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1. Introduction 

In this paper we present a class of C*-algebras and point out its close 
relationship to topological Markov chains, whose theory is part of symbolic 
dynamics. The C*-algebra construction starts from a matrix A =(A (i,j))i,~ z, Z a 
finite set, A(i,j)c{0, l}, and where every row and every column of A is non-zero. 
(That A(i,j)e{O, 1} is assumed for convenience only. All constructions and 
results extend to matrices with entries in 2~+. We comment on this in Remark 
2.18.) A C*-algebra 6~ A is then generated by partial isometries Si~O(i~X ) that 
act on a Hilbert space in such a way that their support projections Qi=S*S~ and 
their range projections P~ =SIS* satisfy the relations 

(A) P~Pj=0 (i+j), Qi= ~ A(i,j)Pj (i,j6S). 
j e 2  

The algebras ~0 that were described in [5] arise in this way from the n x n 
matrix all of whose entries are 1, or, equivalently, from the 1 x I matrix (n). 

For a large class of matrices A, that includes all irreducible matrices that are 
not permutation matrices, we prove that in fact all C*-algebras that are generat- 
ed by non-zero partial isometries that satisfy the relations (A) are canonically 
isomorphic (A is called irreducible if for all i,j there is an m e n  such that 
(Am)is>0). Tile proof is based on the existence of an automorphism group (,t~),~r 
of ~'A where 

;.:(Si)=tSi, (i~S, tc~). 

We show that C a is simple if A is irreducible. (The ideal structure of C A for 
reducible A will be considered elsewhere.) 

On the other hand the matrix A is used in symbolic dynamics as a transition 
matrix to construct one-sided and two-sided subshifts. The one-sided subshift a a 
acts on the compact space 

Xa = {(Xk)k~N~Z~[A(x~, Xk+ ~)= 1 (keN)} 
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and is defined by 

(O'AX)k=Xk+I , (kEIN, xEXA). 

The two-sided subshift ffA acts on the compact space 

XA : {(Xk)k~e~X'ZlA(Xk, Xk+ l) = 1 (k62g)} 

and is defined by 

(~aX)k=Xk+l, (k@ff.,xEXa). 

ffA is what is called a topological Markov chain. Abstractly a topological 
Markov chain can be defined as an expansive homeomorphism, with canonical 
coordinates, of a completely disconnected compactum. By means of a one-step 
generator every topological Markov chain can be represented as the ffA of some 
transition matrix A. (For the theory of topological Markov chains, see e.g. [7].) 

One has C a together with the automorphism group (2A)~ r invariantly 
associated to o- A (Proposition 2.17). In Sect. 3 we prove that J{'@()a (,kf" the 
algebra of compact operators on a separable infinite-dimensional Hilbert space) 
together with the automorphism group (id| is an invariant of the 
isomorphism type of an irreducible topological Markov chain a~ .  In fact 
";( | ~a arises as the crossed product by an automorphism from the AF-algebra that 
is furnished by the group of uniformly finite dimensional homeomorphisms [9, 
10] on an unstable manifold of the chain. Moreover, as we will see in Sect.4, 
Y @ ( 9  A is an invariant of flow equivalence [1 l] of irreducible topological Markov 
chains. 

In Sect. 5 we identify the Bowen-Franks invariant [3] 7l~/(1-A)2g ~ as the 
Ext-group of ~{~| . Thereby we give for irreducible topological Markov 
chains an interpretation of this invariant in terms of the dynamics of the chain. 
At the same time this invariant shows that among the C A there are many new 
simple C*-algebras which are not stably isomorphic to any of the ~'.. (Recall 
that two C*-algebras ,x~' and ~ are called stably isomorphic if , ; f |  and 
, ~ @ ~  are isomorphic.) 

2. Uniqueness of  the Algebra ~0 A 

In this section we follow closely [5]. 
Let A =(A(i , j)) i , i~ be a square matrix with A(i,j)E{O, 1} and assume, as in 

the introduction, that no row and no column of A is zero. In the following we fix 
non-zero partial isometries Si( ie2)  satisfying (A) and denote by sd the C*- 
algebra generated by the S~(i~2;). The sum of the range projections P~ of  Si is a 
unit for d denoted by 1. If p=( i  I .. . . .  ik) is a multiindex with ij~Z we denote by 
I#[ the length k of # and write S0= l ,  S.  =SilSi2 ... Six (0 is also considered as a 
multiindex). The symbols P., Q. will stand for the range and support projections 
of S,, respectively, Each S. is a partial isometry and S.#:0 if and only if 
A(ij, i j+ j )=l  ( j = l  . . . . .  k - l ) .  Let dg A denote the set of all multiindices # with 
entries in 2; such that S u 4 =0. 
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If #=(i~ . . . . .  ik) and v=(j  I . . . . .  j~) are multiindices we write/~v for the multiin- 
dex #v=(i 1 . . . . .  ik,j 1 . . . . . .  Jl) of length k +l. 

2.1. Lemma. Let #, vc,r162 A be as above and assume S*S~+O. 

(a) l f l#l  = {vt, then It= v. In this case S,  S , , - Q ,  =Qi~ (#=(il  . . . . .  it)). 
(b) If  I#[ >[v{, then # = v # '  with I#'l=[#l-lvl. 
(c) If l#l<[vl,  then v=#v '  with lv'[=lvl-l#1. 

Proof (a) follows from the relations S*S j=f i jQi  (i , j6S).  

(b) Write #---~#' with [T[=lv[. Since S , S , , - S , , S ~ S , , ,  we get ~=v from 
(a). Q.e.d. 

2.2. Lemma. Ec'ery word W in S i, S* (i6Z) is a linear combination of  terms of the 
jorm SuPiS,* (thus also a linear combination o f  terms of  the Jorm S,,S*,). 

ProoJl Assume W+0.  Then after cancellation (S*Si=6~jQi) W = A ~  ... A~B~ ... B, 
where Aee{Si ,Qi[ ieZ} ,  B j e { S * , Q i l i e S  }. Since Q~Sj=A(i , j )S j ,  W is actually of 
the form W = S , Q  l ... QkS* and the product Q1.--Qk is a sum of finitely many of 
the P~. Q.e.d, 

2.3. Proposition. Let ,~  be the C*-algebra generated by all elements of the form 
SuPiS* where t/~l--Ivl--k (k=0, 1,2 . . . .  ). Then each ~ is a finite-dimensional C*- 
algebra with unit and o~ ~ . ~  + 1. 

ProoJ2 Given i6Z and ~,v~/r  a such that [#l=IvI=k write 

E i - S  PS* 
l*, v - - - - I t  i - - v  " 

Using 2.1 we compute 

E i 'J = " * - -  " 3 i u>,,,E~.2,v2 6v,,It2Sv,PiQv,PjSv2 -;5vl,It2{ i,jE.t.v2 �9 

Thus the non-zero elements among the El,,,, form a system of matrix units 
generating a (not necessarily simple) finite-dimensional C*-algebra. 

The identity 

s.e,s* = y s.s,gs?s*  = 2 s.,gs*.,, 
j e S  j e Z  

shows that o ~ c ~ + 1 .  Q.e.d. 

We denote by ~A-- the closure of (,_) ~k'~'~- Then J'.4- is an inductive limit of 
k = O  

finite-dimensional C*-algebras (i.e. an AF-algebra). 
For i e Z  let ,~i be the (simple) C*-subalgebra of ~ that is generated by the 

El,.,, (# ,v~Jr  a, ]#]=]vl=k). Then ,~ is the direct sum of the ,~i (ieS), and the 
embedding of ~ in ~ +  ~ is given by the matrix A, i.e. ~ ;  is embedded in ~ +  1 
with multiplicity A(i , j )  (for the definition of the multiplicities of an embedding 
see [2]). The criterion for simplicity of an AF-algebra, given in [2, 3. 5], shows 
that ,~  is simple if A is aperiodic, i.e. if there is m > 0  such that (A")ij>0 for all 
i , jeZ. It should also be noted that, in this case, ,~a admits a unique trace, cf. 
Sect. 3. 
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We define a positive linear map 0A: ~4--*~' by OA(X) ''~- ~ SiXS ~, Then 
0kA(X)= ~ S ~ X S * ( k = I , 2  . . . .  ). i~s 

I~l=k 

2.4. Lemma. Every element in O~+~(d) commutes with every element in '~k 
(k=0, 1, 2, ...). 

Proof T a k e X =  ~ , . &k+l S=X S~ in ( d )  and Y -  * - S , P / S  v (l#[=b,l=k, i~X) in ~ A  
Ictl= k + 1 

~k' Then by (2.1) 

X Y = (  S S~X S~)Sup/S*= ~ ' * * ' * S , jX  Sj Q~p/S~ 
[ a [ = k +  1 jE.Y 

=s. ~ a(x') p/s*, 

YX=S, ,P/S*(  Z ' * S , X  S~) ' * =S ,  Piq) A(X )S~. 
[~tl=k+ 1 

t , t But Pi~A(X' )=SiX S i =~A(X)P/  and the assertion is proved. Q.e.d. 

It follows from 2.4 that the C*-algebra @A generated by all elements of the 
form 0k(P/) (i~Z, k ~ 0) is commutative. This C*-algebra is seen to coincide with 
the C*-algebra generated by all range projections P~(#CJ//A). The restriction of 
q~A tO ~A is an isometric endomorphism of c~ a. Consider now the algebra (d(XA) 
of all continuous complex-valued functions on X A. This algebra is generated by 
all functions of the form Zioa~=a*J(Zi) (i~Z, j - -0 ,  1,2 . . . .  ) where Zi is the 
characteristic function of the cylinder set Z(i) = {x~X  A I x I = i}. 

2.5. Proposition. 7here is a unique isomorphism ~o: ~ A-~ c~(X A) such that ~o(P/)= Zi 
(i~Z) and 090A ~-L(H)=a*(H)  Jbr all H 6 ~ ( X  A). 

Proof. One checks that the map 

co: OJ(Pi)~-~a*4J(Zi) (i6S, j = 0 ,  1,2 .. . .  ) 

extends to an isomorphism. Q.e.d. 

Call a homeomorphism u: X A--~ X A uniformly finite dimensional if for some 
ko~lN we have (UX)k=X k (x~X A, k>ko). The group of uniformly finite dimen- 
sional homeomorphisms of X A is an ample group in the sense of [10]. It gives, 
via a crossed product, rise to an AF-atgebra that is isomorphic to ffA by an 
isomorphism that extends ~o. We return to this point of view in the next section. 

Let Z o denote the set of all i~Z for which there are at least two different 
multiindices #=(i i , . . . , i~)  and v=(j~ . . . . .  j.~) in J//A such that i 1 =i~=jl=j~=i  
(r, s~2)  while ik,jt+i for 1 <k<r ,  1 <l<s .  From now on we will assume that A 
satisfies the following condition 

(I) For  each i~Z there is f l=(i l ,  ...,ir) in d/{A(r=> 1 ) such that ij = i  and i~eXo. 

The matrix A satisfies condition (I) if and only if X A has no isolated points, i.e. 
X A is a Cantor discontinuum. If A is irreducible and is not a permutation 
matrix, then A satisfies condition (I). 
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On the other hand, A does not satisfy (I) if and only if there is #oed'gA, 
I#01 > 1 such that P~o =Q,o. But then, depending on the choice of the Si(ieZ ), the 
spectrum of S,,, may be any closed subset M of {0} w'I[. Thus, in this case, the 
isomorphism class of s~' may depend (and actually does depend) on the choice of 
the generators S~(ieX). For instance, for the matrix 

'0) 
we may choose partial isometries S~, S 2 satisfying (A) such that the C*-algebra 
generated by S 1, S 2 is isomorphic to M 2 |  ), for any given closed subset M 
of ~. We will see that such a thing can not happen if A satisfies (I). 

2.6, Lemma. Let A satisly condition (I). Then .for all k e n  there is a projection 
Q~C~A such that QPi 4 = 0 (i~2) and such that C~ra(Q) S, 0~(Q)= 0 for all ],~E,//[[A <such 
that 1 <tf~l<k and fat" all r>=O. 

Proo[~ We can find aperiodic admissible sequences x"l~Z(i) (i~X) of elements in 
s such that no translate of x "t coincides with any translate of x u) (i 4:j), in other 
words such that the finite set Y = {x")]i~Z} satisfies aAk(Y)C~aAt(Y)=O for all 
k , l~N such that k4 =l. 

If V is a sufficiently small closed and open set in X a containing Y, we have 
VetOAS(V)=0 for l< j<k .  Let Q ~ A  be such that o(Q) is the characteristic 
function of V. Then QqS~(Q)=0 for 1 < j < k  (2.5) and since (~a is a homomor- 
phism on ~A, also ~b~(Q) qS~+J(Q)=0 for all r > 0  and l< j<k ,  and this is what 
we wanted to show. Q.e.d. 

2.7. Lemma. Let QEG~'A be a projection such that QPi 4=0 (ieZ) and set Qk =qS~(Q). 
Then the map X~-+Qk + 1X is an isomorphism of ~f'Ok OntO ~ k + l  ~k  Q k + , .  

Proof. By 2.4 it suffices to show that Qk+~ Su PiS* 4=0 for all i~2 and P~c'IA such 
that Ipl=k and SuP~S*4=O (note that S,,P~S* is the range projection of the 

i matrix unit E,,~, cf. 2.3). This amounts to showing that Qk+tS, S*4=O for all 
~c~r162 A such that [p] = k + l  (replace Pi by SIS*). But 

* * S * - -  * Qk+,S. Su=OkA +'(Q) SuS*=( Z S. QS~) . S . - S u Q S .  
[el=k+1 

since S~*S uS u*-6,,- uSu* (2.1). The assumption on Q implies that SuQS*4:0 
whenever #c,////a. Q.e.d. 

We denote by :~ the star algebra generated algebraically by S~(ieZ). Let Y 
=S.S*e#  (#, Vej//dA). If [#l >lvl then Y=Su,(SuS*)--S.,  Y' where #=#1 #2, I#ll 
---I#l-lvl, 1~2l=lv[ and Y'e ,~  A. If I#l=lvl, then Y e J , ~ A  . If I#1<lv[, then Y= 
(S.S*)S*,2 .,= Y"S* w h e r e v = v l v 2 ,  v l =[v]-l#l, v2=p and Y" e.~A. Since every 
element X of 2~ is a linear combination of elements of the form S.S*(#, v e JIA), 
X can be written as a finite sum 

x= E x,s:+Xo+ E s .x .  
I',[ _-> t lul >_- 1 

where X~, Xo, X ~ e ~  A. 
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2.8. Proposition. The element X o ~  A in this representation of X is uniquely 
determined by X, and I/Xoll < IIXII. 

Proof. Given k >0, let Q'k~@ a be a projection satisfying the conditions of 2.6 and 
let Qk = ~ (Qk)- Then the sequence {Qk}k~ satisfies 

(a) QkF-FQk--,O for all F e ~  a (2.4) 

(b) [IQkFII-~ I[FII for all F e Y  a (2.7) 

(c) QkS, Qk, QRS*Qk~O for all /~ such that I/~1> l. (2.6) 

Therefore 

IlXoll = lim IlQkXoQkl[ = lim IIQkXQkll <_ IlXll 
(1) k~oo (2) k~oo 

where (1) follows from (b), and (2) from (a) and (c). If 

X =  2 ' * ' ' ' ' ~ -  x~s~+x;,+ X s~x, (x~,Xo, X~.~A) 
Iv l> l  I~1>1 

is another representation of X, then 

o = x - x - X ( x ~  - x , )  s ,  + ( x o  - x ~ )  + X s ,  (x , ,  - x , )  

is a representation of O, and therefore X o - X b = O  by the first part of the 
proof. Q.e.d. 

2.9. Proposition. Let X e ~ .  Then X = 0 / f  (X* X)o=0 and (XX*)o=0. 

Proof. Let X = ~ X , , S * + X o + ~ S u X  .. Then (X*X)o= ~ SvX*Xv, S~* 
Ivl=Lv'l 

X* +X* X o + ~  , QuX, where each of the three terms on the right hand side is 
positive. Thus if (X* X) o =0  then all the S, X, and X o are zero. In the same way 
(XX*)o=0 implies that all the X~S* vanish. Q.e.d. 

2.10. Proposition. Let Si (icY,) be another family of non-zero partial isometries 
satisfying (A) and let ~,  ~'~A be defined as above with respect to Si (i~X). 

(a) The map SuS~ S~S~ ([p[=[v[) extends to an isomorphism from ~'~a onto 

(b) The map Siw-, S i (ieS) extends to an isomorphism from ~ onto ~.  

Proof. (a) The map in question extends to an isomorphism of ~j ~k onto 
k>__O 

~) ~k. Since U ffk, as an inductive limit of finite-dimensional C*-algebras, 
k>_-0 k->_0 

admits a unique C*-norm, this isomorphism extends to the closure. 
(b) If X is a linear combination of elements of the form Su S*, denote by )( 

the corresponding linear combination of the elements S. S*. We have to show 
that 3(--0 if and only if X - 0 .  But X- -0  implies X * X = X X * = O  and (X*X)o 
=()()f*)0=0.  Thus, by (a), (X*X)o=(XX*)o=O hence, by 2.9, X = 0 .  Q.e.d. 

We now equip ~ with the largest C*-norm 

lIXII o = sup {/Ip(X)IIIP is a star representation of ~ on a separable Hilbert space} 
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and we denote by ~ '  the completion of ~ with respect to I1" I10. By Proposition 
2.8 the map X~--~X o extends to norm-decreasing positive linear maps f :  s~r ~.r 
and f : f g~ 'NA.  For every tell" the partial isometries S~=tS~(ieS) satisfy con- 
dition (A). Therefore the map S?--,tS~ (ie2r,) extends by Proposition 2.10(b) to an 
endomorphism 2, of s~. For this note that 2,: ~ - - ~  is necessarily norm- 
decreasing for I1"11o (11" II0 is the largest possible C*-norm). Since 2,2,=2,2t=id 
the endomorphism 2, is in fact an automorphism. 

2.11. Proposition. For XE~fr we have f ( X ) = ~  2,(X)dt (dr=normalized Haar 
72 

measure). In particular, f :  ~ ' ~ A  is faithful, i.e. X >O and f ( X ) = 0  implies X 
= 0 .  

Proof. Let Y=S,S*  be non-zero and r=]l~l-lvl. Then 2,(Y)=t ~ Y and 

52,(Y) dt={Oy r4:0. 
r = 0  

Since every element of ~ is a linear combination of elements like K we get f ( x )  
=~2t(X)dt for Xc~ .  But the mappings f and X~--,~2,(X)dt are both con- 

~ff "IF 
tinuous, so that the same identity holds for all Xes~'. Q.e.d. 

2.12. Proposition. The identity map i d : ~  extends to an isomorphism 

Proof. We only have to show that 7~ is injective. Observe first, that .foTr =r~of. If 
now ~(X)=0 for some X>__0, then f (~(X))=0 implies ~ ( f ( x ) ) = 0  and hence 
f ( X ) = 0  (~z restricted to .~-A is an isomorphism). But then also X = 0  from 
2.11. Q.e.d. 

2.13. Theorem. Assume that A satisfies (I) and that Si(ie~ ) and Si(ieZ) are two 
families of non-zero partial isometries satisfying (A). Then the map Si~--*S i (ieZ) 
extends to an isomorphism from the C*-algebra d generated by Si(ieX ) onto the 
C*-algebra ~ generated by ~ (ieS). 

Proof. By 2.10 this map extends to an algebraic isomorphism from ~ onto 
and therefore also to an isomorphism from ~'  onto d .  The assertion now 
follows from Proposition 2.12. Q.e.d. 

In the following we will write C A for "the" C*-algebra generated by partial 
isometries Si4:0 (ieX) satisfying (A) (always assuming that A satisfies (I)) and 
(2~),~1r for the automorphism group (2,)~r defined above. It is possible to 
determine the ideal structure of (9 A exactly. We restrict ourselves here to show 
that C A is simple if A is irreducible. 

2.14. Theorem. I f  A is irreducible then (Qa is simple (i.e. contains no non-trivial 
closed ideal). 

Proof. If p is a star representation of C A such that p(S3+O (ies then the p(S 3 
(i~_r) satisfy (A) and p is an isomorphism by Theorem 2.13. To prove simplicity 
of r it SUffices therefore to show that a star representation p of (9 A such that 
t~(S~o)--0 for some i0eZ , is identically zero. 
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Now p(Sio)=O implies p(Qio)=O and hence p(S)=p(QioS)=O for all j~X 
such that A(io, j )= 1. If A is irreducible we can continue in this way to show that 
p(Si)=O for all i~_r. Q.e.d. 

2.15. Remark. Let A=(A(i,.j))i.j~ ~ be a matrix where Z is countably infinite, 
A(i,j)~{O, 1}, and let A satisfy the analogue of condition (1). Consider a C*- 
algebra generated by non-zero partial isometries S i (ic2~) satisfying S*S~=O 
( i , j )  and 

S* Si= ~ A(i , j )SjS* (i~2) 
je~ 

the sum converging in the strong operator topology. One can prove the 
uniqueness of this C*-algebra by the same device that was used in [5] to prove 
the uniqueness of ( ~ .  In fact, (~.~, is the algebra corresponding to the infinite 
matrix A=(A(i , j ) ) i , j~  where A(i , j )=l  for all i,j~IN. It was argued in [5] that 
(9~ is the inductive limit of the subalgebras d k (k~lN) generated by S 1 . . . . .  S k 
and that each d k admits a canonical embedding into ~;k+l, hence is unique. This 
idea carries over to more general infinite matrices A without difficulty and thus 
Theorem 2.13 also holds for countably infinite matrices A satisfying the ana- 
logue of (I). 

2.16. Remark. So far we have only considered matrices with entries in {0, 1}. Let 
now A =(A(i,j))i,~s be a matrix where A(i,j)~7l+ (and X is again finite). Set 22' 
={(i ,k, j) l i ,  j~X; l<_k<_A(i,j)} and 

k2 , j z ) )=J ' l  if Jl =i2 A'((il ,kl ,Jl),  (i2, 
if Jl + i2 " 

For A satisfying the analogue of condition (I), set then ~=(Sa, .  The algebra 
#{ | (_9 a can be described as follows. Start with the C*-algebra @ ~ where each Xi 

ieJ." 

is isomorphic to ~ff. We may assume that this algebra is represented on a 
separable Hilbert space in such a way that each of its projections is onto an 
infinite-dimensional subspace. Choose then partial isometries S~ (it_r) with 
range projections P~ and support projections Q~ such that each P~ is a projection 
of dimension 1 in ~ while 

Qi = 2 A(i,j)P~ (i~22) 
je :C 

where A(i,j)Pj is a formal expression meaning a projection of dimension A(i,j) 
in S/ .  The C*-algebra generated by @ ;gl together with S i (i6X) is isomorphic to 

is J2 
the C*-algebra X |  a as defined above. 

To conclude this section we show that topologically conjugate one-sided 
shifts a A and a s give rise to isomorphic algebras C A and C B. Recall that a A and 
a~ are called topologically conjugate if there is a homeomorphism h: XA-~Xn 
such that a B = h a A h-~. We assume that A and B both satisfy condition (I). 

2.17. Proposition. I f  a A and a s are topologically conjugate, then there is an 
~A isomorphism of (9 a onto (9 B transforming ~ A into 6~ B, (f) Al6~ a into ~BI~. and (/~, ),~r 

into (2tB)t~T. 
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Pro@ The cylinder sets Z(i) (ieX) defined in 2.5 form what is called a generator 
for a A, i.e. the characteristic functions of the sets aAk(Z(i)) (keN, ieE) generate 
~6(XA). Given the map a A, the matrix A is determined by this generator (A(i,j) 
= 1 iff Z(i)c~ aA-I(Z(j))4= 0). For the proof we may assume that a A and a B act on 
the same space X and that aA=a~=a.  Let Z(i) (ieZ) and Y(j)(jeZ')  be 
generators for a corresponding to A and B, respectively. Then the non-empty 
sets anaong the sets W/j = Z(i)c~ Y(j) (ieX, jeX')  form a new generator for a. With 
respect to this generator a has the form a c. The algebra 6 c is generated by 
partial isometries V~(ieX, jeZ ' )  where we set ~ j = 0  if W~=0 and where the rest 
of the V,.j is non-zero and satisfies (C). Put S i = ~ Vii , Tj= ~. Vii (ieX, jeE'). The 

j ~ v '  i eZ  

partial isometries S~(ieZ) satisfy (A) and the partial isometries Tj(jeZ')  satisfy 
(B). By Theorem 2.13 it only remains to show that each of these sets generates 
the whole of 6 c. For this it suffices to show that 2 c  is contained in the C*- 
algebras generated by these sets, since every Via is of the form V~j=PS~=QT~ with 
P, Q e 9  c. But this is an immediate consequence of 2.5. Q.e.d. 

2.18. Remark. If A satisfies (I), then 2A is maximal commutative in (('A and there 
is a faithful conditional expectation d: (f:A--~A. The map d can be constructed 
in analogy to the construction of f using the existence of projections like Q in 
2.6. Moreover, ~ a  is regular in the sense that the normalizer 

. 4 ( ~ a ) = { U e 6  A unitarylUC~A U*= ~ A}  

generates 6' A (cf. also [6]). 
In fact, (~A may be considered as a kind of crossed product of 2 A by the 

group of automorphisms induced by elements o f ,  t'(@x), cf. also Sect. 3. The 
automorphism group (2D)w~, considered in [6] is associated with this decom- 
position of ({A as a crossed product. 

3. Topological Markov Chains 

Let T be an irreducible aperiodic topological Markov chain (for the periodic 
case see Remark 3.9). Using some one-step generator, whose transition matrix 
we denote by A =(A(i,j))i,j~, .. we represent T in the form flA. For an xcJ (  A set 

w ( x ,  1) = {(Yk)k~XA l Y'k = xk (k < 1)}, (leTZ) 

and consider the unstable manifold W(x) of x, 

w(x)--- U w(x, t). 
lelg 

Each of the sets W(x, 1) inherits from the shift space the topology of a 
discontinuum and we put on W(x) the inductive limit topology that is produced 
by the inclusions of W(x, l) into W(x, l -  1), t~7/. Note that neither W(x) nor its 
topology depends on the choice of the generator of T that entered into these 
definitions. We denote 

~ ( x ) ~  ~ {(Yk)k ~ o~T, ~ l yk= Xk(k ~ --m); A(y k, yk+ l) = l (k <O)}, 
m e n  
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and 

Z(a)={(Yu)k~eEW(x)l(Yk)k<=O=a}, (aEL~'(x)). 

3.1. Lemma.  For all Xl, x2EX a there exists a homeomorphism 

h: W(x1)----~ W(x2) 

such that 

(hy)k=yk, (keN). (1) 

Pro@ Since A is irreducible and aperiodic we can enumerate 

{aE2P(xl) la o =j} = {a (1' J)(m) [ meN} 

{aEL~(x2) lao =j} = {a(2'J~(m) lmEN}, (jEX). 

A homeomorphism h as required is then defined by stipulating that 

hZ(a(1,J)(m))=Z(a~2,J)(m)), (meN, j~Z) 

and that (1) holds. Q.e.d. 

Define a homeomorphism g of an open subset B of W(x) onto another such 
set as uniformly finite dimensional if for some le2g 

(gy)k=Yk, (k>=l, yeB). 

Again this definition of uniform finite dimensionality does not depend on the 
choice of the generator [9, 11]. The uniformly finite dimensional homeomor-  
phism of W(x) onto W(x) form a group that we denote by NT(X). 

Let ~ r ( x )  be the set of homeomorphisms r of W(x) that are such that for 
some 1E2g 

(r Y)k = Yk + 1, (k > l). 

3.2. L e m m a .  ~T(X)#=O. 
Proof. By Lemma (3.1) there is a homeomorphism 

h: W(~ a x)--, W(x) 

such that 

(hY)k=Yk, (keN), yeW(x)). 

Set r = h 8  A and have then rEf~r(X ). Q.e.d. 

3.3. Lemma.  For all rl, r2e~r(X), r 1 rs 1ECNT(X). 

Proof. If for some IE2~ 

( r  I y)k=(r2y)k=Yk+l, (k>=l, yeW(x)) 
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then 

(rt rs y)k=yk, (k >=l, yeW(x)). Q.e.d. 

3.4. Lemma. For all x l ,  x2EX A there exists a homeomorphism 

h: W(xO---, W(x2) 

such that 

h ,Cqr(Xl) h- 1 =NT(X2 ) 

and such that 

(2) 

h Nr(X 0 h- 1 = ~jj,~T(X2) ' (3) 

Proof. The homeomorphism h of Lemma 3.1 satisfies (2) and (3). Q.e.d. 

As a consequence of Lemma 3.4 the isomorphism type of the algebras that 
we are going to construct does not depend on the choice of the point x e X  A. We 
drop therefore now the x from the notation. 

NT acts on the Boolean ring of compact open subsets of W, and the quotient 
map 6 r onto the orbit space of this action was called the future dimension 
function of T [9, 11]. Recall that this orbit space is the positive cone of an 
ordered abelian group Ko(T-  1)_ lim (7/x, 7/~.). 

A i 

Let ~ stand for the algebra of continuous complex valued functions on W 
that vanish at infinity, and let/000~ be the AF-algebra that contains ~ as a regular 
maximal abelian subalgebra in such a way that .c~ r is the group of homeomor- 
phisms of W that are given by the unitaries in the multiplier algebra of 'r that 
normalize ~.  f r  is the unique stable (i.e. J g ' |  AF-algebra whose 
dimension group is Ko(T 1) (see [8]). For an alternative description of ~ .  
consider the crossed product (see e.g. [14]) sd of J by the automorphism group 
that is induced by (r on ~.  To every UeC,~T there corresponds a un i ta ry / / in  the 
multiplier algebra of d ,  Let f be the closed ideal of o~ generated by all 
elements of the form ~ PB-gPB where u and v are uniformly finite dimensional 
homeomorphisms such that the restrictions of u and v to the compact open set 
B ~ W coincide, and where P~ denotes the characteristic function of B. Then '~-r is 
the quotient J / f .  The characteristic function of a compact open set B ~  W 
defines a projection P Begc , ,~  r. Moreover, every uniformly finite dimensional 
homeomorphism u of a compact open subset B of W onto a compact open 
subset C of W has an image ~ in ~ that is a partial isometry with range 
projection Pc and support projection PB. We remark that under the assumption 
of aperiodicity and irreducibility the algebra ~ r  is simple (see [2]) and has a 
unique trace. A formula for the trace of f r  can be read off from the formula for 
the measure of maximal entropy for T (see e.g. [7]). Every r e ~  r as an element 
of the normalizer of .c~ r induces an automorphism of ~'~T and one sees that this 
automorphism scales the trace by the maximal real eigenvalue of A. We form 
now the crossed product (Pr of S r by such an automorphism, This automor- 
phism gives then rise to a unitary ~ in the multiplier algebra of g r .  Moreover, 
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we have an automorphism group (2[) ,~  of [(Sr where ~r leaves ,~'~, elementwise 
fixed, and where 

;.[~=t~ (te]r). 

In view of Lemma 3.3 neither CT nor (2T)t~l r depends on the choice of the re.~ r 
that was used to construct it. We have now the algebra Cr  as well as the group 
(2]),~r invariantly associated to the topological Markov chain T. We compute 
these invariants in terms of the matrix A. 

3.5. Lemma.  Let B, B', C be compact open subsets of W, set C'=r B', and let 

u : B ~ B ' ,  v: C ' ~  C, 

be uniformly finite dimensional homeomorphisms. Then ~7 r is generated by ,~, and 
~?~. 

Proof. It suffices to prove that for all compact  open sets D c W such that 
6r(D)<iir(B ) one has ~'Po in the algebra that is generated by ,~r and ~,~ ~. For 
this choose uniformly finite dimensional homeomorphisms 

u l : D ~ D l c B ,  v l : v r u u x D ~ r D .  

Then 

- 1  
w ~ r  U 1 U r U l l  1 

is a uniformly finite dimensional homeomorphism of D, and it is 

?PD=5I 5 F ~  1~v lpD. Q.e.d. 

3.6. Lemma.  For all compact open ,sets B ~ W, P~ CT PB together with ,~. generates 

~YT" 

Proof. Choose a compact open set B o ~ B such that 

fir(r Bo) <=bT(B) 

and choose a uniformly finite dimensional homeomorphism 

u: rBo-*  C c B .  

Then have 

~ ~ P~oeP~ ~ P. 

and by Lemma 3.5 CT is generated by firP~o and J r -  Q.e.d. 

Let cg be a maximal commutative C*-subalgebra of X .  

3.7. Lemma.  For all compact open sets B ~ W 

(CT, ~) ~ (:~ | CT PB, (d | Y). 
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Proof. With B 1 =B let {Btl/eN } be a partition of W into compact open sets 
such that 

3r(BI)=6r(B ), (/eN). 

Let 

u~: B-- ,  B1, (/eN) 

be uniformly finite dimensional homeomorphisms. One has then a system 
Ekl(k, 16N) of matrix units in (gr, 

EI, I = PBp 

E~, 1 = ut, (/eN) 

and one can identify ._~ | d r P~ with the subalgebra of (fr that is generated by 
{Et, ~ (~r E~, 1[ leN}, at the same time identifying ~ |  with the algebra that 
is generated by {E~, l ~1/eN}.  One has @. generated by the El, k (l, keN) and by 
El, 1 ,~  r E~, ~. Therefore it remains only to note that by Lemma 3.5 the algebra 
that is generated by the El, k (l, keN) and by E L ~ C~ r El, 1 is all of Cr. Q.e.d. 

Given ae~(x) ,  #=( i l  . . . .  , ik)eJg A, such that A(a0, i l )= 1 set 

Z(a, ~)= {yeZta)l(y~ .. . .  , Yk)= ~}- 

Further if a'eSY(x) and v =(Jl . . . . . .  ]k) is a second block in '/~A of length k such 
that A(a'o,jl)= 1 and ik=jk , let 

u(a', v, a, #): Z(a, p)-~ Z(a', v) 

be the uniformly finite dimensional homeomorphism that is defined by 

(u(a', v, a, p) y)~= yg (l> k, yeZ(a ,  p)). 

3.8. Theorem. There is an isomorphism 

~': (6r, J ) - '  ( ,~ | ~ |  

such that ~ 2,r t~ l = i dQ2 t  a (te]F). 

Proof. For all i~S choose an a(i)eZP(x) such that A(a(i)o, i)= 1 and set 

P = ~ Pz(a(1),i)" 

TO obtain (~T use an r e ~ T ( X  ) such that (ry)k=yk+ t (kaN). For all i e Z  and 
for all j e Z  such that A ( i , j ) = l  choose an a'ijeoL,r } such that ( a ' i j ) o = i  , 
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and then let a'i~e~(x ) be such that A ((a'i'j)o, i) = 1, 

r -1 Z(a'u, j) = Z(a',), (i, j)). 

Then 

u(a(i), (i,j); a'i~, (i,j))r - I  u(alj, j; a(j),j)Z(a(j),j)=Z(a(i), (i,j)). 

Setting 

S i = ~ fi(a(i), (i,j); a'i'j(i,j) ) ?-1 fi(alj, i; a(.l'),.j) 
{jlA(i,j)= 1} 

we obtain therefore partial isometries S i~PCrP  that satisfy the relations (A). 
Moreover, one computes that one has for # = ( i l  . . . .  , ik), v=( j  1 . . . . .  jk)eJ/g A, ik=j k 
that 

SuS* =fi(a(i0, #; a(jl), v) 

and it follows that the S t generate an algebra that contains P S r P. The proof is 
then concluded by appealing to Lemma 3.5 and by noting that 

~.[ Si=tSi, (i~Z,, teTY). Q.e.d. 

3.9. Remark. For  an irreducible topological Markov chain T with period p > 0  
use a union 

U w(~x)(xes 
O<q<p 

of unstable manifolds, and consider the group NT of uniformly finite dimen- 
sional homeomorphisms together with ~ r  on this union. Denote by (TP)q the 
irreducible components of T p. One has 

O'~T = @ O~{Tp)q, .~(Tp)q'~O~(TP}q, t < q<p 
O<--q<p 

where the summands arise from the group ~Tp restricted to the W(ff~x), 
O<__q<p. To obtain (9 r one can use an r a n  T such that r on the W(f~x),  O<q<p 
- 1 ,  equals ffA and such that r p restricted to W(x) gives an r0aNtr,)o. Then there 
is an isomorphism of g r  onto Mp| that carries ~ into 

( ~ Eq+l,q| p-l| 
O<=q<p- 1 

and transforms the group (2~),~1r into the group (2~)~ where 

2t(Eq+l,q@X)=t(Eq+l,q| ) ( 0 = < q < p -  1), 

2t(Eo, p_l|  p_l|  (Xe~rP)o). 

Thus while gr is isomorphic to (~(rp)o, the groups (J.r)t~r and (j(r~)o)r t~Ir are 
different. 
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4. Flow Equivalence 

Topological Markov chains are said to be flow equivalent if their suspension 
flows act on spaces that are homeomorphic under homeomorphisms that respect 
the orientation of the orbits [11]. Equivalently they are flow equivalent if they 
induce isomorphic chains on some closed open subset, that is, if they are 
Kakutani equivalent. Parry and Sullivan have given a description of flow 
equivalence in terms of a matrix operation [11]. This description leads to a sort 
of instant computational proof of the invariance of the pair ((7 r, ~)  under flow 
equivalence. We want to give this proof here. We point out, however, that a 
conceptual proof of this fact is also possible if one exploits the circumstance that 
(r  arises as a crossed product. 

4.1. Theorem. I f  T 1 and T 2 are flow equivalent then 

(CT,, ~ )~  (Cry, ~). 
ProoJ] From the transition matrix A =(ai~)~ _<~,~=<,, form the transition matrix 

4 =  ~.~ .. ~ .  . 

an I �9 �9 ai~ n 

According to Parry and Sullivan, to prove the theorem it is enough to prove 
that 

(C..., Y ) -  ( ~ ,  Y). 

The algebra (~a is generated by n + 1 partial isometries S o . . . . .  S, satisfying (~]). 
By definition of A the partial isometries S] =S1So, S'z=S 2 ..... S',=S, satisfy (A). 
Note that SiSo~:O if and only if i = l  and that S 1SJ=t:0 if and only if j = 0 .  Thus 
every S ~ ( ~ # ~ i  ) is of the form S~ =S'~ for some ~ J g a  or of the form S u =SOS' ~ 
for some fle'///a or it is S~=S~. 

Set P=S~S*+.. .+S,S*.  If PS~S*vP+O for some lt, ve,///'~i , then using S~S T 
=StSoSoS~* --S'~S'I* we see that S~=S'=, S,.=S e' for some ~,~e'/lla" This shows 
that P(5'aP is generated by S' t . . . . .  S',, and thus is isomorphic to (~a- Since for 
every range projection SuS~*, (b~e-//Ca) the product Sp, S*P is either 0 or of the 
form S'~S'=* (c~eJgA) , we see at the same time that ~ a P = ~ a .  The theorem 
follows now from Lemma 3.7. Q.e.d. 

5. The Ext-Group for (~A 

Let H be a separable infinite-dimensional Hilbert space, let 5a(H) be the algebra 
of all bounded linear operators on H, Jg(H)cAe(H)  the algebra of compact 
operators and let n: ~ ' (H)- - ,~  be the quotient map onto the Calkin algebra 
=~(H)/,~(H). An extension of a separable C*-algebra d is a star monomor- 
phism a: d - - , ~ .  Two extensions ,o,~ are called weakly equivalent, if there is a 
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part ial  isometry U e ~  such that  p ( X ) =  Ua(X)  U* and a ( X ) =  U*p(X)U (Xe.~r 
The set of weak equivalence classes of  extensions is denoted by Ext o~. 

On Ext d one defines a semigroup structure as follows. Call two extensions 
p, a o r thogona l  (p I a) if there are project ions E, F~~ such that  EF = 0 and p ( d )  

E~E,  a ( d ) ~  F~F.  If [p], [ a ]  are in Ext ~ '  define [p]  + [o]  = [Pl + a i] where 
pie[p],  a l e [a  ] and pl_l_al. (Here p l + a l  is defined by ( p 1 + a l ) ( X ) = p l ( X )  
+ a  I(X) ( X e d ) . )  No te  that  the definition of [p]  + [cr] does not depend on the 
choice of  Pa, a l .  

An  extension r: 0~'-+,~ is called trivial if it admits  a lifting fl i.e. a star 
m o n o m o r p h i s m  f: ,~/--+54'(H) such that  z==o~ .  Voiculescu's  theorem ([17] cf. 
also [1]) says that  all trivial extensions are equivalent  and that  their equivalence 
class is the neutral  element in Ext ~4. Ext (~, has been computed  by Pimsner- 
Popa  [15] and by Paschke-Sal inas  [13]. Here  we follow the approach  of [15]. 

Let E ~  be a project ion and E'e2"(H) a project ion such that r t (E ' )=E.  If X 
is an element of  ~ such that E X E  is invertible in E ~ E  we denote by indt, X the 
Fredho lm index of E'X'E'  in E'(H) where X'~Sf '(H) is such that  1r(X')=X.  
Since the F redho lm index is invariant  under compac t  per turbat ions,  this de- 
finition does not depend on the choice of E' and X'.  The following l emma  we 
assume as well known. 

5.1. L emma .  (a) Let E, F ~ ~ be orthogonal projections, and X an element of 3 
such that E X E  and F X F  are invertible in E ~ E  and F ~ F  and such that X 
commutes with E and F. Then indn+v(X)=indw(X)+ indr(X) 

(b) I f  X, YeE~E are invertible in E~ then 

ind,. X Y =  indEX + ind E Y. 

Let now A=(aij)l<=i.s<., aiie{O, 1}, satisfy condit ion (1) and let a: (CA-~Y 
be an extension of 6'A and Ei=a(P~). There are trivial extensions r of  CA such 
that  z(P,.) = E i. Define d i = ind., a(S~) ~ (S*) (i = 1 . . . . .  n) and do,~ = (dl . . . . .  d.) e ~". 

5.2. Proposition. I f  r,z' are trivial extensions of C a satisfying z(Pi)=r'(Pi)=Ei, 
then d~, ,-d~,~,e(1- A)(Z'). 

Proof By Voiculescu's  theorem there is a part ial  isometry U e ~  such that  r'(X) 
= Uz(X)  U* and z (X )=  U*z'(X) U(X~CA). 

Write  ki = ind.,  U and d., ~,= (d' 1 . . . . .  d'.). Then 

d' i = indE, a(Si) z' (S*) 

= indE, a(Si) Uz(S*) U* 

( "laiiEjUEs) = inde, a(S~) ~ z(S*)(E~ U* E~) 
j=  

:indEcY(Si)'c(s*){'c(Si)j~__ 1 aijEjUEj'c(S~)tEiU*E i 
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This computation uses the fact that U commutes with every E~, and Lemma 
5,1. Q.e.d. 

Thus with every extension ~7 of (54 we can, in a unique way, associate an 
element d, of the quotient group Z " / ( I - A ) ~ ' .  If p,o- are two equivalent 
extensions of (sJa, then d o =do. Moreover, Lemma 5.1 (a) shows that the map [~] 
~-,d~ is additive. 

5.3. Theorem. d: Ext C(A-~;gn/(1--A);g n is an isomorphism. 

Proof One checks that d is surjective. Let us show that d is also injective. 
Let cs be an extension such that d~=0. Let ~ be a trivial extension of (-(A 

satisfying T(P0=~(P,) and let d~,~=(d I .... ,d,) be defined as above. Write E/ 
=T(P/) and E'i =T(P/) ( i=  1 . . . . .  n) where ~ is a lifting for r. By assumption, there is 
an element k=(k~ . . . . .  k,) of;g" such that d~,,~=(! - A ) k .  

Choose isometries or coisometries V~ ( i= 1 . . . . .  n) in 5f(E'dH) ) such that ind V/ 

= -k~ and set U = ~ 1�88 Then one has, using Lemma 5.1, 
i=1 

ind~ n(U) cr(Si) n(U*) T(S*) 

_ -Inde ~z(l~i)a(Si)~z aijVj* "r(S~) 
j = l  

Therefore there is a unitary Xied(E~(H)  ) such that rc(Xi) 
=n(U)a(Si)Tz(U*)r(S*). Setting T~=Xi~(S~), we have lifted each element 
~z(U)a(Si)rc(U*) to a partial isometry T / ~ f ( H )  satisfying 71.T~*=E' ~ and T/*T/ 

= ~ aijE ~. Now Theorem 2.13 shows that the map Si~--,T; extends to a star 
j = l  

monomorhism from (57A into s and therefore the map S?--*Tr(T/) 
=Tt(U)a(SI)n(U*) extends to a trivial extension of ~"a" In other words cr is 
equivalent to a trivial extension and hence itself trivial. Q.e.d. 

By the Elementarteilersatz (see e.g. [16, w 85]) the endomorphism B = 1 - A  of 
~ '  can be written in the form B = J B '  where J is an isomorphism of ;g', and 
where B' has a diagonal matrix with entries in •+ with respect to some basis of 
7Z". If the eigenvalues of B' are b z, ..., b, then 

;g"/([ - A)7Z.'~;g'/t3';g" _~ 2~ /b I ;g |  | ;g /b ,;g. 

In particular, if Z ' / ( 1 - A ) Z "  is finite, its order is d e t B ' = ] d e t ( 1 - A ) I .  Also the 
group ;g"/(1 -A) ;g"  is infinite if and only if det(1 - A ) - 0 .  

Remark 3.4. Ext being a stable isomorphism invariant [4] we have now 
examples of simple C*-algebras that are not stably isomorphic to any of the (9,. 
Look at a handful of irreducible 3 x 3 matrices: 
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/00 i) 
A 1 = \ 1 (  1 0| , Ext (9A1=713, 

A 2 = 0 , Ext (9A~ = 294, 
1 

A 3 =  0 , Ext (9A3 = ~ 2  @ Z 2 ,  
1 

A 4 = 1 , Ext (9A4 = Z. 
1 

(gA~ is i s o m o r p h i c  to  (5' 4 and  (~A2 is i s o m o r p h i c  to M 2 | s, bu t  ne i the r  (~)A3 nor  
(9A4 is s tab ly  i s o m o r p h i c  to any  of  t he  (9,. 

T h a t  Z"/(1 - A ) 2 g "  is an  i n v a r i a n t  of  f low e q u i v a l e n c e  of  t o p o l o g i c a l  M a r k o v  
chains  GA was  d i s c o v e r e d  by B o w e n  a n d  F r a n k s  [3] .  C o m p a r e  here  T h e o r e m s  

4.1 a n d  5.3. 
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