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A noncommutative Poisson transform associated to a certain class of sequences
of operators on Hilbert spaces, with property (P), is defined on some universal
C*-algebras (resp. nonselfadjoint algebras) generated by isometries. Its properties
are described and used to study these universal algebras and their representations.
As consequences, we obtain a functional calculus, isometric (resp. unitary) dilations,
and commutant lifting theorem for the class of sequences of operators with property
(P). Our “geometrical” approach leads also to new and elementary proofs as well
as extensions of some classical results.  © 1999 Academic Press

1. INTRODUCTION AND PRELIMINARIES

Let /# be a Hilbert space and B(#) be the algebra of all bounded linear
operators on #. Let Te B(#) be a contraction, i.e., |7] <1 and denote
A(T):=1, —TT*. 1t is easy to see that for each 0 <r <1,

(rT)" A(rT)(rT*) =1, (1.1)

0

I8

n

Let S be the unilateral shift on /*(C) and {e;} , be the canonical basis
in /%(C). Let p(S, S*) =Y, n50 @ S™S*" be any polynomial in C*(S),
the C*-algebra generated by S. Using (1.1), an easy computation on
monomials of the form S™S*" shows that for any A, k € /#,

pUrTrT*) h k) 5 = (p(S, S*) @ L) KrT) b, K(rT) k) pcyo s (1.2)

where

KorT)h="Y e,@4(rT)"?(rT*)"h, he .
n=0
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According to the Cauchy—Schwartz inequality and the relation (1.1), we
infer that

[Kp(rT, rT*) h k)| < | p(S, S*)| |4l k]|, for any h, ke .
Taking r — 1 we obtain
(T, T*)|I < [ p(S, S*)].

In the particular case when p is any polynomial in one variable we obtain
the classical von Neumann inequality [ VN ]

Ip(D)II < 1p(S)]

(see [P1] for a nice survey and other proofs.)

In this paper we will extend the Poisson transform (1.2) to a more
general setting. Let us consider the full Fock space F?*(H,)=Cl®
@D ,ns1 HE™, where H, is an n-dimensional complex Hilbert space with
orthonormal basis {ey, ¢,, .., e,} (n=1). Let ny, n,, .., n, =1 be integers.
Foreachi=1,2,..,kand j=1,2, .., n, let us define the operator S on the
Hilbert space F*(H,)® --- ® F*(H, ) by

S;=1® - ®I®S,RI® - ®I,
\1/_/ k\/_/
i—1 times — i times

where S; is the left creation operator with ¢; (j=1,2,..,n,;) on the full
Fock space F*(H,), ie, S;é=¢,®¢, (e F(H,).

Let Alg(Z, {S;}) be the smallest closed subalgebra generated by {S,}
and the identity, and let C*({S;}) be the C*-algebra generated by {S}.
We will refer to Alg(Z, {S,}) as the noncommutative polydisc algebra.
Note that when n;=n,=--- =n,=1 it is isomorphic to the polydisc
algebra A(D*) (see [R]). On the other hand, if k=1 and n, =n we obtain
the noncommutative disc algebra .7, (see [ Po2, Po4]).

A Cauchy transform on the noncommutative polydisc algebra Alg(Z, {S,})
is defined in Section 2.

In Section 3 we introduce a Poisson transform on C*({S,}) and describe
some of its properties. A Poisson kernel K,({4,}) (0 <r<1) is associated
to any sequence of operators {A4;};_1 2 & j—1.2... ©B(A) with property
(P) (see Section 3 for the definition) such that the map

P,({A,.j}): C*({Slj}) - B()
defined by

P{AGDLUSE {SEDT =SS5 {85 K({A,}), K({A44})),
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for any f({S;}, {S¥})e C*({S;}), has the following properties:

(1) P.({A;)[1]1=1,;
(i) P,.{Ay}) is linear and completely contractive;
(iii)  P({ Ay} Atz ¢ s, is multiplicative.

The Poisson transform of f({S;}, {S}})e C*({S,}) at a point {4} will
be defined by

PUAGDLSS (ST =lim P({ADL/S, S]]

r<l1

(in the uniform topology).

Let us remark that all the results of this paper hold true if we allow
n;= oo for some ie{l, ..k}, in a slightly adapted version.

Using the Poisson transform, we show that a sequence
{4212 ..k j=1,2,...n, © B(#) has property (P) if and only if there is a
completely contractive linear map

&: C*({S;})— B(A)
such that &(I)=1,, and

D(S;j, Sy Shp Sk )= Ay oo Ay Akg - Ad g

111 1
Thus, the Poisson transform provides a functional calculus for sequences of
operators with property (P).

If Ue%(H,), the group of unitaries on H,, then there is an auto-
morphism S, on C*(S,, .., S,) (see [BEGJ]), the extension of the Cuntz
algebra (), by compacts [ Cu], canonically generated. Similarly, one can get
“canonically generated” automorphisms on C*({S,}). In Section 4 we
show that the Poisson transform on C*({S,}) “commutes” with the
“canonically generated” automorphisms.

In Section 5, using the results from Section 3, Stinespring’s theorem [ S],
and Arveson’s extension theorem [A] (see also [Pau]), we obtain an
isometric (resp., unitary) dilation theorem and commutant lifting theorem
for sequences of operators with property (P).

In Section 6 we show that the set of all characters on Alg(Z, {S;}) is
homeomorphic to (C™), x (C™); x --- x (C"™),;, where (C"), is the closed
unit ball of C" (i=1, 2, .., k). This helps us decide when two noncom-
mutative polydisc algebras are not Banach isomorphic. On the other hand,
the first group of cohomology of Alg(Z, { S} with coefficients in C is calculated
showing, in particular, that the noncommutative polydisc algebras are not
amenable.
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In Section 7 we present some classes of sequences of operators with
property (P). Using the Poisson transform, we show that Alg(Z, {S,}) and
C*({S,}) are universal algebras. More precisely, we show that C*({S,})
is #-isomorphic to a tensor product 7, ® --- ® 7, , of Toeplitz algebras,
and Alg(Z, {S;}) is completely isometrically isomorphic to Ay & min
® min 4, (the minimal tensor product [Pau, p. 157]), where for each
i=1,2,..k, <, is the noncommutative disc algebra [Po4] on n; gener-
ators. The internal characterization of the matrix norm on a universal
algebra [ B, BP] leads to factorization theorems. On the other hand, it is
proved that there is an s-representation @: C*({S;})— 0, ® --- ®C,,
where ¢, is the Cuntz algebra on n; generators. Let us remark that this
result was obtained by Cuntz [ Cu] (using different techniques) for k=1.

Other consequences of the Poisson transform are presented in the last
two sections of this paper. In Section 8 we consider the noncommutative
Poisson transform on C*(S4, .., S,), the extension of the Cuntz algebra ),
by compacts, associated to the unit ball of B(.#)", ie.,

(B(#)"), = {(Tl, T eBA) S T, TF<I, }

i=1

This provides a new proof for the noncommutative von Neumann inequality
for (B(s#)"); (see [VN, Po2, Po3, Po4]) as well as an isometric (resp.
unitary) dilation theorems for sequences (77, ..., T,,) € (B(#)"), (see also
[F, Bu, Pol]).

The last section deals with sequences of commuting operators with
property (P). In the commutative case, operator-valued Poisson kernels
were considered in [ Pau, CV, V]. However, our “geometrical” approach
leads to extensions of some results obtained in [ Pau, CV, V]. We consider
a Poisson transform on C*(M,, .., M,), the C*-algebra generated by the
canonical unilateral shifts on H*(D"), the Hardy space on polydisc. We
obtain, in particular, the following consequences: commutative von Neumann
inequality for the unit ball of B(#°)" (see [ D1, D2] for a different approach),
universal algebra generated by n commuting isometries (see [ SzF]), and
1td’s theorem [I] for a commutative family of isometries.

The author thanks Gilles Pisier for useful discussions on the subject of
this paper.

2. CAUCHY TRANSFORMS

Let o# be a Hilbert space and B(#) the set of bounded linear operators
on . In the following we fix ke {1, 2, ...}. Let ny, ns, ..., n, > 1 be integers
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and let {4}, 15 & j—1.2 .., <B(H#) be a sequence of operators such
that

ApnAX+ A, A5+ - +Al-,,iA,’-f1i<If (2.1)
foreach i=1, 2, .., k, and

A;A

ipg =

A,,Ay (22)
if i, pe{l,2,...k},i#p, and je{l,2,...n}, ge{1,2,..,n,}.

Let F,F be the unital free semigroup on n generators: s, ..., s, and let e
be the neutral element in F,F. If e F," the length of ¢ is defined by

o] = m; if o=s; -5,
0; if o=e.

For any i={1,2,...k} and a;=5; ---s; eF, define 4, ,:=4; -4, ,
and if a;=e then 4, ,:=1,,.

Let us consider the full Fock space F*(H,)=Cl1® @®,,-; H®™, where
H, is an n-dimensional complex Hilbert space with orthonormal basis
{ej.e5, .,e,} (n=1) (see [E]). For each j=1,2,...n, S;€B(F*(H,)) is
the left creation operator with ¢;, ie., S;{=¢; ®, ¢eF?(H,). For each
a=s; -8 €FF, ji, s jm€ll,2, ., n} define e,:=¢; ® --- ®e; and
e,=lifa=eeF[. Itis easy to see that {e,},cp+ is an orthonormal basis
for the full Fock space F?(H,).

Let ny, n,, .., n, =1 be some fixed integers. For each i=1, 2, .., k and
j=1,2,...n; let us define the operator S; on the Hilbert space F 2(H,,l)

® --- @ F(H,) by

S;=I1® - ®I®S,®IQ - ®I (2.3)

where S; is the left creation operator with e; (j=1,2,..,n;) on the full
Fock space F*(H,).

Let Alg(Z, {S;}) be the smallest closed subalgebra generated by
{Sytizt.2 ok j=1,2,..n, and the identity, and let C*({S;}) be the C*-
algebra generated by {Sij}izl,z, ki j=1,2,..n LEt {Aij}izl,z, ke j=1,2,
c B(#) be a sequence of operators satisfying the relation (2.1). The
Cauchy kernel associated to this sequence is a family { C.({4,})}o<,<1 Of

operators

C({A}): # >FH,)® -+ ®F(H,)® A
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defined by

ClA ) h= Y ep® - Qep @ (rAlT -+ AL, o Af g ),
ie{l,2, ..k}
&eF*

for any he #. Let 1:=1® --- ® 1 e F¥(H, ) ® --- @ F*(H,,,).

THEOREM 2.1. Let {Ayf; 12 .k j=1,2 ..n, < B(H) be a sequence of
operators satisfying the relation (2.1) and p({S;}) be any polynomial in
{Sytictz ok jmt,2n- I O<Sr <1 then C({Ay}) is a bounded operator
and

pRrdgt) bk ={(p({Si}) @ Ly )A® ), C({Ay}) k>, (24)

for any h, ke .
Proof. Since for each ie {1,2, ...k}, me{l,2,..},

.BGF+ ﬂeF
Iﬁﬁ=m mﬂ=1
we infer that
IC({45}) Al
:. {122: ; H,,Iﬁ1|+...+|ﬁk|A;x<,ﬁ1 "'Alt/ithz
ie{l,2,..
B,eF

i n;

* k
S X (P %t A b0

ie{l,2,..,k} m=0 ﬁlanl
ﬂiGF; Bl =m
1 1Byl + <o +1B] g% * h 2
<l—r2 Z [[” Az,ﬂz"'Ak,ﬂk [
ie{2, ..k}
ﬁ’ieF:;
1
<—— |1h|%
<

for any he#. Therefore C/({A,}) is a bounded operator for each
0<r<l.
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It is enough to prove (24) for monomials of the form ¢({S;})=
S1,w =+ Sk« Where a; an*i (i=1,2, .. k). We have

S10y Sk ® L A® D), C({Ay}) D

=<eal ® - ®e, ®h Y ep® ey
ie{l,2,..,k}
BieF,

® (rihil+ bl g "'Az’f,ﬂkh')>

= hyrtmtt vl gy AE R
=q({rd ) h '), forany h h'e .

The proof is complete. ||

Using the results from Section 3 one can easily extend the Cauchy trans-
form (2.4) to Alg(Z, {S,}). Let us remark that in the particular case when
k=1, n;=1, and Te B(+) such that |T| <1, the relation (2.4) is equiv-
alent to the following operator-valued Cauchy formula

| pom .
P(rT) =—j p(e)(1—re~*T)~ dr.
277,' 0

3. POISSON TRANSFORMS

In this section we introduce a noncommutative Poisson transform and
we describe some of its properties. We keep the notation from the previous
sections.

For a given sequence of operators { A}, 12 .k j—1,2.., < B(H), let
A({A;})e B(A') be the selfadjoint operator defined by

A4 = Y (=nmtrermlg, gy AR AT, (B
ie{l,2,..,k}
aieF;; Joy | <1

For each 0<r<1 define 4,({4,}):=4({B;}) where B,=rA,. We say
that a sequence {Ay}; 1 & j-1.2 .., < B(#) has property (P) if the
relations (2.1), (2.2) are satisfied, and there exists 0 < p <1 such that the
operator A4,({A;}) is positive for any r, 0 <p <r<1.

An important role in our investigation is played by the following.
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LemMA 3.1 If { Ay icv, ok j=1.2,..n, © B(H) is a sequence of operators
satisfying the relations (2.1), (2.2) and such that 4, ({A;})>0 (0<r<1)
then

. Z r2(|ﬁl|+.“+lﬁk|)Al,ﬁ1”'Ak,ﬁkAr({Aij )A;Ck,ﬂk“'AiXiﬂl:I)f’

e (32)
where the convergence is in the strong operator topology.

Proof. 1If Xe B() is a positive operator and 0 <r <1, then for any
he#, we have

Y B e A XA g AT g B

ie{l,2,..,k}
ﬂieF;;
<X Z Hr|ﬂl|+~-+|ﬁ'k|Aik’ﬂl...A;g’ﬁkhn2
ie{l,2,..,k}
ﬁieF;:_
<—— |1 X 14>
ST X (17

Therefore, the sum in (3.2) converges to a positive operator. On the
other hand, we are allowed to rearrange the sum. Since

k
Ar({Alj}): Z (_rz)z‘pzllaplAl,ocl"'Ak,ockA;ck,uk'”Aﬁocl
ie{1,2, ...k}
weFy, lol <1

we have
k
Yo rPEemlblA e Ay g A A A g e AT g
ie{l,2, ..k}
BieF,
_ ¥ < » (—1)2:-1|«p|>
ie{1,2,.$k} (0)eds . s

0,eF

i n;

k
23 ,-116,l * *
Xresr=1l 4,y 5 - Ay 5 AR 5, - AT 5,

where the sum

Z (_1)|a1|+-~+|ak|

()eds o
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is taken over all («) :=(ay, .., a,) with o, eF S (i=1, 2, ..., k), |o;] <1 such
that f,a; =0, for some ﬁieF,:. It is easy to see that if 6,=0,=--- =
0, =e then

Z (_1)|u1|+---+|ock|:1.

On the other hand, if 4, ..., J; are such that 6, # e for some ie {1,2,..k},
then

Z (_1)I<x1I+~--+IockI=0.

()eds, o
The proof is complete. ||

Throughout this section we assume that {4} ,_1 5 _x j—1.2 .. n, < B(A)
is a sequence of operators with property (P), i.e., it satisfies the relations
(2.1), (2.2), and 4,({A4,}) >0 for any r such that 0 <p<r<1.

Let Z,({AU})GB(FZ(H,,I)(@ -+ @ F*(H,,)® #) be defined by

A,({A,1)=1® - @I 4,({Az}).
\/_/

k times

Lemma 3.2, If {Ay}ici ok j1,2..n, CB(A) is a sequence of
operators with property (P) then the operator

K({Ag)): # — F(H,)® - @ FX(H,)®#
defined by
K({A4;))=4,({4;)" C({4,}) (3.3)

is an isometry for each r, 0 <o <r<1.

Proof. Indeed, for any he #,
1A({ A1) C{ Ay} ) hlIP = CC{AFY) A({Ag}) C{Ag}) by b

— 201811+ -+ + 1B D
_< Z r2UB kAl,ﬂl"'Ak,/ik

ie{l,2,..,k}
ﬂieF;

x A,({Ag)) A 5. ---A;‘jﬂlh,h>= 1A%

The last equality follows from Lemma 3.1. The proof is complete. ||



36 GELU POPESCU

The family of operators {K,({4;})}o<s<,<1 is called the Poisson kernel
associated to the sequence {A;}; 12 . j—1,2 .., < B(#) with property
(P). For each r, 0 <J <r <1 consider the map

P({A;}): C*({S,;})—> B(AX)
be defined by

P{A D T=K({4;1)* (f® L) K({A44}), (34)

for any fe C*({S;}). Let us recall that for any a=s; S an*i, Sia
stands for the product Sy ---S; and if a;=e then S;,:=1 (the identity
operator on F*(H, )® --- @ F*(H,,)).

According to the relation (2.3), any polynomial in {Sy};_1 2 % j=1,2 ..n>
{S¥ icio ik jmr2 .. », has the form

PUSHASEN) =2 @@ (pSta  SkuStp - Sks, (3.5)

finite

Where a([x)’ B) GC and (Xi, ﬂi EF;: (i= 1, 2, ey k) If {Bij}i=1,2, ke, j=1,2, o 1
c B(o') and p({S,}, {S¥}) is given by (3.5), then

PUBGABEY) == Y Ay, (s Br.ay - Bro Bt g, -+ B -

finite

Note that p({(B,}, {B}}) e B(X).

THEOREM 3.3, If {Ay}, 12 .k j=1,2,..n, CB(H) is a sequence of
operators with property (P), then {P{A;})}o<s<r<1 has the following
properties:

(i) P.{A,}) is a completely contractive linear map.

(i) If p({S;}, {Sk}) is any polynomial in {S;}, {S¥}, and 0<d<r
<1 then

prdy), {rdg}) =P.({ A1) p({Sy}, {S5})]- (3.6)
Proof. According to the definition (3.4) and Lemma 3.2, it is easy to see

that P,({A4,}) is a completely contractive linear map. It is enough to prove
the relation (3.6) for monomials of the form

q({SU}’ {Sl;k}) ::Sl,(xl Sk,“kSik,ﬁl S;‘iﬂk’
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where a;, f§; eF;: (i=1,2,.., k). For any he # we have
P({ADLa({Sg)- {SFD T ARy
= (St u Sk Sty SE 5 O L) K({Ay}) by K ({A}) ).
On the other hand, according to (3.3)

K,({A,})h= Y e, ® - ®e,
ie{1,2, ..k}
y[eF:{

® (rEh- 1WA, ({A))P AL, - A D)

Ly

where for each ie{1,2, ...k}, {e,}, cr: is the orthonormal basis for the
full Fock space F 2(H,,l_) (see Section 2).

Therefore,
(P ALa({Sy) {51 hy )
= <(Sl,<xl "'Sk,akSik,ﬁl "'Sltﬁk®l,}f)x’ >
=<z,
where

X = Z eﬁ151®...®eﬂk5k
ie{1,2,..,k}
5eF,

®(rz’;zl(|ﬂ,,|+|5,,|>Ar({Ay})1/2 A¥

*
Bi6; "7 Ak, Bkékh)a

and

z= Z ea151®"'®eak6k

® (rZh=1 DA, ({A))2 A - AR ).

Moreover, <z, y» =z, w) where

w= Z eocl&l ® e ® eockék
ie{l, 2, ..k}
5ier;_

k
® (rEr-1 U5l DA ([ A )2 A s - AR o).
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On the other hand we have

Czywy =rZomi (I IAD 5 T 2510 E (3.7)
ie{l,2,..,k}
5,-eF;i
where
ézAr({Aij})l/zAT,ﬂlél "'A;ck,/i’kékh
and

n:Ar({Aij})l/zAﬁoclél "'Altockékh'
Using (3.7) one can infer that
(2w :rzlpll(Iocp|+lﬂ,,|)<Aik’ﬁ1 A g 2

where

k
;b:< Ym0l Ay A AgH) AT, "'Ait&k>

According to Lemma 3.1 we have A =AY, --- A, h. Thus, we infer that
Czywy =rEo- iUl H DAy AR AE B B
All the above equalities show that
CPAA NSy} ASENT b by = {q({rdy), {rd 1)1 h by

for any he #. This completes the proof. |

One can deduce the following extension of the von Neumann inequality
[VN, Po2].

CoROLLARY 3.4. If {Ay}i12 .k j-1.2..n, < B(H) is a sequence of
operators with property (P) and p({S;}, {S¥}) is any polynomial in {S;},
{ Sk} then

({4}, {4E DI <lp({ Syt ASFHI (38)
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Proof. According to Theorem 3.3 we have

Ip({rd g}, {rAE DI <Ip({ Sy}, {SFDI.
Taking r — 1 the result follows. |
For each f({S;}, {S}¥})e C*({S;}) let us define

SUAG. (A5} = lim g({4,). {45))

(in the uniform topology), where ¢,({S,;}, {S¥}) is any sequence of poly-
nomials in {S;}, {S}} such that |f({S;}. {SF})—a({S;}, {SF})I—-0
as k — oo. According to Corollary 3.4 it is easy to see that the operator
f({A4,},{A}}) is well defined.

COROLLARY 3.5. If {Ay} i1 0 .k j=1.2. B(J) is a sequence of
operators with property (P) an f{ Syt Sk } eC* ({Sy;}) then
If (LA AAEDT <SSy {SEDIL (3.9)

COROLLARY 3.6. If {Ay}i_12 ..k j-1.2..n, < B(H) is a sequence of
operators with property (P) an f({S,-j}, {Sx})e C*({S;}) then

SUrdy), {rAfy) = P.({A LSy {SED)] (3.10)

for any r such that 0 <o <r<1.

Proof. Let q,({S;}, {S}}) be a sequence of polynomials in { S}, {S}*}
such that

/S ASFH) = ad{ Sy {SFHI =0

as k — oo. We have

f({rAij}’ {"A;? ):kli_)nzo qk({rAij}a {"A;})Zkli__n; Pr({Aij})[Qk]-

Since P,({A;}): C*({S;})— B(A) is bounded according to Theorem 3.3,
we infer that

Sy Ardgh) = PUADLUS L AS 5]

for any f({S;}, {S}})e C*({S,}). This completes the proof. |
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The Poisson transform of f'e C*({S;}) at {4,} is defined by

P({4,))L/]:=lim P,({4;)[ /], (3.11)

r<l

if the limit exists in the uniform topology.

THEOREM 3.7. If {Ay}i_12 .k j=1.2,..n, S B(H) is a sequence of
operators with property (P) then there exists the limit

lim P,({4;})[ ]

r<l1

in the uniform topology of B(A') for every fe C*({S;}).
Moreover,

JQAg) {A457) = PRAGHDLAS {S51)] (3.12)

i)

Sor any f({S;}, {S¥})e C*{S;}).
) *
i

Proof Let f({S;}, {S}})e C*({S,}) and let ¢ > 0. There exists ¢({S,},

{S¥}), a polynomial in {S;}, {S*}, such that

7S {S55) —a({Sy, {55 |<§ (3.13)

According to the von Neumann inequality (3.9) and the relation (3.13), we
have

1A A} 45D —a({ Ay} {45} <3 (3.14)

and

\|f({rA,.j},{rA;f})—q({rA,.j},{rA;f})|\<§ (3.15)

forany r, 0<d<r<1.
On the other hand, there exists d,, 0 <Jd, <1 such that

la({rdg) rAg)) = a4y} (45D <3 (3.16)

for any r such that J,<r<1.
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Using Corollary 3.6 and the relations (3.14), (3.15), (3.16), we infer that

If({Ag, {45 — PL{AD LS5 ASED]I
=\|f({A,~,-},{A,§-‘} Srdgh, {rAg )|
<Ay} {45 — a4y, {45
+llg({ Ay}, 1453) —aq({rd,p, {rAg})
+ lq({rd ), {rd}})—f {rA,-j},{rA;-‘ )H<s
for any r such that max{d, d,} <r<1. The proof is complete. [I

THEOREM 3.8.  Let {Ay}i_12 .k j=1,2,..n, © B(H) be any sequence of
operators with property (P). Then the Poisson transform

Oray: CHUS = B @uy(f)i=lim PUADI (B17)

r<l1

has the following properties:

(1) (15{A y is a completely contractive linear map,
(ii) for every polynomial p({S;}, {Sk})e C*({S,}),

@{AU}(P({S,,-}, (SE1) =p({A,}, {AF));

(111) ¢{Aij} | Alg(z, (s, is multiplicative.

Proof. According to Theorem 3.3, for every matrix [f,, 1, ,_:€
M,(C*({S;})) we have

ILP ({4115 g =1 | S LS pa 5 =1 - (3.18)

On the other hand, Theorem 3.7 shows that @, p is well-defined by rela-
tion (3.17). The inequality (3.18) together with the relation (3.17) shows
that

”[Q{Alj}(qu) Z,qzl H < H[qu];,qzl H)

for any [ f,,1% ,—1 € M,(C*({S,})). This proves part (i) of the theorem.

Part (ii) follows from Theorem 3.3 part (ii) by taking r — 1. Now, it is
easy to see that part (iii) of this theorem is a consequence of (i) and (ii).
This completes the proof. |

THEOREM 3.9. A sequence of operators {Ay};_1 5 .k j—1,2..n, < B(H)
has property (P) if and only if the map

@: CH({Sy}) = B(A),
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defined by

PSS ASEN) =p({ A5}, {A45}) (3.19)
Sor any p({S;}, {S¥})e C*({S;}), is a completely contractive linear map.

Proof. The direct implication follows from Theorem 3.8. Assume now
that the map @ defined by (3.19) is completely contractive. Since @ is com-
pletely positive and the sequence {S;},_1 2 % j=1.2 .. », has property (P)
(see Lemma 7.1 for a more general case), it is easy to see that the sequences
{44} i—1,2, .k j=1,2, .. has also property (P). The proof is complete. ||

4. AN INVARIANCE PROPERTY OF THE POISSON TRANSFORM

In what follows we show that the Poisson transform has an invariance
property. Each k-tuple U= (Uy, .., Uy) such that U,e%(H,), the group
of unitaries on H, (i=1,2,., k), generates a canonical automorphism of
C*({S,}) defined by

Z A0S, i=1,2, .k j=1,2, .1 (4.1)

ip>

for U= [)")]" (€U (H, ) (see [BEG]] for the case k=1).

n;

On the other hand if {Ay}ic12 .k j=1.2,..n, < B(J) it makes sense to
consider

z 2D A, (4.2)

LemMMA 4.1, If {A,} 12k j=12. n, & B(A) is a sequence of operators
with property (P) then {,BU },_1 2 ks j=1,2, .. has property (P).

Proof. Let U;=[A01%, _ €U(H,),i=1,2,..k Foreachi=1,2, ..,k
we have

Z Bu(Ay) Bu(Ay)* = Z <Z )“;?/1;?)’4@’4?;
J

Jj=1 pg=1 =1

<,
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On the other hand, according to the relations (2.2) and (4.2), one can see
that

BulAy) Bu(A,) =Bu(A,s) Bu(Ay) (4.3)
for any i, re {1, 2, .., k}, i;érandje{l 2, oy, s€{1,2, .., n,}.
Let us show that A({Au}) =A({pu(4 } Denote B, :=[fiy(A4;). We
have
A({Bij})z Z (_1)21’,‘;11 lag, |
ie{l,2, .. k—1}
weF,, logl <1
><lgl,ocl "'Bk—l,ockleBik,ocl "'B;ck—l,ock71
where
Z lakl Bk o Bk ock Z (_l)lakl Ak,otkAlt oy
zxkeF ockeF;:;c
lo | <1 loge | < 1
Using (4.3) we obtain
ABY) = X (=DTewla,, YYRAE,
ie{l,2,..k}

o
GEF Il <1

where Y=B, , -+ Bi_1,_,- Repeating the above argument one can see
that

A({By}) = A({Ay}).

Therefore the sequence { fy(A4;)};_1,2,..k j-1,2,.., has property (P). This
completes the proof. ||

The next result establishes the invariance of the Poisson transform under
the canonical automorphism of C*({S;}), defined by (4.1).

THEOREM 4.2.  Let {Ay}i_12 .k j=1,2,..n, < B(#) be a sequence of
operators with property (P). Then for any fe C*({S;}) we have

PHAGBu(/)]=P{ Bu(4,)}) /] (44)

where B is any canonical automorphism of C*({S;}).
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Proof. 1t is enough to prove (4.4) for monomials of the form
C]=S1,a1 T Sk,zkaik,ﬁ'l S’tﬂk’

where o;, f; € F,5 (i=1,2, ... k).
Let us denote Bj:=fy(A;). According to Lemma 4.1, the sequence
{By}i—1.2 ..k j—1.2,..n has property (P). Using Theorem 3.7, we infer that

P({Bij})[q] :Bl,txl "'Bk,ockBik,ﬂl "'Blf,/zk~

On the other hand, we have

P({A4;1)[Bulq)]
=P{ AN Bu(S10) Bu(Si o) Bu(ST ) BulSEp)]
=Bul(Aya) - Bu(Ar ) BulAT p) - Bul(Af 5)
=Bia, - Buo Bl g, - Bl gy

Therefore,

P({By})[q]=P{A,;})[ Bulq)]

This completes the proof. |

5. JOINT DILATIONS FOR SEQUENCES OF OPERATORS WITH
PROPERTY (P)

Using Theorem 3.8 and Stinespring’s theorem [S], one can obtain the
following dilation theorem.

THEOREM 5.1.  Let {Ay}ic1 o k=12 ..n ©B(H) be any sequence of
operators with property (P) and let @ (4,3 be the Poisson transform associated
to {A;}. Then there exists a Hilbert space A" > A and a unital %-homo-
morphism w: C*({S,}) = B(A") such that

Pay()=Pyn(Nlw,  [ECH{Sy}).

Let us remark that one can choose # =V, C*({S})n(f)/f in order
to get a minimal Stinespring representation, which is unique up to an
isomorphism.
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Consider V;:=n(S;). The sequence {V}, 12 & j=1.2..n<B(X)

has property (P) and is called the minimal isometric dilation of
{Aij}i= L2k j=1,2,.m; & B(A).
Let us remark that since

#ViVilw =Px Vil Pr Vil

A is invariant subspace for each V¥ (see [ P]). Therefore A =V¥|, for
any i=1,2, .., k, j=1,2,..,n
Summing up we obtain the following isometric dilation theorem.

COROLLARY 5.2. Let {Ay}; 12 .k j=1,2..n < B(H) be a sequence of
operators with property (P). Then there is a Hilbert space X > H and a
sequence of isometries {Vy};_1 5 .k j=1,2,..n, = B(A"), with property (P)
such that

AF=VEl» forany i=1,2,.,k j=12,..,n

and A =NV, ; ---V, ; #. Moreover, the isometric dilation {V;} is

uniquely determined up to an isomorphism.

Let us remark that the isometric dilation { V/;} has also the property that
ViVia=VaVi

if i, pe{l,2, ...k}, i#p, and je{1,2,...n}, qe{1,2, .., n,}.
We can apply [A, Theorem 1.3.1] to our setting in order to get the
following commutant lifting theorem for C*({A4}).

COROLLARY 5.3. Let {Ay};_12 k j=1,2..n, ©B(H) be a sequence
with property (P) and let {Vy};_1 5 & 1,2 ..n, ©B(A) be its minimal
isometric dilation. If Xe C*({A4;}) then there is a unique Xe C*{ Vi o
{P,}" such that P X=X, Where P, is the orthogonal projection from
A onto K. Moreover, the map X — X is a » -isomorphism.

Let F, be the free group on n-generators sy, ..., 5,,, and the Hilbert space

A= {fF, - C T Ife<os .

ceF,

Let {e,},cr be the canonical basis of /*(F,), ie., e,(7)=1 if 1=0 and
e,(t)=0 otherwise. For each j=1,2, ... n, UjeB(fz(Fn)) is the unitary
operator defined by

R R T (R G

ogeF, ceF, oceF,
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Note that the C*(U,, .., U,) is the reduced C*-algebra associated to F,
(see [Pi]).

The Hilbert space /*F;) can be seen as a subspace of /*(F,). On the
other hand, the full Fock space F?(H,) can be naturally identified to
/*(F 7). Under this identification we have that Uilpay=S; (j=1,2, ... n)
where S, .., S, are the left creation operators on the Fock space F*(H,,).
Now, for each i=1,2,..,k and j=1,2,.. n,; let us define the unitary
operator U, on the Hilbert space /*(F, )® --- ® /%F,) by

Ui=1® - ®IQU,QI® --- ®I (52)
i—1 times — i times

where U; eB(/Z(F,,i)) was defined by (5.1). Due to our identification, one
can see that

Uij|F2<H,,1)® ®F2(H,,k>:Sij (53)

foreach i=1,2,..,k, j=1,2,..,n; (see (2.3) for the definition of S;). Let
C*({U,}) be the C*-algebra generated by {U;},_12 & j—1.2 .. e

THEOREM 5.4. Let {Ay}i_12 .k j—1.2...n, € B(H) be any sequence of
operators with property (P). Then there exists a Hilbert space A > H and
a sequence { Wy} ,_1 2 & =12 . n, < B(A") of unitary operators such that

WiWoa=Wpa Wi (54)
Jori,pe{l,2, . k},i#p, and je{1,2,...n}, ge{l,2, .., n,}, such that

p({Aij})Zpr({Wij}”%’
for any polynomial p({U;})e Alg(I, { U,}.

Proof. Let 2, be the set of all polynomials in {Uy};_1 2 & j=1,2..n-
According to Theorem 3.8 and the relation (5.3) the map @ : 2, —» B(#)
defined by

P(p({Uy})) =p({4})

is a completely contractive homomorphism. Applying Arveson’s extension
theorem [ A, Theorem 1.2.9] to our setting, there is a completely positive
linear map

w. C*({U,}) - B(#)
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such that ¥|, = &. Combining this result with Stinespring’s representation
theorem [S], we see that there is a * -representation

m: C*({Uy}) > B(A')
on a Hilbert space 2 > s such that
SU(P({ Uij} )= PJ/”(P({ Uij} DI

for any p({U;})e C*({U;}). Setting W;:=n(U;) (i=1,2,..k j=1,

/2
2, .., ny), it is clear that the sequence { Wy} _1 5 . & j—1,2, .. Satisfies rela-
tion (5.4), and

P({Ay}):P%P({Wy}”%

for any polynomial p({U;}) e Alg(1, { U;} ). The proof is complete. ||

6. CHARACTERS ON NONCOMMUTATIVE POLYDISC
ALGEBRAS AND COHOMOLOGY

Let A={A;}ic12 .k j=1.2 .. », D& @ sequence of complex numbers such
that

A P+ o 4 A 1P <1 foreach i=1,2,..k,
and define the “evaluation” functional
0,:2-C;  DUp({S;}))=p({75)),

where 2 is the set of all polynomials p({S;})e Alg(Z, {S,}). Since the
sequence {A;lc}i—12 ..k j=1,2..n, < B(C) has property (P), the von
Neumann inequality (3.8) shows that

P2 =21 PI< Ip({ Sy}

Hence, @, has a unique extension to the polydisc algebra Alg(Z, {S;}).
Therefore @, is a character on Alg(Z, {S;}). Let M ¢ s, be the set of
all characters of Alg(Z, {S;}) and let ‘

P (C™)y X (C™2)q X - x (C™),y _)MAlg(I,{Sij})

be deﬁned yl(i) = ¢}_ WheI‘e ;L = {)“lj} i=1,2,.,k j=1,2,.., n;

THEOREM 6.1. The map ¥ is a homeomorphism of (C™); x --- x (C™),
onto M pgr, {s;h-



48 GELU POPESCU

Proof. Let us show that ¥ is one-to-one. If A={2;},_ 12 & =12 ..,

and u={fty}; 1,2 .k j—1,2..n are in E:=(C"); x --- x(C™); then ¥(1)
= P(u) implies that

Ay =PiSy) = DSy =uy

for any i=1,2,.k, j=1,2,..,n;, Therefore A=u. Now, assume that
@: Alg(I, {S;})— C is a character. Setting &(S;) =4, € C we have

D(p({Sy}))=p{iy}

for any p({S,})eAlg(l, {S;}). Since @ is a character it follows that it is

completely contractive. Applying Theorem 3.9 when A4, = 4;Ic, i=1,2, ..k,

j=1,2,.., n, we infer that {1;Ic} has property (P), ie., {1;} €E.
Moreover, the identity

D(p({Sz})) = p({45}) = P(p({Sy}))

proves that @ agrees with @, on the dense subset 2 of Alg(/, {S;}), there-
fore @=®,. Since both E and M u4; ¢ 5,5 are compact Hausdorff spaces
and ¥ is one-to-one and onto, to complete the proof it suffices to show
that @ is continuous.

Suppose that A*=(43), (e€J) is net in E such that lim, ;A% = 4= (4;).

Since sup,.; [P« <1 and 2 is dense in Alg(Z, {S;}) and since

lim @ ,+(p({S;})) =lim p({4,}) = P;(p({S;}))

axed e

for every p({S;})e# it follows that ¥ is continuous. The proof is
complete. |

Let us remark that in the particular case when n,=n,=--- =n, =1 we
get that M 4 =D”, which is a well-known result. In the particular case
when k=1, ny=n we get M, =(C"); (<, is the noncommutative disc
algebra [ Po2]), result that was obtained in [ Po4].

The above theorem helps us see when the Banach algebras Alg(/,
{Siticto ki jmt2n) and  Alg(L{Sy} i1 2 . mj—1,2..p) are not
isomorphic.

Let A be a complex Banach algebra with unit, X be a Banach A-bi-
module, and X’ be the dual Banach 4-bimodule (see [ BD]). We need to
recall from [BD] a few definitions.

A bounded X-derivation is a bounded linear mapping D of 4 into X
such that

D(ab) = (Da) b + a(Db), for any a, be A. (6.1)
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The set of all bounded X-derivations is denoted by Z'(A4, X). For each
xeX let us define 6,: 4> X by d,(a)=ax—xa. We call J, an inner
X-derivation, and denote by B'(4, X) the set of all inner X-derivations. The
quotient space Z'(4, X)/B'(A, X) is called the first cohomology group of A
with coefficients in X, and it is denoted by H'(A4, X). A Banach algebra 4
is said to be amenable if H'(A4, X')= {0} for every Banach A-bimodule X.

In what follows we shall see that the noncommutative polydisc algebra
of = Alg(L {Sy}i_1,2 .k j-1.2..,n) is nOt amenable.

Of course C, the set of all complex numbers, is a Banach .o7-bimodule
under the module multiplication

A-SUSH) = f({Sy}) - A=21({0}) (62)

for each f({S,})e .. According to the von Neumann inequality (3.9), we
infer that |- f({S;}) <|A| [/({S;})I, for any AeC, f({S,})e .

Since the proof of the following theorem is a straightforward extension
of [ Po4, Theorem 4.1], we omit it.

THEOREM 6.2. The first cohomology group of the algebra Alg(l,
{Sij})i=l,2,...,k,j=1,2,_._,n’_ with complex coefficients is isomorphic to the
additive group C™+m* -+

Since C is a dual bimodule we have the following.

COROLLARY 6.3.  The polydisc algebra Alg(I, {S;}) is not amenable.

7. SEQUENCES OF OPERATORS WITH PROPERTY (P) AND
UNIVERSAL ALGEBRAS

A sequence of operators {A,};_12 & j—1.2 . n, @ B(A) is called with
property (P*) if it satisfies the relations (2.1), (2.2), and

AzAy,=A5,A4; (7.1)
forany i, pe{1,2, ..k}, i#pandje{l,2,..n}, qe{l,2,..n,}. Notice
that in the particular case when n, =n, = -.- =n, =1 we obtain a sequence
of double commuting contractions [ SzF, Pau].

LemMa 7.1, Any sequence {Ay};_1 5, .k j-1.2,..n, < B(H) with property
(P*) has property (P).
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Proof. Using the relations (2.2), (3.1), and (7.1) we can see that

k
Ar({Aij}) = n Iy —1r?Aj A} — - _VzAin,.A?;,.)
i=1
for each 0 <r<1. According to (2.1), 4,({4;}) is a product of commuting
positive operators. Hence, 4,({4;}) > 0 This completes the proof. |i

In what follows we will show that Alg(/, {S;}), the smallest closed
algebra generated by the isometries S; (i=1,2, ...k, j=1,2, .., n,;) and the
identity, is the universal algebra generated by the identity and a sequence
{4} 212, ok j=1,2,...n, © B(') with property (P*), in the following sense.
Given any sequence of operators {Ay}; 12 ..k j—1,2 .., <B(A) with
property (P*) there is a completely contractive homomorphism

@: Alg(I, {S;})— B(A)

such that @(/)=1and &(S;)=A; forany i=1,2,.. .k, and j=1,2,..,n
Let us show that this property characterizes Alg(Z, {S;}) up to unital
complete isometric isomorphism.

THEOREM 7.2.  Let {by}; 12 ..k j—1,2 ... be a sequence of elements in
some unital C*-algebra, with property (P*). If for any sequence of operators
{Aj}ici2 ok j=1.2 .. u, With property (P*) the map

Y Alg(1, {b;}) — Alg(I, {A4,})

defined by W(I) Y(b;) = Ay, is a unital completely contractive homomor-

= I’
phism, then Alg(I, { B} ) is completely isometrically isomorphic to Alg(I, {S,}).
Proof. Since

Sy Sk =8kS;

y=rq

for any i, pe{l,2,..k}, i#p and je{l,2,..n}, qe{l,2,..,n,}, we
infer that {Sy},_1 2 . j-1.2.. has property (P*). Setting 4,=1S,; we
obtain

IEPA({ ST i I < ITP ({0 1T i | (7.2)

for any matrix [P, ({S;})]",_, € M,(Alg({S,})). On the other hand,
since {by} ;1,2 .,k j—1.2 .. Nas property (P*), Lemma 7.1 shows that it
has property (P). Applying Theorem 3.8 to our setting, we infer that

IEP ({1 ot I < IDP (LS T2 |-
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This inequality together with (7.2) show that

H[Prs({by} )]:',ls=1 ” = H[Prs({Sij})]:ls=l ”

for any [P, ({S;})1", _1 €M, (Alg({S;})). Therefore Alg(Z, {b;})
completely 1sometrlcally isomorphic to Alg(Z, {S,}). 1

The C*-algebra C*({S;}) can be viewed as the universal C*-algebra
generated by a sequence of isometrics { Vy} ;12 ..k j—1.2,..n, = B(#) with
property (P*), in the following sense.

THEOREM 7.3. If {Vy}i12 .k j=1,2,..n, CB(H) is a sequence of
isometries with property (P*) then there is a *-representation

m C*({S;}) = C*({ V) ) n(Sy) = V. (7.3)

Moreover, any s-representation of C*({S,}) is determined by a sequence of

isometries {V;} with property (P*).

One can prove that this property characterizes C*({S,}) up to a =-iso-
morphism. Using Theorem 3.8, the proof is similar to that of Theorem 7.2,
so we omit it.

The Toeplitz algebra 7, is the unique unital C*-algebra generated by

n=2,3, .. isometries s, ..., 5, satisfying

s¥s.=0.1 Z Sl-Sl-*<l

L) y=>
i=1
(see [Cu2, BEGIJ, Po3]). The Fock or regular representation of .7, on
F?(H,) is generated by the left creation operators S; (i=1,2,..,n) (see
Section 1). The noncommutative disc algebra .o/, is the unique nonselfad-
joint closed algebra generated by 1, sq, ..., s, (see [ Po4]).

Using Theorem 7.3 one can easily prove that there is a unique C*-cross
norm on 7, ® --- ®7, (ny,..,n.=2) and C*({S;})~7, ® --- ®7,
According to the definition of the min norm on tensor products of operator
algebras [Pau] and since .o/, can be seen as a subalgebra of 7, (i=1,
2, .., k) (see [Po4]), we deduce the following result.

CorOLLARY 7.4. Alg(l, {S;}) ~ <, @ min @ min S, -

In what follows we show that C*({S,}) is completely isometrically
isomorphic to a free operator algebra considered by D. Blecher [ B] (see
also [BP]). We need a few definitions from [B].

Let I" be a set, and let n: I'—> N be a function with n(y)=n,. Let 4 be

a set of variables (or formal symbols) x7, one variable for each ye I and
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each i, j, 1 <i, j<n,. Let # be the free associative algebra on 4. Let # be
a set of polynomial identities P=0 in the variables in A. Regard # as
subset of #. Take a quotient of & by the ideal generated by %.

We define a semi-norm on M,(% ) by

ITuy 104 =sup{ [ 7(u;) 111}

where the supremum is taken over all algebra representations 7z of & on
a Hilbert space satisfying the condition #n(#£)=0 and |[z(x})]|| <1 for
all p. This later matrix is indexed on rows by i and on columns by j, for
all 1<i, j<n,.

Now, quotient by nullspace of this semi-norm to obtain an operator
algebra. The completion of this space is denoted by OA(A, #). This is
called the free operator algebra on A with relations # (see [ B]).

Let A have the identity e and also contain the ordinary variables
X} ict2 k2 mp A Vi im 120 ke j= 1,2, ..m» aNd let Z be the relations

XX

pg =X

qu

i i and XijVpg = VpgXij

ifi, pe{l,2, ...k}, i#p,andje{l,2, ... n;}, qe{l,2, . ,n,}, and y,x,;=
o e for any ie{l,2,.. .k}, and r, je{l,2,..,n;. Form the universal
algebra OA(A, %).

Using Theorem 7.3 one can extend Theorem 4.3 from [Po5] to our
setting. We omit the proof which is straightforward.

THEOREM 7.5. The universal algebra OA(A, R) is completely isometric
to C*({S;}).

The internal characterization of the matrix norm on a universal algebra

OA(A, #) (see [ B, BP]) leads to the following factorization theorem.

THEOREM 7.6. If P=[p,lmxm is a matrix of polynomials in I, {S;},
{Sk} then, |P| <1 if and only if there is a positive integer t such that

P:A0D1A1D2 . 'DtAt’

where A, ({ =0, 1, ..., t) are scalar matrices (with a finite number of nonzero
entries), each ||A,| <1, and each D, is diagonal matrix with I, S;, S}
(ie{l,2,..,k} and je{1,2, .., n;}) as the diagonal entries.

ijs

Let us remark that a similar result holds for matrix polynomials in I,
{Ss}-

Another class of sequences of operators with property (P) is consider in
what follows.
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Lemma 7.7. If {A,-j}izl,z,__,,k’jzl,z,_“’ni cB() is a sequence of
operators such that

AnAf i+ ApAl+ - + Ay A, =1, (7.4)
for each i=1,2, ..,k and

AyAp=ApA4; (7.5)
ifi,pe{l,2,.,k}, i#pand je{l,2, ... n;}, qe{l,2, .., n,}, then {A,}
has property (P).

Proof. Consider the sequence of operators defined by Y,=1,, and
Y=Y, _rzAil Y, A5 — -+ _rzAini Yi—lA?;,.

fori=1,2, ..,k

Notice that 4,({4,})="Y, (0<r<1). According to (7.4), we have
Y,=(1—7r?)1,. By induction, we infer that Y, =(1—r*)*1, >0if 0<r
< 1. Therefore 4,({A4;})>0 and the sequence {4} satisfying the condi-
tions (7.4) and (7.5) has property (P). The proof is complete. ||

Let us remark that if {A;}; 15« j—1,2... €B(A) is a sequence of
operators satisfying the condition (7.5) and such that 37 | 4,4 <1, for
each i=1, 2, .., k, it does not follow that it has property (P). To see this,
consider Parrott’s example [Pa] and use Theorem 5.4 in the particular
case k=3 and n,=n,=n;=1.

LemMa 7.8. Let {Vybi_12 .k j=1,2,..n, @ B(H) be a sequence of
isometries such that

VaVii+ -+ Vi Vi =1x (7.6)
for each i=1,2, .., k, and

V.V

iV pqa=

V

prq

Vv (7.7)

p
for any i,pe{l,2, ..k}, i#p and je{l,2,.,n}, qe{1,2,..,n,}. Then
{(Vitici2 ik j=1.2, .. n, has property (P¥).

The proof is straightforward, so we omit it. According to Theorem 7.3
and Lemma 7.8, there is a = -representation

m: C*({S;}) = C*{ V) ) n(S;) =V

(7.8)
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Let us recall that the Cuntz algebra (), is uniquely defined as the
C*-algebra generated by n=2, 3, ... isometries satisfying

oifo;=0,l, Y ogof=1
j=1

[ Cu]. Since the Cuntz algebra (), (n>2) is nuclear [ Cu] there is a unique

structure of C*-algebra on ¢, ® --- ®C, (ny, .., n,=2). According to

(7.8), one can easily deduce the following result.

THEOREM 7.9. There is a * -representation
b C”‘({S,-j})—>@n1 ® - &0,
such that ®(S;) =, where for eachi=1,2, .., k

=& 8088 8

i—1 times k — i times
w
and {a;} 7, is a set of generators of the Cuntz algebra ), .

Let us remark that this result was obtained by Cuntz [Cu] (using
different techniques) for Kk =1. On the other hand, using the short exact
sequence obtained by Cuntz [ Cu], one can prove that the above *-repre-
sentation is surjective.

8. POISSON TRANSFORM ASSOCIATED TO THE
UNIT BALL OF B(#)¥

In Section 3 we introduced a Poisson transform associated to sequences
of operators { Ay} ;1,5 ..k j=1,2, .., < B(#) with property (P).

Let us consider the particular case when k=1 and n, =ne {1, 2, ..}. Any
sequence {7;}7_, cB(#) such that T,T{#+ ... 4+T,TF<I, has
property (P). Indeed, in this case we have

AT} =Ly =T\ T¥ — -+ =T, T}

and 4,({T;})>0 for any 0<r<1.

For each j=1,2,..,n, S; e B(F?*(H,)) is the left creation operator with
e, e, S;E=¢,®¢, EeF*(H,). Let F be the unital free semigroup on n
generators sy, ..., s,, and let e be the neutral element in F/. For each
a=s; -8 €FF, ji s jm€{1,2,..,n} define e,:=¢; ® --- ®e; and
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e,=lifa=eeF . Ttis easy to see that {ea}aeF; is an orthonormal basis
for the full Fock space F?(H,).

Applying Theorem 3.8 to our setting, we obtain that the Poisson trans-
form on C*(S, .., S,), the extension of the Cuntz algebra through compacts,
is the completely contractive linear map

P({T;}): C*(S,, ... S,) > B(K)
defined by
PUT LA = lim K(T})* (/@ Le) KT} (8.1)

r<l1
(in the uniform topology of B(#’)), where the Poisson kernel
K.({T}): #—>F*H, Q@A

is defined by
K({Tph= 3 ¢, ® (r"4,({T;})"* Th).
yeF

Moreover, we can deduce the following result obtained in [ Po3].

Tueorem 8.1. If (T4, .., T,) € (B(H)"), then the linear map
@: C*(S,, ..., S,) = B(o¥)
defined by
DS, S, SF e SE) =T, - T, Tf Tk
1<y, s By Jroes Jm <1, is completely contractive.

In particular, we obtain a new and elementary proof of the main result
in [ Po2], i.e,, the von Neumann inequality [ VN, SzF ], for (B(#)"), (the
case n=1 was considered in Section 1).

COROLLARY 8.2. If (T, .., T,)e(B(H#)"), then

(T, o T < p(Sys s SH)l
for any polynomial p(S,, ..., S,) in I, S4, .., S,.

It is easy to see that applying Corollary 5.2 to our setting one can obtain
a new proof of the isometric dilation theorem for sequences (74, ..., T),,) €
(B(+#)"); (see [ F, Bu, Pol]). On the other hand, Theorem 5.4 provides a
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unitary dilation for such sequences of operators as well as the Bozejko’s
version of the von Neumann inequality [ Bo] to our setting.

Let us remark that, in the particular case when (71, ..., T,) € (B(#)"),
and 7,T,=T,T;, 1 <i, j<n, Theorem 8.1 remains true if we replace the left
creation operators S;, 1 <i<n, by their compressions to the symmetric
Fock space F?(H,) < F*(H,,). Indeed, this follows from (8.1) if we take into
account that F?(H,) is invariant to S¥ 1<i<n and the Poisson kernel
K,({T;}) takes values in F2(H,)® A .

We recall that the Cuntz algebra @), is uniquely defined as the C*-algebra
generated by n=2, 3, ... isometries satisfying

n
oo, =0,1, Y o0F=1
j=1

[Cu]. For any f({S;}, {S}*})e C*(S,, .., S,) the Poisson formula (8.1)
becomes
fHaif, {0?‘})=rli£n(1—r2) C({a)* (SU{SH, {SF) @ 1Ls) Cl{a})

1
r<l1

where the Cauchy kernel is defined by

C{a})= > e, ®@ra}h.

+
aeF,

In our particular setting, Theorem 7.9 shows that there is a *-representation
@: C*(Sy, ..., S,) > 0O,

such that &(S;)=0;, i=1,2,.., k. This is a well known result obtained
(using different techniques) by [C] for n=1 and [Cu] for n>2.

Let us remark that if (7, ..., T,,) € (B(#)"), is completely non-coisometric
(see [ Po3]) one can use the results from [ Po3] to extend the Poisson trans-
form (8.1) to Alg(Z, S, ..., S,)* (the closure in the strong operator topology).

Now let us consider the particular case when n=1. Let S be the
unilateral shift on the Hardy space H*D), ie., (Sf)(z)=zf(z), zeD =
{zeC:|z|<1}. Let Te B(#) be such that |7 <1 and let p(S, S*)=
Y n>0 AuyS™S*" be in C*(S). The Poisson transform on C*(S), the C*-
algebra generated by S, has the following equivalent form (see Section 1).

r—1247T
r<l1

1 2= .
PT, T =lim 5= [ (L, —re™T) 1 4,(T)'2 p(S, S*)
0

x AT (1,, —re™T*)~ " dt

(in the uniform topology of B(#)), where A4(T)=1,, —r*TT*.
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Let us mention that this Poisson transform is an extension of [V,
Corollary 3.5] and [ Pau, p. 24].

9. SEQUENCES OF COMMUTING OPERATORS WITH
PROPERTY (P)

Let {Ay}i_1,2 % j-1.2..n, = B(#) be a sequence of operators satisfying
the relations (2.1), (2.2), and let {Sy},_1 2 . % j—1,2..» D€ the sequence of
isometries defined by (2.3).

Let us consider the particular case when n, =n,= -.- =n; = 1. For each
i=1,2,..,k denote T,:=A;; and M,:=S;;. The relations (2.1), (2.2)

become ||T;||<1 and T,T,=T,T,, respectively. According to (3.1), we
have

AGTYH = Y (TR T THT R (TH (90)

&p, . £,€ {0, 1}

Using an inductive argument, we infer the following.

PROPOSITION 9.1.  If{T,}%_, = B(A) is a sequence of commuting operators
such that

T\ TF+ - + T, TE<I,

then {T}*_, has property (P).

THEOREM 9.2. Let {T}*_, < B(#) be a sequence of commuting
operators such that

T\ T+ - + T, TES . (9.2)
Then, there is a completely contractive linear map
&: C*(My, ..., M) > B(¥)
such that
¢(Mil...MiqM;}: ...M]?l;): T, ...Tl,qT;,!l< T;l;
Sorany iy, ... i,, ji, . j, €41, 2, . K}

Moreover, the result holds true if one replaces M;, 1<i<n, by the
compressions of the left creation operators to the symmetric Fock space.
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Proof. According to Proposition 9.1, the sequence {7;}%_, has
property (P). Applying Theorem 3.8 to our setting, the result follows. The
second part of the theorem is contained in Section 8. ||

Notice that if {7,}*_, = B(#) is a sequence of double commuting
contractions [ SzF] then it has property (P). Therefore the first part of
Theorem 9.2 holds true.

Let us also remark that an isometric (resp. unitary) dilation theorem for
sequences {7;}%_, = B(#)} of commuting operators with property (9.2)
(resp. double commuting contractions) can be obtained applying Corollary
5.2 (resp. Theorem 5.4) to our setting.

Let S; (i€ {l,2, .., k} be the unilateral shift on the Hardy space H*(D*),
ie., (S,f)(z)=z,f(z) for any ze D*, where

D*={(zy, ., zz): z; € C, |z;| < 1 for every i=1, 2, ..., k}.

Under the canonical identification of the  Hilbert space

FC) ® FA(C)® --- ® F*(C) to the Hardy space H*D*), the operators
- _

~—
k-times

M,, .., M, are unitarily equivalent to S, ..., S;, respectively. Let A4(D*) be
the closure of the set of all polynomials in the uniform norm ||-| ., defined
by

Hthsz Sup |p(er--~a Zn)"
lz; ] <1

ie{l,2, ..k}

COROLLARY 9.3. Let {T;}*_, < B(#) be a sequence of commuting
operators such that

TlTik+ e "f‘ TkT]fglf
Then, there is a completely contractive homomorphism
®: A(D*)— B(#)

such that ®(z;))=T; for i=1,2,..,k, where z,, .., z, are the coordinate
functions.

Let us mention that if {7,}*_, = B(#) is a sequence of commuting
operators satisfying (9.2) (or sequence of double commuting contractions),
then the associated Poisson transform (see Theorem 3.8) has the following
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equivalent form, which is an extension of [ CV, Theorem 2.1]. For any
p({S,}, {Sl*} ) € C*(SI: ey Sn)a

. 1
p<{T,~},{Ti*}>=3Ln}(2nf [TRATHE S (51

K({T;})dt,---di,
(the convergence in the uniform topology), where
k
KT =4,((T)" T] (Ly —re"T3)
m=1
and 4,({T;})"* is given by (9.1).
LEMMA 9.4. If {V}%_, = B(A) be a sequence of commuting isometries

then {V¥}*_, has property (P).
Proof. Applying Lemma 7.7 in our setting, the result follows. |

THEOREM 9.5. Let { V,}*_, = B(A’) be a sequence of commuting isometries.
Then, there is a completely contractive linear map

v. C*¥(My, ... M,)—> B(H)
such that

Y(M, - M, M¥ - - M¥=V¥...V¥V, ...V,
i iy J1 Jp iy

1 Jp

Sorany iy, ... iy, iy jp €11, 2, . k}.

Proof. Using Lemma 9.4 and applying Theorem 3.8 to our setting, the
result follows. ||

In what follows we show that the polydisc algebra Alg(Z, {S;}) is the
universal algebra generated by k commuting isometries and the identity.

THEOREM 9.6. If {V}*_, = B(A) is any sequence of commuting
isometries then there exists a completely contractive homomorphism

@ : Alg(I, {,}) > B(r)
such that &(S;)=V, fori=1,2, .., k.

Proof. According to Lemma 9.4, { V;*}%_, is a sequence with property
(P). Applying Theorem 5.4 to our settlng we deduce that there exists a
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sequence { W,;}*_, of commuting unitaries on a Hilbert space #" = # such
that

Ip(VEs s VOI<p(Wys ooy Wil (9:3)
for any polynomial p(M,, ..., M) € Alg(Z, { M,}). This inequality shows that
lg( Vs o VDI < Ig(WF, ..y W (9.4)

for any polynomial ¢(M,, .., M;)eAlg(l, {M,}). According to Theorem
9.5 we infer that

lg(WFs o WO < llg(My, ..., M)l (9:5)

The inequalities (9.4) and (9.5) show that |¢( V5, ..., V)l < lg(M4, ..., M})|
for any polynomial ¢(M,, .., M) € Alg(l, { M,}). Notice that all the above
inequalities hold true if we pass to matrices. Using the remarks preceding
Corollary 9.3, we infer that the map ®: Alg(Z, {S,})— B(#') defined by
O(S;)=V,;fori=1,2, ..k, is a completely contractive homomorphism. ||

One can prove that the property stated in Theorem 9.6 characterizes
Alg(Z, {S;}) up to unital complete isometric homomorphism. The proof is
similar to that of Theorem 7.2, so we omit it.

COROLLARY 9.7 (Itd). Let {V,;}*_, = B(#) be a sequence of commuting

1

isometries. Then there exists a Hilbert space #" > # and { W }*_, = B(A)
a sequence of commuting unitaries, that dilates {V}*_,.
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