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Abstract

We study C*-algebras arising from C*-correspondences, which were introduced by the
author. We prove the gauge-invariant uniqueness theorem, and obtain conditions for our
C*-algebras to be nuclear, exact, or satisfy the Universal Coefficient Theorem. We also obtain
a 6-term exact sequence of K-groups involving the K-groups of our C*-algebras.
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0. Introduction

In [Ka2], we introduce a method to construct C*-algebras from C*-correspon-
dences. This construction is similar to the one of Cuntz—Pimsner algebras [P], and in
fact these two constructions coincide when the left action of a given C*-
correspondence is injective. However, when the left action of a C*-correspondence
is not injective, our construction differs from the one in [P]. Our construction of C*-
algebras from C*-correspondences whose left actions are not injective is motivated
by the constructions of graph algebras of graphs with sinks in [FLR], C*-algebras
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from topological graphs in [Kal], and crossed products by Hilbert C*-bimodules in
[AEE]. In fact, our construction generalizes all of these constructions. In our next
paper [Ka3], we will explain that our C*-algebras have a nice property which crossed
products by automorphisms also have.

In this paper, we prove several theorems on our C*-algebras, which generalize or
improve known results on Cuntz—Pimsner algebras or other classes of C*-algebras.
After preliminaries of C*-correspondences and their representations in Sections 1
and 2, we give definitions of our C*-algebras .7 y and Oy for a C*-correspondence X
in Section 3. Sections 4 and 5 are preparatory sections for our main theorems. In
Section 4, we review constructions of Fock spaces and Fock representations. Most of
the results in this section have been already known. In Section 5, we analyze so-called
cores. Main theorems can be found in Sections 6-8. In Section 6, we present self-
contained proofs of the gauge-invariant uniqueness theorems of our C*-algebras.
This theorem will play an important role in the analysis of their ideals in [Ka3]. In
Section 7, we give necessary and sufficient conditions for our C*-algebras to be
nuclear or exact. In Section 8, we obtain a 6-term exact sequence of K-groups which
seems to be helpful to compute K-groups of our C*-algebras. We also give a
sufficient condition for our C*-algebras to satisfy the Universal Coefficient Theorem
of [RS].

We denote by N =1{0,1,2,...} the set of natural numbers, and by T the
group consisting of complex numbers whose absolute values are 1. We use a
convention that y(4, B) = {y(a,b)eD |ac A,be B} for a map y: A4 x B— D such as
inner products, multiplications or representations. We denote by span{---} the
closure of linear spans of {---}. An ideal of a C*-algebra means a closed two-sided
ideal.

1. C*-Correspondences

We wuse [L2] for the general reference of Hilbert C*-modules and
C*-correspondences.

Definition 1.1. Let A be a C*-algebra. A (right) Hilbert A-module X is a Banach
space with a right action of the C*-algebra 4 and an A-valued inner product
(> x 1 X x X— 4 satisfying certain conditions.

Recall that a Hilbert A-module X is said to be full if span{ X, X >y = 4. We do
not assume that Hilbert C*-modules X are full. For a C*-algebra 4, 4 itself is a
Hilbert 4-module where the inner product is defined by <&,1> , = £y, and the right
action is multiplication.

Definition 1.2. For Hilbert A-modules X,Y, we denote by Z(X,Y) the
space of all adjointable operators from X to Y. For £eX and neVY, the
operator 0,:€ Z(X,Y) is defined by 0,:(() =n<{&()>yeY for (eX. We
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define # (X, Y)= %(X,Y) by
A (X,Y)=span{0,:e L(X,Y)|éeX,neY}.

For a Hilbert A-module X, we set ¥(X) = %(X, X), which is a C*-algebra, and
H(X) =4 (X,X), which is an ideal of £ (X).

Definition 1.3. For a C*-algebra 4, we say that X is a C*-correspondence over A
when X is a Hilbert 4-module and a x-homomorphism ¢y : 4— % (X) is given.

We refer to ¢y as the left action of a C*-correspondence X. A C*-correspondence
X over A is said to be non-degenerate if span(¢y(A4)X) = X. We do not assume that
C*-correspondences are non-degenerate.

Let 4 be a C*-algebra. We can define a left action of the C*-algebra A on the
Hilbert A-module A4 by the multiplication. Thus we get a C*-correspondence over A4,
which is called the identity correspondence over A and denoted by 4. Note that the
left action ¢, of the identity correspondence 4 gives an isomorphism from 4 onto
H(A)c L (X).

Definition 1.4. Let X, Y be C*-correspondences over a C*-algebra 4. We denote by
X (Y the quotient of the algebraic tensor product of X and Y by the subspace
generated by ((a)®@n — ER (py(a)n) for E€ X, ne Y and ae A. We can define an A-
valued inner product, right and left actions of 4 on X ® Y by

CERNE®N Y xoy = < oy(CEE D> Dy,
(C®na=<®(na), ¢xgy(@)(c®n) = (px(a)l)®n,

for £,¢e X, n,n €Y and ae A. One can show that these operations are well defined
and extend to the completion of X ® Y with respect to the norm coming from the
A-valued inner product defined above (see [L2, Proposition 4.5]). Thus the
completion of X(©Y is a C*-correspondence over A. This C*-correspondence is
called the tensor product of X and Y, and denoted by X ® Y.

By definition, we have
X®Y =span{{®n|leX,neY},

and (¢a)®n =E(®(py(a)y) for (€ X, neY and ac A.

Definition 1.5. For a C*-correspondence X over a C*-algebra 4 and ne N, we define
a C*-correspondence X ®” over A by X®% = 4, X®! = X and X®Ut) = Y @ X ®”"
forn=1.
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For each neN, the left action @ ye. of the C*-correspondence X ©” will be simply
denoted by ¢, : A—Z(X®"). For a positive integer n, we have

X" —span{é, ®&H® - ®&, | €1, &, ..., e X}

Note that for positive integers n,m, there exists a natural isomorphism between
X®"® X®" and X ®+") We have such isomorphisms for m = 0, but for n = 0 we
just get an injection X ®°®@ X ®”— X ®" When X is non-degenerate, this injection
is actually an isomorphism, but it is not surjective in general.

Definition 1.6. Let n be a positive integer, and take Se Z (X ®"). For each meN, we
define S®id, e L(XO™) by (S®id,) (@) =S(E)@n for ¢eX® and
neXxen

We note that S®idy = S. The x-homomorphism Z(X®")sS+—S®id,, e
(X ®(m) is injective when ¢ is injective, but this is not the case in general. When
X is non-degenerate, we can define S®id,e Z(X®") for Se Z(X®°) and n>1
because X®'@X®"~X®" In this case, we have a®id,=¢,(a) for
ae A= (X®%). By abuse of notation, for ae A=~#(X®°) we use the notation
a®id, for denoting ¢,(a)e L(X®") even though X is degenerate. Note that we
cannot define S®id, e Z(X®") for Se (X ®°) in general. In other words, the *-
homomorphism ¢, : 4A—Z(X®") need not extend to a sx-homomorphism
M(A)— L (X ®") unless X is non-degenerate.

Definition 1.7. Let us take £ X ®” with ne N. For each me N, we define an operator
r"m(i)eg’( ®m X® n—+m) ) by

() X O s E@ne X O,

Note that for ae4 = X®° we have 10 (a) = ¢,,(a)e Z(X®") for each meN.
Note also that 1 : X®"— 2(X®° X®") is an isometry onto # (X ®° X®") for
each neN. The adjoint 7" (&) e (X0t X®m) of 1 (&) satisfies that
(&) (L®N) = @,y(CE LD yon)n for (e X®", ne X ®™. It is not difficult to see the
following two lemmas.

Lemma 1.8. For ny,ny,meN and &, e X®™ &, X®™ we have

n7+m(él) 72 (5 ) = ‘[Z:Jrnz(él ®52) in g(X®m’X®("l+”2+m))'

Lemma 1.9. For n,meN, &, ne X®" and ac A, we have the following:

@) () ()" = 0z ®id,y, in L(X M),
(11) 121(5)*%(’7) (pm(<é ’7>X®”) in g(X@iﬂ)
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(1i1) ‘52'1(5)(/),”(0) — ‘E,”n(fa) in g(X®m7X®(n+m))7
(iv) (pn+m(a)r’n11(§ = T:;q((pn(a)é) in g(X(@m’X@(ner))_

2. Representations of C*-correspondences

Definition 2.1. A representation of a C*-correspondence X over 4 on a C*-algebra B
is a pair consisting of a x-homomorphism n: A—B and a linear map ¢: X—B
satisfying

(M) #(&)"t(n) = n(<& > x) for &, neX,
(1) n(a)t(&) = t(py(a)l) for ac A, e X.

We denote by C*(n, t) the C*-algebra generated by the images of = and ¢ in B.

A representation of a C*-correspondence was called an isometric covariant
representation in [MS]. Note that for a representation (7, 7) of X, we have #(&)n(a) =
t(£a) automatically because the condition (i) above, combining with the fact that = is
a *-homomorphism, implies

11&)n(a) - t(éa)|* = ||(1(&)n(a) — 1(éa))* (¢(¢)n(a) — 1(Ea))]| = 0.
Note also that for e X, we have ||#(¢)||<||€||y because

1E)1F = 116) 1) = |1n(CE ED I<IICE ED ¢l = [1El1%-

Definition 2.2. A representation (7, ) is said to be injective if a x-homomorphism = is
injective.

By the above computation, we see that ¢ is isometric for an injective representation

(m,1).

Definition 2.3. For a representation (z,#) of a C*-correspondence X on B, we define
a *-homomorphism v, : #"(X)—B by y,(0:,) = 1({)t(n)" € B for &, neX.

For the well-definedness of a x-homomorphism ,, see, for example, [KPW,
Lemma 2.2]. The following lemma is easily verified.

Lemma 24. For a representation (m,t) of a C*-correspondence X over A,
we have w(a),(k) =y, (py(a)k) and Y, (k)t(&) = t(kE) for aceAd, £eX and
ke (X).

By this lemma, we see that , is injective for an injective representation (7, #).
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Definition 2.5. Let (n,7) be a representation of X. We set /* =x and ' = ¢. For
n=2,3, ..., we define a linear map ' : X ®"—C*(n, 1) by "(¢®@n) = t(&)""'(y) for
¢eX and ne X @01,

It is routine to see that #” is well defined and that (=, ) is a representation of the
C*-correspondence X ®". Hence we can define W, : 4 (X®")—C*(rn,1) by
Yul(0:y) = "(&)"(n)" for £,ne X®". Note that " and \,, are isometric if (7, 7) is
an injective representation.

Lemma 2.6. Let (n,t) be a representation of X. Take Ee X®" and ne X®™ for
n,meN  with n=m. Then we have () t"(&)=1") where (=
o, () Ee X @),

Proof. When m = 0, this follows from the fact that (z, ") is a representation of the
C*-correspondence X ®”. Let m be a positive integer. We may assume ¢ =y’ ® {’ for

7 eX®mand {'e X® "™ because the linear span of such elements is dense in X ®”.
We have

() (&) = ) )
=n({n,n' > yen) (L)
=" (@ (<11 D xon) ).
On the other hand, we get
T E =10, 00 (1 ®L) =@, (<0’ xon)L'.
We are done. [

Proposition 2.7. For a representation (n,t) of X, we have

C*(m, 1) = span{" (&)™ (n)" | EeX® neXx®" nome N}.

Proof. Clearly, the right-hand side is a closed *-invariant linear space which contains
the images of 7 and ¢, and is contained in C*(n, ). Hence all we have to do is to
check that this set is closed under the multiplication, and this follows from
Lemma 2.6. [

3. C*-algebras associated with C*-correspondences

In this section, we give definitions of the C*-algebras J xy and Oy for a C*-
correspondence X .
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Definition 3.1. Let X be a C*-correspondence over a C*-algebra 4. We denote by
(ix, fx) the universal representation of X, and set 7 y = C*(7iy, Ix).

The universal representation (Ty,7y) can be obtained by taking a direct sum of
sufficiently many representations. By the universality, for every representation (7, ¢)
of X we have a surjection p:7 y— C*(m,t) with © = poiiy and ¢ = pofy. This
surjection will be called a natural surjection.

Definition 3.2. For a C*-correspondence X over 4, we define an ideal Jy of A by

Jx = @y (A (X)) (ker oy )+
={acAd|py(a)e A (X) and ab =0 for all beker ¢y }.
Note that Jy = ¢y (#° (X)) when ¢y is injective. The ideal Jy is the largest ideal

to which the restriction of ¢ is an injection into ' (X). The ideal Jx has the
following property.

Proposition 3.3. Let X be a C*-correspondence over a C*-algebra A, and (n,t) be an
injective representation of X. If ae A satisfies n(a) ey, (A (X)), then we have aeJy

and nn(a) = Y, (py(a)).

Proof. Take ae A with n(a)ey, (A (X)). Let ke #(X) be an element with n(a) =
¥,(k). For each £e€ X, we have

oy (a)d) = n(a)1(&) =y, (k)1(&) = 1(kE).

Since 7 is injective, we have ¢y (a)¢ = k& for every £€ X. This implies that ¢y (a) =
ke (X). Thus we get n(a) = ,(¢py(a)). Take beker ¢y and we will show that
ab = 0. We get

n(ab) = n(a)n(b) = Y, (¢x(a))n(b) = ¥, (¢x(a)px (b)) =0.
Since 7 is injective, we obtain ab = 0 as desired. Thus aeJy. O

The above proposition motivates the following definition.

Definition 3.4. A representation (m,?) is said to be covariant if we have n(a) =
V,(px(a)) for all aeJy.

Definition 3.5. For a C*-correspondence X over a C*-algebra A, the C*-algebra Oy
is defined by Oy = C*(ny,tyx) where (my,ty) is the universal covariant representa-
tion of X.
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By the universality, for each covariant representation (r,¢) of a C*-correspon-
dence X, there exists a natural surjection p : / y— C*(n, t) satisfying = = pomy and
t = poty.

The construction of C*-algebras Oy from C*-correspondences X generalizes both
the one in [P] for C*-correspondences with injective left actions and the one in [AEE]
for C*-correspondences coming from Hilbert C*-bimodules. This is also a
generalization of the construction of graph algebras [FLR,KPR,KPRR] and more
generally C*-algebras arising from topological graphs [Kal]. For the detail, see
[Ka2].

4. The Fock representation

In this section, we construct a representation of a given C*-correspondence, which
is called the Fock representation. The Fock representation is injective, and from this
we get an injective covariant representation. Most of the results in this section can be
found in [MS] or [P]. We will need them in Sections 7 and 8. For the convenience of
the readers, we give complete proofs.

Definition 4.1. The Hilbert A-module Z (X), obtained as the direct sum of the
Hilbert A-modules X ®°, X®1 is called the Fock space of X.

We consider X®" as a submodule of #(X) for each neN. For n,meN, we
consider the space Z (X ®", X ®™) of adjointable operators from X ®” to X®™ as a
subspace of Z(Z (X)).

Definition 4.2. We define a *-homomorphism ¢, : A— % (% (X)) and a linear map
T : X—ZL(F (X)) by

o0

0. (@0 =3 04 (=Y B0

m=0

for ae 4 and ¢e X, where we always use the strong topology for the infinite sum of
elements in £ (7 (X)).

Proposition 4.3 ([P, Proposition 1.3]). The pair (¢, ,7) is an injective representa-
tion of X on ¥ (7 (X)).

Proof. By taking n =1 in Lemma 1.9 (ii) and (iv), we see that (¢ ,74) is a
representation of X It is injective because ¢, : A— % (X ®°) is an isomorphism onto
A (X®0). O

This representation (¢, ,7) is called the Fock representation. From the Fock
representation (¢, 7. ), we can define a linear map 7", : X ®"— (7 (X)) for each
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neN as in Definition 2.5. It is easy to see that v (&) = >~ (17 (&) for Ee X ®" and
neN.

Proposition 4.4. For aeJy, we have
P (@) =Y., (9x(a)) = po(a) e (X ®°) =« Z(F (X)).
Proof. For ¢, neX, we have Y, (0:,) =>,_, 0z, ®id,_1 by Lemma 1.9(i). Hence
we have . (k) =3, k®id,_ for all ke #'(X). Therefore we obtain
D« ((1) - rq (,DX Z QDm - Z X(a) ®idm*1 = QDO(G)
m=1

because ¢,,(a) = @y (a)®idy— for m=1. O
Corollary 4.5. If ae A satisfies ¢ (a)ey, (#'(X)), then a = 0.

Proof. Forae A with ¢ (a)ey, (# (X)), wehaveaeJy and ¢ (a) =, (¢px(a))
by Proposition 3.3. By Proposition 4.4, we get ¢y(a) = ¢, (a) — lpu((l’x( a)) =0.
Thus we obtain a = 0 because ¢, is injective. [

The set # (X)Jy is a Hilbert Jy-module [Ka3, Corollary 1.4], and we have
H(F(X)Jx) =span{0¢u e X (F (X)) | &é,neF (X),aelyx},
which is an ideal of ¥ (% (X)). We see that ke #(F (X)) is in A (F (X)Jx) if and

only if (& kn)ely for all £, neF(X) (see [FMR, Lemma 2.6] or [Ka3, Lemma
1.6]).

Proposition 4.6. We have A (F (X)Jx) < C* (9o, T )-
Proof. For (€ X®" ne X®™ and aeJy, we have
Ocan =7 (E)o(a)T, (n)°
=10, ()9 (@) = Yo, (@x(@))77 () €C (@, 7o)

by Proposition 4.4. Hence 4 (# (X)Jx)c C* (¢ 4,7 ). O
Let 0: (7 (X)) —L(F (X)) A (F(X)Jx) be the quotient map, and set ¢ =

ao¢ ., and T = go1,,. By Proposition 4.4, (¢, 7) is a covariant representation of X on
L(F (X)) A (F(X)Jx). We will see that this representation (¢, 7) is injective.

Lemma 4.7. For n>1, the restriction of the *-homomorphism % (X®")s
S->S®id e L(X®) to ' (X®"Jy) is injective.
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Proof. Take ke # (X®"Jy) with k®id; = 0. Then for all ¢ &eX®" and all
n,1n € X, we have

0= &, (k®id)) (& ®n')) youn = {1, @x({EKE D you)n' > x.

Hence we have ¢y (<& kE Y yon) =0 for all & e X®". Since ke A (X®"Jy), we
have (& k&Y yenedy. Thus (& kY yon =0 for all & EeX®" because ¢y is
injective on Jy. Therefore we get k = 0. Thus the restriction of the map S+— S®id;
to A (X®"Jy) is injective. [

Lemma 4.8. For ac A, ¢ (a)e A (F (X)) implies lim,_, ||, (a)]| = 0.

Proof. For each neN, let P,e (% (X)) be the projection onto the direct summand
X®'cZ#(X). Since ¢,(a)=P,p,(a)P,, it sufficcs to show that
lim,_ o ||P,kPy|| =0 for each keX'(#(X)). We may assume k=0, for
& neF(X) because the linear span of such elements is dense in ' (Z (X)). By the
same reason, we may assume ¢ e X ®% and ne X ®/ for some k,/eN. Now it is clear
that we have lim,_, || P,kP,|| = 0. This completes the proof. O

Proposition 4.9. The covariant representation (¢, 1) is injective.

Proof. Take ae 4 with ¢(a) =0. Then we have ¢ (a)e # (F (X)Jx). For each
neN, we have

¢,(a) = Pyp (a)P,e Py H (F (X)Jx)Py = H (X®"Jy)

where P,e (7 (X)) is the projection onto the direct summand X ®"<=Z (X). By

taking n = 0, we get ae Jy. Since ¢, = @y is injective on Jy, we have ||a|| = ||¢,(a)]|.
By Lemma 4.7, we have ||, (a)|| = ||¢,(a) ®id|| = ||@,.;(a)]| for all positive integer
n. Therefore we get ||p,(a)|| = ||a|| for all neN. Thus we have ¢ = 0 by Lemma 4.8.

This proves that the covariant representation (¢, 7) is injective. [

As consequences of Corollary 4.5 and Proposition 4.9, we have the following
propositions.

Proposition 4.10. The universal representation (7ix,fx) of X on I x satisfies that
{acd|mx(a)eys, (A (X))} =0.

Proposition 4.11. The universal covariant representation (ny,tx) of X on Oy is
injective.

We will see in Section 6 that the Fock representation (¢, 7 ) is the universal
representation, and (¢, ) is the universal covariant representation.
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Note that the C*-algebra C*(¢_,,7+) is the augmented Cuntz—Toeplitz algebra

defined in [P], and the C*-algebra C*(¢, 1) is the relative Cuntz—Pimsner algebra
O(Jx, X) defined in [MS, Definition 2.18].

5. Analysis of the cores
In this section, we investigate the so-called cores of C*-algebras C*(=,t) for

representations (=, f) of a C*-correspondence X . Fix a C*-correspondence X over a
C*-algebra A, and a representation (=, 7) of X.

Definition 5.1. For each neN, we set B, = y,.(# (X®")) = C*(n,1).

Note that By = n(4) and that B, =~ .# (X ®") when (=, ¢) is injective. We can easily
see the next lemma.

Lemma 5.2. For n,meN with n>1, we have
span(" (X ®") B, t"(X®")") = Byim

and (X ") B, " (X ©") = B,,.

Definition 5.3. For m,neN with m<n, we define By, , = C*(n,t) by By, = Bn +
Bm-H + - +Bn-

We have B, = B, for each neN. By the next lemma, we see that By, ,’s are C*-
subalgebras of C*(=,1).

Lemma 5.4. For m,neN with m<n, ke # (X®™) and k'e # (X®"), we have
Yo (k)Y (K') = Y (kK @1dy—m)K').

Proof. It suffices to show that /. (k)" (&) = " ((k®id,_n)E) for ke # (X ®™) and
EeX®". When m =0, this equation follows from the fact that (m, ") is a
representation of the C*-correspondence X ®”. Suppose m>1. We may assume k =
Oc, for {,;ne X®™. We have

P (R)(E) = QP () P (2)
_ tm(C)tnfm (T:’n_m(n)*é)
- ln(C ® (TT—m (7])*6))
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= t"((TT_,,I(C)Tnm—m(’?)*)é)
= l'n((k ® idnfm)é)

by Lemma 2.6 and Lemma 1.9(i). We are done. [J

By the above lemma, By, is an ideal of B, , for m,k,neN with m<k<n. In
particular, B, is an ideal of By, for each neN.

Definition 5.5. For meN, we define a C*-subalgebra By, .| of C*(n,t) by By, ] =
U;O:m B[m,n]'

Note that the C*-algebra By, .| is an inductive limit of the increasing sequence of
C*-algebras {Bj,,},-,,- The C*-algebra B . is called the core of the C*-algebra

C*(m, ). The core By o) naturally arises when the C*-algebra C*(r,) has an action
of T called a gauge action.

Definition 5.6. A representation (7, t) of X is said to admit a gauge action if for each
zeT, there exists a x-homomorphism f, : C*(rn,t)— C*(x, t) such that f.(n(a)) =
n(a) and B.(¢(&)) = zt(¢) for all ae 4 and £e X.

If it exists, such a *-homomorphism f. is unique. By the assumptions in the
definition above, f. is a =x-automorphism for all zeT and the map
f: T—Aut(C*(n,t)) is automatically a strongly continuous homomorphism. By
the universality, both the universal representation (7y,7y) on 7 y and the universal
covariant representation (ny,fy) on Uy admit gauge actions. We denote these
actions by 7: T~7 x and y: T~ Oy. It is clear that for a representation (m, 1)
admitting a gauge action f§ we have pf.op=poj. for each zeT, where
p:T y—C*(m,t) is the natural surjection. It is also clear that for a covariant
representation (7, ¢) admitting a gauge action § we have ff.op = poy. for each ze T,
where p:0y— C*(m, 1) is the natural surjection.

Proposition 5.7. When a representation (r,t) admits a gauge action f3, the core By o
coincides with the fixed point algebra C*(m, t)ﬁ.

Proof. Since
B(e"(&)"(n)") = 2" (E)" ()"

for (e X®" neX®" and zeT, it is clear that By ,.j= C*(r, 1?. Take xe C*(x, 1)".
By Proposition 2.7, there exists a sequence {x; },—, of linear sums of elements in the
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form (&)™ (n)* such that x = lim;__ , x;. Then we have

x—/ﬂ Ydz = 11m B-(xk) dz

T

where dz is the normalized Haar measure on T. By the above computation, we get
Jt B-(xx) dze U,y By for every k. Thus we have xe B ,|. We have shown that

[O,w] = C*(‘II, l)ﬁ. O

We are going to compute the core By )= C*(n,t). To this end, we need the
following notation.

Definition 5.8. For a representation (n, ) of X, we set
Iy ={aed|n(a)eB) =y, (A (X))},
which is an ideal of 4. For each neN, we define

B = (A (X)) = By = C*(m, ).

Proposition 5.9. For each neN, we have B, B, = B,’.

Proof. The case n = 0 follows from the definition of /(, ". Let n be a positive integer.
For aeli,, and &, neX®" we have

Vi (Ocay) = 1"(Ca)t"(n)" = "(O)m(a)t" ()" € Buyy

because n(a) € B;. Hence we get B, = B, N B, 1. Conversely take xe B, B, . Take
ke (X®") with (k) = x. For each & ne X®" we have

n(<&knyx) = 1"(&) Yu(k)i"(n) = 1"(&) xt"(n) € By

because x € B, . This implies that (&, kn) y €l forall &,y € X®". Hence we have
ke,){/(X®”I,” "). Thus we get x = {,.(k)e B,’. We have shown B, B, = B, for
all neN. O

Lemma 5.10. Let n be a positive integer. For an approximate unit {u;} of # (X ®")
and ke A (X®U+)) we have k = lim; (u; ®id; k.

Proof. Clearly the equality holds for k= (k'®id)k"e# (X®"+1)) where
Kex'(X®") and k"ex' (X®"+D)., We will show that the linear span of such
elements is dense in %' (X ®*1)). To do so, it suffices to show that the linear span of
elements in the form (k' ®id,){ with k'e# (X®") and (e X®"+D is dense in
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X @) because we have (k' ®id)0; ¢ = O iq - For k' =0:2 and { =n®1n’
with &, & neX®" and ' € X, we have

(K'®id){ =7{(&)T1(<) (@)
=711(E) (1 (<& n> xon)')
=E® (ox (K& 0D xen))
=& ) xen @

Since the linear span of elements in the form &< &, n) yen with & & neX®" is
dense in X®" and the linear span of elements in the form ¢ ®#' with (€ X®" and
neX is dense in X®"+D we see that the linear span of elements in the
form (k'®id;){ with K'e# (X®") and {eX®"+D is dense in X®"*1). We are
done. [

Proposition 5.11. For each ne N, we have By, N B,y1 < B),.

Proof. The assertion is obvious for n = 0. We assume n>1. Take xe By, N By11.
Choose ke # (X®"+1) such that x = . (k). For an approximate unit {u;} of
A (X®"), we have k =lim;(u; ®id;)k by Lemma 5.10. Since V. (up)y i (k) =
W (1, ®1d;)k) by Lemma 5.4, we see

X = Yips(6) = 1 ) (K) = lim 1)
Since B, is an ideal of By}, we have xe B,. Thus we obtain By, N B, 1= B,. [

Proposition 5.12. For each ne N, we have By, 0 B, = B,', and we get the following
commutative diagram with exact rows:

0 —— B, —— By, —— Bpn/B, —— 0

| | |

0 —— Bn-{-] _— B[O,n-‘rl] - B[O,TL]/B;L — 0.

Proof. The former part follows from Propositions 5.9 and 5.11. The latter part
follows from the former and the fact By, = Bjo, + Bur1. O

Proposition 5.13. For n=1,2, ..., o0, we have the following short exact sequences:
0 — By, — Bo,y — By/B/ — 0.

Proof. We will first prove Byn By;, = By’ by the induction with respect to n. The
case that n=1 follows from Proposition 5.9. Suppose that we have proved
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Bon Bj1, = By'. Take x€ By Bj1 1) Choose ye By, and z€ B, with x =y + z.
We have z =x —yeBjy, N B,1. By Proposition 5.11, we have ze B,. Thus x =
y+z€eBy,. Hence we have shown By Bjj,1<=BonBj,. Since the converse
inclusion is obvious, we get By B,y = BonBj,) = By’. Thus we obtain
Byn By, = By for all positive integer n. This implies the existence of the desired
short exact sequences for n=1,2,..., because By, = B, + By. By taking
inductive limits, we obtain the short exact sequences for n = co. [

The C*-subalgebras of 7y and Oy corresponding to B, By, , are denoted by
B, Bymy) =T x and By, By, ) = Ox. By Proposition 5.7 we have T = B0, and
O = By, o).

Proposition 5.14. There exists a short exact sequence

0 — Bt — Boury — Boy — O,

which splits by the natural inclusion R ;) > B0 n+1)-

Proof. This follows from Proposition 5.12 because Proposition 4.10 implies
Iz i) =0. O

Rx,lx
Proposition 5.15. There exists a surjection from I ’X to A.
Proof. This follows from Proposition 5.13. O

Proposition 5.16. We get the following commutative diagram with exact rows:

0 —— Bunty —— Bonyy —— A/Jx —— 0

I ! H

0 —— 9/7[1_00] E— .%’[0700] — A/Jx —— 0.

Proof. By noting that ;= A4 and %' =~ Jy, this follows from Proposition 5.13. [
Proposition 5.17. We get the following commutative diagram with exact rows:

0 —— Jx —— A —— AlJx —— 0

l S

0 —>;ﬂ[l,oo] E— O;} E— A/JX — 0.

Proof. This follows from Proposition 5.13. [
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Proposition 5.18. For a C*-correspondence X over a C*-algebra A, the following
conditions are equivalent:

() the injection my : A—>(9§( is an isomorphism,
(1) we have %y> %,
(iii) the injection @y : Jy— A (X) is an isomorphism,
(iv) the C*-correspondence X comes from a Hilbert A-bimodule.

Proof. It is clear that (i) implies (ii). From the condition (ii), we obtain %, © %, for
all neN by Lemma 5.2. Hence (ii) implies ¢ Xﬁ = %y =nx(A). This shows the
implication (ii)) = (i). By setting n = 0 in Proposition 5.12, we have the following
commutative diagram with exact rows:

0 —— JX —>%0 —>A/JX—>0

e H
0 —— K(X) —— Hpoy) —— AlJx —— 0.
tx

From this diagram, we have the equivalence (ii) <> (iii). Finally, the equivalence
(ili) < (iv) was shown in [Ka2]. O

6. The gauge-invariant uniqueness theorems

In this section, we will give conditions for representations or covariant
representations to be universal. The idea of the proof can be seen in [Kal, Section
4] (and also in [P, Section 3; FMR, Section 4]). Let us take a C*-correspondence X
over a C*-algebra A.

Proposition 6.1. For a representation (n,t) of X satisfying I ' = 0, the restriction of
p: T x—C*(n,t) to the fixed point algebra 9'3( is injective.

Proof. For neN let B, and By, be C*-subalgebras of C*(m, r) defined in Definitions
5.1 and 5.3. From the condition [, =0, we get the following commutative
diagram with exact rows:

0 —— HBny1 —— Biont1] — Blojn) —— 0

b & b

0 —— Bnt1 —— Bjonryy —— Bjogyg —— 0
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by the same argument as in Proposition 5.14. Since the condition /" = 0 implies
that the representation (m,¢) is injective, we see that the restriction of p to 4, is
injective for all ne N. By using this fact and the commutative diagram above, we can
inductively show that the restriction of p to ‘@[O,n] is injective. Hence the restriction of

p to T = By is injective. O
The following is the gauge-invariant uniqueness theorem for the C*-algebra 7 y.

Theorem 6.2. Let X be a C*-correspondence over a C*-algebra A. For a representation
(m,t) of X, the surjection p: T xy—> C*(m, t) is an isomorphism if and only if (m,t)
satisfies I ' = 0 and admits a gauge action.

Proof. We had already seen that the two conditions are necessary. Now suppose that
a representation (r, 7) admits a gauge action f, and satisfies /(' = 0. Take xe 7 x
with p(x) = 0. Then we have

o[ rtnae) = [ ptrtom = [ ot =0

where dz is the normalized Haar measure on T. Since [} 7.(x*x)dze.7 |, we have
J3 7-(x*x) dz = 0 by Proposition 6.1. This implies x*x = 0. Hence p is injective. [

Proposition 6.3. For an injective covariant representation (m,t) of X, the restriction of
the surjection p : Ox—C*(m, 1) to the fixed point algebra (% is injective.

Proof. For neN let B, and By, be C*-subalgebras of C*(=, 7) defined in Definitions
5.1 and 5.3. Since ¥, is injective, the restriction of p to 4, is an isomorphism onto
B,,. It is easy to see that the restriction of p to %, is a surjection onto By, for each
neN. We will show that these are injective by the induction with respect to n. The
case that n = 0 follows from the fact that = is injective. Suppose that we had shown
that the restriction of p to % , is an isomorphism onto By ,. By Proposition 3.3, we
have I, ;' = I(zn" = Jx. Hence the restriction of p to %, is an isomorphism onto
B,'. Thus we get an isomorphism %y, /%,'— B,/ B,'. By Proposition 5.12 we get
the following commutative diagram with exact rows:

0O —— %’n—i-l - %’[0771—&—1] - %[O,n]/%’; — 0

g g I
0 —— Buy1 —— Bpnyy —— B[O.n]/BZ — 0.
By the 5-lemma, we see that the surjection %(g,41— Bjo,n+1) 1 an isomorphism.

Thus we have shown that the restriction of p to %, is injective for all neN. Hence
the restriction of p to ¢, = A0,0) 1s injective. [
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The following is the gauge-invariant uniqueness theorem for the C*-algebra Oy.

Theorem 6.4. For a covariant representation (m,t) of a C*-correspondence X, the *-
homomorphism p : O x— C*(z, t) is an isomorphism if and only if (n,t) is injective and
admits a gauge action.

Proof. The proof goes similarly as in Theorem 6.2 with the help of Proposition
63. O

When the left actions of C*-correspondences are injective, Theorem 6.4 is the
gauge-invariant uniqueness theorem for Cuntz—Pimsner algebras which was
proved in [FMR, Theorem 4.1]. In the case that C*-correspondences are defined
from graphs with or without sinks, this was already proved in [BHRS, Theorem 2.1].
For C*-algebras arising from topological graphs, this was proved in [Kal,
Theorem 4.5].

We can apply the two gauge-invariant uniqueness theorems to the representations
(¢, T0) and (@, 1) in Section 4.

Proposition 6.5. Both the representation (¢, ,t,) and the covariant representation
(p,7) are universal, that is, we have natural isomorphisms C*(¢ ., ,7%)=7 x and
C*(p,7)=0y.

Proof. To apply Theorems 6.2 and 6.4, it suffices to see that both of the
representations (¢ ,7,) and (¢,7) admit gauge actions because the other
conditions had already been checked in Section 4.

For each ze T, define a unitary u.e (7 (X)) by u.(&) = 2"¢ for £e X @<= 7 (X)
and neN. It is routine to see that the automorphisms Adu. of Z(7 (X)),
defined by Adu.(x) =u.xu! for xe #(# (X)), give a gauge action for the
representation (¢, ,7. ). The ideal # (7 (X)Jx) of L(Z# (X)) is closed under
the automorphisms Adu, for each ze T. Hence we can define an automorphism
p. of L(F(X))/A(F(X)Jx) by p.(o(x)) =0c(uxu;) for xe#(#(X)) and
zeT. It is clear that f is a gauge action for the representation (¢,7). We are
done. [

By Proposition 6.5, the C*-algebra Oy is isomorphic to the relative Cuntz—Pimsner
algebras C*(¢,1) = O(Jx, X) introduced in [MS] (cf. [MS, Theorem 2.19]). The
isomorphism C*(¢ ., T, ) =7 y was already proved in [P, Theorem 3.4] under small
assumption on C*-correspondences.

The C*-algebra @y was defined as the largest C*-algebra among
C*-algebras C*(m,t) generated by covariant representations (m,7) of X.
Theorem 6.4 tells us that we have C*(n,f)=0Oy when a covariant
representation (m, ) satisfies two conditions; being injective and admitting
a gauge action. In the next paper [Ka3], we will see that the C*-algebra Oy
can be defined as the smallest C*-algebra among C*-algebras C*(n, ) generated
by representations (m,7) of X which satisfy the two conditions above; being
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injective and admitting gauge actions. Thus we can define Oy without using the
ideal Jy.

7. Nuclearity and exactness

In this section, we study when the C*-algebras 7 y and Oy become nuclear or
exact. We use the facts on nuclearity and exactness appeared in Appendices A and B
as well as in [W].

On the exactness of 7 y and Oy, we have the following which generalizes [DS,
Theorem 3.1] slightly.

Theorem 7.1 (cf. [DS, Theorem 3.1]). For a C*-correspondence X over a C*-algebra
A, the following conditions are equivalent:

(1) 4 is exact,
(i) 77 is exact,
(iil)) J y is exact,
(iv) O is exact,
(v) Oy is exact.

Proof. Suppose that 4 is exact. By Proposition B.7, # (X ®") is exact for all neN.
By Proposition 5.14, we can prove inductively that =@[O,n] g ﬁ( is exact for all neN
because exactness is closed under taking splitting extensions. Thus 7 3( is exact
because it is an inductive limit of exact C*-algebras. This proves (i) = (ii). The
equivalences (ii) <> (iii) and (iv) <> (v) follow from Proposition A.13. Since there
exists a surjection J y— Oy, (iii) implies (v). Finally, (v) implies (i) because
nx(A) <Oy is isomorphic to 4. [

On the nuclearity of 7 y, we have the following.

Theorem 7.2. For a C*-correspondence X over a C*-algebra A, the following
conditions are equivalent:

(1) A is nuclear,

(i) 7 ;r is nuclear,
(ii1) I x is nuclear.
Proof. In a similar way to the proof of (i) = (ii) in Theorem 7.1, we can show that
(i) implies (ii). The implication (ii) = (i) follows from Proposition 5.15. Finally,
Proposition A.13 gives the equivalence (ii) < (iii). O

On the nuclearity of Oy, we have the following.
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Theorem 7.3. For a C*-correspondence X over a C*-algebra A, the following
conditions are equivalent:

(i) A/Jx is a nuclear C*-algebra, and ny : Jx— %1 ] is a nuclear map,
(i) my : A—0O% is a nuclear map,
(iil) my : A— Oy is a nuclear map,
(iv) O is nuclear,
(v) Oy is nuclear.

Proof. The equivalence (i) <> (ii) is shown by applying Proposition A.6 to the
diagram in Proposition 5.17. The equivalence (ii) <> (iii) follows from Proposition
A.12. Obviously (iv) implies (ii). Assume (ii). We see that 4/Jy is nuclear from the
equivalence (i) < (ii). We will prove that the embedding %y,) & %)o,0] is nuclear
for all neN by the induction on n. The case n = 0 follows from condition (ii).
Suppose we have shown that %y, X)) is nuclear. Let us set Y, =
span(ty(X)%p,y) and Y, =span(tyx(X)%y,)). Then by Lemma 5.2, Y, is a
Hilbert %)y ,-module with .#"(Y,) =2, ,+1, and Y, is a Hilbert %y ,,]-module with
H (Yo ) =H|1,0)- By applying Proposition B.8 to the inclusions %, & Ho,..) and
Y, & Yo, we see that the inclusion %y 1)< %), ] is nuclear. Now by applying
Proposition A.6 to the diagram in Proposition 5.16, we see that %y 1) B, 18
nuclear. Hence we have shown that %y, < %, is nuclear for all neN. Since
Unen Po,n 1s dense in By .|, we see that the identity map %, ,.)— Ao, is nuclear.
Thus #,] is a nuclear C*-algebra. This shows that (ii) implies (iv). Finally, the
equivalence (iv) < (v) follows from Proposition A.13. [

We give two sufficient conditions on C*-correspondences X for Oy to be nuclear,
which may be useful. Both of them easily follows from Theorem 7.3.

Corollary 7.4. If A is nuclear then Oy is nuclear.

Corollary 7.5. If both the C*-algebra A/Jx and the x-homomorphism
@y Jx—H (X) are nuclear, then Oy is nuclear.

Remark 7.6. We can prove Corollary 7.4 directly by showing that (% is nuclear
when A is nuclear in a similar way to the proof of (i) = (ii) in Theorem 7.1.

The converses of Corollaries 7.4 and 7.5 are not true as the following example
shows. We would like to thank Narutaka Ozawa who gave us this example.

Example 7.7. Let B be a nuclear C*-algebra, and D be a non-nuclear C*-subalgebra
of B. For an integer n, we define 4, by A, = Bforn>0and 4, = D for n<0. We set
A=®,° A, We define an injective endomorphism ¢:A4—A so that
@l : Ao—A1 is a natural embedding and ¢|, : 4,— 4,41 is an isomorphism for

a non-zero integer n. Since D is not nuclear, the injective endomorphism ¢ is not
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nuclear. Let X be the C*-correspondence over A which is isomorphic to 4 as Hilbert
A-modules, and whose left action ¢y : A— % (X) is defined as the composition of
¢ : A—A and the isomorphism A~ .4 (X)c £ (X). Then we have Jy = 4 and the
map ¢y : Jy— A (X) is not nuclear as ¢ is not. Thus the C*-correspondence X does
not satisfy the assumption of Corollary 7.4 nor Corollary 7.5. However, the C*-

algebra Oy is nuclear because the fixed point algebra 0@ is isomorphic to the
inductive limit lim (4, )= @2 __ B, which is nuclear.

A Hilbert A-bimodule X is naturally considered as a C*-correspondence over 4,
and the C*-algebra Oy is isomorphic to the crossed product A>yZ of A by X
defined in [AEE, Definition 2.4] (see [Ka2, Subsection 3.3]). We have a nice
characterization of the nuclearity of such a C*-algebra.

Proposition 7.8. When a C*-correspondence X over a C*-algebra A comes from a
Hilbert A-bimodule, the C*-algebra Oy is nuclear if and only if A is nuclear.

Proof. By Proposition 5.18, we see that ny : 4— 0 Xﬂ is an isomorphism. Hence the
conclusion follows from Theorem 7.3, or rather Proposition A.13. [

8. K-groups

The purpose of this section is to obtain the 6-term exact sequence of K-groups,
which seems to be useful to compute the K-groups Ky(Cy) and K;(Ox) of Oy.
Mainly we follow the arguments in [P, Section 4]. There, Pimsner used KK-theory to
obtain his 6-term exact sequence. For this reason, he assumed the separability of the
C*-algebras involved. Here, we work directly with K-theory instead of using KK-
theory, and obtain the 6-term exact sequence without the assumption of separability.

For a C*-algebra A4, we denote by K, (4) the K-group Ky(A4) ® K;(A4) of 4 which
has a Z/27-grading. By maps between K-groups, we mean group homomorphisms
which preserve the grading. Thus for C*-algebras 4 and B, considering maps
between K-groups K.(A4)—K.(B) is same as considering two homomorphisms
Ky(A)—Ky(B) and K,(A)— K (B). For a x-homomorphism p : 4— B, we denote
by p, the map K.(A4)—K.(B) induced by p.

Fix a C*-correspondence X over a C*-algebra 4. Since we have 7 y ~C* (¢, , T )
by Proposition 6.5, there exists an embedding j : #(# (X)Jxy)—J x by Proposition
4.6. Since C*(p,7)=0x by Proposition 6.5, we have the following short exact
sequence:

0 — H(FX)y) L Ty — 0y — 0.

The following two propositions enable us to compute the K-groups of A4 (F (X)Jy)
and 7 y.
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Proposition 8.1. The x-homomorphism ¢y :Jxy— A (F (X)Jy) induces an isomorph-
ism (y). : K.(Jx)—K. (A (F(X)Jx)),

Proof. The *-homomorphism ¢ :Jy—#(ZF (X)Jx) is an isomorphism onto the
C*-subalgebra #"(X®%Jy) of #(F(X)Jx). Since X®°Jy is a full Hilbert Jy-
submodule of Z(X)Jy, #(X®% ) is a hereditary and full C*-subalgebra of
A (7 (X)Jx). Hence (@), is an isomorphism by Proposition B.5. [

Proposition 8.2. The x-homomorphism 7iy:A—9J x induces an isomorphism
(7x). : K.(A)—K.(T x).

Proof. See Appendix C. [
Next, we will compute j, : K,.(A(F (X)Jx))—K.(T x).

Definition 8.3. We denote by 1:Jy & A4 the natural embedding. We define a map
[X]: K.(Jx)—K.(A) by the composition of the map (¢y), : Ki(Jx)— K. (A (X))
induced by the restriction of ¢y to Jy and the map X, : K.(# (X))—K.(A4) induced
by the Hilbert 4-module X as in Remark B.4.

The map [X]:K.(Jy)—K.(A) is same as the map induced by the element
(X,0y,0) of KK(Jx,A). When a C*-correspondence X is defined from an injective
k-homomorphism ¢ : A— A, we have Jy = 4 and [X] = ¢,. For the notation in the
proof of the next lemma, consult Appendix B.

Lemma 84. The composition of the two maps [X]:K.(Jxy)—K.(4) and
(ftx), : Ki(A)—K.(7 x) coincides with (Y7, @y),.

Proof. Let M,(7 x) be the C*-algebra of two-by-two matrices with entries
in 7 x. For i,je{0,1}, we denote by 1; the natural embedding 7 y— M,(7 x)
onto the i j-component. By the definition of K-groups, (ig), = (111), is an
isomorphism.

From the maps 7y:4—7 y and fy: X—J y, we get a x-homomorphism
pZD)(—>M2(9-)() such that pot1y = 1177y and poiy = 191°fy. We have poly(x) =

100°Y7, - Since X, is defined as (zA);lo(z,,f(X))*, we have

(x).oXe = (Tx).o (1) (i),
=(111); 'op.o(ar(x)),
= (1) "o(100),°(¥7, ),
=(W3,).-
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Hence we get
(Tx).o[X] = (Tx). o Xoo(0x). = (Wi )o(Px). = (b, °0x).

We are done. O

Lemma 8.5. The x-homomorphism 7ixyo1:Jxy—T y is the sum of the two -
homomorphisms Y; o@y and jogy.

Proof. If we identify 7 y and C*(¢,,7 ), this follows from Proposition 4.4. [
By the above two lemmas, the map j.: K,(# (7 (X)Jx))—K.(7 x) is same

as the map 1. —[X]:K.(Jy)—K.(4) modulo the isomorphisms
(o). - Ku(Jx)—K.(A (7 (X)Jx)) and (7y), : Ki(A4)—K.(T x):

K*(TX)

I
[({PO)* T(Wx)*

K(x) — o Ku(A),

Thus by rewriting the 6-term exact sequence of K-groups obtained from the short
exact sequence

0 — H(FX)y) L Ty — 0y — 0,

we get the following.

Theorem 8.6 (cf. [P, Theorem 4.9]). For a C*-correspondence X over a C*-algebra A,
we have the following exact sequence:

Ko(.]x) —— Ko(A) S EE—— I(O(Ox)

L —[X] (7 x )«

I |

Ki(Ox) <50 gy S k).

For a C*-correspondence X over a C*-algebra 4 and an ideal J of A4 satisfying
@y (J)= A (X), the relative Cuntz—Pimsner algebra (/(J, X) is defined as the quotient
C Py, Too )/ A (F(X)J) IMS, Definition 2.18]. Thus we can prove the following
statement in the same way as the proof of Theorem 8.6.
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Proposition 8.7. Let X be a C*-correspondence over a C*-algebra A, and J be an ideal
of A with ¢y (J)c A (X). Then we have the following exact sequence:

Ko(J) Ko(A) ——— Ko(O(J, X))
L —[X,J] *

| l

Ki(O(J, X)) — ™ Ky (4) " g,

where 1: J < A is the embedding, n: A—O(J, X) is the natural x-homomorphism, and
[X,J]: K. (J)—K.(A) is defined by [ X,J] = X.o(@x|,),-

It is not difficult to see that the two *x-homomorphisms in Propositions 8.1 and 8.2
induce KK-equivalences between Jy and # (Z (X )Jx) and between 4 and .7 xy when
the involving C*-algebras are separable. Hence by applying “two among three
principle” to the short exact sequence

0 — H(FX)y) L Ty — 0y — 0
we get the following.

Proposition 8.8. Let X be a separable C*-correspondence over a separable nuclear
C*-algebra A. If A and Jx satisfy the Universal Coefficient Theorem of [RS], then so
does Oy.
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Appendix A. On nuclear maps

In Appendices A and B, we gather the results on nuclear maps and
linking algebras. We use these results in Sections 7 and 8. Most of them should be
known among the specialists. Some results in this appendix hold with less
assumption.
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Definition A.1. For C*-algebras 4 and D, we denote by A ® pinD (resp. A ® maxD)
the minimal (resp. maximal) tensor product of A and D, and by 4 & D the kernel of
the natural surjection my p: A ® maxD—A @ minD.

Definition A.2. For a x-homomorphism ¢ : 4— B, we can define x-homomorphisms
@ @ minldp : A @ minD—B @ minD and @ @ maxddp : A @ maxD—B @ maxD such that
@@ minldp(a®d) = @ ® maxidp(a®d) = ¢p(a) ®d for ae A and de D. Since we have
the commutative diagram:

W@mznxidl) .
A Omax D ———> B ®max D

LWA,I) iﬂ'lhl)

P@minidp
A &Qmin D 2 < B &min D7

the restriction of @ ® maxidp to A DcAR® D induces a *-homomorphism

p©8idp: A&6D—BSD.

Definition A.3. A x-homomorphism ¢ : A—B is said to be nuclear if for all C*-
algebra D, the *-homomorphism ¢ & pmaxidp : 4 ® maxD— B & max D factors through
the surjection 74 p: A Q@ maxD—A @ minD:

©Rmaxidp
A ®max D [ B ®max D

-7
TA,D . TB,D
7 p®minidp

A ®min D ——— B Qmin D.
A C*-algebra A is said to be nuclear if id, : A— A is a nuclear map.

In other words, a x-homomorphism ¢ : A— B is nuclear if and only if p ©&idp =0
for all C*-algebra D, and a C*-algebra A is nuclear if and only if A& D = 0 for all
C*-algebra D.

Remark A.4. A x-homomorphism is nuclear if and only if it has the completely
positive approximation property (see [W]).

Lemma A.5. Let

be a short exact sequence of C*-algebras, and D be a C*-algebra. Then the following
sequence is exact:

0 — 16D 2% 4op 0% pgop.
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If there exists an injective nuclear x-homomorphism A— A’ for some C*-algebra A',
then nSidp is surjective.

Proof. The former statement follows from the fact that maximal tensor products
preserve short exact sequences. If there exists an injective nuclear *-homomorphism
A— A’ for some C*-algebra A’, then A4 is exact by [W, Proposition 7.2]. Since exact
C*-algebras have Property C [Ki], the sequence

1® minidp 7@ minidp
—_ — 5

0 — I®mnD AQ minD B®mnD — 0
is exact (see Proposition 5.2 and Remark 9.5.2 in [W]). Hence the conclusion follows

from 3 x 3-lemma. 0O

Proposition A.6. Suppose that we have a following commutative diagram with exact
rows:

0 I : A—"-B 0
I C
0 r Y ", B 0.

Suppose also that ¢ is injective. Then ¢ is nuclear if and only if both B and ¢ are
nuclear.

Proof. Take a C*-algebra D. By Lemma A.5 we have the following commutative
diagram with exact rows:

0 —— IoDp 29, 4op @42, pop

ltpoOidn leidn H
0 — > I'eop Y94, yop ™94, pop

Suppose that ¢ is nuclear. By Lemma A.5, the x-homomorphism n&idp is
surjective. Hence we have B& D = 0 for all C*-algebra D. We also have ¢,©&idp =0
for all C*-algebra D by the diagram above. Thus both B and ¢, are nuclear.
Conversely, assume that both B and ¢, are nuclear. Then we have ¢ ©idp = 0 for all
C*-algebra D by the diagram above. Therefore ¢ is nuclear. We are done. [

Proposition A.7. Let A, B be C*-algebras, and Ay, By be C*-subalgebras of A and B,
respectively. Let ¢ : A— B be a x-homomorphism with ¢(Ay) < By. Let ¢y : Ag— By
be the restriction of ¢. When By is a hereditary C*-subalgebra of B, the nuclearity of ¢
implies the nuclearity of ¢,.

Proof. When ¢ is nuclear, its restriction ¢’:AAg— B is also nuclear. Hence for
any C*-algebra D, the map ¢’ ©idp: 40©D—BS D is 0. Since By is a hereditary



392 T. Katsura | Journal of Functional Analysis 217 (2004) 366401

C*-subalgebra of B, we see that the inclusion 1: By< B induces an injective -
homomorphism 1 ® naxidp : By ® maxD— B ® maxD by [L1, Theorem 3.3]. Hence the
x-homomorphism 18idp: By©&D—B&E D is also injective. This shows that
0o ©idp: A0©D—By© D is 0 for all C*-algebra D. Thus ¢, is injective. [

The following complements the proposition above.

Proposition A.8. With the same notation in Proposition A.7, when Ay is a hereditary
and full C*-subalgebra of A, the nuclearity of ¢, implies the nuclearity of ¢.

Proof. Take a C*-algebra D. Since Ay is a hereditary and full C*-subalgebra of A4,
Ao ® maxD 1s a hereditary and full C*-subalgebra of 4® .xD. Hence 406D =
(A0 ® maxD) N (AS D) is also hereditary and full in A © D. When ¢, is nuclear, the x-
homomorphism ¢ ® maxidp : A ® maxD—B® maxD vanishes on Ay&D. Thus
@ ® maxidp vanishes on 46 D. This shows that ¢ is nuclear. [J

The following is an immediate consequence of Propositions A.7 and A.8.

Corollary A.9. A hereditary and full C*-subalgebra Ay of a C*-algebra A is nuclear if
and only if A is nuclear.

We also have the following.

Proposition A.10. A hereditary and full C*-subalgebra Ay of a C*-algebra A is exact if
and only if A is exact.

Proof. Since a C*-subalgebra of an exact C*-algebra is exact, A is exact if 4 is exact.
Suppose that A4y is exact. Take a short exact sequence of C*-algebras:

All we have to do is to prove ker (T® minid4) = I ®mind. Since Ay is full and
hereditary in A4, B® mindo is full and hereditary in B® pinA. Thus ker(n ® minid,4) is
generated by its intersection with B®& ninAdo, wWhich is 7 ® mindo by the exactness of
Ay. Hence we get ker(n ® pminid4) = I @ minA4. We are done. O

Remark A.11. We can prove Proposition A.10 by using Proposition A.8 together
with the deep fact that a C*-algebra is exact if and only if its one (or all) faithful
representation is nuclear due to Kirchberg [Ki]. We can also prove Proposition A.10
in a similar way to the proof of Proposition B.3.

The above investigation of hereditary C*-subalgebras can be extended to other
classes of C*-subalgebras. In Section 7, we just need the following two results.
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Proposition A.12. Let o:GrvA be an action of a compact group G on a
C*-algebra A. Let ¢ : D— A be a x-homomorphism whose image is contained in the
fixed point algebra A* of o. Then the restriction ¢, : D— A* is nuclear if and only if ¢
is nuclear.

Proof. Similar as the proof of Proposition A.7 [

Proposition A.13. Let o.: G~ A be an action of a compact group G on a C*-algebra A.
Then A is nuclear or exact if and only if the fixed point algebra A* is also.

Proof. For nuclearity, it was proved in [DLRZ, Proposition 2]. It was pointed out by
Narutaka Ozawa that the technique in [DLRZ] works for exactness. We will sketch
his argument.

When A4 is exact, A* is exact. Assume that 4* is exact. Take a short exact sequence
of C*-algebras:

n

0O — I — B = D — 0.

Let us take a positive element x of ker(n ® minid4). To derive a contradiction, we
assume x ¢/ ® nmind. Then we can find a state ¢ of B&® ,inA4 such that ¢ vanishes on
I ®mind and @(x)>0. We set xy = fG idp ® min®-(x) dz where dz is the normalized
Haar measure of G. Then we see xo€ B® nmind*. We have

(TC ® minidA“)(XO) = / & minidA (ldB ® min %z (X)) dz
G

= / idD®minfxz(7'l:(@minidﬂA (x)) dz =0.
G
Since A* is exact, we have xg€l ® minA*. This leads a contradiction as

0=0p(x) = /G(p(id3®minocz(x)) dz>0.

Therefore we have xe I ® A for all positive element x of ker(n ® mipid4). Thus we
have shown ker (7 ® minid4) = I ® mind. This implies that A4 is exact. O

Appendix B. On linking algebras

Definition B.1. Let 4 be a C*-algebra and X be a Hilbert 4-module. The C*-algebra
H (X @A) is called the linking algebra of X, and denoted by Dy.



394 T. Katsura | Journal of Functional Analysis 217 (2004) 366401

Since #'(A,X)=X and #(4)=~A naturally, we have the following matrix

representation of Dy:
H(X) X
DX = > 3
X A

where X = #° (X, A) is the dual left Hilbert 4-module of X. The natural embeddings
are denoted by

l,%(X)I%(X)(—)Dx, 1y : XS Dy, and 14:AS Dy

Both maps 14 and 1y, are injective x-homomorphisms onto corners of Dy. The C*-
subalgebra A4 of Dy is always full, but #°(X) is full in Dy only in the case that X is a
full Hilbert 4-module.

Lemma B.2. Let A be a C*-algebra and X be a Hilbert A-module. For separable
subsets Ayc A and Xo< X, there exist a separable C*-subalgebra A ., = A containing
Ay and a separable closed subspace X, of X containing Xy such that X , is a Hilbert
A o -module by restricting the operations of X .

Proof. Let A; be the C*-algebra generated by A4y + <{ Xy, Xp>y. We set X| =
span(Xy + XoA4p) which is a closed subspace of X. We inductively define families of
separable C*-subalgebras {4,},”, of 4 and separable closed subspaces {X,,},~, of X
so that A4,.; is a C*-algebra generated by 4, + {(X,, X, )y, and that X, =
span(X, + X,4,). We set Ay, =,y 4n and Xoo = J,cpn Xu- Then A4, is a
separable C*-subalgebra of 4 containing A4y, and X, is a separable closed subspace
of X containing X,. By the construction, we have X, ,4,<X, and
{Xp,Xp)y<Ay,. Hence X, is a Hilbert 4, -module. O

Proposition B.3. For a C*-algebra A and a Hilbert A-module X, the inclusion
14: A—> Dy induces an isomorphism on the K-groups.

Proof. When both 4 and X are separable, [B, Corollary 2.6] gives us an isometry v in
the multiplier algebra #(Dy @minK) of Dy ®minlK such that @: Dy ® nin
Kax—uxvr*e AQ min K is an isomorphism, where K is the C*-algebra of the
compact operators on the infinite-dimensional separable Hilbert space. Since
the composition of the isomorphism ¢ and the inclusion 14® pinidi:
A@ minK— Dy ® minK induces an identity on the K-groups of Dy @ minK (see,
for example, [HR, Lemma 4.6.2]), the inclusion 14 ® ninidk induces an isomorphism
on the K-groups. Hence the inclusion 14 : A— Dy also induces an isomorphism on
the K-groups.

Now let 4 be a general C*-algebra and X be a general Hilbert 4-module. By
Lemma B.2, the set of the pairs (4, X;) consisting of separable C*-subalgebras A, of
A and separable closed subspaces X; of X such that X, are Hilbert 4;-modules is
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upward directed with respect to the inclusions, and satisfies 4 = J, 4;, X =, X.
We have A~ lim 4, and Dy = lim Dy,. By the first part of this proof, the inclusion

14, : A;— Dy, induces an isomorphism on the K-groups for all 4. Thus the inclusion
14 : A—> Dy also induces an isomorphism on the K-groups. [

Remark B.4. Let 4 be a C*-algebra and X be a Hilbert A-module. By Proposition
B.3, we can define a map X, :K.(#(X))—K.(4) by the composition of the
map (iy(x)), : Ki(#'(X))—K.(Dy) and the inverse of the isomorphism
(14), : Ki(4)—K,.(Dy). This map is the same map as the one defined in [E,
Definition 5.1].

Proposition B.S. Let A, B be C*-algebras, and 1: A—B be an injective *-
homomorphism onto a hereditary and full C*-subalgebra of B. Then 1, is an
isomorphism from K,(A) to K,.(B).

Proof. The proof goes the same way as the proof of [B, Corollary 2.10] with the help
of Proposition B.3. O

Remark B.6. Let A, B be strongly Morita equivalent C*-algebras. Then there exists a
C*-algebra D which contains 4 and B as full and hereditary C*-subalgebras. Hence
we see that the K-groups of 4 and B are isomorphic by Proposition B.5, and that 4 is
nuclear or exact if and only if B is also by Corollary A.9 and Proposition A.10.

We use the two propositions below in Section 7.

Proposition B.7. Let A be a C*-algebra and X be a Hilbert A-module. If A is nuclear
or exact, then A (X) is also.

Proof. Since A is a hereditary and full C*-subalgebra of Dy, if 4 is nuclear or exact
then Dy is also by Corollary A.9 and Proposition A.10. Now the conclusion follows
from the fact that #°(X) is a hereditary C*-subalgebra of Dy. O

Proposition B.8. Let A and B be C*-algebras, X be a Hilbert A-module, and Y be a
Hilbert B-module. Let 7 : A— B be a x-homomorphism and t : X — Y be a linear map
satisfying {t(&),t(n) >y = n({& n) y) for &, neX. We can define a x-homomorphism
Vo H(X)—H(Y) by ¥, (0cy) = Oye) 1y for E,ne X. Then the nuclearity of n implies
the nuclearity of ,.

Proof. For the well-definedness of ,, see [KPW, Lemma 2.2]. We can define a *-
homomorphism p:Dy—Dy so that poiy = 1pom, peixy =1yt and poiy(x) =
Ly(yyey,. Since 4 is a hereditary and full C*-subalgebra of Dy, the nuclearity of
implies the nuclearity of p by Proposition A.8. Since #'(Y) is a hereditary C*-
subalgebra of Dy, the nuclearity of p implies the nuclearity of i, by Proposition A.7.
We are done. [
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Appendix C. A proof of Proposition 8.2

In this appendix, we give a K-theoretical proof of Proposition 8.2. In [P,
Theorem 4.4], Pimsner used KK-theory to prove this proposition under some
hypotheses, one of which is that both 4 and X are separable. What we will do here is
to get rid of KK-theory from the proof of [P, Theorem 4.4] so that we can prove this
proposition without the assumption of separability. We first prepare some notation
and results which we will need.

Definition C.1. For a C*-algebra A4, we define SA = Cy((0,1), 4), which we often
consider as a set of functions in Cy((—1,1),4) vanishing on (—1,0]. For a *-
homomorphism ¢:A4—B, we denote by S¢:S4—SB the x-homomorphism
defined by So(f)(s) = @(f(s)) for f€SA4 and s€(0,1).

Definition C.2. For a C*-algebra A and an ideal I of A, we define a C*-algebra
D(1,4) by

D(I,4) ={feCo((—1,1),4) | f(s) —f(—s)el for all se(—1,1)}.
We denote by 1 the natural embedding ST—D(I, A).

Lemma C.3. The x-homomorphism 1:SI—D(I,A) induces an isomorphism
1. K (SI)—K,(D(I, 4)).

Proof. Let us define a x-homomorphism =n:D(I,4)—Cy((—1,0],4) by the
restriction. Then 7 is surjective and its kernel is S/. Hence we have the following
short exact sequence:

1 n

0 — SI 5% DIA) 5 C(-1,0,4) — o.

The conclusion follows from the 6-term exact sequence of K-groups associated with
this short exact sequence together with the fact K.(Cy((—1,0],4)) =0. O

Definition C.4. Let 4, B be C*-algebras, and [/ be an ideals of 4. For two x-
homomorphisms p_, p_ : B—A such that p_ (b) — p_(b) 1 for all be B, we define a
k-homomorphisms p : SB—D(I, A) by

pi(f(s)) if 5>0,

p(f)(s) = {p_(f(_s)) if $<0,
for feSB.

Lemma C.5. When p, = p_, the x-homomorphism p : SB— D(I, A) in Definition C.4
induces 0 on K-groups.
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Proof. When p, = p_, the x-homomorphism p factors through the x-homomorph-
ism o : Cy([0,1),4)—D(I, A) defined by

f(s) if =0,
a(/)(s) = {f(—s) if <0,

for f e Cy([0,1), A). Since K.(Cy([0,1),4)) =0, we have p, =0. O

Lemma C.6. For j = 1,2, let A; be a C*-algebra, and I; be an ideal of A;. For a *-
homomorphism ¢ : Ay—A, with ¢o(I})<=h, we can define a x-homomorphism
Do :D(I,,A))—D(Ih,Ay) by Do(f)(s) = o(f(s)), and we get a commutative
diagram:

Proof. Straightforward. O

We go back to the proof of Proposition 8.2. We first treat the case that the C*-
correspondence X is non-degenerate. Let us take a C*-algebra 4 and a non-
degenerate C*-correspondence X.

Let (¢ ,7x) be the Fock representation of X on Z(Z(X)). We denote by
P4 T x—ZL(F (X)) the x-homomorphism such that p oy = ¢ and p ofy =
T. We define a s-homomorphism ¢_ :4—%(% (X)) and a linear map
1, X—L(F (X)) by

8

P(a) =)  onla), 1

m=1

8 |

©=3 0.

1

Similarly as the proof of Proposition 4.3, we see that (¢ , 7., ) is a representation of
X. Hence there exists a x-homomorphism p_: 7 y— % (% (X)) such that p_o7ty =
¢, and p_ofy =1_.

Lemma C.7 ([P, Lemma 42]). For every xeJyx, we have p_ (x)—
p_(x) A (F(X)).

Proof. Since .7 x is generated by the image of the two maps 7y and 7y, it suffices to
show this lemma when x€J y is in the image of these maps. For ae A, we have

p(Tx(@)) — p_(7x(a)) = @o(a) e A (F (X)),
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and for € X, we have

We are done. [

Let us set D= D(# (7 (X)), (7 (X))). By Lemma C.7, we can define a x-
homomorphism p: S y—D by

p+(f(s)) if 520,

p(f)(s) = {p_(f(s)) if §<0.

Lemma C.8. The s-homomorphism S¢,:SA—D induces an isomorphism on the
K-groups.

Proof. This follows from the fact that ¢,: A— (% (X)) is an injection onto a
hereditary and full C*-subalgebra of #'(# (X)) with the help of Proposition B.5 and
Lemma C.3. O

Proposition C.9. The composition of Sty : SA— ST x and p: ST x— D induces an
isomorphism on the K-groups.

Proof. Since we have p_ oy = @, + p_omTx, we can see that the composition poS7y
induces the same map as S¢, with the help of Lemma C.5. Hence the proof
completes by Lemma C.8. [

Proposition C.9 implies that p, is ‘“the Ileft inverse” of the map
(Stty), : Ki(SA)— K, (ST x) modulo the isomorphism (S¢,),. We will show that
it is also “‘the right inverse”. To this end, we first ““shift” the s#-homomorphism
Sty : SA— S y along the x-homomorphism S¢,: S4A—D (see Lemma C.15).

Definition C.10. For each neN, we set Y, = span(7%(X®")7 y)<=7 y, which is
naturally a Hilbert 7 y-module. We denote by Y the direct sum of the Hilbert 7 y-
modules {Y,},,.

Remark C.11. The Hilbert 7 y-module Y is isomorphic to the interior tensor
product of the Hilbert 4-module % (X) and the Hilbert 7 y-module 7 x with the *-
homomorphism 7y : A—7 y.

The linear maps 7% : X®"—Y, extend a linear map 75 : % (X)—Y. By the
definition, we get Y =span(7%(#(X))J x). We also have <{(7%(&),75(n))>y =
Tx (& n) 7(x)) for all &, ne F(X).
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Definition C.12. We define a *-homomorphism ¢: % (% (X))sT—&(T)e £ (Y) by
O(T)(F (&)%) = B (T(E)x for Ee#(X) and xeTy.
It is not difficult to see that @ is well defined.
Lemma C.13. We have ®(A(F (X))) = H (Y).

Proof. This follows from the fact that @(0;,) = 0% (&), () for &, ne 7 (X), which is
easily verified. [

We define D= D(A(Y),#(Y)). By Lemma C.13, we can define a x-

homomorphism D@ : D—D. Since we assume that X is non-degenerate, we have
Yy = 7 x. Hence the natural isomorphism 7 y~#(Yy)c A (Y) gives us a x-
homomorphism ¢, : 7 y— A (Y).

Lemma C.14. The x-homomorphism S¢: ST y—D induces an isomorphism on the
K-groups.

Proof. Similar as the proof of Lemma C.8. [

Lemma C.15. We have the following commutative diagram:
SA S STy

lb‘w lsﬁo

D D& ~

D,
Proof. Straightforward. [

Proposition C.16. The composition of p:ST y—D and D®:D—D induces an
isomorphism on the K-groups.

Proof. We set n = @ogp_, : A—F(Y). For each se(0, 1], we define a linear map
ty: X—Z(Y) by

(&) = 5o(Tx (€)) + V1 = $2®(1(€)) + D(z, (£)).

It is routine to check that the pair (7, #,) is a representation of X. Thus we get a *-
homomorphism p,: 7 y— % (Y) such that p,oTy = 7 and p,ofy = t, for each 5. We
have p, = ®op, because f) = Pot,,. We also have p; = ¢, + Pop_ because 1| =
Qoly + Pot, and 7 = @yofty + Pop . For €X and se(0,1], we have #,(&) —
D(1, (&))eA (Y) because @y(7x(&)), P(td(E))e# (Y). Since we have n(a)—
D(p, (a)) = @y(Tx(a))ex (Y), we can prove py(x) —P(p_(x))ex (Y) for all
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x€J x and s€[0, 1] in a similar way to the proof of Lemma C.7. Hence we can see
that the composition of D®-p is homotopic to the x-homomorphism S~ y—D
defined from the two x-homomorphisms S¢, + S®-p_ and SP-p_. By Lemma C.5,
we see that D®op induces the same map as S¢,. Hence the proof completes by
Lemma C.14. O

Combining all the results above, we obtain that the composition of the map
p. K.(ST y)—K,(D) and the isomorphism (S¢,)." : K.(D)—K.(SA) gives the
inverse of the map (S7y),:K.(SA)—K.(S7 x). Hence we have shown that
(Tx), : K.(4)—K.(7 x) is an isomorphism when the C*-correspondence X is non-
degenerate. We will see that this is the case for general C*-correspondences.

Let us take a C*-correspondence X over a C*-algebra 4. We define

T =span(iiy(A4)7 xiix(A4)),

which is the hereditary C*-subalgebra of 7 y generated by 7y(A). Since the ideal
generated by 7y(4) is J y, Proposition B.5 shows that the inclusion T 7 y
induces an isomorphism on the K-groups. Hence to prove that the x-homomorphism
iy : A—J y induces an isomorphism on the K-groups, it suffices to show that the
x-homomorphism 7Ty : 4— T induces an isomorphism on the K-groups. This can be
shown by applying the discussion above to the non-degenerate C*-correspondence in
the next lemma.

Lemma C.17. Let us set X' =3span(¢y(A4)X) which is a non-degenerate C*-
correspondence over A. Then there exists an isomorphism p:J y—T such that
poﬁX/ = ﬁX

Proof. Let us set © = Ty and define a linear map ¢: X'— 7 y as the restriction of 7y
to X'. It is easy to see that the pair (7, ¢) is a representation of X’. Hence we have a *-
homomorphism p: .7 y»—7 yx. It is clear that the gauge action of J y is a gauge
action for the representation (7, ¢). It is also clear that {ae 4| n(a)ey, (A (X))} =
0. Hence p is injective by Theorem 6.2. Finally, it is not difficult to see that the image
ofpisT. O

This completes the proof of Proposition 8.2.
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