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1. Definitions

A (concrete) operator space is a (usually) closed linear subspace X of B(K,H),
for Hilbert spaces H, K (indeed the case H = K usually suffices, via the canonical
inclusion B(K, H) ⊂ B(H⊕K)). However, sometimes we want to keep track too of
the norm ‖ · ‖n,m that Mn,m(X) inherits from Mn,m(B(H,K)), for all n,m ∈ N.
An abstract operator space is a pair (X, {‖ · ‖n}n≥1), consisting of a vector space,
and a norm on Mn(X) for all n ∈ N, such that there exists a complete isometry
u : X → B(K, H). In this case we call the sequence {‖ · ‖n}n≥1 an operator space
structure on the vector space X. An operator structure on a normed space (X, ‖·‖),
will usually mean a sequence of matrix norms as above, but with ‖ · ‖ = ‖ · ‖1 ([3,
1.2.2]).

If X is a linear subspace of a C∗-algebra C, then X is an operator space with
the matrix norm structure inherited by a faithful representation of C.

Let X be an operator space and φ : X → B(H) a linear map. We define
φn := idn ⊗ φ : Mn(X) → B(Hn) by φn([aij ]) = [φ(aij)]. We call φ completely
positive, completely contractive or completely isometry if φn is positive, contractive
or isometry, for every n ∈ N.

An operator system is a selfadjoint linear subspace S of a unital C∗-algebra, that
contains the unit. We usually require that the C∗-algebra is generated by S.

We can use the decomposition of an element x ∈ S in the sum of two positive
elements in S, i.e. x = (1‖x‖+ x)/2 + (1‖x‖ − x)/2, to prove that

a unital linear map φ : S → B(H) is completely positive iff it is
completely contractive.

A concrete operator algebra A is a closed subalgebra of some B(H). Then an op-
erator algebra is both an operator space (with the operator structure inherited by
B(H)) and a Banach algebra. Conversely, if A is both an (abstract) operator space
and a Banach algebra, then we call A an (abstract) operator algebra if there exist
a Hilbert space H and a complete isometric homomorphism π : A → B(H)([3]).

We will consider only unital operator algebras. Note that if A is an operator al-
gebra then A+A∗ is an operator system. Also, If C = C∗(A), then C = C∗(A+A∗).

Let A ⊆ C∗(A) be an operator algebra. Given two unital completely con-
tractive maps φk : A → B(Hk), k = 1, 2, we write φ1 ≤ φ2 if H1 ⊆ H2 and
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PH1φ2(x)|H1 = φ1(x), x ∈ A; φ2 is called a dilation of φ1 and φ1 is called a com-
pression φ2. The relation ≤ is transitive and one has φ1 ≤ φ2 and φ2 ≤ φ1 iff
(H1, φ1) = (H2, φ2). Thus ≤ defines a partial ordering of ucc maps of A. Of course
there is always a trivial way in dilating a ucc simply by taking the direct sum with
any other ucc map.

A dilation φ2 of φ1 need not satisfy H2 = [C∗(φ2(A))H1], but it can always
be replaced with a smaller dilation of φ1 that has this property; in consequence
the dimension of H2 has an upper bound in terms of the dimension of H1 and the
cardinality of A.

In general, we can have the following scheme. Let X ⊆ C∗(X) be a unital op-
erator space and φ : X → B(H) a completely contractive map. Then φ extends
uniquely to a ucp map φ̃ of the operator system S = X + X∗ (see [2]). Arveson’s
Extension Theorem implies that there is a completely positive (thus completely
contractive) map ψ : C∗(S) = C∗(X) → B(H) extending φ̃. Now, we can apply
Stinespring’s Dilation Theorem on ψ, so that there is a Hilbert space K ⊇ H and
a unital representation π : C∗(X) → B(K) such that ψ(c) = PHπ(c)|H , for every
c ∈ C∗(X). When K = [π(C∗(S))H], π is called minimal Stinespring dilation and
it is unique up to unitary equivalence. Hence, π|X is a dilation of φ.

Of course, the previous scheme can be applied in case X = A is an operator
algebra and φ is a unital completely isometry.

Definition 1.1. A representation of an operator algebra A on a Hilbert space H
is an algebra homomorphism π : A → B(H) that is also a completely contractive
map.

We can see that this definition contains the case when A is a C∗-algebra, since a
homorphism of a C∗-algebra is a *-homomorphism, iff it is completely contractive,
iff it is just contractive.

Definitions 1.2. 1. ([4]) A representation φ : A → B(H) is a ∂-representation if
whenever ψ : A → B(K) dilates φ, then H reduces ψ(A).
2. ([4]) A boundary representation of a unital operator algebra A consists of the
following three

i. a completely isometric homomorphism φ : A → C,
ii. where C = C∗(φ(A)) is a C∗-algebra,
iii. π : C → B(H) is a representation of C such that the only
completely positive map on C agreeing with π on φ(A) is π itself.

3. ([1]) A ucc map φ : A → B(H) is said to be maximal if it has no nontrivial
dilations, i.e. φ′ ≥ φ ⇒ φ′ = φ⊕ ψ, for some ucc map ψ.
4. ([1]) A ucc map π : A → B(H) is said to have the unique extension property if

i. π has a unique completely positive extension π̃ : C∗(A) → B(H),
ii. π̃ : C∗(A) → B(H) is a representation of C∗(A) on H.

Remarks 1.3. 1. The unique extension property for π : A → B(H) is equivalent
to the assertion that every extension of π to a ucp map φ : C∗(A) → B(H) should
be multiplicative on C∗(A).
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2. Note that the restriction π|A of a boundary representation π : C∗(A) → B(H)
of the ucis map id : A → C∗(A) has the unique extension property.

Theorem 1.4. ([4, theorem 1.1]) Let A a unital operator algebra. Then ρ : A →
B(H) is a ∂-representation if, and only if, given any ucis map φ : A → C, where
C = C∗(φ(A)), there exists a boundary representation π : C∗(φ(A)) → B(H), such
that π ◦ φ = ρ.

Proof. Suppose first that φ : A → C∗(φ(A)) = C is a ucis and π : C → B(H) is a
boundary representation. Set ρ = π ◦φ. Then ρ is a representation and a ucc map.
Suppose ν : A → B(K) be a dilation of ρ. We will show that H reduces ν(A).
To this end, we define a map γ : φ(A) → B(K) by γ(φ(a)) = ν(a), a ∈ A. This map
is ucc, since ‖γ(φ(a))‖ = ‖ν(a)‖ ≤ ‖a‖ = ‖φ(a)‖. So, by the Arveson’s extension
theorem, extends to ucp map γ̃ : C → B(K), with γ̃ ◦ φ = γ ◦ φ = ν. Now, the map
c 7→ PH γ̃(c)|H , c ∈ C is ucp and by definition PHγ(φ(a))|H = PHν(a)|H = ρ(a) =
π(φ(a)), for all a ∈ A. Since π is a boundary representation, in fact we have that
PH γ̃(c)|H = π(c), for all c ∈ C. Hence, for all a ∈ A, we get

ρ(a)ρ(a)∗ = π(φ(a))π(φ(a))∗ = π(φ(a)φ(a)∗)

= PHγ(φ(a)φ(a)∗)|H ≥ PHγ(φ(a))γ(φ(a)∗)|H
= PHν(a)ν(a)∗|H ≥ PHγ(φ(a))PHγ(φ(a)∗)|H
= PHν(a)PHν(a)∗|H = ρ(a)ρ(a)∗.

Hence, PHν(a)ν(a)∗|H = PHν(a)PHν(a)∗|H , thus ν(a)∗H ⊆ H. A similar argu-
ment gives that ν(a)H ⊆ H. Thus, H reduces ν(A).
For the converse, let ρ : A → B(H) be a ∂-representation and φ : A → C∗(φ(A)) =
C a ucis map. Then we can define the ucis map φ−1 : φ(A) → A and we get the ucc
map ρ ◦ φ−1 : φ(A) → B(H). Then, by the Arveson’s extension theorem there is a
ucp map π : C → B(H), such that π ◦ φ = ρ. We will show that π is a boundary
representation.
To this end let π̃ : C → B(K) the (minimal) Stinespring dilation of π. Then π̃ ◦ φ
is a dilation of ρ and since ρ is a ∂-representation, H reduces π̃ ◦ φ(A). Hence,

π(φ(a)φ(a)∗) = PH π̃(φ(a)φ(a)∗)|H = PH π̃(φ(a))π̃(φ(a)∗)|H
= PH π̃(φ(a))PH π̃(φ(a)∗)|H = π(φ(a))π(φ(a)∗).

A same argument gives also that π(φ(a)∗φ(a)) = π(φ(a)∗)π(φ(a)). Hence, φ(A) is
in the multiplicative domain of π 1. Thus π is a representation of C, since φ(A) gen-
erates C. Now, let r : C → B(H) a ucp map, such that r(φ(a)) = π(φ(a))(= ρ(a)),
for all a ∈ A. Then, (the same argument shows that) r is also a representation,
thus r = π, since r|φ(A) = π|φ(A) and φ(A) generates C. 2

Theorem 1.5. Let ρ : A → B(H) be a ucis representation. Then the following are
equivalent

(1) ρ is a ∂-representation.
(2) ρ has the unique extension property.
(3) ρ is maximal.

1 The multiplicative domain of π is defined as the set {c ∈ C : π(cc∗) = π(c)π(c)∗ and π(c∗c) =
π(c)∗π(c)}. This is a C*-subalgebra of C and π is a *-homomorphism when restricted to this set
(see [5, Theorem 3.19]).
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Proof. (1⇒ 2). Let ρ : A → B(H) be ∂-representation. Let the ucis map id :
A → C∗(A). Then by the previous theorem, there exists a boundary represen-
tation π : C∗(A) → B(H), such that π ◦ id = ρ. Hence, π is an extension of ρ.
Since π is boundary representation, it is the unique ucp extension of ρ (and also a
representation of C). Thus ρ has the unique extension property.
(2 ⇒ 3). Suppose ρ has the unique extension property and let φ : A → B(K)
be a dilation of ρ, such that K = [C∗(φ(A))H]. It suffices to show that K = H
and φ = ρ. By the Arveson’s extension theorem, φ can be extended to a ucp map
φ̃ : C∗(A) → B(K). Since the compression of φ̃ to H defines a ucp map of C∗(A) to
B(H) that restricts to ρ on A, the unique extension property implies that PH φ̃(·)PH

is multiplicative on C∗(A). So for c ∈ C∗(A),

PH φ̃(c)∗PH φ̃(c)PH = PH φ̃(c∗c)PH ≥ PH φ̃(c)∗φ̃(c)PH ,

since φ̃(c∗c) ≥ φ̃(c)∗φ̃(c). Thus |(1−PH)φ̃(c)PH |2 ≤ 0. Hence, H is invariant under
the set of operators φ̃(C∗(A)) ⊇ φ(A); so, H is φ(A))-invariant. Also, since φ̃ is
positive we have that φ(a)∗H = φ̃(a)∗H = φ̃(a∗)H ⊆ H, for all a ∈ A, hence H is
φ(A)∗-invariant. Therefore H is C∗(φ(A))-invariant. Thus K = [C∗(φ(A))H] = H
and it follows that φ = ρ.
(3 ⇒ 1). Let ρ : A → B(H) be a maximal ucis representation. Then for every
dilation φ : A → B(K), we have that φ = ρ⊕ ψ, for a ucc map ψ. Thus φ(A)H =
ρ(A)H ⊆ H and φ(A)∗H = ρ(A)∗H ⊆ H. Hence H reduces φ(A). So ρ is a
∂-representation. 2
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