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THE SHIFT OPERATOR 

P. A. FILLMORE 

1. Introduction. By a (simple, unilateral) shift operator we understand a bounded 
linear transformation S on a separable complex Hilbert space XY for which there 
exists an orthonormal basis eo, e1, of X* such that Sen = en+1 for all n _ 0. Any 
two shift operators S: X -> A' and S': A" - ' are unitarily equivalent. If {ej} and 
{en} are the corresponding orthonormal bases, the equations Wen = en for all n > 0 
determine an isomorphism W: -Y - A"' such that WS = S'W. There are two 
realizations of the shift operator on concrete Hilbert spaces that are particularly 
useful. The first, on the space 12 of square-summable sequences of complex numbers, 
is defined by 

S(XO9 X1, X2, ...) = (O,XD,X,X2, .... 

The other is on the Hardy space H2, consisting of all measurable complex functions 
f on the unit circle that are square-integrable with respect to normalized Lebesgue 
measure and whose Fourier coefficients of negative index all vanish: 

2n 

f(ei0)ei'10do 

= 

0 n 

> 

1 

Here 
the shift Qperator appears as 

(Sf) (eio) e'of (eio), 

and the corresponding orthonormal basis consists of the functions 
e", 

n _ 0, where e 
is the identity function e'0. 

The shift operator has been known for many years, at first as an interesting 
example, but more recently as a fundamental building block in the structure theory 
of operators on Hilbert space. The purpose of the present note is to make more 
widely known the modern role of the shift operator. 

2. Characterizations. The shift operator evidently has the following properties: 

(i) it is an isometry: || Sf =|-| f || for all f EK, 
(ii) it is pure: nnS=V6 = {0}. 
Is every pure isometry a shift? For example, consider the operator T determined 

by the mapping Ten = e2n on an orthonormal basis {en I n > 1}. This is a pure 
isometry, but not a shift. However, it is a direct sum of shifts in the following sense: 
for each odd integer k _ 1, let 1#k be the subspace spanned by ek,e2k,e4k,*..; then 
these subspaces are mutually orthogonal and span the whole space, and in each, T 
is a shift. 

THEOREM 1. Any pure isometry is a direct sum of simple shifts. 

Proof. Let V be a pure isometry on XY, and let X-(V.Ji,)', the orthogonal 
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complement of the range of V. The subspaces VX, V2X, are contained in the 
range of V, and thus are orthogonal to Y. Any isometry has the property 

(Vf, Vg) = (f,g), f, geYt6 

and it follows that the subspaces Y, VY2, V2Y., * are mutually orthogonal. More- 
over these subspaces span X9; indeed, X' is spanned by the subspaces 

', V~Y,..., Vn1-f' and V)i 

for every n > 1, and therefore by the subspaces Y, VX, V2'f, and 
fl Q yVnY = {O}. Now let {e I a E Al be. an orthonormal basis of X, and for each 
a E A let XA be the subspace spanned by the orthonormal set {eO,, VeY, V2e , y e }. As 
in the example, these subspaces are mutually orthogonal and span X0, and in each, 
V is a shift. LII 

On the other hand, any pure isometry may be regarded as a shift of a suitably 
general type. To make this precise, let X' be any Hilbert space, and let 12(X) be the 
Hilbert space of norm-square-summable sequences of vectors from S. The shift 
operator on 12(X) is defined in the same fashion as the shift on 12. 

THEOREM 2. Any pure isometry V on a Hilbert space ,X,- is unitarily equivalent 
to the shift operator on 12(y), where Y = (V6')'. 

Proof. It was shown above that the subspaces -X, YV, V2'Y, are mutually 
orthogonal and span X*. It follows that the map 

00 

W: (ko~ kjl k2, ...) I Slkn 
n =O 

is an isomorphism of 12(_X) with -X. Since 

WS(ko, kl, ...) W(O, ko k, 
00 

- = V 'kn = W(ko,k 1, *) 
11=0 

for all (ko, kl, ...) e 12(*'Y), we have WS = VW as required. El 
The next result describes the structure of arbitrary isometries. It was discovered 

by von Neumann [7] in the course of investigating extensions of symmetric operators 
(as will be explained in the next section). Recall that a unitary operator is an 
isometry of a Hilbert space onto itself. The structure of unitary operators is comple- 
tely described by the spectral theorem [1, ?62]. 

THEOREM 3. Any isometry is uniquely the direct sum of a pure isometry and a 
unitary operator. 

Proof. Let V be an isometry on X. It must be shown that there is a unique 
subspace X4 of X*0 with the properties V,( c #, V(./1') c X1, VI . is unitary, and 
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VI &# is a pure isometry. It is easy to see that X = nnf= o V" is the only pos- 
sibility for such a subspace. To see that this one works, observe that 

.=) VY V2,d ... 

so that V.,& = X, and that from this the first three requirements follow. The last 
one results from 

00 00 

n vn(X1) c n vn-* = X. 
II=0 n=O 

3. Symmetric operators. A symmetric operator on a Hilbert space X" is a linear 
transformation A, defined on a dense linear man fold ?9A in X#, such that (Af, g) 
= (f, Ag) for all f, g E A. Such operators need not be bounded; the usual substitute 
is the requirement that A be closed (i.e., that the graph of A be closed in the Cartesian 
product X' x 4"). Symmetric operators arise naturally in the study of differential 
equations. A useful example is the following: let X" = L2(0, oo), let 9 consist of those 
fe .4 such that f is absolutely continuous, f' e L2(O0, o), and f(O) = 0, and let 
Df = if ' for all fe 9. To see that D is symmetric, we need the fact that f(t) 0 as 
t -+ oo for fe . This follows from the formula 

f = If(t)12 - f If 
and the fact ff' is integrable on (0, oo). Then 

t 
(Df, g) = lim fif'g1 

t - oo 0 
t 

- lim (f (t)gt) - if g') 

t 
- lim f (ig') = (f, Dg). 

t & oo 

It may also be shown that D is closed but not bounded. 
In [7] von Neumann proved that any symmetric operator possesses maximal 

symmetric extensions, and described the structure of these extensions. We give a 
brief account of his reasoning. Let A be symmetric with domain ?iA. Then A + iI is 
one-to-one on QA, so V = (A - iI) (A + iI)-' is a well-defined linear operator with 
domain .v = (A + jI)?A and range Xv = (A - i)IA. This operator is called the 
Cayley transform of A. That this is an isometry follows from the easy relations: 

|| (A + ij)f 1 2 = || Af 112 + Ilf 12 = || (A-i)f 112. 

Not every (partially-defined) isometry arises in this way. In fact, with A and V as 
above we have 

(I - V)-V = gA, 
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and so (I - V)9y is dense. Conversely, if V is an isometry such that (I - V)9y is 
dense, then I - V is one-to-one on gv, 

A = i(I + V) (I -V) 

defines a symmetric transformation on A = (I - V)gv, and the Cayley transform 
of A is V. 

The basis of von Neumann's argument is now clear: symmetric extensions of A 
correspond, via the Cayley transform, to isometric extensions of V. In particular, 
maximal symmetric operators correspond to maximal isometries. An isometry V is 
maximal if and only if either gv = X or Mv = .X. Any isometry has such an ex- 
tension, and therefore any symmetric operator has a maximal symmetric extension. 

An interesting case occurs when both ?v and .rv are all of X?; i.e., V is unitary. 
In this case A is self-adjoint and is described by the spectral theorem [1, ?66]. 

Now let A be maximal symmetric. Since gv and ?Pv are interchanged when A is 
replaced by - A, it can be assumed that ?v = eX, so that V is an isometry defined 
on all of ,X. According to Theorems 1 and 3, V is a direct sum of a unitary operator 
and a number of copies of the simple shift. Hence A is a direct sum of a self-adjoint 
operator and a number of copies of the simple maximal symmetric operator (i.e., the 
operator with Cayley transform the simple shift). 

To complete this discussion, we remark that the differential operator D introduced 
above is simple and maximal. In fact, if V is the Cayley transform of D and h(t) 
= e&t, then {h, Vh, V2h, . . .} is an orthonormal basis of L2(0, oo), and consequently 
V is a simple sHift [1, ?82]. 

4. Models. A subspace X of a space #' is invariant for a linear transformation 
T on #' if Tfe kv for all fe kv. One way to obtain new operators from old is by 
restricting to invariant subspaces. By a part of an operator T we shall mean a re- 
striction of T to an invariant subspace. 

A part of a pure isometry is itself a pure isometry, and therefore, by Theorem 2, 
a part of a shift is another shift. On the other hand, an astonishing variety of operators 
arise as parts of the adjoint of the shift. This situation, discovered by Rota [9], will 
now be described. Recall first that the adjoint of a bounded operator T on a Hilbert 
space X is the unique operator T* satisfying 

(Tf, g) = (f, T*g), J; g Y'. 

The adjoint of the shift S on l2(X) is the backward shift, given by 

S*(U0,iAJ2, ) = (fi,f2,f3, "')- 

Let T be an operator on a Hilbert space X, and consider the map 

R :f >(f, Tf, T 2f, X), fe X-- 

We want this sequence to be in 12(,e), and for this it is sufficient that T be a strict 
contraction (i.e., || T || < 1): 
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00 0( 
I I I Tnf 112 < I || T 112nll 112 = (1- 11 T112)-111f 112 < oo 

n=O n=O 

Of course R is linear, and this computation also shows that it is bounded (by 
(1 -| T 12)-j). Moreover, it follows from the inequality 

IIRf 2I ! If II' feY6' 
that the range of R (call it A) is a closed subspace of 12(X*,). Then the closed graph 
theorem implies that the inverse operator R'- ': X .X" is bounded. Finally we have 

RTf = (Tf, T2f, T3f, ..) 

= S*(f, Tf, T2f, ..) = S*Rf 

for allf in X'. This says that R carries the action of T on Ye to that of S* on X. Two 
operators related in this fashion, by a bounded operator with a bounded inverse, are 
said to be similar. Thus we have shown that T and S* |X are similar. 

THEOREM 4. Any strict contraction is similar to a part of a backward shift. 

This result has implications for the invariant subspace problem, which asks 
whether any bounded linear operator on a complex Hilbert space of dimension 
greater than 1 has a proper (different from {O} and XY) invariant subspace, and 
which remains unsolved in spite of the efforts of many mathematicians. Since any 
bounded operator.can be "scaled" so as to be a strict contraction, the theorem gives 
the following reformulation of the problem: are the minimal nonzero invarianit 
subspaces of backward shifts one-dimensional? Invariant subspaces of shifts are 
considered in the next section. 

Soon after Rota's result appeared, De Branges and Rovnyak [3] and Foias [4] 
noticed that a modification of his argument will produce a description, up to unitary 
equivalence, of all the parts of backward shifts. Backward shifts have the properties 
| S* 1 and || S*nf 1f -0 as n -e oo for allf, as do all of their parts. These conditions 
are also sufficient. 

THEOREM 5. Any contraction with powers tending strongly to zero is unitarily 
equivalent to a part of a backward shift. 

Proof. Let T be such an operator. We want to duplicate the situation of the last 
proof, but with R replaced by an isometry. Now 

((I - T* T)f,f) = (f, f ) - (f, T* Tf) 

llf1f02 _ TfI12 >O 

since || T|| < 1. This means that the operator I - T*T is positive, and as such has a 
unique positive square root D [8]. Consider the map 

W:f-(Df, DTf, DT2f,r.), fed. 
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Since 
| DTnf 112 = (Tnf, D2Tnf) 

= (Tnf, Tnf) - (Tnf, (T*T)Tnf) 

= ||T'f 12 _- Tn+lf 12 

the series n' || D Tnf 112 is telescoping, and we have 

|| Wf 112 = fI f 112 _ lim 11 Tnf 112 = fl 112 
i- 00 

since the powers of T tend to 0 strongly. Hence W is an isometry with range in 
l2(p), where 9 is the closure of the range of D. The rest of the argument is as before. 

5. Invariant Subspaces. The result of the previous section makes the nature of 
the invariant subspaces of backward shifts a matter of great importance. For any 
operator T, the subspaces invariant for T* are precisely the orthogonal complements 
of the subspaces invariant for T. Thus it will suffice to study shifts. 

One of the few operators whose invariant subspace structure has been completely 
and satisfactorily described is the simple shift, in a fundamental paper of Beurling 
[2] (see also [5]). For this we use the realization of the shift as multiplication by e 
(the identity function e'0) on the Hardy space H2. To begin with, there are the obvious 
invariant subspaces e H2, consisting of all enf, fE H2, and spanned by {en n 1, 
More generally, if 4 E H2 is of unit modulus almost everywhere (such functions are 
said to be inner)then multiplication by 4 is an isometry on H2, so the range H2 is a 
closed subspace that is evidently invariant. Conversely: 

THEOREM 6. Any closed nonzero invariant subspace of the shift on H2 is of the 
form ?H2 for a suitable inner function 4. 

Proof. Let X be invariant, and assume for the moment that the function 1 is not 
orthogonal to X, so that the component X of 1 in X is not zero. Then e'l e XA' for 
all n > 1, and therefore 

0 = (ena/ 1 - = 1 f einoO (O)) do 

1 r219 1 r219 
= 2 einO(O)A - 2 j ei MO 

I(O) 12dO 

- - L f| ei"0e Ifr(O) 12dO 

since / E H2. By conjugation we obtain 
2s- 

eibo I /(O) 12dO = 0 for all it + 0, 

and so I f(O) I is equal a.e. to a nonzero constant. Thus, a constant multiple of / is 
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inner, and it will suffice to show 4' = /H2. It is clear that ' contains /H2 (since 
contains en+, n : 0), so suppose that f is in 4' and orthogonal to /H2. Since 
eni re iH2 for all n > 0, we have 

1 27s 
0 = (f, en) = _ e-inOf(0)f(o)do, n 0. 

On the other hand, arguing with (enf, 1- V) just as in the first calculation above, 
gives 

r2x 
ein"f(0)/(0)dO = 0, n > 1. 

Hence f/i = 0 a.e., and, since ,l, has constant nonzero modulus, f = 0. Thus 
4' = ~H2 

Finally, if 1 is orthogonal to 4, then all functions in 4 have vanishing Fourier 
coefficient of order zero, so 4' = eX with X closed and invariant. Since 4 0 {0} 
there is a largest integer n for which 4 = e4',0 with X0 closed and invariant. Then 
by the above 40' = OH2 with f inner, so 4 = enOH2 and e no is inner. D: 

This representation of invariant subspaces in terms of inner functions is not 
unique; however, it is easily seen that if 41H2 = b2H2 with 01 and 02 inner, then 
&1 /02 is constant almost everywhere. A great deal is known about inner functions [6], 
and therefore the theorem is a useful tool for answering questions about invariant 
subspaces of the simple shift. 

In particular, the question of the previous section can be shown to have an 
affirmative answer in this case: the minimal nonzero invariant subspaces of the 
simple backward shift are one-dimensional. The same is true of the backward shift 
on 12(.?) for X finite-dimensional (see [5]), but the general question remains open. 

Based on a talk at the Indiana sectional meeting, Franklin College, May 13, 1972. 
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