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1 Definitions

A (concrete) operator space is a (usually) closed linear subspace X of B(K,H),
for Hilbert spaces H, K (indeed the case H = K usually suffices, via
the canonical inclusion B(K,H) ⊂ B(H ⊕ K)). However, sometimes we
want to keep track too of the norm ‖ · ‖n,m that Mn,m(X) inherits from
Mn,m(B(H, K)), for all n,m ∈ N. An abstract operator space is a pair
(X, {‖ · ‖n}n≥1), consisting of a vector space, and a norm on Mn(X) for all
n ∈ N, such that there exists a complete isometry u : X → B(K,H). In
this case we call the sequence {‖ · ‖n}n≥1 an operator space structure on the
vector space X. An operator structure on a normed space (X, ‖ · ‖), will
usually mean a sequence of matrix norms as above, but with ‖ · ‖ = ‖ · ‖1 ([3,
1.2.2]).

If X is a linear subspace of a C∗-algebra C, then X is an operator space
with the matrix norm structure inherited by a faithful representation of C.

Let X be an operator space and φ : X → B(H) a linear map. We define
φn := idn⊗φ : Mn(X) → B(Hn) by φn([aij]) = [φ(aij)]. We call φ completely
positive, completely contractive or completely isometry if φn is positive, con-
tractive or isometry, for every n ∈ N.

An operator system is a selfadjoint linear subspace S of a unital C∗-
algebra, that contains the unit. We usually require that the C∗-algebra is
generated by S.

We can use the decomposition of an element x ∈ S in the sum of two
positive elements in S, i.e. x = (1‖x‖+ x)/2 + (1‖x‖ − x)/2, to prove that

a unital linear map φ : S → B(H) is completely positive iff it is
completely contractive.
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A concrete operator algebra A is a closed subalgebra of some B(H). Then
an operator algebra is both an operator space (with the operator structure
inherited by B(H)) and a Banach algebra. Conversely, if A is both an (ab-
stract) operator space and a Banach algebra, then we call A an (abstract)
operator algebra if there exist a Hilbert space H and a complete isometric
homomorphism π : A → B(H)([3]).

We will consider only unital operator algebras. Note that if A is an op-
erator algebra then A+A∗ is an operator system. Also, If C = C∗(A), then
C = C∗(A+A∗).

Let X ⊆ C∗(X ) be an operator space. Given two unital completely con-
tractive maps φk : X → B(Hk), k = 1, 2, we write φ1 ≤ φ2 if H1 ⊆ H2 and
PH1φ2(x)|H1 = φ1(x), x ∈ X ; φ2 is called a dilation of φ1 and φ1 is called
a compression φ2. The relation ≤ is transitive and one has φ1 ≤ φ2 and
φ2 ≤ φ1 iff (H1, φ1) = (H2, φ2). Thus ≤ defines a partial ordering of ucc
maps of X . Of course there is always a trivial way in dilating a ucc simply
by taking the direct sum with any other ucc map.

A dilation φ2 of φ1 need not satisfy H2 = [C∗(φ2(X ))H1], but it can
always be replaced with a smaller dilation of φ1 that has this property; in
consequence the dimension of H2 has an upper bound in terms of the dimen-
sion of H1 and the cardinality of X .

In general, we can have the following scheme. Let X ⊆ C∗(X ) be a unital
operator space and φ : X → B(H) a completely contractive map. Then φ
extends uniquely to a ucp map φ̃ of the operator system S = X + X ∗ (see
[2]). Arveson’s Extension Theorem implies that there is a completely positive
(thus completely contractive) map ψ : C∗(S) = C∗(X ) → B(H) extending
φ̃. Now, we can apply Stinespring’s Dilation Theorem on ψ, so that there is
a Hilbert space K ⊇ H and a unital representation π : C∗(X ) → B(K) such
that ψ(c) = PHπ(c)|H , for every c ∈ C∗(X ). When K = [π(C∗(S))H], π is
called minimal Stinespring dilation and it is unique up to unitary equivalence.
Hence, π|X is a dilation of φ.

Remark 1.1 Note that if φ : X → B(H) is a ucis map and ψ : X → B(K)
is a ucc dilation of φ, then ψ is also ucis. This happens because

‖[xij]‖ = ‖[φ(xij)]‖ = ‖[PHψ(xij)|H ]‖
= ‖(1ν ⊗ PH)[ψ(xij)]|H(ν)‖ ≤ ‖[ψ(xij)]‖ ≤ ‖[xij]‖ ,

for every xij ∈ X .
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Definitions 1.2 1. ([1]) A ucc map φ : X → B(H) is said to be maximal if
it has no nontrivial dilations, i.e. φ′ ≥ φ ⇒ φ′ = φ⊕ψ, for some ucc map ψ.
2. ([1]) A ucc map π : X → B(H) is said to have the unique extension
property if

i. π has a unique completely positive extension π̃ : C∗(X ) →
B(H),
ii. π̃ : C∗(X ) → B(H) is a representation of C∗(X ) on H.

Remark 1.3 The unique extension property for π : X → B(H) is equivalent
to the assertion that every extension of π to a ucp map φ : C∗(X ) → B(H)
should be a *-homomorphism of C∗(X ).

Proposition 1.4 A ucc map φ : X → B(H) is maximal if, and only if, it
has the unique extension property.

Proof. Assume first that φ is maximal and let φ̃ : C∗(X ) → B(H) be a com-

pletely positive extension of it. We have to show that φ̃ is a *-homomorphism.
By Stinesprings theorem, there is a representation π : C∗(X ) → B(K) on a

Hilbert space K ⊇ H such that φ̃(x) = PHπ(x)|H , x ∈ C∗(X ). We can as-
sume that the dilation is minimal in that K = [π(C∗(X ))H] = [C∗(π(X ))H].

By maximality of φ, K = H and φ̃ = π is a *-homomorphism.
Conversely, suppose φ has the unique extension property and let ψ : X →

B(K) be a dilation of φ, such that K = [C∗(ψ(X ))H]. It suffices to show
that K = H and ψ = φ. By the Arveson’s extension theorem, ψ can be
extended to a ucp map ψ̃ : C∗(X ) → B(K). Since the compression of ψ̃ to
H defines a ucp map of C∗(X ) to B(H) that restricts to φ on X , the unique
extension property implies that PHψ̃(·)PH is a *-homomorphism of C∗(X ).
So for c ∈ C∗(X ),

PHψ̃(c)∗PHψ̃(c)PH = PHψ̃(c∗c)PH ≥ PHψ̃(c)∗ψ̃(c)PH ,

since ψ̃(c∗c) ≥ ψ̃(c)∗ψ̃(c). Thus |(1−PH)ψ̃(c)PH |2 ≤ 0. Hence, H is invariant
under the set of operators ψ̃(C∗(X )) ⊇ φ(X ), and therefore under C∗(φ(X )).
Thus K = [C∗(ψ(X ))H] = H and it follows that ψ = φ.

Proposition 1.5 ([1, theorem 3.1] Invariance Principle). Let Xk ⊆ C∗(Xk),
k = 1, 2, be two operator spaces and let θ : X1 → X2 be a ucis and onto map.
For every maximal ucis map φ1 : X1 → B(H), the ucis map φ2 : X2 =
θ(X1) → B(H), defined by φ2 ◦ θ = φ1 is also maximal.
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Proof. Consider the ucis map φ2 : X2 → B(H) defined by φ2 = φ1 ◦ θ−1. It
suffices to show that φ2 is maximal, given that φ1 is maximal. To this end,
let φ : X2 → B(K) be a dilation of φ2, with K = [C∗(φ(X2))H] (thus φ is
ucis map). Then ψ ≡ φ◦θ is a ucis map of X1 to B(K) that compresses to φ1

and satisfies K = [C∗(ψ(X2))H] = [C∗(φ ◦ θ(X1))H] = [C∗(φ(X1))H]. Thus,
by maximality of φ1 we have that φ1 = φ = φ ◦ θ, hence φ = φ1 ◦ θ−1 = φ2.
2

2 Theorems of Existence

The crucial theorem is the following.

Theorem 2.1 ([1, theorem 1.3]) Let X be an operator space. Then every
ucis map φ : X → B(H0) dilates to a maximal ucis map ρ : X → B(H).

To prove this, we have to make some remarks. First of all, if there is a
chain of ucis maps φ1 ≤ φ2,≤ · · · with H1 ⊆ H2 ⊆ · · · , then we can define
a ucis map φ∞ on H∞ = ∪nHn such that PHnφ∞|Hn = φn. To see this, first
observe that if an ∈ B(Hn) is a sequence of operators, such that Hn ⊆ Hn+1,
sup{‖an‖ : n ∈ N} < +∞ and an = PHnan+1|Hn , then we can define a unique
operator a ∈ B(H∞), where H∞ = ∪nHn, such that PHna|Hn for every n ∈ N.
Also, we get that ‖a‖ = supn ‖an‖. If we wish to do the same thing for a
chain of ucc map (Hn, φn), we set an = φn(x) and φ∞(x) := a. Uniqueness
establishes the existence of (H∞, φ∞). Also, for every xij ∈ X , we get that

‖[φn(xij)]‖ = ‖[xij]‖ ,

for every n ∈ N, since φn are ucis maps. Thus, by taking supremum we get
that ‖[φ∞(xij)]‖ = ‖[xij]‖, so φ∞ is ucis.

The same is true if, instead of N we have a limit ordinal λ, and a chain
of ucc maps (Hα, φα), in the sense that for every α, β < λ with α ≤ β, then
φα ≤ φβ.

Also, we have the following definition.

Definition 2.2 Let φ : X → B(H) be a ucis map and let F be a (possibly
empty) subset of X × H. We will say that φ is maximal on F if for every
dilation ψ of φ acting on K ⊇ H, we have,

ψ(x)ξ = φ(x)ξ, (x, ξ) ∈ F .

A ucis map φ : X → B(H) is maximal if and only if it is maximal on X ×H.
If φ is maximal on F ⊆ X ×H and ψ ≥ φ, then ψ is maximal on F .
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Lemma 2.3 For every ucis representation φ : X → B(H) and every (x, ξ) ∈
X ×H, there is a dilation of φ that is maximal on (x, ξ).

Proof. Since for every dilation ψ ≥ φ we have ‖ψ(x)ξ‖ ≤ ‖x‖ ‖ξ‖ ≤ +∞, we
can find a dilation φ1 of φ for which ‖φ1(x)ξ‖ is as close to sup{‖ψ(x)ξ‖ : ψ ≥
φ, ψ is a ucc map}. Note that φ1 will also be a ucis map of X . Continuing
inductively, we find a sequence of ucis representations φ ≤ φ1 ≤ φ2 ≤ · · · ,
such that φn : X → B(Hn), H ⊆ H1 ⊆ H2 ⊆ · · · , and

‖φn+1(x)ξ‖ ≥ sup
ψ≥φn

‖ψ(x)ξ‖ − 1/n.

Let H∞ be the closure of the union ∪nHn and let φ∞ : X → B(H∞) be the
unique ucis representation that compresses to φn on Hn, for every n. Note
that φ∞ is maximal on (x, ξ). Indeed, if ψ ≥ φ∞ then ψ ≥ φn, for every
n ≥ 1, and

‖φ∞(x)ξ‖ ≥
∥∥PHn+1φ∞(x)ξ

∥∥ = ‖φn+1(x)ξ‖ ≥ ‖ψ(x)ξ‖ − 1/n.

Hence, ‖φ∞(x)ξ‖ ≥ ‖ψ(x)ξ‖. It follows that

‖ψ(x)ξ − φ∞(x)ξ‖2 = ‖ψ(x)ξ − PH∞ψ(x)ξ‖2

= ‖ψ(x)ξ‖2 − ‖φ∞(x)ξ‖2 ≤ 0,

so that ψ(x)ξ = φ∞(x)ξ, as asserted. 2

Proof of Theorem 2.1. We show first that φ0 can be dilated to a ucis map
φ1 : X → B(H1) that is maximal on X × H0. To that end, let λ be an
ordinal sufficiently large that there is a surjection α ∈ λ 7→ xα ∈ X × H0;
hence, X ×H0 = {xα : α ∈ λ}. We claim that there is a family of ucis maps
φα : X → B(Hα), indexed by the ordinals α ≤ λ, which satisfy φα ≥ φ0

together with

1. φα is maximal on {xβ : β < α},
2. α ≤ β ⇒ φα ≤ φβ.

Once the existence of this family is established, one can set φ1 = φλ.
Proceeding inductively, for α = 0 we set φα = φ0, noting that (1) is

vacuous for α = 0. Assuming that α ≤ λ is an ordinal for which {φβ : β < α}
has been defined and satisfies (1) and (2) on the initial segment {β < α},
define α as follows:

i. If α has an immediate predecessor α − 1, then the previous lemma
implies that φα−1 can be dilated to a ucis map φα : X → B(Hα), that is
maximal on xα.
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ii. If α is a limit ordinal, then the Hilbert spaces Hβ, β < α, are linearly
ordered by inclusion; we take Hα to be the closure of their union and φα :
X → B(Hα) to be the unique ucis map that compresses to φβ on Hβ, for
every β < α.

In either case, properties (1) and (2) persist for the augmented family
{φβ : β ≤ α}. This defines {φα : α ≤ λ}.

Now one can use ordinary induction on the preceding result to find an
increasing sequence of Hilbert spaces H0 ⊆ H1 ⊆ H2 ⊆ · · · and ucis maps
φn : X → B(Hn) such that φn+1 is a dilation on X × Hn, n = 0, 1, 2 . . . .
Let H∞ be the closure of ∪nHn and let φ∞ : X → B(H∞) be the unique ucis
map that compresses to φn on Hn, for every n ≥ 1. Note that every dilation
ψ : X → B(K) of φ∞ and every n ≥ 1, both ψ and φ∞ are dilations of φn+1,
so by maximality of φn+1 on X ×Hn we have

ψ(x)ξ = φn+1(x)ξ = φ∞(x)ξ, (x, ξ) ∈ X ×Hn.

It follows that φ∞ is maximal on X × ∪nHn, hence on its closure X ×H∞.
2

Now, let ι : X → B(H) be a ucis map. Then C∗(ι(X )) ⊆ B(H) is said
to be a C*-cover of X . We can define a C*-cover of X with the following
universal property.

Definition 2.4 Let X be a unital operator space. The C∗
e (X ) = C∗(ι(X )) is

a C∗-algebra with the following (universal) property:

for every ucis map φ : X → C∗(φ(X )) = C there exists a unique
representation π : C → C∗

e (X ), such that π is onto and π(φ(a)) =
ι(a), for every a ∈ X .

Definition 2.5 Let X ⊆ C∗(X ) a unital operator space. A boundary ideal
for X is an ideal J ⊆ C∗(X ) with the property that the natural projection
of C∗(X ) onto C∗(X )/J restricts to a ucis map on X . The Šilov ideal is a
boundary ideal which contains every other boundary ideal.

We can see that if the C∗
e (X ) exists, then it is unique up to *-isomorphism.

Also if the Šilov ideal exist, then it is unique. In the following we prove the
existence of the C∗-envelope for an operator space and thus the existence of
the Šilov ideal.

Theorem 2.6 Every operator space has a C∗-envelope. Thus the Šilov ideal
exists.
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Proof. Let an operator space X acting on a Hilbert space K. Then the in-
clusion map ι : X → B(K) is a ucis map and thus dilates to a ucis maximal
map γ : X → B(H). We claim that C∗(γ(X )) is the C∗

e (X ).
To this end, suppose ψ : X → B(Hψ) is a ucis map. In this case σ : ψ(X ) →
B(H) : ψ(a) 7→ γ(a) is also ucis map (and thus well-defined). By Invari-
ance Principle we get that σ is maximal for the unital operator space ψ(X ),
hence it extends uniquely to a *-homomorphism σ̃ : C∗(ψ(X )) → B(H).
Then σ̃(ψ(x)) = σ(ψ(x)) = γ(x), for every x ∈ X . Also σ̃(C∗(ψ(X ))) =
C∗(σ̃(ψ(X ))) = C∗(γ(X )), hence σ̃ is onto. So, C∗(γ(X )) has the (universal)
property of the C*-envelope.
Now let X ⊆ C∗(X ). Then there exists an onto representation π : C∗(X ) →
C∗(γ(X )). We will prove that ker π is the Šilov ideal. First of all, it is
boundary since the map π̃ : C∗(X )/ ker π → C∗(γ(X )) is a *-isomorphism,
hence completely isometric, and π(a) = γ(a). Also note that since π(a) =
γ(a) = γ ◦ id(a) and γ is a maximal, then by the invariance principle we
get that π is also maximal. Now assume that I is another bounary ideal
and let qI the natural projection of C∗(X ) onto C∗(X )/I. Define the map
ψ : qI(X ) → B(H), such that ψ(qI(a)) = π(a). This map is ucis and thus
has a ucp extension ψ̃ : C∗(X )/I → B(H). Then ψ̃ ◦ qI is a ucp extension of
π. But π is maximal, thus π(c) = ψ̃(qI(c)), for every c ∈ C∗(X ). Hence, for
c ∈ I we get that π(c) = ψ̃(qI(c)) = 0, so c ∈ ker π. Hence I ⊆ ker π. 2

But we can follow the converse direction as well.

Theorem 2.7 Let X ⊆ C∗(X ) be an operator space. Then the Šilov ideal J
exists and thus the C∗-envelope of X exists.

Proof. Let an operator space X acting on a Hilbert space K. Then the
inclusion map ι : X → B(K) is a ucis map and thus dilates to a ucis maximal
map γ : X → B(H). Thus γ has the unique extension property. Let π :
C∗(X ) → B(H) be the extension representation. We claim that ker π is the
Šilov ideal.
First of all, we have that ‖a + ker π‖ = ‖π(a)‖ = ‖γ(a)‖ = ‖a‖ (the same
argument holds for all the matrix norms as well), thus ker π is a boundary
ideal. Now assume that I is another boundary ideal and let qI the natural
projection of C∗(X ) onto C∗(X )/I. Define the map ψ : qI(X ) → B(H), such
that ψ(qI(a)) = π(a) = γ(a). This map is ucis and thus has a ucp extension
ψ̃ : C∗(X )/I → B(H). Then ψ̃ ◦ qI is a ucp extension of π|X = γ. But γ is
maximal, thus π(c) = ψ̃(qI(c)), for every c ∈ C∗(X ). Hence, for c ∈ I we get
that π(c) = ψ̃(qI(c)) = 0, so c ∈ ker π. Hence I ⊆ ker π.
To finish the proof we have to prove the universal property for C∗(X )/ ker π.
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We have that π̃ : C∗(X )/ ker π → B(H) is faithful, thus ucis. Let φ : X →
C∗(φ(X )) a ucis map and consider the ucis map π̃ ◦ q ◦ φ−1 : φ(X ) → B(H).
Since π̃ ◦ q(a) = π(a), for every a ∈ X and π is maximal, then by the
invariance principle, π̃ ◦ q ◦ φ−1 is also maximal. Let σ0 : C∗(φ(X )) →
B(H) be its unique extension representation. Then σ0(φ(a)) = π̃(q(a)) and
therefore σ0(φ(a)φ(a)∗) = σ0(φ(a))σ0(φ(a))∗ = π̃(q(a))π̃(q(a))∗ = π̃(q(aa∗)).
Also σ0(φ(a)∗φ(a)) = π̃(q(a∗a)). Hence σ0(C

∗(φ(X ))) = C∗(σ0 ◦ φ(X )) =
C∗(π̃(q(X ))) = π̃◦q(C∗(X )) = π̃(C∗(X )/ ker π). So the map σ : C∗(φ(X )) →
C∗(X )/ ker π defined by σ = π̃−1 ◦ σ0 is a representation onto C∗(X )/ ker π
with σ(φ(a)) = π̃−1 ◦ σ0(φ(a)) = π̃−1 ◦ π̃(a) = q(a). 2

3 Operator Algebras

3.1 Unital operator algebras

In the case where X is a unital operator algebra A we can have also the
following definitions.

Definitions 3.1 1. ([4]) A representation φ : A → B(H) is a ∂-representation
if whenever ψ : A → B(K) dilates φ, then H reduces ψ(A).
2. ([4]) A boundary representation of a unital operator algebra A consists of
the following three

i. a completely isometric homomorphism φ : A → C,
ii. where C = C∗(φ(A)) is a C∗-algebra,
iii. π : C → B(H) is a representation of C such that the only
completely positive map on C agreeing with π on φ(A) is π itself.

Theorem 3.2 ([4, theorem 1.1]) Let A a unital operator algebra. Then ρ :
A → B(H) is a ∂-representation if, and only if, given any ucis map φ :
A → C, where C = C∗(φ(A)), there exists a boundary representation π :
C∗(φ(A)) → B(H), such that π ◦ φ = ρ.

Proof. Suppose first that φ : A → C∗(φ(A)) = C is a ucis and π : C → B(H)
is a boundary representation. Set ρ = π ◦ φ. Then ρ is a representation and
a ucc map. Suppose ν : A → B(K) be a dilation of ρ. We will show that H
reduces ν(A).
To this end, we define a map γ : φ(A) → B(K) by γ(φ(a)) = ν(a), a ∈ A.
This map is ucc, since ‖γ(φ(a))‖ = ‖ν(a)‖ ≤ ‖a‖ = ‖φ(a)‖. So, by the
Arveson’s extension theorem, extends to ucp map γ̃ : C → B(K), with
γ̃ ◦ φ = γ ◦ φ = ν. Now, the map c 7→ PH γ̃(c)|H , c ∈ C is ucp and by
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definition PHγ(φ(a))|H = PHν(a)|H = ρ(a) = π(φ(a)), for all a ∈ A. Since
π is a boundary representation, in fact we have that PH γ̃(c)|H = π(c), for all
c ∈ C. Hence, for all a ∈ A, we get

ρ(a)ρ(a)∗ = π(φ(a))π(φ(a))∗ = π(φ(a)φ(a)∗)

= PHγ(φ(a)φ(a)∗)|H ≥ PHγ(φ(a))γ(φ(a)∗)|H
= PHν(a)ν(a)∗|H ≥ PHγ(φ(a))PHγ(φ(a)∗)|H
= PHν(a)PHν(a)∗|H = ρ(a)ρ(a)∗.

Hence, PHν(a)ν(a)∗|H = PHν(a)PHν(a)∗|H , thus ν(a)∗H ⊆ H. A similar
argument gives that ν(a)H ⊆ H. Thus, H reduces ν(A).
For the converse, let ρ : A → B(H) be a ∂-representation and φ : A →
C∗(φ(A)) = C a ucis map. Then we can define the ucis map φ−1 : φ(A) → A
and we get the ucc map ρ ◦ φ−1 : φ(A) → B(H). Then, by the Arveson’s
extension theorem there is a ucp map π : C → B(H), such that π ◦ φ = ρ.
We will show that π is a boundary representation.
To this end let π̃ : C → B(K) the (minimal) Stinespring dilation of π. Then
π̃ ◦ φ is a dilation of ρ and since ρ is a ∂-representation, H reduces π̃ ◦ φ(A).
Hence,

π(φ(a)φ(a)∗) = PH π̃(φ(a)φ(a)∗)|H = PH π̃(φ(a))π̃(φ(a)∗)|H
= PH π̃(φ(a))PH π̃(φ(a)∗)|H = π(φ(a))π(φ(a)∗).

A same argument gives also that π(φ(a)∗φ(a)) = π(φ(a)∗)π(φ(a)). Hence,
φ(A) is in the multiplicative domain of π. Thus π is a representation of
C, since φ(A) generates C. Now, let r : C → B(H) a ucp map, such that
r(φ(a)) = π(φ(a))(= ρ(a)), for all a ∈ A. Then, (the same argument shows
that) r is also a representation, thus r = π, since r|φ(A) = π|φ(A) and φ(A)
generates C. 2

The notion of ∂-representations is pretty much the same with that of the
maximal ucc maps. In fact we have the following.

Proposition 3.3 A ucc map ρ : A → B(H) is a ∂-representation if and
only if ρ is maximal.

Proof. Let ρ : A → B(H) be ∂-representation. Let the ucis map id : A →
C∗(A). Then by the previous theorem, there exists a boundary representa-
tion π : C∗(A) → B(H), such that π ◦ id = ρ. Hence, π is an extension of ρ.
Since π is boundary representation, it is the unique ucp extension of ρ (and
also a representation of C). Thus ρ has the unique extension property.
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Conversely, let ρ : A → B(H) be a ucc maximal map; then ρ has the unique
extension property. Let π : C∗(A) → B(H) be the unique extension of ρ
which is *-homomorphism. Then ρ = π|A is a homomorphism. Now, let
ν : A → B(K) be a dilation of ρ. Then, by the maximality of ρ, ν = ρ ⊕ ψ
for some ψ : A → B(K ª H). Hence H is ν(A)-reducing. Thus ρ is a ∂-
representation. 2

The following is immediate.

Theorem 3.4 ([4, theorem 1.2]) Every ucis representation ρ : A → B(H)
dilates to a ucis ∂-representation ρ′ : A → B(K). 2

Remark 3.5 As we have seen in the proof of the existence of the C*-
envelope, C∗

env(A) is a C*-cover of A, say C∗(ι(A)), where ι is a ucis maximal
map. The previous proposition, induces that ι is a ∂-representation, hence ι
is a homomorphism of A.

3.2 Non-unital operator algebras

But what happens when A is a non-unital operator algebra? Even in that
case we can have the existence of a C*-cover with the same universal property,
with that of the C*-envelope of a unital operator algebra, which of course we
will call the C*-envelope of the operator algebra. This can be proven easily if
we pass to the unitization of a non-unital operator algebra. So, let us have a
brief talk on this unitization.

Let A be a non-unital operator algebra, regarded as a subalgebra of some
B(H), then a unitization of A may be obtained by taking A1 = span{A, IH},
and is also an operator algebra.

Theorem 3.6 (Meyer) Let A ⊆ B(H) be an operator algebra and assume
that IH 6 ∈A. Let π : A → B(K) be a contractive (resp. completely
contractive, isometric or completely isometric) homomorphism, K being a
Hilbert space. We let A1 = span{A, IH} ⊆ B(H), and we extend π to
π1 : A1 → B(K) by letting

π1(a + λIH) = π(a) + λIK , a ∈ A, λ ∈ C.

Then π1 is a contractive (resp. completely contractive, isometric or com-
pletely isometric) homomorphism.
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Hence, up to completely isometric isomorphism, this unitization does not
depend on the embedding A ⊆ B(H). Consequently, A1 will be called the
unitization of A and is usually used without any reference to a concrete
embedding of A in B(H).

It is clear, also, that if C is a unital operator algebra with unit denoted
by 1C and if A ⊆ C is a non-unital subalgebra, then A1 may be taken to
be span{A, 1C} ⊆ C. If, in particular, A,B are non-unital operator algebras
with A ⊆ B, then the units of A1 and B1 may be identified and A1 may be
viewed as a unital subalgebra of B1.

If A is an already unital operator algebra then Meyer’s result shows that
there is an essentially unique unital operator algebra containingA completely
isometrically as a codimension 1 ideal. Again we write this strictly larger
algebra as A1.

Remark 3.7 Let B be a C*-cover of an operator algebra A. Then it is easy
to check that every cai of A is a cai for B (since, for every a ∈ A we have that
eta → a ⇒ a∗et → a). Hence, if A is approximately unital, then B is a unital
C*-algebra if and only if A is unital. Indeed, if A is unital, then as we saw, B
is also unital (with the same unit). Now, if B is unital and A approximately
unital with (et) cai, then (et) is cai for B as well. So, et = et1B → 1B. Since
A is closed, we get that 1B ∈ A.

Remark 3.8 But it may happen a C*-cover of a non-unital operator algebra
to be unital. For example, let U be the bilateral shift of `2(Z) and A to be
the closed linear span of polynomials

∑k
n=1 λnU

n. Then A is not unital, but
its C*-cover is unital, since U∗U = 1. For this reason we make the following
convention.

Let (B, j) be a C*-cover of a non-unital operator algebra A, and let
B y H and Ay K, for some Hilbert spaces H,K. If B is non-unital, then
using Meyer’s theorem, we get that j : A → B ⊆ B(H) extends uniquely to
the ucis j1 : A1 → B1 ⊆ B(H). On the other hand, if B is unital, then we
identify B to B1, and j : A → B(H) extends uniquely to j1 : A1 → B(H),
such that j1(1A) = j1(IK) = IH = 1B; hence j1(A1) ⊆ B.

Definition 3.9 We define a C*-envelope of a non-unital operator algebra A
to be a pair (B, ι), where B is the C*-subalgebra generated by the copy ι(A)
of A inside a C*-envelope (C∗

env(A1), ι) of the unitization A1 of A.

The following theorem provides that a C*-envelope of a non-unital oper-
ator algebra is unique up to *-isomorphisms, thus we can refer to it as the
C*-envelope.
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Theorem 3.10 Let A be an operator algebra and let (C∗
env(A), ι) be a C*-

envelope of A. Then ι is a homomorphism and C ∗env (A) has the following
universal property:

given a C*-cover (B, j) of A, there exists a (necessarily unique
and surjective) *-homomorphism π : B → C∗

env(A), such that
π ◦ j = ι.

Proof. If A is unital, then this is already proven. Now, let A be non-unital
and (B, j) a C*-cover of A. Then, j extends to a completely isometric unital
homomorphism j1 : A1 → B1 whose range generates B1 as a C*-algebra.
Thus there is a unique and surjective *-homomorphism ρ : B1 → C∗

env(A1),
such that ρ ◦ j1 = ι, where ι : A1 → C∗

env(A1) is the canonical embedding.
Let π = ρ|B; then π is a *-homomorphism with

π(j(a)) = ρ(j1(a)) = ι(a) ∈ C∗
env(A),

for all a ∈ A. Since π is a *-homomorphism, B = C∗(j(A)) and π(j(A)) ⊆
C∗

env(A), we get that π(B) ⊆ C∗
env(A). Also, since C∗

env(A) = C∗(ι(A)) ⊆
C∗

env(A1), we get that C∗
env(A) = C∗(ι(A)) = C∗(π ◦ j(A)) = π(C∗(j(A))) =

π(B). Hence, π is onto. 2
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