij], [rAij*])=Pr([Aij])[ p([S ij], [S ij*])]. (3.6)

Proof. According to the definition (3.4) and Lemma 3.2, it is easy to see
that Pr([A ij]) is a completely contractive linear map. It is enough to prove
the relation (3.6) for monomials of the form

q([S ij], [S ij*]) :=S1, :1
} } } Sk, :k

S*1, ;1
} } } S*k, ;k

,
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where :i , ;i # F+
ni

(i=1, 2, ..., k). For any h # H we have

(Pr([Aij])[q([Sij], [S ij*])] h, h)

=( (S1, :1
} } } Sk, :k

S*1, ;1
} } } S*k, ;k

�IH ) Kr([Aij]) h, Kr([Aij]) h) .

On the other hand, according to (3.3)

Kr([A ij]) h= :

#i # F+
ni

i # [1, 2, ..., k]

e#1
� } } } �e#k

� (r� k
p=1 |#p|2r([Aij])1�2 A*1, #1

} } } A*k, #k
h)

where for each i # [1, 2, ..., k], [e#i
]#i # F+

ni
is the orthonormal basis for the

full Fock space F 2(Hni
) (see Section 2).

Therefore,

(Pr([A ij])[q([Sij], [S ij*])] h, h)

=( (S1, :1
} } } Sk, :k

S*1, ;1
} } } S*k, ;k

�IH ) x, y)

=(z, y)

where

x= :

$i # F+
ni

i # [1, 2, ..., k]

e;1$1
� } } } �e;k$k

� (r� k
p=1 ( |;p | +|$p | )2r([Aij])1�2 A*1, ;1$1

} } } A*k, ;k $k
h),

y=Kr([Aij])h,

and

z= :

$i # F+
ni

i # [1, 2, ..., k]

e:1$1
� } } } �e:k$k

� (r� k
p=1 ( |;p |+|$p | )2r([Aij])1�2 A*1, ;1 $1

} } } A*k, ;k$k
h).

Moreover, (z, y)=(z, w) where

w= :

$i # F+
ni

i # [1, 2, ..., k]

e:1$1
� } } } �e:k $k

� (r� k
p=1 ( |:p |+|$p | )2r([Aij])1�2 A*1, :1 $1

} } } A*k, :k $k
h).
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On the other hand we have

(z, w) =r�k
p=1 ( |:p | +|;p | ) :

$i # F+
ni

i # [1, 2, ..., k]

r� k
p=1 2 |$p |(!, ') (3.7)

where

!=2r([Aij])1�2 A*1, ;1$1
} } } A*k, ;k $k

h

and

'=2r([Aij])1�2 A*1, :1$1
} } } A*k, :k$k

h.

Using (3.7) one can infer that

(z, w) =r� k
p=1 ( |:p | +|;p | )(A*1, ;1

} } } A*k, ;k
h, *)

where

*=\ :

$i # F+
ni

i # [1, 2, ..., k]

r�k
p=1 2 |$p |A1, $1

} } } Ak, $k
2r([Aij]) A*1, $1

} } } A*k, $k+
_A*1, :1

} } } A*k, :k
h.

According to Lemma 3.1 we have *=A*1, :1
} } } A*k, :k

h. Thus, we infer that

(z, w) =r� k
p=1 ( |:p | +|;p | )(A1, :1

} } } Ak, :k
A*1, ;1

} } } A*k, ;k
h, h).

All the above equalities show that

(Pr([A ij])[q([Sij], [S ij*])] h, h) =(q([rA ij], [rA ij*])] h, h)

for any h # H. This completes the proof. K

One can deduce the following extension of the von Neumann inequality
[vN, Po2].

Corollary 3.4. If [Aij] i=1, 2, ..., k, j=1, 2, ..., ni
/B(H) is a sequence of

operators with property (P) and p([Sij], [S ij*]) is any polynomial in [Sij],
[S ij*] then

&p([Aij], [Aij*])&�&p([Sij], [S ij*])&. (3.8)
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Proof. According to Theorem 3.3 we have

&p([rAij], [rA ij*])&�&p([Sij], [S ij*])&.

Taking r � 1 the result follows. K

For each f ([Sij], [S ij*]) # C*([Sij]) let us define

f ([Aij], [Aij*]) := lim
k � �

qk([Aij], [Aij*])

(in the uniform topology), where qk([S ij], [S ij*]) is any sequence of poly-
nomials in [Sij], [S ij*] such that & f ([Sij], [S ij*])&qk([S ij], [S ij*])& � 0
as k � �. According to Corollary 3.4 it is easy to see that the operator
f ([Aij], [Aij*]) is well defined.

Corollary 3.5. If [Aij] i=1, 2, ..., k, j=1, 2, ..., ni
/B(H) is a sequence of

operators with property (P) and f ([Sij], [S ij*]) # C*([Sij]) then

& f ([Aij], [Aij*])&�& f ([S ij], [S ij*])&. (3.9)

Corollary 3.6. If [Aij] i=1, 2, ..., k, j=1, 2, ..., ni
/B(H) is a sequence of

operators with property (P) and f ([Sij], [S ij*]) # C*([Sij]) then

f ([rA ij], [rAij*])=Pr([Aij])[ f ([S ij], [S ij*])] (3.10)

for any r such that 0�$<r<1.

Proof. Let qk([S ij], [S ij*]) be a sequence of polynomials in [S ij], [S ij*]
such that

& f ([Sij], [S ij*])&qk([S ij], [S ij*])& � 0

as k � �. We have

f ([rA ij], [rAij*])= lim
k � �

qk([rAij], [rAij*])= lim
k � �

Pr([Aij])[qk].

Since Pr([Aij]): C*([Sij]) � B(H) is bounded according to Theorem 3.3,
we infer that

f ([rA ij], [rAij*])=Pr([Aij])[ f ([S ij], [S ij*])]

for any f ([Sij], [S ij*]) # C*([S ij]). This completes the proof. K
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The Poisson transform of f # C*([S ij]) at [A ij] is defined by

P([Aij])[ f ] :=lim
r � 1
r<1

Pr([Aij])[ f ], (3.11)

if the limit exists in the uniform topology.

Theorem 3.7. If [Aij] i=1, 2, ..., k, j=1, 2, ..., ni
/B(H) is a sequence of

operators with property (P) then there exists the limit

lim
r � 1
r<1

Pr([Aij])[ f ]

in the uniform topology of B(H) for every f # C*([Sij]).
Moreover,

f ([Aij], [Aij*])=P([Aij])[ f ([Sij], [S ij*])] (3.12)

for any f ([Sij], [S ij*]) # C*([S ij]).

Proof. Let f ([S ij], [S ij*]) # C*([S ij]) and let =>0. There exists q([Sij],
[S ij*]), a polynomial in [S ij], [S ij*], such that

& f ([Sij], [S ij*])&q([Sij], [S ij*])&<
=
3

. (3.13)

According to the von Neumann inequality (3.9) and the relation (3.13), we
have

& f ([Aij], [Aij*])&q([Aij], [Aij*])&<
=
3

(3.14)

and

& f ([rAij], [rAij*])&q([rAij], [rAij*])&<
=
3

(3.15)

for any r, 0�$<r<1.
On the other hand, there exists $0 , 0<$0<1 such that

&q([rAij], [rA ij*])&q([Aij], [Aij*])&<
=
3

(3.16)

for any r such that $0<r<1.
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Using Corollary 3.6 and the relations (3.14), (3.15), (3.16), we infer that

& f ([Aij], [Aij*])&Pr([Aij])[ f ([Sij], [S ij*])]&

=& f ([Aij], [A ij*])& f ([rAij], [rA ij*])&

�& f ([Aij], [A ij*])&q([Aij], [Aij*])&

+&q([Aij], [Aij*])&q([rA ij], [rAij*])&

+&q([rAij], [rAij*])& f ([rAij], [rA ij*])&<=

for any r such that max[$, $0]<r<1. The proof is complete. K

Theorem 3.8. Let [Aij] i=1, 2, ..., k, j=1, 2, ..., ni
/B(H) be any sequence of

operators with property (P). Then the Poisson transform

8[Aij]
: C*([Sij]) � B(H); 8[Aij]

( f ) :=lim
r � 1
r<1

Pr([Aij])[ f ] (3.17)

has the following properties:

(i) 8[Aij]
is a completely contractive linear map;

(ii) for every polynomial p([Sij], [S ij*]) # C*([S ij]),

8[Aij]
( p([S ij], [S ij*]))= p([Aij], [Aij*]);

(iii) 8[Aij]
| Alg(I, [Sij]) is multiplicative.

Proof. According to Theorem 3.3, for every matrix [ fpq]n
p, q=1 #

Mn(C*([Sij])) we have

&[Pr([A ij])[ fpq]]n
p, q=1&�&[ fpq]n

p, q=1&. (3.18)

On the other hand, Theorem 3.7 shows that 8[Aij]
is well-defined by rela-

tion (3.17). The inequality (3.18) together with the relation (3.17) shows
that

&[8[Aij]
( fpq)]n

p, q=1 &�&[ fpq]n
p, q=1&,

for any [ fpq]n
p, q=1 # Mn(C*([S ij])). This proves part (i) of the theorem.

Part (ii) follows from Theorem 3.3 part (ii) by taking r � 1. Now, it is
easy to see that part (iii) of this theorem is a consequence of (i) and (ii).
This completes the proof. K

Theorem 3.9. A sequence of operators [Aij] i=1, 2, ..., k, j=1, 2, ..., ni
/B(H)

has property (P) if and only if the map

8: C*([Sij]) � B(H),
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defined by

8( p([Sij], [S ij*]))= p([Aij], [Aij*]) (3.19)

for any p([Sij], [S ij*]) # C*([S ij]), is a completely contractive linear map.

Proof. The direct implication follows from Theorem 3.8. Assume now
that the map 8 defined by (3.19) is completely contractive. Since 8 is com-
pletely positive and the sequence [Sij] i=1, 2, ..., k, j=1, 2, ..., ni

has property (P)
(see Lemma 7.1 for a more general case), it is easy to see that the sequences
[Aij] i=1, 2, ..., k, j=1, 2, ..., ni

has also property (P). The proof is complete. K

4. AN INVARIANCE PROPERTY OF THE POISSON TRANSFORM

In what follows we show that the Poisson transform has an invariance
property. Each k-tuple U=(U1 , ..., Uk) such that Ui # U(Hni

), the group
of unitaries on Hni

(i=1, 2, ..., k), generates a canonical automorphism of
C*([Sij]) defined by

;U (S ij) := :
ni

p=1

* (i)
pj Sip , i=1, 2, ..., k; j=1, 2, ..., ni (4.1)

for Ui=[* (i)
pq]ni

p, q=1 # U(Hni
) (see [BEGJ] for the case k=1).

On the other hand, if [Aij]i=1, 2, ..., k, j=1, 2, ..., ni
/B(H) it makes sense to

consider

;U (Aij) := :
ni

p=1

* (i)
pj Aip . (4.2)

Lemma 4.1. If [Aij]i=1, 2, ..., k, j=1, 2, ..., ni
/B(H) is a sequence of operators

with property (P) then [;U (Aij)] i=1, 2, ..., k, j=1, 2, ..., ni
has property (P).

Proof. Let Ui=[* (i)
pq]ni

p, q=1 # U(Hni
), i=1, 2, ..., k. For each i=1, 2, ..., k

we have

:
ni

j=1

;U (A ij) ;U (Aij)*= :
ni

p, q=1 \ :
ni

j=1

* (i)
pj * (i)

qj + A ipA*iq

= :
ni

p=1

AipA*ip�IH .
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On the other hand, according to the relations (2.2) and (4.2), one can see
that

;U (Aij) ;U (Ars)=;U (Ars) ;U (Aij) (4.3)

for any i, r # [1, 2, ..., k], i{r and j # [1, 2, ..., ni], s # [1, 2, ..., nr].
Let us show that 2([Aij])=2([;U (Aij)]). Denote Bij :=;U (Aij). We

have

2([Bij])= :

:i # F+
ni

, |:i |�1
i # [1, 2, ..., k&1]

(&1)� p=1
k&1 |:p |

_B1, :1
} } } Bk&1, :k&1

XB*1, :1
} } } B*k&1, :k&1

where

X= :

|:k | �1

:k # F+
nk

(&1) |:k | Bk, :k
B*k, :k

= :

|:k |�1

:k # F+
nk

(&1) |:k | Ak, :k
A*k, :k

.

Using (4.3) we obtain

2([Bij])= :

:i # F+
ni

, |:i |�1

i # [1, 2, ..., k]

(&1)�k
p=1 |:p | Ak, :k

YY*A*k, :k

where Y=B1, :1
} } } Bk&1, :k&1

. Repeating the above argument one can see
that

2([Bij])=2([Aij]).

Therefore the sequence [;U (Aij)] i=1, 2, ..., k, j=1, 2, ..., ni
has property (P). This

completes the proof. K

The next result establishes the invariance of the Poisson transform under
the canonical automorphism of C*([Sij]), defined by (4.1).

Theorem 4.2. Let [Aij] i=1, 2, ..., k, j=1, 2, ..., ni
/B(H) be a sequence of

operators with property (P). Then for any f # C*([Sij]) we have

P([Aij])[;U ( f )]=P([;U (Aij)])[ f ] (4.4)

where ;U is any canonical automorphism of C*([S ij]).
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Proof. It is enough to prove (4.4) for monomials of the form

q=S1, :1
} } } Sk, :k

S*1, ;1
} } } S*k, ;k

,

where :i , ;i # F+
ni

(i=1, 2, ..., k).
Let us denote Bij :=;U (Aij). According to Lemma 4.1, the sequence

[Bij] i=1, 2, ..., k, j=1, 2, ..., ni
has property (P). Using Theorem 3.7, we infer that

P([Bij])[q]=B1, :1
} } } Bk, :k

B*1, ;1
} } } B*k, ;k

.

On the other hand, we have

P([Aij])[;U (q)]

=P([Aij])[;U (S1, :1
) } } } ;U (Sk, :k

) ;U (S*1, ;1
) } } } ;U (S*k, ;k

)]

=;U (A1, :1
) } } } ;U (Ak, :k

) ;U (A*1, ;1
) } } } ;U (A*k, ;k

)

=B1, :1
} } } Bk, :k

B*1, ;1
} } } B*k, ;k

.

Therefore,

P([Bij])[q]=P([Aij])[;U (q)].

This completes the proof. K

5. JOINT DILATIONS FOR SEQUENCES OF OPERATORS WITH
PROPERTY (P)

Using Theorem 3.8 and Stinespring's theorem [S], one can obtain the
following dilation theorem.

Theorem 5.1. Let [Aij] i=1, 2, ..., k, j=1, 2, ..., ni
/B(H) be any sequence of

operators with property (P) and let 8[Aij]
be the Poisson transform associated

to [Aij]. Then there exists a Hilbert space K#H and a unital V-homo-
morphism ?: C*([Sij]) � B(K) such that

8[Aij]
( f )=PH ?( f )|H , f # C*([S ij]).

Let us remark that one can choose K=�f # C*([Sij]) ?( f )H in order
to get a minimal Stinespring representation, which is unique up to an
isomorphism.
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Consider Vij :=?(S ij). The sequence [Vij] i=1, 2, ..., k, j=1, 2, ..., ni
/B(K)

has property (P) and is called the minimal isometric dilation of
[Aij] i=1, 2, ..., k, j=1, 2, ..., ni

/B(H).
Let us remark that since

PHVijV ij* |H =PH Vij | HPH V ij* |H ,

H is invariant subspace for each V ij* (see [P]). Therefore A ij*=V ij* | H for
any i=1, 2, ..., k, j=1, 2, ..., ni .

Summing up we obtain the following isometric dilation theorem.

Corollary 5.2. Let [Aij] i=1, 2, ..., k, j=1, 2, ..., ni
/B(H) be a sequence of

operators with property (P). Then there is a Hilbert space K#H and a
sequence of isometries [Vij] i=1, 2, ..., k, j=1, 2, ..., ni

/B(K), with property (P)
such that

Aij*=V ij* | H for any i=1, 2, ..., k; j=1, 2, ..., n i ,

and K=� Vi1 j1
} } } Vim jm

H. Moreover, the isometric dilation [Vij] is
uniquely determined up to an isomorphism.

Let us remark that the isometric dilation [Vij] has also the property that

Vij V*pq=V*pq Vij

if i, p # [1, 2, ..., k], i{ p, and j # [1, 2, ..., ni], q # [1, 2, ..., np].
We can apply [A, Theorem 1.3.1] to our setting in order to get the

following commutant lifting theorem for C*([Aij]).

Corollary 5.3. Let [Aij] i=1, 2, ..., k, j=1, 2, ..., ni
/B(H) be a sequence

with property (P) and let [Vij] i=1, 2, ..., k, j=1, 2, ..., ni
/B(K) be its minimal

isometric dilation. If X # C*([Aij])$ then there is a unique X� # C*[Vij]$ &
[PH ]$ such that PH X� |H =X, where PH is the orthogonal projection from
K onto H. Moreover, the map X � X� is a V -isomorphism.

Let Fn be the free group on n-generators s1 , ..., sn , and the Hilbert space

l2(Fn) :={ f : Fn � C: :
_ # Fn

| f (_)| 2<�= .

Let [e_]_ # Fn
be the canonical basis of l2(Fn), i.e., e_(t)=1 if t=_ and

e_(t)=0 otherwise. For each j=1, 2, ..., n, Uj # B(l2(Fn)) is the unitary
operator defined by

Uj\ :
_ # Fn

*_ e_+= :
_ # Fn

*_ esj_
, \ :

_ # Fn

|*_ |2<�+ . (5.1)
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Note that the C*(U1 , ..., Un) is the reduced C*-algebra associated to Fn

(see [Pi]).
The Hilbert space l2(F+

n ) can be seen as a subspace of l2(Fn). On the
other hand, the full Fock space F 2(Hn) can be naturally identified to
l2(F+

n ). Under this identification we have that U j | F2(Hn)=S j ( j=1, 2, ..., n)
where S1 , ..., Sn are the left creation operators on the Fock space F 2(Hn).
Now, for each i=1, 2, ..., k and j=1, 2, ..., ni let us define the unitary
operator Uij on the Hilbert space l2(Fn1

)� } } } �l2(Fnk
) by

Uij=I� } } } �I

i&1 times

�Uj �I� } } } �I

k&i times

(5.2)

where Uj # B(l2(Fni
)) was defined by (5.1). Due to our identification, one

can see that

Uij |F2 (Hn1
)� } } } �F2 (Hnk

)=S ij (5.3)

for each i=1, 2, ..., k, j=1, 2, ..., ni (see (2.3) for the definition of S ij). Let
C*([Uij]) be the C*-algebra generated by [Uij] i=1, 2, ..., k, j=1, 2, ..., ni

.

Theorem 5.4. Let [Aij] i=1, 2, ..., k, j=1, 2, ..., ni
# B(H) be any sequence of

operators with property (P). Then there exists a Hilbert space K#H and
a sequence [Wij] i=1, 2, ..., k, j=1, 2, ..., ni

/B(K) of unitary operators such that

Wij Wpq=WpqWij (5.4)

for i, p # [1, 2, ..., k], i{ p, and j # [1, 2, ..., ni], q # [1, 2, ..., np], such that

p([Aij])=PH p([Wij])| H

for any polynomial p([Uij]) # Alg(I, [U ij].

Proof. Let Pu be the set of all polynomials in [Uij] i=1, 2, ..., k, j=1, 2, ..., ni
.

According to Theorem 3.8 and the relation (5.3) the map 8 : Pu � B(H)
defined by

8( p([Uij]))= p([Aij])

is a completely contractive homomorphism. Applying Arveson's extension
theorem [A, Theorem 1.2.9] to our setting, there is a completely positive
linear map

9: C*([Uij]) � B(H)
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such that 9|Pu
=8. Combining this result with Stinespring's representation

theorem [S], we see that there is a V -representation

?: C*([Uij]) � B(K)

on a Hilbert space K#H such that

9( p([Uij]))=PH?( p([Uij]))|H

for any p([Uij]) # C*([Uij]). Setting Wij :=?(U ij) (i=1, 2, ..., k, j=1,
2, ..., ni), it is clear that the sequence [Wij] i=1, 2, ..., k, j=1, 2, ..., ni

satisfies rela-
tion (5.4), and

p([Aij])=PH p([Wij])| H

for any polynomial p([Uij]) # Alg(I, [Uij]). The proof is complete. K

6. CHARACTERS ON NONCOMMUTATIVE POLYDISC
ALGEBRAS AND COHOMOLOGY

Let *=[*ij]i=1, 2, ..., k, j=1, 2, ..., ni
be a sequence of complex numbers such

that

|*i1 | 2+ } } } +|*ini
| 2�1 for each i=1, 2, ..., k,

and define the ``evaluation'' functional

8* : P � C; 8*( p([Sij]))= p([*ij]),

where P is the set of all polynomials p([Sij]) # Alg(I, [S ij]). Since the
sequence [*ijIC ] i=1, 2, ..., k, j=1, 2, ..., ni

/B(C) has property (P), the von
Neumann inequality (3.8) shows that

| p([*ij])|=&p([*ijIC ])&�&p([S ij])&.

Hence, 8* has a unique extension to the polydisc algebra Alg(I, [S ij]).
Therefore 8* is a character on Alg(I, [Sij]). Let MAlg(I, [Sij]) be the set of
all characters of Alg(I, [Sij]) and let

9: (Cn1)1_(Cn2)1 _ } } } _(Cnk)1 � MAlg(I, [Sij])

be defined 9(*)=8* where *=[*ij] i=1, 2, ..., k, j=1, 2, ..., ni
.

Theorem 6.1. The map 9 is a homeomorphism of (Cn1)1 _ } } } _(Cnk)1

onto MAlg(I, [Sij]) .
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Proof. Let us show that 9 is one-to-one. If *=[*ij] i=1, 2, ..., k, j=1, 2, ..., ni

and +=[+ij] i=1, 2, ..., k, j=1, 2, ..., ni
are in E :=(Cn1)1_ } } } _(Cnk)1 then 9(*)

=9(+) implies that

*ij=8*(S ij)=8+(Sij)=+ij

for any i=1, 2, ...k, j=1, 2, ..., ni . Therefore *=+. Now, assume that
8: Alg(I, [Sij]) � C is a character. Setting 8(Sij)=*ij # C we have

8( p([Sij]))= p[*ij],

for any p([Sij]) # Alg(I, [Sij]). Since 8 is a character it follows that it is
completely contractive. Applying Theorem 3.9 when Aij=*ijIC , i=1, 2, ..., k,
j=1, 2, ..., ni we infer that [*ijIC ] has property (P), i.e., [* ij] # E.

Moreover, the identity

8( p([Sij]))= p(([Aij]))=8*( p([Sij]))

proves that 8 agrees with 8* on the dense subset P of Alg(I, [Sij]), there-
fore 8=8* . Since both E and MAlg(I, [Sij]) are compact Hausdorff spaces
and 9 is one-to-one and onto, to complete the proof it suffices to show
that 8 is continuous.

Suppose that *:=(*:
ij), (: # J) is net in E such that lim: # J *:=*=(*ij).

Since sup: # J &8*: &�1 and P is dense in Alg(I, [Sij]) and since

lim
: # J

8*:( p([S ij]))=lim
: # J

p([*ij])=8*( p([S ij]))

for every p([Sij]) # P it follows that 9 is continuous. The proof is
complete. K

Let us remark that in the particular case when n1=n2= } } } =nk=1 we
get that MA(Dn)=D� n, which is a well-known result. In the particular case
when k=1, n1=n we get MAn

=(Cn)1 (An is the noncommutative disc
algebra [Po2]), result that was obtained in [Po4].

The above theorem helps us see when the Banach algebras Alg(I,
[Sij] i=1, 2, ..., k, j=1, 2, ..., ni

) and Alg(I, [Sij] i=1, 2, ..., m, j=1, 2, ..., pi
) are not

isomorphic.
Let A be a complex Banach algebra with unit, X be a Banach A-bi-

module, and X$ be the dual Banach A-bimodule (see [BD]). We need to
recall from [BD] a few definitions.

A bounded X-derivation is a bounded linear mapping D of A into X
such that

D(ab)=(Da) b+a(Db), for any a, b # A. (6.1)
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The set of all bounded X-derivations is denoted by Z1(A, X). For each
x # X let us define $x : A � X by $x(a)=ax&xa. We call $x an inner
X-derivation, and denote by B1(A, X) the set of all inner X-derivations. The
quotient space Z1(A, X)�B1(A, X) is called the first cohomology group of A
with coefficients in X, and it is denoted by H1(A, X). A Banach algebra A
is said to be amenable if H1(A, X$)=[0] for every Banach A-bimodule X.

In what follows we shall see that the noncommutative polydisc algebra
A :=Alg(I, [Sij] i=1, 2, ..., k, j=1, 2, ..., ni

) is not amenable.
Of course C, the set of all complex numbers, is a Banach A-bimodule

under the module multiplication

* } f ([Sij])= f ([Sij]) } *=*f ([0]) (6.2)

for each f ([Sij]) # A. According to the von Neumann inequality (3.9), we
infer that |* } f ([Sij])|�|*| & f ([Sij])&, for any * # C, f ([Sij]) # A.

Since the proof of the following theorem is a straightforward extension
of [Po4, Theorem 4.1], we omit it.

Theorem 6.2. The first cohomology group of the algebra Alg(I,
[Sij]) i=1, 2, ..., k, j=1, 2, ..., ni

with complex coefficients is isomorphic to the
additive group Cn1+n2+ } } } +nk.

Since C is a dual bimodule we have the following.

Corollary 6.3. The polydisc algebra Alg(I, [Sij]) is not amenable.

7. SEQUENCES OF OPERATORS WITH PROPERTY (P) AND
UNIVERSAL ALGEBRAS

A sequence of operators [Aij] i=1, 2, ..., k, j=1, 2, ..., ni
/B(H) is called with

property (P*) if it satisfies the relations (2.1), (2.2), and

Aij A*pq=A*pqA ij (7.1)

for any i, p # [1, 2, ..., k], i{ p and j # [1, 2, ..., ni], q # [1, 2, ..., np]. Notice
that in the particular case when n1=n2= } } } =nk=1 we obtain a sequence
of double commuting contractions [SzF, Pau].

Lemma 7.1. Any sequence [Aij]i=1, 2, ..., k, j=1, 2, ..., ni
/B(H) with property

(P*) has property (P).
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Proof. Using the relations (2.2), (3.1), and (7.1) we can see that

2r([A ij])= `
k

i=1

(IH &r2Ai1A*i1& } } } &r2Aini
A*ini

)

for each 0�r�1. According to (2.1), 2r([A ij]) is a product of commuting
positive operators. Hence, 2r([A ij])�0. This completes the proof. K

In what follows we will show that Alg(I, [Sij]), the smallest closed
algebra generated by the isometries Sij (i=1, 2, ..., k, j=1, 2, ..., ni) and the
identity, is the universal algebra generated by the identity and a sequence
[Aij] i=1, 2, ..., k, j=1, 2, ..., ni

/B(H) with property (P*), in the following sense.
Given any sequence of operators [Aij] i=1, 2, ..., k, j=1, 2, ..., ni

/B(H) with
property (P*) there is a completely contractive homomorphism

8: Alg(I, [Sij]) � B(H)

such that 8(I )=I and 8(Sij)=Aij for any i=1, 2, ..., k, and j=1, 2, ..., n i .
Let us show that this property characterizes Alg(I, [Sij]) up to unital

complete isometric isomorphism.

Theorem 7.2. Let [bij] i=1, 2, ..., k, j=1, 2, ..., ni
be a sequence of elements in

some unital C*-algebra, with property (P*). If for any sequence of operators
[Aij] i=1, 2, ..., k, j=1, 2, ..., ni

with property (P*) the map

9: Alg(I, [bij]) � Alg(I, [Aij])

defined by 9(I )=I, 9(bij)=Aij , is a unital completely contractive homomor-
phism, then Alg(I, [Bij]) is completely isometrically isomorphic to Alg(I, [Sij]).

Proof. Since

Sij S*pq=S*pqS ij

for any i, p # [1, 2, ..., k], i{ p and j # [1, 2, ..., ni], q # [1, 2, ..., np], we
infer that [S ij]i=1, 2, ..., k, j=1, 2, ..., ni

has property (P*). Setting Aij=Sij we
obtain

&[Prs([S ij])]m
r, s=1&�&[Prs([bij])]m

r, s=1 & (7.2)

for any matrix [Prs([S ij])]m
r, s=1 # Mm(Alg([Sij])). On the other hand,

since [bij]i=1, 2, ..., k, j=1, 2, ..., ni
has property (P*), Lemma 7.1 shows that it

has property (P). Applying Theorem 3.8 to our setting, we infer that

&[Prs([b ij])]m
r, s=1&�&[Prs([Sij])]m

r, s=1 &.
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This inequality together with (7.2) show that

&[Prs([b ij])]m
r, s=1&=&[Prs([Sij])]m

r, s=1 &

for any [Prs([Sij])]m
r, s, =1 # Mm(Alg([Sij])). Therefore Alg(I, [bij]) is

completely isometrically isomorphic to Alg(I, [Sij]). K

The C*-algebra C*([Sij]) can be viewed as the universal C*-algebra
generated by a sequence of isometrics [Vij] i=1, 2, ..., k, j=1, 2, ..., ni

/B(H) with
property (P*), in the following sense.

Theorem 7.3. If [Vij] i=1, 2, ..., k, j=1, 2, ..., ni
/B(H) is a sequence of

isometries with property (P*) then there is a V-representation

?: C*([Sij]) � C*([Vij]); ?(S ij)=V ij . (7.3)

Moreover, any V-representation of C*([Sij]) is determined by a sequence of
isometries [Vij] with property (P*).

One can prove that this property characterizes C*([Sij]) up to a V-iso-
morphism. Using Theorem 3.8, the proof is similar to that of Theorem 7.2,
so we omit it.

The Toeplitz algebra Tn is the unique unital C*-algebra generated by
n=2, 3, ... isometries s1 , ..., sn satisfying

si*sj=$ij1, :
n

i=1

s is i*<1

(see [Cu2, BEGJ, Po3]). The Fock or regular representation of Tn on
F 2(Hn) is generated by the left creation operators Si (i=1, 2, ..., n) (see
Section 1). The noncommutative disc algebra An is the unique nonselfad-
joint closed algebra generated by 1, s1 , ..., sn (see [Po4]).

Using Theorem 7.3 one can easily prove that there is a unique C*-cross
norm on Tn1

� } } } �Tnk
(n1 , ..., nk�2) and C*([Sij])&Tn1

� } } } �Tnk
.

According to the definition of the min norm on tensor products of operator
algebras [Pau] and since Ani

can be seen as a subalgebra of Tni
(i=1,

2, ..., k) (see [Po4]), we deduce the following result.

Corollary 7.4. Alg(I, [Sij])&An1
� min } } } � min Ank

.

In what follows we show that C*([S ij]) is completely isometrically
isomorphic to a free operator algebra considered by D. Blecher [B] (see
also [BP]). We need a few definitions from [B].

Let 1 be a set, and let n: 1 � N be a function with n(#)=n# . Let 4 be
a set of variables (or formal symbols) x#

ij , one variable for each # # 1 and
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each i, j, 1�i, j�n# . Let F be the free associative algebra on 4. Let R be
a set of polynomial identities P=0 in the variables in 4. Regard R as
subset of F. Take a quotient of F by the ideal generated by R.

We define a semi-norm on Mn(F) by

&[uij]&4=sup[&[?(uij)]&]

where the supremum is taken over all algebra representations ? of F on
a Hilbert space satisfying the condition ?(R)=0 and &[?(x#

ij)]&�1 for
all #. This later matrix is indexed on rows by i and on columns by j, for
all 1�i, j�n# .

Now, quotient by nullspace of this semi-norm to obtain an operator
algebra. The completion of this space is denoted by OA(4, R). This is
called the free operator algebra on 4 with relations R (see [B]).

Let 4 have the identity e and also contain the ordinary variables
[xij] i=1, 2, ..., k, j=1, 2, ..., ni

, [ y ij] i=1, 2, ..., k, j=1, 2, ..., ni
, and let R be the relations

xij xpq=xpqxij and x ij ypq= ypq xij

if i, p # [1, 2, ..., k], i{ p, and j # [1, 2, ..., ni], q # [1, 2, ..., np], and yirxij=
$rj e for any i # [1, 2, ..., k], and r, j # [1, 2, ..., ni]. Form the universal
algebra OA(4, R).

Using Theorem 7.3 one can extend Theorem 4.3 from [Po5] to our
setting. We omit the proof which is straightforward.

Theorem 7.5. The universal algebra OA(4, R) is completely isometric
to C*([S ij]).

The internal characterization of the matrix norm on a universal algebra
OA(4, R) (see [B, BP]) leads to the following factorization theorem.

Theorem 7.6. If P=[ prs]m_m is a matrix of polynomials in I, [Sij],
[S ij*] then, &P&<1 if and only if there is a positive integer t such that

P=A0 D1A1D2 } } } DtAt ,

where Al (l=0, 1, ..., t) are scalar matrices (with a finite number of nonzero
entries), each &Al&<1, and each Dl is diagonal matrix with I, Sij , S ij*
(i # [1, 2, ..., k] and j # [1, 2, ..., ni]) as the diagonal entries.

Let us remark that a similar result holds for matrix polynomials in I,
[Sij].

Another class of sequences of operators with property (P) is consider in
what follows.
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Lemma 7.7. If [Aij] i=1, 2, ..., k, j=1, 2, ..., ni
/B(H) is a sequence of

operators such that

Ai1A*i1+Ai2A*i2+ } } } +Aini
A*ini

=IH (7.4)

for each i=1, 2, ..., k and

Aij Apq=ApqA ij (7.5)

if i, p # [1, 2, ..., k], i{ p and j # [1, 2, ..., ni], q # [1, 2, ..., np], then [A ij]
has property (P).

Proof. Consider the sequence of operators defined by Y0=IH and

Yi=Yi&1&r2Ai1Yi&1A*i1& } } } &r2Aini
Yi&1A*ini

for i=1, 2, ..., k.
Notice that 2r([Aij])=Yk (0<r<1). According to (7.4), we have

Y1=(1&r2) IH . By induction, we infer that Yk=(1&r2)k IH �0 if 0�r
�1. Therefore 2r([A ij])�0 and the sequence [Aij] satisfying the condi-
tions (7.4) and (7.5) has property (P). The proof is complete. K

Let us remark that if [Aij] i=1, 2, ..., k, j=1, 2, ..., ni
# B(H) is a sequence of

operators satisfying the condition (7.5) and such that �ni
j=1 AijAij*�IH for

each i=1, 2, ..., k, it does not follow that it has property (P). To see this,
consider Parrott's example [Pa] and use Theorem 5.4 in the particular
case k=3 and n1=n2=n3=1.

Lemma 7.8. Let [Vij] i=1, 2, ..., k, j=1, 2, ..., ni
/B(H) be a sequence of

isometries such that

Vi1V*i1+ } } } +Vini
V*ini

=IH (7.6)

for each i=1, 2, ..., k, and

Vij Vpq=VpqV ij (7.7)

for any i, p # [1, 2, ..., k], i{ p and j # [1, 2, ..., ni], q # [1, 2, ..., np]. Then
[Vij] i=1, 2, ..., k, j=1, 2, ..., ni

has property (P*).

The proof is straightforward, so we omit it. According to Theorem 7.3
and Lemma 7.8, there is a V -representation

?: C*([Sij]) � C*([Vij]); ?(S ij)=V ij . (7.8)
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Let us recall that the Cuntz algebra On is uniquely defined as the
C*-algebra generated by n=2, 3, ... isometries satisfying

_i*_ j=$ ij1, :
n

j=1

_ i_*j =1

[Cu]. Since the Cuntz algebra On (n�2) is nuclear [Cu] there is a unique
structure of C*-algebra on On1

� } } } �Onk
(n1 , ..., nk�2). According to

(7.8), one can easily deduce the following result.

Theorem 7.9. There is a V -representation

8 : C*([Sij]) � On1
� } } } �Onk

such that 8(Sij)=_ij , where for each i=1, 2, ..., k

_ij=1� } } } �1

i&1 times

�_ j �1� } } } �1

k&i times

,

and [_j]ni
j=1 is a set of generators of the Cuntz algebra Oni

.

Let us remark that this result was obtained by Cuntz [Cu] (using
different techniques) for k=1. On the other hand, using the short exact
sequence obtained by Cuntz [Cu], one can prove that the above V-repre-
sentation is surjective.

8. POISSON TRANSFORM ASSOCIATED TO THE
UNIT BALL OF B(H)N

In Section 3 we introduced a Poisson transform associated to sequences
of operators [Aij]i=1, 2, ..., k, j=1, 2, ..., ni

/B(H) with property (P).
Let us consider the particular case when k=1 and n1=n # [1, 2, ...]. Any

sequence [Tj]n
j=1 /B(H) such that T1 T1*+ } } } +TnTn*�IH has

property (P). Indeed, in this case we have

2([Tj])=IH &T1T1*& } } } &TnTn*

and 2r([Tj])�0 for any 0�r�1.
For each j=1, 2, ..., n, Sj # B(F 2(Hn)) is the left creation operator with

ej , i.e., S j!=ej �!, ! # F 2(Hn). Let F+
n be the unital free semigroup on n

generators s1 , ..., sn , and let e be the neutral element in F+
n . For each

:=sj1
} } } sjm

# F+
n , j1 , ..., jm # [1, 2, ..., n] define e: :=ej1

� } } } �ejm
and
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e:=1 if :=e # F+
n . It is easy to see that [e:]: # Fn

+ is an orthonormal basis
for the full Fock space F 2(Hn).

Applying Theorem 3.8 to our setting, we obtain that the Poisson trans-
form on C*(S1 , ..., Sn), the extension of the Cuntz algebra through compacts,
is the completely contractive linear map

P([Tj]): C*(S1 , ..., Sn) � B(H)

defined by

P([Tj])[ f ]= lim
r � 1
r<1

Kr([Tj])* ( f�IH ) Kr([Tj]) (8.1)

(in the uniform topology of B(H)), where the Poisson kernel

Kr([Tj]): H � F 2(Hn)�H

is defined by

Kr([T j])h= :
# # Fn

+
e# � (r |#|2r([Tj])1�2 T #*h).

Moreover, we can deduce the following result obtained in [Po3].

Theorem 8.1. If (T1 , ..., Tn) # (B(H)n)1 then the linear map

8: C*(S1 , ..., Sn) � B(H)

defined by

8(Si
1
} } } S ip

S*j1 } } } S*jm)=Ti1
} } } Tip

T*j1 } } } T*jm

1�i1 , ..., ip , j1 ..., jm�n, is completely contractive.

In particular, we obtain a new and elementary proof of the main result
in [Po2], i.e., the von Neumann inequality [vN, SzF], for (B(H)n)1 (the
case n=1 was considered in Section 1).

Corollary 8.2. If (T1 , ..., Tn) # (B(H)n)1 then

&p(T1 , ..., Tn)&�&p(S1 , ..., Sn)&

for any polynomial p(S1 , ..., Sn) in I, S1 , ..., Sn .

It is easy to see that applying Corollary 5.2 to our setting one can obtain
a new proof of the isometric dilation theorem for sequences (T1 , ..., Tn) #
(B(H)n)1 (see [F, Bu, Po1]). On the other hand, Theorem 5.4 provides a
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unitary dilation for such sequences of operators as well as the Bozejko's
version of the von Neumann inequality [Bo] to our setting.

Let us remark that, in the particular case when (T1 , ..., Tn) # (B(H)n)1

and TiTj=TjTi , 1�i, j�n, Theorem 8.1 remains true if we replace the left
creation operators Si , 1�i�n, by their compressions to the symmetric
Fock space F2

s (Hn)/F 2(Hn). Indeed, this follows from (8.1) if we take into
account that F2

s (Hn) is invariant to S*i , 1�i�n and the Poisson kernel
Kr([Tj]) takes values in F2

s (Hn)�H.
We recall that the Cuntz algebra On is uniquely defined as the C*-algebra

generated by n=2, 3, ... isometries satisfying

_i*_j=$ij1, :
n

j=1

_i_j*=1

[Cu]. For any f ([Si], [S i*]) # C*(S1 , ..., Sn) the Poisson formula (8.1)
becomes

f ([_i], [_i*])= lim
r � 1
r<1

(1&r2) Cr([_j])* ( f ([Si], [Si*])�IH ) Cr([_j])

where the Cauchy kernel is defined by

Cr([_j])= :
: # Fn

+
e: �r |:|_:*h.

In our particular setting, Theorem 7.9 shows that there is a V-representation

8: C*(S1 , ..., Sn) � On

such that 8(Si)=_i , i=1, 2, ..., k. This is a well known result obtained
(using different techniques) by [C] for n=1 and [Cu] for n�2.

Let us remark that if (T1 , ..., Tn) # (B(H)n)1 is completely non-coisometric
(see [Po3]) one can use the results from [Po3] to extend the Poisson trans-
form (8.1) to Alg(I, S1 , ..., Sn)so (the closure in the strong operator topology).

Now let us consider the particular case when n=1. Let S be the
unilateral shift on the Hardy space H 2(D), i.e., (Sf )(z)=zf (z), z # D=
[z # C: |z|<1]. Let T # B(H) be such that &T&�1 and let p(S, S*)=
�m, n�0 anmS mS*n be in C*(S). The Poisson transform on C*(S), the C*-
algebra generated by S, has the following equivalent form (see Section 1).

p(T, T*)= lim
r � 1
r<1

1
2? |

2?

0
(IH &re&itT )&1 2r(T)1�2 p(S, S*)

_2r(T )1�2 (IH &reitT*)&1 dt

(in the uniform topology of B(H)), where 2r(T )=IH &r2TT*.
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Let us mention that this Poisson transform is an extension of [V,
Corollary 3.5] and [Pau, p. 24].

9. SEQUENCES OF COMMUTING OPERATORS WITH
PROPERTY (P)

Let [Aij]i=1, 2, ..., k, j=1, 2, ..., ni
/B(H) be a sequence of operators satisfying

the relations (2.1), (2.2), and let [Sij] i=1, 2, ..., k, j=1, 2, ..., ni
be the sequence of

isometries defined by (2.3).
Let us consider the particular case when n1=n2= } } } =nk=1. For each

i=1, 2, ..., k denote Ti :=Ai1 and M i :=S i1 . The relations (2.1), (2.2)
become &Ti&�1 and TiTp=Tp Ti , respectively. According to (3.1), we
have

2([Ti])= :
=1, ..., =k # [0, 1]

(&1)=1+ } } } +=k T =1
1

} } } T =k
k (T*k)=k } } } (T*1)=1 (9.1)

Using an inductive argument, we infer the following.

Proposition 9.1. If [Ti]k
i=1 /B(H) is a sequence of commuting operators

such that

T1T*1+ } } } +TkT*k�IH

then [Ti]k
i=1 has property (P).

Theorem 9.2. Let [Ti]k
i=1 /B(H) be a sequence of commuting

operators such that

T1T*1+ } } } +TkT*k�IH . (9.2)

Then, there is a completely contractive linear map

8: C*(M1 , ..., Mk) � B(H)

such that

8(Mi1
} } } Miq

M*j1 } } } M*jp)=Ti1
} } } Tiq

T*j1 } } } T*jp

for any i1 , ..., iq , j1 , ..., jp # [1, 2, ..., k].
Moreover, the result holds true if one replaces Mi , 1�i�n, by the

compressions of the left creation operators to the symmetric Fock space.
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Proof. According to Proposition 9.1, the sequence [Ti]k
i=1 has

property (P). Applying Theorem 3.8 to our setting, the result follows. The
second part of the theorem is contained in Section 8. K

Notice that if [Ti]k
i=1 /B(H) is a sequence of double commuting

contractions [SzF] then it has property (P). Therefore the first part of
Theorem 9.2 holds true.

Let us also remark that an isometric (resp. unitary) dilation theorem for
sequences [Ti]k

i=1 /B(H)] of commuting operators with property (9.2)
(resp. double commuting contractions) can be obtained applying Corollary
5.2 (resp. Theorem 5.4) to our setting.

Let Si (i # [1, 2, ..., k] be the unilateral shift on the Hardy space H2(Dk),
i.e., (Si f )(z)=zi f (z) for any z # Dk, where

Dk=[(z1 , ..., zk): z i # C, |z i |<1 for every i=1, 2, ..., k].

Under the canonical identification of the Hilbert space
F 2(C) � F 2(C)� } } } �F 2(C)

k-times

to the Hardy space H 2(Dk), the operators

M1 , ..., Mk are unitarily equivalent to S1 , ..., Sk , respectively. Let A(Dk) be
the closure of the set of all polynomials in the uniform norm & }&� defined
by

&p&�= sup
|zi |�1

i # [1, 2, ..., k]

| p(z1 , ..., zn)|.

Corollary 9.3. Let [Ti]k
i=1 /B(H) be a sequence of commuting

operators such that

T1T*1+ } } } +TkT*k�IH

Then, there is a completely contractive homomorphism

8: A(Dk) � B(H)

such that 8(zi)=Ti for i=1, 2, ..., k, where z1 , ..., zn are the coordinate
functions.

Let us mention that if [Ti]k
i=1 /B(H) is a sequence of commuting

operators satisfying (9.2) (or sequence of double commuting contractions),
then the associated Poisson transform (see Theorem 3.8) has the following
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equivalent form, which is an extension of [CV, Theorem 2.1]. For any
p([S i], [S i*]) # C*(S1 , ..., Sn),

p([Ti], [Ti*])= lim
r � 1
r<1

1
(2?)k |

2?

0
} } } |

2?

0
Kr([Ti])* p([Si], [S i*])

_Kr([Ti]) dt1 } } } dtk

(the convergence in the uniform topology), where

Kr([T i])=2r([Ti])1�2 `
k

m=1

(IH &reitmT*m)

and 2r([Ti])1�2 is given by (9.1).

Lemma 9.4. If [Vi]k
i=1 /B(H) be a sequence of commuting isometries

then [Vi*]k
i=1 has property (P).

Proof. Applying Lemma 7.7 in our setting, the result follows. K

Theorem 9.5. Let [Vi]k
i=1 /B(H) be a sequence of commuting isometries.

Then, there is a completely contractive linear map

9: C*(M1 , ..., Mn) � B(H)

such that

9(Mi1
} } } Miq

M*j1 } } } M*jp)=V*i1
} } } V*iq Vj1

} } } Vjp

for any i1 , ..., iq , j1 , ..., jp # [1, 2, ..., k].

Proof. Using Lemma 9.4 and applying Theorem 3.8 to our setting, the
result follows. K

In what follows we show that the polydisc algebra Alg(I, [S i]) is the
universal algebra generated by k commuting isometries and the identity.

Theorem 9.6. If [Vi]k
i=1 /B(H) is any sequence of commuting

isometries then there exists a completely contractive homomorphism

8 : Alg(I, [Si]) � B(H)

such that 8(Si)=Vi for i=1, 2, ..., k.

Proof. According to Lemma 9.4, [Vi*]k
i=1 is a sequence with property

(P). Applying Theorem 5.4 to our setting we deduce that there exists a
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sequence [Wi]k
i=1 of commuting unitaries on a Hilbert space K#H such

that

&p(V*1 , ..., V*k)&�&p(W1 , ..., Wk)& (9.3)

for any polynomial p(M1 , ..., Mk) # Alg(I, [Mi]). This inequality shows that

&q(V1 , ..., Vk)&�&q(W*1 , ..., W*k)& (9.4)

for any polynomial q(M1 , ..., Mk) # Alg(I, [Mi]). According to Theorem
9.5 we infer that

&q(W*1 , ..., Wk*)&�&q(M1 , ..., Mk)& (9.5)

The inequalities (9.4) and (9.5) show that &q(V1 , ..., Vk)&�&q(M1 , ..., Mk)&
for any polynomial q(M1 , ..., Mk) # Alg(I, [Mi]). Notice that all the above
inequalities hold true if we pass to matrices. Using the remarks preceding
Corollary 9.3, we infer that the map 8: Alg(I, [Si]) � B(H) defined by
8(Si)=Vi for i=1, 2, ..., k, is a completely contractive homomorphism. K

One can prove that the property stated in Theorem 9.6 characterizes
Alg(I, [Si]) up to unital complete isometric homomorphism. The proof is
similar to that of Theorem 7.2, so we omit it.

Corollary 9.7 (Itô). Let [Vi]k
i=1 /B(H) be a sequence of commuting

isometries. Then there exists a Hilbert space K#H and [Wi]k
i=1 /B(H)

a sequence of commuting unitaries, that dilates [Vi]k
i=1 .
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