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The Fourier algebra 4(G) of a locally compact group G is the space of matrix
coefficients of the regular representation, and is the predual of the von Neumann
algebra VN(G) generated by the regular representation of G on L2(G). A multiplier
m of A(G) is a bounded operator on 4(G) given by pointwise multiplication by a
function on G, also denoted m. We say m is a completely bounded multiplier of A(G)
if the transposed operator on VN(G) is completely bounded (definition below). It
may be possible to find a net of A(G)-functions, (m; : i€ I) say, such that m, tends to
1 uniformly on compacta, and, for some L in R*, |m;]|p, <L(|| |, being the
completely bounded operator norm). We define A to be the infimum of all values
of L, as we consider all possible nets of this type; in particular A is set equal to + oo
if there is no such net. In this paper, we calculate A for all non-compact real-rank-
one simple Lie groups with finite center: If G is locally isomorphic to SO(1,n) or
SU(1,n) (wherenz2), then A;=1;if Gislocally isomorphicto Sp (1,n) (withn=2),
then A;=2n—1, and if G is locally isomorphic to the exceptional Lie group Fy 50,
then A,=21. The second-named author [16] has shown that if G is simple and of
reaf rank greater than one, then A; = + o0; he has also shown, that if I'is a lattice in
G, then A; = A, and that the von Neumann algebras of lattices I' and I'' contained
in the Lie groups G and G’ cannot be isomorphic unless A, = A,.. Consequently, if
I and I'" are lattices in Sp(1,n) and Sp(1,n’) respectively and n+n’, then the von
Neumann algebras of the two lattices are not isomorphic.

0. Notation and definition

For a locally compact group, G, we let B(G) be the space of all coefficients of
continuous unitary representations of G; ue B(G) iff there exists a unitary
representation (from now on, representation means continuous representation) z of
G acting on a Hilbert space §,, and vectors ¢ and x in §, so that

u(x)={n(x)¢é,n) VxeG. 0.1

Because the sum and tensor product of unitary representations is again a unitary
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representation, B(G) is closed under sums and products (with pointwise opera-
tions); it is easy to see that, equipped with the norm | ||

| ulls=min {[<] |ln]:(0.1) holds}

B(G) is a Banach algebra. The closed ideal 4(G) in B(G) generated by compactly
supported B(G)-functions turns out to be just the space of coefficients of the left
regular representation A of G on L*(G) (the usual Lebesgue space constructed using
a left-invariant Haar measure), i.e. u € 4(G) iff there are functions 4 and & in L?(G)
so that

u(x)={AMx)h k> VYxeG, 0.2)
and

u||p=min {||h|,]k],: (0.2) holds} .

Often we write |u| , instead of ||u]|; to emphasize that ue A(G). We remind the
reader that 4(G) is the predual of VN(G), the algebra of bounded linear operators
on L*(G) commuting with right translations.

If G is compact, then A(G)= B(G), but otherwise 4(G) <= B(G), as elements of
A(G) vanish at infinity while 1 € B(G). The group G is amenable exactly when it is
possible to find a net of 4(G)-functions (u;:iel) so that

luf=1
and
[uo—v],—0 as i»ow VYoeAd(G).

We refer the reader to P. Eymard [12], F. Greenleaf {15] and H. Leptin [25] for
details of these assertions on A(G), B(G) and amenability.

Various authors have considered some related spaces, starting with C.S. Herz
[19]. We denote by M(G) the space of multipliers of A(G), i.e. M(G) is the space of
functions on G so that the pointwise product mu e A(G) whenever ue A(G), and we
equip M(G) with the operator norm, denoted | |,. An important subspace of
M(G) is the set M, (G) of completely bounded multipliers of 4(G), which can be
defined in various ways, viz:

(i) ue My(G) if ue M(G) and the induced operator on VN(G) is completely
bounded;

(i) ue My(G) if the function u® | € M(G x H), where H is the group SU(2});

(i) ue My(G) if the function u®1e M(G x H) for any locally compact
group H;

(iv) ue M,(G) if there exist bounded continuous mappings P,2:G—-$ (H a
Hilbert space) so that

u(y™'x)=<(P(x),Q()) Vx,yeG, (0.3)

(v) ue My(G)if the function i7: G x G— C given by i#(x, y)=u(y~'x) multiplies
pointwise the projective tensor product L2(G) ®,L*(G).

The natural norms associated to each of these definitions coincide, so we may use

the completely bounded norm, the maximum of the norms |u ®1||, as H varies, the
minimum of the expressions

sup {| PG [Q)]: x,7€G}
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as different representations of the sort (0.3) are considered, or the operator norm on
[}(G) ®,L*(G); we denote the norm in Mo(G) by || ||, It is known that

B(G)=M,(G)=sM(G),

and that the inclusion maps are norm-non-increasing. It is also easy to see that these
spaces coincide (isometrically) when G 1s amenable. It is very likely, that these
inclusions are all strict, when G is not amenable (see M. Bozejko [4], C. Nebbia [28]
and V. Losert {26]). The main results on M,(G) can be found in Herz (op. cit.), in
unpublished works of J. E. Gilbert [14], and in papers of J. De Canniere and U.
Haagerup [11], M. Bozejko and G. Fendler [5] and U. Haagerup [16].

We shall say that G'is weakly amenable if there exists a netin A(G), (u; : i € I) say,
such that

il =L

. 0.4
u;—1 uniformly on compacta. 0-4)

We let A be the infimum of all such values L, as we consider all possible such nets.
We shall prove the following surprising resuit.

Main theorem. Let G be a connected real Lie group with finite centre. If G is locally
isomorphic to SO(1,n) or SU(1,n) then Ag=1.If G is locally isomorphic to Sp(1,n),
then Ag=2n—1, while if G is the exceptional rank-one group Fy_,,, then As=21.

This was known for SO(1,n) and SU(1,n), by results of De Canniére and
Haagerup [11] and Cowling [9]. It is curious and perhaps significant that, for
connected non-compact real semisimple Lie groups G with finite centre, Ag>1
exactly when the group has D. A. Kazhdan’s Property T [22], so that A provides a
measure of the degree of isolation of the identity representation in the dual space G.

This paper contains another six sections. In Sect. 1, we discuss briefly some
properties of the index A, and we consider K —bi-invariant approximate identities
ona semisimple Lie group G. In Sect. 2, we look at the structure of the real rank-one
simple Lie groups, and describe some of their representations, and in Sect. 3, the
calculations begin. Section 3 contains some Fourier transform computations for the
Iwasawa nilpotent group N, while Sect. 4 involves working with the maximal
solvable subgroup AN ; in these two sections we prove that A, <2n — 1 (respectively
21) for the case when G =Sp (1,n) (respectively F, _,,)). In Sect. 5, by workingon N,
we obtain the lower bounds for A for Sp(1,n) and Fy_5,,. Section 6 is dedicated to
applications in the theory of von Neumann algebras; various non-isomorphic 77, -
factors are constructed. Since the SO(1,n) case has already been published, we shall
not consider this case here. Further, the result that A;=1 for SO(1,n) follows
readily by restriction from the SU(1,n) case.

1. Completely bounded multipliers of 4(G) and K — bi-invariant functions

In this section we set down some basic results about completely bounded multipliers
of A(G), first for arbitrary groups and then for groups with compact subgroups.
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Proposition 1.1. Suppose that G is a locally compact group, and that (u;: i€ I) is a net
of A(G)-functions satisfying conditions (0.4) above. Then there exists a net (v;:j€J)
of A(G) functions satisfying the conditions

loilesL Vied

|uv;—ul|,~0  Vue A(G) (1.1

v;—~1 uniformly on compacta.
Further, if K is any compact subset of G and ee R™ | then there exists w in A (G) so that

oS L4 -

w(x)=1 Vxek. '
Finally, if G is a Lie group, then the functions v;and w may be chosen to have the extra
property that v;e C*(G) and we CX(G).

Proof. We first show how to construct the net (v;: je J). Take a nonnegative C,(G)-
function f on G of integral 1, and define

wj=f*u;, Viel.
Because M, (G) is translation-invariant, and translations act isometrically

’ Moé"f

Jur; —ul|,~0 Vue A(G):

u; i [l =L

We shall now show that

by the boundedness of [[u; ], and the density of 4.(G) in A(G), this will then hold
for any u in A(G). Fix u in A,(G), and write S and 1 for the compact set
supp (/) "' supp(u) and its characteristic function. For x in supp (1),

u(x)={ f(Mu(y" ' x)dy
G
= [ f(»)(gu)(y " x)dy.
G

because only »’s in supp(f) contribute to the integral. Now
(uu)(x)=@[f*1u])(x) VxeG.
since if x ¢ supp (1), both sides are zero. Similarly
u(x)=(lf* 15)(x) VxeG.

As 1gu;— 15 uniformly and S is compact, f* 14u;—f* [5in 4(G): because A(G)is a
Banach algebra,

i =uf*1gu; | »ulf*15]=u

in A(G), as claimed.

We observe that from this property it follows that u; — 1 locally uniformly. For
given any compact set K in G, there exists u in A,(G) which takes the value { on K.
Since uju—u in A(G) and a fortiori uniformly, #;1,—1; uniformly.
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The net (u;) has the required properties (1.1), except that ¥, may not have
compact support. So now for each nin N (N={1,2,3,...}), we choose an element
u; , of A,(G) so that

|y —u; ol g<n™t.

Since A(G)<= Mo(G) and |ul,y, < | u 4 for every u in A(G),

l4inll s = L+n7"
We define y; , by the formula
v =IL/(L+n Yy, Viel VnelN.

[t is now easy to check that, if the net 7 x IN is given the product ordering, then (v, ,:
iel, neN) is a net of A,(G)-functions with properties (1.1).

Next, we take a compact subset K of G and ¢ in R*. Then there is an A,(G)-
function u which takes the value 1 on K. Take a net of A (G)-functions (v;:jel)
satisfying (1.1), and choose j so that

Huvj—u!}A<s.

Write w for v; —(uv; —u). Then we A.(G) and has properties (1.2).

Finally, if G is a Lie group, we may ensure that the functions v; and w are C*
by convolving then with a CZ(G)-function of small compact support, and
integral 1. 0O

Corollary 1.2. In the definition of Ag, it is equivalent to consider nets satisfying
properties (0.4) or (1.1), and if G is Lie we may in addition require the functions to be
smooth. Further, if U is open and relatively compact in G, then, setting

Ap=inf {|w],, : weA(G), w(x)=1 Yxe U}
we have that
Ag=sup{Ay: U open and relatively compact},
where the net of such subsets of G is ordered by inclusion.

Proof. 1t is clear from Proposition 1.1 that, in the definition of A, it makes no
difference whether we consider nets satisfying conditions (0.4) or only nets
satisfying the stronger conditions (1.1). We shall, rather loosely, refer to both types
of nets as approximate identities, although the terminology might be more properly
used for the latter type only.

It 1s easy to see that A, < oo for any relatively compact open set U, and that
Ay A, ifUS V. From(1.2), A, £ Ag forany U, so thatlimy A, £ A. On the other
hand, if sup {A,} < A, then we can construct an approximate identity (v;:je J) of
A,(G)-functions with |v;] ,, bounded by a constant less than A, which is absurd.
Thus A, =limy Ay, as required. O

Our next results concern the computation of Ag, for general locally compact
groups G.
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Proposition 1.3. (a) If G is a locally compact group, and H is a closed subgroup
of G, then the restriction uly of any My(G) function u to H belongs to My(G), and
gt fl ago < Nt o : consequently A< Ag.

(b) If (G, :iel) is the net of compactly generated open subgroups of the locally
compact group G, ordered by inclusion, then Ag=Ilim A .

(¢) If H is a compact normal subgroup of the locally compact group G, then the
space My (G/H) may be canonically and isometrically identified with the subspace of
My(G) of functions constant on the cosets of H in G; further Ag= Agy.

Proof. From condition (iv) that a function belong to M,(G) (0.3), (a) follows
immediately; (b) follows from (a) and Corollary 1.2. It is also clear that any
M, (G/H)-function gives rise to an M (G )-function which is constant on cosets of H
in (c). The rest follows by averaging over H. [

We are now going to consider direct products of groups, and shall prove that
Agxu=AgAy for arbitrary locally compact groups G and H. We shall need the
following definitions and a preliminary lemma. First, we define 4 (G) to be the norm
closure of A(G) in My(G). Next, we define the norms | |, and || ||, on LY(G) as
follows:

=}

W

and we denote by P(G) and Q(G) the corresponding completions of L' (G). We may
think of P{G) and Q(G) as analogues of the group C*-algebras C¥G) and C*(G)
respectively, though the second-named author has shown that, in general, they are
not algebras under convolution. It is known that M, (G) can be identified with the
dual space of Q(G) (see Herz {20] or De Canniére and Haagerup [11]). Itcan also be
shown that the dual space of P(G) is the space of locally uniform limits of bounded
nets of A(G)-functions (see Cowling [9]).

nqu:sup{]G

and

I |n=sup {l i

Lemma 1.4. Suppose that G and H are locally compact groups.

(@) If ueMy(G) (respectively A(G)) and ve My(H) (resp. A(H)), then
u®ve My(G x H) (resp. A(Gx H)) and |ju ®v] yr, = l|tl| o 4] 11,

(b) If ge P(H) and he P(H), then g ®he P(G x H) and

lg@his=lalelA]e-

Proof. By duality, it will suffice to prove only the inequalities |ju®v|y,

< Jlaso el |9 @5 o= faloliles and g @Ko |gleli], for the con-
verse inequalities then follow quickly. From the characterisation (iv) of My (G),
it is clear that if ueM (G) and ve M,(H), then u®veMy(Gx H) and
|4 @0y <
u®ve A(Gx H) 1f ueA(G) and ve A(H).
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The main ingredient of the proof of (b) is Herz’ result [20] that @(G )} is the image
of the tensor product space T(G) —

T(G)=(L*(G) ®,L%(G)) ®,(L*(G) ®,L*(G)),

where y and 4 denote the greatest and least cross norms respectively — under the
linear mapping n (Herz’ ““contraction linéaire bizarre’”) which is defined on simple
tensors by the formula

n(f®g @h®@k)=(fh)*(gk)*,

* denoting the usual involution of L'(G). In fact, g € Q(G) if and only if there exists s
in T(G) so that n(s)=g, and

lgllg=inf{|s|l;: se T(G), n(s)=g} .

Now we claim that if se7(G) and teT(H), then s®teT(GxH) and
Is@t|+<|s||+]|t]+- Indeed, it suffices to consider tensors s and ¢ of the form

s=[f®g]® [Zl h; ®ki:|

M:

t=[0®1>]®[‘ q,~®r,-];
J

then s ®¢ may be identified with

il

1

(/®) @ ®nI® [z Y (h®4) @(k@r}-)]
in
[L2(G % H) ®,L2(G x H))®,[L7(G x H) ®:L3(G x )],
and

[s@t| =] /l2lol.lgl.lrl

z Z (hi®qj)®(ki®rj)
i=1 j=1 2

Now the least cross norm is exactly the operator norm HLHOp of the

A

Z h; ®k;
linear map L on L*(G) sending f to Z (f,h)ky, and || L @M ||, = || L|lop | M [lop for
operators L and M on L?(G) and LZ(H) it follows that, as required,

[s@t]r=lishlitle

Since n(s®1)=n(s) ®n(r), it follows immediately from Herz’ result that, if
¢geQ(G) and he Q(H), then g ®@he Q(G x H) and

lg®h|o= lglolnllq-

To prove (c), we argue from (b). Given g in P(G), which we may assume by
density lies in L'(G), we have a linear functional, L say, on A(G) ~

Lw={g@ux)dx YueA(G) -
G
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which, by the Hahn-Banach theorem, extends to a linear functional on M, (G) of the
same norm, still denoted L. Since the unit ball of Q(G), the predual of M,(G), is
weak-star dense in the unit ball of M,(G)*, there exists a net (g,:iel) of L'(G)-
functions such that

Hgi“Q§ HQHP Viel
and

L)=lim | g;,(x)u(x)dx VYueMy(G).
i G

In particular, we have that

{ gx)u(xydx=lim { g,(x)u(x)dx Vue A(G).
G i G

Similarly, we can find a net (4;:jeJ) of L'(H)-functions such that
and inile<linle Vies
gh(}’)v(}’)dyzliﬁn Ij{ hi(»v(y)dy Vve A(H).
Consequently, by (b),
lo:®h oS alulhls VieLvies.

and
lim { § g,()h;(Mux)o(y)dxdy=| | g(x)h(y)u(x)o(y)dxdy
HG

ij HG

Vue A(G), YVve A(H),

where the net (g ®h;:iel, jeJ) has the product order on I x J. Since M, (G x H)*is
a dual space, there is a subnet (g;, ®#;, :k € K) of the product net with a weak-star
limit point in M, (G x H)*, L say, i.e. there exists L in M, (G x H)* of norm at most
lg|lp|#]lp such that

Lw)=lim | | g, (x)h;, (Nw(x,p)dxdy YweMy(Gx H)
k HG
If w lies in the algebraic tensor product 4(G) ® A(H), then clearly
Lw)=] [ g()h(y)w(x,y)dxdy.
HG

However, A(G) ® A(H)isdense in A(G x H) and hence in 4 (G x H); it follows that
g®he P(Gx H) and

P>

lg®h]e<]gllel]

as required. O
We can now prove our main general result about A.
Corollary 1.5. Let G and H be locally compact groups. Then Ag.y=AgAy.

Proof. It follows from Lemma 1.4(a) that A;, ;< As;Ay; we must prove the
converse inequality.
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Take relatively compact open sets U and ¥in G and H respectively. By applying
the Hahn-Banach theorem to A(G)/I,, where I, is the subspace of A(G) of
functions which vanish on U, it can be seen that there is L in 4(G)* with the
properties that || L|| <1 and L(u) = A if u takes the value one on U. As 4(G) is dense
in A(G) and A(G)*=VN(G), L is implemented by an element T of VN(G). By
convolving T with an 4,(G)-function of compact support K and integral 1, it can be
seen that there exists a C,(G)-function g, support in KU, with the properties that

lglz<1
and

& g(Xu(x)dx= Ay

if ue A(G) and u takes the value 1 on KU/. Equivalently, supp(¢g) = KU,

HQHP§1
and

{g(xydx=4,.

Analogously, there is a C,(H)-function h supported in LV, where L is a compact set,
with the properties that |[4],<1 and

{ h(y)dy=4,.
H
Now if we A(G x H) and w takes the value 1 on KUx LV, then
§ § 90)h()wix, y)dxdy= Ay Ay .
HG

As |g ®h|,<1by Lemma 1.4(c), we deduce that Axg, ;7= Ay Ay, and by letting
U and V grow, it follows that A, ;= A Ay, as required. [

Our next result concerns groups with large compact subgroups, and alternative
definitions of 4. Before we state it, let us denote by A/ the infimum of all positive
real numbers L for which there exists a net (u;:iel) of 4(G)-functions such that

“uiHM§L Viel

u;—1 uniformly on compacta,

13

where [u,]|,, denotes the norm of the multiplier «; of A(G). Since ||u;| ;< |l1t:] ss,»
AL < A,

Proposition 1.6. Let G be a locally compact group and K a compact subgroup of G.
Suppose that S is an amenable closed subgroup of G so that, set-theoretically, G=SK.
Then

(@) if ue My(G) (or M(G)) and u denotes the function obtained by averaging u
over the double cosets Kx K (xeG), then iie My(G) and ||i||y, < |ulp, (or the
corresponding result for M(G)). Consequently, G is weakly amenable iff there exists a
K —bi-invariant approximate identity of completely bounded multipliers, and A,
(or Ag)is the infimum of the numbers L where (0.4) (or (1.1)) holds and the
approximate identity is K — bi-invariant;
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(b) If u is K—bi-invariant, then ue My (G) iff ue M(G) iff ulge B(S), and

|y = [e]| ago = s |15

Consequently, the existence of an approximate identity in M(G) is equivalent to the
existence of an approximate identity in M{(G), and A;=Ag.

Proof. We observe that M, (G) (M(G)) is closed under left and right translations,
and that these act isometrically; (a) then follows. To see (b), we note that ue My(G)
implies e M(G) trivially, and that ue M(G) implies ulge M(S) because A(G)lg
= A(S) (see C.S. Herz [19]), whence u|ge B(S), S being amenable. There are also
norm inequalities corresponding to these implications:

Julse=liuls,. and fulsfa=fuls-

It therefore suffices to show that, if u|ge B(S), then ue My(G), and prove an
appropriate norm inequality. Now if u|g € B(S), there are a unitary representation n
and vectors ¢ and » in §, so that

u(y 'x)=<{n(y" ') n)

={n(x)¢. () Vx,yes,
and

lulsla=le ] Il

We assume, without loss of generality, that £ and 5 are cyclic vectors, and then, if
ze SN K, we see that, for all x,y in S,

{n(x2)& (> =u(y 'xz)
=u(y %)
={n(x)¢, n(y)n),

so that n(xz)é=n(x)¢ for all x in S. Consequently, we may define P:G—$, by
requiring that

P(xk)=n(x)¢ VxeS, VkeK;
similarly, we may define Q:G— 9, by requiring that
QykNY=n(y "y VyeS, Vk'eK.
Now it is straightforward to check that

u(y 1) =(Px), 0(»)>
for any choice of x, y in G; the proposition follows. 3

It is probably worth remarking explicitly that, for connected semisimple Lie
groups G with finite centres, A, depends only on the local isomorphism class of G,
by Proposition 1.3(c); also, if S is a Borel or minimal parabolic subgroup of G, then
the convolution algebra of K —bi-invariant functions on G is isomorphic to the
convolution algebra on S of restrictions of K —bi-invariant functions to S. Our
strategy is going to be to work with such restrictions.
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2. Some real-rank-one simple Lie groups

In this section, we describe the class-one principal series of the simple Lie groups
SU(1.,n), Sp(1,n), and F, _,, . General references for this are S. Helgason’s texts
[17,18].

Let G be a connected real-rank-one simple Lie group with finite centre, not
locally isomorphic to SO, (1,n). We denote by K a maximal compact subgroup, by
the corresponding Cartan involution of G and its Lie algebra g, and by B the Killing
form on gx g. Given a connected subgroup H of G, we normally denote its Lie
algebra by b, and vice versa. We let a be a maximal abelian subalgebra of p, the
complement of f in g, and decompose g into root spaces:

g=m+a+ ) g,
aelk
where m is the centraliser of a in f, and X is the sets of roots. Then a is one
dimensional and Zz{ =20, —a,a, Zoc}, since G is real-rank-one but not locally
isomorphic to SO, (1,n). We write n for g, +g,,, it for On, 2p for dim g, and ¢ for
dim g,,. Then we have the following direct sum decompositions of the Lie algebra g:

g=f+a+n
and

g=n+m+a+n;

at the group level, we have the Iwasawa decomposition G = K4AN and the Bruhat big
cell decomposition G=NMAN, where G is a dense open submanifold of G whose
complement is a lower-dimensional submanifold. There is a unique element H, of a
with the property that

ad(Hylg,=1;
we write A+ for {exp(tH,): 120}, where exp denotes the exponential map. Then
tr(ad (H,)|,) =dimg,+2dimg,,
=2p+2¢q
=2r,

say. The Cartan decomposition of G —G = KA * K~holds, though not uniquely, and
any K —bi-invariant function on G is determined by its values on 4 *.
We equip n with the inner product

X vy x v
Y= —Qp+4q) B[4,
(X+Y, X' +Y)=—(2p+4q) B<2+4,2+4>

forall X,X ing_,and all Y, Y in g_,,, which makes N into a H-type group (see
Sect. 3). The following formulae relate the Iwasawa, Bruhat, and Cartan
decompositions.
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Proposition 2.1. Suppose that Xeg_,and Yeg_,,. Then there existk, k' and k" in K,
ninN,sin R and t in [0, o0) so that

exp <X+§> =kexp(sH)n

Y
exp <X+Z> =k’exp (tH)k";

k, and n,s, and t are unique, and

e =((1+|XPY +]YP)"2
and
4sinh’r=4|XP+|X]*+ Y%

Proof. This follows from Helgason’s [17] Theorem I1X.3.8, once the different
normalisations are taken into account. Indeed, if we write (:|-), for the inner
product —B(-,0-), then Helgason proves that

c 172
es=<(1 FeAXRP 4 mé)
and

2cosh(2t)———2+4ch|§+6le|§+% YR

Y .
where ¢ '=4(2p+4q) (note that we deal with exp <X+Z> while Helgason

considers exp(X+Y)). We have normalised things so that ¢|X3=|X]* and
¢|Y2=4{YP, and the desired conclusion follows. O

Corollary 2.2. The space C*(K\G/K)|y of restrictions to N of K—bi-invariant
CZ-functions on G coincides with the space of functions of the form

exp (x%)afmmz+|Xr‘+|Y12>,

where [ is a CZ(IR)-function.

Proof. The space of restrictions to 4 of K —bi-invariant functions on G is exactly
the space of even functions on A, and a K —bi-invariant function ¥ on G is C* if
and only if ul, is C®. The set of functions ¢g—f(p?) obtained as f varies over all
CZ(IR)-functions is exactly the space of even C*(IR)-functions. [J

We now describe the class-one principal series of representations of G. If Ae €,
then the mapping y,: MAN—C, given by the rule

% mexp (sH,)n—exp (4s)

is a character of the parabolic subgroup MAN of G, unitary when 1 is purely
imaginary. We induce this character to give a representation rt;, of G as follows. Let
$* be the completion of the space of all continuous functions & : G—C which satisfy
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the condition
E(xman)=(gy,)(man) ' E(x) VxeG,VmeM,VacA, VneN
in the norm |||
1/2
fel=({ levora)
K
dk denoting normalised Haar measure on K, and ¢ denoting the character y,. We let
G act on $* by left translations:

[ (x)E1(WM=E(x""y) Vx,yeG.

Then for k in K, n,(k) is unitary, but for general x in G, this is not so unless y, is
unitary; nevertheless 7, (x) is a bounded operator for each x in G. The spherical
function ¢, is defined by the formula

$1(0)= | (ma(x) 1) (k)dk
K
= [ (m ()1 (k)T (k)dk
K

=m0 1, 1-0,
where 1, is the unit K-fixed vector in H*:
1,(kan) =(gx,) " ‘(an) YkeK. YaeA,VneN.
By Proposition 2.1,

)7
ﬂ*<exp <X+Z>>=<<1 FIXPR+[YP) 02 yXeg , ¥Yeg 5. (1)

The main facts about the representations n, and the spherical functions ¢, are
summarised in the following result.

Theorem 2.3. For & in " and n in 7,

) é(k)ﬁ(k)dk=[[ ﬂr(ﬁ)dﬁ} [ cmnadn, 2.2)
K N N

for any A in C. Consequently, for all x in G,
()& mo 3 (0my=<&n s (2.3)
and in particular n, is unitary when A is purely imaginary. Further,
¢, (kxk)=¢,(x) VxeG, Vk k'ekK,

and }— ¢, is an entire function with values in C(G) with the topology of locally
uniform convergence. Finally, if [Re(D)|Zr, then |||, =1, and ¢ _,(x)=,(x)=1
Jfor all x in G.

Proof. For simplicity, we assume that Haar measure on N is normalised so that
[ 1,(A)di=1, and we take ¢ in $* and » in H~* which are continuous in G. The
N
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formula (2.2} is proved in Theorem 1.5.20 of Helgason {18}, Since the inner product
(. > is expressed in terms of Haar measure on X.

{m(k)e, n_z(k)yny =<l n> VkekK;
By (2.2), the inner product can also be expressed as an integral over N, so
(W) E, m_(myny=<En)> VAeN.
Together, K and N generate G, so (2.3) holds. Now we can see that
¢ Uexk’) =y (kxk )1, 15
= () (k) sk~ )1
=m0, 1.
=¢;(x).
That A—¢, is entire is easy. It is obvious that ¢_,=1, and, from above,
¢(x)=¢_,(x"!)for any x in G, so ¢,=1 also. It is routine to check that |¢,(x)| =1
for any xin G if Re (1) = +r; the three lines theorem then implies that ||,/ , <1 for
A with Re(4) in [—r,r]. As ¢,(e)=1, we have |¢,||,=1 for such 2. O
Proposition 2.4. The spherical function ¢, is given on AN by
diai)=(ex) (@ | Ligtna  wa)l_|5(a)di" .
N

Proof. This follows straight {rom the definitions. [0

It is notationally more convenient to work on N rather than on N. We equip the
Lie algebra n with the inner product (,), where

2 2
VX,X'€q,, VY. Y €q,,, (2.4)
and define u, : N —-C by the rule

X Y X Y
(X+Y.X'+Y)=~2p+dq) " B(‘*z’ "(’+Z>>

4
We denote by a, the element exp (log(s)H,/2) of A; then
aexp(X+ Y)a; ' =exp(s'’?X+5Y) VseR™Y, VXeg,, VYeq,.

Y -
u,«.<eXp(X+>>=((1+|X|2)Z+IYP) G2 yxyeq VYYeg,,. (2.5)

Theorem 2.5. (a) On AN, the spherical function ¢, is given by the formula

$ilany=s"**2 [y, (n e na)u_(n')dn’,
N

provided that Haar measure on N, dn’, is normalised so that

[ u(n)dn'=1.

N
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(b) The space of restrictions to N of K — bi-invariant C*-functions on G is exactly
the space of functions of the form

exp <X+:) = fAXP+IXP+IYP),

where f is a C*(R)-function.

Proof. We could rewrite all this section interchanging o with —a, taking tt to be
8.+ 85, nto be 0, and N to be N. Mutatis mutandis, Theorem 2.5(a) is Proposition
2.4 and 2.5(b) is Corollary 2.2. O

3. Harmonic analysis on groups of Heisenberg type

In this section, we consider groups of type H, which are a family of two step
nilpotent groups which include the nilpotent components of the Iwasawa decom-
positions of the groups SU(1,n), Sp(1,n) and F,_,,,. We describe briefly their
representations, and the Plancherel formula (which are already known). Finally, we
calculate some Fourier transforms on H-type groups.

A group of type H is a connected simply connected real Lie group whose Lie
algebra is of type H; following A. Kaplan [21], we say that the Lie algebra n is of
type H if it is the direct sum v@ 3 of real Euclidean spaces, with a Lie algebra
structure such that 3 is the centre of nand, for all ¥in o of length one, the map ad (V)
1s a surjective isometry of the orthogonal complement v © kerad(})) onto 3. For
such an algebra, we define a linear map j: 3—End (v) by the formula

GOV V' >=Z,[V,V']) VZe3 VV,V'en.
It can be readily shown that (see e.g. [21])

FEYyVi=I1Z|IV] YVen, VZej
and
JZYP=—|ZP1, VZej;
in particular, if | Z| =1, then j(Z) defines a complex structure on v. For w in 3 of
length 1, we denote by {, },, the corresponding Hermitean inner product, i.e.

(V. W)=V, WH+i((@) V, W
=V, WS+ iV, W], 0> YV, Wev.

It will be convenient to denote by v, the space v equipped with the complex struc-
ture j(w), by 2p and g the (real) dimensions of v and 3 respectively, and by r the
integer p -+ ¢q. Hereafter, for a group N of type H with Lie algebra n=v + 3, we write,
using lower case rather than upper case letters,

(v,z2)=exp(v+:z/4) Vven, Vzej3.

We note that the Iwasawa N-groups from SU(1,n), Sp(1,n) and Fy (20 are H-
type groups, with the Euclidean structure (2.4) used above — see [10] for example.
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We define the Haar measure on N by the formula

[ f(mydn=k(p,q)"" | § f(v,2)dzdv
N D 3

where
n(2p+q+1)/221 —2p—9q

2 1
I"( p+2q+ >

This normalisation is appropriate since, if u, : N—C is the function defined by the
formula

kip.q)=

1w, (0, 2)=((1 + PP +zP) "4 Y(v,z)eN 3.1
(as in (2.5) above), we have the following result.

Lemma 3.1. With the definitions just made,

k(p.q)™' | [ uv,2)dzdv=1.
v 3

Proof. This is a straighforward integration: by putting ¢ =(1 +s*)u,

2n?  2q9?
u (v, 2)dzdv = —— (1 + 2P +12) 19 1 drs?P 1 ds
Swmtv.aydzdo =5 Figmy ) 3 a7+
4pPrarz

- 2\q~—2r N—r, g1 2p—1
= Foirgn 4. J GO e et s

Ttp+q/2 § (1 )q _— 1d j‘ (1 ) i 1d
= +w)TTwPT dw +v) v Ndy,
TORCPES 3
where w=s? and v=1u?. Since
{ wa ! I'(@r®-—a)
W= ,
g (T+wy r'b)
and
2n1/2r(2p+q):22p+qr<2[72+Q>r<2p+261+1>’

(see E.C. Titchmarsh [31], 1.86), we are done. [

The irreducible unitary representations of a group of type H fall into two classes.
Some are trivial on the centre of the group, and factor to characters of v. These
representations do not appear in the Plancherel formula, and we shall not need to
discuss them further. The other are parametrised by R* x §;, where S, is the unit
sphere in 3. We define H(v,,) to be the space of entire functions on v, and let §, ,,
(veR*, weS;) be the following Hilbert space:

Dv.0=1{eH(,): [E[F=]IE@F exp (=2v[pf)dv < 0}

¢

here dv denotes Lebesgue measure on v, and Hv is, of course, thenormon §, . The
unitary representation o, , of N actson §, , -
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[01,0(0, ) E1(W) =exp (—v{[lof* +2{w, v}, +i{z. @I (W +0)

for any v, w in v and z in 3. It is well known that ¢, , is the only irreducible unitary
representation (up to unitary equivalence) of N whose central character is
(0, z)—exp(—iv{z,w)); indeed g, , is essentially the Bargmann-Fock model of the
Heisenberg group representations.

The representation g, ,, extends to a representation of L'(N) ~ for u in L'(N),
one sets

.0 =k(p,q) " | 0, ,v,2)Culv, 2)dzdv. (3.2)
03

Itis known that, if ue C”(N), then g, ,(u) is of trace class; the Plancherel formula
for Nis also known. So that this paper is self-contained, we offer a brief sketch of the
proofs of traceability and of the calculation of the Plancherel measure.

First, we choose an orthonormal basis for , . : we identify o, with €?, and then
for m in N3, where Ny={0,1,2,3,...}, we let ¢,,=¢,, , , in 9, , be

Crv. (W)= (W)=Q2v/m)P2 202 (m) " 2w™ Ywe P, (3.3)

where [m|=m; +my+ ..., m!=m m,!..., and w"=w" w2 _If A is the usual
Laplacean on v, with sign chosen to be a positive operator, then

0, ,(d)e,=(4vp+8v|m|e,, ;
consequently, if ke IN,, and ue C*(N),
|vp+8vim)a, (e,

o= oy, o1 x A¥)e

£Cuk),

mlls
50
loy.o@e,|,=00mI™" as |ml->+oc.
More generally, for such & and u
0+, o (W) en, €3 =0((Im|+In)~*),

and so o, () is indeed of trace class.
Next, if ue C*(N),

<Gv,w(u)em7 em> =j (av,w(u)em) (U)em(v) CXp ( _'2 V(U)Z)dv

= lim [ (0, 0@e,) @) en(v) exp (—(3+2v)pP)dv .

Since

§ (04,0 (W)e,) V)€, (v) exp (= (8 +2v) o) dv

1/2
< o e, (f en ()P exp(—z<a+v>1v|2>du)

<|

0y o ()|, =0(m| ¥,
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for any k in N,, uniformly for § in R™, we have that
tr(o, W)=Y llm I(UV o (1)€,) (V) e, (v) exp (— (5 +2v) o) dv
meiN§ s-0

=lim Y {(o,,(e)®e,0)exp(—(3+2v)pf)dv.

50+ meNg 0

Now
k(p.q) ZNP f @nulen) (©)€n(v) exp (—(8+2V) o) do
=[] I uw,2) Y (0,40, 2)e,) (v)en(v) exp (—(3+2v) o) dzdwdv
:j § exp( —(;:;0—VLW12 —iv{z,w)+4ivim {w, v}w) 2v/rY ulw, z)dzdwdp
b o3

=Q2v/n) | l:j u(w, 2)exp(—iv{z, w))dz] (m/8)P

ols
exp(—4v?|wl/8)exp(—viw/H)dw.

and therefore

tr (o, ) =(n/2v)?k(p,q)~* | u(0,z)exp(—iv{z,w))dz.
3

Now, by Fourier inversion, we find that the Plancherel measure of N s given by the
following result:

u(0,0)=2°"97"9"?k(p, q) | v'1r (o, ,)d(vw)
3

22-2q9-p

= § § v (o, ,(w)dvdew,
IEAY: 2p+q+1 5, R
2 2
where dw denotes normalised surface measure on the sphere S;. We define

22-24=p 12

C(p’q)zr 9\ 2p+q+1\’
(5)r(5)

We now come to the new results on harmonic analysis on groups of type H of
this paper. These involve some Fourier transform calculations, on radial functions
ona nilpotent group N of type H; more precisely, we call a functionz on N v-radial if
u(v, z) =u(v', z) whenever |v]| = |v'|, 3-radial if u(v, z) =u(v, z') whenever |z| =|z’|, and
bi-radial if it is both v-radial and 3-radial. We shall compute explicitly the Fourier
transforms of a certain family of v-radial measures, namely, ¥, R>0, where

Dp(uy={ u(v,0)exp(—RWwP)dv VYueCy(N), (3.5)

(3.4)

and then of the family of bi-radial functions u,, defined by (3.1) above, where 1e €,
with Re («) sufficiently positive. The techniques we use could readily be applied to
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compute Fourier transforms of other v-radial functions. The first step, calculating
the Fourier transform of @, relies on a simple calculation of an integral in IR2,
Lemma 3.2 below. In Proposition 3.3, we compute o, ,(®z). Radon and Laplace
transform methods are then used to compute o, ,(u;).

Lemma 3.2. Given v,R in R™, r,s in R, and k in N,

§J CotipYexp(—v(x® +1h))exp (= R((x —r)* +(y —)*))exp (2iv(yr —xs))dxdy
l‘RZ

=n(r +is)*(R—v*(R+v) *Texp(—v(r* +5%)). (3.6)
Proof. We first show that, if ueIR™, u,ve R, and ke N, then

I e+ i*exp(—u(x* +3%) exp 2iu(yu — xv))dxdy
]RZ

=§ (= + o) exp (— pG +02)). 3.7)
To see this, take g in S(IR?) and define § in S(R?) by the rule

Gt,0)= [ g(x.p)exp Qiu(yu—xv))dxdy.
]RZ
Then

1
5 (@/0u+16/00)d(u,v) =t [{ (x+1v)g(x, ¥)exp Qin(yu—xv))dxdy ;
]'RZ

by induction,

k
B (8]0u+ ia/ﬁv)} Gu,v)=p* || (x+iy)*g(x, y)exp Qip(yu — xv))dxdy .
]RZ

If g(x, ) =exp(—pu(x* +)?)). then
g(u,v)=(n/pw)exp ( — pu(u* + %)) = (n/p) exp ( — p(u+v) (u —v)),

and (3.7) follows. By analytic continuation (3.7) is also valid for complex g, with
Re(u) >0, and complex u and v.
Now the left hand side of (3.6) is equal to

exp(—R(?+5%) || exp(—(v+R)(x* +y?)) exp (R R(xr +ys)+ 2iv(yr —xs))dxdy
lRZ
=exp(—R(? +5) [ (x+iy)exp(—p(x*+y)exp Qip(yu—xv))dxdy
]RZ
where p=v+ R, u=(vr —iRs)/(v+R) and v=(vs+iRr)/(v+ R). By applying the
analytically continued version of (3.7), we obtain the desired result. O

Proposition 3.3. Let $ be as in (3.5) above, and suppose ve R™ and we S;. If ¢ is a
homogeneous polynomial of degree d in §, ,, then

O-v,w((px)f—':ﬂp(Rmv)d(R+v)~d—pé .
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Proof. By definition, for any w in v, and ¢ in §

v, w?

7,,o(@R)EW)={ exp(—RoP)exp (—v[lof +2{w, v}, +w)do.

By changing the variable of integration to v+ w, we obtain that
av,w(¢R)é(W)

=[ E@exp(—R@—wy)exp(—v{v+w,v—w},)dv
=exp (W) | E()exp(—vivl?)exp(—R(v—w)*)exp2ivim {v, w},)dv.

Now v, may be identified with C?, and ¢ is a sum of homogeneous monomials of
degree d. For each monomial, the integral splits into a product of p integrals, each of
which is of the type dealt with in Lemma 3.2. The proposition follows
immediately. O

One can use this result to calculate the Fourier transforms of many v-radial
functions on N. For instance, Laplace transform methods enable one to calculate
the Fourier transforms of other v-radial measures supported in v. We first calculate
a Radon transform.

Lemma 3.4. Let u; be as above (3.1), with Re(1)> —p —1. Then, given v in v, w in S,
and t in R,

Atp+1\ [/}
§ u,:(v,tw+z’)d2’=”“/2_”2[r< +§+ )/r( ;rﬂul_"“(v’tw)’

wt

where dz' denotes Lebesgue measure on the orthogonal complement to w in 3.

Proof. This is routine:

j ((1 + |U|2)2 + |lw+z’|2)_(l+r)/2dz,

wt

= [ (A + PP +e2+[z ) ¢y

w

=I ((1+|U|2)2+t2)—(l+p+1)/2(1+lzu|2)—(}.+r)/2dzu

w

—1 «©
=t;_ g1 (0, tco)[?-W/Z‘I/Z/F(—ﬁq2 >] | (1+@%) #7722 dg
0

A 1 A
=u;_ .4, (v, tw)nq/2_1/2F< Al )/1"< +r>.

2 2
We recall a Laplace transform formula: if f,ge C(R™) are such that

O +1g(0)=0(x*""?) as x—0+
and
[f()+1g(x)|=0(exp(ax)) as x—+o0
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for some ¢ in R* and all ¢ in R™, then, setting

Fla+ib)= | exp(—(a+ib)x)f(x)dx
and a

Gla+iby= | exp(—(a+ib)x)g(x)dx
R+
forain R* and b in R, we have, for all ¢ and vin R*,

| Fla+ib)G(a+ib)e ™db=2m | f(x)g(x+v)exp(—a2x+v))dx,
R R
(3.8)

where both integrals converge absolutely. To check this formula, it suffices to use
the Plancherel formula —

[ R [k(b)"db=2n | h(x)k(x)dx Vh keL*(R)
R R

where the Fourier transform /4 of 4 is given by
h(by= [ h(x)e™**dx.
.. , R
For fix a in R*; if

_jer®flx) Vx>0
h(x)_{o Vx<0
and
—a(x+v) _
k(x) = e gx+v) Vx> vﬁ
0 Vx< —v

then it is immediate that A(b) = F(a +ib) and kK (b) = G(a + ib)e™® for all b in R, and
(3.8) follows.

We now define an integral expression which we shall need: for a,b in R* and
cin R,

L(a,b,0)= | exp(—a@x+1)x"""(x+1) dx. (3.9)

]R+
Theorem 3.5. Suppose that Re(1)>0. Then u;e L'(N), and for vin R™, w in S, and
for any homogeneous & of degree d in $

v,

0y o) =T, A, d)¢, (3.10)
where

(v, 4, d)=

r 2p+q+1»
2 v’lL<v 2d+A+p+1 2d—,1+p+1>

A+r\  [(i+p+1 2 ’ 2
JESHC

This formula continues to hold when Re (1) > —(r/2).

Proof. The function A—u; is an analytic L'(N)-valued function in {1eC:Re(4)
>0}. Consequently the Fourier transform is analytic there; it suffices to prove
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(3.10) for A in R*, and then it will follow that (3.10) holds for A with Re (1)>0 by
analytic continuation. Now in {1e €:Re(4)> —(r/2)}, the function A—>u, is also
analytic in L?(N), and its Fourier transform will be analytic in L2(N). Certainly
then, if (3.10) holds for 4 in R™*, it holds for all A with Re{})> —(r/2).
Now we take
B=A+p+12, y=(A+n)]2
and set

f0=g(x)= { (BN ep(m vreR

VxeR\R*
so that the Laplace transforms F and G of f and g are given by
Fla+ib)=G(a+iby=(1+a+ib)* VaeR*, VbeR.

Now, by Lemma 3.4, Fubini’s theorem, and Proposition 3.3, for ¢ in $, , of
degree d,

.fj‘ ul(vz Z)O'v’w(l), Z)édZdU
b3

=ch/2_1/2r(ﬁ)/r(?)j j ul*q-%—l(va tw)av,w(v’ tw)édldv
bR

—n2 2L (B)T () | | F(loP +i)G(of2+ityexp (—ivt)dto, ,(v,0)Edy
o R

=22 BOBY () | | S99+ v)yexp(—Qx+wol)dxa, (v, 0)Ed
v RY

=2m92 2L (BYT(y) | F(x)g(x+v) j exp(—QC2x+n o, , (@, 0)Edvdx

]R+
=2m" LRI () | f(x)g(x+)mP(2x) (2x+2v) 4 PEdx
]R+
=217 P RCr T R (E)FG)]T [ exp(—@x )X e T g
R
=21 7P e et VRIP(BY (y)] 'VAL(v, B+d, —B+d+p+1)E,
and
zrp(zﬁ_qﬂ>
2 2d+2+p+1 2d—A+p+1
Gv,m(“x)f=W VAL<U» 3 P > 3 P )f-

as required. [

Later progress will depend on knowing the functional equation for the function
T defined above (3.10).

Propesition 3.6. Suppose a>1/2 and b > 1/2. Then for any u in R™,

a

,Lt o0 el
I'(a) g (1—|—t)b F(b) (j; (1+s)"

ta*le—ut Sb 1(’ us

G.11)
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These expressions continue analytically to entire functions of a and b. Consequently,

@ @y
') L(v,a,b)—r(b) L{v,b,a) Va,beC.

~A+p+1 —A+r
()
(v/2)"?

2d— 1
F<d /12—1-1)4-)

Atp+1 Atr
L))
=(v/2)~ " T(, A, d)

F<2d+i+p+1>

and

) T(v, —1,d)

(3.12)
2
for all vin R™ and d in Ny, as an identity of entire functions.

Proof. The equality (3.11) 1s known ([1], 6.5(2) and 6.5(6)), but we offer a proof for
completeness. We shall first prove (3.11) for @, b > 1/2. For a fixed small positive s,
we define functions f,g: R—C by the formulae

f(s):{s“_‘e‘”“‘“/F(a) VselR™*

0 VseR\R*'
P~le7tr(p) VieR*

g()= .-
0 VieR\R

By Plancherel’s theorem,

[ f(®)§(s)ds=[ f(ng(tydr,
R R
SO
a—1 ,—(e+ilus 1 tb—‘l —t
. j 2 ¢ b ds= j - ¢ - dt .
F@ g 0+ re) g Grip+iy
We multiply both sides by ((¢ + i) u)*, and change variables —in the left hand integral,

we use contour integration, and in the right hand integral we put ¢ = us ~ to obtain
the equality

'ua t‘l_le‘lﬂ B ub Sb—*le*us '
I z. A+itfe+)y d"r(b) ]Rj (1 +is/(e +1))°* ds.

We now let ¢ tend to 0 to finish the proof of (3.11).
To see the analytic continuation of the left hand side of (3.11), we write

a s} ta‘le—ut a 1/2 ta*le-ut a s} za—l —ut
E_ o dt= s i+ ‘ 5
I'a 5 (1+1) I'@ o, I+ I'(a) ¢, (1+70)
The last integral continues analytically to an entire function of a and b, by writing

the integrand of the second as a convergent series of the form > ¢, (b)r** ™1, itis

melN,

dr.
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clear that this integral continues meromorphically with simple poles whenae —IN,,
which are cancelled by the zeros of I'(@) ™ *. The other functional equations follow
immediately. O

It is worthwhile pointing out that, if we define u; ; by the formula
U, 5(0, 2)=(@+ )Y +|z) " “*7 V(v,2)eN

for 6 in R* and 1 in C, then a calculation like the proof of Theorem 3.5, or an
application of homogeneity arguments, shows that, for homogeneous ¢ of degree d

in9, .,

2rr<2p+q+1)
2 2d+A+p+1 2d—A+p+1
Oy, (#2808 = v’IL(év, , )f‘
- s 2
F<A;r>r(k+g+1> 2

When 6 tends to 0, u,_, tends distributionally to the distributicnn~“*", given by the
locally integrable function (v, z)—(|jo|* +|21*) """/ for A with Re(4) <0, and by
meromorphic continuation otherwise. When N is the nilpotent component of a real
rank one Lie group G, this distribution is the kernel of the so-called intertwining
operator of A.W. Knapp and E.M. Stein [23]; its Fourier transform, at least
formally, should be given by the rule

2rr<2p+q+1)
2 2d 1 2d—- 1
oo (-G E = wrlo, +A+p+ ’ d—A+p+ c.
" r A+r r A+p+1 2 2
2 2
2 1 A 1
2'r< p+2q+ >F<2d+ 2+p+ )r(_l)

A
T A+ L (Ap+1) L [2d—A+p+1 e
r r r
2 2 2

for homogeneous ¢ of degree din §, ,,. This formula agrees with that of Cowling [8],
after the different definitions of p, r and 4, and the different normalisation of Haar
measure are taken into account. Moreover, if we define the meromorphic function ¢
by the rule

royr (Qiz—ﬂ)

A+r A+p+1Y’
()

then, formally, we see that, for homogeneous ¢ in 9, ,, of degree d,

r(,1+p+1>F<z+r>r<2d—i+p+1>
o, () nA Ty E=(v/2) 2 2 2

F<—l—;p+1>r<—/12+r>r<2d+/12+p+1>

c(A)=20""




Multipliers of Fourier algebras of real rank one simple Lie groups 531

From Theorem 3.5 and Proposition 3.6, we would expect that
cA) e Ty =u_ . (3.13)

On the other hand, the general theory of intertwining operators implies that, for a
suitable normalisation factor ¢, (3.13) holds, and that the Plancherel measure p(4)
associated to the class one principal series representation 7, of G is given, up to a
constant, by |c(1)]72. We would therefore predict that the Plancherel measure

should be given by
Atr A+p+1\|?
r

ra)

p(4)=const.

This agrees with the results of Harish-Chandra. See S. Helgason [18] (Chapter 1V)
for more on c¢-functions and the Plancherel measure.

Our later development depends on a careful study of the function 7. Most of the
facts we shall need are summarised in the following result.

Propsoition 3.7. Fix v in R™ and d in N,. The function A—T(v, A, d) is entire.
Furthermore, if .= f+iy, where 0B <r and ye R, then

12
<§ |v'“2T(v,z,d)|2v"1dv) <G (=P (314)
R+
where C(p,q) depends only on p and q, and
112
lim (r-[f)m( § T, B, d)|2v'“1dv> =1. (3.15)
Bor— R*

Proof. It is easy to see that a— T(v, o, d) is holomorphic if Re{(4)> —p ~1. The
functionalequation (3.12) then implies that 7'is holomorphicif Re (1) <p + 1, which
establishes that T is entire.

To prove (3.14), we shall first prove the following inequality:

1T, A, d) L Co(p. @) WP+ (v 1P Temveb] (3.16)
Write
exp( —2x —y) x4+ 2 P12
T hd)=QW) [ =~ arrrprmm— 4x.
R ’
where
2
2'F< p+2q+1>
= .
e A+p+1 A+r
r r
2 2
Because x?47 P2 < (x 4+ v)24 P2 then, if 0SB <,
exp (—2x —v)x#- 2
T, Lo | 2 ) dx.

E O R
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If 0K B<1, then (x +y)F D2 Ky~ U2 50
\T(v, 4, ) ZIQAV~2e™ [ exp(—2x)x¥™ D 2dx
R+
§C3(p,q)vw71)/2€_v£’2m,

from the known asymptotic behaviour of the I'-function (see, e.g. Titchmarsh [31],
1.87). If 1<B<r, then, because (x+W¢ D2 [(x+1)(v+1)]¥"Y2, we have
similarly

1T, 4, d) SIQ(r+ 1P 2™ [ exp(—2x) (x(x+ 1)~ D2dx
R?
SCu(p.q)(v+1)F 2 v 2l

We therefore have the estimate {3.16); (3.14) follows immediately.
To prove (3.15), we first show that, if §>0, then

T, A I=Cs(p,)(1+871), (317
T, A,dy =T, r,d)| £ Cs(p,q)(1 +p7*)|A—r]. (3.18)
and
hm T(v,r,d)=1. (3.19)
y=0+

To obtain (3.17), it is easiest to remember that, if ¢ is homogeneous of degree d in
9,0 then

0, =T, 1,d)¢.
Therefore

T, A, DI |uy |y =k(p. @)~ § § (A +WP?+1z12)" T dzdy
3

r(a’”—;ﬂ> r)
— =)

Brp+1\ (B4rY
()

by a calculation like Lemma 3.1; (3.17) follows. The inequality (3.18) is obtained
using Cauchy’s integral formula to estimate 07(v, 4, d)/04, and then estimating the
difference in terms of the derivative. More precisely, by integrating along the line
segment y joining 4 to r, we see that

T(v,4,d) =T (v,r,d)={ 0T (v, p,d)/0pdp,
Y

whence
\T(v, 2,d) =T (v, r, )| £[A—rlsup {|0T (v, u,d)/0pl: pey} ;

by integrating around the circle x of centre y and radius /2, we see that

6T(v, H, d)/(aAL: (271:1)_l _f T(V, C: d) (C _#)_ch >
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whence
0T (v, p, )oul < 2/B) sup {IT(v, L. d)|: L e k).

The points { which arise as we consider different circles k corresponding to different
centres u all have real part at least f/2, and (3.18) follows from the last two
inequalities and (3.17). Finally,

2rF<2p+q+1)

5 e 2 — (2d+2p+q—1)2

T(v,r,d)= prat xp( (xiv)‘gf—qﬂ)/z dx.
r(r)r< 4 2q ) R

If 0 <v<{, the integrand is dominated by the integrable function
x—exp(—2x)x@rreT U2y 4 1Yla- b2

so by the dominated convergence theorem,

r

2
lim T(vr,d)= exp(—2x)xP 17 dx
Jim (v.r,d) o 115* p( )

=1.

Now we prove (3.15). By (3.16), if § >0, then
(r=B) § W IRTG DR v
o
as f—r—, and by (3.18)
(r—p) E =PRI (v, B, d) =T (v,r, )PV " dv—>0,
0
as f—r—. Further,
li/r;n sup (r —f) 5: v 82 [T(v,r,d) =113 v " tdv

>

Ssup {|T(v.r,d)—1/:0<v<é},
and by (3.19) we can make this arbitrarily small by choosing ¢ small. Finally,
3
lim (r—B) [ v 2Py tdv=1;
por— [}

hence (3.15) follows. O

4. Harmonic analysis on AN

The group S= AN is the semidirect product of the vector group 4 with the normal
nilpotent H-type group N. The elements of the group S may be written in the form
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a,(v,z), where a,e A (seIR*) and (v, z) € N. These multiply according to the rule
a v, z2)av,2)=a,.a, (v, 2)a (v, 2)

=a, (s, 5712 (v, 2).

=a, (s +u, s 2+ 425 V20 0]) .

Mackey theory may be applied to describe the unitary dual S of S. The irreducible
unitary representations of S fall into two classes: those which are trivial on the
centre of N, of no interest to us here, and those which are nontrivial on the centre of
N, which are parametrised by the A-orbits in 3*. Because these involve integrals of
the representations o, , of N as v runs over R*, it will be convenient to use
equivalent representations 1, , of N which all act on the same Hilbert space, as v
runs over R*,
For vin R, define I,: 9, ,—9, , by the formula
(IO @)=v"2L01 ) VEeD, ,, Yoev;

I, 1s an invertible isometry of Hilbert spaces (whose inverse is effectively I, -.). Let
7, ., be the unitary representation I, 'g, ,1,. Define, for s in R, the isometric
isomorphism &, : L}(N)— LY(N) by

O /), 2)=s""f(s7"?v,5712) Vvev, Vze3.
Lemma 4.1. Fix s and vin R*, vinv, z in 3, w in S, and f in L'(N). Then

T, (8?0, 82) =1, ,, (v, 2)
and
T\’,(U(é&f) = Tsv,w(f‘) M
Proof. These results follow by changes of variable: first, one shows
T, oW, 2) =0, ,(V'?v,vz),

then we deduce that t,  (s'?v,sz)=1,, (v, z). Finally, we note that
v, @ SV, 0 Yy

§ @ N1, o(mydn=] f(n)t, ,(n)dn,

= [ fn)ty, ,(n)dn
N
where (v, z),=(s"?v,5z). O

For win S, we define the Hilbert space §,,, to be L*(R*; §, ,); more precisely,
9., is the space of (equivalence classes of) measurable functions Z: IR " - §, ,,, with
the property that ||Z |,

HE Hw: {C(p, q) j “E‘(V)H%Lmvr—ldv}l/z @.n
IR+

is finite (where the equivalence is equality almost everywhere); here ¢(p, q) is given
by (3.4):

22—2q—pn1/2

c(p.q)= -
q 2p+q+1
r(§)r ()
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We define the unitary representation 1, of S on $,, by the formula
[t,(a, (v, 2))E](v) =51, , (v, 2)(E(sv)) VEE€D,, VveR" 4.2)

for any element a (v, z) of S. It is routine to check that 7, is indeed a unitary
representation, using Lemma 4.1.
Wedenote by £ R-9, ,and H,; ,:R->9H, , (e NE, 1€ C)the functions

Jy A,
Ej M=y T, 4 liDe (4.3)

JAow
il
and

Hj,i,w(v):[vl/z T(Va —A, ljl)]—ej,l,wv (44)

where the e,

.1, are the basis elements of §, ,, given by normalised monomials, as in
(3.3).

Proposition 4.2. Fix j in N§, and let ¢; ;: S—C be the function given by
d)j‘i(as(vﬂ Z)) = j‘ <rw(as(vv Z))Ej, A, I{j, l,w>dw .
S%
Then if ZeilR, ¢; ;€ B(S); moreover, the function A—¢; ; extends to an analytic
B(S)-valued function in the strip {AeC:|Re(A)|<r}, and, if A=PF+iy, with B in
[—R,R] and y in R, where p<R <r,

¢, 1= Cr(p, @1 +1i]) R(r—R) e, (4.5)

while

;. 5ll5=Cs(p, @1 +1i) 7141, (4.6)
and,

1
2“%”FMFG%J

li ls= :
por [4]s F<€>F<2p+q+1+2m>r<q+1—2|j|>

2 2 2
¢;. € B(S) and

Proof. By definition of 1

w?

H(vbj,/lHBé ‘. ”<Tw(')5j,}.,(u* Ilj,l,w>“8dw

S3
-S—f ”Ej.z.w“ HHj,x.w”d‘U
S&
1/2
<c(p.q) | {; uz,-,i,ww)uzvr-ldv}
s, \R*

172
{ | 1Hj‘,1.w(v)Hﬁ,v"1dv} dw,
]R%
as long as the last expression is finite. Let N; be defined thus:
1/2
Nj(}t)z{j v *2T(v, A, [jl)lzv'_ldv} VieC; 4.7
]R+

then our inequality may be more briefly written

9.2 lsS (P @ NOIN(= ).
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Further when these integrals converge, ¢; ; will be holomorphicas A-Z; ; , is then
a holomorphic $,,-valued function and A H; ; , is anti-holomorphic. By definition
of &; ; ,and H, , ,, this boils down to the question of when A>v™*?T(v, 4,|j]) isa
holomorphic L*(R ™ ; v~ !dy)-valued function, and when N;(2)N;(—2) is finite.
Since a—T(v, 4,|j]) is entire for each vin R * and j in INZ, by Proposition 3.7, it will
suffice to find good norm estimates for N;(A) N;(—4). Clearly we may suppose
Re(4)=0. According to (3.14), if A=f+1y, with 0Z S <r, then

Ny =Ci(p, q)(r—=p) e
Aar\ (Adp+1\ (201 -2+ p+1
r< 2 >F< 2 >F< 2 >
—A+r —A+p+1 2|+ A+p+1
F< 2 )r( 2 >F< 2 >

()

further, from (3.12)

Ny(—2)=2"

Ni(2)

bl 12k —24+p—1
<2F C , _py-12 ZIvI’ 4.8
S | [k aep 1] o -p e @
2
so we have established that
A
52 F( —2H> 12k —A+p—1 5 Labl
A/ (=A< —fB) [
N_](A‘)N]( j').:2 =1 2k+i+p_1'C1(p’q) (r ﬂ) €

5

4.9)
Certainly, then if A=f+iy, and —r<f<r, then
NN (=2 ZCo(p,q) (r =B~ e
Thus ¢; ,€B(S), and

;2= Crolp, @) (r—1BD e,

for 4, p and y as above. However, we may improve on this estimate by working with
(4.9) and using the Banach-space valued version of the three lines theorem.
We claim that, if A=+ iy, with f§ in [p, r], then

4 2k—A+p—1

ktitp—1|= bd™F VdeN 4.10

k=1

for some constant Cy, (p, q) depending only on p and ¢q. This can be seen by noting
first that if k=p+qg+|yl, then

U —jtp+1 —i4p—1 Atp—1
log [ZX AP _Rell AP g
Ogl2k+,1+p—1| e{(’g(H % ) °g<+ 2% )}
2 (=D (=A+p D) —(A+p—1)"
:R N
© L T k)
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$0
a o[2d=itp =1
2 2k+/1+p—1

Z Re( ) i )m ~—————[Re((=A+p—1)"—(A+p—-1)")] _Z(

k=do

2k)""

where d,, is an integer between p + ¢ + |y| and p+ ¢+ |yl + 1. The first of these sums is
equal to

—pllog(d/do)+ EY,
for some E with |E| <1, while the double sum can be dominated by
il 1 1
_ —1"+1]A 1M Qd, -1 ""L2 ———
m; mn 1y (=A% 1M+ AP =11 ) mZZ p— T
(4.10) follows.
By using (4.10), we improve (4.9). First, if p<B<r, we have the estimate
Hd’j,i”lséClz(PaQ)(”_ﬁ)_lm+U|)~ﬁ€6|y|,
and similarly, when —r<fg< —p, we have that
16,1152 Cia(p.@) (4 )™ (A1) Peol.

Consider the analytic B(S)-valued function : A—cos(4/r)"°"¢; ; on the strip
{)te(E:IRe(/l)l<r}. This is bounded in B(S)-norm on each closed substrip
{AeC:|Re(A)|<R}. when p< R<r, and satisfies the conditions

D[ Cis(p, @) =R) A+ 1D %,

when Re (1) = + R. By the three lines theorem for Banach spaces, this estimate also
holds inside the strip, and so, if p<R<r,and A= pf+iy with 8 in [—R, R],

¢, :le< C(p. @) (r —R) 11 +|j]) " Reol,
as required.

The rest of the proof requires us to study the behaviour of N;(8) N,(—p) for fin
(—r,r). From (3.14) and (4.8) we have, for § in (0,r),

N;(BIN;(—=B)
B+r B+p+1 2jl-p+p+1
() (P ()
F(—ﬁ+r>r<—[)’+p+1>F<2[j|+[)’+p+1) R

2 2 2

p+r
f(T)
—p+r
r(=57)

SCralp.q)(1+1iD7

Y

1T, B, DY P dy

Ll

2k—pB+p—

<2
=2 kT Brp=

\Cl(p Dr—pH",

k=1
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from (4.10), whence

I pls=Cs(po ) (1 +1iD7,

as required. Finally, from (3.15), and the preceding equality,
B+r
r(
—p+r
r{—-==
=

2k—g—1
2k+2p+q—1)

1l

2k—p+p—
2k+f+p~—-

lim N,(B)N,(—p)= lim 2¢

por— por— k=1

1 -
e

—2re) 11

k=1

whence
21—qn1/2[*(,.) 1Jl

li . =
lzrlfljp Hd’J,ﬂ”B—F<q>F<2p+q+1> k=1
2)' T2

gt g+1 q 2p+q+1+2|j°
wron )1 g2
q+1-2jj
r(t ) e

It should be noted that, since ¢ is an odd integer, the limit is 0 if [j| = (g +1)/2.
We may now prove the key estimates for the spherical functions.

Theorem 4.3. Suppose that G is SU(1,n), Sp(1,n), or F, 5, When Re(1)=0,
b;ls€ B(S), and || ¢,ls| s=1. The family ¢,|s of B(S)-functions continues analytically
into the strip {Ae C:Re(A)e(—r, r)} and, when L= B+ iy, with fin(—r,r)andyin R,
satisfies

2k —qg—1
2k+2p+q—1

H¢1|SHB§C15(P, q) (”“IBI)WI@GM ;

further
1 when G=SU(1,n)
limsup |@yls|s<y2n—1 when G=Sp(l,n).
e 21 when G=Fy_s,

Proof. When Re(1)=0, the principal series representation «; of G is unitary, so the
spherical function ¢, is in B(G'), and a fortiori, ¢,[sisin B(S). We shallnow Fourier
analyse ¢,|s.

We recall that the dimension D(p,d) of the space of complex homogeneous
polynomials on €7 of degree d is given by

p+d—1>

D(p,d)=< d

It may be helpful to recall the definition of J;:
(0, /) (@, 2)=5""f(s v, s7'z) VYvenVze3.
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By Theorem 2.5(a), and a change of variables,

¢ (agmy=s"2"2 fu,(n~ta; ' na)u_ (n")ydn'
N

:S(~}1+rj/2 j ul(n‘ln/r)u—‘l(asnr/a‘:l)dn//
N

=s" 2w (nT 0"y S-u_ ,(n")dn” .
N

By the Plancherel formula for N, we deduce that

¢l(asn)'—_‘Yf(a+r)/zc(p’q)j 5 tr(rv,w(n)‘cv,w(ul)rv,w(és“‘u—).))vr—ldvdw

5; R?

=s7(l+r)/zc(pﬂq)5 j. tr(rv.ou(n)‘l'-v,m(u}.)’l'-s‘‘v,w(u—ﬁv))vr‘ldVda‘)
Sy RY

=5 4Te(pg) | (T o) 0,0 ()T, 0@ ))V " dvde,
S, RY

With the basis {e; , ,:j€ N3} of (3.3) we have, from Theorem 3.5, that
tr (Tsv,w(n) rsv,w(ul) Tv.w(u - A))

= Z <Tsv,w(n)Tsv.w(u/l)rv,w(u—i)ej.l,w’ej.l,m>
jeNg
= Z <Tsv,w(n)()‘j.],an ej4 l.w> T(SV, 'L UD T(V» ";La [JD 1
JjeNg
and now it is a matter of chasing through Proposition 4.2 and the preceding
definitions to see that
¢/1(asn): Z ¢l,j(as”)s (411)
JjeNg
at least formally; the estimate (4.5) justifies the convergence. Indeed, from above,
on one hand,
bi(amy=Y 7 "e(p.g)
jeN§
j j <‘C<§\',w(n)ejxl Lo ej‘ l,w> T(SV, ’{» UI) T{V’ _’L U]) v ! dde >
S, R”
on the other hand, from the definition of ¢, ; (Proposition 4.2), of §,, (4.1) of 7,
(4.2), and of &} ; , (4.3)and H; , , (4.4),

¢j,i(asn) = [ <Tw(asn)5j,l,w’ [{j./l,a)>dw

S&

:j. C([], CI) j <(Tw(asn)5j,l,w)(v)a}Ij.l,w(v)>vr'1dvalw
S3 R*

= cp,@ | 50 M(E; 10V H; 5 (W)Y dvdw
S R*

:C{Pv‘])"’(hlmf J. <(Tsv,w(n)ej,1,wv(Jj,l.m>

Sy R
T(SV, A’a '.”) T(V, _ir LID vr— ! dvdw .
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When £ is allowed to vary with Re(4) in (—r, r), both sides of this expression
extend analytically; the estimate (4.5) shows that the sum Z ¢, ; converges in
B(S), as JeNg

Z H¢’A,H3§ Ci(p. 9 Z ( +U|)¥R(r _R)_lé'Gh'l s

JjeINg jeIN§

when A=pf+iy, with fin [—R, R], and R in (p,r):

Y (+yh =Y D(p.dH(1+d)y *<w,
JjeN? deNy
as D(p,d)<(p+d~—1)?"'. Then equality (4.11) holds for A with Re(A) in (—r,r),

and the norm estimate for ||¢;s| 5 follows.
When 4 is real, estimate (4.6) holds, so if p<b<rand bZf<r,

. s ;= Clp. ) (1 +1iD 0.
Since

Y A+Uh7P=Y Dp.d(1+d) <.

jeNg deN,

Lebesgue’s dominated convergence theorem implies that

limsup |[@yls]p= lim Y [dp s
por= 7T jeNg

=Y lim |¢g;]s

jeNg £

D(p.d)2! =PI (r) I (L; 1)

)
1-2
P tl r<g>r<2p+q+1+2d>r<q+ d)

2 2

I

1 g=1
2n—1 g=3,p=2n-2. O
21 g=7,p=4

Il

Remarks : (a) The above sum indexed by de N, contains only (¢+ 1)/2 non-zero
terms. For ¢g=3, p=2n—2 these terms are #n (for d=0) and n —1 (for d=1). For
g=17, p=4 the non-zero terms are 6, 9, 5, 1 for d=0, 1, 2, 3 respectively.

It is worthwhile to mention, that the sum can be expressed in closed form for
arbitrary integers p, g >0, namely:

|
D(p.d)2' w2 (p +q)r<q—;r—> n1/2r<”—;ﬂ>

Z
2p+q+1+2d +1-2d p+1
deN, Q 9 q r g R
<2>F< 2 >F< 2 > (2 T 2
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Indeed, the sum can be rewritten in the form

1—q
21*qn1/2r(p+q) Z (‘1)’1 [p]d[ D) :L

r(\p(22tatl) o, MEaaS)
2 2 2 .

2142 (ppg) 1—q 2p+q+1 1)

= F<p’ ; —
2 2 2 ’
)

2 2

where [a],=a(a+1)(@a+2) ...-(a+n—1) and F(a,b;c;z) is the hypergeometric

2 — .
—{W—;ﬂzl +p—<1—2—q> we can apply [1, Sect. 2.8 (47)]. This

2ﬂ,r<2p+2q+1)nl/2

r p+qg+1 r p+1
2 2

Applying now Legendre’s formula for the I'-function

sy ()

in the case s=p+¢g we get the stated equahty.
(b) It would make the proof of Proposition 4.2 and thus of Theorem 4.3 much
easier if we could evaluate N;(1) (see 4.7)). This boils down to having to calculate

function. Since
yields

1—qg 2p+qg+1
F(Pa “2'{]';—“_—2(1 ; —1)=

x4 » 1
dxdy .
I aer a5F oy Y

Indeed,
12
Nju)={§ VAT (v, 4, ljmzv'*ldv} :

RY

and there is 2 known meromorphic function, /* say, so that

v*A/Z T(V, /1’ |j|):P(/JL)VA/2 L(V, 2U|+)”2+p+1 ; 2|.]| —AZ+P+T>-
where
L(c,a,b)= | exp(—c@x+1)x* "(x+1)""dx,

IR+
by Theorem 3.5 and (3.9). Takinga=Q2|j|+A+p+1)/2,b=2|j|—1+p+1)/2,and
c=r+Re(A), and then performing one integration, we see that

Nj(/l)zlP(/l)|{j v‘"‘(f exp(—v(2x+1)x““(x+1)"”dx>.
R* R
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B ~ 12
( §exp(—v@y+ D) (y+ 1)"’0’}’) dV}
]R+

— 1/2
=|P(/1)|{ [ x““(x+1)‘by“_'1(y+1)#”2‘C(x+y+1)‘F(c)dxdy} / )
R* R

We conclude this section by proving one half of the main theorem.

Corollary 4.4. If G is either SU(1,n), Sp(1,n) or Iy _,q,, then G is weakly amenable,
and

1 for SU(1,m)
Ag=42n—1  for Sp(l,n).
21 Jor  Fy_ap,

Proof. The calculations of Theorem 3.7 of De Canniére and Haagerup [11] can be
easily modified to treat the groups SU(1,n), Sp (1,n) or F,_,,, rather than SO, (1,n)
(see also [9], Theorem 1.3). We leave the details to the reader. Note that the
arguments of [11, p. 484,1.1-9] do not apply to Sp (1,n) and F,_,,. However by the
definition of A it is sufficient to know, that ¢,— 1 uniformly on compacta for o —r
(O<o<r). O

5. The lower bound for A

We have now established that A; =1 when G=SO(1,n) or SU(1,n), and that A,
<2n—1 (respectively 21) when G'=Sp(1,n) (n=2) (respectively Fy _,,- In this
section we shall prove that A= 2n—1 (respectively 21) for these same groups, and
thereby establish the main theorem.

We shall work in the context of H-type groups again. Throughout this section,
a denotes p/2, which we assume to be a integer. If Nisan H-type group, let 4; be the
Laplace operator on N given by the formula

q
Au(v,z)=— Y */ot*u(v, z+1tw, V=g V(. 2)EN,
k=1
where {wk} is an orthonormal basis of 3. Then it is obvious from (3.2) that, forany v
in R* and w in S,
0,o(4;)E=V"E Vue9,,.

Proposition 5.1. Consider the tempered distribution @y x A%0n N, where @ is as above
(3.5). Then if R,veR™, weS;, and & is homogeneous of degree d in 9, .

Ovro( P ADE=(0) (R=V)*(R+v) 7€
Consequently, if ue C*(N), then

| (A5u0)(v, 0)dv

0

<n?|ulls. (5.1)
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Proof. The Fourier transform formula follows from Proposition 3.3; then
[0v0(br 49| <77,

| || here being the norm of operators on §, ,,. Therefore
[ pg* A%, ud| <P ||up.

But (g * 4§, u) =g, Afuy={ exp(—R)Au(v,0)dv ; letting R tend to 0
proves (5.1). O J

[t is worth remarking that these distributions combining differentiation in the 3-
variable and integration in the v-variable have cropped up in the study of boundary
value problems associated to pseudo-convex domains, and it was certainly known
that such operators can have bounded Fourier transforms (see, e.g. D. Geller and
E.M. Stein [13]). However, we have not seen any exact calculations of their
transforms published.

Proposition 5.2. Suppose that f is a function in C* (R), and that u : N—C is defined by
u,z)=f @l +le|*+z1*) VY(,2)eN.
Then
L 2P Pl (r[2)

j (Agu)(v,o)dl‘:( —1) *;:(‘}’m Ig* _f‘(a)(4[2+t4)52p_1d{A

Proof. Write s for 4|v|* +|o}*. By Taylor’s theorem, with the integral form of the
remainder, for any H in IN.

O

v

o) = T b zP - fHT (s 12)dt
R Tl AR e
SO
a g f®(s) ao2h, | aml 2 H f(H+1) 2
A#A(l?‘,.’.’)z Z 7‘# A3|Zl +F'“ A% j () f (s+1t )dt
k=0 : : 0

It 1s easy to check that

Az = —2h(2h+q —2)|z[** 2
whence
'th+O)I'(h+q/2)
I'h+1—-a)I'th+q/2—-a)

moreover, if H is at least p, then

AgJePr=(—1yr

’ZIZh~2a ;

jz]? |z|2

a3 | (2P =) (I D+ 2ydr= | (2P —1) P fU D (s+ 1),
0 0

where P is a polynomial. Consequently,

(4530) (0, 0)=(=1)" f“()27T (r/2)/T (/D) .

Substituting this in the integral over v and using polar coordinates finishes the
proof. O
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Proposition 5.3. Suppose that f;e C;* (R), that || f;|| . < L. and that lim f;=1 locally

uniformly. Then

lim | @@ +14y2r = (—4—)— ).
i~ R*

Proof. We change variables, putting s=4-+4¢%+r*, and integrate by parts to get

jfi‘“’(4t2+t4)t4”‘1dt Z jf‘“’(s 4 (M2 = 2yp 112 s
R* 4

(—1)“

ff(f—4)g (s)ds,

where g (s)=(d/ds)*~ " [(s'? —2)?~1s~12] —note that there are no boundary terms as
f; has compact support, and as the first p —2 derivatives of s—(s'? —2)P 157172
vanish when s=4,

Clearly g¢'e C*(R™"); moreover

g'(s)=(d/ds)’ |:pil <p;1>s(h—1)/z(_2)p1_h]

£=0
:pil <p;1) [(h—1)/2],sh=p~1i2(—2)p=1=h
K=0

-1\ . . . .
where (7 1s the usual binomial coefficient and [b],=b(—1)...(b —a+1).

Whenh=p—1, [(h—1)/2],=0,and when h<p —1,s* 7~ D2 vanishes at least as fast
as s > at infinity. Consequently,

§lg'G)lds< oo ;
4

we may therefore apply the dominated convergence theorem to deduce that

fim f.f}‘“)(4t2+t4)z21’“1dz=(_
i~ + 4
R
—1)° .
= 4) [?Hn g(s)—g(4)]
- 1)?
_ 4) lin; g(s).
We conclude by observing that
r—1 p__1
JOED) < ; )[(h—1)/2],,_1s“'-v“>/2(_z)p—lfh,
h=0

and as s tends to + oo, all terms where A <p —1 tends to zero, whence

lim g(s)=[a—11,-,.

S0
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Theorem 5.4. Suppose that G is isomorphic to Sp(1,n)(n22) or to Fy_,q,, and that
(v,) is a net of C*(G)-functions so that |v,] , < L and v,—1 uniformly on compacta as
i—oo. Then L=2n—1 if G=Sp(1,n) and L=21 if G=F, _;q,.

Proof. As argued in Sect. 1, the existence of such a net of funtions implies the
existence of a net (1;) of C(K\G/K)|y-functions satisfying ;|| ; < L and tending to
1 uniformly on compacta. By Theorem 2.5(b) and Propositions 5.1, 5.2 and 5.3,
and by Legendre’s formula for the I'-function,

I(ri2)I'(p/2)

I'(g/2)I'(p)

o)
()5

_f2n=11if p=2n-2,4=3
21 if p=4,q=7 '

lim sup [ju,[| =277

O

6. Applications to von Neumann algebras

Let A be a C*-algebra. Following Haagerup [16], we say that U has the
completely bounded approximation property if there exists C in R* and a net of
finite-rank operators, (7;:iel) say, on A such that

|Tls<C Viel
and

lim [Tx—x=0 Vxed,

where || |, denotes the completely bounded operator norm. We denote by /()
the infimum of all values of C for which there exist such nets. Similarly, a von
Neumann algebra 9 is said to have the weak* completely bounded approximation
property if there exists C in R™ and a net of g-weakly continuous finite-rank
operators, (7;:iel) say, on I such that

T ,<C  Viel
and 6.1
lim (Tix,»)=(x,)) VxeM Vyedl, .

and we denote A (IN) the infimum of all values of C for which such nets exist. It is
probably worth pointing out that, in both cases, the infimum is attained, but we
shall not need this here.

1t is convenient to write A(W) = co or A(IR) = cc to indicate that the C*-algebra
A or the von Neumann algebra 9% does not have the corresponding approximation
property.
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We may now rephrase two results from [16]:

Proposition 6.1 [16]. Let T be a discrete group. Then the following conditions are
equivalent :

(a) C*(I'Y has the completely bounded approximation property;

(b)Y VN(I') has the weak* completely bounded approximation property;

(c) I is weakly amenable.
Moreover, A(CX(I))=A(VN(I'))=A.

Proposition 6.2 [16). Let I be a lattice in a second countable locally compact group G.
Then Ap=Ag.

By virtue of Proposition 1.3, this holds for lattices in arbitrary groups, but we
shall not need this. We shall, however, need the following result.

Proposition 6.3. Let I be a von Neumann algebra with a finite faithful trace . Then
for any von Neumann subalgebra R of M,

APHZAM) .
Proof. We may and shall assume that A(YR) < oc.

Let 9t be a von Neumann subalgebra of 9. Then there exists a weak*
continuous trace-preserving completely positive conditional expectation E of M
onto N (in the sense of H. Umegaki [32]), with the property that | E |, = |E() | =1
(see M. Nakamura, M. Takesaki, and H. Umegaki [27]).

Now if (7;: i e I} is a net of g-weakly continuous finite-rank operators on M such
that (6.1) holds, then

|E7]

o=|TlesC
and
lir_n (ET;x,y)=(Ex,y)=(x,y}) VxeN,VyeM,,

from which the desired conclusion follows. [

We now come to the first of our applications in the theory of von Neumann
algebras.

Theorem 6.4. Let I'y and I', be lattices in Sp (1, n,) and Sp (1, n,), where ny <n,. Then
C*(I) and CX(I,) are not isomorphic as C*-algebras, and VN(I') and VN(I,) are
not isomorphic as von Neumann algebras; indeed, VN(I,) cannot be embedded in
VN(I,) as a von Neumann subalgebra.

Proof. By our main theorem, and Propositions 6.1 and 6.2,
ACHI)) = AWVNT)) = Ay, =2n, 1
<2, =1 =Ar,=AVNI)=A(CX(1})),

so neither the two C*-algebras nor the two von Neumann algebras can be
isomorphic. The rest of the theorem follows from Proposition 6.3. O

It is well known that, if I is an infinite discrete group, then VN(I') is a factor
(necessarily of type II,) it and only if all the conjugacy classes of I except {e} are
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infinite (see, for instance, S. Sakai [30], p. 182). We write ICC for the class of such
groups. The following lemma shows that lattices in Sp(1,n) are “almost” ICC-
groups.

Lemma 6.5. Let G be a connected semisimple Lie group with finite centre, and let I be
a lattice in G. Then {y~'xy:yel'} has cardinality 1 if x is in the centre of G and
is infinite otherwise.

Proof. By factoring out the centre of G, we may assume that G is algebraic.
We shall show that x is central in G if its I'-conjugacy class is finite. Indeed, if the
conjugacy class is finite —

lyyelf={x.x. ., x} -
then the set

in {9€G:97 xg=x,}

is a Zariski-closed subset of G containg I', and hence is all of G, by the Borel density
theorem (which states that I' is Zariski dense in G — see [2]). As G is connected,
g 'xg=xfor all g in G, as required. [J

We shall now construct our examples.

As was proved by A Borel and Harish-Chandra [3], every arithmetic sub-
group of Sp(1,n)(neN) is a lattice. In particular, we denote by H,,, the quater-
nionic integers Z +Zi+Zj+ Zk; then the subgroup I, of Sp(1,n) consisting of
(n+ 1) x (n+1) matrices with entries in IH;,, which preserve the bilinear form Q —

Q(xay) ZfOXO - Z .ﬁmxm .
m=1

where x=(xy, x{, ..., x,) and y= (Yo, ¥1, ..., ¥,) liein H**' —is a lattice in Sp (1, n).
The centre of Sp (1, r) consists of two elements (+1).

Corollary 6.6. Let I’ = \(+1),n=2.Then M, = VN(I'?) isa Il,-factor and A(IN,)
=2n—1.

Proof. Lemma 6.5 applied to G =Sp(1, n)/(+ ) shows that I’ is ICC, so M, isa I],-
factor. Moreover A(9,)=2n—1, because A = Ay by Proposition 1.3(¢c). O

Now we write M forAthe {Il-factor VN(IY), and ME" for the n-fold spatial
tensor product MPME... @M, which is isomorphic to VN(I,), the von
Neumann algebra of the n-fold product I x I x... T,

Corollary 6.7. If MK" is as just defined, then AMP®")=3" and M, MM,
MOMBM, ..., are all non-isomorphic 1I,-factors.
Proof. By Proposition 6.2 and Corollary 1.5,

AMBY=Ar =3". O

{m
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Remarks. (a) A. Connes found in 1975 another example of a I1,-factor, such that its
tensor powers are all non-isomorphic (cf. [6], Corollaire 5).

(b) B.Kostant [24]showed that,ifn =2, then Sp (1, n) has D. A. Kazhdan’s[22]
“property T7"; it follows that I', and I'? also have this property. The von Neumann
algebras M, (n=2) of Corollary 6.6 and ME" (n=1) of Corollary 6.7 therefore
have Property T, in the sense of A. Connes and V. F. R. Jones [7].

(¢) We do not know whether A(MMEN)=A(IN)A(N) for all von Neumann
algebras 9t and M. By Corollary 1.5 the formula holds when M and N are von
Neumann algebras associated with two discrete groups.

(d) By Prasad’s extension of Mostow’s rigidity theorem [29], lattices in
Sp(1, 11) and Fy _,4, cannot be isomorphic. We do not know if their von Neumann
algebras are non-isomorphic. Similar comments apply about lattices in any two
semisimple Lie groups G, and G,, where A; = A,. See, for instance, R. J. Zimmer
[33] for more information on rigidity.
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