NOTES ON THE C^{*}-ENVELOPE AND THE ŠILOV IDEAL

EVGENIOS KAKARIADIS
18/11/2009

1. Definitions

A (concrete) operator space is a (usually) closed linear subspace X of $\mathcal{B}(K, H)$, for Hilbert spaces H, K (indeed the case $H=K$ usually suffices, via the canonical inclusion $\mathcal{B}(K, H) \subset \mathcal{B}(H \oplus K))$. However, sometimes we want to keep track too of the norm $\|\cdot\|_{n, m}$ that $\mathcal{M}_{n, m}(X)$ inherits from $\mathcal{M}_{n, m}(\mathcal{B}(H, K))$, for all $n, m \in \mathbb{N}$. An abstract operator space is a pair $\left(X,\left\{\|\cdot\|_{n}\right\}_{n \geq 1}\right)$, consisting of a vector space, and a norm on $\mathcal{M}_{n}(X)$ for all $n \in \mathbb{N}$, such that there exists a complete isometry $u: X \rightarrow \mathcal{B}(K, H)$. In this case we call the sequence $\left\{\|\cdot\|_{n}\right\}_{n \geq 1}$ an operator space structure on the vector space X. An operator structure on a normed space $(X,\|\cdot\|)$, will usually mean a sequence of matrix norms as above, but with $\|\cdot\|=\|\cdot\|_{1}$ ([3, 1.2.2]).

If X is a linear subspace of a C^{*}-algebra \mathcal{C}, then X is an operator space with the matrix norm structure inherited by a faithful representation of \mathcal{C}.

Let X be an operator space and $\phi: X \rightarrow \mathcal{B}(H)$ a linear map. We define $\phi_{n}:=i d_{n} \otimes \phi: \mathcal{M}_{n}(X) \rightarrow \mathcal{B}\left(H^{n}\right)$ by $\phi_{n}\left(\left[a_{i j}\right]\right)=\left[\phi\left(a_{i j}\right)\right]$. We call ϕ completely positive, completely contractive or completely isometry if ϕ_{n} is positive, contractive or isometry, for every $n \in \mathbb{N}$.

An operator system is a selfadjoint linear subspace S of a unital C^{*}-algebra, that contains the unit. We usually require that the C^{*}-algebra is generated by S.

We can use the decomposition of an element $x \in S$ in the sum of two positive elements in S, i.e. $x=(1\|x\|+x) / 2+(1\|x\|-x) / 2$, to prove that a unital linear map $\phi: S \rightarrow \mathcal{B}(H)$ is completely positive iff it is completely contractive.
A concrete operator algebra \mathcal{A} is a closed subalgebra of some $\mathcal{B}(H)$. Then an operator algebra is both an operator space (with the operator structure inherited by $\mathcal{B}(H))$ and a Banach algebra. Conversely, if \mathcal{A} is both an (abstract) operator space and a Banach algebra, then we call \mathcal{A} an (abstract) operator algebra if there exist a Hilbert space H and a complete isometric homomorphism $\pi: \mathcal{A} \rightarrow \mathcal{B}(H)([3])$.

We will consider only unital operator algebras. Note that if \mathcal{A} is an operator algebra then $\mathcal{A}+\mathcal{A}^{*}$ is an operator system. Also, If $\mathcal{C}=C^{*}(\mathcal{A})$, then $\mathcal{C}=\mathcal{C}^{*}\left(\mathcal{A}+\mathcal{A}^{*}\right)$.

Let $\mathcal{A} \subseteq C^{*}(\mathcal{A})$ be an operator algebra. Given two unital completely contractive maps $\phi_{k}: \mathcal{A} \rightarrow \mathcal{B}\left(H_{k}\right), k=1,2$, we write $\phi_{1} \leq \phi_{2}$ if $H_{1} \subseteq H_{2}$ and
$\left.P_{H_{1}} \phi_{2}(x)\right|_{H_{1}}=\phi_{1}(x), x \in \mathcal{A} ; \phi_{2}$ is called a dilation of ϕ_{1} and ϕ_{1} is called a compression ϕ_{2}. The relation \leq is transitive and one has $\phi_{1} \leq \phi_{2}$ and $\phi_{2} \leq \phi_{1}$ iff $\left(H_{1}, \phi_{1}\right)=\left(H_{2}, \phi_{2}\right)$. Thus \leq defines a partial ordering of ucc maps of \mathcal{A}. Of course there is always a trivial way in dilating a ucc simply by taking the direct sum with any other ucc map.

A dilation ϕ_{2} of ϕ_{1} need not satisfy $H_{2}=\left[C^{*}\left(\phi_{2}(\mathcal{A})\right) H_{1}\right]$, but it can always be replaced with a smaller dilation of ϕ_{1} that has this property; in consequence the dimension of H_{2} has an upper bound in terms of the dimension of H_{1} and the cardinality of \mathcal{A}.

In general, we can have the following scheme. Let $X \subseteq C^{*}(X)$ be a unital operator space and $\phi: X \rightarrow \mathcal{B}(H)$ a completely contractive map. Then ϕ extends uniquely to a ucp map $\tilde{\phi}$ of the operator system $S=X+X^{*}$ (see [2]). Arveson's Extension Theorem implies that there is a completely positive (thus completely contractive) map $\psi: C^{*}(S)=C^{*}(X) \rightarrow \mathcal{B}(H)$ extending $\tilde{\phi}$. Now, we can apply Stinespring's Dilation Theorem on ψ, so that there is a Hilbert space $K \supseteq H$ and a unital representation $\pi: C^{*}(X) \rightarrow \mathcal{B}(K)$ such that $\psi(c)=\left.P_{H} \pi(c)\right|_{H}$, for every $c \in C^{*}(X)$. When $K=\left[\pi\left(C^{*}(S)\right) H\right], \pi$ is called minimal Stinespring dilation and it is unique up to unitary equivalence. Hence, $\left.\pi\right|_{X}$ is a dilation of ϕ.

Of course, the previous scheme can be applied in case $X=\mathcal{A}$ is an operator algebra and ϕ is a unital completely isometry.

Definition 1.1. A representation of an operator algebra \mathcal{A} on a Hilbert space H is an algebra homomorphism $\pi: \mathcal{A} \rightarrow \mathcal{B}(H)$ that is also a completely contractive map.

We can see that this definition contains the case when \mathcal{A} is a C^{*}-algebra, since a homorphism of a C^{*}-algebra is a *-homomorphism, iff it is completely contractive, iff it is just contractive.

Definitions 1.2. 1. ([4]) A representation $\phi: \mathcal{A} \rightarrow \mathcal{B}(H)$ is a ∂-representation if whenever $\psi: \mathcal{A} \rightarrow \mathcal{B}(K)$ dilates ϕ, then H reduces $\psi(\mathcal{A})$.
2. ([4]) A boundary representation of a unital operator algebra \mathcal{A} consists of the following three
i. a completely isometric homomorphism $\phi: \mathcal{A} \rightarrow \mathcal{C}$,
ii. where $\mathcal{C}=C^{*}(\phi(\mathcal{A}))$ is a C^{*}-algebra,
iii. $\quad \pi: \mathcal{C} \rightarrow \mathcal{B}(H)$ is a representation of \mathcal{C} such that the only completely positive map on \mathcal{C} agreeing with π on $\phi(\mathcal{A})$ is π itself.
3. ([1]) A ucc map $\phi: \mathcal{A} \rightarrow \mathcal{B}(H)$ is said to be maximal if it has no nontrivial dilations, i.e. $\phi^{\prime} \geq \phi \Rightarrow \phi^{\prime}=\phi \oplus \psi$, for some ucc map ψ.
4. ([1]) A ucc map $\pi: \mathcal{A} \rightarrow \mathcal{B}(H)$ is said to have the unique extension property if
i. π has a unique completely positive extension $\tilde{\pi}: \mathcal{C}^{*}(\mathcal{A}) \rightarrow \mathcal{B}(H)$,
ii. $\tilde{\pi}: C^{*}(\mathcal{A}) \rightarrow \mathcal{B}(H)$ is a representation of $C^{*}(\mathcal{A})$ on \mathcal{H}.

Remarks 1.3. 1. The unique extension property for $\pi: \mathcal{A} \rightarrow \mathcal{B}(H)$ is equivalent to the assertion that every extension of π to a ucp map $\phi: C^{*}(\mathcal{A}) \rightarrow \mathcal{B}(H)$ should be multiplicative on $C^{*}(\mathcal{A})$.
2. Note that the restriction $\left.\pi\right|_{\mathcal{A}}$ of a boundary representation $\pi: C^{*}(\mathcal{A}) \rightarrow \mathcal{B}(H)$ of the ucis map $i d: \mathcal{A} \rightarrow C^{*}(\mathcal{A})$ has the unique extension property.
Theorem 1.4. ([4, theorem 1.1]) Let \mathcal{A} a unital operator algebra. Then $\rho: \mathcal{A} \rightarrow$ $\mathcal{B}(H)$ is a ∂-representation if, and only if, given any ucis map $\phi: \mathcal{A} \rightarrow \mathcal{C}$, where $\mathcal{C}=C^{*}(\phi(\mathcal{A}))$, there exists a boundary representation $\pi: C^{*}(\phi(\mathcal{A})) \rightarrow \mathcal{B}(H)$, such that $\pi \circ \phi=\rho$.

Proof. Suppose first that $\phi: \mathcal{A} \rightarrow C^{*}(\phi(\mathcal{A}))=\mathcal{C}$ is a ucis and $\pi: \mathcal{C} \rightarrow \mathcal{B}(H)$ is a boundary representation. Set $\rho=\pi \circ \phi$. Then ρ is a representation and a ucc map. Suppose $\nu: \mathcal{A} \rightarrow \mathcal{B}(K)$ be a dilation of ρ. We will show that H reduces $\nu(\mathcal{A})$.
To this end, we define a map $\gamma: \phi(\mathcal{A}) \rightarrow \mathcal{B}(K)$ by $\gamma(\phi(a))=\nu(a), a \in \mathcal{A}$. This map is ucc, since $\|\gamma(\phi(a))\|=\|\nu(a)\| \leq\|a\|=\|\phi(a)\|$. So, by the Arveson's extension theorem, extends to ucp map $\tilde{\gamma}: \mathcal{C} \rightarrow \mathcal{B}(K)$, with $\tilde{\gamma} \circ \phi=\gamma \circ \phi=\nu$. Now, the map $\left.c \mapsto P_{H} \tilde{\gamma}(c)\right|_{H}, c \in \mathcal{C}$ is ucp and by definition $\left.P_{H} \gamma(\phi(a))\right|_{H}=\left.P_{H} \nu(a)\right|_{H}=\rho(a)=$ $\pi(\phi(a))$, for all $a \in \mathcal{A}$. Since π is a boundary representation, in fact we have that $\left.P_{H} \tilde{\gamma}(c)\right|_{H}=\pi(c)$, for all $c \in \mathcal{C}$. Hence, for all $a \in \mathcal{A}$, we get

$$
\begin{aligned}
\rho(a) \rho(a)^{*} & =\pi(\phi(a)) \pi(\phi(a))^{*}=\pi\left(\phi(a) \phi(a)^{*}\right) \\
& =\left.P_{H} \gamma\left(\phi(a) \phi(a)^{*}\right)\right|_{H} \geq\left. P_{H} \gamma(\phi(a)) \gamma\left(\phi(a)^{*}\right)\right|_{H} \\
& =\left.P_{H} \nu(a) \nu(a)^{*}\right|_{H} \geq\left. P_{H} \gamma(\phi(a)) P_{H} \gamma\left(\phi(a)^{*}\right)\right|_{H} \\
& =\left.P_{H} \nu(a) P_{H} \nu(a)^{*}\right|_{H}=\rho(a) \rho(a)^{*} .
\end{aligned}
$$

Hence, $\left.P_{H} \nu(a) \nu(a)^{*}\right|_{H}=\left.P_{H} \nu(a) P_{H} \nu(a)^{*}\right|_{H}$, thus $\nu(a)^{*} H \subseteq H$. A similar argument gives that $\nu(a) H \subseteq H$. Thus, H reduces $\nu(\mathcal{A})$.
For the converse, let $\rho: \mathcal{A} \rightarrow \mathcal{B}(H)$ be a ∂-representation and $\phi: \mathcal{A} \rightarrow C^{*}(\phi(\mathcal{A}))=$ \mathcal{C} a ucis map. Then we can define the ucis map $\phi^{-1}: \phi(\mathcal{A}) \rightarrow \mathcal{A}$ and we get the ucc map $\rho \circ \phi^{-1}: \phi(\mathcal{A}) \rightarrow \mathcal{B}(H)$. Then, by the Arveson's extension theorem there is a ucp map $\pi: \mathcal{C} \rightarrow \mathcal{B}(H)$, such that $\pi \circ \phi=\rho$. We will show that π is a boundary representation.
To this end let $\tilde{\pi}: \mathcal{C} \rightarrow \mathcal{B}(K)$ the (minimal) Stinespring dilation of π. Then $\tilde{\pi} \circ \phi$ is a dilation of ρ and since ρ is a ∂-representation, H reduces $\tilde{\pi} \circ \phi(\mathcal{A})$. Hence,

$$
\begin{aligned}
\pi\left(\phi(a) \phi(a)^{*}\right) & =\left.P_{H} \tilde{\pi}\left(\phi(a) \phi(a)^{*}\right)\right|_{H}=\left.P_{H} \tilde{\pi}(\phi(a)) \tilde{\pi}\left(\phi(a)^{*}\right)\right|_{H} \\
& =\left.P_{H} \tilde{\pi}(\phi(a)) P_{H} \tilde{\pi}\left(\phi(a)^{*}\right)\right|_{H}=\pi(\phi(a)) \pi\left(\phi(a)^{*}\right) .
\end{aligned}
$$

A same argument gives also that $\pi\left(\phi(a)^{*} \phi(a)\right)=\pi\left(\phi(a)^{*}\right) \pi(\phi(a))$. Hence, $\phi(\mathcal{A})$ is in the multiplicative domain of π^{1}. Thus π is a representation of \mathcal{C}, since $\phi(\mathcal{A})$ generates \mathcal{C}. Now, let $r: \mathcal{C} \rightarrow \mathcal{B}(H)$ a ucp map, such that $r(\phi(a))=\pi(\phi(a))(=\rho(a))$, for all $a \in \mathcal{A}$. Then, (the same argument shows that) r is also a representation, thus $r=\pi$, since $\left.r\right|_{\phi(\mathcal{A})}=\left.\pi\right|_{\phi(\mathcal{A})}$ and $\phi(\mathcal{A})$ generates \mathcal{C}.
Theorem 1.5. Let $\rho: \mathcal{A} \rightarrow \mathcal{B}(H)$ be a ucis representation. Then the following are equivalent
(1) ρ is a ∂-representation.
(2) ρ has the unique extension property.
(3) ρ is maximal.

[^0]Proof. ($1 \Rightarrow$ 2). Let $\rho: \mathcal{A} \rightarrow \mathcal{B}(H)$ be ∂-representation. Let the ucis map id: $\mathcal{A} \rightarrow C^{*}(\mathcal{A})$. Then by the previous theorem, there exists a boundary representation $\pi: C^{*}(\mathcal{A}) \rightarrow \mathcal{B}(H)$, such that $\pi \circ i d=\rho$. Hence, π is an extension of ρ. Since π is boundary representation, it is the unique ucp extension of ρ (and also a representation of \mathcal{C}). Thus ρ has the unique extension property.
(2 $\Rightarrow 3$). Suppose ρ has the unique extension property and let $\phi: \mathcal{A} \rightarrow \mathcal{B}(K)$ be a dilation of ρ, such that $K=\left[C^{*}(\phi(\mathcal{A})) H\right]$. It suffices to show that $K=H$ and $\phi=\rho$. By the Arveson's extension theorem, ϕ can be extended to a ucp map $\tilde{\phi}: C^{*}(\mathcal{A}) \rightarrow \mathcal{B}(K)$. Since the compression of $\tilde{\phi}$ to H defines a ucp map of $C^{*}(\mathcal{A})$ to $\mathcal{B}(H)$ that restricts to ρ on \mathcal{A}, the unique extension property implies that $P_{H} \tilde{\phi}(\cdot) P_{H}$ is multiplicative on $C^{*}(\mathcal{A})$. So for $c \in C^{*}(\mathcal{A})$,

$$
P_{H} \tilde{\phi}(c)^{*} P_{H} \tilde{\phi}(c) P_{H}=P_{H} \tilde{\phi}\left(c^{*} c\right) P_{H} \geq P_{H} \tilde{\phi}(c)^{*} \tilde{\phi}(c) P_{H},
$$

since $\tilde{\phi}\left(c^{*} c\right) \geq \tilde{\phi}(c)^{*} \tilde{\phi}(c)$. Thus $\left|\left(1-P_{H}\right) \tilde{\phi}(c) P_{H}\right|^{2} \leq 0$. Hence, H is invariant under the set of operators $\tilde{\phi}\left(C^{*}(\mathcal{A})\right) \supseteq \phi(\mathcal{A})$; so, H is $\phi(\mathcal{A})$)-invariant. Also, since $\tilde{\phi}$ is positive we have that $\phi(a)^{*} H=\tilde{\phi}(a)^{*} H=\tilde{\phi}\left(a^{*}\right) H \subseteq H$, for all $a \in \mathcal{A}$, hence H is $\phi(\mathcal{A})^{*}$-invariant. Therefore H is $C^{*}(\phi(\mathcal{A}))$-invariant. Thus $K=\left[C^{*}(\phi(\mathcal{A})) H\right]=H$ and it follows that $\phi=\rho$.
$(3 \Rightarrow 1)$. Let $\rho: \mathcal{A} \rightarrow \mathcal{B}(H)$ be a maximal ucis representation. Then for every dilation $\phi: \mathcal{A} \rightarrow \mathcal{B}(K)$, we have that $\phi=\rho \oplus \psi$, for a ucc map ψ. Thus $\phi(\mathcal{A}) H=$ $\rho(\mathcal{A}) H \subseteq H$ and $\phi(\mathcal{A})^{*} H=\rho(\mathcal{A})^{*} H \subseteq H$. Hence H reduces $\phi(\mathcal{A})$. So ρ is a ∂-representation.

References

[1] William Arveson. Notes on the unique extension property. http://math.berkeley.edu/ arveson/Dvi/unExt.pdf, 2006.
[2] William B. Arveson. On subalgebras of C^{*}-algebras. Bull. Amer. Math. Soc., 75:790-794, 1969.
[3] D. P. Blecher and C. Le Merdy. Operator algebras and their modules-an operator space approach, volume 30 of London Mathematical Society Monographs. New Series. The Clarendon Press Oxford University Press, Oxford, 2004. Oxford Science Publications.
[4] Michael A. Dritschel and Scott A. McCullough. Boundary representations for families of representations of operator algebras and spaces. J. Operator Theory, 53(1):159-167, 2005.
[5] Vern Paulsen. Completely bounded maps and operator algebras, volume 78 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2002.

[^0]: ${ }^{1}$ The multiplicative domain of π is defined as the set $\left\{c \in \mathcal{C}: \pi\left(c c^{*}\right)=\pi(c) \pi(c)^{*}\right.$ and $\pi\left(c^{*} c\right)=$ $\left.\pi(c)^{*} \pi(c)\right\}$. This is a C^{*}-subalgebra of \mathcal{C} and π is a *-homomorphism when restricted to this set (see [5, Theorem 3.19]).

