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CERTAIN INVARIANT SUBSPACE STRUCTURE OF L2(T2)

GUOXING JI, TOMOYOSHI OHWADA, AND KICHI-SUKE SAITO

(Communicated by Palle E. T. Jorgensen)

Abstract. In this note, we study certain structure of an invariant subspace M

of L2(T2). Considering the largest z-invariant (resp. w-invariant) subspace in
the wandering subspace M	 zwM of M with respect to the shift operator zw,
we give an alternative characterization of Beurling-type invariant subspaces.
Furthermore, we consider a certain class of invariant subspaces.

1. Introduction

Let T2 be the torus that is the cartesian product of 2 unit circles in C. Let L2(T2)
and H2(T2) be the usual Lebesgue and Hardy space on the torus T2 respectively.
For (m,n) ∈ Z2 and f ∈ L2(T2), the Fourier coefficient of f is defined by

f̂(m,n) =
∫

T2
f(z, w)zmwndm,

where m is the Haar measure on T2. We define the closed subspace H2
0 (T2) of

H2(T2) by

H2
0 (T2) = {f ∈ H2(T2) : f̂(0, 0) = 0}.

A closed subspace M of L2(T2) is said to be invariant if zM ⊆ M and wM ⊆ M.
As is well known, the form of invariant subspaces of L2(T2) or even H2(T2) is much
more complicated. In general, the invariant subspaces of L2(T2) are not necessarily
of the form fH2(T2) with some unimodular function f . The structure of Beurling-
type invariant subspaces has been studied in recent years and, in particular, some
necessary and sufficient conditions for invariant subspaces to be Beurling-type have
been given(cf. [1], [2], [3], [4], [5], etc.).

In this note, we study the structure of an invariant subspace M as a zw-invariant
subspace. To do this, we consider the largest z-invariant (resp. w-invariant) sub-
space in M	zwM. First we give an alternative approach of Beurling-type invariant
subspaces. Furthermore, we study a class of invariant subspaces Mα which con-
tains the class of invariant subspaces of the form qH2

0 (T2), where q is a unimodular
function in L∞(T2). In particular, we give a necessary and sufficient condition for
an invariant subspace to be of the form qH2

0 (T2).
We define several subspaces of L2(T2) which will be used later.
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(i) H2(z) or H2(w) is the set of f (in L2(T2)) with Fourier series:∑
m≥0
n=0

amnz
mwn or

∑
m=0
n≥0

amnz
mwn

respectively.
(ii) H2

z or H2
w is the set of f with the Fourier series:∑

n≥0

amnz
mwn or

∑
m≥0

amnz
mwn

respectively.
(iii) L2

z or L2
w is the set of f with the Fourier series:

∑
n=0

amnz
mwn or

∑
m=0

amnz
mwn

respectively.

2. Invariant subspaces as zw-invariant subspaces

Let M be an invariant subspace of L2(T2). Since znM ⊇ zn+1M (resp. wnM ⊇
wn+1M) for n ∈ Z+,

∞⋂
n=1

znM (resp.
∞⋂

n=1
wnM) is also an invariant subspace. If

∞⋂
n=1

znM = 0 (resp.
∞⋂

n=1
wnM = 0), we say that M is z-pure (resp. w-pure). When

zM = M (resp. wM = M), we say that M is z-reducing (resp. w-reducing). The
structure of z-reducing (resp. w-reducing) invarinat subspaces has been character-
ized in [5].

Since M is an invariant subspace, M is also a zw-invariant subspace and

(zw)nM ⊇ (zw)n+1M n ∈ Z+.

If
∞⋂

n=1
(zw)nM = 0, we say that M is zw-pure. If zwM = M, we say that M is

zw-reducing. We have the following proposition.

Proposition 1. Let M be an invariant subspace of L2(T2). Then:
(i) If M is either z-pure or w-pure, then M is zw-pure.
(ii) M is zw-reducing if and only if M is z-reducing and w-reducing.
(iii) M is not zw-pure if and only if M is zw-reducing.

Proof. The proof of (i) and (ii) is clear. Therefore we only prove (iii). Put M1 =
∞⋂

n=1
(zw)nM and M2 = M 	 M1. If M1 6= 0, then we easily show that both M1

and M2 are invariant subspaces and M1 is zw-reducing. Since zM1 = M1 and
wM1 = M1, as in the proof of Proposition 3 in [5], we have zM2 = M2 and
wM2 = M2. This implies that M is zw-reducing. This proof is complete.

If M is zw-reducing, then by [4] and [5] the form of M is well-known. Throughout
this note, we assume without loss of generality that M is zw-pure. Put F =
M 	 zwM, Sz = M 	 zM and Sw = M 	 wM respectively. Note that F =

Sz ⊕ zSw = Sw ⊕ wSz and M =
∞∑

n=0
⊕(zw)nF. Let Fz (resp. Fw) be the largest
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z-invariant (resp. w-invariant) subspace in F. It is clear that Fz =
∞⋂

n=0
znF and

Fw =
∞⋂

n=0
wnF.

Proposition 2. Let M be a zw-pure invariant subspace of L2(T2). Then:
(i) zFz $ Fz if and only if there exists a unimodular function φz ∈ L∞(T2) such

that Fz = φzH
2(z).

(ii) Fz = zFz 6= 0 if and only if M = χ
E
qH2

w, where q is a unimodular function
of L∞(T2), and χ

E
is the characteristic function of a Borel subset E of T2 with

χ
E
∈ L2

z and χ
E
6= 0. In this case, F = Fz.

Proof. (i) If Fz = φzH
2(z) for some unimodular function φz in L∞(T2), then it is

clear that zFz $ Fz.
Conversely, suppose that zFz $ Fz. Put F0 = Fz 	 zFz. Take f, g ∈ F0. Since

zFz ⊆ Fz, zF0⊥F0 and Fz⊥zwM, we have, for (m,n) ∈ Z2 with (m,n) 6= (0, 0),

(f, zmwng) =

{
(zn−mf, (zw)ng) = 0, m ≤ n,

(f, (zw)nzm−ng) = 0, m > n.

It follows that fg is constant. In particular, ff is constant and f = λg for some
λ ∈ C. Hence the dimension of F0 is 1, that is, there exists a unimodular function

φz in L∞(T2) such that F0 = [φz ]. Let N =
∞⋂

n=0
znFz. We have zN = N and

Fz =
∞∑

n=0
⊕znF0 ⊕N = φzH

2(z)⊕N.

We next prove that N = 0. Let M1 =
∞∑

n=0
⊕wnN; then M1 is an invariant

subspace with zM1 = M1 and wM1 ⊆ M1. On the other hand, we have
∞∑

n=0

⊕wnFz =
∞∑

n=0

⊕wnφzH
2(z)⊕

∞∑
n=0

⊕wnN = φzH
2(T2)⊕M1.

Since φzH
2(T2) and M1 are mutually orthogonal invariant subspaces and φz is

unimodular, it is easy to see that M1 = 0. Thus N = 0, and so Fz = φzH
2(z).

(ii) If M is of the form χ
E
qH2

w, where q is a unimodular function in L∞(T2), and
χE is the characteristic function of a Borel subset E of T2 with χE ∈ L2

z, χE 6= 0,
then it is clear that F = Fz = zFz 6= 0.

Conversely, suppose Fz = zFz 6= 0. It is known that

M =
∞∑

n=0

⊕(zw)nF =
∞∑

n=0

⊕(zw)nFz ⊕
∞∑

n=0

⊕(zw)n(F	 Fz)

=
∞∑

n=0

⊕wnFz ⊕
∞∑

n=0

⊕(zw)n(F	 Fz).

Put M1 =
∑∞

n=0⊕wnFz and M2 =
∑∞

n=0⊕(zw)n(F 	 Fz), respectively. Then
M1 is an invariant subspace with zM1 = M1. We next prove that M2 is also an
invariant subspace. In fact, since zM1 = M1, we have, for every f ∈ M1 and
g ∈ M2,

(f, zg) = (zf, g) = 0,
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which implies that zg ∈ M2. Hence zM2 ⊆ M2. Moreover, for f ∈ Fz, g ∈ F	 Fz

and (m,n) ∈ Z2
+,

(wnf, w(zw)mg) = (wnzf, (zw)m+1g) = 0

because wnzf ∈ M1 and (zw)m+1g ∈ M2. Hence wM2 ⊆ M2. It follows that M2

is an invariant subspace.
Now we have M = M1 ⊕ M2, and M1 and M2 are invariant subspaces with

zM1 = M1. As in the proof of Proposition 3 in [5], we have zM2 = M2. However,
we have

M2 =
∞∑

n=0

(zw)n(F	 Fz) = zM2 =
∞∑

n=0

⊕(zw)n(z(F	 Fz)).

Hence we have z(F	 Fz) = F	 Fz. Since Fz is the largest z-invariant subspace in
F, we have F	 Fz = 0, that is, F = Fz and wM = M. By Proposition 3 in [5]

M = χ
E
qH2

w,

where q is unimodular, and χ
E

is the characteristic function of a Borel subset E of
T2 with χ

E
∈ L2

z and χ
E
6= 0. This proof is complete.

Similarly, we have the following result about Fw.

Proposition 3. Let M be a zw-pure invariant subspace of L2(T2). Then:
(i) wFw $ Fw if and only if there exists a unimodular function φw ∈ L∞(T2)

such that Fw = φwH
2(w).

(ii) Fw = wFw 6= 0 if and only if M = χ
E
qH2

z , where q is unimodular, and χ
E

is the characteristic function of a Borel subset E of T2, χ
E
∈ L2

w. In this case,
F = Fw.

If M is a zw-pure invariant subspace with Fz 6= 0 and Fw 6= 0, then we have
that zFz $ Fz and wFw $ Fw. Otherwise, for example, assume that zFz = Fz 6= 0;
then by (ii) of Proposition 2 we have that M = χEqH

2
w. It easily follows that

Fw = 0. We have a contradiction. Thus there exist two unimodular functions φz

and φw in L∞(T2) such that Fz = φzH
2(z) and Fw = φwH

2(w). In particular,
φzH

2(T2) + φwH
2(T2) ⊆ M. Put

M0 = [φzH
2(T2) + φwH

2(T2)].

It is clear that M0 is a zw-pure invariant subspace of M. Put F0 = M0 	 zwM0.
Let (F0)z (resp. (F0)w) be the largest z-invariant (resp. w-invariant) subspace in
F0. Thus we have the following proposition.

Proposition 4. Keep the notations and assumptions as above. Then Fz = (F0)z

and Fw = (F0)w.

Proof. Clearly, we have [Fz+Fw] ⊂ M0. Since [Fz+Fw]⊥zwM, then [Fz+Fw] ⊂ F0.
Therefore, Fz ⊆ (F0)z . By Proposition 2, there exists a unimodular function φ0

z

in L∞(T2) such that (F0)z = φ0
zH

2(z). Thus φzH
2(z) ⊆ φ0

zH
2(z). Let φz = φ0

zh
for some inner function h ∈ H2(z). Then (zmφ0

z , zwg) = (zmφz, zwhg) = 0 for
every g ∈ M and m ≥ 0. Thus zmφ0

z ∈ F, and hence (F0)z ⊆ Fz because of the
maximality of Fz. Hence, Fz = (F0)z. Similarly, we have Fw = (F0)w. This proof
is complete.
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If wFz $ Fw, then Fw = φwH
2(T2) for some unimodular function φw of L∞(T2).

Putting M̃ = φwM, M̃ is also an invariant subspace of L2(T2). Let F̃ = M̃	zwM̃.
Then (F̃)z (resp. (F̃)w) is the largest z-invariant (resp. w-invariant) subspace in F̃.
Then we easily have the following proposition, and so omit the proof.

Proposition 5. Keep the notations and assumptions as above.
(i) H2(T2) ⊆ M̃ ⊆ H2

w.
(ii) (F̃)w = H2(w). Moreover, if (F̃)z 6= 0, then (F̃)z is of the form qH2(z)

for some unimodular function q which satisfies q̂(m,n) = 0 for every (m,n) /∈
Z+ ×−Z+.

3. Beurling-type invariant subspaces

If M is a Beurling-type invariant subspace of L2(T2), then it is clear that
Fz

⋂
Fw 6= 0. In this section, we consider whether the converse is valid. Further,

we shall give an alternative characterization of Beurling-type invariant subspaces
and prove that the condition is necessary and sufficient.

Theorem 6. Let M be an invariant subspace of L2(T2). Then the following as-
sertions are equivalent.

(i) M is of the form φH2(T2) for some unimodular function φ ∈ L∞(T2).
(ii) dim(Fz

⋂
Fw) = 1.

(iii) Fz

⋂
Fw 6= 0.

(iv) zFz $ Fz, wFw $ Fw and F = Fz + Fw.

Proof. (i) =⇒ (ii) =⇒ (iii) is clear.
(iii) =⇒ (ii). Let Fz = φzH

2(z) and Fw = φzH
2(w). Then Fz = [φz ]⊕ zFz and

Fw = [φw]⊕wFw. Let f ∈ Fz

⋂
Fw. Then there exist complex numbers a and b in

C such that f = aφz +zg = bφw +wh for some g ∈ Fz and h ∈ Fw. Since wf ∈ Fw,
we have

(g, g) = (zg, zg) = (zg, zg) + (aφz , zg) = (zg + aφz, zg)

= (f, zg) = (wf, zwg) = 0.

It follows that g = 0. Similarly we have h = 0. Thus f = aφz = bφw. Hence
dim(Fz

⋂
Fw) = 1.

(ii) =⇒ (iv). Without loss of generality, we may assume that φz = φw = φ.
In this case, Fz = φH2(z) and Fw = φH2(w). Put F0 = Fz + Fw (= φH2(z) +
φH2(w) = φ(H2(z) +H2(w))). Since F0 ⊆ F, we have

M =
∞∑

n=0

⊕(zw)nF0 ⊕
∞∑

n=0

⊕(zw)n(F	 F0)

= φH2(T2)⊕
∞∑

n=0

⊕(zw)n(F	 F0).

For every f ∈ F	 F0, we know that (zw)nf⊥φH2(T2) for every n ∈ Z. It follows
that (zw)nφf⊥H2(T2) for every n ∈ Z, which implies that φf = 0. Since φ is
unimodular, we have f = 0 and so F = Fz + Fw.

(iv) =⇒ (i). Assume that F = Fz + Fw. Then F = φzH
2(z) + φwH

2(w) =
[φz, φw]⊕zFz⊕wFw. It is known that F = Sz⊕zSw = Sw⊕wSz and Fz ⊆ Sw ⊆ F.
Since Sw⊥wM, we have Sw ⊆ [φz , φw]⊕ zFz = [φw ] + Fz.
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If Fz = Sw, then by Theorem 5 in [4], M = φH2(T2) for some unimodular
function φ in L∞(T2). Otherwise, we have Sw = [φw ] + Fz. In this case, wSz =
wFw, which is equivalent to Sz = Fw. Again by Theorem 5 in [4] we have M =
φH2(T2) for some unimodular function φ in L∞(T2). This proof is complete.

4. Certain classes of invariant subspaces

Keep the notations as in §2. Suppose that Fz 6= 0 and Fw 6= 0. In general, we
have Fz +Fw ⊆ [Sw +Sz] ⊆ F. Theorem 6 says that M is a Beurling-type invariant
subspace if and only if F = Fz +Fw. In this case, it is clear that Fz +Fw = Sw +Sz.
In this section, we study invariant subspaces with the property Fz +Fw = Sw +Sz.
We shall study a special class of invariant subspaces with this property.

For α ∈ D, we define a function ψα by

ψα(z, w) =
zw − α

1− αzw
.

Then ψα is a unimodular function in L∞(T2) with ψ̂α(m,n) = 0 for every (m,n) /∈
Z+ ×−Z+. Then we define an invariant subspace Mα of H2

w by

Mα = [H2(T2) + ψαH
2(T2)].

Lemma 7. If M = Mα, then Fw = H2(w),Fz = ψαH
2(z),Fz + Fw = Sw + Sz

and F = Fz + Fw + [z].

Proof. It is clear that H2(w) ⊂ Fw and ψαH
2(z) ⊂ Fz. Thus we have H2(w) ⊂ Sz

and ψαH
2(z) ⊂ Sw. We next show that Sz = H2(w) + [ψα]. Since (ψα, zg) = 0

for every g ∈ M, we have H2(w) + [ψα] ⊆ Sz. Let N = H2(w) + [ψα]⊕ zM. Then
it is enough to show that N = M. Since H2(T2) + zψαH

2(T2) ⊂ N, we only need
to show that ψαH

2(w) ⊂ N. In fact,

wψα = w(
zw − α

1 − αzw
) = w(zw − α)(1 +

αzw

1− αzw
) = z − αw + αzψα.

Thus we have wψα ∈ N. Moreover, wnψα = wn−1wψα = zwn−1 − αwn +
αzwn−1ψα ∈ N. This implies that M = N, and so Sz = H2(w) + [ψα]. Simi-
larly, we have Sw = ψαH

2(z) + [1]. Therefore,

F = Sz ⊕ zSw = (H2(w) + [ψα])⊕ z(ψαH
2(z) + [1]) = H2(w) + ψαH

2(z) + [z].

It follows that Fz = ψαH
2(z) and Fw = H2(w). This proof is complete.

Theorem 8. Let M be a zw-pure invariant subspace. If Fz 6= 0 and Fw 6= 0, then
Fz + Fw = [Sw + Sz] if and only if one of the following conditions is valid.

(i) M = qH2(T2) for some unimodular function q in L∞(T2).
(ii) M = qMα for some unimodular function q in L∞(T2) and α ∈ D.

Proof. If Fz

⋂
Fw 6= 0, then by Theorem 6 we have M = qH2(T2) for some unimod-

ular function q in L∞(T2). Assume that Fz

⋂
Fw = 0. Without loss of generality,

we may assume that Fw = H2(w) and Fz = φzH
2(z) for some unimodular function

φz in L∞(T2). We shall prove that φz = θψα for some θ ∈ T and α ∈ D. It is clear
that Fz $ Sw, Fw $ Sz. By Proposition 5, φ̂z(m,n) = 0 if (m,n) /∈ Z+ × −Z+.
Because Fz + Fw = [Sw + Sz], we have Sw = Fz + [1] and Sz = Fw + [φz], which
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implies that [1, φz] ⊂ Sz

⋂
Sw. Thus

(zm, φz) = 0 (m ≥ 1) and (1, wnφz) = 0 (n ≥ 1).

It follows that φ̂z(m, 0) = φ̂z(0,−n) = 0 for m ≥ 1 and n ≥ 1. Put φ̂z(0, 0) = a00

and φ0 = φz − a00. Since F = Sw ⊕wSz = Sz ⊕ zSw = Fz + [1] +wFw + [wφz ] =
Fz + Fw + [wφz ] = Fz + Fw + [z], we have dim(F	 [Fz + Fw]) = 1 and [z, wφz ] ⊂ F.
It follows that wφ0 ∈ F. It is clear that wφ0⊥Fw. Moreover,

(wφ0, z
mφz) = (w(φz − a00), zmφz) = −a00(w, zmφz) = 0,

which implies that wφ0⊥Fz. It follows that wφ0⊥[Fz+Fw] and F = [Fz+Fw]⊕[wφ0].
On the other hand, since z ∈ F and z⊥[φz] + z2Fz + Fw, it follows that z ∈

([zφz] + [wφ0]). Hence

z = γzφz + δwφ0 = γzφz + δw(φz − a00) = γzφz + δwφz − δa00w

for some constants γ and δ in C. Thus φz(γz + δw) = z + δa00w. We know that
φz is unimodular, and so

φz =
z + δa00w

γz + δw
=
zw + δa00

δ + γzw
a.e.

Put

h(λ) =
λ+ δa00

δ + γλ
.

Then φz(z, w) = h(zw). Since φz is not constant and φ̂z(m,n) = 0 for every
(m,n) /∈ Z+ ×−Z+, we know that h is a Blaschke product; that is,

h(λ) = θ
λ+ α

1 + αλ

for some constants θ ∈ T and α ∈ D. Thus φz(z, w) = h(zw) = θψα(z, w), that is,
φz = θψα. Hence M = Mα. The converse follows by Theorem 6 and Lemma 7.
This proof is complete.

Let H2
0 (T2) be as before. Then we have the following corollary.

Corollary 9. Let M be a zw-pure invariant subspace such that Fz 6= 0 and Fw 6= 0.
Then M = qH2

0 (T2) for some unimodular function q in L∞(T2) if and only if
Fz + Fw = [Sw + Sz] and Fz ⊥ Fw.

Proof. If Fz + Fw = [Sw + Sz ] and Fz ⊥ Fw, then by Theorem 6 we know that M
is not Beurling-type. Thus by Theorem 8 we have M = qMα for some unimodular
function q in L∞(T2). Without loss of generality, we may assume that M = Mα

for some α ∈ D. In the proof of Theorem 8, note that a00 = 0 if Fz ⊥ Fw. In this
case, α = 0 and φ0(z, w) = zw. Let q = w; then M = qH2

0 (T2). The converse is
clear. This proof is complete.
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