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Introduction 

The results presented below are generalisations of some well known results about 
yon Neumann algebras. The first result, Theorem 2.1, yields a sufficient condition 
for automatic continuity of  any derivation of  an algebra of  operators into a dual 
normal module. 

The theorem is followed by a corollary which shows that reflexive algebras with 
commutative subspace lattices have only continuous derivations into dual normal 
modules. 

The second result, Theorem 3.6, is quite independent of the former. In Section 3 
we prove that, for any nest algebra ~¢ and any ultraweakly closed algebra ~ of  
operators, the first cohomology group Hl (d ,9~)  always vanishes. We ought 
perhaps to mention, that nest algebras are reflexive and do have commutative 
lattices of invariant subspaces. 

1. Notation 

We will always let H denote a complex Hilbert space, B(H) stands for the algebra of  
all bounded operators on H, and the letters d and ~ refer to algebras of  ol~rators 
(bounded) on H. 

Let ~ be an ultraweakly closed algebra of  operators on a Hilbert space H. The 
Banach space M is said to be a dual normal Banach d module i fM is a dual space, 
there exist continuous left and right multiplications from d × M and M × d into 
M, and for any m in M the maps ~ a - ~ a m  and ~ a - ~ m a  are ultraweak to weak- 
star continuous. 

A linear map 6 o f d into M is said to be a derivation if 6(ab) = a6(b) + 6(a)b [12]. 
Let ~ be an algebra of  operators on a Hilbertspace H ; then La t (d )  denotes the 

lattice of closed invariant subspaces for d .  If L is a set of  closed subspaces of  H, 
then Alg(L) denotes the algebra of all operators which leave any space in L 
invariant. An algebra ~ is said to be reflexive i f d  --- Alg(Lat(~')). A lattice L is said 
to be commutative if the corresponding orthogonal projections all commute. 
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We note, that a nest algebra is a reflexive algebra with totally ordered subspace 
lattice [8]. 

Finally we remark, that i fx  is an invertible element in an algebra d then Ad(x) 
denotes the isomorphism d g a ~ x a x  -1, and if x is arbitrary in d then ad(x) 
denotes the derivation d 9  a ~ [ x ,  a] = x a -  ax. 

2. Continuity of Derivations 

The following section is very much inspired by Ringroses paper [11]. 
The details in our proof  of automatic continuity of certain derivations are not 

identical, but the continuity ideal, the application of the uniform boundedness 
principle, and the 2-", 2" argument are found in both papers. 

Our result says nothing if an algebra only possesses a finite dimensional 
subspace of self-adjoint operators. Ringrose also had this kind of finite dimensional 
problem, but in the self-adjoint algebra case, the final step is elementary. 

2.1. Theorem. Let d be an ultraweakly closed algebra oj operators on a Hilbert space 
H, M a dual normal Banach ~-module, and ~ a derivation of ~ into M. Then there 
exists a central projection p in ~¢ n d *  such that ( d  n ~ * )  (I - p )  is finite dimensional 
and the map a-~6(ap) is bounded. 

Proof. Let :~ denote the weakly closed self-adjoint algebra d c ~ d * ,  and let P be the 
set of projections in N which have the property that for p in P the map a-,6(ap) is 
bounded. The first part of  the proof  shows that P is both directed upwards and 
inductively ordered, so P has a last (largest) element. 

Let (e~)~ A be a totally ordered set of projections from P, and let e = ,~¢/A e,. 

The restriction of 6 to 9~ is bounded, say by a constant k, therefore, the 
derivation property shows that 

VaedV~eZ:llO(ae=)ll < I[O(a)ll + ktlall • (1) 

It is now clear that the orbits {6(ae,)la~A} are bounded for any a in d ,  so the 
Banach-Steinhaus Theorem yields that the set of mappings a~b(ae,) is bounded. 

Using the derivation property and the ultraweak to weak-star continuity of the 
restriction of 6 to 9~, we see that e belongs to P. 

Vat  d : 6(ae) = 6(a)e + ab(e) = lim(b(a)e~ + ab(e~)) 

= lim 6(ae,). 

Now let e and f be projections in P and let g, be the function g,(t) = t -  1 for 
n - l < t < 2  and zero elsewhere. Then the sequence of  projections 
h, = ( e +  f ) [ g , ( e + J ) ]  is increasing, with least upper bound equal to e v f The 
previous discussion shows that e v f belongs to P, and, by Zorn's lemma, P must 
have a last element, say p. It is rather obvious that p must be central in 9~, but for the 
sake of  completeness let us assume that u is a unitary in ~ ,  and consider the map 
a~f(aupu*). Here we find 6(aupu*) = 6(aup)u* + aupf(u*), so upu* belongs to P, and 
p must be central in ~.  
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Let us now assume that ~ ( I - p )  is not finite dimensional, then there exists a 
sequence (qi )~  of  nontrivial pairwise orthogonal projections in ~ with sum ( I -p ) .  
For each i in N the map a--,(5(aqi ) is not bounded, therefore, we find, as usual, a 
sequence (ai)i~ N such that II a~ I{ < 2-  i and l{ (~(aiqi)II > 2i. 

zr3 

Let a =  ~ aiq~; then 
i = l  

b(aiqi) = 6(aqi ) = (5(a)q i + afi(qi) 

and 

2i< IIb(aiqi)ll < Ilb(a)ll + kllall • 

We have then obtained a contradiction, and M(1 - p) must be finite dimensional. 

2.2. Corollary. I f  ~ c ~ 4 "  contains no finite dimensional central summand, then 6 is 
continuous. 

2.3. Corollary. I f  d is reflexive and Lat(~/) is commutative, then f5 is continuous. 

Proof. If La t (d )  is commutative and s¢ is reflexive, then the set o ~ of orthogonal 
projections onto the members of  Lat(sb) is contained in ~¢. 

Suppose b is not continuous ; then o~¢ contains a minimal projection q which has 
the property that the map a--*6(aq) is not continuous. 

Since ~ = Alg(Lat(~¢)), we find that d c ~ ¢ *  =~ ' ,  the commutant of  the set g, 
and, by ([5], Proposition 1, p. 16), 

(e t t )q  = ((~'~t)q), = B(qn) .  

The commutativity of  8" implies that qH must be one dimensional, and there 
exist finitely many pairwise orthogonal one dimensional projections ql-.-qn in ~¢ 
such that ( I - p ) = q l  + ... +%.  

An easy check in the proof  of Theorem 2.1 shows that there is a central 
projection r in s4c~d* and a set sl...s,, of  pairwise orthogonal one dimensional 
projections such that (I - r) = s 1 + . . .  + s m and the map a-*b(ra) is bounded. For any 
(i,j)e { 1 . . . . .  m} x { 1 . . . . .  n} the map .~'9 a--,6(siaqj) is continuous, because s i d q j  is an 
at most one dimensional subspace o ld / .  The following equality then shows that 6 is 
continuous, and the corollary follows. 

6(x) =~5(xp)+~(rx(1 - p))+ ~ ~ (~(sixqi). 
i = 1  j = l  

3. Automorphisms and Derivations on Nest Algebras 

Nest algebras were introduced by Ringrose in [9]. A reflexive algebra of  operators 
on a Hilbert space is said to be a nest algebra if the lattice ofinvariant  subspaces is 
totally ordered. In the following article [10] Ringrose showed that certain 
automorphisms of nest algebras are inner. We use this result together with a general 
result, Theorem 3.2 below, to show that any derivation and any automorphism on a 
nest algebra is inner. 
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The general content of  this section is probably best understood if we introduce 
the following concept. 

3.1. Definition. Let d be an ultraweakly closed unital algebra of operators on a 
Hilbert space H, and let r and s be positive real numbers. 

d is said to have the automorphism implementation property (r, s) [AlP(r, s) for 
short], if any automorphism ct o f d  with II~ - idll < r is implemented by an operator 
x in d such that III-xll  <sll~t-idll. 

The procedure is now to show that if an algebra d has the AIP(r, s) for some pair 
(r, s), then any derivation on d is inner. Next, we turn to the case where the algebra 
d is reflexive, with commutative lattice. We show that H i ( d ,  d ) = H l ( d ,  ~)  for 
any ultraweakly closed algebra ~ on H containing d .  

This is followed by the result that nest algebras have the AlP. Therefore, we 
finally obtain H i ( d ,  d ) = 0  in these cases. 

3.2. Theorem. Let d be a weakly closed unital algebra of operators on a Hilbert space 
H. Suppose ~ has the AIP(r,s) for some pair (r,s) in ~+ xlR ÷ ; then H1(~1, d)  =0. 

Proof. Let 5 be a bounded derivation of d into d ;  then a t = exp(tS) is a uniformly 
continuous automorphism group on ~ ([5], III, 9,4). The uniform continuity 
implies that there is a positive real t o such that [ l id- etl[ --< r whenever 0__< It[ < to. 

If [tl<to, then choose x t in d such that o~t=Ad(xt) and t[I-xt[ t <sl l id -e t [  I. 
The last inequality yields that the set o f operators {(I - xt)t- 110 < t < t o } forms a 

bounded set. If we let t decrease to 0 and take an ultraweakly convergent subnet 
( ( I -x t , ) t~  1)~o with limit y, then, for any a in d ,  

[ -  y, a] = - lim ( [ ( I -  xt), a]t~ 1) 
?ED 

= lim ([xt~, a]t~ 1) = lim (t~ l(x, ax~ 1 _ a)xt~) 
?~D yeD 

= lim(t~- l (~ ,+ (a ) -  a ) x , )  = 5(a) .  
?ED 

The last equality is standard and found, for instance, in [13], Theorems 13.35, 
13.36. 

3.3 Corollary. Any uniformly continuous one parameter automorphism group on ~¢ 
has the form Ad(exp(ta)). 

Proof. Immediate. 

3.4. Proposition. Let d be a reflexive algebra on a Hilbert space H, and let ~ be any 
ultraweakly closed algebra on H which contains d .  I f  Lat(~¢) is commutative, then 
H 1(51¢, ga¢) = H 1 (~¢, ~). 

Proof. Let 5~Z1(~/, ~) ;  then;since d c ~ ¢ *  is a type I von Neumann algebra, we 
can use the averaging technique ([12]) and find an x in ~ such that the derivation 51 
= 5 -  adx vanishes on .~¢~¢*.  On the other hand, all the orthogonal projections 
corresponding to the members of  La t (d )  are included in d c ~ d * ,  since La t (d )  is 
commutative. 
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Therefore, for any a in d ,  and any p in Lat(~) ,  

61 (a)p = 61 (ap) = 6 ~ (pap) = p51 (ap) 

and we find, that 61(a ) belongs to sJ. 
Since B l ( d , d )  is contained in B l ( d ,  ~ )  and Z l ( d ,  ~ )  is contained in Z l ( d ,  N), 

there exists a canonical linear map ~ of H ~ ( d , d )  into H~(s¢,~). The remarks 
above show that ~c is surjective. 

Suppose now that 6eZ~(xi ,  st)  and 6 = a d b  for some b in ~ ,  then for any 
projection p in Lat(sJ), p and 6(p) belong to d ;  but this implies that (1-p)bp 
= ( 1 - p ) [ b , p ] p = 0 .  The operator b then belongs to s~', and it is clear that ~c is 
injective and hence an isomorphism. 

3.5. Remark. The averaging techniques can be used to show that if H" (d ,  d ) - - 0  for 
some natural number n, then also H" (d ,  ~ ) =  0. The only extra tool one needs is 
Lemma 4.1 of  [12]. 

The rest of  the paper studies AIP for nest algebras. The proof  is, as mentioned 
above, based upon a result of Ringrose [10] which shows that certain automor- 
phisms of nest algebras are always inner. 

3.6. Lemma. The commutant of a nest algebra is trivial. 

Proof Let d be a nest algebra on a Hilbert space H and suppose p is a projection 
onto an invariant subspace for sJ. The set of operators pB(H)(1- p) is contained in 
d since every operator in the set will leave invariant any subspace that is either 
smaller or bigger than pH. 

Assume x is in the commutant of ~ ,  ~ is in ( I - p ) H  and t/belongs to pH. If ~ ®t/ 
denotes the operator ~(~]~)t/ ,  then 

~®q~pB(H)(1-p)  and (x*~)®q=~®(xtl).  

Since this equation holds for any such pair (~, t/), it is clear that x must be a 
multiple of  the identity. 

3.7. Lemma. Let s~ be a nest algebra on a Hilbert space H. Then, for any operator x in 
B(H), 

inf{tlx-2I[1 [ 2 ~ }  < 3 sup{llxa-ax]{ [ae ~¢, [{a[[ < 1}. 

Proof If  Lat(~¢) is trivial, ~¢ = B(H), and the Lemma is a consequence of  Stampfli's 
result [15]. Suppose p is a nontrivial element in Lat(~¢); then we find, as above, that 
the set of operators pB(H)( I -p )  is contained in ~'. 

Let 8 be the von Neumann algebra generated by the projections in Lat (d) .  Then 
8 is a commutative and 8', the commutant,  a type I v o n  Neumann algebra. 

For  any x in B(H) the ultraweakly closed convex hull of the set {uxu*lu unitary 
in 8'} has a point, say y, in common with ( 8 ' ) ' = 8  ([3] or [12]). 

This y also satisfies Ilad(y)l~¢ll  < ]lad(x)l~¢ll  (ad(y)(a)= [y, a]), because for any 
unitary u in 8', I1 [uxu*, a] II = II [x ,  u*au] II and u*au belongs to ~¢. Define z =yp and 
v = y(I - p), then z and v are normal operators in the abelian von Neumann algebra 
8. Let k =  Ilad(x)l~¢ll. 
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For  any pair of vectors ~ in ( I -  p)H and q in pH we find that 

ad(y) (~®q) = ¢ ®(zr / ) -  (v*O®r/, 

and 

iI¢®(zr/)-(v*~)®rtll <kll~ll 11'711. 

For  any pair of  unit vectors ~, t/in ( I -  p)H and pH, respectively, we then obtain 

I([~ ®(z~/)-(v*C)®rd¢l~)l < k  

o r  

I(z~l~)- (v~t~)l < k. (1) 

Let w~ and w v denote the numerical ranges of  the operators z and v on the spaces 
pH and ( I -p)H.  The spectrum o f y is then contained in the union of the sets w z and 
w v, and the relation (1) shows that the diameter of  the spectrum o f y  can not exceed 
2k. Since y is normal, we get that infl[ y -  21I[ < 2k or infii x -  21[t ~ 3k = 3 II ad(x)l~ H. 

3.8. Remark. The lemma above can be extended a bit to show that, for any nontrivial 
projection p in B(H), the algebra ~ = ~p + ~ ( 1 -  p) + pB(H) (1 -  p) has trivial 
commutant,  and, moreover, for any selfadjoint z in B(H), 

inf{It z -  tltl tt~IR} < 6[!ad(z)l~ll • 

3.9. Theorem. Let ~¢ be a nest algebra on a HiIbert space H, and let q~ be a 
homomorphism of d into B(H). Suppose 11¢-idf1<1/24; then there exists an 
invertible operator x on H such that 

I[I-xll  ~2611~-idll  

and • = Ad(x)l~¢. 

Proof We use the terminology from the lemma above. Since g '  is a type I von 
Neumann algebra, the averaging technique applies. G O is found as an amenable 
subgroup of  the unitaries in $r,, such that G O generates g '  as avon  Neumann algebra. 
The ultraweakly closed convex hull K of the set {~(u)u*[ue Go} contains a point y 
with the following properties 

VueG o:~(u)yu*=y, and [II-Ytl < l [ ~ - i d l l -  

If I[ ~ -  id 1[ < 1/24, then y is invertible and T = Ad(y- 1) o~ is an automorphism on d 
which leaves $r, elementwise fixed and II T - i d H  < 4 l l ~ - i d  II. 
In fact take a in ~¢ and p in L a t ( d ) ;  then T(a)p = T(a)T(p)= T(ap)= pT(ap), and 
T(a) belongs to ~¢. 

ltI-Ylt < t =  lt~-idll=~llY-~ It < ( 1 - t ) - ~ ,  IlYll ~ 1 + t .  

I [ I -Y-  all = IlY- x(1 - y)ll < t(1 - t)- ~. 

II ~V(a)-all ~ Ily- l(~(a)-a)y)ll + Ily- a ay-all  <(3t + t2)(1-  t)- l l[all . 

Since t < 1/24, we obtain l[ ~v_ id 1[ < 4 II ~ -  id [1. 
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Since ~ is an  a u t o m o r p h i s m  on  d wh ich  leaves g '  e l emen twise  fi~ed, we can,  by  
[12] ,  T h e o r e m  3.1, f ind z in  d such tha t  7~= A d ( z ) l d  a n d  tlztI = 1. As before ,  we 
find, c ons ide r i ng  the  m a p s  as m a p s  in L ( d ,  d ) ,  

H ad(z)I[ < 11 z j[ I] Ad(z) - id l[ < ]17J - id 1[ < 41] ~b - id [1 < 4 t .  

Therefore ,  d(z, ~) < 12t < ½. 
C h o o s e  2e lE  such tha t  [ Iz -2 I [ I  < 12t;  hence,  

1 2 1 > 1 - t 2 t > ½  a n d  112-1z-II l<24t<l .  

Fina l ly ,  we c a n  c o n c l u d e  that ,  wi th  x = ; t - l y z ,  A d ( x ) l d  = ~0 a n d  I l x - I I [  

< Ily(I-2-Xz)l I + I l y - I l l  < 2 6 1 1 ~ - i d l [ .  

3.10. Coro l la ry .  ~ has the AIP(1/24,  26). 

Pro@ Immed ia t e .  

3.11.  Coro l la ry ,  Suppose M is an ultraweakly closed algebra oj operators on H 
containing ~¢, then HI(..~, ~)  = O. 

Proof By P r o p o s i t i o n  3.4, H l ( s ~ , ~ )  = Hl(d,M).  C o r o l l a r y  3.10, toge the r  with 
T h e o r e m  3.2, yields t ha t  H ~ ( d , d ) = O .  

3.12, Coro l la ry .  Any uniJormly continuous one parameter group oj automorphisms on 
d has the Jorm Ad(exp(ta))  Jor some a in ~ .  

Pro@ See Coro l l a ry  3.3. 
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