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A simple proof of the Fredholm alternative and a

characterization of the Fredholm operators.

A.G. Ramm

Abstract

Let A be a linear bounded operator in a Hilbert space H, N(A) and R(A) its
null-space and range, and A∗ its adjoint. The operator A is called Fredholm iff
dim N(A) = dim N(A∗) := n < ∞ and R(A) and R(A∗) are closed subspaces of
H.

A simple and short proof is given of the following known result: A is Fredholm
iff A = B + F , where B is an isomorphism and F is a finite-rank operator. The
proof consists in reduction to a finite-dimensional linear algebraic system which is
equivalent to the equation Au = f in the case of Fredholm operators.

1 Introduction

The aim of our paper is to prove the Fredholm alternative and to give a characterization
of the class of Fredholm operators in a very simple way, by a reduction of the operator
equation with a Fredholm operator to a linear algebraic system in a finite dimensional
space.

The emphasis is on the simplicity of the argument. The paper is written for a wide
audience. The Fredholm alternative is a classical well-known result whose proof for linear
equations of the form (I + T )u = f , where T is a compact operator in a Banach space,
can be found in most of the texts on functional analysis, of which we mention just [1]-[2].
A characterization of the set of Fredholm operators one can find in [1], but it is not given
in most of the texts. The proofs in the cited books follow the classical Riesz argument
in construction of the Riesz-Fredholm theory. Though beautiful, this theory is not very
simple.

Our aim is to give a very short and simple proof of the Fredholm alternative and
of a characterization of the class of Fredholm operators. This proof is accessible to a
student with very limited background. For this reason we give the argument for the case
of Hilbert space, but the proof is quite easy to adjust for the case of Banach space.

The idea is to reduce the problem to the one for linear algebraic systems in finite-
dimensional case, for which the Fredholm alternative is a simple fact known to beginners:
in a finite-dimensional space RN property (1.4) in the Definition 1.1 of Freholm operators
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is a consequence of the closedness of any finite-dimensional linear subspace, since R(A)
is such a subspace in RN , while property (1.3) is a consequence of the simple formulas
r(A) = r(A∗) and n(A) = N − r(A), valid for matrices, where r(A) is the rank of A and
n(A) is the dimension of the null-space of A.

Throughout the paper A is a linear bounded operator, A∗ its adjoint, N(A) and R(A)
are the null-space and the range of A.

Recall that an operator F with dimR(F ) < ∞ is called a finite-rank operator, its
rank is equal to n := dimR(F ).

We call a linear bounded operator B on H an isomorphism if it is a bicontinuous
injection of H onto H , that is, B−1 is defined on all of H and is bounded.

If ej, 1 ≤ j ≤ n, is an orthonormal basis of R(F ), then Fu =
∑n

j=1
(Fu, ej)ej , so

Fu =

n∑

j=1

(u, F ∗ej)ej , (1.1)

and

F ∗u =
n∑

j=1

(u, ej)F
∗ej , (1.2)

where (u, v) is the inner product in H .

Definition 1.1. An operator A is called Fredholm iff (=if and only if)

dimN(A) = dimN(A∗) := n <∞, (1.3)

and

R(A) = R(A), R(A∗) = R(A∗), (1.4)

where the overline stands for the closure.

Recall that

H = R(A) ⊕N(A∗), H = R(A∗) ⊕N(A), (1.5)

for any linear densely-defined operator A, not necessarily bounded. For a Fredholm
operator A one has:

H = R(A) ⊕N(A∗), H = R(A∗) ⊕N(A). (1.6)

Consider the equations:

Au = f, (1.7)
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Au0 = 0, (1.8)

A∗v = g, (1.9)

A∗v0 = 0. (1.10)

Let us formulate the Fredholm alternative:

Theorem 1.1. If A = B+F , where B is an isomorphism and F is a finite rank operator,
then A is Fredholm.

For any Fredholm operator A the following (Fredholm) alternative holds:
1) either (1.8) has only the trivial solution u0 = 0, and then (1.10) has only the trivial

solution, and equations (1.7) and (1.9) are uniquely solvable for any right-hand sides f
and g,

or
2) (1.8) has exactly n > 0 linearly independent solutions {φj}, 1 ≤ j ≤ n, and then

(1.10) has also n linearly independent solutions {ψj}, 1 ≤ j ≤ n, equations (1.7) and (1.9)
are solvable iff (f, ψj) = 0, 1 ≤ j ≤ n, and correspondingly (g, φj) = 0, 1 ≤ j ≤ n. If they
are solvable, their solutions are not unique and their general solutions are respectively:
u = up +

∑n

j=1
ajφj, and v = vp +

∑n

j=1
bjψj , where aj and bj are arbitrary constants,

and up and vp are some particular solutions to (1.7) and (1.9), respectively.

Let us give a characterization of the class of Fredholm operators, that is, a necessary
and sufficient condition for A to be Fredholm.

Theorem 1.2. A linear bounded operator A is Fredholm iff A = B + F , where B is an
isomorphism and F has finite rank.

In section 2 we prove these theorems.

2 Proofs

Proof of Theorem 1.2. We give a proof of Theorem 1.1 below. From this proof it follows
that if A = B+F , where B is an isomorphism and F has finite rank, then A is Fredholm.
To prove the converse, choose some orthonormal bases φj and ψj , in N(A) and N(A∗)
respectively, using assumption (1.3). Define

Bu := Au−

n∑

j=1

(u, φj)ψj := Au− Fu. (2.1)

Clearly F has finite rank, and A = B + F . Let us prove that B is an isomorphism. If
this is done, then Theorem 1.2 is proved.
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We need to prove that N(B) = {0} and R(B) = H . It is known (Banach’s theorem),
that if B is a linear injection and R(B) = H , then B−1 is a bounded operator, so B is
an isomorphism in the sense defined above.

Suppose Bu = 0. Then Au = 0 (so that u ∈ N(A)), and Fu = 0 (because, according
to (1.6), Au is orthogonal to Fu). Since {ψj}, 1 ≤ j ≤ n, is a linearly independent
system, equation Fu = 0 implies (u, φj) = 0 for all 1 ≤ j ≤ n, that is, u is orthogonal
to N(A). If u ∈ N(A) and at the same time it is orthogonal to N(A), then u = 0. So,
N(B) = 0.

Let us now prove that R(B) = H :
Take an arbitrary f ∈ H and, using (1.6), represent it as f = f1 +f2 where f1 ∈ R(A)

and f2 ∈ N(A∗) are orthogonal. Thus there is a up ∈ H and some constants cj such that
f = Aup +

∑n

1
cjψj . We choose up orthogonal to N(A). This is clearly possible.

We claim that Bu = f, where u := up −
∑n

1
cjφj. Indeed, using the orthonormality

of the system φj , 1 ≤ j ≤ n, one gets Bu = Aup +
∑n

1
cjψj = f .

Thus we have proved that R(B) = H .
Theorem 1.2 is proved. 2

We now prove Theorem 1.1.

Proof of Theorem 1.1. If A is Fredholm, then the statements 1) and 2) of Theorem 1.1
are equivalent to (1.3) and (1.4), since (1.6) follows from (1.4).

Let us prove that if A = B + F , where B is an isomorphism and F has finite-rank,
then A is Fredholm. Both properties (1.3) and (1.4) are known for operators in finite-
dimensional spaces. Therefore we will prove that A is Fredholm if we prove that equations
(1.7) and (1.9) are equivalent to linear algebraic systems in a finite-dimensional space.

Let us prove this equivalence. We start with equation (1.7), denote Bu := w and get
an equivalent to (1.7) equation

w + Tw = f, (2.2)

where T := FB−1, is a finite rank operator which is of the same rank n as F because B
is an isomorphism. Equation (2.2) is equivalent to (1.7): each solution to (1.7) is in one-
to-one correspondence with a solution of (2.2) since B is an isomorphism. In particular
the dimensions of the null-spaces N(A) and N(I + T ) are equal, R(A) = R(I + T ), and
R(I + T ) is closed . The last claim is a consequence of the Fredholm alternative for
finite-dimensional linear equations, but we give an independent proof of the closedness
of R(A) at the end of the paper.

Since T is a finite rank operator, the dimension of N(I + T ) is finite and is not
greater than the rank of T . Indeed, if u = −Tu and T has finite rank n, then Tu =∑n

j=1
(Tu, ej)ej , where {ej}1≤j≤n, is an orthonormal basis ofR(T ), and u = −

∑n

j=1
(u, T ∗ej)ej,

so that u belongs to a subspace of dimension n = r(T ).
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Since A and A∗ enter symmetrically in the statement of Theorem 1.1, it is sufficient
to prove (1.3) and (1.4) for A and check that the dimensions of N(A) and N(A∗) are
equal.

To prove (1.3) and (1.4), let us reduce (1.9) to an equivalent equation of the form:

v + T ∗v = h, (2.3)

where T ∗ := B∗−1F ∗, is the adjoint to T, and

h := B∗−1g. (2.4)

Since B is an isomorphism, (B−1)∗ = (B∗)−1. Applying B∗−1 to equation (1.9), one gets
an equivalent equation (2.3) and T ∗ is a finite-rank operator of the same rank n as T .

The last claim is easy to prove: if {ej}1≤j≤n is a basis inR(T ), then Tu =
∑n

j=1
(Tu, ej)ej ,

and T ∗u =
∑n

j=1
(u, ej)T

∗ej , so r(T ∗) ≤ r(T ). By symmetry one has r(T ) ≤ r(T ∗), and
the claim is proved.

Writing explicitly the linear algebraic systems, equivalent to the equations (2.2) and
(2.3), one sees that the matrices of these systems are adjoint. The system equivalent to
equation (2.2) is:

ci +
n∑

1

tijcj = fi, (2.5)

where
tij := (ej , T

∗ei), cj := (w, T ∗ej), fi := (f, T ∗ei),

and the one equivalent to (2.3) is:

ξi +

n∑

1

t∗ijξj = hi, (2.6)

where
t∗ij = (T ∗ej , ei), ξj := (v, ej), hi := (h, ei),

and t∗ij is the matrix adjoint to tij . For linear algebraic systems (2.5) and (2.6) the
Fredholm alternative is a well-known elementary result. These systems are equivalent
to equations (1.7) and (1.9), respectively. Therefore the Fredholm alternative holds for
equations (1.7) and (1.9), so that properties (1.3) and (1.4) are proved. Theorem 1.1 is
proved. 2

In conclusion let us explain in detail why, for example, equations (2.2) and (2.5) are
equivalent in the following sense: every solution to (2.2) generates a solution to (2.5) and
vice versa.

It is clear that (2.2) implies (2.5): just take the inner product of (2.2) with T ∗ej and get
(2.5). So, each solution to (2.2) generates a solution to (2.5). We claim that each solution
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to (2.5) generates a solution to (2.2). Indeed, let cj solve (2.5). Define w := f −
∑n

1
cjej .

Then Tw = Tf−
∑n

j=1
cjTej =

∑n

i=1
[(Tf, ei)ei−

∑n

j=1
cj(Tej , ei)ei] =

∑n

i=1
ciei = f−w.

Here we have used (2.5) and took into account that (Tf, ei) = fi and (Tej , ei) = tij . Thus,
the element w := f −

∑n

1
cjej solves (2.2), as claimed.

It is easy to check that if {w1, ....wk} are k linearly independent solutions to the homo-
geneous version of equation (2.2), then the corresponding k solutions {c1m, .....cnm}1≤m≤k

of the homogeneous version of the system (2.5) are also linearly indepenedent, and vice
versa.

Let us give an independent proof of property (1.4):
R(A) is closed if A = B + F , where B is an isomorphism and F is a finite rank

operator.
Since A = (I + T )B and B is an isomorphism, it is sufficient to prove that R(I + T )

is closed if T has finite rank.
Let uj + Tuj := fj → f as j → ∞. Without loss of generality choose uj orthogonal

to N(I + T ). We want to prove that there exists a u such that (I + T )u = f . Suppose
first that supj ||uj|| <∞. Since T is a finite-rank operator, Tuj converges in H for some
subsequence which is denoted uj again. (Recall that in finite-dimensional spaces bounded
sets are precompact). This implies that uj = fj − Tuj converges in H to an element u.
Passing to the limit, one gets (I + T )u = f. To complete the proof, let us establish that
supj ||uj|| < ∞ . Assuming that this is false, one can choose a subsequence, denoted
uj again, such that ||uj|| > j. Let zj := uj/||uj||. Then ||zj|| = 1, zj is orthogonal to
N(I + T ), and zj + Tzj = fj/||uj|| → 0. As above, it follows that zj → z in H , and
passing to the limit in the equation for zj one gets z + Tz = 0. Since z is orthogonal to
N(I + T ), it follows that z = 0. This is a contradiction since ||z|| = limj→∞||zj|| = 1.
This contradiction proves the desired estimate and the proof is completed.

The above proof is valid for any compact linear operator T . If T is a finite-rank
operator, then the closedness of R(I + T ) follows from a simple observation: finite-
dimensional linear spaces are closed.
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