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One of  the well-known results in the theory of C* algebras is the Russo-Dye 
Theorem [19]: given a C* algebra .~r the closed convex hull of the unitary 
elements in ~r equals the closed unit ball of ~r This result was later refined 
by Gardner and reached its final form by Kadison and Pedersen; today it is 
known that every operator in a C* algebra ~r whose norm is less than 1, is 
the average of unitaries from A. The Russo-Dye Theorem initiated the theory 
of unitary rank in selfadjoint operator algebras. If ~r is an operator algebra, 
the unitary rank of an element A E ~r is defined as the smallest number for 
which there is a convex combination of unitaries from ~r of length u(A) and 
equaling A. If  no such decomposition exists (in particular if liAII > 1) we 
define u(A) = oo. 

The literature on unitary rank is vast. The earliest result is due to Murray 
and yon Neumann who proved that any selfadjoint operator of norm I or less 
is the mean of two unitary operators ([12] p. 239, 1937). The first systematic 
study was given by R. Kadison and G. Pedersen [8] in 1984 (previous work 
in the field included contributions by Popa [15], Robertson [17], Gardner [6] 
and others). In 1986, C. Olsen and G. Pedersen [14] characterized all ele- 
ments in a factor von Neumarm algebra with finite unitary rank. In the general 
case of a C*-algebra, a characterization was obtained by Rordam in his im- 
portant paper [18]. For more details and further information on the theory of 
unitary rank we refer to the excellent articles of U. Haagerup [7] and M. 
Rordam [ 18]. 

In the first section of the present paper, we prove a Russo-Dye type 
Theorem for infinite multiplicity nest algebras. The techniques employed in the 
proof of our result are different from that of Gardner and Kadison-Pedersen. 
To our knowledge, this is the first result of this type, for non-selfadjoint op- 
erator algebras and clearly initiates the unitary rank theory for such algebras. 

The results of the prvsvnt paper were presented by the second named author during the AMS 
Regional Meeting at College Station (October 22, 1993) 
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Specifically, we prove that if Jf" is a nest with no finite dimensional atoms 
then each element A of AIg.A" is a mean of a finite number n of unitaries 
from Alga/ ' ,  provided that II,411 < 1. (We emphasize that if ~," has atoms of 
finite dimension, then a Russo-Dye type theorem may not be valid for AIg ~4/': 
indeed, if the atoms for ~+" are finite dimensional and ordered like the one- 
point compactification of N, then all unitaries in Aig X belong to ~r ). Our 
estimate for n depends on the distance from A to the surface of the unit ball; 
as expected, the nearer ,4 is to the surface, the larger n must be, in general. 
A number of corollaries follow our main theorem; the most important of them 
shows that every element of an infinite multiplicity nest algebra Alg ~," can be 
expressed as a sum of unitaries from Alg.Ar. 

In the second section of the paper, we show that a variety of operator alge- 
bras, associated with infinite multiplicity nest algebras, enjoy a Russo-Dye type 
theorem. Specifically, if  X is a nest with no finite dimensional atoms and 
any factor yon Neumann algebra then every operator in Alg J~" | ~ ,  of norm 
less than 1, is a convex combination of unitaries from Alg X | ~t; a similar 
result is also valid for the quasitriangular algebra Qtr~ ' .  

Finally, in the last section of the paper we give counterexamples to show 
that, in general, an infinite multiplicity operator algebra does not necessarily 
enjoy a Russo-Dye type theorem. We also indicate some directions for future 
investigation. 

At this point, we would like to establish some connections between our 
results and the classical theory of Hp spaces. For many years, the nest algebras, 
and in particular the lower triangular matrices, have been thought as a non- 
commutative analog of the Banach algebra H ~176 Actually, much of the develop- 
ment of the theory of nest algebras ought to this analogy; resuRs like Carleson's 
corona theorem, Sarason's theorem on the closure of H~176 etc. have found 
the appropriate analog in the context of nest algebras (see [1], [5], [9]). The 
results of the present paper should be considered as non-commutative analogs 
of Marshall's theorem [11], i.e., the unit sphere of H ~176 is the norm closed 
convex hull of the inner functions. The reader may notice that a Russo-Dye 
theorem does not hold for the algebra of lower triangular (infinite) matri- 
ces. However, even in this particular case, we show that a non-commutative 
Marshall Theorem is indeed valid; we prove (Theorem 2.1) that every lower 
triangular contraction is the limit of convex combinations of lower triangu- 
lar isometries. In addition, we characterize which nest algebras admit a non- 
commutative Marshall theorem. 

Let us establish some notation and ~erminology. A nest • is a totally or- 
dered collection of projections, acting on a separable Hilbert space oct', which is 
closed under the operations "intersection" and "closure of the union" (symb. V). 
An interval for ~ is any projection of the form E -  F, where E,F E .A" 
and F C E. A minimal interval for ~ is called an atom; if ~ contains no 
atoms then it is  continuous. If  a nest Jr is ordered like the two point com- 
pactification of Z, it is called g-ordered. If  E is any element of A," then 
E_ is the immediate predecessor of E in Jr if  such predecessor does not 
exist then E_ = E. Similarly, we define E+ as the immediate successor of E, 
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for any E E ,r It is plain that ,4: is continuous iff E_ = E = E+, for all 
E E A/'. 

If A:  is a nest then the nest algebra Alg.A: consists of all operators in 
B(~g) leaving invariant each element of .4:. In general, an operator algebra 
~r is of infinite multiplicity if  it is (not necessarily isometrically) isomorphic 
to a~r | B(M'); it turns out that a nest algebra AIg.A: is of infinite multiplicity 
if all the atoms for .,4: are of infinite dimension (see [4]). In particular, the 
algebra of any continuous nest is of infinite multiplicity. 

The nest algebras form a well behaved class of non-selfadjoint operator 
algebras which are under investigation since the late sixties. They were intro- 
duced by J. Ringrose [16] as the infinite-dimensional analog of the n • n upper 
triangular matrices; from this point of view, our results are rather surprising. 
The monograph of K. Davidson [3] contains most of the fundamental results 
in the field and is strongly recommended as a reference. 

1 The main results 

This is the main body of the paper. We start with a few definitions which 
isolate a useful class of projections. 

Definition 1. Let JV" be any nest. A projection E is said to be compatible 
with JV" i f  either E E A: or one of  the Jbllowing occurs: E C_ 0+, I_ C_ E. 

It is clear that if ~q" is continuous then all projections compatible with JV', 
belong to ~: .  

Definition 2. Let .A: be any nest. A projection R E Alg ,U is called sliced i f  
there exist sequences IE ~+oo fF  ~+oo of projections compatible with I. " J . ~ - - O O ~  I. " J . = - - O 0  

Jt:, which satisfy, 

(i) Fn C En C F.+i , 

dimE. - F.  = dimF.+l - E. = 00, Vn E ~., 

(ii)  lim E. = 0, lim E. = I ,  
. - ' ~ - -  <:X~ . - - * O O  

so that 
+oo 

R=~E.-Fn. 

The intervals E. -F., n E Z, are said to be the slices ]'or R while the holes 

for R are the intervals F. -E.-I, n E 7.. 
In general, an operator A E AIg./V" is said to be sliced if A = RAR', where 

R,R' are sliced projections in AIg./V" which have at least one common hole 

P; we then call P a hole for A. 
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There are two attractive features for a sliced projection R. First, its complement 
I -  R is also a sliced projection. The second is described in the following 
l emma.  

Lenuna 3. Let .A p be a nest with no finite dimensional atoms and let R be 
a sliced projection in AIg ~r. Then, there exists an isometry V E Alg Jt r so 
that VV* = R. 

Proof Let ~E ~+oo ,t F ~,+oo be as in the above definition. Let Vn be any I. n J n = - - o o ~  I. n J n = - - o o  

partial isometry with initial space En+l - En and final space En - Fn, n ~ Z.  
Clearly Vn E Alg X and so V = v'+~176 E is the desired isometry. [] 

It is easy to see that the previous lemma admits the following generalization, 
which we will use frequently in the paper. If R is a sliced projection and E 
any non-zero element of ,A" then there exists an isometry V E Alg X so that 
V V* = ER. 

Definition 4. Let ~r be any nest. An operator .4 E Alg ,A/" is called separated 
~' there exist projections E, F, compatible with JV', so that F C E and 
A = FAF + (1 - E)A(I - E); the pair (F,E) is said to be a separating pair 
for A. 

A few remarks are in order. It is clear that every separated operator is 
block diagonal. In general, if  A is a sliced operator with a hole E -  F then 
its star diagram, with respect to the decomposition F(.,~ff)~ ( E -  F)(. ,~) 
( I -  EXJ~),  is as in Fig. 1; i fA is separated then its star is as in Fig. 2. 

The proof of the main theorem (Theorem 11 ) follows from a series of 
propositions and lemmas. As we shall see, the class of sliced operators plays 
an important role in the proof. Indeed, Proposition 6 shows that every operator 
in the open unit ball of Alg .At is the mean of sliced operators; this allows us 
to focus our attention on this particular class of operators. We mention that 
the most delicate part of our proof is Proposition 10; it is a factorization result 
which shows that certain sliced contractions factor as the product of sliced and 
separated ones. Needless to say, sliced and separated operators are (relatively) 
easily seen to be means of unitaries. 

[i ~ oOO . ] [i ~  ] 00 . 
Fig. l Fig. 2 

Lemma 5. Let JV be a nest with no finite dimensional atoms and let a 
be an integer greater than 2. Then there exist families {RI, R2,.. . ,Ra} and 
{l~i, R~,. . . ,  R~+ t } o f  sliced projections such that: 

a x--,a+lRW ( i ) ) - -~i=lRs = (a  - 1 )/, z-,j--i j = a /  

(ii) for  each pair ( i , j )  1 < i < a, 1 <__ j ~ a + 1, the projections Rt and R~ 
have (infinitely many) common holes. 



A Russo-Dye Theorem 689 

Proof Let ttE.J,=-~l+~ be any increasing sequence of projections compatible 
with X so that lim,-,_oo E, = 0 and lim.._,o~ E, = I. We define 

Ri = V{E,,+l - E, In e Z, n4:i moda}, i = 1,2, . . . ,a  

Rj' = V{E,,+I - E n J n 6 Z ,  n + j  m o d ( a +  1)}, j = 1,2 . . . . .  a , a +  I 

It is plain that Y~Ri = ( a -  1)I and Y~.R~ = a l .  Assume that i , j  are given; 
then the projections 

En+ l - En, n = i( a + l ) - ak, k - j mod ( a + l ) 

are common holes for Ri,R~ and the conclusion follows. [] 

Proposition 6. Let .A/" be a nest with no finite dimensional atoms and let A 
be an operator in AIg./V'. I r A  has the property that IIA[I < 1, then A is a 
mean o f  sliced operators in Alg vff, whose norms are less than 1. 

a - I  
Proof Let a be an integer, greater than 2, such that IIAII < ~ Let 

a + l "  
{Rl, R2,.. Ra} and {R~, R~, ' = ., . . . ,Ra+l} be as in Lemma 5 and let Aij 
a + 

I RiAR~. The properties of {Ri}i=l,a ll2t'ka+l guarantee that each At/ is a t " / J ] = l  a - I  �9 
sliced contraction in Alg A/" of norm strictly less than 1. Moreover, 

1 a a+l  1 a a+l  

E E - E E R,AR) a(a + 1 ) i=l j=l a(a - 1 ) i=l ./=I 

- a (a-1)1  (i=~lRi) A ~ j~=lRj)/'a+l ,~ 

= A .  

which completes the proof. [] 

The following proposition (which we consider as a kind of "non-selfadjoint 
polar decomposition") is our main tool for constructing partial isometries with 
prescribed properties. 

Proposition 7. (Larson, [10]) Let .h/" be any nest and let Y be an invert- 
ible operator in YI(aff). Then there exist an operator X E AIg vg" such that 
X * X  = Y* Y. 

Lemma 8. Let vlr be a nest with no finite dimensional atoms, let R,R t be 
sliced projections in Alg eft and let A be an operator in AIg.3" such that 

I1, tl < 1. Then: 
(i) I r A  = PAR t is sliced then A is a mean o f  two sliced partial isometries 

whose initial spaces are equal to R t. 
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(ii) I r A  = RAE or A = EXAR' ,  f o r  some E ~ Arl{0,I}, then A is a mean o f  
Jbur unitary operators f r o m  AIg.A/'. 
(iii) I r A  = PAR'  is sliced and I_ ~ L  then A is a mean o f  Jbur unitary oper- 
ators f r o m  Alg ~1/'. 

Proo f  Let E., F.  and E',  F~ be as in Definition 2 so that R +oo = E . = _ ~ o E , ,  - F .  

and R ~ 5 - ' + ~ 1 7 6  E~ g - - , / / l = ~  ~ H  - -  F/~/" 

(i) With no loss of generality we may assume that Fi - E0 = F~ - E~ and 
so FI - Eo is a hole for A. 

For each n ~ Z\{I} ,  let P,  be a proper subinterval of F , - E , - i  and let 
p +~ 

= ~_~,=_~ P,; clearly P is a sliced projection in A l g a  P. Since IIAII < 1, 

Proposition 7 shows that there exists an operator X ~ A I g X  so that 
X * X  = I - A*A. Let 

V~ = A + ( -  I )i VXR ', i =  1,2, 

where V is any isometry in Alg ~r with final space P (Lemma 3). We observe 
that 

V/* Vi = A*A + R~X * V* VXR' 

= A*A + R'(I  - A*A)R'  

= RIA*AR t + Rl(I  - A * A  )R I = R I . 

Thus, both Vi are partial isometries with initial spaces equal to R'. Their final 
spaces are contained in P + R and, in addition, Vi(Fi - Eo) = (FI - Eo)Vi = O, 
which shows that each Vi is sliced. Finally 

A = �89 + v2) 

and the conclusion follows. 
(ii) Assume that A = RAE, for some E ~ X \ { I } .  Let V be an isometry 

in A l g X  such that W* = E ( I -  R), (see the remarks following Lemma 3), 
and let X be an operator in Alga/- such that X * X  = I - A * A .  Let V/= 
A + (-I)"VXE, i = 1, 2. It is easily seen that each Vi is a partial isometry 
in Alg r r such that Vi* V,. = E and V~ V 7 C_ E. For each i = 1, 2, let Wi be a 
partial isometry in Alg M/" whose initial and final spaces arc E • and (V-V/*)• 
respectively (the fact that the range of Vi is contained in E is crucial for the 
existence of such W,.). We define U! = Vi + Wi, U2 = Vl - Wl, U3 =/I2  + W2 
and U4 = //2 - W2. Each U,. is then a unitary operator in Alg ~ and 

l(u~ + u2 + u3 + u.) = �88 + 2v2) = �89 + v2) = A. 

If A = E •  ', for some E E Jg'\{0}, then the previous considerations show 
that A* is a mean of four unltaries in Alg r r•  and the conclusion follows. 

(iii) The proof follows from arguments similar to that of part (ii). [] 
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Since every sliced and separated operator is the direct sum of operators which 
satisfy the requirements of  Lemma 8(ii), we have 

Corollary 9. Let ar be a nest with no finite dimensional atoms and let A be 
a sliced and separated operator in Alg ~ r  such that [[A[[ < 1. Then A is a 
mean o f  Jbur unitary operators from A l g d .  

We would like to comment on some technical difficulties arising from the use 
of  Proposition 7 in constructing partial isometrics. One might hope that the 
partial isometries constructed in Lemma 8(i) are easily "completed" to unitaries 
(i.e., they are a mean of two unitaries) since their ranges seem to be "broken 
up" into slices. This may not be as easy; their ranges are indeed contained 
in the range of  a sliced projection but there is a possibility that they do not 
commute even with a single element of  .,4/'! (Notice that Proposition 7 gives 
no information on the range of the operator X). 

In order to overcome this difficulty we adopt a different approach. 

Proposition 10. Let Y be a nest with no finite dimensional atoms, let E, F 
be projections in API{0,I} so that F C E and let A be a partial isometry 
in Alg ~A/" such that (E - F)A = A(E - F ) =  O. I f  A*A E Jt r' then there exist 
separated partial isometries B(I),B t2) in AlgJt r so that A = BCI)B C2). I r A  is 
sliced and E - F a hole Jbr A, then B ~l) and B ~2~ can be chosen sliced 

Proof Let E', F ~ be projections in A rt such that F c F ~ C E r C E and let V 
be a partial isometry in Alg A r so that V* V = E ~ - F '  and VV* = F. 

Since A*A E ~f'~, the operators AF, AE • are partial isometrics in AIg.A ~ 
whose final spaces P,Q are mutually orthogonal (Caution: we do not claim 
that P or Q belong to Alg JV'. Notice, however that P C F and so P•  and F 
commute). Let, 

B 0) = A F  + P x V  + E  • 

B (2) = F + (V* + E X ) A E  • . 

Since P• V = F(P  • V)F • and V*AE • = E(V*A)E • both B (l) and B (2) belong 
to Alg .At. In addition, V* + E • is a partial isometry with initial space F + E • 
and so the operators B 0) and B C2) are partial isometrics with separating pairs 
(E', E)  and (F, F ' )  respectively. Finally, 

B(I)B (2) = AF + PVV*AE • + E•  • 

= AF + PZFAE • + EXAE • 

= FAF + FpXAE • + E• 

= FAF + FAE • + E• (since, P•  • = AE •  

: h .  

If A is sliced (and E - F a hole for A) then minor modifications on the defi- 
nition of BO),B ~2) show that these operators can be chosen sliced. U 

We are in position now to state and prove the main result of the paper. 
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Theorem 11. Let .A/" be a nest with no finite dimensional atoms and let 
a -  I ./or A be an operator in AIg ~ ' .  I rA  has the property that IIAll < a+--~' 

an integer a greater than 2, then there are 16a(a + !) unitary operators 
Ub U2,..., Ulna(a+1) in AlgJV" so that 

1 
A = 16a(a + 1) (UI + U2 + ... + UI6a~a+l)). 

Proof Let 0 be a positive number, greater than 1, such that 02[[A[[ < 

a I" a ~- Proposition 6 shows now that there exist a(a + 1) sliced operators Ai, 
j = I, 2 .. . . .  a(a + 1 ) whose average equals 02/1. Each A l is the average of two 
sliced partial isometrics with initial space in J r '  (Lemma 8(i)); hence, there 
exist 2a(a + 1 ) sliced partial isometrics Vi, i = 1,2 . . . . .  2a(a + 1), such that 
Vi* Vl E ~r and, 

1 2a(a+l)  

0 2 A = 2 a ( a + l )  i=l ~ II/. 

We now distinguish two cases. 

Case 1. JV" has no maximal element different from I (i.e. I_ = I). 

If  this is the case, our construction (Lemma 5) guarantees that each Vi 
has at least one hole whose endpoints belong to ~/" and so it factors as 
�9 v., _-~in~ where both BiO) and BI 2) are sliced and separated contractions 
in AlgJl/" (Proposition 10). Thus, 

A = 1 2a(a+l)  --I ( I)  - 1  (2) 
Y]~ (0 B, )(0 B, ).  

2a(a + 1) i=l 

By Corollary 9, each O-tB} 2) is a mean of four unitaries U~[ ), v~2H<2), ~3rr<2), U[4 2) 
0-1R(I) from Alga/ ' .  Although a similar statement is also valid for each _ - i  , 

actually more is true[ Indeed, the reader will not find it difficult to verify that 
each O-tB~ l) can be expressed as a mean of (only) two unitary operators 
UlO) frO) Hence, I , '~F2 " 

A = 2a(a + l) i~--I'= m=l~U'il)) n=l~-~ U[2n))/ 

1 2a(a+l)  2 4 r f ( i ) rT (2 )  

1 6 a ( a + l )  ~ ~ ' ~ w t "  w/n " 
tffil  m = l  n---i 

Since each frO)He2) is a unitary, the proof of the theorem, in the first case, is wi m win 
complete. 

Case 2. X has a maximal element different from I. 

In this case, it is possible that  all holes for A have endpoints which do 
not belong to X (for instance, when X has only three elements[) and 
so Proposition l0 does not apply. Instead, we use Lcmma 8(iii). Indeed, 
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each 0 -2 Vi is the mean of  four unitaries and so A is a mean of  8a(a + ! ) 
unitaries. [] 

An immediate corollary of  Theorem 11 is that the norm closure of the uni- 
taries in AIg ~/" equals the closed unit ball of Alg JV; indeed, every contraction 
A in Alg ~4 r is a norm limit of  (n - l/n + I )A and (n - l/n + 1 ),4 is a mean of  
16n(n + 1 ) unitaries in Alg JV'. At the same time, we can apply Theorem I 1 to 
produce a special representation of an element of an infinite multiplicity nest 
algebra. 

Corollary 12. Let X be a nest with no finite dimensional atoms. Then every 
operator in Alg X is a sum of  unitary operators which belonq to AIg,/r 

Proof If  T E Alg.,4" and IITII < 32 then 11~6TII < } = ~2-1 and so there exist 

96 unitaries Ul, U2,... ,  U96 such that ~ T  = 9-!g(Ui + U2 + . . .  + U96). Thus, 
T= UI + U2+...+U96. 

If  I[ TI[ ~ 32, then T can be expressed as the sum of  operators of norm 
less than 32 and the conclusion follows. [] 

As we have already mentioned, the estimate appearing in the statement 
of Theorem 11 depends on the norm of the operator A; the number of  
unitaries required in expressing A as a mean of unitaries grows as A gets 
nearer to the surface of the unit ball. This growth is not artificial; Kadison 
and Pedersen have shown [8] that if A is any non-unitary isometry then 
2A, 1 - 2(n - 1) -1 < A < 1, n E N, cannot be written as a mean of less than 
n unitaries. However, for the attractive class of compact operators we can offer 
the following. 

Corollary 13. Let X be a nest with no finite dimensional atoms and let K 
be a compact operator in A I g X ,  so that IIKII < 1. Then K is the convex 
combination of  32 unitary operators, which belong to Alg A/'. 

Proof Let 0 be a positive number, smaller than 1, such that IIKII < (1 - 0) 2. 
Choose E ~  ~ :  such that IIE• < 0 ( 1 - 0 )  and let Ki = ( 1 - O ) - I E K  
and K2 = O-IEXK. Then, each Ki satisfies IIg, II < 1 -  0 and also K = 
(1 - O)Kl + OK2. Let R be any sliced projection with the property that 

0 
max {llRgill, IIK, RII} < 7 " 
i=1,2 

We now show that each Ki is the convex combination of 16 unitaries. Indeed, 
3 • 3 • 

let Kii = (1 - O)-~R'LKiR -L, K,2 = -~RKiR , Ki3 = -~R KIR and Kl4 = RKiR. 

Then 
4 0  

ri = (i - o)r,~ + E ~ro. 
j=2 

Each Ki/ satisfies the requirements of Lemma 8(ii) and the proof of the 
Corollary is complete. [] 
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Our main result translates into a statement concerning the extreme points 
of the unit ball of an infinite multiplicity nest algebra Alga4/: the (norm) 
closed convex hull of the extreme points of Alg ~V" equals the closed unit ball 
of Alg ~g'. This is clearly an improvement of the Krein-Milman Theorem for 
infinite multiplicity nest algebras. 

The next result is another improvement of the Krein-Milman Theorem for 
nest algebras and also a non-selfadjoint analogue of classical results due to 
Nagy [13] and Conway-Scucs [2]: the w*-closure of the extreme points equals 
the closed unit ball of Alg..C. Actually more is true; every contraction in 
Alg ~ff is the w*-Iimits of unitafies from Alg .,V'. 

We start with a definition. 
An operator A E Alg ,C  is called proper if there exist projections E,F, 

compatible with ,4/', so that F C E and A = (E - F ) A ( E  - F) .  

Lemma 14. Let  A be a proper contraction in the algebra o f  a nest Jff  with no 
finite dimensional atoms. Then, A is the w*-limit o f  proper partial isometries 
f r o m  Alg uf'. 

P r o o f  Let E , F  be projections compatible with ~rso  that (E - F ) T ( E  - F )  = T 
and let E = E0 C El C E2.. .  be any increasing sequence of projections com- 
patible with ,At. For each n E IN choose partial isometry V, with initial space 
En - En-I and final space E - F. Let 

An = A + (E - F - AA*)I/2V,,, n E IN . 

Since AnA~ = E -  F, n E IN A,, is a partial isometry in AIgJV'. Also, the 
A oo w*-Iimit of { ,} ,=l  equals A. I-3 

Theorem 15. I f  Jff is a nest with no finite dimensional atoms then every 
contraction in Alg Jg" is the w*-limit o f  unitary operators f r o m  Alg.9". 

Proo f  Let A E Alga4 r, 11,411 _-< 1. Since any contraction in AlgJff is the 
w*-Iimit of proper contractions there is no loss of generality assuming that 
A is a proper operator. However, Lemma 14 shows that A is the w*-limit 
of proper partial isometrics. Thus, we may assume that A is a proper partial 
isometry; let E, F so that A = (E - F ) A ( E  - F) .  Let E C Eo C El C E2 C ... 
be a sequence of projections compatible with ~V', which increases to I and 
let ... C F2 C Fi C F0 C F be a sequence of projections compatible with ~g', 
which decreases to 0. We define Pi = E i -  Ei - i ,  Qi = F i -  F/-I  and we let 
Po = (E - F )  - AA* and Qo = (Eo - F o . )  fq KerA; clearly both P0, Q0 are of 
infinite dimension. 

For every i = 1,2 . . . .  , let V/be a partial isometry with initial space Pi and 
final space Pi - l  and let ~ be a partial isometry with initial space Qi-i  and 
final space Qi, i = 1,2,.... For each i E IN, let {X,.(n)}~ i (resp. IY (n)~~176 t i Jn=l) be 
a sequence of  partial isometrics with initial and final spaces Pi (resp. Qi) so 
that limX/(n) = lim y/in) = 0. Let 

o o  

Un = A + ~_~ ViX (n) + ~ Y[n)w~., n =  1,2 . . . . .  
i=1 i=1 
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Then, each U, is a unitary operator in Alg X and lim U, = A, which proves 
the theorem. [] 

2 Beyond infinite multiplicity nest algebras 

We say that an operator algebra ~r satisfies the Russo-Dye property iff the 
convex hull of  the unitaries in d contains the open unit ball of  .~r The 
reader should notice that Theorem 1.11 is valid for a class of nest algebras 
much larger than that of infinite multiplicity. Indeed, let .4/" be any nest which 
contains a Z-ordered subnest with #![initely many atoms of  infinite dimension. 
Then, minor modi[ications on our arguments show that AIg~U satisfies the 
Russo-Dye property! In particular, if X is the "Cantor nest" ~C(r (see [10, 
pg 423]) then every operator in the open unit ball of Alg~l/" is a mean of  
unitaries. 

However there is an exceptional case where our "infinite dimensional" tech- 
niques shed little light. Does Alg ,C satisfy the Russo-Dye property, when 
is a Z-ordered nest whose atoms are finite dimensional? The techniques de- 
veloped so far show that if A E AlgJI/, so that ]IAII < ~, then A is a mean 
of  unitaries from A I g X .  (This can be shown as follows: if E,F E j t r \{0 , I}  
so that F C E then A = +A2 +A3), where Ai �89 = ~AF • A2 = 3EA and 

A3 = 3(AF + E• The operators Ai are easily seen to be means of unitary 

operators). We do not know if this is true when 1 > IIAli > _2 3" 
The following is an alternative not only for algebras of  7Z-ordered nests but 

also for nest algebras for which a Russo-Dye Theorem does not hold. 

Theorem 1. Let JV be a nest such that dimE = cx~ (resp. dimE •  cx~), 

for all E E Jt/'. I r A  is an operator in AIgJV" such that IIAO] < a_a_~, Jbr 
an integer a greater than 2, then A is a mean of  2a isometries (resp. 
co-isometrics) from Alg ./V'. 

Proof We start with a definition. A projection S E AIg JV" is called semisliced 
oo E e~ iff S = ~ , = l  . - F,  where {E,},= 1, { F , } ~  I are sequences of projections, 

compatible with JV', which satisfy, 

F, C E, C Fn-I, Vn E IN and lim E, = O. 

It is easily seen that every semisliced projection is the range of some isometry 
in Alg ,C. 

For the proof, let SI,S2 . . . . .  So be semisliced projections so that $1 + $2 
a SiA, i =  1,2 . . . . .  a. Then each Ai is an + . . . + S , = ( a - 1 ) I a n d l e t A i =  a - I 

operator of norm less than 1 and techniques similar to that of Lemma 1.8 show 
that there exist isometrics Vi 0) and V/(2) in Alg..Usuch that Ai = �89 + V/(2)). 
ThUS, 

1 Sa" I((I) I//(2) A=I(AI+A2+'"+Aa)=2-a~"=Ia i + 

which proves the theorem. [] 
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We would like to mention that our techniques are applicable to certain nest 
subalgebras of yon bleumann algebras, thus leading to the following. 

Theorem 2. Let ~t be any ]'actor yon Neumann algebra and let A/" be any nest 
with no finite dimensional atoms. Then, ~ | Alg,~" satisfies the Russo-Dye 
property. Moreover, the estimate of  Theorem 1.11 is valid. 

The proof of the above theorem is identical to the proof of Theorem 1.11; 
the reader only needs to notice that Proposition 1.7 is valid for nest subalgebras 
of factor yon bleumann algebras. 

In the rest of this section we observe that the techniques already developed, 
combined with a geometric Hahn-Banach Theorem, are sufficient to prove that 
certain quasitriangular algebras also satisfy the Russo-Dye property. 

If ,4/. is a nest then Q tr Jg" denotes the "quasitriangular algebra" Alg A/" + 
Coo(,g~), where C ~ ( ~ )  denotes the set of compact operators acting on 
(see [3] for more details on quasitriangular algebras). The unitary semigroup 
of QtrJf" is denoted by q / ( Q t r X )  and the convex hull of q , ' (QtrX) by 
co q,'(Q tr X ) .  

Theorem 3. Let ~r be a nest with no finite dimensional atoms. Then Q tr 
satisfies the Russo-Dye property. 

Proof For the proof we need to show that 
(i) coq/ (Qtr . / ( ) -  = (QtrX)~ 

(ii) co q/(Q tr j~-)0 # 4. 
Assume for the moment that both (i) and (ii) have been established. Let 
A be any contraction in QtrJ~" and assume that A r coq / (Qt rX) .  Since 
co q/(Qtr.Ar) has non-empty interior, Theorem 7.20 in [20] shows that there 
exists a non-zero norm-continuous linear functional ~b and real number ~ such 
that 

ge~b(coq/(Qtr(~4r)) < ~ __< geq~(A). 

However, condition (i) implies that 

II ll = sup u ~ q/(QtrA/')} 

sup {Re ~b(U), U E q/(Qtr~4r)} 

~_~. 

Thus, ).:60. Moreover, 

~ Re ~(A) <__ flail IIAII ~- AIIAll 

and so IIAII _~ 1, which proves the Theorem. [] 

It only remains to establish (i) and (ii). In order to do so we start with a 
few comments on the results already proven. 

An operator A E Q tr ~4 r is called sliced iff there exist sliced projections 
R,R' in Alg f f  which have at least one common hole and satisfy A = PAR'. 
Similarly, the operator ,4 is said to be separated iff there exist projections 
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E, F E X so that E C F and A = EAE + F •  • With this definitions one 
can easily see that Lemma 1.5, Proposition 1.6, Lemma 1.8 and Corollary 1.9 
in the present paper remain valid if one replaces AlgJr by Qtr~A/" in their 
statements. Caution is needed with Proposition 1.10. Its proof establishes the 
following "weaker" statement. 

Proposition 4. Let .A/" be a nest with no finite dimensional atoms, let E, F be 
projections in Jl r such that F C E and let A be a partial isometry in Q tr 
such that E •  = F •  = 0 and (E - F)A = A(E - F )  = O. 12/" A*A E ~A/" 
then there exist separated partial isometries BcI),B (2) #1 QtrJV" so that 
A = BO)B(2). I f  A is sliced then B~ (2) can be closed sliced 

The proposition above leads to the following. 

Corollary 5. Let .A/" be a nest with no finite dimensional atoms, let E E 
~4/'\{I}, let K be a compact operator and let A be an element o f  AIg,4/'. If" 
11,4 + EKEII < 1 then A + E K E  E coq/(Qtr~4/'). 

ProoJZ Follow the same steps as in the proof of Theorem 1.11. [] 

With these observations in hand we are in position now to show that (i) and 
(ii) do hold. We remark that we will not treat the case where I_ 4:1 since in 
this case, the validity of (i) and (ii) follows easily from arguments similar to 
the ones in the proof of Lemma 1.8. 

Lemma 6. The norm closure o f  coq/(QtrJff)  equals the closed unit ball o f  
Q tr sV'. 

ProoJ: Let A E Alg JV and let K be a compact operator such that IIA + KII < I. 
E oo Let { n},=l be any sequence in A," which increases to I. Then, for large n E IN, 

IIA + E . K E ,  II < 1. Thus, Corollary 5 shows that A+EnKEn E coq/(QtrA/') 
and the conclusion follows. [] 

Lemma 7. The set coq/(Qtr Jr r) has non-empty interior. 

Proo[~ We will show that Q tr(~f')l/16 C_ (co q/(Qtr(Ar)) ~ 
Let A E Alg ~ and let K be a compact operator such that 11,4 + Kll < ~6. 

Let E E ~r \{0 , I}  and let 

Xl = 4E(A + K)E  • , X2 = 4E• + K)E • 

X3 = 4E(A + K ) E  , X4 = 4EX(A + K)E . 

Then A + K = �88 +X2 +X3 +X4). Notice that X/,X2 and X3 are easily seen 
to be means of unitaries. Indeed, let R be any sliced projection in Aig ~4 r and let 

X/l = 4RX/(I - R) ,  X/2 = 4RX/R 

X/3 = 4 ( I  - R ) ~ R ,  X/4 = 4 ( I  - R ~ ( I  - R ) ,  

where i =  1,2,3. Then, each X// satisfies IIX/)I < 1 and also X / =  ~ E/4a X/j, 
i = 1, 2, 3. On the other hand, each X/] satisfies the requirements of Lemma 1.8 
(ii) (where AIgJV" is replaced by Qtr~A/') and the conclusion follows. 
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Finally, a simple application of  the selfadjoint Russo-Dye Theorem (for the 
c*-algebra generated by I and )(4 = EXKE) shows that )(4 is a mean of uni- 
taries from the algebra Q t r ~ ;  this proves the proposition. U] 

3 Concluding remarks 

The class of  CSL algebras, whose invariant subspace lattices contain no atoms 
of infinite dimension, seems to be the most appropriate class of operator alge- 
bras for a continuation of the present investigation. However, there are serious 
obstacles, as the following example suggests. 

Example. Let oW = L2([0, l],A), where 2 is the Lebesgue measure, and let 
L ~176 be the multiplication algebra with symbols in L~176 1],)0. Let ~ be an 
appropriate weakly closed L~176 Then, the algebra 

is a CSL algebra whose invariant subspace lattice contains no atoms of finite 
dimension. However, z~f does not satisfy the Russo-Dye property since all 
unitaries in M are diagonal. 

In spite of the previous example, there is a variety of CSL algebras which 
satisfy the Russo-Dye property, such as AIg.A r | sff, where JV is any nest 
with dim 0+ = oo. We plan to continue this investigation in a future paper. 

Finally, a simple modification of the example above shows that there are in- 
finite multiplicity operator algebras which do not satisfy a Russo-Dye theorem. 
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