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THE SHIFT OPERATOR
P. A. FILLMORE

1. Introduction. By a (simple, unilateral) shift operator we understand a bounded
linear transformation S on a separable complex Hilbert space 5# for which there
exists an orthonormal basis eg, ey, -+ of & such that Se, = e, for all n = 0. Any
two shift operators S: # — # and S’: H#' — ' are unitarily equivalent. If {e,} and
{e,} are the corresponding orthonormal bases, the equations We, = e, foralln 20
determine an isomorphism W:# — £’ such that WS = S’'W. There are two
realizations of the shift operator on concrete Hilbert spaces that are particularly
useful. The first, on the space [ of square-summable sequences of complex numbers,
is defined by

S(x09 X1s X2, "') = (09 X0s X15 X2, "')-

The other is on the Hardy space H?, consisting of all measurable complex functions
f on the unit circle that are square-integrable with respect to normalized Lebesgue
measure and whose Fourier coefficients of negative index all vanish:

2n
f(€®e™do =0, n=1.
0

Here the shift qperator appears as
(S) (€°) = €”f ("),
and the corresponding orthonormal basis consists of the functions ", n = 0, where e
is the identity function €.
The shift operator has been known for many years, at first as an interesting
example, but more recently as a fundamental building block in the structure theory

of operators on Hilbert space. The purpose of the present note is to make more
widely known the modern role of the shift operator.

2. Characterizations. The shift operator evidently has the following properties:

(i) itis an isometry: Sf” = Hf" for all fe A,

(ii) it is pure: = S"# = {0}.

Is every pure isometry a shift? For example, consider the operator T determined
by the mapping Te, = e,, on an orthonormal basis {e,,]n = 1}. This is a pure
isometry, but not a shift. However, it is a direct sum of shifts in the following sense:
for each odd integer k = 1, let .#, be the subspace spanned by e,e,, €4, +; then
these subspaces are mutually orthogonal and span the whole space, and in each, T
is a shift.

THEOREM 1. Any pure isometry is a direct sum of simple shifts.
Proof. Let V be a pure isometry on &, and let " = (V£)*, the orthogonal
‘ 717
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complement of the range of V. The subspaces V4", V2, --- are contained in the
range of V, and thus are orthogonal to #". Any isometry has the property

Vh Ve =(f9), f, geH

and it follows that the subspaces ", V4, V24, -+ are mutually orthogonal. More-
over these subspaces span ##; indeed, # is spanned by the subspaces

A, VA, VLA and V'H#

for every n=1, and therefore by the subspaces ¥, VX, V?A',... and
M=o V"5 = {0}. Now let {e,|ae 4} be an orthonormal basis of ", and for each
a€ A let 4, be the subspace spanned by the orthonormal set {e,, Ve,, V?e,,-}. As
in the example, these subspaces are mutually orthogonal and span 5, and in each,
V is a shift. [

On the other hand, any pure isometry may be regarded as a shift of a suitably
general type. To make this precise, let " be any Hilbert space, and let 1*(¢) be the
Hilbert space of norm-square-summable sequences of vectors from . The shift
operator on [%(¢") is defined in the same fashion as the shift on I%.

THEOREM 2. Any pure isometry V on a Hilbert space S is unitarily equivalent
to the shift operator on 1*(X’), where A = (VH)* .

Proof. It was shown above that the subspaces X', VA, V2A', ... are mutually
orthogonal and span 5. It follows that the map

W:(kOakl’kb"')_) 2 Vnkn

n=0
is an isomorphism of [*(#") with J#. Since

WS(ko, ki) = W(O0, ko, ky,++)

V", = VW(ke, ky, o)
n=0
for all (ko,ky,+-)el?(X), we have WS = VW as required. []

The next result describes the structure of arbitrary isometries. It was discovered
by von Neumann [7] in the course of investigating extensions of symmetric operators
(as will be explained in the next section). Recall that a unitary operator is an
isometry of a Hilbert space onto itself. The structure of unitary operators is comple-
tely described by the spectral theorem [1, §62].

I

THEOREM 3. Any isometry is uniquely the direct sum of a pure isometry and a
unitary operator.

Proof. Let V be an isometry on #. It must be shown that there is a unique
subspace «/ of # with the properties Vol =M, V(M*) = M*, V| M is unitary, and
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V| M*is a pure isometry. It is easy to see that & = ()2, V"5 is the only pos-
sibility for such a subspace. To see that this one works, observe that

HoVH>SV2H S ..

so that V.# = #, and that from this the first three requirements follow. The last
one results from

N VMY = N V'H# =M.

n=0 n=0

3. Symmetric operators. A symmetric operator on a Hilbert space 5 is a linear

transformation A4, defined on a dense linear man fold 2, in 4, such that (4f,g)
= (f, Ag) for all f, g € Z 4. Such operators need not be bounded ; the usual substitute
is the requirement that A be closed (i.e., that the graph of A be closed in the Cartesian
product £ x ). Symmetric operators arise naturally in the study of differential
equations. A useful example is the following: let # = I?(0, ), let 2 consist of those
fe s such that f is absolutely continuous, f’eI?(0, ), and f(0) = 0, and let
Df = if’ for all fe 2. To see that D is symmetric, we need the fact that f(¥) - 0 as
t — oo for fe 2. This follows from the formula

‘ Fr _ 2 _ ‘ '
[ =1rop - [r7
and the fact | ff ’| is integrable on (0, c0). Then

(0f, g) = lim fo if'g

t—>©

= lim (f(H)g(F) — L ifg")

t— o

t
~ tim [ 7" = (1.9
It may also be shown that D is closed but not bounded.

In [7] von Neumann proved that any symmetric operator possesses maximal
symmetric extensions, and described the structure of these extensions. We give a
brief account of his reasoning. Let A be symmetric with domain 2,. Then 4 + il is
one-to-one on D, so V = (4 — il) (A + iI)~" is a well-defined linear operator with
domain 9, = (4 + i)2 4 and range %), = (A — i[)2 4. This operator is called the
Cayley transform of A. That this is an isometry follows from the easy relations:

[+ inf|? = as|* + £ = [ (4= iDf]*

Not every (partially-defined) isometry arises in this way. In fact, with 4 and V as

above we have
([ - V)@V = '@A’
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and so (I — V)2, is dense. Conversely, if V is an isometry such that (I — V)2, is
dense, then I — V is one-to-one on %,

A=il+V)I-P)

defines a symmetric transformation on 2, = (I — V)9, and the Cayley transform
of 4 is V.

The basis of von Neumann’s argument is now clear: symmetric extensions of 4
correspond, via the Cayley transform, to isometric extensions of V. In particular,
maximal symmetric operators correspond to maximal isometries. An isometry V is
maximal if and only if either &, = 3£ or %, = 5. Any isometry has such an ex-
tension, and therefore any symmetric operator has a maximal symmetric extension.

An interesting case occurs when both &, and £, are all of 2#; i.e., V is unitary.
In this case 4 is self-adjoint and is described by the spectral theorem [1, §66].

Now let A be maximal symmetric. Since 2, and %, are interchanged when A4 is
replaced by — A, it can be assumed that &, = 5, so that V is an isometry defined
on all of 5#. According to Theorems 1 and 3, V is a direct sum of a unitary operator
and a number of copies of the simple shift. Hence A4 is a direct sum of a self-adjoint
operator and a number of copies of the simple maximal symmetric operator (i.e., the
operator with Cayley transform the simple shift).

To complete this discussion, we remark that the differential operator D introduced
above is simple and maximal. In fact, if V is the Cayley transform of D and h(t)
= e~', then {h,Vh,V?h,-.-} is an orthonormal basis of I*(0, ), and consequently
V is a simple sHift [1, §82].

4. Models. A subspace # of a space 5 is invariant for a linear transformation
T on &7 if Tfe # for all fe #. One way to obtain new operators from old is by
restricting to invariant subspaces. By a part of an operator T we shall mean a re-
striction of T to an invariant subspace.

A part of a pure isometry is itself a pure isometry, and therefore, by Theorem 2,
a part of a shift is another shift. On the other hand, an astonishing variety of operators
arise as parts of the adjoint of the shift. This situation, discovered by Rota [9], will
now be described. Recall first that the adjoint of a bounded operator T on a Hilbert
space # is the unique operator T* satisfying

(Tf, 9) = (£, T*9), f, ge #.
The adjoint of the shift S on [>(#) is the backward shift, given by
S*(anflafz>”') = (f1af2,f3’ )
Let T be an operator on a Hilbert space 2, and consider the map
R:f—(f, Tf, T*f,), fedt.
We want this sequence to be in [*(##), and for this it is sufficient that T be a strict
contraction (ie., || T <1):
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Sy s B il = a- TR <
Of course R is linear, and this computation also shows that it is bounded (by
a- " T"z)‘*). Moreover, it follows from the inequality

|Rf| 2 ] 7], fe 2

that the range of R (call it A4") is a closed subspace of I>(#). Then the closed graph
theorem implies that the inverse operator R~*: 4" — 4 is bounded. Finally we have

RTf (Tf, T2f5T3fa)
= S*(f, Tf, TZf’...) = S*Rf

for all fin . This says that R carries the action of T on 4 to that of S* on A4". Two
operators related in this fashion, by a bounded operator with a bounded inverse, are
said to be similar. Thus we have shown that T and S* l/V are similar.

THEOREM 4. Any strict contraction is similar to a part of a backward shift.

This result has implications for the invariant subspace problem, which asks
whether any bounded linear operator on a complex Hilbert space of dimension
greater than 1 has a proper (different from {0} and ) invariant subspace, and
which remains unsolved in spite of the efforts of many mathematicians. Since any
bounded operator,can be ‘‘scaled’’ so as to be a strict contraction, the theorem gives
the following reformulation of the problem: are the minimal nonzero invariant
subspaces of backward shifts one-dimensional? Invariant subspaces of shifts are
considered in the next section.

Soon after Rota’s result appeared, De Branges and Rovnyak [3] and Foias [4]
noticed that a modification of his argument will produce a description, up to unitary
equivalence, of all the parts of backward shifts. Backward shifts have the properties
| $*|| < L and || S*"f|| - 0 as n — oo for all f, as do all of their parts. These conditions
are also sufficient.

THEOREM 5. Any contraction with powers tending strongly to zero is unitarily
equivalent to a part of a backward shift.

Proof. Let T be such an operator. We want to duplicate the situation of the last
proof, but with R replaced by an isometry. Now

(= T*DLS) = (1)) = (L, T*TN)
= /P = =0

since || T|| < 1. This means that the operator I — T*T is positive, and as such has a
unique positive square root D [8]. Consider the map

W:f-(Df, DTf, DT%,---), fedt.
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Since
| pT7f 2

]

(T, D*T"f)

(T, Tf) — (T, (T*T)T"f)
Rl Rl ]

the series X2, || DT ||2 is telescoping, and we have

[wrl* = 1717 = tim [ 77)* = | 7]

since the powers of T tend to O strongly. Hence W is an isometry with range in
12(2), where 2 is the closure of the range of D. The rest of the argument is as before.

5. Imvariant Subspaces. The result of the previous section makes the nature of
the invariant subspaces of backward shifts a matter of great importance. For any
operator T, the subspaces invariant for T* are precisely the orthogonal complements
of the subspaces invariant for T. Thus it will suffice to study shifts.

One of the few operators whose invariant subspace structure has been completely
and satisfactorily described is the simple shift, in a fundamental paper of Beurling
[2] (see also [5]). For this we use the realization of the shift as multiplication by e
(the identity function ') on the Hardy space H2. To begin with, there are the obvious
invariant subspaces e"H?, consisting of all e"f, fe H?, and spanned by {e" e"*!,...}.
More generally, if ¢ € H? is of unit modulus almost everywhere (such functions are
said to be inner) then multiplication by ¢ is an isometry on H?, so the range ¢pH? is a
closed subspace that is evidently invariant. Conversely:

THEOREM 6. Any closed nonzero invariant subspace of the shift on H? is of the
form ¢H? for a suitable inner function ¢.

Proof. Let . be invariant, and assume for the moment that the function 1 is not
orthogonal to .#, so that the component s of 1 in .# is not zero. Then ")y € ./ for

all n =1, and therefore
2z

0= @h1—¥) = o [ o1~ §O)do

J O

1 2 inolp(e) 10 — _1_ fzn in9| l//(e) |2d0
2 Jo ¢ ‘ 2 Jo ¢

1 I in6 2
i A | (6) |*d6
since Y € H2. By conjugation we obtain

2n
f ™| Y(6) |*d0 = 0 for all n 0,
(]

and so |¢(0)| is equal a.e. to a nonzero constant. Thus, a constant multiple of  is
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inner, and it will suffice to show .# = yH?. It is clear that . contains yH? (since 4
contains €™y, n =0), so suppose that f is in .# and orthogonal to wH?2. Since
e"y e yH? for all n = 0, we have

1 = —ind 770
0= (f,e"xlf)=—2—n—L OB, 0.

On the other hand, arguing with (e"f, 1 — i), just as in the first calculation above,
gives

2n
f e OO0 =0, n=1.
0

Hence fi = 0 a.e., and, since ¥ has constant nonzero modulus, f = 0. Thus
M = YyH?,

Finally, if 1 is orthogonal to .#, then all functions in .# have vanishing Fourier
coefficient of order zero, so # = eA” with 4" closed and invariant. Since ./ # {0}
there is a largest integer n for which # = "4, with .#, closed and invariant. Then
by the above .#, = ¢H? with ¢ inner, so # = e"pH? and e"¢p is inner. []

This representation of invariant subspaces in terms of inner functions is not
unique; however, it is easily seen that if ¢, H*> = ¢,H?* with ¢, and ¢, inner, then
¢, |¢, is constant almost everywhere. A great deal is known about inner functions [6],
and therefore the theorem is a useful tool for answering questions about invariant
subspaces of the simple shift.

In particular, the question of the previous section can be shown to have an
affirmative answer in this case: the minimal nonzero invariant subspaces of the
simple backward shift are one-dimensional. The same is true of the backward shift
on [%(s#) for s finite-dimensional (see [5]), but the general question remains open.

Based on a talk at the Indiana sectional meeting, Franklin College, May 13, 1972.
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