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1. Introduction

In this paper we present a class of C*-algebras and point out its close
relationship to topological Markov chains, whose theory is part of symbolic
dynamics. The C*-algebra construction starts from a matrix A =(A(L ) jesn 2 A
finite set, A(7,j)e{0, 1}, and where every row and every column of 4 is non-zero.
(That A(i,j)e{0,1} is assumed for convenience only. All constructions and
results extend to matrices with entries in Z ,. We comment on this in Remark
2.18) A C*-algebra (0, is then generated by partial isometries S,+0(ieX) that
act on a Hilbert space in such a way that their support projections Q, =S¥, and
their range projections P=S,S} satisfy the relations

(A) BB=0(i%j), Q=) A@.j)P (i.je2).

jez
The algebras ¢, that were described in [5] arise in this way from the nxn
matrix all of whose entries are 1, or, equivalently, from the 1 x | matrix (n).

For a large class of matrices A, that includes all irreducible matrices that are
not permutation matrices, we prove that in fact all C*-algebras that are generat-
ed by non-zero partial isometries that satisfy the relations (A4) are canonically
isomorphic (A is called irreducible if for all i,j there is an meN such that
(4™);;>0). The proof is based on the existence of an automorphism group (4", .
of ¢, where

JAS)=tS,, (ieZ, teT).

We show that @, is simple if 4 is irreducible. (The ideal structure of ¢, for
reducible 4 will be considered elsewhere.)

On the other hand the matrix A4 is used in symbolic dynamics as a transition
matrix to construct one-sided and two-sided subshifts. The one-sided subshift o,
acts on the compact space

X ={hene 2N Al x4 ) =1 (keN)}
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and is defined by
(04X =Xp 1. (kelN,xeX ).

The two-sided subshift &, acts on the compact space
X = {(X ez €EM A (X %, ) =1 (KEZ)}

and is defined by
(G, X)) =Xp1, (kEZ.xeX)).

G, i1s what is called a topological Markov chain. Abstractly a topological
Markov chain can be defined as an expansive homeomorphism, with canonical
coordinates, of a completely disconnected compactum. By means of a one-step
generator every topological Markov chain can be represented as the 6, of some
transition matrix 4. (For the theory of topological Markov chains, see e.g. [7].)

One has €, together with the automorphism group (4?),.y invariantly
associated to ¢, (Proposition 2.17). In Sect. 3 we prove that A" ® €, (A the
algebra of compact operators on a separable infinite-dimensional Hilbert space)
together with the automorphism group (id® A1),y is an invariant of the
isomorphism type of an irreducible topological Markov chain ¢, . In fact
A ®0, arises as the crossed product by an automorphism from the 4 F-algebra that
is furnished by the group of uniformly finite dimensional homeomorphisms [9,
107 on an unstable manifold of the chain. Moreover, as we will see in Sect. 4.
A ®0, 1s an invariant of flow equivalence [ 11] of irreducible topological Markov
chains.

In Sect. 5 we identify the Bowen-Franks invariant [3] Z*/(1 —A)Z?* as the
Ext-group of # ®(,. Thereby we give for irreducible topological Markov
chains an interpretation of this invariant in terms of the dynamics of the chain.
At the same time this invariant shows that among the ¢, there are many new
simple C*-algebras which are not stably isomorphic to any of the ¢,. (Recall
that two C*-algebras &/ and # are called stably isomorphic if # ®.«/ and
H ®%A are isomorphic.)

2. Uniqueness of the Algebra (0,

In this section we follow closely [5].

Let A=(A(,))); ;o be a square matrix with A(i,jle{0, 1} and assume, as in
the introduction, that no row and no column of A4 is zero. In the following we fix
non-zero partial isometries S, (i) satisfying (A) and denote by o the C*-
algebra generated by the S, (ieX). The sum of the range projections P, of §; is a
unit for .o/ denoted by 1. If u=(i,,....i,) is a multiindex with i;,eX we denote by
|u| the length k of p and write Sy=1, S, =8, S, ... S, (§ is also considered as a
multiindex). The symbols E,Q, will stand for the range and support projections
of §,, respectively. Each §, is a partial isometry and S,+0 if and only if
A(iji;)=1(j=1.....,k—1). Let .#, denote the set of all multiindices with
entries in X such that S, +0.
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If p=(i,,....0,) and v=(j,, ...,j,) are multiindices we write uv for the multiin-
dex u\ﬁz(i“. ,lk Jis---ajy) of length k+1

2.1. Lemma. Let y,ve.#, be as above and assume S S, #0.
(@) If lul=1vl, then u=v. In this case S¥S,=Q, =0, (u={i,....i)).
(b) Ifful> vl then p=vy' with || =|ul— .
() If |ul <|¥], then v=pv" with |v'|=|v|—|ul.

Proof. (a) follows from the relations SfS;=0,,0, (i,jeX).

(b) Write pu=gau’ with |o|=1{v|. Since S¥S,=8%.5FS,, we get x=v from
(a). Q.ed.

2.2. Lemma. Every word W in S,,S¥ (ieZ) is a linear combination of terms of the
Jorm S, ES¥ (thus also a linear combination of terms of the form S,.S¥).

Proof. Assume W +0. Then after cancellation (S¥S,=0,,0,) W=4, ... A, B, ... B,
where A;€{S;,Q;lieX}, B;e{S},Q;lieX}. Since Q,S;=A(i.j)S;, W is actually of
the form W=5,0, ... 0, 5% and the product Q, ... Q, is a sum of finitely many of
the P. Q.e.d.

2.3. Proposition. Let % be the C*-algebra generated by all elements of the form
S,BS¥ where |uj=|v|=k (k=0,1,2,...). Then each Z, is a finite-dimensional C*-
algebra with unit and F< % .

Proof. Given ieZ and p,ve.#, such that [u|=|v|=k write
E, ,=S,PBSt
Using 2.1 we compute

E:‘h"xE.I]in'z-oH H2 lu QHPS* = ‘H uzol JE;H va©
Thus the non-zero elements among the E. | form a system of matrix units
generating a (not necessarily simple) finite-dimensional C*-algebra.

The identity

=Y S, S,PSts¥=Y S,.PSt

jel jef

shows that £ <%, ,. Q.ed.

We denote by #, the closure of | )] 4. Then %, is an inductive limit of
k=0

finite-dimensional C*-algebras (i.e. an AF-algebra).

For ieX let %' be the (simple) C*-subalgebra of % that is generated by the
E . (ve d ,, l,u]——|\|—k) Then % is the direct sum of the %' (ieZ), and the
embedding ofdg( in %, is given by the matrix 4, ie. %' is embedded in %/, ,
with multiplicity A(i,j) (for the definition of the multiplicities of an embedding
see [2]) The criterion for s1mpllclty of an AF-algebra, given in [2, 3. 5], shows
that Z, is simple if A is aperiodic, ie. if there is m >0 such that (4");;>0 for all

iLjeX. It should also be noted that, in this case, &, admits a umque trace, cf.
Sect, 3,
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We define a positive linear map ¢,: o/ — .o by ¢,(X)=> S, XS¥. Then
(X)= Y S, XS (k=12..) teX

lal=k

2.4. Lemma. Every element in ¢ 7'() commutes with every element in %,
(k=0,1,2,...).

Proof. Take X= Y S, X'S} in o+t 1(</) and Y=8,PS} (lul==k, ieX) in
Jaj=k+1

%,. Then by (2.1)

XY=( S S,X'S)S,BS¥= ZS X'SrQ, BSY

Jel=k+1 jeZ
—5,0,(X) S,
YX=SBSt( ¥ S,XSH=S,B,(X)S?
fel=k+1

But P® ,(X')=8,X'S¥ = ,(X') P and the assertion is proved. Q.e.d.

It follows from 2.4 that the C*-algebra &, generated by all elements of the
form ¢X(P) (ieZ, k=0) is commutative. This C*-algebra is seen to coincide with
the C*-algebra generated by all range projections P, (ue.#,). The restriction of
¢4 to @, is an isometric endomorphism of & ,. Consider now the algebra (X ,)
of all continuous complex-valued functions on X ,. This algebra is generated by
all functions of the form y,o0=0%/(y,) (ieX, j=0,1,2,...) where y, is the
characteristic function of the cylinder set Z(i)={xeX ,|x,=i}.

2.5. Proposition. There is a unique isomorphism w: 9 ,— €(X ,) such that o(P)=
(ieX) and w ¢, 0~ "(H)y=a%(H) for all HEG(X ,).

Proof. One checks that the map
w: PY(P)—a¥(y)  (i€X, j=0,1,2,...)
extends to an isomorphism. Q.e.d.

Call a homeomorphism u: X ,— X , uniformly finite dimensional if for some
koeN we have (ux),=x, (xeX,, k>ky). The group of uniformly finite dimen-
sional homeomorphisms of X , is an ample group in the sense of [10]. It gives.
via a crossed product, rise to an AF-algebra that is isomorphic to %, by an
isomorphism that extends w. We return to this point of view in the next section.

Let X, denote the set of all ieX for which there are at least two different
multiindices pu=(i,,...,i) and v=(j,,...,j) in .#, such that i, =i =j, =j =i
(r,s22) while i, j,#i for 1 <k<r, 1 <l<s. From now on we will assume that 4
satisfies the following condition

(I) For each ieX there is u=(i,,...,i,) in 4 (r=1) such that i; =i and i,e2,.

The matrix A satisfies condition (I) if and only if X , has no isolated points, i.e.
X, is a Cantor discontinuum. If 4 is irreducible and is not a permutation
matrix, then A4 satisfies condition ().
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On the other hand, A does not satisfy (I) if and only if there is poe.s#,,
lttl2 1 such that P,_=Q, . But then, depending on the choice of the S,(i€X), the
spectrum of S, may be any closed subset M of {0} UT. Thus, in this case, the
isomorphism class of ./ may depend (and actually does depend) on the choice of
the generators S;(ieX). For instance, for the matrix

0 1
A=
(o
we may choose partial isometries S,, S, satisfying (A4) such that the C*-algebra

generated by S,, S, is isomorphic to M,R®%(M), for any given closed subset M
of T. We will see that such a thing can not happen if A4 satisfies (I).

2.6. Lemma. Let A satisfy condition (1). Then for all keIN there is a projection
Qe , such that QF+0 (ie2) and such that ¢7(Q)S, ¢",(Q)=0 for all ye.# , such
that 1 i<k and for all r20.

Proof. We can find aperiodic admissible sequences xVeZ(i) (ieX) of elements in
X such that no translate of x% coincides with any translate of x'(i =), in other
words such that the finite set Y ={x"|ieX} satisfies a;*(Y)no; (Y)=9 for all
k,leN such that k=1

If V is a sufficiently small closed and open set in X , containing Y, we have
VAo /(V)=0 for 1<j<k. Let Qe2, be such that w(Q) is the characteristic
function of V. Then Q ¢%(Q)=0 for 1 <j<k (2.5) and since ¢, is a homomor-
phism on & ,, also ¢,(Q) ¢",;"/(Q)=0 for all r=0 and 1<j<k, and this is what
we wanted to show. Q.e.d.

2.7. Lemma. Let Qe % , be a projection such that QP.+0 (ieX) and set Q, = ¢*(Q).
Then the map X—Q, , X is an isomorphism of F onto Q, , | % Qusr-

Proof. By 2.4 it suffices to show that Q, ., S, B, S*=+0 for all ieX and pe.#, such
that |ul=k and S,BS}=+0 (note that S, BS¥ is the range projection of the
matrix unit E} . c¢f. 2.3). This amounts to showing that @, ,S,S*+0 for all
ue.# , such that |u|=k+1 (replace P by S, S¥). But
Quet S, SE=¢5 QS Sk=( Y S,085)S,Sk=5,0S;
la|=k+1

since SyS,8%=0,,8% (2.1). The assumption on @ implies that S,0S¥*=+0

4T

whenever ue.#,. Q.e.d.

We denote by 2 the star algebra generated algebraically by S,(ieX). Let Y
=S8,8YeP (u, ved ). If |u|>|v| then Y=5, (S,,S¥)=S, Y where u=p, y1,, |u,|
=lul=vl, |uyl=|v| and Y'e #,. If |u|=|v|. then YeZ,. If [ul<|v|. then Y=
(S,8¥)S¥ =Y"S* where v=v,v,, v, =|v|—|ul, v,=u and Y"eF,. Since every
element X of # is a linear combination of elements of the form S, S¥(u, ve M y),
X can be written as a finite sum

X = z X, S*+ X+ Z SuXu
{niz1

v[z1

where X,, X, Xue%.
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2.8. Proposition. The element X €%, in this representation of X is uniquely
determined by X, and | X, S X|.

Proof. Given k>0, let Q,€9 , be a projection satisfying the conditions of 2.6 and
let Q, = ¢* (Q)). Then the sequence {Q,} . satisfies

(a8 Q,F-FQ,—0 for all FeZ, (2.4)

(b) 1Q, Fll = IF | for all FeZ, (27

(¢) 0,8,0 QSiQ,—0  forall usuch that [u[=1. (2.6)
Therefore

1Xol= lim [Q, X, Qkll= lim [0, XQ,ll < | X
(1) k—co (2) k—oc

where (1) follows from (b), and (2) from (a) and (¢). If
X= 3 X,S*+Xo+ Y S8, X, (XX, X, e7)
ES MES

is another representation of X, then
0=X—-X=Y{(X,—X)S¥+(X,—Xp)+) S,(X,—X})

is a representation of 0, and therefore X,—X{,=0 by the first part of the
proof. Q.ed.

2.9. Proposition. Let Xe2. Then X =0 if (X* X),=0 and (XX*),=0.

Proof. Let X=) X,S¥+X,+) S,X,. Then (X*X),= > S,XFX,S¥
l vl= ']
+X% X0+ZX:‘ 0, X, where each of the three terms on the right hand side is

positive. Thus if (X* X),=0 then all the S, X, and X, are zero. In the same way
(XX*),=0 implies that all the X S¥* vanish. Q.e.d.

2.10. Proposition. Let S, (icX) be another family of non-zero partial isometries
satisfying (A) and let 2, %, be defined as above with respect to S. (ieX).
(@) The map S, S;“v—»ﬁu §;“ (lu| =|v|) extends to an isomorphism from F, onto

;&’

(b) The map S;— S, (ieX) extends to an isomorphism from P onto P.

Proof. (a) The map in question extends to an isomorphism of [ ] % onto
k=0

U fk. Since U %, as an inductive limit of finite-dimensional C*-algebras,
kz0 k=0
admits a umque C*-norm, this isomorphism extends to the closure.

(b) If X is a linear combination of elements of the form S, S¥, denote by X
the correspondlng linear combination of the elements S S*, We have to show
that X =0 if and only if X =0. But X =0 implies X* X = XX*—O and (X* X)o

=(X X*),=0. Thus, by (a), (X*X),=(X X*),=0 hence, by 29, X=0. Q.ed.

We now equip £ with the largest C*-norm

[ X1 ,=sup {llp(X)]|p is a star representation of # on a separable Hilbert space}
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and we denote by o/ the completion of 2 with respect to ||+[,. By Proposition
2.8 the map X+ X, extends to norm-decreasing positive linear maps f: .o« > %,
and f:s/ —F,. For every teT the partial isometries S,=1tS,(icX) satisfy con-
dition (A4). Therefore the map S;—1S, (ieZ) extends by Proposition 2.10(b) to an
endomorphism 4, of .. For this note that i: #—2 is necessarily norm-
decreasing for |+, (|- /|, is the largest possible C*-norm). Since 4, 4, =4, 4 =id
the endomorphism 4, is in fact an automorphism.

2.11. Proposition. For Xesf, we have f(X)=[A/(X)dt (dt=normalized Haar
T

measure). In particular, f: 4 — F, is faithful, ie. X 20 and J(X)=0 implies X
=0.

Proof. Let Y =8, S¥ be non-zero and r =|u|—\v|. Then 4,(Y)=t"Y and

0 r=+0
A(Y)dt= .
i’()t {Y r=0

Since every element of 2 is a linear combination of elements like Y, we get f(X)
=[ A4(X)dt for Xe?. But the mappings f and X [ 2(X)dt are both con-
T T

tinuous, so that the same identity holds for all XeZ/. Q.e.d.

2.12. Proposition. The identity map id:#—2P extends to an isomorphism
.

Proof. We only have to show that = is injective. Observe first, that for=mof. If
now m(X)=0 for some X 20, then f(n(X))=0 implies 7(f(X))=0 and hence
f(xh =0 (m restricted to %, is an isomorphism). But then also X =0 from
211 Qeed.

2.13. Theorem. Assume that A satisfies (1) and that S/(ieX) and S,(i€X) are two
Jamilies of non-zero partial isometries satisfying (4). Then the map Sp— S, (ieX)
extends to an isomorphism from the C*-algebra o/ generated by S,(i€X) onto the
C*-algebra o/ generated by S, (ieX).

Proof. By 2.10 this map extends to an algebraic isomorphism from # onto #
and therefore also to an isomorphism from ./ onto . The assertion now
follows from Proposition 2.12. Q.e.d.

In the following we will write ¢, for “the” C*-algebra generated by partial
isometries S, 40 (ieX) satisfying (4) (always assuming that 4 satisfies (I)) and
(4),er for the automorphism group (4).p defined above. It is possible to
determine the ideal structure of ¢/, exactly. We restrict ourselves here to show
that @, is simple if 4 is irreducible.

2.14. Theorem. If A is irreducible then O, is simple (ie. contains no non-trivial
closed ideal).

Proof if p is a star representation of ¢ , such that p(5,)£0 (ieZ), then the p(S))
(ieX) satisfy (A) and p is an isomorphism by Theorem 2.13. To prove simplicity
of 0, it suffices therefore to show that a star representation p of O, such that
P(8;)=0 for some i,€Z, is identically zero.
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Now p(S;)=0 implies p(Q;)=0 and hence p(S;)=p(Q,,S,)=0 for all jeX
such that A(i,, j)=1. If A is irreducible we can continue in this way to show that
p(S)=0for all ieZ. Q.ed.

2.15. Remark. Let A=(A(i,}))); ;s be a matrix where ¥ is countably infinite,
A(i, )e{0,1}, and let A satisfy the analogue of conditton (I). Consider a C*-
algebra generated by non-zero partial isometries S; (i€X) satisfying S¥5;=0
{i%j) and

SFS;=3 A(i.j)S;S* (i€X)
jel¥

the sum converging in the strong operator topology. One can prove the
uniqueness of this C*-algebra by the same device that was used in [5] to prove
the uniqueness of ¢ . In fact, ¢ is the algebra corresponding to the infinite
matrix A=(A(i,J)); jen Where A(i,j)=1 for all i, jeN. It was argued in [5] that
0, is the inductive limit of the subalgebras o7, (kelN) generated by S,,.... S,
and that each .o, admits a canonical embedding into ¢/, , ;, hence is unique. This
idea carries over to more general infinite matrices A without difficulty and thus
Theorem 2.13 also holds for countably infinite matrices A satisfying the ana-
logue of (I).

2.16. Remark. So far we have only considered matrices with entries in {0, 1}. Let
now A=(A(,}j)); ;. be a matrix where A(i,j)eZ , (and ¥ is again finite). Set X'
={(, k)i, jeZ; 1=k A(, )} and
1 if j, =i
A, . ,k , . \ . , k . — ) 1 2‘

(1, kg Jo) (s Ky f2)) {0 it j,+i,
For A satisfying the analogue of condition (I), set then ¢,=C,. The algebra
A ®0, can be described as follows. Start with the C*-algebra (P #; where each %}

ie¥

is isomorphic to . We may assume that this algebra is represented on a
separable Hilbert space in such a way that each of its projections is onto an
infinite-dimensional subspace. Choose then partial isometries S; (ieZ) with
range projections P and support projections Q; such that each P, is a projection
of dimension 1 in #; while

Q=2 AGLHP (ieX)
jel¥
where A(i, j) P, is a formal expression meaning a projection of dimension A(i, )
in ;. The C*-algebra generated by (@ .%; together with S (i€X) is isomorphic to
iel
the C*-algebra 4 ®0C , as defined above.

To conclude this section we show that topologically conjugate one-sided
shifts ¢, and o, give rise to isomorphic algebras ¢, and U5. Recall that o, and
op are called topologically conjugate if there is a homeomorphism h: X , — X,
such that o,=ho h~'. We assume that 4 and B both satisfy condition ([).

2.17. Proposition. If o, and oy are topologically conjugate, then there is an
isomorphism of O , onto O transforming 9 , into D, 4, , into Oy 4, and (A et
into (’ltB)te'JI"
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Proof. The cylinder sets Z(i) (ieZ) defined in 2.5 form what is called a generator
for a4, i.e. the characteristic functions of the sets 63*(Z(i)) (keN, ieX) generate
%(X ,). Given the map o ,, the matrix 4 is determined by this generator (A(i, j)
=1iff Z(i)na; ' (Z(j))*0). For the proof we may assume that g, and gz act on
the same space X and that ¢,=0z=0. Let Z(i) (ieX) and Y(j)(jeZX’) be
generators for o corresponding to A and B, respectively. Then the non-empty
sets among the sets W, =Z(i)n Y(j) (ie X, jeX’) form a new generator for a. With
respect to this generator ¢ has the form og.. The algebra (. is generated by
partial isometries V;;(ie 2, jeZ’) where we set V;;=0 if W,;=0 and where the rest
of the V;; is non-zero and satisfies (C). Put §, = Z = Z ;ie2, jeX'). The

partial isometries S;(ie2) satisfy (4) and the pdrtlal isometries T;(jeZ') satisfy
(B). By Theorem 2.13 it only remains to show that each of these sets generates
the whole of €. For this it suffices to show that & is contained in the C*-
algebras generated by these sets, since every V,; is of the form V;;=PS,=QT, with
P,Qe%.. But this is an immediate consequence of 2.5, Qed.

2.18. Remark. If A satisfies (I). then &, is maximal commutative in (', and there
is a faithful conditional expectation d: ¢ ;- <& ,. The map d can be constructed
in analogy to the construction of f using the existence of projections like Q in
2.6. Moreover, 2, is regular in the sense that the normalizer

AL )={Uel ,unitary|lU2 , U*=% ,}

generates (, (cf. also [6]).

In fact, ¢ ; may be considered as a kind of crossed product of &, by the
group of automorphisms induced by elements of . (2 ), cf. also Sect. 3. The
automorphism group (4p),. 4« considered in [6] is associated with this decom-
position of ¢, as a crossed product.

3. Topological Markov Chains

Let T be an irreducible aperiodic topological Markov chain (for the periodic
case see Remark 3 9). Using some one-step generator, whose transition matrix
we denote by 4 =(A(, j)); jer- we represent T in the form 6. For an xeX , set

Wix, )= {(yk)kele‘XA th=x,(k=D},  (eZ)
and consider the unstable manifold W(x) of x,

W(x)={ ) Wix. D).

leZ

Each of the sets W(x,l) inherits from the shift space the topology of a
discontinuum and we put on W(x) the inductive limit topology that is produced
by the inclusions of Wi(x, ) into W(x,I—1), leZ. Note that neither W(x) nor its
lopology depends on the choice of the generator of T that entered into these
definitions. We denote

= U {(Yk)kg)EZL =X (kS =m); A Yiy ) =Lk <0)},

meN
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and
Z(@)={hez€WX) |G go=0a},  (a€L(x)).
3.1. Lemma. For all x,, x,€X , there exists a homeomorphism
h: Wix,)—» Wi(x,)
such that
hyh=y  (keN). (1
Proof. Since A is irreducible and aperiodic we can enumerate
{aeZ(x;) ao=j} ={a"? (m)|meN}
{aeL(x,)ao=j} ={a®?(m)|meN}, (jeX).
A homeomorphism h as required is then defined by stipulating that
hZ(@ P (m)=Z(a*"(m)), (meN, jeX)
and that (1) holds. Q.e.d.

Define a homeomorphism g of an open subset B of W(x) onto another such
set as uniformly finite dimensional if for some IeZ

(gy)kzyk’ (kgla yEB)

Again this definition of uniform finite dimensionality does not depend on the
choice of the generator [9, 11]. The uniformly finite dimensional homeomor-
phism of W(x) onto W(x) form a group that we denote by %,(x).

Let #,(x) be the set of homeomorphisms r of W(x) that are such that for
some [eZ

T h=Verr, (kZD.
3.2. Lemma. Z,(x)+0.

Proof. By Lemma (3.1) there is a homeomorphism
h: W(g ,x)— W(x)

such that
hyh=ye  (keN), yeW(x).

Set r=ha, and have then reZ(x). Q.ed.

3.3. Lemma. For all r,, r,eR(x), 1,15 ' €% (x).

Proof. If for some leZ

M V==Y, (k2L yeW(x)
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then
(s ' Ve=ve  (kzl yeW(x). Qed.
3.4. Lemma. For all x,, x,eX , there exists a homeomorphism

h: W(x,)— W(x,)

such that
W () h™ ' =% (x,) @
and such that
Ryp(x ) h™ ' =Rp(x,). 3)

Proof. The homeomorphism 4 of Lemma 3.1 satisfies (2) and (3). Q.ed.

As a consequence of Lemma 3.4 the isomorphism type of the algebras that
we are going to construct does not depend on the choice of the point xeX ,. We
drop therefore now the x from the notation.

%, acts on the Boolean ring of compact open subsets of W, and the quotient
map J; onto the orbit space of this action was called the future dimension
function of T [9, 11]. Recall that this orbit space is the positive cone of an
ordered abelian group K (T~ !)= liir‘n (Z*,Z%).

—

Let 2 stand for the algebra of continuous complex valued functions on W
that vanish at infinity, and let %, be the AF-algebra that contains & as a regular
maximal abelian subalgebra in such a way that %, is the group of homeomor-
phisms of W that are given by the unitaries in the multiplier algebra of % that
normalize 9. %, is the umque stable (ie. # ®F,=F,;) AF-algebra whose
dimension group is K,(T ') (see [8]). For an alternative description of %,
consider the crossed product (see e.g. [14]) o of < by the automorphism group
that is induced by %, on &. To every ue%, there corresponds a unitary @ in the
multiplier algebra Of . Let ¢ be the closed ideal of .7 generated by all
elements of the form & B,— ¢ P, where u and v are uniformly finite dimensional
homeomorphisms such that the restrictions of u and v to the compact open set
B<= W coincide, and where F, denotes the characteristic function of B. Then %, is
the quotient .o// ¢. The characteristic function of a compact open set BcW
defines a projection B,e % — %,. Moreover, every uniformly finite dimensional
homeomorphism u of a compdct open subset B of W onto a compact open
subset C of W has an image #i in %, that is a partial isometry with range
projection F. and support projection F,. We remark that under the assumption
of dperlodlclty and irreducibility the d]gebra F is simple (see [2]) and has a
unique trace. A formula for the trace of %, can be read off from the formula for
the measure of maximal entropy for T (see e.g. [7]). Every re#; as an element
of the normalizer of %, induces an automorphism of %, and one sees that this
dutomorphism scales the trace by the maximal real eigenvalue of 4. We form
how the crossed product @, of %, by such an automorphism. This automor-
phism gives then rise to a umtary 7 in the multiplier algebra of @,. Moreover,
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we have an automorphism group (i7),.; of ¢, where AT leaves %, elementwise
fixed, and where

Ti=t¥  (teT).

In view of Lemma 3.3 neither ¢’} nor (47),.; depends on the choice of the re 4,
that was used to construct it. We have now the algebra € as well as the group
(A1), invariantly associated to the topological Markov chain 7. We compute
these invariants in terms of the matrix A.

3.5. Lemma. Let B, B', C be compact open subsets of W, set C'=rB’, and let
u:B—B, v:C—>C,

be uniformly finite dimensional homeomorphisms. Then € is generated by F, and
5

eu
Fir

Proof. It suffices to prove that for all compact open sets D<= W such that

3+(D)<3,(B) one has ¥F, in the algebra that is generated by %, and dFi. For
this choose uniformly finite dimensional homeomorphisms
u:D—->D,<B, vyivruu,D—rD.
Then
w=r"'v, vruu,
is a uniformly finite dimensional homeomorphism of D, and it is
FPy=0,0Fua, w 'B. Q.ed.

3.6. Lemma. For all compact open sets B W, Fy O Fy together with F;. generates
.

Proof. Choose a compact open set B, < B such that
Or(rBy)£0,(B)

and choose a uniformly finite dimensional homeomorphism
u:rB,— CcB.

Then have
¥ P P 0B

and by Lemma 3.5 ¢, is generated by #i¥F, and %;. Q.ed.

Let € be a maximal commutative C*-subalgebra of 4.

3.7. Lemma. For all compact open sets B W
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Proof. With B, =B let {B,{IcN} be a partition of W into compact open sets
such that

dr(B)=03,(B), (leN).
Let
u:B—B, (lelN)

be uniformly finite dimensional homeomorphisms. One has then a system
E,,(k, 1eN) of matrix units in O,

Ez,z:PB,a
E“:ﬁ,, (leN)

and one can identify #"®F; 0 P, with the subalgebra of @ that is generated by
{E,; 01 E, ,|leN}, at the same time identifying ¥®F, & with the algebra that
is generated by {E, ; Z|/eN}. One has %, generated by the E, . (l.keN) and by
E, %, E, . Therefore it remains only to note that by Lemma 3.5 the algebra
that is generated by the E, , (I, keN) and by E, | C;E, | isall of €;. Q.ed.

Given ae L(x), p=(iy,...,i,)e.# . such that A(a,,i,)=1 set
Zia, )={yeZ(@l(yy, ... y)=u}.

Further if a'e.#(x) and v=(j,, ..., j,) is a second block in .#, of length k such
that A(ay, j)=1 and i, =j,, let

ud,v,a, py: Z(a, Wy—Za, v)

be the uniformly finite dimensional homeomorphism that is defined by
W@, v.a, )yy)=y, (1zk yeZia, p).

3.8. Theorem. There is an isomorphism
Y0, D) (H RO, ERD )

such that W ATy~ '=id®I*  (teT).

Proof. For all ieX choose an a(i)e £(x) such that Ala(i)e, ) =1 and set

pP=% Bai. -
ieX
To obtain @ use an reRp{x) such that (ry), =y, (keN). For all ieX and
for all jeX such that A(i,j)=1 choose an a;;€ £(x) such that (a}),=i,

ij
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and then let afje.#(x) be such that A((a})o, =1,

= Z(a}y, j)=Z(a}} (i, )
Then

u(a(i), (i, j); aff (L) ™t ulag;, j; al), ) Z(a(), ) =Z(ali), G, )
Setting

Si = Z ﬂ(a(l)v (la J)’ a;;(l’ ])) F- ! a(a;ja l: a(j)9 ])

A6, =1}

we obtain therefore partial isometries S;eP @, P that satisfy the relations (A4).
Moreover, one computes that one has for u=(i,,...,0), V=01, ..., j)€M, iy, =],
that

S, 8% =ula(iy), u; a(jy), v)

and it follows that the S, generate an algebra that contains P %, P. The proof is
then concluded by appealing to Lemma 3.5 and by noting that

irs;=tS, (ieZ, teM). Qed.
3.9. Remark. For an irreducible topological Markov chain T with period p>0

use a union

U wW@gx) (xeX )

O<q<p

of unstable manifolds, and consider the group %, of uniformly finite dimen-
sional homeomorphisms together with %, on this union. Denote by (T7), the
irreducible components of T?. One has

F = 7723 73 ~ G
/7—0@ /(Tp)q’ ’/(Tp)qz‘/(’ﬂ’)q’ 1 = q<p
=g4<p

where the summands arise from the group %, restricted to the W(G%x),
0<g<p. To obtain O, one can use an re#, such that r on the W(g% x), 0<g<p
—1, equals &, and such that r? restricted to W(x) gives an 7,€#,5,,. Then there
is an isomorphism of @ onto Mp®(9m,,0 that carries ¥ into

( Z Eq+1,q®1)+E0,p—1®?O

O0gg<p-1

and transforms the group (A7),.; into the group (4,),.; where
WE 1 ®X)=t(E,. ,®X) (O=q<p-1)
A(Eg , 1 ®F X)=t(E, ,_®F X) (Xe€F 1))

Thus while @, is isomorphic to @, the groups (A7).r and (A7), are
different.
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4. Flow Equivalence

Topological Markov chains are said to be flow equivalent if their suspension
flows act on spaces that are homeomorphic under homeomorphisms that respect
the orientation of the orbits [117]. Equivalently they are flow equivalent if they
induce isomorphic chains on some closed open subset, that is, if they are
Kakutani equivalent. Parry and Sullivan have given a description of flow
equivalence in terms of a matrix operation [117. This description leads to a sort
of instant computational proof of the invariance of the pair (€, ¢) under flow
equivalence. We want to give this proof here. We point out, however, that a
conceptual proof of this fact is also possible if one exploits the circumstance that
(¢, arises as a crossed product.

4.1. Theorem. If T, and T, are flow equivalent then
Or, D)~ (Cr, D).

Proof. From the transition matrix 4 =(a;;), <; j<,. form the transition matrix

0 ay, ... a,
o ... 0
A= 0 a,, ... a,,
0 a, .. a,,

According to Parry and Sullivan, to prove the theorem it is enough to prove
that

(C(-;a,,,a =-C]_) M(@agw g)

The algebra @ is generated by n+ 1 partial isometries S, ..., S, satisfying (A4).
By definition of 4 the partial isometries S :SlSO, §,=8,,...,8, =8, satisfy (A4).
Note that §;S,#0 if and only if i=1 and that §,5,%0 if and only if j=0. Thus
every S, (ue# ;) is of the form S, =S, for some ocejz’ or of the form §,=S,S}
for some Ped oritis S, =S,.

Set P=S,5%+...+5, S* If PS,S¥P+0 for some u, ve.# 5, then using S, S}
=8,5,S¢S, —S’ S'* we see that S =S,. S,=58} for some «, Be.# ;. This shows
lhd[ P(QAP is genelated by Y ,...,S;, and thus is isomorphic to 0 Since for
cvery range projection S, 8%, (u€.# ;) the product S, S¥P is either O or of the
form §.S* (we.# ,), we see at the same time that 5 2;P=%,. The theorem
follows now from Lemma 3.7. Q.e.d.

3. The Ext-Group for ¢/,

Let H be a separable infinite-dimensional Hilbert space, let £ (H) be the algebra
of all bounded linear operators on H, X (H)c ¥ (H) the algebra of compact
operators and let #: ¥ (H)— 2 be the quotient map onto the Calkin algebra 2
=Z(H)/# (H). An extension of a separable C*-algebra ./ is a star monomor-
phism ¢: o7 2. Two extensions p, s are called weakly equivalent, if there is a
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partial isometry Ue2 such that p(X)=Ud(X)U* and 6(X)=U*p(X)U (X ).
The set of weak equivalence classes of extensions is denoted by Ext .«/.

On Ext.«/ one defines a semigroup structure as follows. Call two extensions
p, o orthogonal (p L o) if there are projections E, Fe2 such that EF =0 and p(%/)
<E2E, o(s/)cF2F. If [p].[ o] are in Ext .o/ define [p]+[o]=[p,+0a,] where
0,€lp], 0,€lo] and p, Lo,. (Here p,+0, is defined by (p,+0,)(X)=p(X)
+0,(X) (Xes)) Note that the definition of [p]+[o] does not depend on the
choice of p,.0,.

An extension 1: .o/— 2 is called trivial if it admits a lifting 7, ie. a star
monomorphism f: &/ — ¥ (H) such that t=no%. Voiculescu’s theorem ([17] cf.
also [1]) says that all trivial extensions are equivalent and that their equivalence
class is the neutral element in Ext.o/. Ext ¢, has been computed by Pimsner-
Popa [15] and by Paschke-Salinas [13]. Here we follow the approach of [15].

Let Ec2 be a projection and E'e.¥(H) a projection such that n(E)=E. If X
is an element of 2 such that EXE is invertible in E2E we denote by ind, X the
Fredholm index of E'X'E’ in E'(H) where X'e ¥ (H) is such that n(X')=X.
Since the Fredholm index is invariant under compact perturbations, this de-
finition does not depend on the choice of E" and X'. The following lemma we
assume as well known.

5.1. Lemma. (a) Let E, Fe 2 be orthogonal projections, and X an element of 2
such that EXE and FXF are invertible in EQFE and F2F and such that X
commutes with E and F. Then ind p(X)=indg(X)+indg(X)

(b) If X, YeEZE are invertible in EQE, then
ind; XY=ind X +ind; Y.

Let now A=(a;)); ; j<n @;;€10, 1}, satisfy condition (1) and let ¢: €,—2
be an extension of ¢, and E,=¢(P). There are trivial extensions 7 of ¢/, such
that 1(P)=E,. Define d,=ind; a(S))t(S¥) (i=1,....n) and d, ,=(d,.....d,)eZ".

5.2. Proposition. If 7,7 are trivial extensions of O, satisfying ©(P)=1v(P)=E,.
then d, ,—d, .e(1—ANZ").
Proof. By Voiculescu’s theorem there is a partial isometry Ue2 such that 7'(X)
=Ut(X)U* and t(X)=U*tT"(X)U(X€e0 ).

Write k;=ind; U and d, . =(d}....,d,). Then

d;=ind; o(S) 7' (SF)
=ind,, o(S,) Ut(SF) U*

—ind,, o(S;) (2 a,E,;UE j) 1(S¥)(E,U*E))
=1

=indy o(S) t(s}) {‘c(Si) Y, a;E; UEJ.T(S?‘)} E.U*E,
j=1

—d,— (ki— y a,.jk.,.).

Jj=1
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This computation uses the fact that U commutes with every E;, and Lemma

5.1. Q.ed.

Thus with every extension ¢ of ¢/, we can, in a unique way, associate an
element d, of the quotient group Z"/(1—-A)Z". If p,o are two equivalent
extensions of ¢, then d,=d,. Moreover, Lemma 5.1 (a) shows that the map (o]
Fd, is additive.

53. Theorem. d: Ext ¢, —>Z"/(1 - AYZ" is an isomorphism.

Proof. One checks that d is surjective. Let us show that d is also injective.

Let o be an extension such that d,=0. Let t be a trivial extension of ¢,
satisfying 1(P)=o0(P) and let d, .=(d,,...,d,) be defined as above. Write E,
=1(P)and E;=1(P) (i=1,...,n) where 7 is a lifting for 7. By assumption, there is
an element k=(k,...,k ) of Z" such that d_ . =(1 - A)k.

Choose isometries or coisometries V, (i=1,...,n) in £ (E}{H)) such that ind ¥,

=—k,and set U= Y V. Then one has, using Lemma 5.1,
i=1

indg n(U) o{S) n(U*)1(SF)
=indg n(V) o(S (Z auV*> (S¥)
=ind,; n(V)o (S)T(S*){‘E(S)‘ﬂ(i aijI/j*)r(S;")}
i

=
—d~ (k,.+ Y agk,) =0

j=1

Therefore  there is a unitary X,e%(E{(H)) such that =n(X))
=m(U)a(S)n(U*)t(S¥). Setting T,=X,i(S,), we have lfted each element
n(U )a(S)n(U*) to a partial isometry T.e ¥ (H) satisfying T.T*=E; and T;*T;

= Z a;E;. Now Theorem 2.13 shows that the map S~ T; extends to a star

monomorhlsm from @, into £(H), and therefore the map Sp—n(T)
=n(U}a(S)n(U*) extends to a trivial extension of € . In other words o is
equivalent to a trivial extension and hence itself trivial. Q.e.d.

By the Elementarteiiersatz (see e.g. [16, § 857]) the endomorphism B=1—A4 of
Z" can be written in the form B=JB where J is an isomorphism of Z", and
where B’ has a diagonal matrix with entries in Z, with respect to some basis of
Z". 1f the eigenvalues of B  are b, ..., b, then

(|~ AL = 2B L ~Zb,Z® ... DL Z.

In particular, if Z"/(1—~A)Z" is finite, its order is det B'=|det (1 ~A)|. Also the
group Z"/(1 —~ A)Z" is infinite if and only if det (] —4)=0.

Remark 3.4. Ext being a stable isomorphism invariant [4] we have now
cxamples of simple C*-algebras that are not stably isomorphic to any of the ¢,.
Look at a handful of irreducible 3 x 3 matrices:
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00 1

A1=<1 0 1), Ext0, =Z,,
R
01 1

Az=<1 0 1), Ext0, =1Z,,
111
01 1

A3=<1 0 1>, ExtO, =Z,8Z,,
110
1 01

A,=[0 1 1), Exte,,=Z
111

0,, is isomorphic to @, and ¢, is isomorphic to M, ® ¢, but neither €4, nor
0,, is stably isomorphic to any of the @,.

That Z"/(1 — A)Z" is an invariant of flow equivalence of topological Markov

chains &, was discovered by Bowen and Franks [3]. Compare here Theorems
4.1 and 5.3.
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