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Abstract

We study C�-algebras arising from C�-correspondences, which were introduced by the
author. We prove the gauge-invariant uniqueness theorem, and obtain conditions for our

C�-algebras to be nuclear, exact, or satisfy the Universal Coefficient Theorem. We also obtain
a 6-term exact sequence of K-groups involving the K-groups of our C�-algebras.
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0. Introduction

In [Ka2], we introduce a method to construct C�-algebras from C�-correspon-
dences. This construction is similar to the one of Cuntz–Pimsner algebras [P], and in
fact these two constructions coincide when the left action of a given C�-
correspondence is injective. However, when the left action of a C�-correspondence
is not injective, our construction differs from the one in [P]. Our construction of C�-
algebras from C�-correspondences whose left actions are not injective is motivated
by the constructions of graph algebras of graphs with sinks in [FLR], C�-algebras
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from topological graphs in [Ka1], and crossed products by Hilbert C�-bimodules in
[AEE]. In fact, our construction generalizes all of these constructions. In our next
paper [Ka3], we will explain that our C�-algebras have a nice property which crossed
products by automorphisms also have.
In this paper, we prove several theorems on our C�-algebras, which generalize or

improve known results on Cuntz–Pimsner algebras or other classes of C�-algebras.
After preliminaries of C�-correspondences and their representations in Sections 1
and 2, we give definitions of our C�-algebrasTX and OX for a C�-correspondence X

in Section 3. Sections 4 and 5 are preparatory sections for our main theorems. In
Section 4, we review constructions of Fock spaces and Fock representations. Most of
the results in this section have been already known. In Section 5, we analyze so-called
cores. Main theorems can be found in Sections 6–8. In Section 6, we present self-
contained proofs of the gauge-invariant uniqueness theorems of our C�-algebras.
This theorem will play an important role in the analysis of their ideals in [Ka3]. In
Section 7, we give necessary and sufficient conditions for our C�-algebras to be
nuclear or exact. In Section 8, we obtain a 6-term exact sequence of K-groups which
seems to be helpful to compute K-groups of our C�-algebras. We also give a
sufficient condition for our C�-algebras to satisfy the Universal Coefficient Theorem
of [RS].
We denote by N ¼ f0; 1; 2;yg the set of natural numbers, and by T the

group consisting of complex numbers whose absolute values are 1: We use a
convention that gðA;BÞ ¼ fgða; bÞAD j aAA; bABg for a map g :A � B	!D such as
inner products, multiplications or representations. We denote by spanf?g the
closure of linear spans of f?g: An ideal of a C�-algebra means a closed two-sided
ideal.

1. C�-Correspondences

We use [L2] for the general reference of Hilbert C�-modules and
C�-correspondences.

Definition 1.1. Let A be a C�-algebra. A (right) Hilbert A-module X is a Banach
space with a right action of the C�-algebra A and an A-valued inner product
/�; �SX :X � X	!A satisfying certain conditions.

Recall that a Hilbert A-module X is said to be full if span/X ;XSX ¼ A: We do
not assume that Hilbert C�-modules X are full. For a C�-algebra A; A itself is a
Hilbert A-module where the inner product is defined by /x; ZSA ¼ x�Z; and the right
action is multiplication.

Definition 1.2. For Hilbert A-modules X ;Y ; we denote by LðX ;YÞ the
space of all adjointable operators from X to Y : For xAX and ZAY ; the
operator yZ;xALðX ;YÞ is defined by yZ;xðzÞ ¼ Z/x; zSXAY for zAX : We
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define KðX ;Y ÞCLðX ;Y Þ by

KðX ;Y Þ ¼ spanfyZ;xALðX ;Y Þ j xAX ; ZAYg:

For a Hilbert A-module X ; we set LðXÞ ¼ LðX ;XÞ; which is a C�-algebra, and
KðXÞ ¼ KðX ;XÞ; which is an ideal of LðXÞ:

Definition 1.3. For a C�-algebra A; we say that X is a C�-correspondence over A

when X is a Hilbert A-module and a �-homomorphism jX :A	!LðXÞ is given.

We refer to jX as the left action of a C�-correspondence X : A C�-correspondence
X over A is said to be non-degenerate if spanðjX ðAÞXÞ ¼ X :We do not assume that
C�-correspondences are non-degenerate.
Let A be a C�-algebra. We can define a left action of the C�-algebra A on the

Hilbert A-module A by the multiplication. Thus we get a C�-correspondence over A;
which is called the identity correspondence over A and denoted by A: Note that the
left action jA of the identity correspondence A gives an isomorphism from A onto
KðAÞCLðXÞ:

Definition 1.4. Let X ;Y be C�-correspondences over a C�-algebra A: We denote by
X}Y the quotient of the algebraic tensor product of X and Y by the subspace
generated by ðxaÞ#Z	 x#ðjY ðaÞZÞ for xAX ; ZAY and aAA:We can define an A-
valued inner product, right and left actions of A on X}Y by

/x#Z; x0#Z0SX#Y ¼ /Z;jY ð/x; x0SX ÞZ0SY ;

ðx#ZÞa ¼ x#ðZaÞ; jX#Y ðaÞðx#ZÞ ¼ ðjX ðaÞxÞ#Z;

for x; x0AX ; Z; Z0AY and aAA: One can show that these operations are well defined
and extend to the completion of X}Y with respect to the norm coming from the
A-valued inner product defined above (see [L2, Proposition 4.5]). Thus the
completion of X}Y is a C�-correspondence over A: This C�-correspondence is
called the tensor product of X and Y ; and denoted by X#Y :

By definition, we have

X#Y ¼ spanfx#Z j xAX ; ZAYg;

and ðxaÞ#Z ¼ x#ðjY ðaÞZÞ for xAX ; ZAY and aAA:

Definition 1.5. For a C�-correspondence X over a C�-algebra A and nAN; we define

a C�-correspondence X#n over A by X#0 ¼ A; X#1 ¼ X ; and X#ðnþ1Þ ¼ X#X#n

for nX1:
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For each nAN; the left action jX#n of the C�-correspondence X#n will be simply

denoted by jn :A	!LðX#nÞ: For a positive integer n; we have

X#n ¼ spanfx1#x2#?#xn j x1; x2;y; xnAXg:

Note that for positive integers n;m; there exists a natural isomorphism between

X#n#X#m and X#ðnþmÞ:We have such isomorphisms for m ¼ 0; but for n ¼ 0 we

just get an injection X#0#X#m	!X#m: When X is non-degenerate, this injection
is actually an isomorphism, but it is not surjective in general.

Definition 1.6. Let n be a positive integer, and take SALðX#nÞ: For each mAN; we

define S#idmALðX#ðnþmÞÞ by ðS#idmÞðx#ZÞ ¼ SðxÞ#Z for xAX#n and

ZAX#m:

We note that S#id0 ¼ S: The �-homomorphism LðX#nÞ{S/S#idmAL

ðX#ðnþmÞÞ is injective when jX is injective, but this is not the case in general. When

X is non-degenerate, we can define S#idnALðX#nÞ for SALðX#0Þ and nX1

because X#0#X#nDX#n: In this case, we have a#idn ¼ jnðaÞ for

aAADKðX#0Þ: By abuse of notation, for aAADKðX#0Þ we use the notation
a#idn for denoting jnðaÞALðX#nÞ even though X is degenerate. Note that we

cannot define S#idnALðX#nÞ for SALðX#0Þ in general. In other words, the �-
homomorphism jn :A	!LðX#nÞ need not extend to a �-homomorphism
MðAÞ	!LðX#nÞ unless X is non-degenerate.

Definition 1.7. Let us take xAX#n with nAN: For each mAN; we define an operator

tn
mðxÞALðX#m;X#ðnþmÞÞ by

tn
mðxÞ :X#m{Z/x#ZAX#ðnþmÞ:

Note that for aAA ¼ X#0; we have t0mðaÞ ¼ jmðaÞALðX#mÞ for each mAN:

Note also that tn
0 :X

#n	!LðX#0;X#nÞ is an isometry onto KðX#0;X#nÞ for
each nAN: The adjoint tn

mðxÞ
�ALðX#ðnþmÞ;X#mÞ of tn

mðxÞ satisfies that

tn
mðxÞ

�ðz#ZÞ ¼ jmð/x; zSX#nÞZ for zAX#n; ZAX#m: It is not difficult to see the
following two lemmas.

Lemma 1.8. For n1; n2;mAN and x1AX#n1 ; x2AX#n2 ; we have

tn1
n2þmðx1Þtn2

m ðx2Þ ¼ tn1þn2
m ðx1#x2Þ in LðX#m;X#ðn1þn2þmÞÞ:

Lemma 1.9. For n;mAN; x; ZAX#n and aAA; we have the following:

(i) tn
mðxÞtn

mðZÞ
� ¼ yx;Z#idm in LðX#ðnþmÞÞ;

(ii) tn
mðxÞ

�tn
mðZÞ ¼ jmð/x; ZSX#nÞ in LðX#mÞ;
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(iii) tn
mðxÞjmðaÞ ¼ tn

mðxaÞ in LðX#m;X#ðnþmÞÞ;
(iv) jnþmðaÞtn

mðxÞ ¼ tn
mðjnðaÞxÞ in LðX#m;X#ðnþmÞÞ:

2. Representations of C�-correspondences

Definition 2.1. A representation of a C�-correspondence X over A on a C�-algebra B

is a pair consisting of a �-homomorphism p :A	!B and a linear map t :X	!B

satisfying

(i) tðxÞ�tðZÞ ¼ pð/x; ZSX Þ for x; ZAX ;
(ii) pðaÞtðxÞ ¼ tðjX ðaÞxÞ for aAA; xAX :

We denote by C�ðp; tÞ the C�-algebra generated by the images of p and t in B:

A representation of a C�-correspondence was called an isometric covariant
representation in [MS]. Note that for a representation ðp; tÞ of X ; we have tðxÞpðaÞ ¼
tðxaÞ automatically because the condition (i) above, combining with the fact that p is
a �-homomorphism, implies

jjtðxÞpðaÞ 	 tðxaÞjj2 ¼ jjðtðxÞpðaÞ 	 tðxaÞÞ�ðtðxÞpðaÞ 	 tðxaÞÞjj ¼ 0:

Note also that for xAX ; we have jjtðxÞjjpjjxjjX because

jjtðxÞjj2 ¼ jjtðxÞ�tðxÞjj ¼ jjpð/x; xSX Þjjpjj/x; xSX jj ¼ jjxjj2X :

Definition 2.2. A representation ðp; tÞ is said to be injective if a �-homomorphism p is
injective.

By the above computation, we see that t is isometric for an injective representation
ðp; tÞ:

Definition 2.3. For a representation ðp; tÞ of a C�-correspondence X on B; we define

a �-homomorphism ct :KðX Þ	!B by ctðyx;ZÞ ¼ tðxÞtðZÞ�AB for x; ZAX :

For the well-definedness of a �-homomorphism ct; see, for example, [KPW,
Lemma 2.2]. The following lemma is easily verified.

Lemma 2.4. For a representation ðp; tÞ of a C�-correspondence X over A;
we have pðaÞctðkÞ ¼ ctðjX ðaÞkÞ and ctðkÞtðxÞ ¼ tðkxÞ for aAA; xAX and

kAKðX Þ:

By this lemma, we see that ct is injective for an injective representation ðp; tÞ:
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Definition 2.5. Let ðp; tÞ be a representation of X : We set t0 ¼ p and t1 ¼ t: For

n ¼ 2; 3;y; we define a linear map tn :X#n	!C�ðp; tÞ by tnðx#ZÞ ¼ tðxÞtn	1ðZÞ for
xAX and ZAX#ðn	1Þ:

It is routine to see that tn is well defined and that ðp; tnÞ is a representation of the
C�-correspondence X#n: Hence we can define ctn :KðX#nÞ	!C�ðp; tÞ by

ctnðyx;ZÞ ¼ tnðxÞtnðZÞ� for x; ZAX#n: Note that tn and ctn are isometric if ðp; tÞ is
an injective representation.

Lemma 2.6. Let ðp; tÞ be a representation of X : Take xAX#n and ZAX#m for

n;mAN with nXm: Then we have tmðZÞ�tnðxÞ ¼ tn	mðzÞ where z ¼
tm

n	mðZÞ
�xAX#ðn	mÞ:

Proof. When m ¼ 0; this follows from the fact that ðp; tnÞ is a representation of the
C�-correspondence X#n: Let m be a positive integer. We may assume x ¼ Z0#z0 for
Z0AX#m and z0AX#ðn	mÞ because the linear span of such elements is dense in X#n:
We have

tmðZÞ�tnðxÞ ¼ tmðZÞ�tmðZ0Þtn	mðz0Þ

¼ pð/Z; Z0SX#mÞtn	mðz0Þ

¼ tn	mðjn	mð/Z; Z0SX#mÞz0Þ:

On the other hand, we get

tm
n	mðZÞ

�x ¼ tm
n	mðZÞ

�ðZ0#z0Þ ¼ jn	mð/Z; Z0SX#mÞz0:

We are done. &

Proposition 2.7. For a representation ðp; tÞ of X ; we have

C�ðp; tÞ ¼ spanftnðxÞtmðZÞ� j xAX#n; ZAX#m; n;mANg:

Proof. Clearly, the right-hand side is a closed �-invariant linear space which contains
the images of p and t; and is contained in C�ðp; tÞ: Hence all we have to do is to
check that this set is closed under the multiplication, and this follows from
Lemma 2.6. &

3. C�-algebras associated with C�-correspondences

In this section, we give definitions of the C�-algebras TX and OX for a C�-
correspondence X :
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Definition 3.1. Let X be a C�-correspondence over a C�-algebra A: We denote by
ð %pX ; %tX Þ the universal representation of X ; and set TX ¼ C�ð %pX ; %tX Þ:

The universal representation ð %pX ; %tX Þ can be obtained by taking a direct sum of
sufficiently many representations. By the universality, for every representation ðp; tÞ
of X we have a surjection r :TX	!C�ðp; tÞ with p ¼ r3 %pX and t ¼ r3%tX : This
surjection will be called a natural surjection.

Definition 3.2. For a C�-correspondence X over A; we define an ideal JX of A by

JX ¼j	1
X ðKðX ÞÞ-ðker jX Þ

>

¼faAA j jX ðaÞAKðXÞ and ab ¼ 0 for all bAker jXg:

Note that JX ¼ j	1
X ðKðXÞÞ when jX is injective. The ideal JX is the largest ideal

to which the restriction of jX is an injection into KðXÞ: The ideal JX has the
following property.

Proposition 3.3. Let X be a C�-correspondence over a C�-algebra A; and ðp; tÞ be an

injective representation of X : If aAA satisfies pðaÞActðKðXÞÞ; then we have aAJX

and pðaÞ ¼ ctðjX ðaÞÞ:

Proof. Take aAA with pðaÞActðKðXÞÞ: Let kAKðXÞ be an element with pðaÞ ¼
ctðkÞ: For each xAX ; we have

tðjX ðaÞxÞ ¼ pðaÞtðxÞ ¼ ctðkÞtðxÞ ¼ tðkxÞ:

Since t is injective, we have jX ðaÞx ¼ kx for every xAX : This implies that jX ðaÞ ¼
kAKðX Þ: Thus we get pðaÞ ¼ ctðjX ðaÞÞ: Take bAker jX and we will show that
ab ¼ 0: We get

pðabÞ ¼ pðaÞpðbÞ ¼ ctðjX ðaÞÞpðbÞ ¼ ctðjX ðaÞjX ðbÞÞ ¼ 0:

Since p is injective, we obtain ab ¼ 0 as desired. Thus aAJX : &

The above proposition motivates the following definition.

Definition 3.4. A representation ðp; tÞ is said to be covariant if we have pðaÞ ¼
ctðjX ðaÞÞ for all aAJX :

Definition 3.5. For a C�-correspondence X over a C�-algebra A; the C�-algebra OX

is defined by OX ¼ C�ðpX ; tX Þ where ðpX ; tX Þ is the universal covariant representa-
tion of X :
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By the universality, for each covariant representation ðp; tÞ of a C�-correspon-
dence X ; there exists a natural surjection r : OX	!C�ðp; tÞ satisfying p ¼ r3pX and
t ¼ r3tX :
The construction of C�-algebras OX from C�-correspondences X generalizes both

the one in [P] for C�-correspondences with injective left actions and the one in [AEE]
for C�-correspondences coming from Hilbert C�-bimodules. This is also a
generalization of the construction of graph algebras [FLR,KPR,KPRR] and more
generally C�-algebras arising from topological graphs [Ka1]. For the detail, see
[Ka2].

4. The Fock representation

In this section, we construct a representation of a given C�-correspondence, which
is called the Fock representation. The Fock representation is injective, and from this
we get an injective covariant representation. Most of the results in this section can be
found in [MS] or [P]. We will need them in Sections 7 and 8. For the convenience of
the readers, we give complete proofs.

Definition 4.1. The Hilbert A-module FðXÞ; obtained as the direct sum of the

Hilbert A-modules X#0;X#1;y; is called the Fock space of X :

We consider X#n as a submodule of FðXÞ for each nAN: For n;mAN; we

consider the space LðX#n;X#mÞ of adjointable operators from X#n to X#m as a
subspace of LðFðX ÞÞ:

Definition 4.2. We define a �-homomorphism j
N
:A	!LðFðXÞÞ and a linear map

tN :X	!LðFðX ÞÞ by

j
N
ðaÞ ¼

XN
m¼0

jmðaÞ; tNðxÞ ¼
XN
m¼0

t1mðxÞ;

for aAA and xAX ; where we always use the strong topology for the infinite sum of
elements in LðFðX ÞÞ:

Proposition 4.3 ([P, Proposition 1.3]). The pair ðj
N
; tNÞ is an injective representa-

tion of X on LðFðXÞÞ:

Proof. By taking n ¼ 1 in Lemma 1.9 (ii) and (iv), we see that ðj
N
; tNÞ is a

representation of X : It is injective because j0 :A	!LðX#0Þ is an isomorphism onto
KðX#0Þ: &

This representation ðj
N
; tNÞ is called the Fock representation. From the Fock

representation ðj
N
; tNÞ; we can define a linear map tn

N
:X#n	!LðFðXÞÞ for each
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nAN as in Definition 2.5. It is easy to see that tn
N
ðxÞ ¼

P
N

m¼0t
n
mðxÞ for xAX#n and

nAN:

Proposition 4.4. For aAJX ; we have

j
N
ðaÞ 	 ctNðjX ðaÞÞ ¼ j0ðaÞALðX#0ÞCLðFðXÞÞ:

Proof. For x; ZAX ; we have ctNðyx;ZÞ ¼
P

N

m¼1 yx;Z#idm	1 by Lemma 1.9(i). Hence

we have ctNðkÞ ¼
P

N

m¼1 k#idm	1 for all kAKðX Þ: Therefore we obtain

j
N
ðaÞ 	 ctNðjX ðaÞÞ ¼

XN
m¼0

jmðaÞ 	
XN
m¼1

jX ðaÞ#idm	1 ¼ j0ðaÞ

because jmðaÞ ¼ jX ðaÞ#idm	1 for mX1: &

Corollary 4.5. If aAA satisfies j
N
ðaÞActNðKðX ÞÞ; then a ¼ 0:

Proof. For aAA with j
N
ðaÞActNðKðXÞÞ; we have aAJX and j

N
ðaÞ ¼ ctNðjX ðaÞÞ

by Proposition 3.3. By Proposition 4.4, we get j0ðaÞ ¼ j
N
ðaÞ 	 ctNðjX ðaÞÞ ¼ 0:

Thus we obtain a ¼ 0 because j0 is injective. &

The set FðX ÞJX is a Hilbert JX -module [Ka3, Corollary 1.4], and we have

KðFðX ÞJX Þ ¼ spanfyxa;ZAKðFðXÞÞ j x; ZAFðXÞ; aAJXg;

which is an ideal of LðFðXÞÞ: We see that kAKðFðXÞÞ is in KðFðXÞJX Þ if and
only if /x; kZSAJX for all x; ZAFðXÞ (see [FMR, Lemma 2.6] or [Ka3, Lemma
1.6]).

Proposition 4.6. We have KðFðXÞJX ÞCC�ðj
N
; tNÞ:

Proof. For xAX#n; ZAX#m and aAJX ; we have

yxa;Z ¼ tn
N
ðxÞj0ðaÞtm

N
ðZÞ�

¼ tn
N
ðxÞðj

N
ðaÞ 	 ctNðjX ðaÞÞÞtm

N
ðZÞ�AC�ðj

N
; tNÞ

by Proposition 4.4. Hence KðFðXÞJX ÞCC�ðj
N
; tNÞ: &

Let s :LðFðXÞÞ	!LðFðX ÞÞ=KðFðX ÞJX Þ be the quotient map, and set j ¼
s3j

N
and t ¼ s3tN: By Proposition 4.4, ðj; tÞ is a covariant representation of X on

LðFðXÞÞ=KðFðXÞJX Þ: We will see that this representation ðj; tÞ is injective.

Lemma 4.7. For nX1; the restriction of the �-homomorphism LðX#nÞ{
S/S#id1ALðX#ðnþ1ÞÞ to KðX#nJX Þ is injective.
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Proof. Take kAKðX#nJX Þ with k#id1 ¼ 0: Then for all x; x0AX#n and all
Z; Z0AX ; we have

0 ¼ /x#Z; ðk#id1Þðx0#Z0ÞSX#ðnþ1Þ ¼ /Z;jX ð/x; kx0SX#nÞZ0SX :

Hence we have jX ð/x; kx0SX#nÞ ¼ 0 for all x; x0AX#n: Since kAKðX#nJX Þ; we
have /x; kx0SX#nAJX : Thus /x; kx0SX#n ¼ 0 for all x; x0AX#n because jX is
injective on JX : Therefore we get k ¼ 0: Thus the restriction of the map S/S#id1
to KðX#nJX Þ is injective. &

Lemma 4.8. For aAA; j
N
ðaÞAKðFðX ÞÞ implies limn	!NjjjnðaÞjj ¼ 0:

Proof. For each nAN; let PnALðFðXÞÞ be the projection onto the direct summand
X#nCFðX Þ: Since jnðaÞ ¼ PnjN

ðaÞPn; it suffices to show that
limn	!N jjPnkPnjj ¼ 0 for each kAKðFðX ÞÞ: We may assume k ¼ yx;Z for

x; ZAFðX Þ because the linear span of such elements is dense in KðFðX ÞÞ: By the
same reason, we may assume xAX#k and ZAX#l for some k; lAN: Now it is clear
that we have limn	!Njj PnkPnjj ¼ 0: This completes the proof. &

Proposition 4.9. The covariant representation ðj; tÞ is injective.

Proof. Take aAA with jðaÞ ¼ 0: Then we have j
N
ðaÞAKðFðX ÞJX Þ: For each

nAN; we have

jnðaÞ ¼ PnjN
ðaÞPnAPnKðFðXÞJX ÞPn ¼ KðX#nJX Þ

where PnALðFðX ÞÞ is the projection onto the direct summand X#nCFðX Þ: By
taking n ¼ 0; we get aAJX : Since j1 ¼ jX is injective on JX ; we have jjajj ¼ jjj1ðaÞjj:
By Lemma 4.7, we have jjjnðaÞjj ¼ jjjnðaÞ#id1jj ¼ jjjnþ1ðaÞjj for all positive integer
n: Therefore we get jjjnðaÞjj ¼ jjajj for all nAN: Thus we have a ¼ 0 by Lemma 4.8.
This proves that the covariant representation ðj; tÞ is injective. &

As consequences of Corollary 4.5 and Proposition 4.9, we have the following
propositions.

Proposition 4.10. The universal representation ð %pX ; %tX Þ of X on TX satisfies that

faAA j %pX ðaÞAc%tX
ðKðX ÞÞg ¼ 0:

Proposition 4.11. The universal covariant representation ðpX ; tX Þ of X on OX is

injective.

We will see in Section 6 that the Fock representation ðj
N
; tNÞ is the universal

representation, and ðj; tÞ is the universal covariant representation.
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Note that the C�-algebra C�ðj
N
; tNÞ is the augmented Cuntz–Toeplitz algebra

defined in [P], and the C�-algebra C�ðj; tÞ is the relative Cuntz–Pimsner algebra
OðJX ;X Þ defined in [MS, Definition 2.18].

5. Analysis of the cores

In this section, we investigate the so-called cores of C�-algebras C�ðp; tÞ for
representations ðp; tÞ of a C�-correspondence X : Fix a C�-correspondence X over a
C�-algebra A; and a representation ðp; tÞ of X :

Definition 5.1. For each nAN; we set Bn ¼ ctnðKðX#nÞÞCC�ðp; tÞ:

Note that B0 ¼ pðAÞ and that BnDKðX#nÞ when ðp; tÞ is injective. We can easily
see the next lemma.

Lemma 5.2. For n;mAN with nX1; we have

spanðtnðX#nÞBmtnðX#nÞ�Þ ¼ Bnþm

and tnðX#nÞ�BnþmtnðX#nÞCBm:

Definition 5.3. For m; nAN with mpn; we define B½m;n�CC�ðp; tÞ by B½m;n� ¼ Bm þ
Bmþ1 þ?þ Bn:

We have B½n;n� ¼ Bn for each nAN: By the next lemma, we see that B½m;n�’s are C�-

subalgebras of C�ðp; tÞ:

Lemma 5.4. For m; nAN with mpn; kAKðX#mÞ and k0AKðX#nÞ; we have

ctmðkÞctnðk0Þ ¼ ctnððk#idn	mÞk0Þ:

Proof. It suffices to show that ctmðkÞtnðxÞ ¼ tnððk#idn	mÞxÞ for kAKðX#mÞ and
xAX#n: When m ¼ 0; this equation follows from the fact that ðp; tnÞ is a

representation of the C�-correspondence X#n: Suppose mX1: We may assume k ¼
yz;Z for z; ZAX#m: We have

ctmðkÞtnðxÞ ¼ tmðzÞtmðZÞ�tnðxÞ

¼ tmðzÞtn	mðtm
n	mðZÞ

�xÞ

¼ tnðz#ðtm
n	mðZÞ

�xÞÞ

ARTICLE IN PRESS
T. Katsura / Journal of Functional Analysis 217 (2004) 366–401376



¼ tnððtm
n	mðzÞtm

n	mðZÞ
�ÞxÞ

¼ tnððk#idn	mÞxÞ

by Lemma 2.6 and Lemma 1.9(i). We are done. &

By the above lemma, B½k;n� is an ideal of B½m;n� for m; k; nAN with mpkpn: In

particular, Bn is an ideal of B½0;n� for each nAN:

Definition 5.5. For mAN; we define a C�-subalgebra B½m;N� of C�ðp; tÞ by B½m;N� ¼S
N

n¼m B½m;n�:

Note that the C�-algebra B½m;N� is an inductive limit of the increasing sequence of

C�-algebras fB½m;n�gNn¼m: The C�-algebra B½0;N� is called the core of the C�-algebra

C�ðp; tÞ: The core B½0;N� naturally arises when the C�-algebra C�ðp; tÞ has an action
of T called a gauge action.

Definition 5.6. A representation ðp; tÞ of X is said to admit a gauge action if for each
zAT; there exists a �-homomorphism bz :C

�ðp; tÞ	!C�ðp; tÞ such that bzðpðaÞÞ ¼
pðaÞ and bzðtðxÞÞ ¼ ztðxÞ for all aAA and xAX :

If it exists, such a �-homomorphism bz is unique. By the assumptions in the
definition above, bz is a �-automorphism for all zAT and the map
b :T	!AutðC�ðp; tÞÞ is automatically a strongly continuous homomorphism. By
the universality, both the universal representation ð %pX ; %tX Þ onTX and the universal
covariant representation ðpX ; tX Þ on OX admit gauge actions. We denote these
actions by %g :TyTX and g :TyOX : It is clear that for a representation ðp; tÞ
admitting a gauge action b we have bz3r ¼ r3%gz for each zAT; where
r:TX	!C�ðp; tÞ is the natural surjection. It is also clear that for a covariant
representation ðp; tÞ admitting a gauge action b we have bz3r ¼ r3gz for each zAT;
where r:OX	!C�ðp; tÞ is the natural surjection.

Proposition 5.7. When a representation ðp; tÞ admits a gauge action b; the core B½0;N�

coincides with the fixed point algebra C�ðp; tÞb:

Proof. Since

bzðtnðxÞtmðZÞ�Þ ¼ zn	mtnðxÞtmðZÞ�

for xAX#n; ZAX#m and zAT; it is clear that B½0;N�CC�ðp; tÞb: Take xAC�ðp; tÞb:
By Proposition 2.7, there exists a sequence fxkgNk¼0 of linear sums of elements in the
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form tnðxÞtmðZÞ� such that x ¼ limk	!N xk: Then we have

x ¼
Z
T

bzðxÞ dz ¼ lim
k	!N

Z
T

bzðxkÞ dz

where dz is the normalized Haar measure on T: By the above computation, we getR
T
bzðxkÞ dzA

S
N

n¼0 Bn for every k: Thus we have xAB½0;N�: We have shown that

B½0;N� ¼ C�ðp; tÞb: &

We are going to compute the core B½0;N�CC�ðp; tÞ: To this end, we need the
following notation.

Definition 5.8. For a representation ðp; tÞ of X ; we set

Iðp;tÞ
0 ¼ faAA j pðaÞAB1 ¼ ctðKðX ÞÞg;

which is an ideal of A: For each nAN; we define

Bn
0 ¼ ctnðKðX#nIðp;tÞ

0ÞÞCBnCC�ðp; tÞ:

Proposition 5.9. For each nAN; we have Bn-Bnþ1 ¼ Bn
0:

Proof. The case n ¼ 0 follows from the definition of Iðp;tÞ
0: Let n be a positive integer.

For aAIðp;tÞ
0 and x; ZAX#n; we have

ctnðyxa;ZÞ ¼ tnðxaÞtnðZÞ� ¼ tnðxÞpðaÞtnðZÞ�ABnþ1

because pðaÞAB1: Hence we get Bn
0CBn-Bnþ1: Conversely take xABn-Bnþ1: Take

kAKðX#nÞ with ctnðkÞ ¼ x: For each x; ZAX#n; we have

pð/x; kZSX Þ ¼ tnðxÞ�ctnðkÞtnðZÞ ¼ tnðxÞ�xtnðZÞAB1

because xABnþ1: This implies that /x; kZSXAIðp;tÞ
0 for all x; ZAX#n: Hence we have

kAKðX#nIðp;tÞ
0Þ: Thus we get x ¼ ctnðkÞABn

0: We have shown Bn-Bnþ1 ¼ Bn
0 for

all nAN: &

Lemma 5.10. Let n be a positive integer. For an approximate unit fulg of KðX#nÞ
and kAKðX#ðnþ1ÞÞ; we have k ¼ limlðul#id1Þk:

Proof. Clearly the equality holds for k ¼ ðk0#id1Þk00AKðX#ðnþ1ÞÞ where

k0AKðX#nÞ and k00AKðX#ðnþ1ÞÞ: We will show that the linear span of such

elements is dense inKðX#ðnþ1ÞÞ: To do so, it suffices to show that the linear span of
elements in the form ðk0#id1Þz with k0AKðX#nÞ and zAX#ðnþ1Þ is dense in
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X#ðnþ1Þ because we have ðk0#id1Þyz;z0 ¼ yðk0#id1Þz;z0 : For k0 ¼ yx;x0 and z ¼ Z#Z0

with x; x0; ZAX#n and Z0AX ; we have

ðk0#id1Þz ¼ tn
1ðxÞtn

1ðx0Þ
�ðZ#Z0Þ

¼ tn
1ðxÞðj1ð/x0; ZSX#nÞZ0Þ

¼ x#ðjX ð/x0; ZSX#nÞZ0Þ

¼ x/x0; ZSX#n#Z0:

Since the linear span of elements in the form x/x0; ZSX#n with x; x0; ZAX#n is

dense in X#n and the linear span of elements in the form x#Z0 with xAX#n and

Z0AX is dense in X#ðnþ1Þ; we see that the linear span of elements in the

form ðk0#id1Þz with k0AKðX#nÞ and zAX#ðnþ1Þ is dense in X#ðnþ1Þ: We are
done. &

Proposition 5.11. For each nAN; we have B½0;n�-Bnþ1CBn:

Proof. The assertion is obvious for n ¼ 0: We assume nX1: Take xAB½0;n�-Bnþ1:

Choose kAKðX#ðnþ1ÞÞ such that x ¼ ctnþ1ðkÞ: For an approximate unit fulg of
KðX#nÞ; we have k ¼ limlðul#id1Þk by Lemma 5.10. Since ctnðulÞctnþ1ðkÞ ¼
ctnþ1ððul#id1ÞkÞ by Lemma 5.4, we see

x ¼ ctnþ1ðkÞ ¼ lim
l

ctnðulÞctnþ1ðkÞ ¼ lim
l

ctnðulÞx:

Since Bn is an ideal of B½0;n�; we have xABn: Thus we obtain B½0;n�-Bnþ1CBn: &

Proposition 5.12. For each nAN; we have B½0;n�-Bnþ1 ¼ Bn
0; and we get the following

commutative diagram with exact rows:

Proof. The former part follows from Propositions 5.9 and 5.11. The latter part
follows from the former and the fact B½0;nþ1� ¼ B½0;n� þ Bnþ1: &

Proposition 5.13. For n ¼ 1; 2;y;N; we have the following short exact sequences:

0 	! B½1;n� 	! B½0;n� 	! B0=B0
0 	! 0:

Proof. We will first prove B0-B½1;n� ¼ B0
0 by the induction with respect to n: The

case that n ¼ 1 follows from Proposition 5.9. Suppose that we have proved
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B0-B½1;n� ¼ B0
0: Take xAB0-B½1;nþ1�: Choose yAB½1;n� and zABnþ1 with x ¼ y þ z:

We have z ¼ x 	 yAB½0;n�-Bnþ1: By Proposition 5.11, we have zABn: Thus x ¼
y þ zAB½1;n�: Hence we have shown B0-B½1;nþ1�CB0-B½1;n�: Since the converse

inclusion is obvious, we get B0-B½1;nþ1� ¼ B0-B½1;n� ¼ B0
0: Thus we obtain

B0-B½1;n� ¼ B0
0 for all positive integer n: This implies the existence of the desired

short exact sequences for n ¼ 1; 2;y; because B½0;n� ¼ B½1;n� þ B0: By taking

inductive limits, we obtain the short exact sequences for n ¼ N: &

The C�-subalgebras of TX and OX corresponding to Bn;B½m;n� are denoted by

%Bn; %B½m;n�CTX and Bn;B½m;n�COX : By Proposition 5.7 we have T %g
X ¼ %B½0;N� and

Og
X ¼ B½0;N�:

Proposition 5.14. There exists a short exact sequence

0 	! %Bnþ1 	! %B½0;nþ1� 	! %B½0;n� 	! 0;

which splits by the natural inclusion %B½0;n�+ %B½0;nþ1�:

Proof. This follows from Proposition 5.12 because Proposition 4.10 implies
Ið %pX ;%tX Þ

0 ¼ 0: &

Proposition 5.15. There exists a surjection from T%g
X to A:

Proof. This follows from Proposition 5.13. &

Proposition 5.16. We get the following commutative diagram with exact rows:

Proof. By noting that B0DA and B0
0DJX ; this follows from Proposition 5.13. &

Proposition 5.17. We get the following commutative diagram with exact rows:

Proof. This follows from Proposition 5.13. &
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Proposition 5.18. For a C�-correspondence X over a C�-algebra A; the following

conditions are equivalent:

(i) the injection pX :A	!Ob
X is an isomorphism,

(ii) we have B0*B1;
(iii) the injection jX : JX	!KðXÞ is an isomorphism,
(iv) the C�-correspondence X comes from a Hilbert A-bimodule.

Proof. It is clear that (i) implies (ii). From the condition (ii), we obtain Bn*Bnþ1 for

all nAN by Lemma 5.2. Hence (ii) implies O b
X ¼ B0 ¼ pX ðAÞ: This shows the

implication ðiiÞ ) ðiÞ: By setting n ¼ 0 in Proposition 5.12, we have the following
commutative diagram with exact rows:

From this diagram, we have the equivalence ðiiÞ 3 ðiiiÞ: Finally, the equivalence
ðiiiÞ 3 ðivÞ was shown in [Ka2]. &

6. The gauge-invariant uniqueness theorems

In this section, we will give conditions for representations or covariant
representations to be universal. The idea of the proof can be seen in [Ka1, Section
4] (and also in [P, Section 3; FMR, Section 4]). Let us take a C�-correspondence X

over a C�-algebra A:

Proposition 6.1. For a representation ðp; tÞ of X satisfying Iðp;tÞ
0 ¼ 0; the restriction of

r :TX	!C�ðp; tÞ to the fixed point algebra T%g
X is injective.

Proof. For nAN let Bn and B½0;n� be C�-subalgebras of C�ðp; tÞ defined in Definitions
5.1 and 5.3. From the condition Iðp;tÞ

0 ¼ 0; we get the following commutative

diagram with exact rows:
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by the same argument as in Proposition 5.14. Since the condition Iðp;tÞ
0 ¼ 0 implies

that the representation ðp; tÞ is injective, we see that the restriction of r to %Bn is
injective for all nAN: By using this fact and the commutative diagram above, we can

inductively show that the restriction of r to %B½0;n� is injective. Hence the restriction of

r to T%g
X ¼ %B½0;N� is injective. &

The following is the gauge-invariant uniqueness theorem for the C�-algebra TX :

Theorem 6.2. Let X be a C�-correspondence over a C�-algebra A: For a representation

ðp; tÞ of X ; the surjection r :TX	!C�ðp; tÞ is an isomorphism if and only if ðp; tÞ
satisfies Iðp;tÞ

0 ¼ 0 and admits a gauge action.

Proof. We had already seen that the two conditions are necessary. Now suppose that
a representation ðp; tÞ admits a gauge action b; and satisfies Iðp;tÞ

0 ¼ 0: Take xATX

with rðxÞ ¼ 0: Then we have

r
Z
T

%gzðx�xÞ dz

� �
¼
Z
T

rð%gzðx�xÞÞ dz ¼
Z
T

bzðrðx�xÞÞ dz ¼ 0;

where dz is the normalized Haar measure on T: Since
R
T %gzðx�xÞ dzAT g

X ; we haveR
T %gzðx�xÞ dz ¼ 0 by Proposition 6.1. This implies x�x ¼ 0: Hence r is injective. &

Proposition 6.3. For an injective covariant representation ðp; tÞ of X ; the restriction of

the surjection r : OX	!C�ðp; tÞ to the fixed point algebra Og
X is injective.

Proof. For nAN let Bn and B½0;n� be C�-subalgebras of C�ðp; tÞ defined in Definitions
5.1 and 5.3. Since ctn is injective, the restriction of r to Bn is an isomorphism onto
Bn: It is easy to see that the restriction of r to B½0;n� is a surjection onto B½0;n� for each

nAN: We will show that these are injective by the induction with respect to n: The
case that n ¼ 0 follows from the fact that p is injective. Suppose that we had shown
that the restriction of r to B½0;n� is an isomorphism onto B½0;n�: By Proposition 3.3, we

have IðpX ;tX Þ
0 ¼ Iðp;tÞ

0 ¼ JX : Hence the restriction of r to Bn
0 is an isomorphism onto

Bn
0: Thus we get an isomorphism B½0;n�=Bn

0	!B½0;n�=Bn
0: By Proposition 5.12 we get

the following commutative diagram with exact rows:

By the 5-lemma, we see that the surjection B½0;nþ1�	!B½0;nþ1� is an isomorphism.

Thus we have shown that the restriction of r to B½0;n� is injective for all nAN: Hence

the restriction of r to Og
X ¼ B½0;N� is injective. &
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The following is the gauge-invariant uniqueness theorem for the C�-algebra OX :

Theorem 6.4. For a covariant representation ðp; tÞ of a C�-correspondence X ; the �-
homomorphism r : OX	!C�ðp; tÞ is an isomorphism if and only if ðp; tÞ is injective and

admits a gauge action.

Proof. The proof goes similarly as in Theorem 6.2 with the help of Proposition
6.3. &

When the left actions of C�-correspondences are injective, Theorem 6.4 is the
gauge-invariant uniqueness theorem for Cuntz–Pimsner algebras which was
proved in [FMR, Theorem 4.1]. In the case that C�-correspondences are defined
from graphs with or without sinks, this was already proved in [BHRS, Theorem 2.1].
For C�-algebras arising from topological graphs, this was proved in [Ka1,
Theorem 4.5].
We can apply the two gauge-invariant uniqueness theorems to the representations

ðj
N
; tNÞ and ðj; tÞ in Section 4.

Proposition 6.5. Both the representation ðj
N
; tNÞ and the covariant representation

ðj; tÞ are universal, that is, we have natural isomorphisms C�ðj
N
; tNÞDTX and

C�ðj; tÞDOX :

Proof. To apply Theorems 6.2 and 6.4, it suffices to see that both of the
representations ðj

N
; tNÞ and ðj; tÞ admit gauge actions because the other

conditions had already been checked in Section 4.

For each zAT; define a unitary uzALðFðX ÞÞ by uzðxÞ ¼ znx for xAX#nCFðXÞ
and nAN: It is routine to see that the automorphisms Ad uz of LðFðX ÞÞ;
defined by Ad uzðxÞ ¼ uzxu�

z for xALðFðX ÞÞ; give a gauge action for the

representation ðj
N
; tNÞ: The ideal KðFðX ÞJX Þ of LðFðXÞÞ is closed under

the automorphisms Ad uz for each zAT: Hence we can define an automorphism
bz of LðFðX ÞÞ=KðFðX ÞJX Þ by bzðsðxÞÞ ¼ sðuzxu�

zÞ for xALðFðX ÞÞ and

zAT: It is clear that b is a gauge action for the representation ðj; tÞ: We are
done. &

By Proposition 6.5, the C�-algebra OX is isomorphic to the relative Cuntz–Pimsner
algebras C�ðj; tÞ ¼ OðJX ;XÞ introduced in [MS] (cf. [MS, Theorem 2.19]). The
isomorphism C�ðj

N
; tNÞDTX was already proved in [P, Theorem 3.4] under small

assumption on C�-correspondences.
The C�-algebra OX was defined as the largest C�-algebra among

C�-algebras C�ðp; tÞ generated by covariant representations ðp; tÞ of X :
Theorem 6.4 tells us that we have C�ðp; tÞDOX when a covariant
representation ðp; tÞ satisfies two conditions; being injective and admitting
a gauge action. In the next paper [Ka3], we will see that the C�-algebra OX

can be defined as the smallest C�-algebra among C�-algebras C�ðp; tÞ generated
by representations ðp; tÞ of X which satisfy the two conditions above; being
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injective and admitting gauge actions. Thus we can define OX without using the
ideal JX :

7. Nuclearity and exactness

In this section, we study when the C�-algebras TX and OX become nuclear or
exact. We use the facts on nuclearity and exactness appeared in Appendices A and B
as well as in [W].
On the exactness of TX and OX ; we have the following which generalizes [DS,

Theorem 3.1] slightly.

Theorem 7.1 (cf. [DS, Theorem 3.1]). For a C�-correspondence X over a C�-algebra

A; the following conditions are equivalent:

(i) A is exact,
(ii) T%g

X is exact,

(iii) TX is exact,
(iv) Og

X is exact,

(v) OX is exact.

Proof. Suppose that A is exact. By Proposition B.7, KðX#nÞ is exact for all nAN:

By Proposition 5.14, we can prove inductively that %B½0;n�CT%g
X is exact for all nAN

because exactness is closed under taking splitting extensions. Thus T%g
X is exact

because it is an inductive limit of exact C�-algebras. This proves ðiÞ ) ðiiÞ: The
equivalences ðiiÞ 3 ðiiiÞ and ðivÞ 3 ðvÞ follow from Proposition A.13. Since there
exists a surjection TX	!OX ; (iii) implies (v). Finally, (v) implies (i) because
pX ðAÞCOX is isomorphic to A: &

On the nuclearity of TX ; we have the following.

Theorem 7.2. For a C�-correspondence X over a C�-algebra A; the following

conditions are equivalent:

(i) A is nuclear,
(ii) T%g

X is nuclear,

(iii) TX is nuclear.

Proof. In a similar way to the proof of ðiÞ ) ðiiÞ in Theorem 7.1, we can show that
(i) implies (ii). The implication ðiiÞ ) ðiÞ follows from Proposition 5.15. Finally,
Proposition A.13 gives the equivalence ðiiÞ 3 ðiiiÞ: &

On the nuclearity of OX ; we have the following.
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Theorem 7.3. For a C�-correspondence X over a C�-algebra A; the following

conditions are equivalent:

(i) A=JX is a nuclear C�-algebra, and pX : JX	!B½1;N� is a nuclear map,

(ii) pX :A	!Og
X is a nuclear map,

(iii) pX :A	!OX is a nuclear map,
(iv) Og

X is nuclear,

(v) OX is nuclear.

Proof. The equivalence ðiÞ 3 ðiiÞ is shown by applying Proposition A.6 to the
diagram in Proposition 5.17. The equivalence ðiiÞ 3 ðiiiÞ follows from Proposition
A.12. Obviously (iv) implies (ii). Assume (ii). We see that A=JX is nuclear from the
equivalence ðiÞ 3 ðiiÞ: We will prove that the embedding B½0;n�+B½0;N� is nuclear

for all nAN by the induction on n: The case n ¼ 0 follows from condition (ii).
Suppose we have shown that B½0;n�+B½0;N� is nuclear. Let us set Yn ¼
spanðtX ðXÞB½0;n�Þ and YN ¼ spanðtX ðXÞB½0;N�Þ: Then by Lemma 5.2, Yn is a

Hilbert B½0;n�-module withKðYnÞDB½1;nþ1�; and YN is a Hilbert B½0;N�-module with

KðYNÞDB½1;N�: By applying Proposition B.8 to the inclusions B½0;n�+B½0;N� and

Yn+YN; we see that the inclusion B½1;nþ1�+B½1;N� is nuclear. Now by applying

Proposition A.6 to the diagram in Proposition 5.16, we see that B½0;nþ1�+B½0;N� is

nuclear. Hence we have shown that B½0;n�+B½0;N� is nuclear for all nAN: SinceS
nAN B½0;n� is dense in B½0;N�; we see that the identity map B½0;N�	!B½0;N� is nuclear.

Thus B½0;N� is a nuclear C�-algebra. This shows that (ii) implies (iv). Finally, the

equivalence ðivÞ 3 ðvÞ follows from Proposition A.13. &

We give two sufficient conditions on C�-correspondences X for OX to be nuclear,
which may be useful. Both of them easily follows from Theorem 7.3.

Corollary 7.4. If A is nuclear then OX is nuclear.

Corollary 7.5. If both the C�-algebra A=JX and the �-homomorphism

jX : JX	!KðXÞ are nuclear, then OX is nuclear.

Remark 7.6. We can prove Corollary 7.4 directly by showing that Og
X is nuclear

when A is nuclear in a similar way to the proof of ðiÞ ) ðiiÞ in Theorem 7.1.

The converses of Corollaries 7.4 and 7.5 are not true as the following example
shows. We would like to thank Narutaka Ozawa who gave us this example.

Example 7.7. Let B be a nuclear C�-algebra, and D be a non-nuclear C�-subalgebra
of B: For an integer n; we define An by An ¼ B for n40 and An ¼ D for np0:We set
A ¼ "N

n¼	N
An: We define an injective endomorphism j :A	!A so that

jjA0
:A0	!A1 is a natural embedding and jjAn

:An	!Anþ1 is an isomorphism for

a non-zero integer n: Since D is not nuclear, the injective endomorphism j is not
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nuclear. Let X be the C�-correspondence over A which is isomorphic to A as Hilbert
A-modules, and whose left action jX :A	!LðX Þ is defined as the composition of
j :A	!A and the isomorphism ADKðXÞCLðX Þ: Then we have JX ¼ A and the
map jX : JX	!KðXÞ is not nuclear as j is not. Thus the C�-correspondence X does
not satisfy the assumption of Corollary 7.4 nor Corollary 7.5. However, the C�-

algebra OX is nuclear because the fixed point algebra Ob
X is isomorphic to the

inductive limit lim
	!

ðA;jÞD"N

n¼	N
B; which is nuclear.

A Hilbert A-bimodule X is naturally considered as a C�-correspondence over A;
and the C�-algebra OX is isomorphic to the crossed product AsXZ of A by X

defined in [AEE, Definition 2.4] (see [Ka2, Subsection 3.3]). We have a nice
characterization of the nuclearity of such a C�-algebra.

Proposition 7.8. When a C�-correspondence X over a C�-algebra A comes from a

Hilbert A-bimodule, the C�-algebra OX is nuclear if and only if A is nuclear.

Proof. By Proposition 5.18, we see that pX :A	!O b
X is an isomorphism. Hence the

conclusion follows from Theorem 7.3, or rather Proposition A.13. &

8. K-groups

The purpose of this section is to obtain the 6-term exact sequence of K-groups,
which seems to be useful to compute the K-groups K0ðOX Þ and K1ðOX Þ of OX :
Mainly we follow the arguments in [P, Section 4]. There, Pimsner used KK-theory to
obtain his 6-term exact sequence. For this reason, he assumed the separability of the
C�-algebras involved. Here, we work directly with K-theory instead of using KK-
theory, and obtain the 6-term exact sequence without the assumption of separability.
For a C�-algebra A; we denote by K�ðAÞ the K-group K0ðAÞ"K1ðAÞ of A which

has a Z=2Z-grading. By maps between K-groups, we mean group homomorphisms
which preserve the grading. Thus for C�-algebras A and B; considering maps
between K-groups K�ðAÞ	!K�ðBÞ is same as considering two homomorphisms
K0ðAÞ	!K0ðBÞ and K1ðAÞ	!K1ðBÞ: For a �-homomorphism r :A	!B; we denote
by r� the map K�ðAÞ	!K�ðBÞ induced by r:
Fix a C�-correspondence X over a C�-algebra A: Since we haveTXDC�ðj

N
; tNÞ

by Proposition 6.5, there exists an embedding j :KðFðXÞJX Þ	!TX by Proposition
4.6. Since C�ðj; tÞDOX by Proposition 6.5, we have the following short exact
sequence:

0 	! KðFðXÞJX Þ !j
TX 	! OX 	! 0:

The following two propositions enable us to compute the K-groups ofKðFðXÞJX Þ
and TX :
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Proposition 8.1. The �-homomorphism j0 : JX	!KðFðX ÞJX Þ induces an isomorph-

ism ðj0Þ� :K�ðJX Þ	!K�ðKðFðXÞJX ÞÞ:

Proof. The �-homomorphism j0 : JX	!KðFðX ÞJX Þ is an isomorphism onto the

C�-subalgebra KðX#0JX Þ of KðFðX ÞJX Þ: Since X#0JX is a full Hilbert JX -

submodule of FðXÞJX ; KðX#0JX Þ is a hereditary and full C�-subalgebra of
KðFðXÞJX Þ: Hence ðj0Þ� is an isomorphism by Proposition B.5. &

Proposition 8.2. The �-homomorphism %pX :A	!TX induces an isomorphism

ð %pX Þ� :K�ðAÞ	!K�ðTX Þ:

Proof. See Appendix C. &

Next, we will compute j� :K�ðKðFðXÞJX ÞÞ	!K�ðTX Þ:

Definition 8.3. We denote by i : JX+A the natural embedding. We define a map
½X � :K�ðJX Þ	!K�ðAÞ by the composition of the map ðjX Þ� :K�ðJX Þ	!K�ðKðXÞÞ
induced by the restriction of jX to JX and the map X� :K�ðKðXÞÞ	!K�ðAÞ induced
by the Hilbert A-module X as in Remark B.4.

The map ½X � :K�ðJX Þ	!K�ðAÞ is same as the map induced by the element
ðX ;jX ; 0Þ of KKðJX ;AÞ: When a C�-correspondence X is defined from an injective
�-homomorphism j :A	!A; we have JX ¼ A and ½X � ¼ j�: For the notation in the
proof of the next lemma, consult Appendix B.

Lemma 8.4. The composition of the two maps ½X � :K�ðJX Þ	!K�ðAÞ and

ð %pX Þ� :K�ðAÞ	!K�ðTX Þ coincides with ðc%tX
3jX Þ�:

Proof. Let M2ðTX Þ be the C�-algebra of two-by-two matrices with entries
in TX : For i; jAf0; 1g; we denote by iij the natural embedding TX	!M2ðTX Þ
onto the i; j-component. By the definition of K-groups, ði00Þ� ¼ ði11Þ� is an

isomorphism.
From the maps %pX :A	!TX and %tX :X	!TX ; we get a �-homomorphism

r :DX	!M2ðTX Þ such that r3iA ¼ i113 %pX and r3iX ¼ i013%tX : We have r3iKðXÞ ¼
i003c%tX

: Since X� is defined as ðiAÞ	1� 3ðiKðX ÞÞ�; we have

ð %pX Þ�3X� ¼ ð %pX Þ�3ðiAÞ
	1
� 3ðiKðXÞÞ�

¼ ði11Þ	1� 3r�3ðiKðXÞÞ�

¼ ði11Þ	1� 3ði00Þ�3ðc%tX
Þ�

¼ ðc%tX
Þ�:
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Hence we get

ð %pX Þ�3½X � ¼ ð %pX Þ�3X�3ðjX Þ� ¼ ðc%tX
Þ�3ðjX Þ� ¼ ðc%tX

3jX Þ�:

We are done. &

Lemma 8.5. The �-homomorphism %pX 3i : JX	!TX is the sum of the two �-
homomorphisms c%tX

3jX and j3j0:

Proof. If we identify TX and C�ðj
N
; tNÞ; this follows from Proposition 4.4. &

By the above two lemmas, the map j� :K�ðKðFðXÞJX ÞÞ	!K�ðTX Þ is same
as the map i� 	 ½X � :K�ðJX Þ	!K�ðAÞ modulo the isomorphisms
ðj0Þ� :K�ðJX Þ	!K�ðKðFðX ÞJX ÞÞ and ð %pX Þ� :K�ðAÞ	!K�ðTX Þ:

Thus by rewriting the 6-term exact sequence of K-groups obtained from the short
exact sequence

0 	! KðFðXÞJX Þ !j
TX 	! OX 	! 0;

we get the following.

Theorem 8.6 (cf. [P, Theorem 4.9]). For a C�-correspondence X over a C�-algebra A;
we have the following exact sequence:

For a C�-correspondence X over a C�-algebra A and an ideal J of A satisfying
jX ðJÞCKðX Þ; the relative Cuntz–Pimsner algebra OðJ;X Þ is defined as the quotient
C�ðj

N
; tNÞ=KðFðXÞJÞ [MS, Definition 2.18]. Thus we can prove the following

statement in the same way as the proof of Theorem 8.6.
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Proposition 8.7. Let X be a C�-correspondence over a C�-algebra A; and J be an ideal

of A with jX ðJÞCKðXÞ: Then we have the following exact sequence:

where i : J+A is the embedding, p :A	!OðJ;X Þ is the natural �-homomorphism, and

½X ; J� :K�ðJÞ	!K�ðAÞ is defined by ½X ; J� ¼ X�3ðjX jJÞ�:

It is not difficult to see that the two �-homomorphisms in Propositions 8.1 and 8.2
induce KK-equivalences between JX andKðFðX ÞJX Þ and between A andTX when
the involving C�-algebras are separable. Hence by applying ‘‘two among three
principle’’ to the short exact sequence

0 	! KðFðXÞJX Þ !j
TX 	! OX 	! 0;

we get the following.

Proposition 8.8. Let X be a separable C�-correspondence over a separable nuclear

C�-algebra A: If A and JX satisfy the Universal Coefficient Theorem of [RS], then so

does OX :
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Appendix A. On nuclear maps

In Appendices A and B, we gather the results on nuclear maps and
linking algebras. We use these results in Sections 7 and 8. Most of them should be
known among the specialists. Some results in this appendix hold with less
assumption.
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Definition A.1. For C�-algebras A and D; we denote by A#minD (resp. A#maxD)
the minimal (resp. maximal) tensor product of A and D; and by A~D the kernel of
the natural surjection pA;D :A#maxD	!A#minD:

Definition A.2. For a �-homomorphism j :A	!B; we can define �-homomorphisms
j#minidD :A#minD	!B#minD and j#maxidD :A#maxD	!B#maxD such that
j#minidDða#dÞ ¼ j#maxidDða#dÞ ¼ jðaÞ#d for aAA and dAD: Since we have
the commutative diagram:

the restriction of j#maxidD to A~DCA#maxD induces a �-homomorphism
j~idD :A~D	!B~D:

Definition A.3. A �-homomorphism j :A	!B is said to be nuclear if for all C�-
algebra D; the �-homomorphism j#maxidD :A#maxD	!B#maxD factors through
the surjection pA;D :A#maxD	!A#minD:

A C�-algebra A is said to be nuclear if idA :A	!A is a nuclear map.

In other words, a �-homomorphism j :A	!B is nuclear if and only if j~idD ¼ 0
for all C�-algebra D; and a C�-algebra A is nuclear if and only if A~D ¼ 0 for all
C�-algebra D:

Remark A.4. A �-homomorphism is nuclear if and only if it has the completely
positive approximation property (see [W]).

Lemma A.5. Let

0 	! I !i A !p B 	! 0

be a short exact sequence of C�-algebras, and D be a C�-algebra. Then the following

sequence is exact:

0 	! I~D ��!i~idD
A~D ���!p~idD

B~D:
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If there exists an injective nuclear �-homomorphism A	!A0 for some C�-algebra A0;
then p~idD is surjective.

Proof. The former statement follows from the fact that maximal tensor products
preserve short exact sequences. If there exists an injective nuclear �-homomorphism
A	!A0 for some C�-algebra A0; then A is exact by [W, Proposition 7.2]. Since exact
C�-algebras have Property C [Ki], the sequence

0 	! I#minD ����!i#minidD
A#minD ����!p#minidD

B#minD 	! 0

is exact (see Proposition 5.2 and Remark 9.5.2 in [W]). Hence the conclusion follows
from 3� 3-lemma. &

Proposition A.6. Suppose that we have a following commutative diagram with exact

rows:

Suppose also that j is injective. Then j is nuclear if and only if both B and j0 are

nuclear.

Proof. Take a C�-algebra D: By Lemma A.5 we have the following commutative
diagram with exact rows:

Suppose that j is nuclear. By Lemma A.5, the �-homomorphism p~idD is
surjective. Hence we have B~D ¼ 0 for all C�-algebra D:We also have j0~idD ¼ 0
for all C�-algebra D by the diagram above. Thus both B and j0 are nuclear.
Conversely, assume that both B and j0 are nuclear. Then we have j~idD ¼ 0 for all
C�-algebra D by the diagram above. Therefore j is nuclear. We are done. &

Proposition A.7. Let A; B be C�-algebras, and A0; B0 be C�-subalgebras of A and B;
respectively. Let j :A	!B be a �-homomorphism with jðA0ÞCB0: Let j0 :A0	!B0
be the restriction of j: When B0 is a hereditary C�-subalgebra of B; the nuclearity of j
implies the nuclearity of j0:

Proof. When j is nuclear, its restriction j0 :A0	!B is also nuclear. Hence for
any C�-algebra D; the map j0~idD :A0~D	!B~D is 0: Since B0 is a hereditary
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C�-subalgebra of B; we see that the inclusion i :B0+B induces an injective �-
homomorphism i#maxidD : B0#maxD	!B#maxD by [L1, Theorem 3.3]. Hence the
�-homomorphism i~idD : B0~D	!B~D is also injective. This shows that
j0~idD :A0~D	!B0~D is 0 for all C�-algebra D: Thus j0 is injective. &

The following complements the proposition above.

Proposition A.8. With the same notation in Proposition A.7, when A0 is a hereditary

and full C�-subalgebra of A; the nuclearity of j0 implies the nuclearity of j:

Proof. Take a C�-algebra D: Since A0 is a hereditary and full C�-subalgebra of A;
A0#maxD is a hereditary and full C�-subalgebra of A#maxD: Hence A0~D ¼
ðA0#maxDÞ-ðA~DÞ is also hereditary and full in A~D:When j0 is nuclear, the �-
homomorphism j#maxidD :A#maxD	!B#maxD vanishes on A0~D: Thus
j#maxidD vanishes on A~D: This shows that j is nuclear. &

The following is an immediate consequence of Propositions A.7 and A.8.

Corollary A.9. A hereditary and full C�-subalgebra A0 of a C�-algebra A is nuclear if

and only if A is nuclear.

We also have the following.

Proposition A.10. A hereditary and full C�-subalgebra A0 of a C�-algebra A is exact if

and only if A is exact.

Proof. Since a C�-subalgebra of an exact C�-algebra is exact, A0 is exact if A is exact.
Suppose that A0 is exact. Take a short exact sequence of C�-algebras:

0 	! I !i B !p D 	! 0:

All we have to do is to prove ker ðp#minidAÞ ¼ I#minA: Since A0 is full and
hereditary in A; B#minA0 is full and hereditary in B#minA: Thus kerðp#minidAÞ is
generated by its intersection with B#minA0; which is I#minA0 by the exactness of
A0: Hence we get kerðp#minidAÞ ¼ I#minA: We are done. &

Remark A.11. We can prove Proposition A.10 by using Proposition A.8 together
with the deep fact that a C�-algebra is exact if and only if its one (or all) faithful
representation is nuclear due to Kirchberg [Ki]. We can also prove Proposition A.10
in a similar way to the proof of Proposition B.3.

The above investigation of hereditary C�-subalgebras can be extended to other
classes of C�-subalgebras. In Section 7, we just need the following two results.

ARTICLE IN PRESS
T. Katsura / Journal of Functional Analysis 217 (2004) 366–401392



Proposition A.12. Let a :GyA be an action of a compact group G on a

C�-algebra A: Let j :D	!A be a �-homomorphism whose image is contained in the

fixed point algebra Aa of a: Then the restriction j0 :D	!Aa is nuclear if and only if j
is nuclear.

Proof. Similar as the proof of Proposition A.7 &

Proposition A.13. Let a :GyA be an action of a compact group G on a C�-algebra A:
Then A is nuclear or exact if and only if the fixed point algebra Aa is also.

Proof. For nuclearity, it was proved in [DLRZ, Proposition 2]. It was pointed out by
Narutaka Ozawa that the technique in [DLRZ] works for exactness. We will sketch
his argument.
When A is exact, Aa is exact. Assume that Aa is exact. Take a short exact sequence

of C�-algebras:

0 	! I 	! B !p D 	! 0:

Let us take a positive element x of kerðp#minidAÞ: To derive a contradiction, we
assume xeI#minA: Then we can find a state j of B#minA such that j vanishes on
I#minA and jðxÞ40: We set x0 ¼

R
G
idB#minazðxÞ dz where dz is the normalized

Haar measure of G: Then we see x0AB#minAa: We have

ðp#minidAaÞðx0Þ ¼
Z

G

p#minidAðidB#minazðxÞÞ dz

¼
Z

G

idD#minazðp#minidAðxÞÞ dz ¼ 0:

Since Aa is exact, we have x0AI#minAa: This leads a contradiction as

0 ¼ jðx0Þ ¼
Z

G

jðidB#minazðxÞÞ dz40:

Therefore we have xAI#minA for all positive element x of kerðp#minidAÞ: Thus we
have shown ker ðp#minidAÞ ¼ I#minA: This implies that A is exact. &

Appendix B. On linking algebras

Definition B.1. Let A be a C�-algebra and X be a Hilbert A-module. The C�-algebra
KðX"AÞ is called the linking algebra of X ; and denoted by DX :
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Since KðA;XÞDX and KðAÞDA naturally, we have the following matrix
representation of DX :

DX ¼
KðX Þ XeXX A

 !
;

where eXX ¼ KðX ;AÞ is the dual left Hilbert A-module of X : The natural embeddings
are denoted by

iKðXÞ:KðXÞ+DX ; iX :X+DX ; and iA :A+DX :

Both maps iA and iKðXÞ are injective �-homomorphisms onto corners of DX : The C�-

subalgebra A of DX is always full, butKðXÞ is full in DX only in the case that X is a
full Hilbert A-module.

Lemma B.2. Let A be a C�-algebra and X be a Hilbert A-module. For separable

subsets A0CA and X0CX ; there exist a separable C�-subalgebra ANCA containing

A0 and a separable closed subspace XN of X containing X0 such that XN is a Hilbert

AN-module by restricting the operations of X :

Proof. Let A1 be the C�-algebra generated by A0 þ/X0;X0SX : We set X1 ¼
spanðX0 þ X0A0Þ which is a closed subspace of X : We inductively define families of

separable C�-subalgebras fAngNn¼1 of A and separable closed subspaces fXngNn¼1 of X

so that Anþ1 is a C�-algebra generated by An þ/Xn;XnSX ; and that Xnþ1 ¼
spanðXn þ XnAnÞ: We set AN ¼

S
nAN An and XN ¼

S
nAN Xn: Then AN is a

separable C�-subalgebra of A containing A0; and XN is a separable closed subspace
of X containing X0: By the construction, we have XNANCXN and
/XN;XNSXCAN: Hence XN is a Hilbert AN-module. &

Proposition B.3. For a C�-algebra A and a Hilbert A-module X ; the inclusion

iA :A	!DX induces an isomorphism on the K-groups.

Proof. When both A and X are separable, [B, Corollary 2.6] gives us an isometry v in
the multiplier algebra MðDX#minKÞ of DX#minK such that F :DX#min

K{x/vxv�AA#minK is an isomorphism, where K is the C�-algebra of the
compact operators on the infinite-dimensional separable Hilbert space. Since
the composition of the isomorphism F and the inclusion iA#minidK :
A#minK	!DX#minK induces an identity on the K-groups of DX#minK (see,
for example, [HR, Lemma 4.6.2]), the inclusion iA#minidK induces an isomorphism
on the K-groups. Hence the inclusion iA :A	!DX also induces an isomorphism on
the K-groups.
Now let A be a general C�-algebra and X be a general Hilbert A-module. By

Lemma B.2, the set of the pairs ðAl;XlÞ consisting of separable C�-subalgebras Al of
A and separable closed subspaces Xl of X such that Xl are Hilbert Al-modules is
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upward directed with respect to the inclusions, and satisfies A ¼
S

l Al; X ¼
S

l Xl:
We have AD lim

	!
Al and DXD lim

	!
DXl : By the first part of this proof, the inclusion

iAl :Al	!DXl induces an isomorphism on the K-groups for all l: Thus the inclusion
iA :A	!DX also induces an isomorphism on the K-groups. &

Remark B.4. Let A be a C�-algebra and X be a Hilbert A-module. By Proposition
B.3, we can define a map X� :K�ðKðX ÞÞ	!K�ðAÞ by the composition of the
map ðiKðXÞÞ� :K�ðKðX ÞÞ	!K�ðDX Þ and the inverse of the isomorphism

ðiAÞ� :K�ðAÞ	!K�ðDX Þ: This map is the same map as the one defined in [E,

Definition 5.1].

Proposition B.5. Let A; B be C�-algebras, and i :A	!B be an injective �-
homomorphism onto a hereditary and full C�-subalgebra of B: Then i� is an

isomorphism from K�ðAÞ to K�ðBÞ:

Proof. The proof goes the same way as the proof of [B, Corollary 2.10] with the help
of Proposition B.3. &

Remark B.6. Let A; B be strongly Morita equivalent C�-algebras. Then there exists a
C�-algebra D which contains A and B as full and hereditary C�-subalgebras. Hence
we see that the K-groups of A and B are isomorphic by Proposition B.5, and that A is
nuclear or exact if and only if B is also by Corollary A.9 and Proposition A.10.

We use the two propositions below in Section 7.

Proposition B.7. Let A be a C�-algebra and X be a Hilbert A-module. If A is nuclear

or exact, then KðXÞ is also.

Proof. Since A is a hereditary and full C�-subalgebra of DX ; if A is nuclear or exact
then DX is also by Corollary A.9 and Proposition A.10. Now the conclusion follows
from the fact that KðXÞ is a hereditary C�-subalgebra of DX : &

Proposition B.8. Let A and B be C�-algebras, X be a Hilbert A-module, and Y be a

Hilbert B-module. Let p :A	!B be a �-homomorphism and t :X	!Y be a linear map

satisfying /tðxÞ; tðZÞSY ¼ pð/x; ZSX Þ for x; ZAX : We can define a �-homomorphism

ct :KðXÞ	!KðYÞ by ctðyx;ZÞ ¼ ytðxÞ;tðZÞ for x; ZAX : Then the nuclearity of p implies

the nuclearity of ct:

Proof. For the well-definedness of ct; see [KPW, Lemma 2.2]. We can define a �-
homomorphism r :DX	!DY so that r3iA ¼ iB3p; r3iX ¼ iY 3t and r3iKðXÞ ¼
iKðYÞ3ct: Since A is a hereditary and full C�-subalgebra of DX ; the nuclearity of p
implies the nuclearity of r by Proposition A.8. Since KðYÞ is a hereditary C�-
subalgebra of DY ; the nuclearity of r implies the nuclearity of ct by Proposition A.7.
We are done. &
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Appendix C. A proof of Proposition 8.2

In this appendix, we give a K-theoretical proof of Proposition 8.2. In [P,
Theorem 4.4], Pimsner used KK-theory to prove this proposition under some
hypotheses, one of which is that both A and X are separable. What we will do here is
to get rid of KK-theory from the proof of [P, Theorem 4.4] so that we can prove this
proposition without the assumption of separability. We first prepare some notation
and results which we will need.

Definition C.1. For a C�-algebra A; we define SA ¼ C0ðð0; 1Þ;AÞ; which we often
consider as a set of functions in C0ðð	1; 1Þ;AÞ vanishing on ð	1; 0�: For a �-
homomorphism j :A	!B; we denote by Sj : SA	!SB the �-homomorphism
defined by Sjð f ÞðsÞ ¼ jð f ðsÞÞ for fASA and sAð0; 1Þ:

Definition C.2. For a C�-algebra A and an ideal I of A; we define a C�-algebra
DðI ;AÞ by

DðI ;AÞ ¼ ffAC0ðð	1; 1Þ;AÞ j f ðsÞ 	 f ð	sÞAI for all sAð	1; 1Þg:

We denote by i the natural embedding SI	!DðI ;AÞ:

Lemma C.3. The �-homomorphism i : SI	!DðI ;AÞ induces an isomorphism

i� :K�ðSIÞ	!K�ðDðI ;AÞÞ:

Proof. Let us define a �-homomorphism p :DðI ;AÞ	!C0ðð	1; 0�;AÞ by the
restriction. Then p is surjective and its kernel is SI : Hence we have the following
short exact sequence:

0 	! SI !i DðI ;AÞ !p C0ðð	1; 0�;AÞ 	! 0:

The conclusion follows from the 6-term exact sequence of K-groups associated with
this short exact sequence together with the fact K�ðC0ðð	1; 0�;AÞÞ ¼ 0: &

Definition C.4. Let A;B be C�-algebras, and I be an ideals of A: For two �-
homomorphisms rþ; r	 : B	!A such that rþðbÞ 	 r	ðbÞAI for all bAB; we define a

�-homomorphisms r : SB	!DðI ;AÞ by

rð f ÞðsÞ ¼
rþð f ðsÞÞ if sX0;

r	ð f ð	sÞÞ if sp0;

�
for fASB:

Lemma C.5. When rþ ¼ r	; the �-homomorphism r : SB	!DðI ;AÞ in Definition C.4

induces 0 on K-groups.
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Proof. When rþ ¼ r	; the �-homomorphism r factors through the �-homomorph-
ism s :C0ð½0; 1Þ;AÞ	!DðI ;AÞ defined by

sð f ÞðsÞ ¼
f ðsÞ if sX0;

f ð	sÞ if sp0;

�
for fAC0ð½0; 1Þ;AÞ: Since K�ðC0ð½0; 1Þ;AÞÞ ¼ 0; we have r� ¼ 0: &

Lemma C.6. For j ¼ 1; 2; let Aj be a C�-algebra, and Ij be an ideal of Aj: For a �-
homomorphism j :A1	!A2 with jðI1ÞCI2; we can define a �-homomorphism

Dj :DðI1;A1Þ	!DðI2;A2Þ by Djð f ÞðsÞ ¼ jð f ðsÞÞ; and we get a commutative

diagram:

Proof. Straightforward. &

We go back to the proof of Proposition 8.2. We first treat the case that the C�-
correspondence X is non-degenerate. Let us take a C�-algebra A and a non-
degenerate C�-correspondence X :
Let ðj

N
; tNÞ be the Fock representation of X on LðFðXÞÞ: We denote by

rþ :TX	!LðFðXÞÞ the �-homomorphism such that rþ3 %pX ¼ j
N
and rþ3%tX ¼

tN: We define a �-homomorphism j	
N
:A	!LðFðXÞÞ and a linear map

t	
N
:X	!LðFðX ÞÞ by

j	
N
ðaÞ ¼

XN
m¼1

jmðaÞ; t	
N
ðxÞ ¼

XN
m¼1

t1mðxÞ:

Similarly as the proof of Proposition 4.3, we see that ðj	
N
; t	

N
Þ is a representation of

X : Hence there exists a �-homomorphism r	 :TX	!LðFðXÞÞ such that r	3 %pX ¼
j	
N
and r	3%tX ¼ t	

N
:

Lemma C.7 ([P, Lemma 4.2]). For every xATX ; we have rþðxÞ 	
r	ðxÞAKðFðXÞÞ:

Proof. SinceTX is generated by the image of the two maps %pX and %tX ; it suffices to
show this lemma when xATX is in the image of these maps. For aAA; we have

rþð %pX ðaÞÞ 	 r	ð %pX ðaÞÞ ¼ j0ðaÞAKðFðXÞÞ;
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and for xAX ; we have

rþð%tX ðxÞÞ 	 r	ð%tX ðxÞÞ ¼ t10ðxÞAKðFðX ÞÞ:

We are done. &

Let us set D ¼ DðKðFðX ÞÞ;LðFðXÞÞÞ: By Lemma C.7, we can define a �-
homomorphism r : STX	!D by

rð f ÞðsÞ ¼
rþð f ðsÞÞ if sX0;

r	ð f ð	sÞÞ if sp0:

�

Lemma C.8. The �-homomorphism Sj0 : SA	!D induces an isomorphism on the

K-groups.

Proof. This follows from the fact that j0 :A	!KðFðX ÞÞ is an injection onto a
hereditary and full C�-subalgebra ofKðFðXÞÞ with the help of Proposition B.5 and
Lemma C.3. &

Proposition C.9. The composition of S %pX : SA	!STX and r : STX	!D induces an

isomorphism on the K-groups.

Proof. Since we have rþ3 %pX ¼ j0 þ r	3 %pX ; we can see that the composition r3S %pX

induces the same map as Sj0 with the help of Lemma C.5. Hence the proof
completes by Lemma C.8. &

Proposition C.9 implies that r� is ‘‘the left inverse’’ of the map
ðS %pX Þ� :K�ðSAÞ	!K�ðSTX Þ modulo the isomorphism ðSj0Þ�: We will show that

it is also ‘‘the right inverse’’. To this end, we first ‘‘shift’’ the �-homomorphism
S %pX : SA	!STX along the �-homomorphism Sj0 : SA	!D (see Lemma C.15).

Definition C.10. For each nAN; we set Yn ¼ spanð%tn
X ðX#nÞTX ÞCTX ; which is

naturally a Hilbert TX -module. We denote by Y the direct sum of the Hilbert TX -

modules fYngNn¼0:

Remark C.11. The Hilbert TX -module Y is isomorphic to the interior tensor
product of the Hilbert A-moduleFðX Þ and the HilbertTX -moduleTX with the �-
homomorphism %pX :A	!TX :

The linear maps %tn
X :X

#n	!Yn extend a linear map %t�X :FðX Þ	!Y : By the
definition, we get Y ¼ spanð%t�X ðFðXÞÞTX Þ: We also have /%t�X ðxÞ; %t�X ðZÞSY ¼
%pX ð/x; ZSFðXÞÞ for all x; ZAFðXÞ:
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Definition C.12. We define a �-homomorphism F:LðFðXÞÞ{T/FðTÞALðYÞ by

FðTÞð%t�X ðxÞxÞ ¼ %t�X ðTðxÞÞx for xAFðX Þ and xATX :

It is not difficult to see that F is well defined.

Lemma C.13. We have FðKðFðX ÞÞÞCKðY Þ:

Proof. This follows from the fact that Fðyx;ZÞ ¼ y%t�
X
ðxÞ;%t�

X
ðZÞ for x; ZAFðX Þ; which is

easily verified. &

We define eDD ¼ DðKðYÞ;LðYÞÞ: By Lemma C.13, we can define a �-
homomorphism DF :D	! eDD: Since we assume that X is non-degenerate, we have
Y0 ¼ TX : Hence the natural isomorphism TXDKðY0ÞCKðY Þ gives us a �-
homomorphism ejj0 :TX	!KðYÞ:

Lemma C.14. The �-homomorphism Sejj0 : STX	! eDD induces an isomorphism on the

K-groups.

Proof. Similar as the proof of Lemma C.8. &

Lemma C.15. We have the following commutative diagram:

Proof. Straightforward. &

Proposition C.16. The composition of r : STX	!D and DF :D	! eDD induces an

isomorphism on the K-groups.

Proof. We set p ¼ F3j
N
:A	!LðY Þ: For each sA½0; 1�; we define a linear map

ts :X	!LðYÞ by

tsðxÞ ¼ sejj0ð%tX ðxÞÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1	 s2

p
Fðt10ðxÞÞ þ Fðt	

N
ðxÞÞ:

It is routine to check that the pair ðp; tsÞ is a representation of X : Thus we get a �-
homomorphism rs :TX	!LðY Þ such that rs3 %pX ¼ p and rs3%tX ¼ ts for each s:We
have r0 ¼ F3rþ because t0 ¼ F3tN: We also have r1 ¼ ejj0 þ F3r	 because t1 ¼ejj03%tX þ F3t	

N
and p ¼ ejj03 %pX þ F3j	

N
: For xAX and sA½0; 1�; we have tsðxÞ 	

Fðt	
N
ðxÞÞAKðY Þ because ejj0ð%tX ðxÞÞ;Fðt10ðxÞÞAKðYÞ: Since we have pðaÞ 	

Fðj	
N
ðaÞÞ ¼ ejj0ð %pX ðaÞÞAKðYÞ; we can prove rsðxÞ 	 Fðr	ðxÞÞAKðYÞ for all
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xATX and sA½0; 1� in a similar way to the proof of Lemma C.7. Hence we can see
that the composition of DF3r is homotopic to the �-homomorphism STX	! eDD
defined from the two �-homomorphisms Sejj0 þ SF3r	 and SF3r	: By Lemma C.5,
we see that DF3r induces the same map as Sejj0: Hence the proof completes by
Lemma C.14. &

Combining all the results above, we obtain that the composition of the map

r� :K�ðSTX Þ	!K�ðDÞ and the isomorphism ðSj0Þ
	1
� :K�ðDÞ	!K�ðSAÞ gives the

inverse of the map ðS %pX Þ� :K�ðSAÞ	!K�ðSTX Þ: Hence we have shown that

ð %pX Þ� :K�ðAÞ	!K�ðTX Þ is an isomorphism when the C�-correspondence X is non-

degenerate. We will see that this is the case for general C�-correspondences.
Let us take a C�-correspondence X over a C�-algebra A: We define

T ¼ spanð %pX ðAÞTX %pX ðAÞÞ;

which is the hereditary C�-subalgebra of TX generated by %pX ðAÞ: Since the ideal
generated by %pX ðAÞ is TX ; Proposition B.5 shows that the inclusion T+TX

induces an isomorphism on the K-groups. Hence to prove that the �-homomorphism
%pX :A	!TX induces an isomorphism on the K-groups, it suffices to show that the
�-homomorphism %pX :A	!T induces an isomorphism on the K-groups. This can be
shown by applying the discussion above to the non-degenerate C�-correspondence in
the next lemma.

Lemma C.17. Let us set X 0 ¼ spanðjX ðAÞXÞ which is a non-degenerate C�-
correspondence over A: Then there exists an isomorphism r :TX 0	!T such that

r3 %pX 0 ¼ %pX :

Proof. Let us set p ¼ %pX and define a linear map t :X 0	!TX as the restriction of %tX

to X 0: It is easy to see that the pair ðp; tÞ is a representation of X 0: Hence we have a �-
homomorphism r :TX 0	!TX : It is clear that the gauge action of TX is a gauge
action for the representation ðp; tÞ: It is also clear that faAA j pðaÞActðKðX 0ÞÞg ¼
0: Hence r is injective by Theorem 6.2. Finally, it is not difficult to see that the image
of r is T : &

This completes the proof of Proposition 8.2.
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