Bull. London Math. Soc. 36 (2004) 455–459

THE OPERATOR HILBERT SPACE OH AND TYPE III VON NEUMANN ALGEBRAS

GILLES PISIER

Abstract

A proof is given to show that the operator Hilbert space OH does not embed completely isomorphically into the predual of a semi-finite von Neumann algebra. This complements Junge's recent result, which admits such an embedding in the non-semi-finite case.

In remarkable recent work [5], Marius Junge proves that the operator Hilbert space OH (from [8]; see also [10]) embeds completely isomorphically into the predual M_* of a von Neumann algebra M which is of type III; thus this algebra M is not semi-finite. In this paper, we show that no such embedding can exist when M is semi-finite.

The results that we have just stated all belong to the currently very active field of 'operator spaces', for which we refer the reader to the monographs [2, 11]. We merely recall a few basic facts, relevant to the present paper. An operator space is a Banach space, given together with an isometric embedding $E \subset B(H)$ into the algebra B(H) of all bounded operators on a Hilbert space H. Using this embedding, we equip the space $M_n(E)$ (consisting of the $n \times n$ matrices with entries in E) with the norm induced by the space $M_n(B(H))$, naturally identified isometrically with $B(H \oplus \cdots \oplus H)$.

Let $F \subset B(K)$ be another operator space. In operator space theory, the morphisms are the completely bounded linear maps: a linear map $u: E \longrightarrow F$ is called *completely bounded* if the mappings $u_n: M_n(E) \longrightarrow M_n(F)$ defined by $[x_{ij}] \longrightarrow [u(x_{ij})]$ are uniformly bounded when n ranges over all integers greater than or equal to 1, and the *cb*-norm is defined as $||u||_{cb} = \sup_n ||u_n||$. The resulting normed space of all completely bounded maps $u: E \longrightarrow F$ equipped with the cbnorm is denoted by CB(E, F). If u is invertible with completely bounded inverse, then u is called a complete isomorphism. For any operator space $E \subset B(H)$, the Banach dual E^* can be equipped with a specific operator space structure, say $E^* \subset B(\mathcal{H})$, for which the natural identification $M_n(E^*) \simeq \operatorname{CB}(E, M_n)$ is isometric. On the other hand, the complex conjugate \overline{E} can obviously be viewed as an operator space using the canonical embeddings $\overline{E} \subset \overline{B(H)} \simeq B(\overline{H})$. Let I be any set. In [8], we exhibited an operator space E that is isometric to $\ell_2(I)$ as a Banach space, and such that the canonical isometry (associated to the inner product) $E \simeq \overline{E^*}$ is a complete isometry. The latter operator space, which is uniquely characterized by the preceding self-dual property, is denoted by OH(I), or simply by OH when $I = \mathbb{N}$. We call it the operator Hilbert space.

2000 Mathematics Subject Classification 46L07, 46L54, 47L25, 47L50.

Received 11 February 2003; revised 24 July 2003.

Partially supported by NSF and Texas Advanced Research Program 010366-163.

GILLES PISIER

In Banach space theory (and in commutative harmonic analysis), the existence of an isomorphic (actually, isometric) embedding of ℓ_2 (or $\ell_2(I)$) in an L_1 -space plays a very important role in connection with the Khintchine and Grothendieck inequalities. However, the non-commutative version of the Khintchine inequality due to Lust-Piquard and the author (see [10, Theorem 8.4.1]), when properly interpreted, leads to the embedding of a different (Hilbertian but not OH) operator space into L_1 , namely the space called R + C in [10]. This essentially implies that OH does not embed (completely isomorphically) into a commutative L_1 space (see [6] for details and more general results). Thus the question (raised in [8]) of whether OH itself embeds (completely isomorphically) in a non-commutative L_1 space remained open, and was only recently solved affirmatively by Junge [5]. By a non-commutative L_1 -space, we mean the predual M_* of a von Neumann algebra M, equipped with the operator space structure induced by the dual M^* . Recall that M is called *semi-finite* if it admits a normal and faithful trace that is also semi-finite; that is, although it is not necessarily finite, it admits sufficiently many elements on which it is finite (see [16] for more).

Our main theorem below shows that if OH embeds in M_* , then M cannot be semi-finite. This proves the need for a type III algebra in Junge's work, and perhaps explains the delay in resolving this embedding problem.

We use the following easy consequence of [13, Corollary 3.4]. (A more direct proof, with a better value of the constant K, appears in [12].)

LEMMA 1. Let I be any set, let E = OH(I), and let M be a von Neumann algebra. Consider a linear map $v: E \longrightarrow M_*$.

(i) If v is completely bounded, then there is a normal state φ on M such that

$$\|v^*x\|^2 \leqslant K^2(\varphi(xx^*)\varphi(x^*x))^{1/2}, \quad \text{for all } x \in M,$$
(1)

where $K = 2^{9/4} ||v||_{cb}$.

(ii) Conversely, if there are f_1, f_2 in M^*_+ such that

 $||v^*x||^2 \leq (f_1(xx^*)f_2(x^*x))^{1/2}, \text{ for all } x \in M,$

then necessarily

$$\|v\|_{\rm cb} \leqslant (f_1(1)f_2(1))^{1/4}.$$
(2)

Proof. Let $K = 2^{9/4} ||v||_{cb}$. By [13, Corollary 3.4], there is a state f on M such that

$$\|v^*x\|^2 \leqslant K^2 (f(xx^*)f(x^*x))^{1/2}, \quad \text{for all } x \in M.$$
(3)

We use an argument that can be traced back to [14, p. 352] and, in the noncommutative case, to [3, Proposition 2.3]. Let $f = f_n + f_s$ be the decomposition of f into its normal and singular parts. We set $\varphi = f_n$. As explained in the proof of [3, Proposition 2.3], there is an increasing net (p_α) of projections in M such that $p_\alpha \longrightarrow 1$, say in the strong operator topology (SOT for short), and $f_s(p_\alpha) = 0$ for all α . Note that (by the SOT-continuity of the product of M on bounded sets) we have $p_\alpha x p_\alpha \longrightarrow x$, $p_\alpha x p_\alpha x^* p_\alpha \longrightarrow x x^*$ and $p_\alpha x^* p_\alpha x p_\alpha \longrightarrow x^* x$ for the strong operator topology. For any ξ in the unit ball of E^* , by assumption $x \longrightarrow \langle \xi, v^* x \rangle$ is in M_* (that is, it is 'normal'), and hence

$$\langle \xi, v^* x \rangle = \lim \langle \xi, v^* (p_\alpha x p_\alpha) \rangle$$

The operator hilbert space of and type III von Neumann algebras 457

Hence, by (3),

$$\langle \xi, v^* x \rangle \leqslant K^2 \lim (f(p_\alpha x p_\alpha x^* p_\alpha) f(p_\alpha x^* p_\alpha x p_\alpha))^{1/2},$$

but since $f_s(p_\alpha) = 0$, a fortiori $f_s(p_\alpha x p_\alpha x^* p_\alpha) = 0 = f_s(p_\alpha x^* p_\alpha x p_\alpha)$, and hence we obtain

$$|\langle \xi, v^* x \rangle| \leqslant K^2 \lim(\varphi(p_\alpha x p_\alpha x^* p_\alpha)\varphi(p_\alpha x^* p_\alpha x p_\alpha))^{1/2}$$

Thus we conclude that

$$|\langle \xi, v^*x \rangle| \leqslant K^2(\varphi(xx^*)\varphi(x^*x))^{1/2},$$

which immediately yields statement (i). The proof of statement (ii) is identical to that of the last assertion in [13, Corollary 3.4].

Our main result is the following theorem.

THEOREM. Let E = OH(I), with I an infinite set. Let $F \subset M_*$ be a subspace of the predual of a semi-finite von Neumann algebra M. Then for any completely bounded maps

$$u \colon E \longrightarrow F \quad and \quad w \colon F \longrightarrow E,$$

the composition wv is compact.

Proof. Clearly, this reduces to $I = \mathbb{N}$ if we wish. Let τ be a normal faithful semi-finite trace on M.

We will argue by contradiction. Assume that wv is not compact. Then, by the homogeneity of OH (see [8, p. 18]), we may assume that wv is diagonal or even furthermore that wv is the identity on E. In other words, we may as well assume that u invertible, and that $w = u^{-1}$.

Let $v: E \longrightarrow M_*$ be the same map as u, but viewed as acting into M_* . By Lemma 1, there is a normal state φ such that (1) holds. Let e be the support projection of φ (that is, we have $\varphi(1-e) = 0$ and $\varphi(q) > 0$ for any non-zero projection qin M with $q \leq e$). Then (1) implies that for any x in M, we have $v^*(x(1-e)) = 0 = v^*((1-e)x)$; hence

$$v^*(x) = v^*(exe).$$

Thus if we replace M by eMe and φ by $e\varphi$, we may assume in addition that φ is faithful.

Since $M_* \simeq L_1(\tau)$, we may assume that $\varphi = \psi \cdot \tau$. Fix $0 < \delta < 1$. Let p be the spectral projection associated to ψ with respect to the set $[\delta, \delta^{-1}]$ (for more details, see, for example, [15, p. 338], or also [7]). Note that $\delta \tau(p) \leq \tau(\psi) = \varphi(1) \leq 1$, so that in particular $\tau(p) < \infty$; moreover,

$$p \cdot \psi = \psi \cdot p = p \cdot \psi \cdot p \leqslant \delta^{-1} p.$$
(4)

On the other hand, let $\varepsilon(\delta) = \tau((1-p)\psi) = \varphi(1-p)$. Clearly, (since φ is faithful) we have $\varepsilon(\delta) \to 0$ when $\delta \to 0$. Thus if we set, for all y in E,

$$v_{\delta}(y) = p \cdot v(y) \cdot p, \quad T_1(y) = v(y)(1-p) \text{ and } T_2(y) = (1-p)v(y)p,$$

we have $v = v_{\delta} + T_1 + T_2$. We will show that $T_1 + T_2$ is small when $\delta \to 0$, so that v_{δ} can be viewed as a perturbation of v. Indeed, for x in M, we have $T_1^*(x) = v^*((1-p)x)$ and $x^*(1-p)x \leq x^*x$.

Hence by (1) we have

$$||T_1^*(x)||^2 \leqslant K^2(\varphi((1-p)xx^*(1-p))\varphi(x^*x))^{1/2},$$

and hence by (2)

$$\|T_1\|_{\rm cb} \leqslant K(\varphi(1-p))^{1/4}$$
$$\leqslant K(\varepsilon(\delta))^{1/4}.$$

Similarly, $||T_2||_{cb} \leq K(\varepsilon(\delta))^{1/4}$; hence $||v - v_{\delta}||_{cb} \leq ||T_1||_{cb} + ||T_2||_{cb} \leq 2K(\varepsilon(\delta))^{1/4}$. Let $\varepsilon_0 = ||u^{-1}||_{cb}^{-1}$. Clearly, if we choose δ small enough so that $2K(\varepsilon(\delta))^{1/4} < \varepsilon_0$, we have $||v - v_{\delta}||_{cb} < \varepsilon_0$. Hence, by elementary reasoning (based solely on the triangle inequality in $M_n(M_*)$), the map $v_{\delta} \colon E \longrightarrow pM_*p \subset M_*$ is a completely isomorphic embedding. But now by (4) we have

$$\|v_{\delta}^*(x)\|^2 = \|v^*(pxp)\|^2 \leqslant K^2 \delta^{-1} \|pxp\|_{L^2(\tau)} \|px^*p\|_{L^2(\tau)}.$$

Hence, since τ is *tracial* (this is where we make crucial use of the semi-finiteness assumption),

$$\begin{aligned} \|v_{\delta}^{*}(x)\|^{2} &\leq K^{2}\delta^{-1}\|pxp\|_{L^{2}(\tau)}^{2} \\ &\leq K^{2}\delta^{-1}\min\left\{\|px\|_{L^{2}(\tau)}^{2}, \|xp\|_{L^{2}(\tau)}^{2}\right\} \\ &\leq K^{2}\delta^{-1}\|px\|_{L^{2}(\tau)}^{2}. \end{aligned}$$

By Lemma 2 below, since $\tau(p) < \infty$, this is impossible.

LEMMA 2. With the above notation, let $V: OH \longrightarrow L_1(\tau)$ be a linear map for which there is a in the unit ball of $L_2(\tau)$ and a constant B such that, for any x in M, we have

$$\|V^*(x)\| \leqslant B \|ax\|_{L^2(\tau)}.$$
(5)

Then, for any isometry $J: C \longrightarrow OH$, VJ is completely bounded from C to $L_1(\tau)$. In particular, V cannot be a completely isomorphic embedding.

Proof. By (5), for any finite sequence (x_i) in M,

$$\sum \| (VJ)^*(x_i) \|^2 = \sum \| V^*(x_i) \|^2 \leqslant B^2 \left\| \sum x_i x_i^* \right\|.$$
(6)

By a well-known argument from [1], it follows that $||(VJ)^*: M \longrightarrow C^*||_{cb} \leq B$, and hence VJ is completely bounded. Finally, if V were a completely isomorphic embedding, then VJ (when viewed as acting into the range of V) would be a completely bounded map from C to OH. Hence VJ would (by [8, Remark 2.11]) be in the Schatten class S_4 , and a fortiori would be compact. But then J itself would have to be compact, which is absurd.

Remarks.

(i) Junge [5] proves that OH_n embeds completely isomorphically (with uniform constants) into the predual of a finite-dimensional (and hence semi-finite!) von Neumann algebra. More precisely, he proves that there is C > 0 such that, for any n, there are an integer N, a subspace $F_n \subset M_N^*$ and a (complete) isomorphism u_n : $OH_n \longrightarrow F_n$ such that $\sup_n ||u_n||_{cb} ||u_n^{-1}||_{cb} \leq C$. It would be interesting to estimate N as a function of n.

458

(ii) The non-existence of embeddings of OH into M_* when M is commutative is rather easy to show. In that case, even the finite-dimensional case (as in the preceding point) is ruled out (see [9] for related facts). The paper [6] contains stronger results in the same direction.

(iii) The above theorem remains valid with essentially the same proof for $E = (R, C)_{\theta}$ (with $0 < \theta < 1$) in the sense of [10], but this requires the generalized version of Lemma 1 that is proved in [12]. This implies that, for any $1 , the Schatten classes <math>S_p$ (and hence most non-commutative L_p -spaces) do not embed (completely isomorphically) into the predual of any semi-finite von Neumann algebra.

(iv) Let N_* be the predual of the injective factor of type III_{λ} with $0 < \lambda \leq 1$, and let M be a (semi-finite) von Neumann algebra of type II_{∞} . Junge proved that OH embeds completely isomorphically into N_* . Hence Theorem 1 implies that N_* does not embed completely isomorphically into M_* . This gives a somewhat partial answer to the (still-open) question raised in [4] of the existence of an isomorphic (in the Banach space sense) embedding of N_* into M_* .

References

- E. EFFROS and Z. J. RUAN, 'The Grothendieck–Pietsch and Dvoretzky–Rogers theorems for operator spaces', J. Funct. Anal. 122 (1994) 428–450.
- 2. E. EFFROS and Z. J. RUAN, Operator spaces (Oxford Univ. Press, Oxford, 2000).
- U. HAAGERUP, 'The Grothendieck inequality for bilinear forms on C*-algebras', Adv. Math. 56 (1985) 93–116.
- U. HAAGERUP, H. ROSENTHAL and F. A. SUKOCHEV, 'Banach embedding properties of noncommutative L^p-spaces', Mem. Amer. Math. Soc. 163 (2003).
- 5. M. JUNGE, 'The projection constant of OH_n and the little Grothendieck inequality', preprint, 2002.
- 6. M. JUNGE and T. OIKHBERG, 'Homogeneous Hilbertian subspaces of L_p ', to appear.
- 7. E. NELSON, 'Notes on non-commutative integration', J. Funct. Anal. 15 (1974) 103-116.
- G. PISIER, 'The operator Hilbert space OH, complex interpolation and tensor norms', Mem. Amer. Math. Soc. 122, 585 (1996) 1–103.
- G. PISIER, 'Dvoretzky's theorem for operator spaces and applications', Houston J. Math. 22 (1996) 399–416.
- 10. G. PISIER, 'Non-commutative vector-valued L_p -spaces and completely *p*-summing maps', Astérisque 247 (1998) 1–131.
- G. PISIER, Introduction to operator space theory, London Math. Soc. Lecture Note Ser. 294 (Cambridge Univ. Press, 2003).
- 12. G. PISIER, 'Completely bounded maps into certain Hilbertian operator spaces', to appear.
- G. PISIER and D. SHLYAKHTENKO, 'Grothendieck's theorem for operator spaces', Invent. Math. 150 (2002) 185–217.
- 14. H. P. ROSENTHAL, 'On subspaces of L^p', Ann. of Math. 97 (1973) 344–373.
- 15. S. STRATILA and L. ZSIDÓ, *Lectures on von Neumann algebras* (Editura Academiei, Bucharest; Abacus Press, Tunbridge Wells, 1979).
- 16. M. TAKESAKI, Theory of operator algebras I, II, III (Springer, New York, 2002).

Gilles Pisier Texas A&M University College Station, TX 77843 USA and Université Paris VI Equipe d'Analyse, Case 186, 75252 Paris Cedex 05 France pisier@math.tamu.edu