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General Framework

G group , S ⊆ G semigroup

A representation on a Hilbert space H :
σ : S→ B(H) : g → Sg morphism, each Sg isometry.

W (σ, S) ⊆ B(H): w*-closed algebra generated by {Sg : g ∈ S}.

Lat W (σ, S): all closed invariant subspaces: M ⊆ H such that
Sg(M) ⊆ M for all g ∈ S.



Example: Z+

Z+ acts on `2(Z+) [write Z+ y `2(Z+)] by the left regular
representation:

n→ λ(n) = Sn where S : ek → ek+1.

Theorem (Beurling, 1949)

If M ∈ Lat(λ(Z+)) (i.e. S(M) ⊆ M), there is φ ∈ H2 with
|φ(z)| = 1 for a.a. z ∈ T so that (after Fourier transform)

M = φH2.

Remark

No analogous description for Lat(λ(Z2
+))!



Reflexivity

Theorem (Sarason, 1966)

If T ∈ B(`2(Z+)) satisfies T (M) ⊆ M for all M ∈ Lat(λ(Z+))
then T is in the w*-closed algebra W (λ,Z+) generated by
{λ(n) : n ∈ Z+} (: the analytic Toeplitz operators, ' H∞.)

Thus the algebra W (λ,Z+) y `2(Z+) is reflexive:
Loginov - Shulman (1975): W = RefW ≡ {T : Tx ∈ Wx ∀x}

Theorem (Bercovici (1994) / Li-McCarthy (1997))

For all d ∈ N, the algebra W (λ,Zd
+) is reflexive.



The Free Semigroup
Definition

Let G = F2 =< a,b > or generally Fn.
The semigroup S is generated by words in
an,bm (n,m ≥ 0).
S acts on `2(S): left regular representation: λaew = eaw
where {ew : w word } is o.n. basis of `2(S).

Proposition (Popescu (1989))

Every M ∈ Lat W (λ,S) is a direct sum of cyclic subspaces,
each of the form Mw = U(`2(S)) where U isometry commuting
with all λw .
(Generalises Beurling.)
Proposition (Arias - Popescu (1995))

The algebra W (λ,S) is reflexive. [in fact hyper-reflexive with
constant 3 (Davidson-Pitts, Bercovici)]

(Generalises Sarason.)



The Heisenberg semigroup

Definition

The Heisenberg group H consists of all matrices

[x , y , z] ≡

1 x z
0 1 y
0 0 1

 where

if x , y , z ∈ R we call H continuous,
if x , y , z ∈ Z we call H discrete.
The semigroup H+ consists of all [x , y , z] with x , y ≥ 0 (but z
free).



The Fourier binest algebra (S.C. Power & AK)

Here the continuous H+ acts on L2(R):

[s, t , µ] =

 1 s µ
0 1 t
0 0 1

 −→ eiµDtMs

where

(Dt f )(x) = f (x − t) (f ∈ L2(R)) Translations

(Msf )(x) = eisx f (x) (f ∈ L2(R)) Multiplications

The Weyl relations: MsDt = eistDtMs.

Theorem

•Lat{MsDt : s, t ≥ 0}: is a topological manifold homeomorphic
to a closed disc (the onion!).
•The w*-closed algebra generated by {MsDt : s, t ≥ 0} is
reflexive.



A class of representations for the discrete H+

The discrete H+ has generators
u = [1,0,0], v = [0,1,0],w = [0,0,1]; relation uv = wvu.
Represent H+ on L2(T, ν) where ν is quasi-invariant and
ergodic under rotations:
Fix λ = e2πiθ where θ is irrational and

[k ,m,n] =

 1 k n
0 1 m
0 0 1

 −→ λnV mUk

where

(Vf )(z) =
√

rλ(z)f (λz) (f ∈ L2(T, ν)) Rotation

(Uf )(z) = zf (z) (f ∈ L2(T, ν)) Multiplication

The Weyl relations UV = λVU.



A class of representations for the discrete H+

Theorem

Let N = {ζkH2 : k ∈ Z} (where ζk (z) = zk ).
1 If ν is equivalent to Lebesgue measure, then the algebra
W(π,H+) is unitarily equivalent to AlgN ∼ lower
triangular matrices.

2 If ν is singular to Lebesgue measure and not continuous,
again one obtains AlgN but ‘with the generators reversed’.

3 If ν is singular to Lebesgue measure and is continuous,
thenW(π,H+) = B(L2(T, ν)).

Example

A non-reflexive representation: H+ acts on H2(T) and

(Uf )(z) = zf (z) (Vf )(z) = zf (λz) (f ∈ H2(T)).

Even the WOT-closed algebra is not reflexive (fin. dim.
diagonals).



The restricted left regular representation TL(H+)

H+ acts on
`2(H+) ' `2(Z)⊗ `2(Z+)⊗ `2(Z+) ' L2(T)⊗ `2(Z+)⊗ `2(Z+) by

Lu(wn ⊗ uk ⊗ vm) =wn ⊗ uk+1 ⊗ vm (shift)

Lv (wn ⊗ uk ⊗ vm) =wn−k ⊗ uk ⊗ vm+1 (shift)

Lw (wn ⊗ uk ⊗ vm) =wn+1 ⊗ uk ⊗ vm (mult. by w)

(n, k ,m) ∈ Z× Z+ × Z+.

More generally for f ∈ L∞(T),
Lf (wn ⊗ uk ⊗ vm) = fwn ⊗ uk ⊗ vm.



Algebraic properties of TL(H+)

Tool: ‘2-dimensional Fourier’ expansion
A ∼

∑
k≥0,m≥0

Lfk,mLk
uLm

v with centre-valued coefficients Lfk,m .

Diagonal and centre both equal toM(L∞(T))⊗ 1⊗ 1
(compare: Fourier binest algebra has trivial diagonal)
No compacts (compare: Fourier binest algebra has
approximate identity of compacts)
No quasinilpotents, so semisimple
Has the bicommutant property



Reflexivity of the restricted left regular representation

Now [k ,m,n]→W nV mUk acts on

`2(H+) ' `2(Z)⊗ `2(Z+)⊗ `2(Z+) ' L2(T)⊗ H2 ⊗ H2.

For reflexivity:
Diagonalise W as Mξ ⊗ I ⊗ I and on each “fiber” ξ the
generators become:

(Uf )(z1, z2) = z1f (z1, z2)

(Vf )(z1, z2) = z2f (ξ̄z1, z2), f ∈ H2(T× T)

Theorem

The w*-closed algebraWξ generated by U,V is reflexive for
each ξ.

Take the direct integral:

Theorem

The w*-closed algebra TL(H+) is reflexive.



A Reflexivity proof

To prove reflexivity ofWξ =W y H2 ⊗ H2, generated by

U(vm ⊗ uk ) = vm ⊗ uk+1 and V (vm ⊗ uk ) = vm+1 ⊗ (λu)k

(here u(z1) = z1, v(z2) = z2 and λ = ξ̄) so

U = I ⊗ S and V = S ⊗ D

where S is the unilateral shift and D = diag(λk ).
Take T ∈ RefW. It has a formal Fourier series

T ∼
∑
n≥0

Sn ⊗ T̂n (Fourier coeff. T̂n ∈ B(H2)).

Using the dual action on {vm}, show that Sn ⊗ T̂n ∈ RefW.
Then show (Sarason) that we may write
Sn ⊗ T̂n = Sn ⊗ Dnf (S) = V nf (U) and so Sn ⊗ T̂n ∈ W.
By “Féjer”, the Fourier series of T Cesaro-converges w* to T .
Hence T ∈ W.



Bibliography

M. Anoussis, A. Katavolos and I.G. Todorov,
Operator algebras from the discrete Heisenberg semigroup,
Proc. Edinburgh Math. Soc., to appear,
arXiv:1001.2755.

A. Katavolos and S.C. Power,
The Fourier binest Algebra,
Math. Proc. Cambridge Philos. Soc. 122 (1997), No 3,
525-539.


	General Framework
	Some examples
	The analytic Toeplitz algebra
	The free semigroup algebra

	The Heisenberg semigroup
	The continuous Heisenberg semigroup

	A class of representations for the discrete Heisenberg semigroup
	The restricted left regular representation TL(H+) of the discrete Heisenberg semigroup: Algebraic properties.
	The restricted left regular representation TL(H+): Reflexivity
	A Reflexivity proof

