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THE OPERATOR HILBERT SPACE OH AND
TYPE III VON NEUMANN ALGEBRAS

GILLES PISIER

Abstract

A proof is given to show that the operator Hilbert space OH does not embed completely isomor-
phically into the predual of a semi-finite von Neumann algebra. This complements Junge’s recent
result, which admits such an embedding in the non-semi-finite case.

In remarkable recent work [5], Marius Junge proves that the operator Hilbert space
OH (from [8]; see also [10]) embeds completely isomorphically into the predual
M∗ of a von Neumann algebra M which is of type III; thus this algebra M is
not semi-finite. In this paper, we show that no such embedding can exist when M
is semi-finite.

The results that we have just stated all belong to the currently very active field
of ‘operator spaces’, for which we refer the reader to the monographs [2, 11]. We
merely recall a few basic facts, relevant to the present paper. An operator space
is a Banach space, given together with an isometric embedding E ⊂B(H) into the
algebra B(H) of all bounded operators on a Hilbert space H. Using this embedding,
we equip the space Mn(E) (consisting of the n×n matrices with entries in E) with
the norm induced by the space Mn(B(H)), naturally identified isometrically with
B(H ⊕ · · · ⊕ H).

Let F ⊂B(K) be another operator space. In operator space theory, the
morphisms are the completely bounded linear maps: a linear map u : E −→F
is called completely bounded if the mappings un : Mn(E)−→Mn(F ) defined by
[xij ]−→ [u(xij)] are uniformly bounded when n ranges over all integers greater
than or equal to 1, and the cb-norm is defined as ‖u‖cb = supn ‖un‖. The resulting
normed space of all completely bounded maps u : E −→F equipped with the cb-
norm is denoted by CB(E,F ). If u is invertible with completely bounded inverse,
then u is called a complete isomorphism. For any operator space E ⊂B(H), the
Banach dual E∗ can be equipped with a specific operator space structure, say
E∗ ⊂B(H), for which the natural identification Mn(E∗)� CB(E,Mn) is isometric.
On the other hand, the complex conjugate Ē can obviously be viewed as an operator
space using the canonical embeddings Ē ⊂B(H) � B(H̄). Let I be any set. In [8],
we exhibited an operator space E that is isometric to �2(I) as a Banach space,
and such that the canonical isometry (associated to the inner product) E �E∗ is
a complete isometry. The latter operator space, which is uniquely characterized
by the preceding self-dual property, is denoted by OH(I), or simply by OH when
I = N. We call it the operator Hilbert space.
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In Banach space theory (and in commutative harmonic analysis), the existence
of an isomorphic (actually, isometric) embedding of �2 (or �2(I)) in an L1-space
plays a very important role in connection with the Khintchine and Grothendieck
inequalities. However, the non-commutative version of the Khintchine inequality
due to Lust-Piquard and the author (see [10, Theorem 8.4.1]), when properly
interpreted, leads to the embedding of a different (Hilbertian but not OH) operator
space into L1, namely the space called R + C in [10]. This essentially implies
that OH does not embed (completely isomorphically) into a commutative L1 space
(see [6] for details and more general results). Thus the question (raised in [8]) of
whether OH itself embeds (completely isomorphically) in a non-commutative L1

space remained open, and was only recently solved affirmatively by Junge [5]. By a
non-commutative L1-space, we mean the predual M∗ of a von Neumann algebra M ,
equipped with the operator space structure induced by the dual M∗. Recall that M
is called semi-finite if it admits a normal and faithful trace that is also semi-finite;
that is, although it is not necessarily finite, it admits sufficiently many elements on
which it is finite (see [16] for more).

Our main theorem below shows that if OH embeds in M∗, then M cannot be
semi-finite. This proves the need for a type III algebra in Junge’s work, and perhaps
explains the delay in resolving this embedding problem.

We use the following easy consequence of [13, Corollary 3.4]. (A more direct
proof, with a better value of the constant K, appears in [12].)

Lemma 1. Let I be any set, let E = OH(I), and let M be a von Neumann
algebra. Consider a linear map v : E −→M∗.

(i) If v is completely bounded, then there is a normal state ϕ on M such that

‖v∗x‖2 � K2(ϕ(xx∗)ϕ(x∗x))1/2, for all x ∈ M, (1)

where K = 29/4‖v‖cb.
(ii) Conversely, if there are f1, f2 in M∗

+ such that

‖v∗x‖2 � (f1(xx∗)f2(x∗x))1/2, for all x ∈ M,

then necessarily

‖v‖cb � (f1(1)f2(1))1/4. (2)

Proof. Let K = 29/4‖v‖cb. By [13, Corollary 3.4], there is a state f on M such
that

‖v∗x‖2 � K2(f(xx∗)f(x∗x))1/2, for all x ∈ M. (3)

We use an argument that can be traced back to [14, p. 352] and, in the non-
commutative case, to [3, Proposition 2.3]. Let f = fn + fs be the decomposition of
f into its normal and singular parts. We set ϕ = fn. As explained in the proof of
[3, Proposition 2.3], there is an increasing net (pα) of projections in M such that
pα −→ 1, say in the strong operator topology (SOT for short), and fs(pα) = 0 for
all α. Note that (by the SOT-continuity of the product of M on bounded sets)
we have pαxpα −→x, pαxpαx∗pα −→xx∗ and pαx∗pαxpα −→x∗x for the strong
operator topology. For any ξ in the unit ball of E∗, by assumption x−→〈ξ, v∗x〉 is
in M∗ (that is, it is ‘normal’), and hence

〈ξ, v∗x〉 = lim〈ξ, v∗(pαxpα)〉.
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Hence, by (3),

〈ξ, v∗x〉 � K2 lim(f(pαxpαx∗pα)f(pαx∗pαxpα))1/2,

but since fs(pα) = 0, a fortiori fs(pαxpαx∗pα) = 0 = fs(pαx∗pαxpα), and hence
we obtain

|〈ξ, v∗x〉| � K2 lim(ϕ(pαxpαx∗pα)ϕ(pαx∗pαxpα))1/2.

Thus we conclude that

|〈ξ, v∗x〉| � K2(ϕ(xx∗)ϕ(x∗x))1/2,

which immediately yields statement (i). The proof of statement (ii) is identical to
that of the last assertion in [13, Corollary 3.4].

Our main result is the following theorem.

Theorem. Let E = OH(I), with I an infinite set. Let F ⊂M∗ be a subspace
of the predual of a semi-finite von Neumann algebra M . Then for any completely
bounded maps

u : E −→F and w : F −→E,

the composition wv is compact.

Proof. Clearly, this reduces to I = N if we wish. Let τ be a normal faithful
semi-finite trace on M .

We will argue by contradiction. Assume that wv is not compact. Then, by the
homogeneity of OH (see [8, p. 18]), we may assume that wv is diagonal or even
furthermore that wv is the identity on E. In other words, we may as well assume
that u invertible, and that w =u−1.

Let v : E −→M∗ be the same map as u, but viewed as acting into M∗. By
Lemma 1, there is a normal state ϕ such that (1) holds. Let e be the support projec-
tion of ϕ (that is, we have ϕ(1− e) = 0 and ϕ(q)> 0 for any non-zero projection q
in M with q � e). Then (1) implies that for any x in M , we have v∗(x(1− e))=
0= v∗((1− e)x); hence

v∗(x) = v∗(exe).

Thus if we replace M by eMe and ϕ by eϕ, we may assume in addition that ϕ is
faithful.

Since M∗ �L1(τ), we may assume that ϕ = ψ · τ . Fix 0< δ < 1. Let p be the
spectral projection associated to ψ with respect to the set [δ, δ−1] (for more details,
see, for example, [15, p. 338], or also [7]). Note that δτ(p)� τ(ψ)= ϕ(1)� 1, so
that in particular τ(p)<∞; moreover,

p · ψ = ψ · p = p · ψ · p � δ−1p. (4)

On the other hand, let ε(δ)= τ((1 − p)ψ)= ϕ(1 − p). Clearly, (since ϕ is faithful)
we have ε(δ)→ 0 when δ → 0. Thus if we set, for all y in E,

vδ(y) = p · v(y) · p, T1(y) = v(y)(1 − p) and T2(y) = (1 − p)v(y)p,

we have v = vδ +T1 + T2. We will show that T1 + T2 is small when δ→ 0,
so that vδ can be viewed as a perturbation of v. Indeed, for x in M , we have
T ∗

1 (x)= v∗((1 − p)x) and x∗(1 − p)x� x∗x.
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Hence by (1) we have

‖T ∗
1 (x)‖2 � K2(ϕ((1 − p)xx∗(1 − p))ϕ(x∗x))1/2,

and hence by (2)

‖T1‖cb � K(ϕ(1 − p))1/4

� K(ε(δ))1/4.

Similarly, ‖T2‖cb � K(ε(δ))1/4; hence ‖v − vδ‖cb � ‖T1‖cb + ‖T2‖cb � 2K(ε(δ))1/4.
Let ε0 = ‖u−1‖−1

cb . Clearly, if we choose δ small enough so that 2K(ε(δ))1/4 < ε0, we
have ‖v − vδ‖cb < ε0. Hence, by elementary reasoning (based solely on the triangle
inequality in Mn(M∗)), the map vδ : E −→ pM∗p⊂M∗ is a completely isomorphic
embedding. But now by (4) we have

‖v∗
δ (x)‖2 = ‖v∗(pxp)‖2 � K2δ−1‖pxp‖L2(τ)‖px∗p‖L2(τ).

Hence, since τ is tracial (this is where we make crucial use of the semi-finiteness
assumption),

‖v∗
δ (x)‖2 � K2δ−1‖pxp‖2

L2(τ)

� K2δ−1 min
{
‖px‖2

L2(τ), ‖xp‖2
L2(τ)

}

� K2δ−1‖px‖2
L2(τ).

By Lemma 2 below, since τ(p)<∞, this is impossible.

Lemma 2. With the above notation, let V : OH −→L1(τ) be a linear map for
which there is a in the unit ball of L2(τ) and a constant B such that, for any x in
M , we have

‖V ∗(x)‖ � B‖ax‖L2(τ). (5)

Then, for any isometry J : C −→ OH, V J is completely bounded from C to L1(τ).
In particular, V cannot be a completely isomorphic embedding.

Proof. By (5), for any finite sequence (xi) in M ,
∑

‖(V J)∗(xi)‖2 =
∑

‖V ∗(xi)‖2 � B2
∥∥∥
∑

xix
∗
i

∥∥∥ . (6)

By a well-known argument from [1], it follows that ‖(V J)∗ : M −→C∗‖cb �B,
and hence V J is completely bounded. Finally, if V were a completely isomorphic
embedding, then V J (when viewed as acting into the range of V ) would be a
completely bounded map from C to OH. Hence V J would (by [8, Remark 2.11]) be
in the Schatten class S4, and a fortiori would be compact. But then J itself would
have to be compact, which is absurd.

Remarks.

(i) Junge [5] proves that OHn embeds completely isomorphically (with uniform
constants) into the predual of a finite-dimensional (and hence semi-finite!) von
Neumann algebra. More precisely, he proves that there is C > 0 such that, for any
n, there are an integer N , a subspace Fn ⊂M∗

N and a (complete) isomorphism
un : OHn −→Fn such that supn ‖un‖cb‖u−1

n ‖cb �C. It would be interesting to
estimate N as a function of n.
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(ii) The non-existence of embeddings of OH into M∗ when M is commutative
is rather easy to show. In that case, even the finite-dimensional case (as in the
preceding point) is ruled out (see [9] for related facts). The paper [6] contains
stronger results in the same direction.

(iii) The above theorem remains valid with essentially the same proof for
E = (R,C)θ (with 0< θ < 1) in the sense of [10], but this requires the generalized
version of Lemma 1 that is proved in [12]. This implies that, for any 1< p < 2,
the Schatten classes Sp (and hence most non-commutative Lp-spaces) do not
embed (completely isomorphically) into the predual of any semi-finite von Neumann
algebra.

(iv) Let N∗ be the predual of the injective factor of type IIIλ with 0< λ � 1,
and let M be a (semi-finite) von Neumann algebra of type II∞. Junge proved that
OH embeds completely isomorphically into N∗. Hence Theorem 1 implies that N∗
does not embed completely isomorphically into M∗. This gives a somewhat partial
answer to the (still-open) question raised in [4] of the existence of an isomorphic
(in the Banach space sense) embedding of N∗ into M∗.
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