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Translation and dilation invariant subspaces
of L*(R)

By A. Katavolos at Athens and S. C. Power at Lancaster

Abstract. The closed subspaces of the Hilbert space L?(R) which are invariant
under multiplication by H*(R) functions and the dilation operators f(x) — f(sx),
1 <5< oo, are determined as the two parameter family of subspaces L?[—a,b], 0 < a,
b < oo, which are reducing for multiplication operators, together with a four parameter
family of nonreducing subspaces. The lattice and topological structure are determined and
using operator algebra methods the corresponding family of orthogonal projections, with
the weak operator topology, is identified as a compact connected 4-manifold.

1. Introduction

An important result in operator function theory, usually referred to as Beurling’s
theorem, asserts that the closed subspaces of L?(R) which are invariant for multiplication
by functions in H* (R) are either of the form L?(E) for some Lebesgue measurable subset
E or are of the form uH?*(R) for some unimodular function u in L*(R). See Lax [10],
Helson [7] or Nikolskii [14] for example.

Using Beurling’s theorem and additional arguments, involving cocycles of unimo-
dular functions and the structure of singular inner functions, we have recently determined
the H” (R)-invariant closed subspaces which are also invariant under right translations.
In addition to the obvious subspaces L?([t, 0]) and e**H?(R), for ¢,/ real, there is the
unexpected family of jointly invariant subspaces,

{e ™™ HA(R) : 5> 0,1 € R},

Moreover, by analysing the Hilbert-Schmidt operators in the w*-closed operator algebra
fpp generated by H* (R) and the right shifts—this is one formulation of the Fourier binest
algebra of [9]—it was found that the lattice ¥#p of (projections onto) these jointly invariant
subspaces is compact in the strong operator topology and is homeomorphic to the unit disc.
The interior of this disc corresponds to those subspaces with parameter s > 0.

This research was supported by grant No. 70/4/2568 (University of Athens) and by a London Mathe-
matical Society collaborative research grant.
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In what follows we analyse the jointly invariant subspaces arising when the
right translation semigroup is replaced by the unitary dilation semigroup {V;: t = 0} where
Vif(x) = e"?f(e'x). From the perspective of composition operators determined by bi-
holomorphic automorphisms of the upper half plane this amounts to replacing a para-
bolic 1-parameter semigroup by a hyperbolic 1-parameter semigroup.

Once again we find that there is a surprisingly rich topological and lattice theoretic
structure as well as interesting connections with operator algebras and function theory.
We show that in addition to the trivial subspaces and the obvious subspaces L?[—a, b], for
a,b = 0, there is the four parameter family

{u070(x)’x’isei).xel',ux’lHZ(R) . ;L,/,l Z O,SE R,B e Sl}

where 1 ¢(x) is constant and unimodular on R, and R_ taking values 1 and 0 respectively.
Moreover this collection accounts for all the hyperbolically jointly invariant subspaces and
the lattice ¥ of orthogonal projections onto these subspaces forms a compact connected
4-manifold in the strong operator topology. To obtain the connectedness of ¥ we deter-
mine various strong operator topology limits of orthogonal projections and in particular we
find that

1

iAX L iAx~
[e" e

HA(R)] — [L2[-1,1]],

(x| e H*(R)] — [L*[~a,0]],

where [K| denotes the orthogonal projection onto K, where 4 — oo, and where (s,, 4,) is
an appropriate sequence, for a > 0, tending to (o0, c0). The arguments to determine these
seemingly classical facts are rather deep; they require the main structure theorem for hyper-
bolically invariant subspaces, the compactness of the projection lattice, indicated below,
and additional arguments building on the standard model of Halmos [6] for a pair of pro-
jections in generic position.

To determine that the projection lattice is compact we consider the w*-closed
nonselfadjoint algebra, denoted .o, generated by the dilation semigroup and H*(R). This
algebra is analogous to the Fourier binest algebra and has similar properties; it contains no
nontrivial finite rank operators and is antisymmetric. Identifying Hilbert-Schmidt operators
in o7, which are related to pseudodifferential operators with bianalytic symbols, we obtain
(as in [9]) a sequence of such operators which tends strongly to the identity. From this and a
result of Wagner [21] the compactness of the projection lattice follows.

We have indicated above the results of Sections 2, 3 and 4. In Section 5 we
determine the lattice structure of the hyperbolically invariant subspaces and consider asso-
ciated operator algebras and in Section 6 we determine the isometric automorphism group
of o7, as R? x S'. In fact the hyperbolic algebra .7, is doubly generated and the classical
lifting theorem of Sz-Nagy and Foias [19] can be applied to show that a contractive w*-
continuous representation of .o/, is completely contractive. This is used to show that the
isometric automorphisms of .o7, are precisely the unitary automorphisms and these are
identified explicitly.
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In the final section we complete the identification of .# as a topological manifold and
determine the inclusions

PP

where & is the closed set arising from the extended parameter range 4, u € R and & is the
manifold & U #*. In particular £ is homeomorphic to a topological identification space
(B? x §')/~ where B is the closed ball of R* and where circles on the boundary of B> are
collapsed. The lattice .¥ may be viewed as a submanifold corresponding to a deformed
hemisphere of B*. The = 1 sections of these inclusions bear an analogy with the corre-
sponding inclusions

Ly < Lrg < Lrp

for the Fourier binest algebra. We show that %y is a foliated 2-sphere, which we refer to
as the Fourier-Plancherel 2-sphere, whilst the section #y_; is a topological 3-sphere.

The results obtained here, and in [9], suggest some interesting directions in the
theory of nonself-adjoint operator algebras. Firstly they suggest the development of a gen-
eral theory of what one might refer to as Euclidean lattice algebras, meaning those operator
algebras whose invariant projection lattices, with the strong operator topology, are Eucli-
dean manifolds. This context contrasts with the fact that extant weakly closed operator
algebras generally have exotic invariant subspace lattices when these lattices are not trivial,
as the following table suggests.

algebra .o/ lattice Lat .o/

von Neumann algebra continuous geometry [12], [13]

commutative subspace lattice algebra | increasing sets [2]

free semigroup algebras generalised inner functions [5]

Bergman shift algebra contains copy of Proj(#) [3]

The simplest algebras for which there is a topological injection Lat.«/ — R” come from the
Volterra nest algebra .o7,; the n-fold direct sum .oZ, ® - - - @ .o, has lattice homeomorphic to
the product [0, 1] x --- x [0, 1]. It would be interesting to determine which manifolds are
attainable by direct-sum-indecomposable algebras and how the order topological structure
relates to the operator algebra structure.

There is, furthermore, an additional Lie group perspective. The analysis of the
hyperbolic algebra and the Fourier binest algebra can be viewed as part of a theory of
Lie semigroup algebras. By this term we mean a weak operator topology closed operator
algebra generated by the image of a Lie semigroup [8] in a unitary representation of the
ambient Lie group. It is the specific setting of a non compact locally compact group and an
indecomposable representation which is of relevance here. In contrast the free semigroup
algebras of Davidson and Pitts [5] derive from discrete groups. It is the ax + b group, with
the Lie semigroup for ¢ = 0 and b = 0 that provides the hyperbolic algebra studied here.
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The Fourier binest algebra on the other hand is obtained from the Lie semigroup of the
3-dimensional Heisenberg group given by
1 1 ¢
I oul, Az0,uz0.
1

For these new algebras and perspectives many natural and fundamental structural
problems are ready-to-hand.

2. Hyperbolically invariant subspaces

Let {V;:t=0} and {M;:A=0} be the continuous semigroups given by
the unitary dilation operators (V,f)(x) = e’/?f(e'x) and the multiplication operators
(M, f)(x) = e™f(x) for £ in L*(R). In this section we determine the lattice

¥ =Lat{M;,V,: 1 =20,t =0}
of all (closed) subspaces invariant under both semigroups.

Since {M,: 1 =0} generates {M;:he H”(R)}, the algebra of multiplication
operators, for which M, f = hf, we see that an invariant subspace K in % is necessarily
invariant for { M, : h e H*(R)} and so either K is reducing for the semigroup {M; : 1 = 0}
and hence has the form L?(E) for some measurable subset of R, or K is simply invariant. In
the latter case by Beurling’s theorem, indicated in the introduction, we have

K = uH*(R)
for some unimodular function » in L*(R), whilst in the former case, since K must also be
invariant for the dilation semigroup, it follows that K = L?[—a, b] for some 0 < a,b < .
In the latter case we shall derive the nature of the unimodular function u.
First we simply present a four parameter family of unimodular functions and confirm
that they provide jointly invariant subspaces for the two semigroups. Then we set about the

more technical argument to establish that these are the only such functions.

Define g, ¢, for s € R and 0 a unimodular scalar to be the function uy(x)|x|”, where
uy is the 2-valued unimodular function given in the introduction. Explicitly,

exp(islog|x]), x>0,
gs,e(X)={ p(islog|x|)

Oexp(islog|x|), x<O0.
Then g, ¢ is a unimodular function in L% (R) for which
Vilgs.of) = €™'gs.0Vif -

Since V; H?(R) = H?(R) it follows that V;g; yH*(R) = g, oH*(R), for all s € R and || = 1.
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Let u, g be the two-valued function on R given by

1, x>0,
ts,0(x) = 0e’™, x<0.

Then g, pH*(R) may be more simply described as u oH?(R). To see this note that

9s,0(x) = s 9(x)gs(x)
where g, is the invertible function in H* given by
gs(z) = exp(islogz) = z*
where log z is defined on C\{Imz < 0} with principal value of the argument.
Consider now the unimodular functions
e;_,ﬂ(x) _ ez’(ixﬂzx")

where /, u are real. Note that for 2 = 0 and u < 0 this function is an inner function. In view
of the commutation relation

ViM) = M, Vi,
and the fact that H?(R) is a reducing subspace for the unitary V;, we have
I/tej_”qu(R) — ei}.e’xel',ue”x*IHZ(R) — e/l”u(x) (ei/'{(e’—l)xeiﬂ(e’/_l)x’l )HZ([R)

For ¢, 7,0 = 0 we have A(e’ — 1) = 0 and p(e~" — 1) <0 and so it follows that e; ,H?*(R)
is an invariant subspace for {V; : ¢t = 0}.

It has been shown that the four parameter family of subspaces
K00 = ts pe  H*(R), seR,|0=1,120,uz0,

is a family of closed subspaces which are invariant for {V; : # = 0} and simply invariant for
{MZ : )V ; 0}

Theorem 2.1. Let K be a nonzero closed subspace of L*(R) which is invariant
for the dilation semigroup {V; :t = 0} and simply invariant for the Fourier shift semigroup
{M; : A = 0}. Then K = K g, for some L, = 0, real s and unimodular complex number 0.

Proof. By Beurling’s characterisation of simply invariant subspaces we have
K = uH?(R) for some unimodular function u in L*(R). For real ¢ the subspace V;K is

also simply invariant for {M; : 1 = 0} since

MV, K =ViMe,K s VK
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and e~'A — oo as 4 — oo. Therefore V,K = ¢, H*(R) for some unimodular function ¢, in

L*(R). By assumption, for > 0, V,K < K and so ¢, H*(R) < uH?*(R) so that ¢,i is an
inner function; in other words V;K = wuH?(R) for some inner function w;.

Since we also have
VK = ViuH?*(R) = u(e'x)V,H?*(R) = u(e'x) H*(R)
it follows that
wi(x)u(x) = cu(e'x)
for some unimodular constant ¢,. Replacing w,(x) by ¢w,(x) we may assume that there

is a chain {w, : t = 0} of inner functions for which w,(x)u(x) = u(e’x) for almost every x
(depending on ¢). For positive s, we have

u(es-‘rtx) B u(eS-i-tx) u(esx)

u(x)  u(esx)  u(x)

Weie(X) = = w(e’x)wy(x)

for almost every x, and so we obtain a cocycle equation for the inner function chain. This
implies that the inner function w,(e*x) divides wy,(x). Since V,K < VK when r > s+t
the function wyy, divides w, and so, in fact w;(e*x) divides w,(x) if r > s + ¢. Thus for fixed
r > 0 there is an inner function A, such that w,(e’z)hs(z) = w,(z) for s < r — ¢. It follows
that if w,(z) has a zero in the upper half plane then w,(z) has a radial line segment of zeros,
which is impossible.

Thus w, is a singular inner function and we can write, for some unimodular o, some
nonnegative f and some singular measure u (depending on ?),

; 1 1
wi(z) = ae’ exp (i@[sszjz o

d,u(s)) (Imz > 0).

Moreover, the support of the singular measure for w, must be concentrated at 0. To see
this recall (see for example [9]) that if w, divides w, and v is the singular measure corre-
sponding to w,, then u is dominated by v. So here we deduce that u(e’.) is dominated by v
for all 0 < s < r — ¢. But now the measure 1, on R\{0} defined by

r—t

to(A) = J#(eSA)dS

is absolutely continuous with respect to Lebesgue measure on R and at the same time
is dominated by the singular measure (r — ¢)v. Thus g, = 0 and u(e*4) = 0 for almost all
s € (0,r — ). From this it follows that the support of x is contained in {0}.

We have shown then that w; has the form

wi(x) = a(t)e[ﬁ(f)xefiy([)xfl
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where «(7) is unimodular and f(¢), y(¢) are nonnegative. From the cocycle identity

Wyt (x) = wi(e*x)wy(x)
we obtain

(s 4 £)eBH0xg 0N () IB0E i) () B0 g7l

and so

a(s + 1) = a(s)a(t),

B(s+ 1) = B(r)e” + B(s),

Ys+1) =p(n)e” + y(s).

Since w, divides w, whenever ¢ < r it follows that the functions f(¢), y(¢) are increasing, and
so it follows from the equations above that £(¢) and y(¢) are differentiable.

To see this note that since f is increasing on R, it is differentiable there, almost
everywhere, by Lebesgue’s Theorem. The functional equation shows that if s is a point of
differentiability then so is s + ¢. Hence f is differentiable everywhere.

Setting s =0 in the functional equation shows that f(0) = 0. Differentiate the
functional equation with respect to s and set s =0 to obtain f'(f) = B(¢)e® + 4 where
/. = B'(0). This equation has unique solution f(7) = A(e’ — 1) (since f(0) =0) and 4 =0
since f3(¢) = f(0) = 0 for ¢t = 0. The argument for y is similar. Thus we have

B(t)=(e"=1)i, y(t)=(1—-e"u
for some A, u = 0.
Furthermore, since

u(e'x) |

u(x)

= Wt(x) — O((t)ei(e’,l),lxefi(],e—z%ux,

and the quotient is measurable in (x,7) and continuous in x for each fixed ¢, it follows
that the quotient, and hence o, is measurable in 7. Since a(s + 7) = o(s)a(z) it follows that
a(t) = €' for some real number .

For each ¢ = 0 we now have the equality

X . S —l —1
) — emtet(c l)ﬂ.xel(e Dpx

for almost every x. Set

ui (x) = exp(iolog|x|)e; ,(x)
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and observe that this equation implies that

X) _ uj(e'x)
u(x)  w(x)

for almost every x, for each = 0. We conclude that the unimodular function v = wui
satisfies the equation v(e’x) = v(x) for almost every x for each ¢ > 0. This in fact means
that the equation holds for almost every x for each 7 in R. By a standard argument (using
Fubini’s theorem)" for almost every x we have the equality v(e'x) = v(x) for almost all 7.
It follows now that v(7) is a two-valued function, constant on R, and R_. Thus, up to a
multiplicative unimodular constant, the function u = vi; has the form g, ge; , and hence
K =K; ¢, . as required. []

It follows from the theorem above that the lattice ¥ of all (closed) subspaces of
L?*(R) which are invariant for both semigroups is the disjoint union

&L = {KS,H,).HH ‘S E Rﬂ |0| = 13/1 é Onu g 0} Y {Lz([_aab]) : aab € [Oa OO]}

and so .Z is parametrised by the set ([Ri2 x R x 8" U ([0,1)%), theset {(a,b) : 0 L a,b < o0}
being replaced by the square [O 1] In Section 4 we consider . as a topological space of
projections and show the way in which this square gives a compactification of Ri x Rx S

3. Approximate identity and compactness

Let o7, be the w*-closed algebra generated by the set {M,, V;: 1= 0,7 = 0}. Note
that the dilation and multiplication groups provide a unitary representation of the ax + b
group by means of the correspondence

a b
|:0 1:|_>MbVloga

for a > 0 and b real. Thus .o/, is a Lie semigroup algebra for the Lie semigroup with
az1,b=20.

Plainly, the lattice Lat.oZ, of invariant subspaces for .o7, is equal to ¥. We shall
show that %, with the strong operator topology, is compact. To see this we first show that
the algebra .o/, contains a contractive approximate identity consisting of compact operators
in the sense of Proposition 3.2. This we do by exploiting a connection with the Fourier
binest algebra given in the next lemma.

D Let f(x,y)=|v(xy) —v(x)]. By hypothesis, for each y >0 there is a co-null set 4, = R such
that f(x, y) = 0 whenever x € 4,. Thus Jf x,y)dx=0forall y>0andso [ [ f(x,y)dxdy=0.By Fubini’s
R, R
theorem, [ [ f(x,y)dydx =0so that J" f(x,y)dy =0 for all x in a co-null set. Pick x; > 0 and x, < 0 such
R R,
that ff Xi,y)dy =0 for i=1,2 to conclude that f(x;, ) =0 for almost y > 0 and hence v(x) = v(x;) for

dlmost all x > 0 and v(x) = v(x,) for almost all x < 0.
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We use the following notation. Let F be the Fourier transform on L?(R) such that for
suitable functions f

(Ef)(x) = T (s) ds,

1 0
— | e
V2n —l£c
and for ¥ in L*(R) define the Fourier multiplication operator Dy, = FM,F*. Also for real
A write D, for the right translation operator D, = FM,F*.

Lemma 3.1. The algebra </, contains a subalgebra unitarily equivalent to the
w*-closed algebra € on L*(R) ® L*(R) generated by the set of operators

{M;@e "M, D_,®D_,:t=0,s € R}

Proof. Recall that gy(x) = x® is in H*(R) and so belongs to the w*-closed linear
span of {e* : /= 0}. Let # be the w*-closed algebra generated by {M,,, V;:se R, t = 0}.
It follows that % is contained in .o7;,. We now exhibit a unitary equivalence between the
generators of 4 and those of €.

Define the unitary operators C.:L*(R,) — L*(R) and C_: L*>(R_) — L*(R) by
(Cof)(x) = e"f(e¥) and (C_g)(x) = e*/>g(—e¥), and define C: L*(R) — L*(R) ® L*(R)
by Cf = (C.f,) @ (C_f_) where f are the restrictions of f to the half-lines R . A cal-
culation shows that

CV,=(D_,®D_,)C.
Also, on L*(R,) we have C; M, = M,C, while on L*(R_), C_M, = e " M,C_. Therefore
CM,, = (M, ® e " M,)C.
Thus we obtain the desired unitary equivalence CAC* = €. [

Recall that the Fourier binest algebra is generated by right translations and H*(R)
and so contains the pseudodifferential operators MyDy for ¢,y in H*(R). The unitary
equivalence above allows us to make a connection between these operators and operators
in .7, and this enables the construction of a contractive approximate identity of Hilbert
Schmidt operators.

Proposition 3.2. The algebra <7}, contains a sequence of Hilbert-Schmidt contractions
that converges to the identity operator in the w*-topology.

Proof. By the lemma, it suffices to produce such a sequence in the algebra %. Note
that if /'€ H*(R) then there is a sequence {p,,} of analytic trigonometric polynomials
that converge to f in the w*-topology of H*(R). Furthermore the functions ¢,, given by
qm(z) = pm(z +in) converge weak star to the function / in H* (R) given by /(z) = f(z + in).
Since e " M is the operator of multiplication by the function expis(z + in), the operators
M, @ M,, belong to the w*-closed linear span of { M @ e™*"M,, s € R} and hence so does
the operator M, @ M. Also if g = f, then g = w*-lim p,, and since p,, is an analytic trigo-
nometric polynomial the operator D, belongs to the w*-closed linear span of {D_;: t = 0}.
It follows that the operator M;D, @ M;D, belongs to .
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Now consider the H*(R) functions

in

ful2) = z+in

Note that the sequence f, is uniformly bounded and tends to 1 uniformly on compact
subsets of the upper half-plane. It follows that the corresponding sequence of operators
{My;D,, ® M), D,,}, where hy(z) = f,(z + ir) and g, = f,, is a norm bounded sequence in
% converging weakly, and hence ultraweakly, to the identity operator. Finally recall (for
example from [9]) that if /', g € L*(R) n L?(R) then the operator M D, is a Hilbert-Schmidt
operator. []

We can now use an argument of Wagner [21] to obtain the compactness of the lattice
% of projections with respect to the strong operator topology. This fact will be needed in
the next section and for completeness we give a proof.

Proposition 3.3.  The lattice ¥ is compact in the strong operator topology.

Proof- Suppose that & is not strongly compact. Then, since it is contained in the
unit ball of ;@(LZ([RE)) which is compact and metrisable in the weak operator topology, there
is a sequence { B, } = ¢ which converges in the weak operator topology to a non-projection
QO which is a positive contraction.

For each compact operator K € .o/, we claim that KQ = QKQ. Indeed, for each
f,g € L*(R), since K(P, — Q)f — 0 in norm, we have

KBK(E = O)f, 90| = KK(B = Q) f, Bugy| = |IK(B, — Q) f ||| Bagl] — 0.
But P,KP, = KP, since K leaves P, invariant and so
PK(P, — Q) = KP, — P,KQ — KQ — OKQ
in the weak operator topology. It follows that KQ = QKQ as claimed.
Now if {K,,} < .o, is a sequence of compact operators tending to the identity opera-
tor in the strong operator topology then we obtain that Q% = lim QK,,Q = lim K,,Q = O,

so that Q is a projection contrary to assumption. In view of Proposition 3.2, . must be
strongly compact. []

4. The connectedness of ¥
We now examine the topology of ¥ and establish the boundary limits mentioned

in the introduction. It will follow that the closure of the family of projections for the sub-
spaces

Kv,f),/l,,u = u070(x)|x|iseilx€i,ux*1HZ(R)
parametrised by R x S! x Ri, is a connected compact 4-manifold.

Continuity at a point (s, 0, A, 1) is elementary as the next proposition shows.



Katavolos and Power, Subspaces of L*(R) 111

Proposition 4.1. (i) The map (a,b) — [L*([~a,b])] is strongly continuous at each
point (a,b) in [0,400] x [0, 400].

(ii) The map (s,0, 2, 1) — (K 0,5, is strongly continuous at each point (s,0,,u) in
RxS"xR, x R,.

Proof. The first assertion is obvious. For the second, if P = [H?(R)], then
(K04 = Us,oT;, . PT; #US*{,, where U, g and T , are the commuting unitary operators of
multiplication by g, 9 and e; , respectively. As these are unimodular functions and

s 9s.0(X) = go.4(x), o Jm e u(X) = e m(x)

for (almost) all x € R, it follows readily that

lim U-‘»H = UUA(ﬁ’ lim T)..,u = Tl,m
(5,0)=(0,4) ' ()= (lm)

strongly. Since these are unitary operators, we conclude that if (s, 0,, 14, 1t,) — (5,0, 4, 1)
and W, =U;, 9, T;,.4,, W= UsoT;,,, then W, — W strongly, and hence W, PW,” — WPW*
strongly, and (ii) follows. []

We now turn to the limiting behaviour where s, 6 are fixed and A, 1 tend to infinity.

Proposition4.2. If P, , = [Ko.1.; ] = le; ,H*(R)], then lim P, ; = E strongly, where
; 1 Jm
Ey = [L([-1,1])).

Proof. Let d be any metric inducing the strong operator topology on .. If the
conclusion fails, there exists ¢ > 0 such that for each n € N there exists 1, > n with

d(P/l,,,/l,,yEl) ; E.

By the compactness of ., the sequence P,, ;, has a subsequence, {Q,} say, that converges
strongly to some projection Q € . It follows that

d(Q7 El) =&

We claim that if U is the unitary operator defined by (Uf)(x) = x~'f(x~!), then
UQ+U* = Q. Indeed since e;,; 1s unimodular we see that Pj,1 is the prijection onto e, , H?>.

But U commutes with multiplication by e; ;, hence transforms e; ;H? to e; ;H 2 and so
UP;-, U* = P, ,. Thus each Q, satisfies 0, = UQ;-U*, hence so does Q, proving the claim.

This shows that Q cannot be of the form Q = [L?*([~a,b])] for some a,b e R,.

-1 1 .
Indeed, since U(L?*([~a,b])") = L2<[— —]) the claim gives a = b =1 and so Q = Ey,

contrary to hypothesis. a’b

Thus by Theorem 2.1 the range K of Q must be of the form K = g, ge; ,H*(R)

for appropriate s, 0,4, u. Now K+ = g, ge; ,H*(R) and U transforms multiplication by
gs,0€;,, to multiplication by g_g e, ;. Since these multiplication operators are unitary
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and UH? = H?, we obtain UK = g_, e, ,H*(R). By the claim, we must have UK+ = K
and so

g—s,(?e/t,/le(R) = Js, Hel,qu(R)~
This implies that g ge;, g _; g€, 1s a constant and hence gives 4 = 4 and s = 0.

We conclude that Q,, — [go,ge,, ,H*(R)] for some p = 0. Applying to this the unitary
operator of multiplication by e_, _, we see that there exists a sequence u, — oo such that

!/
By, — Q

where Q' is the projection onto go oH 2(R). It follows that ViPy, 1, Vot — ViQ'V_4, or
Pgl:uweit#n - Ql

(since Vi(go,oH 2) = go.9H?). Now recall that the projection P;, « decreases as A increases
and increases as u increases. It follows that if # > 0 then

By, Z Peiy, Z Petgy,ein,-

But given any A = 0 we can find # = 0 such that e’u, > u, + 2 = y,, for all (large enough) n,
and therefore

Pﬂmﬂn = PunH-,un 2 Pe‘#n-,ﬂn = Pe’#n.e*’/tn-

Since Py ey, — Q' and P, , — Q' it now follows that P,.;,, — O'. But
Putin, = MiPy, ,, M; and thus

M;Q'M; = lim M;P, , M} = Q'
n— o0
so that e;go pH*(R) = go oH*(R) for all 2 = 0. This is a contradiction and completes the
proof. []

Proposition 4.3.  The strong operator topology closure of the set {P, , : A = 0,u = 0}
is{P;,:2A20,u=0} U{E, : 0 <a<+o0}, where E, denotes the projection onto L*([—a, a]).

Proof. By the previous proposition we have )lim P; , = E; strongly, and hence
A — 00
lim VtP/l,/l V_, = VtEl V_,.
A— 00 '

But V,P; ;V_; = P.; .+; as observed earlier, while V,E|V_, = E, where a =e~'. Thus
)lim P, 4 = E, and Alim P; .2, = E. when ¢ > 0.
.— 00 — o0

Now suppose that a sequence P, , converges to some projection Q. Passing to a sub-
sequence, we may assume that the sequence (4,,4,) converges to some (4, ) € [0, +00]”.

Suppose first that lim% = 0. Then for all ¢ > 0 there exists n. € N such that ac

n n
n = n.. Then we will have u, < c?2, so

< ¢? for

P =P, 2

Ay My =
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eventually. If 4 € R then Q = P, o by Proposition 4.1. If not,
Q = limPln,,u” é 1imPAmL.z,1n = Ec~

Since ¢ > 0 is arbitrary and ing E. =0, we obtain Q = 0. Similarly if lim% =400 we
c> n
conclude that Q = Py, or Q = 1.

n

It remains to consider the case when 4 — +oo and the sequence <,u_) has a sub-
sequence converging to some a € (0, +00). Then for all ¢ > 0 we have "

(a—&)An < p, < (a+e)ly
for infinitely many n € N so that
P a—e)in = Pryu, = Py (ate)n

for infinitely many n and therefore E ;= < Q < E ;7. Since ¢ is arbitrary, this yields
Q = E ;; and completes the proof. []

Noting that the unitary operator of multiplication by g , transforms the subspace
gs.0e; H*(R) to e; ,H?*(R) and leaves L?[—a, a] invariant, it follows immediately from the
proposition that for each pair (s, 0) the set of projections

P0 = {[gs.002,H*(R)] : 2,10 2 0} U {[L?[~a,a]] s a 2 0} L {[L*(R)]}

with the strong operator topology, is homeomorphic to a closed disc or, more intuitively,
a closed triangle as indicated in Figure 1.

{0}
L?[—t,1] 1
LA (R) It H*(R)
Figure 1

We now turn to the limiting behaviour as A, s tend to infinity with 0, u fixed.
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Proposition 4.4.  The strong operator limit lim [ug  H?*(R)] is [L*(R_)].
§—00
Proof.  Recall that

1, x>0,
ts,1(x) = e, x=0.

If we denote [L?>(R_)] by E_ and [H?*(R)] by P, then the operator of multiplication by u |
is E+ + e E_. Since multiplication by a constant leaves any subspace invariant, if s > 0 we
have

s 1 H*(R)] = [(E* + e™E_)H*(R)] = [((1 +6)e "E~ + (1 +6)E_) H*(R)]
= [(OE* + (1 +0)E_)H*(R)] = (6] + E_)H*(R)]
where we have chosen 6 >0 so that (1+0J)e™ =0. Therefore, noting that

E_AP=E'AP=E_AP-=EAP-=0, it suffices to prove the following general
fact:

Proposition 4.5. Let E, P be two projections on an infinite dimensional Hilbert space
H suchthat EA P=E+* A P=E A PY = EX A P+ = 0(that is, the pair (E, P) is in ‘generic
position’). For 0 > 0, denote by Qs the projection onto the range of the operator (E + 6I)P.
Then (I;ir% Qs = E in the strong operator topology.

Proof.  After a unitary equivalence we may assume that the pair (£, P) has the form

I 0 Cc? CS
E = P =
( 0 0> ’ ( cs S? >
where C, S are positive injective contractions and S> = I — C?2. This well-known model for
a projection pair in generic position is discussed in Halmos [6].

C 0
y=(§ o)
Hence [P#|=[X#]| and therefore [(0] + E)P#| = [0l + E)XA#] for 6 >0, since
(oI + E) is invertible. Thus Qs = [(0 + E)P#'| = [ZsH'] where

Note that P = XX * where

Zy= (6] + E)X = ((”‘S)C O).

oS 0

If Zs = V;|Z;| is the polar decomposition, then

. 14+0)2C?4+6%S2 0 14+28)C2+6%T 0
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Noting that Ws = (1 + 25)C? + 621 is positive and invertible, we obtain

(1+o)cw; ' 0o
Vs = iy .
SSW; 0

Now the projection Qs onto the range of Zs equals VsV and so

14+0)C2w; ! (1+46)0CW; 'S
05 = o 0 :
(L+0)pswylc  o*Swyls

The (1,2) entry of this matrix equals
Fs =6(1+6)CSWy .

If we represent C (resp. S) as (multiplication by) the non-negative function c(x) (resp.
s(x) = v/1 — ¢%(x)) on a suitable L*(u) space, then Fj is represented by the function

o = 9L +0)e(x)
ol )_52s2(x)+(1 +0)’c2(x)’

Since (lsin% Jf5(x) = 0 pointwise and 0 < f5(x) < 1 for all x and J, it follows that lim F; = 0

strongly. Indeed, for each vector &, we have
1F5&]1* = [ 1s(x)E@)I du)
which tends to 0 as 6 — 0 by dominated convergence.
Similarly the (2,2) entry of Qs equals
Gs = 0282((1 +28)C* +3%1)"!
which is represented by the nonnegative function

52s2(x) - 52s2(X)
O+ (1+28)c2(x) ~ (1+25)c2(x)’

gs(x) =

Since C is injective, ¢(x) # 0 for almost all x, and so %in(l) gs(x) = 0 for almost all x. But

also gs(x) < 1 for (almost) all x and J, and hence gin% Gs = 0 strongly.

Finally, the (1, 1) entry of Qs equals

2 -1
L4 62C (1 +62C 40280 = [c2 40 _§2) ¢
2
(14+9)

which tends to I strongly. [
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Proposition 4.6. The closure of the set {[us1e;0H*(R)]: 2= 0,5 = 0} in the strong
operator topology is {[us1e; 0 H*(R)] : 4= 0,5 = 0} U {[L*([~a,0])] : 0 < a < +o0}.

Proof.  Let (sn, Ay) — (+00, +0o0) and suppose that lim[gy, 1¢;, 0H*(R)] = [K]. Note
that since ¢;, oH*(R) < H?*(R) we have "

gSns lelln»OHz(R) g gSna IHZ(R)

But by Proposition 4.4 we know that lim[g,, ;H?*(R)] = [L*(R_)]. It follows that

K < L*(R.) and, so (by the F. and M. Riesz Theorem) K cannot be of the form
gs.0e;. . H?(R). Since K € Z, it must be of the form K = L?([—a,0]) for some a = 0.

We now prove that all possible values of the parameter a arise as limits of such
sequences. For brevity, we write O, ; for the projection onto gy e, 0H 2(R).

Let ¢ be a unit vector in L*(R_) which is separating for the family of projections
[L?[—a,0]] and let %, be the set of projections Q; ; with |s| + |4 = n. Since ), is path con-
nected (see Proposition 4.1) it follows that if we define F: ¥ — [0, 1] by F(L) = {L{,{D,
then F(%,) is connected. By Proposition 4.1 the real number 1 belongs to the closure of
F(%,). Since 0 also belongs to the closure it follows from connectedness that F(%,) = (0, 1)
and hence that F(%,) = [0, 1] (for the closure of %, in the strong operator topology). By the
compactness of .¥ we have

F(@) = (@) =)

n=1
and this identity completes the proof. [
Corollary 4.7. LetOe S'.

(i) The strong operator limit lim [ug gH*(R)] is [L*(R_)], while lim [us oH?*(R)] is
[L2(R4)). o o

(ii) For all p=0, the set of limit points of sequences ([u, ge;, H*(R)]) as
(Spy An) — (00, 400) is {[L*([~a,0])],a = 0} U {[L*(R_)]}, while if (s, n) — (—o0,+00)
the set of limit points is {[L*([0,5])],b = 0} U {[L*(R)]}.

(ili) For all 220, the set of limit points of sequences ([us, ge), H*(R)]) as
(5ns ) — (20,420 ) s { [L2((— 00, 6] b 2 0} L {[L2(R_) Y while if (50 4,) — (—o0,+20)
the set of limit points is { [L*([—a,+0))],a = 0} U {[L*(R)]}.

Proof. We may write u, 9 = ug 119 9. Noting that uye is unimodular, we see
that the corresponding multiplication operator is unitary. Since it transforms [us | H?(R)]
to [us pH?(R)] and leaves L?(R_) invariant, the first claim of (i) follows from Proposition
4.4. Since [ug, ge;, ,H*(R)] is unitarily equivalent to [us, 1¢;, oH*(R)], the first claim of (ii)
follows in the same way from Proposition 4.6. Exactly the same arguments give the limits
when s — —o0.
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To obtain (iii), use (ii) and apply the unitary transformation U induced by the
symmetry x — xoO

It remains to consider the limits when all three parameters (s, 4, 1) blow up:

Proposition 4.8. The set of limit points of sequences ([gsmge;,”_,,,"Hz([RR)Dn as
Sy — +00, Ay — 400 and p, — o is {[L*([~a,b])] : 0 < a,b < 0}.

Proof.  Suppose that lim[g,, ge;, , H*(R)] = [K]. Note that
I ,

Gs,. 062, 0H*(R) g5, €1, H*(R).

Passing to a subsequence, if necessary, we may assume that both sequences of projec-

tions onto these subspaces converge. But by the preceding corollary we know that there

exists ag = 0 such that lim[gy, ge;,.0H?(R)] = [L?[~ao,0]]. It follows that L?[—a,,0] < K
n

and, since K € %, it must be that K = L*([—a, b]) for some a,b = 0.
It remains to prove that all projections [L?[—a, b]] arise as limits of such sequences.

We use an argument similar to the proof of 4.6 with simple connectedness in place of
connectedness.

Let ¢ be a unit vector in L?(R) which is strictly positive on R_ and vanishes on R, .
Let # be a unit vector which is strictly positive on R, and zero on R_. Define the function
F: ¥ —[0,1] x [0,1] by

F(L) = (KL, 0, {Ln,m))

and note that F separates the family % = {[L*[~a,b]],0 <a,b < 0}. (Indeed, if
L; = [L?*[~a;,b;]], for i = 1,2, the equality {Ln,n> = {Lyy,n) implies b = b,, and the
equality (L1(, () = (L, 0) gives a) = ay.)

Furthermore, if ¢ denotes the boundary of %),, namely the union of the
four families of projections {[L*[—a,0]] : @ = 0}, {[L*[~a, ©0)] : @ = 0}, {[L?[0,5]] : b = 0}
and {[L?(—o0,b]] : b =0} then F(0) is the boundary of the unit square, whereas all other
values of F(L) lie in the interior of the square. Now fix such a value F(L.) for some pro-
jection L, € %), \0.

Let %, be the set of projections [gs ge; ,H*(R)] with |s| + |4| + |¢| = n. By our
previous results, all projections in ¢ belong to the closure of each .%,. By compactness we
may choose a path 7; in | so that the closed curve F(r) lies close to the boundary of 72
and is such that the value F(L.) lies inside the curve.

Indeed, since F(L,)eI*\F(d), there exists a smaller open square
J? = (6,1 -6) x (5,1 —6) with F(L,)eJ? and F(0) < I>\J?. Now cover the compact
set F(0) by a finite number of open sets U;, i =1,...,k, all contained in I*\J?. For
i=1,...,k choose L; e #; n F~'(U;) and join the points L; by a continuous simple path
in #; lying in the union of the F~!(U;) to form the required closed curve 7;. (For instance
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if L; = [gy, 01, H*(R)], one may define a path L, = [g, ge;, ., H*(R)] (£ € [0,1]) joining
L, to L, by choosing s;,4,,u, to be linear paths joining s, A1, u; to s2,42,4,, so that
|s;| + |4« + |&,] = 1.) Plainly we can arrange that F(x;) is a continuous closed curve in
I*\J? with winding number 1 with respect to the point F(L,). By the contractibility of .#;,
there is a homotopy {7(?) : £ € [0, 1]} in % with n(1) = 7; and 7(0) a single point. If F(L,)
were not in F(.%), then the image {F(x(¢)) : t € [0, 1]} would be a homotopy in the space
F(&)) = I*\F(L.) deforming the curve F(m;) to a point. Since each curve F(n(7)) has
winding number 1 with respect to F(L.), this is impossible.

Choose n, so that L; ¢ %,, and similarly locate a projection L, in %,, with
F(L,) = F(L,). Continuing, construct a sequence L, which, by compactness, we
may assume converges, in the strong operator topology, to a projection L.. Since
L, = [gs.0e; ,H*(R)] where |s| + || + |u| = n, the projection L., cannot be of the form
(950, ,H*(R)] and it follows from our earlier remarks that L., = L,. [

5. Lattice structure

We now consider the lattice structure of #. Recall that Alg(.#) denotes the algebra
of all operators that leave invariant all the projections in a set .#. These are the reflexive
operator algebras ./, which are reflexive in the sense that AlgLat.o/ = .o/. We begin by
examining natural distinguished sublattices of ¥ and their associated operator algebras.

Define

Py ={[L*([~a,b])] : 0 L a,b £ ©}.

This is a commutative lattice consisting of those projections in .¢ which are reducing for
the multiplication semigroup {M; : A = 0}. In other words

O?M:fm{M;,:ie[R}'.

Note that #, is generated by the two projection nests .4 = {[L*([~a, x0])] : @ = 0} U {0}
and A5 = {[L*([~o0,b])] : b = 0} U {0}.

The reflexive algebra Alg %), can be defined intrinsically in terms of generators as the
algebra

oy =wr-alg{V;,,M; : t 2 0,1 € R}.

To see this let ./~ be the multiplicity two projection nest consisting of the projections
[L%[—t,1]] fort€ [0, o] and let .4 = {0, E,, E_,I} where E, = [L?[0, ]|, E_ = [L*[—c0, 0]].
Plainly Alg %y = (Alg A7) n (Alg.#) and on identifying R_ and R, we see that

Alg Zy = (Alg A5) @ (Alg A7)

where Alg. /7, is the nest algebra on L?>(R,) for the restriction .47, of the projection nest
A%5. With this identification the subalgebra .27y, is generated by the operators

Wt ® Wh M¢+ ® Mqﬁ,
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where W, is the restriction operator V;| L*(R.), for # = 0, and where ¢, ,¢_ are the right
and left parts of the function ¢ € L*(R). It follows from elementary nest algebra theory
that VQfM = Alg gM

One could also deduce the equality from a result of Arveson [2] which asserts
that a width two commutative subspace lattice is synthetic. Here ‘“‘synthetic”” means that
every w*-closed algebra .o/ that contains a masa and has invariant lattice equal to %, is
a reflexive operator algebra.

Consider now the sublattice of . consisting of the projections that reduce {V; : ¢t = 0},
namely

Ly =L n{V,:teR}.
Then we can obtain the explicit description
Ly ={[Ksp00:5€R0eS'yU{0,E,,E_T}.

Indeed it is clear that the only V,-reducing subspaces in %), are {0}, L?>(R.), L>*(R_) and
L*(R). On the other hand, if a subspace K € % is not one of these then by Theorem 2.1
K = ugge; H 2(R) for some choice of parameters. If this is V,-reducing, then, since

I/t(K) = us,Hee‘/l,e*’,qu(lR)a
the equality V;(K) = K implies that the quotient

€eij e iu
€l u

is constant valued almost everywhere and so A = u = 0.

It follows from the continuity obtained in Propositions 4.1 and 4.4 that the sublattice
%y, with the strong operator topology, can be viewed as a topological sphere together with
two isolated points, namely the zero projection 0 and the identity /. We see in Proposition
5.2 that the lattice structure is trivial in that the supremum of any two distinct points is the
identity and the infimum is zero.

We now show that the sublattice structure for {e; ,H*(R): A, = 0} is of product

. . . IO ]
type. Recall that e; , is the unimodular function el and that for A, u = 0, e; 0 1s an
inner function and e , is a co-inner function.

Lemma 5.1. If a,f5, A, i are (nonnegative) real numbers then

e/l,,qu(R) A ea,ﬂHz(R) = emax(/l,ac),min(/z,/?)Hz(R)
and

e),,,qu(R) \4 em[ﬁ’Hz(R) = emin(/l,x),max(/z,ﬂ)Hz(R)'

Proof. Recall that P, , = [e; ,H*(R)]. Suppose that =1 and u<yu'. We
have P, , < P, ,and P, , < P, v, thus P, , < P, , A P, ,s. Conversely if a subspace K
with projection Px € & satisfies K < e, ,H*(R) and K < ¢; ,»H*(R) then we claim that
Px < P .
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To see this note that Px ¢ %)\{0}, since no proper subspace L?([—a,b]) can be
a subspace of e, ,H*(R). Thus, by Theorem 2.1, K = u, ge, gH?* for appropriate indices
5, 0,0, B. Consider first the inclusion K < e; ,» H?(R). This gives u; ge,, 3, ,» € H* (R), which
implies uy g = 1. Indeed if u, ge, ge; ,, = h with h e H*(R) then

Ug e(x)eiotxel'ﬁx—l _ ei)'xeiﬂlx_lh(x)

and so
N L
euxe mwx — emxe lﬂX h(x>

for almost all x > 0. Since this is an equality of H* functions it holds for almost every
x € R and so u;p = 1. Now we have K = e, sH*(R) < ¢, ,,H?*(R), and the analyticity of
exp(i(x—A)x+i(f—p')x"") gives a > A and f < 4. Similarly, the inclusion K S e, , H*(R)
gives « = A’ and f < u. Thus o« = J and 8 < p, so that Pg < P; , as claimed.

In a similar way one obtains Py , v P; =Py . [
Consider now the families of subspaces
va,H = {us,(?e).,,qu(R> : )“nu g 0} Y {{0}7L2(R)}

The next proposition summarises the lattice structure of %, as a subspace lattice, in terms
of these sublattices. The arguments for the proof are entirely similar to the methods of
Lemma 5.1.

Proposition 5.2. The lattice ¥ can be written as the union

5,”:( U 3@,0>U$M~

seR,0eS!

The lattice ¥y is a width 2 commutative subspace lattice (parametrised by the square
of points (a,b) € [0, 0]?) and each ¥,y is a noncommutative projection lattice (with non-
trivial projections parametrised by (i, p) €[0,00)?). If Ki, K> € & then Ki K, = {0}
and K; v Ky = LZ(R) unless both belong to the same sublattice ;9 or Ly. Finally, if
KS,O,A,mKsﬂJ’#’ eZo then

K000 N Ko7 0 = K, 0,max(2,2'), min(su, 1)

and

K5v7,97;b7# Vv KS.O.,/V,,M’ =K

s5,0,min(4,A"), max(u,u')*

Proof. If Kj € %y and K, € #\%y then K; n K, = {0} and K; v K, = L*(R).
Indeed writing K| = L*([—a, b)) and K> = g; ge, . H?*(R), if f € K| n K>, then

(s.01,.)"'f € HA(R) 0 L2([~a, b)),

SO (gs,gew)_lf:O by the F. and M. Riesz Theorem. Similarly Ki* n K5 = {0}, so
K] \ K2 = LZ(R)

Suppose Ki,K> e #\Ly. Now K; =K, ;, and K> =Ky gy o We claim that
Ky n Ky = {0} unless s = s’ and 0 = 0'. Indeed, if f € K| n K, is nonzero then there are
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nonzero H? functions / and k such that f = uge; h = ug gey k. Using the F. and
. . . Ug o'

M. Riesz Theorem, as in the proof of Lemma 5.1, we obtain that — % must be a constant,
Us 0

so that s = s’ and 6 = 0’. A similar argument shows that K; v K, = L*(R) unless s = s’

and 6 = 0'.

Suppose now that Kj = K¢, and Ky = K, 4 ;7 . Since K g 5, = gs.0(es,H*(R))
and multiplication by g; ¢ is a unitary operator, the fact that

K000 N K000, 0 = K, 0,max(4, '), min(, ') s

K000 v K g 0 0 = K

5,0,min(4, 2"), max(p, 1)

follows from Lemma 5.1. In particular for each s € R and 0 € S' the set
@%,9 = {gs,He/LﬂHz(R) : )"Mu = 0} Y {LZ(R)u {0}}
is a lattice, but is not commutative. The remaining assertions are obvious. []

Remark 5.3.  Note that, unlike %)y, the lattices % y are not strongly closed. In fact
it follows from Proposition 4.3 and the remarks following it that the strong operator clo-
sure of % 4 is

Ps.o = {[gs.0e: H*(R)] : 2,0 =2 0}y U{[L*[~a,a]] : a = 0} U {L*(R)}.

Observe that Z is also a sublattice of %, but it is not commutative: the projections

[L?[-1,1]] and [g, ge; ,H*(R)] do not commute (they are disjoint and not orthogonal).
Hence %, y cannot be commutative either.

Remark 5.4. The algebra Alg.%),, contains no nonzero finite rank operators
and so it follows that the (smaller) algebra Alg.¥ can contain no nonzero finite rank
operators. To see this recall first that a reflexive algebra Alg.# contains a rank one oper-
ator if and only if there exists a nonzero L € .# such that \/{K e .# : K % L} is proper
[11]. If L = [L*([~a,b])] € Ly, then for large enough n e N, all subspaces of the form
[L%(]0,n))] or [L*([~n,0])] are not larger than L. Thus Alg %), contains no rank one oper-
ators. In a CSL algebra, a finite rank operator is approximable by linear combinations of
rank one operators in the algebra [4], Theorem 23.16, and so it follows that Alg %), con-
tains no nonzero finite rank operators.

Remark 5.5. The algebra ./ = Alg.? is antisymmetric, that is, .o/ n.o/* = CI.
To see this let 4 be a selfadjoint operator in .«Z. Since A leaves each L € %), invariant, it
must commute with .%,. But the commutant of %), is the multiplication algebra of L*(R).
Thus 4 is the operator of multiplication by some function f € L*(R). Since A(H?) < H?,
the function f must be in H*. Since A = A*, f is real valued and so f must be constant.

The last two remarks show that Alg.# shares two of the basic properties of the
Fourier binest algebra. In further analogy with this algebra define %5 = %) U %y, the
‘boundary’ lattice. This is the analogue of the Fourier binest (in that each of its ‘compo-
nents’ is reducing for one of the semigroups) and so it is natural to ask whether ¥ has
reflexive hull equal to #. That is, is Lat Alg %5 = £?
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Remark 5.6. The operator algebra Alg.# is a reflexive operator algebra with
invariant subspace lattices .. It would be interesting to determine whether Alg ¥ = .o7),.
This can be viewed as a noncommuting two variable variant of the classical result of
Sarason [18] on the reflexivity of H* (R). This could possibly be established, as in the case
of the Fourier binest algebra, by determining an explicit form for the Hilbert-Schmidt
operators of each algebra.

There are many other basic structural questions that arise naturally for the algebras
o/, and o/rg. With the well-developed theory of nest algebras to hand one is naturally lead
to the following problems.

Are the weakly closed ideals in correspondence with certain lower continuous endo-
morphisms of the invariant projection manifold with its partial order?

Is it possible to characterise the Jacobson radical in an explicit manner?

6. Automorphism groups

We now determine the group %(%), consisting of those unitaries U for which the
map K — UK is a bijection of .. With the relative strong operator topology this is a Lie
group which is isomorphic to W x S! where W is the three dimensional Lie group deter-
mined by the Weyl commutation relations. The unitaries that induce the identity map are
unimodular multiples of the identity and so it follows that the unitary automorphism group
of ¥ (that is, the group of automorphisms of ¥ that are unitarily implemented) is iso-
morphic to the abelian quotient

R*x S' = (w/s") x s'.

This identification also provides an identification of the unitary automorphism group of
Ay

By making use of dilation theory for semicrossed products of the disc algebra (which
in turn relies on the commutant lifting theorem of Sz-Nagy and Foias) we shall obtain the
complete contractivity of certain representations of .«7;,. We make use of this to show that
in fact the unitary automorphism group of .o/, coincides with the isometric automorphism

group.

Recall the unimodular function g, ¢ and define the unitary operators Us 9, = M, ,V,
for s, R and @ € S'. Then from the description of . given in Section 2, it follows that
the map f; » ,: K — Uy 0,,K is a lattice automorphism of .# for each triple s, 0, ¢. In view of
the commutation relations

V;M(’S.H = eiS[M‘]s.H I/t
the set of automorphisms f; , , is an abelian group isomorphic to R? x S

Theorem 6.1. If U is a unitary operator which induces a bijection : & — & then
U = nU, ., for some quadruple n,s,0,t withn,0 € S',s,1 € R.

Proof. We prove first that f maps the commutative lattice %), to itself. Suppose this
is not the case. Then (%)) must be contained in a single lattice .%; y. Indeed, suppose that
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there are two elements K, K, of %), with nontrivial intersection, and U(K)) is not in %),.
As the intersection U(K;) n U(K3) is nontrivial it follows from Proposition 5.2 that U(K)
and U(K3) are both contained in the same lattice .%; . It follows from this that U(Z)) is
contained in .%, y. Now note that the elements L?>(R_) and L*(R) of %, are orthogonal.
Hence their images must be orthogonal and nontrivial. But % 4 can contain no nontrivial
orthogonal elements (again by Proposition 5.2), so we have the desired contradiction.

It follows now that f maps projections in %}, (the double commutant) to projections
in %7, and hence U normalizes the multiplication algebra of L*(R). Since an automor-
phism of L*(R) is induced by an (a.e. defined) Borel isomorphism of R [20], it follows that
U is of the form U = M;C, where M, is multiplication by some unimodular function ¢
and C, is the unitary composition operator induced by .

Observe now that C, induces an automorphism of H“(R). Indeed, for each / in
H*(R) the multiplication operator M), belongs to Alg ¥ and so UM, U* belongs to Alg .
Also

UMyU* = MyCyMyCi My = MyMpoy M = M.
Since M, must leave H?(R) invariant, it follows that 4oy is in H*(R). Since 8 is a

bijection it follows that the map # — /hoy is an automorphism of H*(R) and so y is a
conformal map of the upper half plane onto itself.

There are two cases: either y(x) = ax+b witha>0and be R or p(x) =a—b(x+¢)™"

with a,b,ce Rand b > 0.

In fact the latter case cannot occur. Indeed, suppose so and consider the subspace
L*([—s,0)) € £y where s > —a. Then U maps this subspace to

L*((—o0,—cub(s+a)" — ¢, 0))

which is not in %), because b(s +a)~' > 0.

a a
which is not in %; considering L?([0,s]) shows that b < 0 cannot occur either. We con-
clude that y(x) = ax or

In case y(x) = ax + b, if b > 0, then L*([—s,0]) is mapped to L2<[—s+b,—é})

for some f € R, since a > 0.

So we now have U = M,V;, and it remains to find the form of the unimodular
factor ¢. Since V_,; defines a bijection of %, it is enough to consider the case U = M.
Now H*(R) lies in £\ %y, and so we have My(H?*(R)) = gy 9¢;,,H*(R) for some s € R,
OeS', 2=0and x> 0. Hence ¢ = ng, ge, , where 7 is a unimodular constant. The oper-
ator M = MM, , also defines a bijection of . Since M is the operator of multiplication
by 77¢;,,, we have M (H?*(R)) = e_,,_,H*(R). This subspace is in ¢ only if 1 <0 and
u=0andso A= pu=0and ¢ =rng,y, as required. []

To obtain the isometric automorphism group of .o/, we make use of the following
result which is perhaps of independent interest.
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Theorem 6.2. Let p be a weak*® continuous contractive representation of <), on the
Hilbert space #. Then p is completely contractive. Furthermore there is a weak™ continuous
*-representation m: #(L*(R)) — B(A1), with #1 2 A, such that p(A) = Pyn(A)|x for all
A in JZ/},.

Proof. Let A(R) be the algebra of continuous functions in #* (R) which have equal
limits at 400 and —oo and, for fixed ¢ > 0, let %, be the norm closed subalgebra of .7
generated by the multiplication operators My, f € A(R) and the unitary V;. Now for the
indices 7, = 1/2" we have the subalgebra chain

’%hg‘%&g'@&g“'

whose union is weak star dense in .7,. Indeed, observing that 4(R) is weak star dense
in H*(R) and that the dilation group is weak star continuous, we see that the weak star
closure of this union is an algebra containing the multiplication algebra of H*(R) and
{V;:t=0}.

To obtain the first assertion of the theorem it will be sufficient to show that the
restriction of p to each subalgebra %; is completely contractive. To see this, we identify
A, (completely isometrically) with a semicrossed product as follows:

Consider the C*-algebra %, = #(L*(R)) generated by %;, namely the C*-
algebra generated by multiplications by /' € C(Ru {o0}) and V; (note that A(R) + A(R)"
is norm dense in C(Ru {0})). Since MV, = VM, s (where a(f)(x) = f(e'x)), €, is
*-isomorphic to the crossed product C(Ru{o}) xy, Z arising from the hyperbolic
automorphism ¥,: R — R given by x — e’x. Hence %, is completely isometrically isomor-
phic to the semicrossed product 4(R) x, Z,. Now Theorem 2 of [16] shows that every
contractive representation of this semicrossed product, and hence of %;, is completely
contractive (actually, [16] deals with the disc algebra in place of A(R), but a conformal
equivalence of the disc to the upper half plane allows one to identify the two algebras).

The second assertion of the theorem follows from Arveson’s dilation theorem [1] for
completely contractive maps and general dilation theory, as in [15], for example. []

The proof of the next theorem requires the following lemma. Let ¢, 4", , #_ be the
spaces of compact operators on the Hilbert spaces L?(R), L*(R, ), L>(R_) respectively.

Lemma 6.3. C*(ogpynA)=H, @A .

Proof.  Let (K,) be the bounded approximate identity in ./, N #" given by Proposi-
tion 3.2 and let N be a proper reducing subspace for this subalgebra. Since N is reducing
for K, M, for 2 > 0, it is also reducing for M. Similarly N is reducing for V; for ¢ > 0. But
the multiplication and dilation operators are only jointly reduced by L*(R,) or L*(R_).
Thus C*(.Z, N ") is an irreducible algebra of compact operators on each of these spaces
and so the lemma follows. [

Theorem 6.4. The isometric automorphism group of the hyperbolic algebra <), with
the point weak™ topology, is the Lie group consisting of the automorphisms o ¢, = Ad(Us g.;),
for (s,0,t) e R x S x R.
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Proof- Let o be an isometric automorphism. Since .o/, has a bounded approximate
identity of compact operators it follows from Theorem 4 of Power [16] that « is weak
star continuous and maps compact operators to compact operators. By Theorem 6.2, o is
completely contractive and so induces a completely positive bijection

& (A + ( Ay H) — (A H) + (A A
By the universal property of the C*-envelope this bijection has a unique extension to a
C*-algebra automorphism of the C*-envelope. This envelope is a quotient of C*(.o7;, N A")

and so, by the lemma coincides with #, @ . Thus the extension is unitarily implemented
and hence so is o. [

7. Subspace manifolds
We now identify the hyperbolic lattice # as a Euclidean manifold and identify the
inclusions ¥ < % and & = % obtained by extending the parameter range and by taking
orthogonal complements.
Recall that P, 4 ; , = [K; 0,,,,] and for fixed 0 consider the -section
g{; = {PS’(;J?# : (S, i,,u) eR x Ri}

In view of the results of Section 4 the strong operator topology closure of %, is homeo-
morphic to the union of two triangular cones as indicated in Figure 2.

{0}
L2(Ry)
A
H*(R)
M N
L*(R) L*(R.)

Figure 2. Section of .¢ for 0 = 1.
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We can now identify the strong operator topology closure, denoted £, of the set
of orthogonal projections P, y ;. , with extended parameter range Z,ue R, se R, 0 e S'.
Note that Py, , — 0 as u — —oo for fixed s,0, 4. To see this observe that the subspace
K 0, ;,, 1s transformed to e, ,H 2(R) by the unitary operator of multiplication by Js.0
and the latter is transformed to e, ; H*(R) = e_, _; H*(R) by the unitary operator U given
by (Uf)(x) = x"'f(x""). Since #Emw[e_ﬂ’_lH%R)] = 0 strongly, the assertion follows.

Also P g ; , — 0 as 4 — oo, with the other parameters fixed and Py, , — I as 4L — —0
or u — co. It follows that the section of & for s =0, 6 = 1 is homeomorphic to a topo-
logical disc, 2 say, as in Figure 3, where the transformed axes for A, u are indicated as the
lemniscate.

Figure 3. The disc 2. 4 = L*(R), B= L*[-1,1], C = {0}.

The triangular region of Figure 1 corresponds to the upper region of Figure 3 with
boundary consisting of the upper semicircle and the semiaxes ¢ = 0, A = 0. We can now
identify the 0 = 1 section of & is a double cone over 2 whose apexes are [L*(R_]) at s = o
and [L?(R,)] at s = —oo. Topologically this section is a closed 3-ball B® which is an
(unnatural) compactification of R® by a sphere. We have indicated a perspective view of
this in Figure 4. Its surface is the union of the square lattice ), (the northern region), its
orthocomplement %;; (the southern region) and four equatorial lens-like regions, labeled
C,D, E, F whose projections on the plane s = 0 are the lobe regions of the lemniscate.
These regions are the sets

P ={[L*pb",a]]:0<b 00
Ip ={[L*[~b,—a""]:0<a' £b £ 0},
Lr =%y,

Yo=Yy
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Note that the A and x coordinates partition the interior of the ball into four parts which
meet the sphere at Zy, (for A =0, u=0), % (for A<0, u<0), Lru Ly (for 4 =0,
w=0), LruPe (for L <0, u=0). The double cone region of Figure 2 (with § = 1) cor-
responds to the first (upper) part.

Figure 4. The 6 = 1 section of £; D = L*(R_).

The topological space & is thus homeomorphic to the identification space B x S/~
where

(x,0) ~ (x',0') if and only if xedB? x=x
The closed subset . is the subset determined by the upper part of B>.

The topological space £+ has a similar description with H2(R) taking the role of
H?(R) and, topologically, the union & U £~ is equal to two copies of & joined at their
common spherical boundaries. Thus

S =L 0Pt =((B*xS")/~) U ((B* x S)/~).

In particular the 0 = 1 section of #, being the join of two 2-spheres at their surfaces, is a
3-sphere.

The Fourier-Plancherel sphere ,@pg One can readily observe that there is a natural
action of the four group Zz X Z, on % which is induced by the unitary operators for the
maps x — —x and x — x~!. For comparison we now identify the parabolic analogue Zp.
This is a 2-sphere and the analogous group action is a Z4 action implemented by the
Fourier-Plancherel transform as rotation of this sphere.

Recall that the Paley-Wiener theorem ensures that FH 2(R) = L?[0, c0) and from
this one sees that Fe”* H*(R) = L?[4, o0) for / in R. The chain of projections [e”* H?(R)]
together with 0 and I comprise the analytic nest, denoted ./, whilst the chain of projec-
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tions [L2[4, c0)] is the Volterra nest ./;. Let ¢, (x) = e /2 It was shown in [9] that as
s — oo we have

[efisxz/2ei/lst2(R)] N [LZM7 OO)]

in the strong operator topology, and from this it follows that the family of projection
nests ¢4, 0 < s < oo, forms a continuous interpolation between ./, and /3. More pre-
cisely, their union, which, as we remarked in the introduction, is Zrp, is homeomorphic to
a closed disc, with .4, and ./, as bounding semicircles.

The family %5 is obtained from %z by extending the parameter range to
—o0 < § < oo and by admitting orthogonal complements. Alternatively, and more intrinsi-
cally, it may be defined as the union of the invariant projection lattices for the four natural
pairs of 1-parameter semigroups arising from translations and the Fourier translations.
Explicitly we have

QFB — < U einZ/ZJVa> UJ‘/‘LU ( U eiS,VZ/Z%L> U./‘/;)L'

seR seR

The Fourier Plancherel transform has period 4 and gives a cyclic permutation of
the spaces H2(R), L2[0, o0), H*(R)", L0, o0)". The next theorem whose proof follows
immediately from Lemma 4.2 of [9], gives the detail of the rotation action of the Fourier
Plancherel transform on the sphere Z5. This is illustrated in Figure 5. The usual partial
ordering of projections gives a foliation of Zp by lines of longitude.

Figure 5. The Fourier Plancherel sphere &; H = H2(R), L = L3 (R, ), S = ¢ ™' 2H(R), T = ¥ "2 H2(R),
K =e® '"PT, Ky = ¢S = FK;.
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Theorem 7.1. For . € R and s € Ry we have
e g H(R ) 1;x¢ LHAR)* e—iﬂx¢SH2(R)L
and

efi).x¢SH2(R)L ieis’lix¢7r]H2(R) iei;.x¢SH2(R)_

References

(1] W. B. Arveson, Subalgebras of C*-algebras I, Acta Math. 123 (1969), 141-224.

(2] W. B. Arveson, Operator algebras and invariant subspaces, Ann. Math. (2) 100 (1974), 433-532.

(3] H. Bercovici, C. Foias and C. Pearcy, Dual algebras with applications to invariant subspaces and dilation
theory, C.B.M.S. Conf. Ser. 56, Amer. Math. Soc., 1985.

[4] K R Davidson, Nest algebras, Pitman Res. Notes Math. Ser. 191, Longman Scientific & Technical, Harlow
1988.

[5] K R. Davidson and D. Pitts, Invariant Subspaces and Hyper-reflexivity for Free Semigroup Algebras, Proc.
London Math. Soc. (3) 78 (1999), 401-430.

[6] P. R Halmos, Two subspaces, Trans. Amer. Math. Soc. 144 (1969), 381-389.

(7] H. Helson, Lectures on invariant subspaces, Academic Press, New York 1964.

(8] J. Hilgert and K.-H. Neeb, Lie semigroups and their applications, Lect. Notes Math. 1552, Springer-Verlag,
Berlin 1993.

[9] A. Katavolos and S. C. Power, The Fourier binest algebra, Math. Proc. Camb. Phil. Soc. 122 (1997), 525-539.

[10] P. D. Lax, Translation invariant subspaces, Acta Math. 101 (1959), 163-178.

[11] W. E. Longstaff, Strongly reflexive lattices, J. London Math. Soc. (2) 11 (1975), 491-498.

[12] F. J. Murray and J. von Neumann, On rings of operators, Ann. Amer. Math. Soc. 37 (1936).

[13] F. J. Murray and J. von Neumann, On rings of operators II, Trans. Amer. Math. Soc. 41 (1937), 208-248.

[14] N. K. Nikolskii, Treatise on the shift operator, Springer-Verlag, 1986.

[15] V. L Paulsen, S. C. Power and J. O. Ward, Semi-discreteness and dilation theory for nest algebras, J. Funct.
Anal. 80 (1988), 76-87.

[16] S. C. Power, Completely contractive representations for some doubly generated antisymmetric operator
algebras, Proc. Amer. Math. Soc. 126 (1998), 2355-2359.

(17] H. Radjavi and P. Rosenthal, Invariant subspaces, Springer-Verlag, New York 1973.

(18] D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 (1966), 511-517.

[19] B. Sz-Nagy and C. Foias, Dilations des certains opérateurs, C.R. Acad. Sci. Paris (A) 266 (1968), 493-495.

[20] J. von Neumann, Einige Sitze iber messbare Abbildungen, Ann. Math. 33 (1932), 574-586.

(21] B. Wagner, Weak limits of projections and compactness of subspace lattices, Trans. Amer. Math. Soc. 304
(1987), no. 2, 515-535.

University of Athens, Department of Mathematics, Athens, Greece

Lancaster University, Department of Mathematics and Statistics, Faculty of Applied Sciences,
Lancaster LA1 4YF, U.K.

Eingegangen 12. November 2001



