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ABSTRACT

The weak*-Haagerup tensor product Jt ®w.hjV of two von Neumann algebras is related to the
Haagerup tensor product M ®h Jf in the same way that the von Neumann algebra tensor product is
related to the spatial tensor product. Many of the fundamental theorems about completely bounded
multilinear maps may be deduced from elementary properties of the weak*-Haagerup tensor product. We
show that X* <8>w.h Y* = (X®h Y)* for all operator spaces A'and Y. The weak*-Haagerup tensor product
has simple characterizations and behaviour with reference to slice map properties. The tensor product of
two (not necessarily self-adjoint) operator algebras is proven to have many strong commutant properties.
All operator spaces possess a certain approximation property which is related to this tensor product. The
connection between bimodule maps and commutants is explored.

1. Introduction

Completely bounded maps have played a significant role in recent years—see [20,
9, 10] for an overview. The completely bounded multilinear maps are naturally
associated with the Haagerup tensor product of the underlying spaces. In this paper
we define and study the weak*-Haagerup tensor product X* ®w*h Y* of two dual
operator spaces X* and Y*. This is the completion of the ordinary Haagerup tensor
product X* ®h Y* in a certain weak*-topology. Its relationship with the Haagerup
tensor product is analogous to the relationship between the von Neumann algebra
tensor product and the spatial tensor product. It will be seen that the weak*-
Haagerup tensor product has many properties in common with the Haagerup norm.
The title of this paper is due to the relation (X®h Y)* = X* ®w*h Y*, for all operator
spaces A'and Y, which we prove in Section 3. This is related to the fact that the dual
tensor norm of h is again h. This last result appears in [16, 5]; however, it also follows
naturally and immediately from our methods. In fact many of the fundamental
theorems about completely bounded multilinear maps may be deduced from
elementary properties of our tensor product.

The weak*-Haagerup tensor product Jl®^Jf of two von Neumann algebras
is completely isometrically isomorphic to a direct summand of the normal Haagerup
tensor product M ®(Th Jf defined by Effros and Kishimoto [12], with a weak*-
continuous projection implementing the summand. The normal Haagerup tensor
product seems more analogous to the projective tensor product.

In Section 2 we set up some machinery we shall need. In Section 3 we exhibit some
characterizations and behaviour of the weak*-Haagerup tensor product with
reference to slice map properties. This leads to the relation (X®h Y)* = X* ®w*h Y*
mentioned above, and several corollaries. For instance J^fc ®w*h Jj?t = B(J4?) for any
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Hilbert space X (see also [16, 5]). We define a related approximation property and
prove that all operator spaces possess this property. In Section 4 we prove some
commutant theorems. For instance we show that if d and $ are uniformly closed
unital subalgebras of B(JV) and B(jf) respectively, then ( ^ ® h ^ ) ' = si' ®w*h$',
where the commutant is in B(J^f) ® w.h B(Jf). We also explore the connection between
commutants and bimodule maps, and give a characterization of operator algebras
which have a virtual diagonal in our context.

As with the normal Haagerup tensor product, the weak*-Haagerup tensor
product X®wi,h Ymay be viewed as the dual of a certain space of completely bounded
bilinear functional o n l x Y which are separately weak*-continuous. In our case this
is the space of bilinear functional with representations <(JC® 4,) ^(.y®/^) (,;/>,
where k is a bounded ooxoo matrix whose entries are compact operators. We
postpone this approach until Section 5.

Our methods give elementary proofs of the fundamental theorems about
completely bounded multilinear maps, for example, the representation theorem for
completely bounded bilinear forms [12, 26], the Christensen-Sinclair representation
theorem [8, 21, 5], the injectivity of the Haagerup norm [21, 6, 5], and the self-duality
of the Haagerup norm [16, 5]. In fact we shall quote these results freely, but only for
motivational purposes. Similarly, in the interest of a self-contained and elementary
presentation we shall not use Ruan's characterization of operator spaces; we remark
that the results from [6] quoted here do not essentially use this result.

We begin with some notation. We assume that the reader is familiar with the
definition of completely bounded maps and operator spaces, as may be found in [20,
9]. If X is an operator space then the dual X* may be regarded as an operator space
in a natural way [6, 4, 14], by identifying Mn(X*), the n x n matrices with entries in
X*, with the space CB (X, Mn) of completely bounded maps from A'into Mn. We call
this operator space the standard dual of X, and denote it by X*. A dual operator
space is an operator space Y of the form X*, where X is a closed operator space. We
often write X = Y*in this case. In [4] an elementary proof is given of the fact that if
Y is a dual operator space then there is a Hilbert space J? and a weak*-
homeomorphic complete isometry from Y into B{X).

If Y is another operator space then it is also convenient to regard CB (X, Y), the
space of completely bounded maps from X to Y, as an operator space by identifying
Mn(CB(X, YJ) with CB(X,Mn(Y)) [13]. A direct-sum argument as in [4, Proposition
2.1] shows that this is an operator space.

If 34? and Jf are Hilbert spaces then we write B(JV, Jf), T(J^, Jf) and K(3f, X)
respectively for the spaces of bounded, trace class and compact linear operators from
Jf to X . Of course B{X,X) and K{X, X) are operator spaces, but we may also
define an operator space structure on T(Jtf, Jt) by identifying T{X,X) with the
standard dual of K(Jf, X). If Jf = X then we write B(Jf), T(Jf) and K(X) for these
spaces. We set Xc = B(C, Jf), and J^t = B(X, C), as operator spaces. We call these
Hilbert operator spaces; the first is also called Hilbert column space, the second
Hilbert row space.

If X and Y are linear spaces we write X ® Y for the algebraic tensor product of X
and Y. A subscript after the ® symbol (for example ®J indicates that the tensor
product has been completed in an appropriate topology which is specified by the
subscript. A pair of linear maps S:X1-*X2 and T: Yx -> Y2 between linear spaces
extends to a linear map S ® T: Xx ® Yx -> X2 ® Y2 between the algebraic tensor
products. If this map further extends to a map X1 ®a Yx -*• X2 ®a Y2 then we denote
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this new map by S®aT. We usually require that S®aTbe continuous with respect
to the topology a; if this is the case then of course S®aT is the unique extension of
S®T.

There are at least three interesting operator space structures on the tensor product
of two operator spaces. The first is the spatial norm [20, 6], which we denote by min.
The second is the Haagerup norm, the first version of which was introduced in [12,
26], and in full generality in [10, 21]. This tensor product seems to have become
increasingly significant, and there are now many papers in which this norm plays a
vital role. The third is the operator space projective norm, introduced independently
in [6] and [14], which we denote by max. We shall use very often the canonical
completely isometric identifications (X®m&x Y)* = CB(Z, Y*) = CB(7, X*). In [6]
the reader will find a treatment of the elementary duality theory of tensor norms.

We now define the Haagerup norm on the algebraic tensor product X® Y of
operator spaces X and Y. In fact it is convenient to define the norm more generally
on matrices with entries in X® Y. If Xand Tare operator spaces then the Haagerup
tensor norm is given for UeMn(X® Y) by \\U\\h = inf{||y4|| ||i?||}, where the infimum
is taken over all integers p, and all matrices AeMn p(X) and BeMp n(Y), such that
U = i Yjkaik ® by]- This last matrix is often denoted by A © B.

If X and Y are operator spaces then in analogy to the Banach space theory [22]
we define Tc(X, Y) (respectively Tt(X, Y)) to be the space of linear operators X-> Y
with completely bounded factorization through Hilbert column (respectively row)
space (for more details see [16, 5, 6]). For instance Te Vt(X, Y) if and only if
there is a Hilbert row space X% and operators R and S in C B ^ , «?f4) and
CB (Xt, Y) respectively, with T — SR; and in this case the norm of T is given by
inf{||S||cb \\R\\cb: all factorizations T = SR}. Effros and Ruan have observed that
(X®h Y)* = T£Y, X*) = T,(X, Y*) [16,5]; we shall only use this fact for motivational
purposes.

If j f and X are Hilbert spaces and if X ® X is the Hilbert space tensor product,
then the algebraic tensor product B(X) ® B(X) may be regarded as a subalgebra of
B(X ® X) in a natural way. Of course T(X ® X)* = B(X ® X), and the
spatial tensor product B(X)®minB(X) is completely isometrically contained in
T(X ® X)* = B(X ® X). In fact we have the identity T(X ® X) =
T(J4?) ®max T(X) [15, 5]. We may define the von Neumann algebra tensor product
B{X) ® w*mln B(X) of B(3V) and B(X) (this is traditionally denoted by B(3f) ® B(X))
to be the weak*-closure of B{X)®B{X) in (7pf) ®max T{X))* =
T{tf ® X)* = B(X ® X). Now it is well known that B(X) ® B(X) is dense,
that is B(X)®w.minB(X) = B(X ® X). The fact that we have w*min on the
left of the equation and max on the right is related to the fact that max* = min
[6]. Now in view of the fact that h = h* [16, 5] we may expect by analogy that

h B{X) = (T(X) ®h 7p f ))*.
Since h = h* we have that B(X) ®h B(X) is completely isometrically contained in

h T{X))*. We define B{X) ®w.hB(X) to be the weak*-closure of B(X) ®
B(X) in (T(X) ®h T(X))*. We shall see shortly that this is in fact the whole space.

In analogy to [12] we may define the normal Haagerup tensor product X®ah Y of
two dual operator spaces X and Y to be the dual space of the space Bil£(Ar, Y) of
completely bounded bilinear functional on XxY, which are weak*-continuous in
each variable. One may regard this as an operator space by identifying Bil̂ A", Y)
with a subspace of (X ® h Y)*. Effros and Kishimoto showed in [12] that if M and Jf are
von Neumann algebras on Hilbert spaces X and X then M ®ffh Jf =
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CBM, tA
BW> &)> BW> ^)) isometrically, where CBM.^{B{X, 3V), B(jf, 3?)) is the

set of completely bounded (JC, JO-module maps from B(jf, 3f) to B{X, 3f). These
authors do not point this out, but M ®^Jf is contained in Ji %a^Jf isometrically.
This follows from the well-known isometric inclusion of M ®^Jf in CB (B(jf, 3tf),
B(3f, 3?)) (see [23, 5] for two recent proofs of this fact).

2. The space B(3f) ®w.hi?(jf), slice maps and duality

First we give some alternative characterizations of the space (7pf) ® h T(3f))*. We
shall subsequently refer to all of these identifications, so it will be helpful to number
them.

PROPOSITION 2.1. The following operator spaces are all completely isometrically
isomorphic:

(2)
(3) (K(Jfr,tf)®maxT(tf,IT))*,
(4) w*CB (B(Jf, Jf), B(Jf, Jf)), the weak*-continuous completely bounded opera-

tors on B(Jf, je),
(5)
(6)
(7)
(8) rXT(Jf),B(J^)), the operators T(Jf)-^B(JiT) with completely bounded

factorization through Hilbert column space,
(9) rt(T(tf),B(Jfr)), the operators T(2te) -> B(JT) with completely bounded

factorization through Hilbert row space.

Proof. The equality (4) = (5) is well known; for completeness we sketch the
proof. Any weak*-continuous completely bounded operator T on B(X, 3^) gives an
operator from K{X, 2tf) to B(jf, Jf) by restriction. Conversely, if we are given a
completely bounded operator S from K(jf,je) to B(tf, Jf) then S** is a weak*-
continuous completely bounded operator T from B{^T,3^) to 5(Jf,«?f)**.
Composing S** with the weak*-continuous projection from 2?(jf, Jf )** to B{X, J?)
gives a weak*-continuous completely bounded operator from B(jf, Jtf) to B(X, 3V).
It is easy to check that these operations are inverses of each other.

We know by [6, Section 5] that (3), (5) and (6) are all completely isometrically
isomorphic. Using elementary Hilbert operator space identifications [16, 5] we see
that (6) = (7). The equalities (1) = (8) = (9) follow from [16, identities (5.7) and
(5.8)] (see also [5]). To complete the proof we show that K(3f , ^ ) ® m a x 7 p f , Jf),
Jf?t ®h K{tf, 3tf) ®h tfc and T(3tf) ®h 7p f ) are completely isometrically isomorphic.
To see this note that

, jf) ® max T(3T, X) = K{JT, JT) ® max {Jf4 ® max J Q

using the Hilbert operator space identifications [16, 5].

5 JLM AS
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REMARK 1. In a while we shall see that 5(jf)®w,h5(Jf) is also equal to
these nine spaces. The identification B(3f) ®w.h5(j>f) = CB (Jft ® m a x ^ , ^ ®max<:>O
is analogous to the equality

® X ) = CB {3fc ®max Xe, jfe ® m

The equation B(tf) ®w.h B(Jtr) = w*CB(B(jf,J^),B(jT,^)) is reminiscent of
the equality B(jf) ®(Th B(X) = CB (B(jf, JT), B{X, tf)) [12], while the relation

,h B(JT) = (T(jf) ® h 7pO)* parallels the identification B{3^) ® w.mln

REMARK 2. We may also consider the space B{&, tf) ®w.h B(g, Jf) for Hilbert
spaces &, &, <ff, ,if. There is a corresponding ' rectangular version' of Proposition 2.1
which is also useful. We remark that one may always deduce the rectangular versions
from the usual version by considering the direct-sum Hilbert space J5" © 0 © tf © X.
The same comments apply to rectangular versions of results in [23].

In view of the final calculation in the proof, the weak*-topologies from (1), (2) and
(3) are the same. We shall refer to this topology as the weak*-topology on any of the
nine spaces above.

We shall use the following notation in the sequel. Define P to be the weak*-
continuous projection from B(Jf, $?)** to B(Jf,J^). Define

J: CB (K(.tf, ,&), B(tf, &)) v W

to be the canonical inclusion. For wei?(jf)®w*hi?(Jf) we shall write <DH for
the corresponding element of CB (K(Jt, Jf), B(JT, tf)). The embedding of
B(^)®B(Jf) into CB(K(jf,,ff),B(Jf,tf)) is well known: an elementary tensor
s ® / corresponds to the map O(s(g)<): k -> skt.

We shall also write L for the inclusion of Jff(Jf)®w.h5(jr) in r , (7pO, £(•#*))
guaranteed by the equivalence of (1) and (8) above; and R for the inclusion
of 5(Jf)®w*h5(X) in T!(T(J^),B(Jfr)) guaranteed by the equivalence of (1)
and (9) above. Finally, we write IT for the inclusion of 5 p f ) ®w.hi?pr) in
CB(7pf, Jf), 7pf, JT)) guaranteed by the equivalence of (1) and (6).

From now on we shall assume that Jf and Jf are separable, and then all sums £ ,
which follow are countable. The general case is identical, but with arbitrary index sets
replacing the integers.

THEOREM 2.2. Let <D: K{X, Jf) -> B(Jf, 34?) be a complete contraction. Then O
may be written as <&(k) = Yjtsikh for a^ keK(Jf,Jf), where steB(3tf), tteB(JfT),
|| £i^sf | | ^ 1, || £<'*'JI ^ 1, and the convergence of the partial sums of^s^tf in

is in the weak*-topology on

Proof. We may assume without loss of generality that Jf = Jf, by taking the
direct sum of #C and JT if necessary. Except for the final statement this result is in
[17] (the result may also be found in [23, Theorem 3.1]).
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Note that for any keKffl) the sum £<j,fc/« certainly converges in the weak
operator topology. Thus if keK(J^) and if ( , ^ e / then

i i

and so the partial sums of E* V'« converge when applied to elementary tensors
k ® (v ® 0 from the predual A (̂Jf) (8>max Tpf). However, these elementary tensors
span a norm dense set, and the partial sums of E ( ^ • f< are uniformly bounded. Thus it
follows that Xj-v'i converges in the weak*-topology.

COROLLARY 2.3. 2?(Jf)®wtyiB{X) coincides with the nine spaces above.

Proof. We need to show that the image of B{2?) ® B(X) under the map u -»<X>U

is weak*-dense in CB (A^(JT, J^), B(Jtf", £?)). However, this is evident from Theorem
2.2.

Thus we can identify with each Me5(Jf)®w*h5(Jf) a representation u =
Ei5*®^' which converges in the weak*-topology to u and which satisfies
II Zi5i5*HII Hi'*'dl < °°- We shall call this a ^-representation of u, and we
remark that it is not in general unique. In fact Theorem 2.2 shows that
for ueB(Jtf>)®v/thB(Jf) there exists a w*-representation u = Y,iSt®tt with
llE^fllllE^'JlHIoxv

In view of Proposition 2.1 we see that B(Jf)®wt^B(Jf) is indeed isometrically
isomorphic to a direct summand of B(J^) ®ffh B(X~), since Effros and Kishimoto
showed in [12] that B(je) ®ah B{tf) = CB (£(Jf, ^ ) , 5(Jf, Jf)). In fact it is not hard
to see that these are completely isometric isomorphisms (see for instance Corollary
3.5).

LEMMA 2.4. (i) Ifu has ^-representation u = ^tst ® tt, and ifxeB(jf, Jtf) and
y/€T(3tf',0tf'), then <x, II(w)(^)> = Ytt^stxtt> V)» flA2^ ̂ ' 5 •SMm converges absolutely.

(ii) For jc£5(Jf, Jf) we have

if S = OM, where u has w*-representation u = E*5* ® h-

Proof, (i) We may suppose [24] that y/{-) = E ^ " ^ ' ^ ) ' where E* H£J2 < °°
and Ei Ik; II2 < °°. Then we have

till c v / I := > > < C V / r ti > ^ > > < Yt r C W >

Y\^iA"li) — LJ L-i \:>iAlii*prlj/ — ZJ La \Ati (9;''>i 7 ; / -

i i j i }

on 5(X,\?f) [24]. Now Tl(u)(y/)(k) = <OU(A;), ^> = E< V(sikti)> for A:G^(Jf, Jf), and
the last sum converges absolutely. Since K{X, 2?) is weak*-dense in B(X~, 2?) we see
that <x, I7.(t/)(y/)> = E i ^ i ^ i ' V) f°r ah" JCG5(JT, ,?f).

(ii) The first equality is contained in the proof of Proposition 2.1. Now if u
has w*-representation u= E i ^ ® ^ then for xeB(3f,3^) the sum Yuisixti c o n"
verges in the weak operator topology, and the map *¥u: x -*• Ysisixti is a n element of
CB (B(Jf, 3P), B(jf, JF)). Part (i) shows that y¥u is weak*-continuous (we can inter-
change the order of summation in the identity in (i) and so E< wisixtd = V( E*-9* xtt))>
and *¥u is equal to <DM on K{X, Jf). Since K(X~, Jf) is weak*-dense in B(X~, Jf) we
have ^ u = /(O J .

5-2
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Now let q> and y/ be normal functionals on B(J^) and 5(Jf) respectively. One
may define the right and left slice maps R9 and Lv on ueB(Jif)®w<,hB(Jf) by
R9(u) = R(u)((p) and L¥(u) = L(u)(y/). The most elementary approach, however,
is as follows. Let (p be a fixed normal functional on B(34?). Define a complete
contraction r(<p):T(JfT) -> 7pf) ®h 7pf) by rfaXv) = <P®V- Now let

(using Proposition 2.1). We define Lv similarly, and immediately obtain the following.

LEMMA 2.5. Let <p and y/ be normal functionals on B(J^) and B(jf) respecti-
vely. Then Rf and L¥ are norm continuous, and also weak*-continuous. If
ueB(J^)®wilhB(Jf) has w*-representation u = Y,ist® U tnen R?(u) — E^C^K and
Lv{u) = Y*isi V(O> and tnese tw0 sums converge uniformly.

Proof. Only the final statement needs proof. Since <p is completely bounded and
|| X^-yfH < oo, we see that £il^(.s()|

2 < oo. Thus the sum YliV^dU converges
uniformly.

3. Dual operator spaces

Let X and Y be weak*-closed subspaces of B{J^) and 5(Jf) respectively. Define
X®wi.hY to be the weak*-closure in B(3f)(g)w.hB(X) of X® Y. It follows im-
mediately from [23, Theorem 4.5] that X®h Yis isometrically embedded in X®w.h Y.
We remark that this gives another proof of the injectivity of the Haagerup norm
[21, 6, 5], and the fact that the Haagerup tensor product of operator spaces is again
an operator space [21]. In fact this is a completely isometric embedding; this follows
from [6, Proposition 3.5] and the rectangular version of [23, Theorem 4.5] (see
Remark 2 after Proposition 2.1). We have

Mn(X®h Y) = Cn(X) ®hRn(Y)

We now offer a proof of the self-duality of the Haagerup norm [16, 5] which does not
use the Christensen-Sinclair representation theorem. That is, we shall show that if X
and Y are operator spaces then X* (x)h Y* is completely isometrically contained in
(X®h Y)*. Suppose that X* and Y* are represented weak*-homeomorphically
and completely isometrically in B{J^f) and B(X~) respectively. Then the
complete quotient maps T(J^) -> X and T(Jf) -+ Y induce a complete
quotient map T(Jtf?)®h T(Jf) -* X®h Y [16], which gives a complete isometry
(X®h Y)* -* (T(je) ®h T(JfT))*. We have the following commutative diagram.

y* (O) v* >(Y(v\ y^*

I I
B{tf) ® h B(JT) > (T(tf) ®h T(jfT))* = B(JO <8>w.h B{Jf)

We observed earlier that the bottom arrow is a complete isometry. It follows that the
arrow at the top is a complete isometry, which completes the proof.

We now give two interesting characterizations of Ar®w*h Y.
If X and Y are weak*-closed subspaces of B(J^) and B{X) respectively then we

define the Fubini product &(X, Y,B(J^)®W^B(X')) to be the set

{u6B(JT) ®w.h B(X): R9(u) eX, Lv{u) e Y, all <peB(tf\, yeB(JT)}m.
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If in addition E and F are weak*-closed subspaces of X and Y respectively, then we
define the relative Fubini product &r(E,F,X®w1.hY) to be the set {ueX®w*hY:
R9(u)eE, Lv(u)eF, all <p, y/ as above}.

THEOREM 3.1. Let X and Y be weak*-closed subspaces of B(Jf) and B(X)
respectively. Then the following hold.

(i) An element ueB(34?)®w<.hB(jf) lies in X®w.h Y if and only if u has a
^-representation u = J\isi®ti with steX and ttsY. Moreover, \\u\\wi,h =
infill X i -v f ||5| |£4?f fj5}, where the infimum {which is actually achieved) is
taken over all such ^-representations ofu. In this case ueX®h Y if and only if
u has a ^-representation which converges uniformly, and then the infimum
above may be taken over all such representations.

(ii) F(X, Y, B(Jt) ®wMl B(JfT)) = X®w.h Y.

Proof. If M G I ® W 4 | 1 Y then there is a net in X® Y which converges to u in the
weak*-topology. Since the slice maps are weak*-continuous (Lemma 2.5) it follows
that u e F(X, Y, B{3V) ®w.h B(JT)1

Now suppose that ueF(X, Y,B(3^)®^B{X)). By Theorem 4.5 in [23] (the
implication (ii) implies (iii) goes through in our case), in conjunction with the
argument of Theorem 2.2 above, there is a w*-representation u= X ^ ® tt with
steX and tte Y. Thus ueX®w*h Y. This proves (ii). Except for the last statement in
part (i) the remaining assertions are now immediate from the preceding paragraph.

Clearly if u has a uniformly convergent w*-representation then ueX®hY.
Conversely if ueX®^ Y, \\u\\h < 1, then given e > 0 we may choose ux = Yit^n si®h>
with s(eX and tteY, | |«-w1| | f t<£, and II £ , < B l M ? | | = II £<*B ltffJ | < 1. N o w

choose u2 = ][]»»i<<<'»g's*<8)'<> with .y/eAr and / ( e 7 , ||«—ux — u2\\n < e/2, and
II £»,««»/«J*H = II £»,««„,'<* Ml <e-ChooseM3 = £»,<«»,*«® h, withsteXand
tfe Y, \\u — u1 — u2 — uz\\h< e/4, and so on. From the inequalities above it follows that
|| X<5i5*ll and || Ysi '<* U\\ a r e e a c n l e s s t n a n 1 + 2e, and that Yutsi ® h converges in the
weak*-topology as in Theorem 2.2. Since £ 4 M 4 converges uniformly to u, it follows
that u has w*-representation Xi*5<® h- The remaining assertion is evident from the
construction above.

REMARK 1. There is a matricial version of the formula in (i) above which we shall
state presently.

REMARK 2. Define Ff(X, Y,B(3V)®wi,hB(X')) to be the Fubini product
considering only normal functionals which are finite combinations of vector
states. The proof above shows that this coincides with the usual Fubini product

THEOREM 3.2. If X and Y are weak*-closed subspaces of B{J^) and
respectively then F(X, Y,B{M?)®^B{tf)), (X* ®h YJ* and X®w.h Y are weak*-
homeomorphic and completely isometrically isomorphic.

Proof. Let qx and qY be the quotient maps T(J^) -* X* and 7 p f ) -> Y*
respectively. Then since the Haagerup norm is completely projective [16] we see that
(qx ® qY)* is a complete isometry
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We shall show that the range of this complete isometry is F{X, Y, B(Jf) ® w.h B(JT))
which will complete the proof, using Theorem 3.1(ii).

Suppose that/e (A"* ®h 7*)*, and set u = (qx ® qY)*(f)- Let <p and y/ be normal
functionals on B(3tif) and B{X) respectively. We have

(R9(u), y/} = (u,(p®y/y = ((qx ® qY)* (f),<p ® y/} = </,(qx ® qY)(<p ® y/)}

where/, is the canonical map X+ -* Yinduced by/. Thus R^u) =
Similarly Lv{u) = fo,r)Vifoy(v))e* Thus ueF(X, Y,B{^)®

Conversely, let ueF(X, Y,B{3ff)®vl^B{X)) = X®w.h Y. Then u has a w*-
representation u = J^isi® h* w i t n st in X and tt in Y. For normal functionals <p and
^ on B(J^) and ^(Jf) respectively we have (u,(p®y/) = £t^(jj^(/f), and the map
9? ® y/ -> <M,9> ® ^ ) is a n element of (r(jf) ®h T(Jf))* by Proposition 2.1. Now an
element of X+ (respectively 7+) may be regarded as the restriction of a
normal functional on B{3tf) (respectively B(jf)). Define a functional fu on
X*®Yt by fu(qx(<P)® qxiv))= Li^(5<)^(0- ^ m s ^S w e^ defined and we
have fu{{qx®qY){<P® v)) - (u,(p® y/). Clearly / extends to X+ ®h Y+, and
(qx ® qY)* (/„) = w. This completes the proof.

One may also prove the above theorem by using the equivalence of (1), (8), (9)
in Proposition 2.1 and an argument similar to [5, Lemma 2.8], or by the argument
following Corollary 3.4 below.

By the theorem above we see that X®wt,hY does not depend on the particular
containing B{3^) and B(JT). It also follows that the weak*-Haagerup norm is
associative, completely weak*-injective and completely weak*-projective (with the
obvious definition of these terms [5]).

COROLLARY 3.3. If X and Y are operator spaces then X®h Y is completely
isometrically isomorphic to the space of weak*-continuous linear functionals on
Y* fit) Y*

We also obtain yet another proof of the self-duality of the Haagerup tensor norm
[16, 5].

COROLLARY 3.4 [16, 5]. If X and Y are operator spaces then
Y* (&> V* t— (Y 6?\ Y\*

completely isometrically.

Proof We have X* ®h Y* a X* ®w.h Y* = (X®h Y)*.

The representation theorem for completely bounded bilinear functionals [12, 26]
follows immediately from the above. The idea is that a contractive functional
fe(X®h Y)* = X* ®w.h Y* has a w*-representation / = £4^4 ® y/t. Let <W be the
separable Hilbert space and define O: Z-> ^ = B(J^,C) by Q>(x) = [^(x) <p2(x)...]
for xeX. Similarly define V: Y^tfc = B(C,Jf) by V(x) = [y/1(x)y/2(x)...]t. It
is easy to see that O and *F are complete contractions and that/(jc ® y) = O(x) ^(y).
There is a similar proof for the full Christensen-Sinclair theorem [8, 21, 5]. However,
since this result was shown in [5] to be a consequence of the representation theorem
for bilinear functionals we omit this proof.

The following extends results in [5, 16].
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COROLLARY 3.5. IfX is an operator space and iftf and J f are Hilbert spaces then
we have {completely isometrically):

(0 CB w, x*) = CB {x, j r j = xt ® w.h x* = jr. ®wMnln x*,
and CB (jr., J*) = CB (X, j f j = J * ® w-h JT. = X* ®w-min JT.,

(ii) ( ^ ® h * T = ^ ® h * * = ^®w*h**>
««</ tar ®h J Q * = ** ®h jrt = x* ®h ^4,

(iii) (jTt®hX)* = ^ ® w . h ^
(iv) JT£ ®w.h j r . = j r r ®w.min

(v) CB(Jr* ,5(Jf > ^)) = ( ^
(vi) (A(jf) ® h K(Jf))** = (T(3f) ®w.h 7XJO)* = ( ^ ®h B(X~, JT) ®h JfJ*

= B(JT) ®ah B{Jf).

Proof. We first establish (i). Notice that

CB (*;,*•) = W®maxxr = w®hx)* = K ® *-***-
Since J^c has the slice-map property [19] we have by [5, Theorem 2.5] that
( ^ ® m a x I ) * = K®w*minX*. Similarly, CB(X,J^c) = (X®maxJtt)*, which is equal
to the above. The identities in the second line of (i) are similar. To obtain (ii) we need
to show that J^t®w^X* = Jift®hX*. Certainly 3ft®hX* c j^t®w.hX*; however,
if «€^ft ®w,h X* then it is evident that the partial sums in a w*-representation of u
actually form a Cauchy sequence, and so are uniformly convergent to an element of

Statements (iii) and (iv) are evident from Theorem 3.2. Identity (v) follows from
(ii) and [5, 2.3 (v); 16]. The first equality in (vi) is evident, the second is proven using
(iv) and (ii) analogously to the proof of the comparable assertion in Proposition 2.1.
The third equality is well known [16, 5]. The isometric version of the fourth equality
in (vi) is in [12]. To prove the complete isometry we need to show (see also Section
5) that the canonical inclusion of J^t®hB(Jf,Ji^) ®hX~c in (B(Jff)®hB(Jf))* is a
complete isometry. To see this observe that

completely isometrically.

There is a natural notion of matricial ^-representations. The idea is that if X and
Y are dual operator spaces then there are weak*-homeomorphic completely isometric
identifications [6]

^h Y) = Cn ® w . h (*® w . h Y) ®w.h tfn

= Cn(X)®w.hRn(Y).

We may thus associate a w*-representation Y,tsi ® U m

element U of Mn(X ® w*h Y). Set A = [s1s2...] and B = [t1t2...]'. If A' is a subspace of
B{#?) then Cn(X) is a subspace of B(J^, Jtf"1); and A may be interpreted as an element
of B(#e™,3fen), with norm ||y4|| = || Y,isis*II*- Similarly, if A' is a subspace of B(JfT)
then B may be interpreted as an element of B(Xn, Jf00), with norm ||£|| = || £< tf t(\\*.
Write A ® B for J ^ j , ® tt; we shall call this a w*-representation of U. The uniformly
bounded partial sums of this w*-representation may be viewed as elements of
Mn(X®h Y) using [6, Proposition 3.5]. Writing A and B as matrices [atj] and [b{j] with
entries in B(Jf) and 5(Jf) respectively, then we claim that the (ij) entry of U has w*-
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representation £ * % ® bkr To see this notice that the weak*-continuous (i,j) entry
function on Mn(A

r®w.h Y) agrees on elementary tensors with the weak*-continuous
map

here n^. Cn(X) -> X and pt: Rn(Y) -* Y are the weak*-continuous coordinate maps.
One obtains immediately a matricial version of the formula in Theorem 3.1(i)

above.

PROPOSITION 3.6. If X and Y are dual operator spaces and if C/eAfn(A
r(g)w.h Y)

then \\U\\n = inf{||i41| ||i?||: U = A ® B}, where the infimum {which is achieved) is taken
over all ^-representations U = A © B of U. Moreover, UeMn(X®h Y) if and only
if U has a uniformly convergent w*-representation, and in this case \\U\\n is the infimum
over such representations.

Suppose that Xx, X2, Yx and Y% are dual operator spaces, and that Tx: Xx -> Yl and
T2: X2 -> Y2 are completely bounded maps. If these maps are weak*-continuous then
the map

dualizes to give a weak*-continuous completely bounded map

Jl *&w*h 12, • * 1 ^ w * h -* 2 * I \ ^ w * h -*2

which clearly agrees with Tx ® T2 on elementary tensors. Since weak*-representations
converge in the weak*-topology it follows that 7̂  <S>w*n 2̂ *s t n e unique weak*-
continuous extension of Tx (g) T2.

Even if Tx and T2 are not weak*-continuous it is still possible to define a (non-
weak*-continuous) extension

T, ®w.h T2: Xx ® w.h X2 > Yx ®w.h Y2

of 7^(g)7^. If Y*isi®h xs a w*-representation of ueX1®w*hX2 then we define
i® li) t 0 ^ e HiTi(sf)® T2(tt). The second sum is an element of

PROPOSITION 3.7. IfXx, X2, Yx and Y2 are dual operator spaces, and ifT1\X1-+ Yx

and T2:X2-> Y2 are completely bounded maps, then
(i) 7̂  <S)w*h ̂ 2 "• a well-defined completely bounded map from X1®w.hX2 to

Yx ®w*h Y2, and, moreover,

(ii) For dual operator spaces X and Y and Hilbert space 3tf we have that
CB (X ® h Y, B(JV)) is completely isometrically contained in CB (X <g> wMl Y, B{3tf)).

Proof. To establish (i) we need to show that 7̂  <S)w*h 7̂  is well-defined as a map
%i ®w*h^2 ~* Yi ®w.h Y2. For if this is the case then the formula given in Proposition
3.6 shows that 7i®wMl7^ is completely bounded, and also that | |7i®w,h 7^||cb <

Without loss of generality we may assume that the four dual spaces are
represented on the same Hilbert space J^f. Suppose that Yiislkti = 0 for all
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. Then for all C,rj,^,(oeJif we have <£<$<(( ®7*K<!;,a>> = 0, and so
Z!i Oi £> V) (si (> u>y = 0- Actually for all £, r\ we know that £ 4 <f4<!;, 7) s4 converges in
norm, and from the above we see that it converges to 0. Thus YjiOi^i) ^[(Sf) = 0,
and consequently ^tOt^i} (^{s^Cw} = 0 for all C,(o. Hence J]i<7i(sfK» <*>>'<
converges in norm to 0 for all C,<a. Thus £]*<7[(̂ )C,<^> T2(t{) = 0, and so

)) = 0

for all C,^^,(oe3ft. By continuity we see that £« 7^)fcT^/J = 0 for all keK(Jif), so
that £< 7 ^ ) ® % ) = 0.

To establish (ii) we note that a map (peCB(X®h Y,B{3^)) has a
Christensen-Sinclair factorization #?(.x, y) = O(JC) ¥(j>), where <X> is a completely
bounded map Jf-> 5(X, Jf) and T is a completely bounded map 7-> Bffl, X), for
some Hilbert space X. Then

Composing O ® w*h ¥ with the multiplication map B(jfT, X) ®w*h ̂ (Jf, Jf)
(this is essentially the map w->./(<Du)(l)) gives the required extension of (p' of (p to
^®w*h r. By construction ||#r ||cb ^ ||^||cb, with equality since X®h Y is contained
in Ar®w,h Y. The complete isometry follows from the isometry and the relation
Mn(CB(Z,B(X))) = CB (Z,B(3f(n))) for all operator spaces Z.

We remark that Proposition 3.7 shows that slice maps on X®w*b Y make sense
even for non-weak*-continuous functional.

We note that the canonical complete contraction

induces a canonical weak*-continuous complete contraction

which extends the identity map on elementary tensors. Since p has dense range it
follows that p* is injective. We have shown the following.

COROLLARY 3.8. IfX and Y are weak*-closed subspaces ofB(J^) and B(Jf) then
the canonical map X®w*h Y-* X(g)w1,min Y c: B(J^ (g) Jf) is injective.

REMARK. Using these ideas, particularly the notion of strong independence, we
have been able to show the following result. Let Xv X2, Yx and Y2 be operator spaces,
and suppose that Tx: Xx -*• Yt and T2: X2 -*• Y2 are completely bounded maps. If E
and F are norm-closed subspaces of Y1 and Y2 respectively, then we have

It follows that (Ti®^-1®) = X1®hT2
1(0) + T-1(0)®hX2. Also if TX and T2 are

injective then (7^® T^iEQ^F) = T-^E)®^ T2\F); in particular rx ®h T2 is
injective.

Effros and Ruan have shown in [16] that, given Ea X and F c 7, there is a
complete quotient map ^ ® h Y-+(X/E)(g)b(Y/F). As another corollary of the
result of the previous paragraph we see that the kernel of this quotient
map is is®h Y+X®hF. Thus we see that there is an isomorphism between

Y/(E®h Y+X®hF) and (X/E)®h(Y/F).
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The results contained in this remark are also valid for the weak*-Haagerup tensor
product.

We now turn to approximation properties of operator spaces. Using the analogy
between w*h and w*min we may essentially follow Kraus [19].

Let X be a norm-closed subspace of B(jf), write Fin (X) for the set of finite rank
operators X-* X. We say that X has the HAP (Haagerup approximation property) if
for every (infinite-dimensional) Hilbert space M there is a net 0aeFin(Ar) such that
for all ueX®hB(3#p) we have 0~(«) -»• u in norm; here 0~ = 0 a ® h / .

THEOREM 3.9. (i) Every operator space has the HAP.
(ii) If X and Y are two operator spaces then there exist nets SaeFin(X)

and 7̂  e Fin (7) such that (Sa®h 7^(M) -• M in norm for any ueX®hY.

Proof (i) Fix ueX®hB(jf), and let 0tu = {R9(u):(peX*} c B{3^), as in [23].
Then UEMU from [23]. Given £ > 0 there exists a finite sum £ x{ ® r( with xtsXand
rtsMu such that \\u— £ x{ ® rt\\ < e. By approximating each rt if necessary we may
assume that each rt has the form R9i(u) for <pteX*. Thus | | u - J] xt ® Rn(u)\\ < e.

Now if a ® b e X®b B{3tf) then '

YJ xt ® Rn(a ®b) = Ydxt® (pt{a) b = {£ <Pi(a) x{)®b = <f(a ® b),

where 0 e Fin (X) is defined by (p{a) = £ (pt(a) xt. By continuity we have £ xt ® R9i(u) =
0 (u), and so \\u — <f> (u)\\ < e.

Now let A be the net {U,e}, where U is a finite subset of X®YyB(3tf?), and e > 0;
ordered by {C/^fiJ ^ {U2,e2} if and only if Ux £ U2 and e2 ^ e r If {U,e}eA let
M15 .. . , un be the elements of U. Since ^ is infinite dimensional it is unitarily
equivalent to <#"\ Consider u = ux © . . . ®uneX®hB(34?n) (we are using the
notation of [19] here). From the first part there is a ^ e F i n ^ ) such that
||(0 ® /jrn)(w)~wll < e> from which it is clear that ||(0 ® / ^ ( M ^ ) — ut\\ < e, for each i.
Put <f>v E = 0. Then for all «eAr®w.hJB(^f) we have lim(f/ e) \\<pv e(u) — u\\ = 0. Hence
X has the HAP.

(ii) The first part gives a net S^eFin (X) such that S^®hIY -> Ix®hY
 m t n e point-

norm topology. Similarly there is a net TYeFin(Y) such that Ix ®h Ty -*• Ix®hy
 m the

point-norm topology.
Consider the net of pairs {U,e}, where U is a finite subset of X®hB(,J^),

and £ > 0 ; ordered by {U^e^ ^{U2,e2} if and only if Ul^U2 and E2^EV

Consider {U,e} = <x, and let u1 5 . . . ,«n be the elements of U. Choose Sp
such that \\(Sp ®hI)(ui) — ui\\ <\e for each /, and then choose Ty such
that \\(I®hTJ(Spo®hI)(ui)-(Sfio®hI)ui\\ < |e for each /. By the triangle
inequality II ( s j o ® h \ ) («*)-"* II <°e fo f e a c h /• Put Sx = SPo and Ja = TYQ. Then

-*• u in norm for any ueX®hY.

Let J b e a dual operator space, and write w*Fin (X) for the set of finite rank
weak*-continuous operators X-*X. We say that X has the w*HAP if for every
(infinite-dimensional) Hilbert space 2tf there is a net 0aew*Fin(Ar) such that for all
ueX®w*hB(3tf:') we have 0~(«) -*• u in the weak*-topology; here 0~ = 0 a ® w . h / .
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COROLLARY 3.10. (i) Every dual operator space has the w*HAP.

(ii) If X and Y are two dual operator spaces then there exist nets S'aew*Fin(Ar)
and 7^ew*Fin(y) such that (Sa®w*h T^(u)->u in the weak*-topology for any
ueX®w.hY.

Proof These assertions follow from applying Theorem 3.9 to the predual, and
then dualizing the nets of operators provided by Theorem 3.9. For instance in (i),
considering T(jf) as a subspace of some B{tf), we obtain a net \f/aG Fin ( J J such that
V«®h*nx) -+/*.®hr(jn in norm. Let 0a = y/*, then 0a®w,hIB(je) -•/*0 w.h B ( J f ) in the
point weak* topology.

We remark that as in [19] these approximation properties are equivalent to a
certain Fubini property, but of course we know from [23] and the first part of this
section that every space has this Fubini property.

We now establish some other slice map results for the weak*-Haagerup
norm analogous to those in [23] for the Haagerup norm. As in [23] define for
ueB(3V)®v/t,hB(X') the space fflu (respectively J£?M) to be the weak*-closure of the
set of images of u under all right (respectively left) slice maps.

COROLLARY 3.11. (i) IfXx and X2 are weak*-closed subspaces ofB(J^), and if Yx

and Y2 are weak*-closed subspaces of B(J4T), then

(*i ® w*h r j n (x2 ®w.h Y2) = (xx n x,) ®w.h (Y, n x2).
(ii) If Xxcz X2 are weak*-closed subspaces of B{3^f), and if Yxa Y2 are weak*-

closed subspaces of B(X~), then

(iii) Ifu€B(34?)®w.hB(Jfr) then

Proof. These are all immediate from Theorem 3.1.

4. Module maps and commutants

Let J*/ and 88 be unital subalgebras of B(J^) and B(Jf) respectively. Then
, J?) and B(X, JtT) are (sf, ^-modules. Define CB^ g(K(jT, tf), B(X, tf)) and

w*CB^3i(B(Jir,^),B(X',^)) to be the subsets of CB (K(Jf, JT), B{X, 34?) and
w*CB (B{X, #?), B(jf, #?)), respectively, consisting of the (st, ^)-module maps.

If u,v£B(J^)®wthB(Jf) have w*-representations u=Ydi
si®U a nd v =

H)aj ® rp t n e n define u-v = Yit)st<2}®rjU- ^ s m Theorem 2.2 we see that this sum
converges in the weak*-topology. Also

using Lemma 2.4. Hence /(OM)Ow = O u u . In particular this shows that u-v is well
defined. Now using Theorem 3.1 (ii) it is easy to see the following assertion.

PROPOSITION 4.1. Let sf and 88 be weak*-closed subalgebras of B(3V) and B(Jf)

respectively. Then s/®wi,h8S is a dual Banach algebra with the multiplication u-v
defined above.



140 DAVID P. BLECHER AND ROGER R. SMITH

We remark that the multiplication on sd ®w*h@l is not weak*-continuous in the
second variable, although it is weak*-continuous in the first variable. We omit the
proof since we shall not use this fact.

THEOREM 4.2. Let s/ and & be unital subalgebras ofB(J^) and B(Jf) respectively.
(i) Let u e B(JP) <g> w.h B(JT). Then Ou e CB^0(K(JfT, tf), B(Jf, tf)) if and only if

u has a ^-representation u = Yjisi ® U with eacn s^st' and t^fll'.
(ii) s/'(g)w.h38' = CBj^Kitf,JT),B(jf,jf)) = WCB^CBpf,JlT),B(Jf,JUT))

completely isometrically. The first identification is also a weak*-
homeomorphism.

(iii) CB^j,{K(tf, Jf), B(Jf, tf)) is a Banach algebra with the multiplication
ST = J(S) T; and the identification in (ii) is also a Banach algebra isomorphism.

(iv) If M and Jf are von Neumann algebras on #? and JT respectively, then

M ®w,h jr = CB^AKiJtr, tf), B{tf, j f))

completely isometrically and weak*-homeomorphically.

Proof. The necessity in (i) is [23, Theorem 3.1] modified as in Theorem 2.2 above.
The sufficiency is evident. The first identity in (ii) follows immediately from (i) and
Theorem 3.1(i). It is a weak*-homeomorphic identification since it is the restriction
of a weak*-homeomorphism. The second identity in (ii) follows from (i) and Lemma
2.4(ii). Part (iii) follows from (i), Proposition 4.1 and the identity /(OU)OU = <PUV.
Part (iv) follows from (ii) and the double commutant theorem.

REMARK. Theorem 4.2(iv) is the version of [12, Theorem 2.5] appropriate to our
setting. Notice that we need the self-adjoint condition here, since the double
commutant theorem is not true in the non-self-adjoint case.

In particular B(3f) ®w.h B(X) = CB(K(X',Jf),B(X',j^)) is a Banach algebra.
We remark that Lemma 2.4(i) shows that the multiplication here corresponds to the
reversed natural multiplication on the isomorphic space (6) of Proposition 2.1. For
a subset X of B{J^)®v/tYlB{X') we shall write X' for the commutant of X in

)®wh()
The following theorem is similar to [23, Corollary 4.7] and Tomita's commutant

theorem.

THEOREM 4.3. Let sf and 08 be unital subalgebras of B(JV) and B(jf) respect-
ively. Then (s# ®h4&)' = sf' ® w , h ^ ' . If in addition s# and 88 are weak*-closed then

Proof. If uestf' ® w , h ^ ' then u clearly commutes with elementary tensors in
s/®@, and so by continuity ue(s# ®h$t)'. Now let « 6 ( ^ ® h ^ ) ' . We claim that
<!>„ is an (s/, ^)-bimodule map. For if this is true then Theorem 4.2(ii) shows that

Suppose that u has w*-representation u = £<.?< (x) tu then

which proves the claim.
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Now suppose that s4 and 88 are weak*-closed. If UES#'®w*h^' then
ue(stf ®w*h$iy as is evident from considering the expression for a product u-v
obtained before Proposition 4.1. The final inclusion follows from the first part of
the proof.

COROLLARY 4.4. Let stf1 c s/2 and $x <= ^ 2 be unital weak*-closed subalgebras

of $(•#') and B(jf) respectively. Then the relative commutant of $4X ®w*h^i 'w

^ 2 ® w*h ^ 2 is GJ* i n sf2) <g> w*h (^i n $2).

The relative commutant of ^ i® w *h^ i m «^2®w*h^2 *s by definition
)'n(^2®w*h^2)5

 w h i c h by Theorem 4.3 and Corollary 3.4(i), is

We now define the appropriate virtual diagonal for our tensor product, following
[12]. If s/ is a unital subalgebra of 5(Jf) then an element M in J^" ®w.h stf" is a virtual
w*-diagonal for s4 if aM = Ma for all aeja/, and if J(OM)(1) = 1. Here aM may be
viewed as {a ® 1) M, and Ma as M(l ® a).

THEOREM 4.5. If stf is a unital subalgebra of B^Jtif) then the following are
equivalent:

(i) $4 has a virtual ^-diagonal,
(ii) there is a weak*-continuous completely bounded s/'-bimodule projection from

onto s/',

Proof. If Q is a weak*-continuous completely bounded is/'-bimodule projection
from B{2t?) onto sf', then using Theorem 4.2(i) we may view Q as /(Ott) for some
u in «s/"®w*h d"• It is easy to see that u is a virtual w*-diagonal. Conversely,
if M in j^"® w * h j / " is a virtual w*-diagonal, then M has a w*-representation
M = Xii^® /„ with 5t, ^ in s4". Now /(<DM)(1) = ^ ( J ( ^ = 1, using Lemma
2.4(ii), and so /(OM)(a') = Ydisia'ti = a' for all a'estf'. The condition aM = Ma
implies that J(Q>M) maps into st', and so /(OM) is the required projection.

We remark that (ii) is equivalent to «s/' being injective in some strong sense. There
must be some characterization of this property in terms of some sort of amenability
or nuclearity.

5. Another approach to the predual

Let X and Jf be Hilbert spaces. Define Bilw*h {B(#e\ B(jf)) to be the space of
completely bounded bilinear functionals on B(2tf) x B(Jf) with representation

where A; is a bounded linear operator which has an ooxoo matrix representation
whose entries are compact operators from JT to 2tf, and C and n are in 2%"* and JT00

respectively (cf. [12, 26]). We view this as an operator space by regarding it as a
subspace of (5(^f)®hB(X'))*.

More generally if X and Y are weak*-closed subspaces of B{#?) and B(X)
respectively, then we can define Bilw,h (X, Y) to be the space of completely bounded
bilinear functionals on XxY consisting of the restrictions to J x 7 of elements of
Bilw,h (B(JI^), B(jf)). This space is regarded as a subspace of (X®h Y)*.
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We begin by showing that Bilw*h (B(3f), B(Jf)) is completely isometrically
isomorphic to the predual K(3f, 3f)®m&xT(3^,Jf) of B(3f)®v/.hB(Jf). It will
follow that as with the normal Haagerup tensor product, the weak*-Haagerup tensor
product X®wth Ymay be viewed as the dual of a certain space of completely bounded
bilinear functionals o n l x Y which are separately weak*-continuous.

Let X be an operator space, acting on a Hilbert space 3P. Recall that MJJC) is
the space of oo x oo matrices with entries in X, whose finite submatrices are uniformly
bounded [13, 15]. Each element in MW(X) may be regarded as a bounded operator
on J*"00.

The following lemma is essentially in [11]. If X and Jf are Hilbert spaces then
(J^t®hX®hJfc)* = CB(X,B(Jfr,Jf)) [16, 5]. Suppose that x = [xij]eMco(X),
C = © C,e X °°, and n = © nte34?°°. Consider the formal sum £ u

; 7 * ® * y ® C}- The
partial sums of this form a Cauchy sequence in 3ft®liX®hX'c, and consequently
converge to an element of 3^t ® h X®b Ctife. We write this element as rj* © x © £ or
Luf t* ® x« ® £*• We ^ a v e by continuity that

< £ ft* ® *« ® C,, O> =

LEMMA 5.1 [11]. Let X be an operator space, and let X and tf be Hilbert spaces.

hX®XlX'c then u — £ J J 7 * ® xi} ® C,p where [xtj]e Afoo(A
r), and where £} and

rjt are elements of tf and 3tf respectively, with ^ ||CJ|2 < oo, and X]< llVill2 < °°-

THEOREM 5.2. We have J^4®hK{jT,3^)®bXc = Bi l w . h (£(^) ,£pf ) ) com-
/ j / e / ^ isometrically. Thus B(J^)®wthB(Jf) = (Bi\wtti(B(J^),B(X')))* weak*-
homeomorphically and completely isometrically.

Proof. Write K for the completely isometric inclusion of 3^t ® h /sT(Jf, Jf) ® h Xc

in (5(^f)®w.h5(jf))* (see Proposition 2.1), and write X for the com-
pletely isometric inclusion of B(J^) ®hB(JfT) in £ ( ^ ) ® w . h 5 ( j f ) . Then the
composition p = X*K is a complete contraction from 3tf't®hK(X', Jf) ®h Jf, to

. We have

</?(/7* (g) fc ® Q, x ® y} = <«:(//* ® k ® Q, x ® y} = (xkyC, n),

and so by continuity

if [ f c J e A f ^ ^ J f , ^ ) ) , and if £, and ^4 are elements of Jf and ^ respectively,
with £ j g i 2 < o 3 > and £< liftII2 < °°- T h i s s h o w s t h a t p(B{3tf>)®hB(JT)) =
Bilw.h (5(jf), B(jf)), using Lemma 5.1. Thus we need only show that p is a complete
isometry. To see this consider the complete isometry

given by the self-duality of h. This agrees with p on rank 1 tensors of the form
n* ® (£, ® co*) ® C, and by continuity agrees everywhere.

COROLLARY 5.3. Suppose that X and Y are weak*-closed subspaces ofB(3V) and
B{X) respectively. Then X®v/thY = (Bi\w.h(X,Y))* weak*-homeomorphically and
completely isometrically. Thus X+ ®h Y+ = Bilw.h(A

r, Y) completely isometrically.
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Proof. This is similar to the previous proof. Since X®wthY is weak*-closed
in B{3^)®Vji.hB{X), there is an induced complete quotient map

r'.Bi\^{B(tf),B{tf)) >(X®w.h
 Y)*-

Let X:X®h 7->Z®w*h Y and K\(X®wi,h 7)% -•(Ar®w,h 7)* be the canonical
completely isometric inclusions. Put /? = X*K, lfv = r{(p) is an element of (AT <8>w*n ^)*5

then
(p(v), x®y) = (K(V), x ® y} = <x (x) y, y) = #>(* ® >>).

Thus /?(y) = ^ g , Y. Hence the range of p is Bil^CJf, 7). We need to show that p is
a complete isometry, but again the canonical complete isometry 6:(X®wi,h Y)# =
^* ®h ** -> (^®h *0* (given by the self-duality of h) agrees with p, as may be seen
by checking the relation on elementary tensors.

One may also prove these two results using matricial w*-representations.
In view of the above there is a complete isometry Bi\Vfi,b(XiY)-*Bi\l(X,Y).

Dualizing this map gives a weak*-continuous complete quotient map X®ahY-+
X®wtii Y. Thus X®w*h Y is completely isometrically isomorphic to a direct summand
of X®1 Y, with a weak*-continuous projection implementing the retraction.

We remark that the result above shows that Bilw.h (X, Y) does not depend on the
particular containing B(jf) and B{X), but only on the dual operator space structure
of X and Y. Hence we may as well define Bilw*h (X, Y), for dual operator spaces X and
Y, to be the space of completely bounded bilinear functional on X x Y of the form

<(TT(X) ® / J k{o(y) ® IJ £ *7>,

where n and a are weak*-homeomorphic completely isometric maps from X and Y
into B(Jt) and B(X) respectively, and where k, ( and rj are as usual; with #? and Jf
varying. With this definition we have the following.

COROLLARY 5.4. If X and Y are operator spaces then X®h Y = Bilw*h(A
r*, Y*).

At this point it is natural to ask for a characterization of all weak*-continuous
completely bounded maps X®w+h Y'-> B(!F); here Zand Fare dual operator spaces.
More particularly one might ask for a characterization of all weak*-continuous
completely bounded maps B(2tf) ®w*h B{3tif) -*• B{3tiF). The space of such maps can be
shown to contain completely isometrically (cf. Corollary 3.7(ii)) the completely
bounded maps of the form k^{x ® I^k^y ® I^)kz, where kx, k2 and k3 are bounded
linear operators which have ooxoo matrix representations whose entries are
compact operators (between appropriate Hilbert spaces). One interesting such map is
the Schur product on B(J^f). The difficulty with a general representation theorem for
such maps appear to be related to the fact that B(J^) is not weak*-injective in the
sense of [4] (see also [13]). However, if Ji is a weak*-injective W*-algebra (these
algebras were completely described in [4]) then the weak*-continuous completely
bounded maps <j):X®v/i,hY^>J? may be characterized. Indeed if Ji = Mn then
Theorems 5.2 and 5.3 easily generalize to a matricial version which is the required
characterization. For a general weak*-injective W*-algebra we now obtain a
characterization from the identity ©4w*CB {Z,Mn) = w*CB(Z, ®4AfBj) for all dual
operator spaces Z.

Note added in proof We thank Professor E. G. Effros for bringing to our attention
the fact that the embedding 6: X®w.h 7-> X®1 7 is isometric is not clear. This may
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be seen as follows: if <peBi\l(X, Y) then we may describe 0(u)(<p) as (p~(u) (with
notation as in Proposition 3.7(ii)). Combining this observation with the comment
after Corollary 5.3 (existence of a completely contractive retraction) yields the desired
result.
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