Morita-type equivalences for operator algebras ### A. Katavolos OPAW, Belfast, 6 May 2006 This talk will describe work of George Eleftherakis (Athens). ### 1 TRO equivalence 1.1 A TRO \mathcal{M} is a linear subspace of some $B(H_1, H_2)$ such that $$\mathcal{M}\mathcal{M}^*\mathcal{M} \subseteq \mathcal{M}$$. TRO's arise as: - Corners of C*-algebras, - injective operator spaces, - normalizing spaces of (possibly nonselfadjoint) algebras (w. Todorov). - A TRO \mathcal{M} is a Hilbert (bi)-module over the C*-algebras $\mathcal{M}^*\mathcal{M}$ and $\mathcal{M}\mathcal{M}^*$. Conversely, Hilbert modules can be represented as TRO's. w*-closed TRO's are generated by their partial isometries; they need not contain any unitaries. 1.2 Normalisers: A normaliser of $\mathcal{A} \subseteq B(H_1)$ into $\mathcal{B} \subseteq B(H_2)$ is $T \in B(H_1, H_2)$ such that $T^*\mathcal{B}T \subseteq \mathcal{A}$ and $T^*\mathcal{A}T \subseteq \mathcal{B}$. TRO equivalence: existence of 'sufficiently many' normalisers. **Definition 1** Two (w*-closed) algebras \mathcal{A} , \mathcal{B} are called TRO equivalent if there exists a TRO \mathcal{M} such that $\mathcal{A} = [\mathcal{M}^*\mathcal{B}\mathcal{M}]^{-w^*}$ and $\mathcal{B} = [\mathcal{M}\mathcal{A}\mathcal{M}^*]^{-w^*}$. Examples: unitarily equivalence; Morita equivalence of W^* -algebras. Example: $\mathcal{A} \sim_{TRO} M_n(\mathcal{A})$ with $\mathcal{M} = C_n(\mathcal{A})$: $$\binom{*}{*} \cdot (*) \cdot (**) = \binom{**}{**} \qquad \binom{*}{*} \cdot \binom{**}{**} \cdot (**) = (*)$$ - 1.3 TRO equivalence is an equivalence relation. - 1.4 **Theorem 2** The reflexive algebras A, B are TRO equivalent if and only if there exists a *-isomorphism $$\theta: \Delta(\mathcal{A})' \to \Delta(\mathcal{B})'$$ such that $$\theta(\text{Lat}(\mathcal{A})) = \text{Lat}(\mathcal{B}).$$ Reflexive algebras: Given a (unital, w*-closed) algebra $\mathcal{A} \subseteq B(H)$ and a (strongly closed) lattice of projections \mathcal{L} , let $$\operatorname{Lat}(\mathcal{A}) = \{ P \in \operatorname{Proj}(H) : P^{\perp} \mathcal{A} P = \{0\} \}$$ $$\operatorname{Alg}(\mathcal{L}) = \{ A \in B(H) : P^{\perp} A P = 0 \ \forall P \in \mathcal{L} \}$$ $$\mathcal{A} \text{ reflexive } : \mathcal{A} = \operatorname{Alg} \mathcal{L}.$$ Examples: W* algebras, nest algebras (here \mathcal{L} is totally ordered - a nest) CSL algebras (elements of \mathcal{L} commute). # 2 TRO equivalence vs spacial Morita equivalence. **Example 3** There exist nests $\mathcal{N}_1, \mathcal{N}_2$ which are isomorphic but the algebras $\mathcal{N}_1'', \mathcal{N}_2''$ are not isomorphic. Thus isomorphism of the lattices does not guarantee TRO equivalence, even for multiplicity free nest algebras. See item 3.1 below. On $H_1 = \ell^2(\mathbb{Q} \cap [0,1])$ define, for each $t \in [0,1]$, $$Q_t^+ = \{f : \operatorname{supp} f \subseteq [0, t]\}$$ $$Q_t^- = \{f : \operatorname{supp} f \subseteq [0, t)\}.$$ On $L^2([0,1],\lambda)$ define, for each $t \in [0,1]$, $$N_t = \{f : \operatorname{supp} f \subseteq [0, t]\}.$$ Let $$\mathcal{N}_1 = \{Q_t^{\pm} : t \in [0, 1]\} \text{ on } H_1 = \ell^2(\mathbb{Q} \cap [0, 1])$$ $\mathcal{N}_2 = \{Q_t^{\pm} \oplus N_t : t \in [0, 1]\} \text{ on } H_2 \equiv H_1 \oplus L^2([0, 1], \lambda).$ 2.2 **Proposition** Two CSL algebras A, B have isomorphic lattices iff they are "spacially Morita equivalent": **Definition** Let $\mathcal{A} \subset B(H_1)$, $\mathcal{B} \subset B(H_2)$ be w^* -closed algebras. If there exist spaces $\mathcal{U} \subset B(H_1, H_2)$, $\mathcal{V} \subset B(H_2, H_1)$ such that $\mathcal{BUA} \subset \mathcal{U}$, $\mathcal{AVB} \subset \mathcal{V}$, $[\mathcal{VU}]^{-w^*} = \mathcal{A}$, $[\mathcal{UV}]^{-w^*} = \mathcal{B}$ then we say that the algebras \mathcal{A} , \mathcal{B} are spacially Morita equivalent and the system $$\begin{pmatrix} A & V \\ U & B \end{pmatrix}$$ is called a spacial Morita context. - 2.3 In general, TRO equivalence \Rightarrow spacial Morita equivalence. - 2.4 Definition: Given a commutative subspace lattice (CSL) \mathcal{L} , the class of all w*-closed algebras \mathcal{A} containing a masa and s.t. Lat $\mathcal{A} = \mathcal{L}$ has a minimal element $\mathcal{A}_{min}(\mathcal{L})$ [Arveson]. In case $\mathcal{A}_{min}(\mathcal{L}) = \text{Alg } \mathcal{L}$ we say \mathcal{L} is synthetic. Using these methods, one shows: **Proposition 4** Synthesis is preserved under lattice isomorphisms. Qu: Under epimorphisms? ### 3 TRO equivalence and CSL algebras. **Definition 5** Let $\phi : \mathcal{L}_1 \to \mathcal{L}_2$ be an isomorphism between CSL's. Then ϕ restricts to an isomorphism between the 'atomic parts', but not necessarily between the 'continuous parts' (see example above). If it does, we say ϕ respects continuity. **Proposition 6** Two CSL algebras are TRO equivalent iff there exists an isomorphism between their lattices which respects continuity. #### Consequences of TRO equivalence for CSL algebras: Let \mathcal{A}, \mathcal{B} be CSL algebras which are TRO equivalent via \mathcal{M} . There is a bijective correspondence between the w^* -closed ideals of the algebras \mathcal{A} and \mathcal{B} . It follows that $$\mathcal{A}$$ strongly reflexive $\Leftrightarrow \mathcal{B}$ strongly reflexive $R_1(\mathcal{A}) = 0 \Leftrightarrow R_1(\mathcal{B}) = 0$ $$\mathcal{A} \text{ semisimple } \Leftrightarrow \mathcal{B} \text{ semisimple}$$ $$\mathcal{A} = \operatorname{Rad}(\mathcal{A})^{-w^*} \Leftrightarrow \mathcal{B} = \operatorname{Rad}(\mathcal{B})^{-w^*}$$ # 4 Morita equivalence for W*-algebras (Rieffel) The category $_{\mathcal{A}}\mathfrak{M}$ of Hilbert \mathcal{A} -modules for a W* algebra \mathcal{A} : Objects: (H, π) where π is a normal (: w*-continuous) *-representation. Morphisms: $$\operatorname{Hom}_{\mathcal{A}}(H_1, H_2) = \{ T \in B(H_1, H_2) : T\pi_1(a) = \pi_2(a)T \ \forall a \in \mathcal{A} \}.$$ A functor $$\mathcal{F}: \mathcal{A}\mathfrak{M} \to \mathcal{B}\mathfrak{M}$$ is called a *-functor if $T \in \operatorname{Hom}_{\mathcal{A}}(H_1, H_2) \Rightarrow \mathcal{F}(T)^* = \mathcal{F}(T^*)$ Example: If $\phi: \mathcal{B} \to \mathcal{A}$ is a *-isomorphism, then $\mathcal{F}(H, \alpha) = (H, \alpha \circ \phi)$ on objects and $\mathcal{F}(T) = T$ on morphisms defines an equivalence *-functor $\mathcal{F}: {}_{\mathcal{A}}\mathfrak{M} \to {}_{\mathcal{B}}\mathfrak{M}$. **Theorem 7 (Rieffel)** $_{\mathcal{A}}\mathfrak{M}$ and $_{\mathcal{B}}\mathfrak{M}$ are equivalent via *-functors (write $A \sim_R B$) iff there is an 'abstract Morita context' $\begin{pmatrix} A & \mathcal{X} \\ \mathcal{X}^* & \mathcal{B} \end{pmatrix}$ for W^* -algebras. equivalently [Connes] $$A \sim_R B \iff \exists \text{ faithful normal reprs. s.t. } \alpha(\mathcal{A})' \simeq \beta(\mathcal{B})'.$$ In view of Theorem 2 this remark has the following equivalent version: **Theorem 8** The W*-algebras \mathcal{A} , \mathcal{B} are Morita equivalent if and only if they have faithful normal representations α , β on Hilbert spaces such that the algebras $\alpha(\mathcal{A})$, $\beta(\mathcal{B})$ are TRO equivalent. $$A \sim_R B \iff \exists faithful \ normal * reps: \quad \alpha(A) \sim_{TRO} \beta(B)$$ ### 5 The category \mathfrak{M} for dual operator algebras. - 5.1 Dual operator algebras: (unital) w*-closed subalgebras (A, w^*) of some B(H). There is an abstract characterisation (Le Merdy): they are the operator algebras that have an *operator space* predual. - 5.2 The categories $_{\mathcal{A}}\mathfrak{M}$ and $_{\mathcal{A}}\mathfrak{D}\mathfrak{M}$ of Hilbert \mathcal{A} -modules. Objects $Ob(_{\mathcal{A}}\mathfrak{M})$: Completely contractive unital w*-contrs. reps (normal reprs.) (H, α) . $$\operatorname{Hom}_{\mathcal{A}}(H_1, H_2) = \{ T \in B(H_1, H_2) : T\alpha_1(a) = \alpha_2(a)T \ \forall a \in \mathcal{A} \}.$$ Objects: $Ob(_{\mathcal{A}}\mathfrak{DM}) = Ob(_{\mathcal{A}}\mathfrak{M}).$ $$\operatorname{Hom}_{\mathcal{A}}^{\mathfrak{D}}(H_1, H_2) = \{ T \in B(H_1, H_2) : T\alpha_1(a) = \alpha_2(a)T \ \forall a \in \Delta(\mathcal{A}) \}.$$ Observe that $_{\mathcal{A}}\mathfrak{M}\subseteq _{\mathcal{A}}\mathfrak{DM};$ If \mathcal{A} is a W^* algebra then $_{\mathcal{A}}\mathfrak{M}= _{\mathcal{A}}\mathfrak{DM}.$ 5.3 A Δ -extension of a functor \mathcal{F} is a functor $$\mathcal{F}^{\delta}: \mathcal{A}\mathfrak{DM} \longrightarrow \mathcal{B}\mathfrak{DM}$$ such that $$\mathcal{A}\mathfrak{M} \hookrightarrow \mathcal{A}\mathfrak{D}\mathfrak{M}$$ $\mathcal{F}\downarrow \mathcal{F}^{\delta}\downarrow$ $\mathcal{B}\mathfrak{M} \hookrightarrow \mathcal{B}\mathfrak{D}\mathfrak{M}$ commutes. #### 6 The main theorem. 6.1 **Definition** We say that the unital dual operator algebras \mathcal{A}, \mathcal{B} are Δ -equivalent if there exists an equivalence functor $$\mathcal{F}: A\mathfrak{M} \leftrightarrow B\mathfrak{M}$$ with a Δ -extension to an equivalence *-functor $$\mathcal{F}^{\delta}: \mathcal{ADM} \leftrightarrow \mathcal{BDM}.$$ We write $\mathcal{A} \sim_{\Delta} \mathcal{B}$. Observe that for W*-algebras, $\mathcal{A} \sim_{\Delta} \mathcal{B} \iff \mathcal{A} \sim_{R} \mathcal{B}$. 6.2 **Theorem** Let \mathcal{A}, \mathcal{B} be unital dual operator algebras. $$\mathcal{A} \sim_{\Delta} \mathcal{B} \iff \exists \text{ compl. isom. normal reps: } \alpha(\mathcal{A}) \sim_{TRO} \beta(\mathcal{B}).$$ (cf. theorem 8) ### 7 Properties of the equivalence functors Suppose that \mathcal{A}, \mathcal{B} are unital dual operator algebras and $\mathcal{A} \sim_{\Delta} \mathcal{B}$ via \mathcal{F} . - 7.1 \mathcal{F} is equivalent to a functor $\mathcal{F}_{\mathcal{U}}$ of 'tensoring by' a suitable bimodule \mathcal{U} . - 7.2 \mathcal{F} maps completely isometric representations to completely isometric representations. - 7.3 \mathcal{F} 'preserves reflexivity': If α is a compl. isom. repr. and $\beta = \mathcal{F}(\alpha)$ then $\alpha(\mathcal{A})$ is reflexive iff $\beta(\mathcal{B})$ is. 7.4 \mathcal{F} 'respects' the lattices: If $(H, \alpha) \in \mathcal{A}\mathfrak{M}$ with corresponding object $(\mathcal{F}(H), \beta) \in \mathcal{B}\mathfrak{M}$ then $$\mathcal{F}^{\delta}(\operatorname{Lat}(\alpha(\mathcal{A}))) = \operatorname{Lat}(\beta(\mathcal{B})).$$ 7.5 \mathcal{F} is a normal functor, i.e. 'w*-continuous'. ### 8 Examples and applications. - 8.1 If $\mathcal{A} \sim_{\Delta} \mathcal{B}$ then \mathcal{A} can be completely isometrically reresented as a CSL algebra iff \mathcal{B} can be so represented. - 8.2 If \mathcal{L} is a non-synthetic CSL then $\mathcal{A}_{min}(\mathcal{L})$ cannot be isometrically represented as a CSL algebra, although its diagonal, \mathcal{L}' , is a CSL algebra (a vN algebra with abelian commutant). But note $\mathcal{A}_{min}(\mathcal{L})$ can be represented as a reflexive algebra: consider $(\mathcal{A}_{min}(\mathcal{L}))^{(\infty)}$ (infinite ampliation). - 8.3 Two CSL algebras are Δ -equivalent iff they are TRO equivalent. - It follows from Theorem 2 that two CSL algebras, both with continuous lattices, or both with totally atomic lattices, are Δ -equivalent iff they have isomorphic lattices. - 8.4 If two nest algebras \mathcal{A}, \mathcal{B} are similar then there exists an equivalence functor $$\mathcal{F}: \mathcal{A}\mathfrak{M} \leftrightarrow \mathcal{B}\mathfrak{M}.$$ 8.5 But they are not always Δ -equivalent: There exists an example of similar nest algebras with unitarily equivalent diagonals which are not Δ -equivalent. **Example 9** Let $\mathcal{N}_1, \mathcal{N}_2$ be the nests of Example 3. Define the 'ordinal sums' of \mathcal{N}_1 and \mathcal{N}_2 , namely the nests $$\mathcal{L}_1 = \{ N \oplus 0 : N \in \mathcal{N}_1 \} \cup \{ I_{H_1} \oplus M : M \in \mathcal{N}_2 \} \subset B(H_1 \oplus H_2)$$ $$\mathcal{L}_2 = \{ M \oplus 0 : M \in \mathcal{N}_2 \} \cup \{ I_{H_2} \oplus N : N \in \mathcal{N}_1 \} \subset B(H_2 \oplus H_1).$$ Now \mathcal{N}_1 and \mathcal{N}_2 are similar (by the similarity theorem [Davidson]), hence so are \mathcal{L}_1 and \mathcal{L}_2 . So by (8.4), if $\mathcal{A} = \text{Alg}(\mathcal{L}_1)$ and $\mathcal{B} = \text{Alg}(\mathcal{L}_2)$ the categories $_{\mathcal{A}}\mathfrak{M}$ and $_{\mathcal{B}}\mathfrak{M}$ are equivalent. Observe that $\Delta(\mathcal{A}) \simeq_{unit} \Delta(\mathcal{B})$ because $\Delta(\mathcal{A}) = \mathcal{N}_1'' \oplus \mathcal{N}_2''$ and $\Delta(\mathcal{B}) = \mathcal{N}_2'' \oplus \mathcal{N}_1''$. Suppose $\mathcal{A} \sim_{\Delta} \mathcal{B}$. Then, by (8.3), $\mathcal{A} \sim_{TRO} \mathcal{B}$. So by 2 there exists a *-isomorphism $$\theta: \Delta(\mathcal{A}) \to \Delta(\mathcal{B})$$ such that $\theta(\mathcal{L}_1) = \mathcal{L}_2$. Since the diagonals are mass the map θ must be unitarily implemented. Now there exist two possibilities: $$\theta(I_{H_1} \oplus 0) = \begin{cases} M \oplus 0 & \text{for some } N \in \mathcal{N}_2 \ (a) \\ I_{H_2} \oplus N & \text{for some } N \in \mathcal{N}_1 \ (b) \end{cases}$$ $$(a) \implies \mathcal{N}_{1}'' \simeq_{unit} (\mathcal{N}_{2}''|_{M(H_{2})})$$ $$(b) \implies \mathcal{N}_{1}'' \simeq_{unit} (\mathcal{N}_{2}'' \oplus \mathcal{N}_{1}''|_{N(H_{1})})$$ Both lead to a contradiction because \mathcal{N}_1'' is totally atomic while the others are not.