Morita-type equivalences for operator algebras

A. Katavolos

OPAW, Belfast, 6 May 2006

This talk will describe work of George Eleftherakis (Athens).

1 TRO equivalence

1.1 A TRO \mathcal{M} is a linear subspace of some $B(H_1, H_2)$ such that

$$\mathcal{M}\mathcal{M}^*\mathcal{M} \subseteq \mathcal{M}$$
.

TRO's arise as:

- Corners of C*-algebras,
- injective operator spaces,
- normalizing spaces of (possibly nonselfadjoint) algebras (w. Todorov).
- A TRO \mathcal{M} is a Hilbert (bi)-module over the C*-algebras $\mathcal{M}^*\mathcal{M}$ and $\mathcal{M}\mathcal{M}^*$. Conversely, Hilbert modules can be represented as TRO's.

w*-closed TRO's are generated by their partial isometries; they need not contain any unitaries.

1.2 Normalisers: A normaliser of $\mathcal{A} \subseteq B(H_1)$ into $\mathcal{B} \subseteq B(H_2)$ is $T \in B(H_1, H_2)$ such that $T^*\mathcal{B}T \subseteq \mathcal{A}$ and $T^*\mathcal{A}T \subseteq \mathcal{B}$.

TRO equivalence: existence of 'sufficiently many' normalisers.

Definition 1 Two (w*-closed) algebras \mathcal{A} , \mathcal{B} are called TRO equivalent if there exists a TRO \mathcal{M} such that $\mathcal{A} = [\mathcal{M}^*\mathcal{B}\mathcal{M}]^{-w^*}$ and $\mathcal{B} = [\mathcal{M}\mathcal{A}\mathcal{M}^*]^{-w^*}$.

Examples: unitarily equivalence; Morita equivalence of W^* -algebras.

Example: $\mathcal{A} \sim_{TRO} M_n(\mathcal{A})$ with $\mathcal{M} = C_n(\mathcal{A})$:

$$\binom{*}{*} \cdot (*) \cdot (**) = \binom{**}{**} \qquad \binom{*}{*} \cdot \binom{**}{**} \cdot (**) = (*)$$

- 1.3 TRO equivalence is an equivalence relation.
- 1.4 **Theorem 2** The reflexive algebras A, B are TRO equivalent if and only if there exists a *-isomorphism

$$\theta: \Delta(\mathcal{A})' \to \Delta(\mathcal{B})'$$

such that

$$\theta(\text{Lat}(\mathcal{A})) = \text{Lat}(\mathcal{B}).$$

Reflexive algebras: Given a (unital, w*-closed) algebra $\mathcal{A} \subseteq B(H)$ and a (strongly closed) lattice of projections \mathcal{L} , let

$$\operatorname{Lat}(\mathcal{A}) = \{ P \in \operatorname{Proj}(H) : P^{\perp} \mathcal{A} P = \{0\} \}$$
$$\operatorname{Alg}(\mathcal{L}) = \{ A \in B(H) : P^{\perp} A P = 0 \ \forall P \in \mathcal{L} \}$$
$$\mathcal{A} \text{ reflexive } : \mathcal{A} = \operatorname{Alg} \mathcal{L}.$$

Examples: W* algebras, nest algebras (here \mathcal{L} is totally ordered - a nest) CSL algebras (elements of \mathcal{L} commute).

2 TRO equivalence vs spacial Morita equivalence.

Example 3 There exist nests $\mathcal{N}_1, \mathcal{N}_2$ which are isomorphic but the algebras $\mathcal{N}_1'', \mathcal{N}_2''$ are not isomorphic. Thus isomorphism of the lattices does not guarantee TRO equivalence, even for multiplicity free nest algebras. See item 3.1 below.

On $H_1 = \ell^2(\mathbb{Q} \cap [0,1])$ define, for each $t \in [0,1]$,

$$Q_t^+ = \{f : \operatorname{supp} f \subseteq [0, t]\}$$

$$Q_t^- = \{f : \operatorname{supp} f \subseteq [0, t)\}.$$

On $L^2([0,1],\lambda)$ define, for each $t \in [0,1]$,

$$N_t = \{f : \operatorname{supp} f \subseteq [0, t]\}.$$

Let

$$\mathcal{N}_1 = \{Q_t^{\pm} : t \in [0, 1]\} \text{ on } H_1 = \ell^2(\mathbb{Q} \cap [0, 1])$$

 $\mathcal{N}_2 = \{Q_t^{\pm} \oplus N_t : t \in [0, 1]\} \text{ on } H_2 \equiv H_1 \oplus L^2([0, 1], \lambda).$

2.2 **Proposition** Two CSL algebras A, B have isomorphic lattices iff they are "spacially Morita equivalent":

Definition Let $\mathcal{A} \subset B(H_1)$, $\mathcal{B} \subset B(H_2)$ be w^* -closed algebras. If there exist spaces $\mathcal{U} \subset B(H_1, H_2)$, $\mathcal{V} \subset B(H_2, H_1)$ such that $\mathcal{BUA} \subset \mathcal{U}$, $\mathcal{AVB} \subset \mathcal{V}$, $[\mathcal{VU}]^{-w^*} = \mathcal{A}$, $[\mathcal{UV}]^{-w^*} = \mathcal{B}$ then we say that the algebras \mathcal{A} , \mathcal{B} are spacially Morita equivalent and the system

$$\begin{pmatrix} A & V \\ U & B \end{pmatrix}$$

is called a spacial Morita context.

- 2.3 In general, TRO equivalence \Rightarrow spacial Morita equivalence.
- 2.4 Definition: Given a commutative subspace lattice (CSL) \mathcal{L} , the class of all w*-closed algebras \mathcal{A} containing a masa and s.t. Lat $\mathcal{A} = \mathcal{L}$ has a minimal element $\mathcal{A}_{min}(\mathcal{L})$ [Arveson]. In case $\mathcal{A}_{min}(\mathcal{L}) = \text{Alg } \mathcal{L}$ we say \mathcal{L} is synthetic.

Using these methods, one shows:

Proposition 4 Synthesis is preserved under lattice isomorphisms.

Qu: Under epimorphisms?

3 TRO equivalence and CSL algebras.

Definition 5 Let $\phi : \mathcal{L}_1 \to \mathcal{L}_2$ be an isomorphism between CSL's. Then ϕ restricts to an isomorphism between the 'atomic parts', but not necessarily between the 'continuous parts' (see example above). If it does, we say ϕ respects continuity.

Proposition 6 Two CSL algebras are TRO equivalent iff there exists an isomorphism between their lattices which respects continuity.

Consequences of TRO equivalence for CSL algebras:

Let \mathcal{A}, \mathcal{B} be CSL algebras which are TRO equivalent via \mathcal{M} . There is a bijective correspondence between the w^* -closed ideals of the algebras \mathcal{A} and \mathcal{B} . It follows that

$$\mathcal{A}$$
 strongly reflexive $\Leftrightarrow \mathcal{B}$ strongly reflexive $R_1(\mathcal{A}) = 0 \Leftrightarrow R_1(\mathcal{B}) = 0$

$$\mathcal{A} \text{ semisimple } \Leftrightarrow \mathcal{B} \text{ semisimple}$$

$$\mathcal{A} = \operatorname{Rad}(\mathcal{A})^{-w^*} \Leftrightarrow \mathcal{B} = \operatorname{Rad}(\mathcal{B})^{-w^*}$$

4 Morita equivalence for W*-algebras (Rieffel)

The category $_{\mathcal{A}}\mathfrak{M}$ of Hilbert \mathcal{A} -modules for a W* algebra \mathcal{A} : Objects: (H, π) where π is a normal (: w*-continuous) *-representation. Morphisms:

$$\operatorname{Hom}_{\mathcal{A}}(H_1, H_2) = \{ T \in B(H_1, H_2) : T\pi_1(a) = \pi_2(a)T \ \forall a \in \mathcal{A} \}.$$

A functor
$$\mathcal{F}: \mathcal{A}\mathfrak{M} \to \mathcal{B}\mathfrak{M}$$
 is called a *-functor if $T \in \operatorname{Hom}_{\mathcal{A}}(H_1, H_2) \Rightarrow \mathcal{F}(T)^* = \mathcal{F}(T^*)$

Example: If $\phi: \mathcal{B} \to \mathcal{A}$ is a *-isomorphism, then $\mathcal{F}(H, \alpha) = (H, \alpha \circ \phi)$ on objects and $\mathcal{F}(T) = T$ on morphisms defines an equivalence *-functor $\mathcal{F}: {}_{\mathcal{A}}\mathfrak{M} \to {}_{\mathcal{B}}\mathfrak{M}$.

Theorem 7 (Rieffel) $_{\mathcal{A}}\mathfrak{M}$ and $_{\mathcal{B}}\mathfrak{M}$ are equivalent via *-functors (write $A \sim_R B$) iff there is an 'abstract Morita context' $\begin{pmatrix} A & \mathcal{X} \\ \mathcal{X}^* & \mathcal{B} \end{pmatrix}$ for W^* -algebras.

equivalently [Connes]

$$A \sim_R B \iff \exists \text{ faithful normal reprs. s.t. } \alpha(\mathcal{A})' \simeq \beta(\mathcal{B})'.$$

In view of Theorem 2 this remark has the following equivalent version:

Theorem 8 The W*-algebras \mathcal{A} , \mathcal{B} are Morita equivalent if and only if they have faithful normal representations α , β on Hilbert spaces such that the algebras $\alpha(\mathcal{A})$, $\beta(\mathcal{B})$ are TRO equivalent.

$$A \sim_R B \iff \exists faithful \ normal * reps: \quad \alpha(A) \sim_{TRO} \beta(B)$$

5 The category \mathfrak{M} for dual operator algebras.

- 5.1 Dual operator algebras: (unital) w*-closed subalgebras (A, w^*) of some B(H). There is an abstract characterisation (Le Merdy): they are the operator algebras that have an *operator space* predual.
- 5.2 The categories $_{\mathcal{A}}\mathfrak{M}$ and $_{\mathcal{A}}\mathfrak{D}\mathfrak{M}$ of Hilbert \mathcal{A} -modules.

Objects $Ob(_{\mathcal{A}}\mathfrak{M})$:

Completely contractive unital w*-contrs. reps (normal reprs.) (H, α) .

$$\operatorname{Hom}_{\mathcal{A}}(H_1, H_2) = \{ T \in B(H_1, H_2) : T\alpha_1(a) = \alpha_2(a)T \ \forall a \in \mathcal{A} \}.$$

Objects: $Ob(_{\mathcal{A}}\mathfrak{DM}) = Ob(_{\mathcal{A}}\mathfrak{M}).$

$$\operatorname{Hom}_{\mathcal{A}}^{\mathfrak{D}}(H_1, H_2) = \{ T \in B(H_1, H_2) : T\alpha_1(a) = \alpha_2(a)T \ \forall a \in \Delta(\mathcal{A}) \}.$$

Observe that $_{\mathcal{A}}\mathfrak{M}\subseteq _{\mathcal{A}}\mathfrak{DM};$ If \mathcal{A} is a W^* algebra then $_{\mathcal{A}}\mathfrak{M}= _{\mathcal{A}}\mathfrak{DM}.$

5.3 A Δ -extension of a functor \mathcal{F} is a functor

$$\mathcal{F}^{\delta}: \mathcal{A}\mathfrak{DM} \longrightarrow \mathcal{B}\mathfrak{DM}$$

such that

$$\mathcal{A}\mathfrak{M} \hookrightarrow \mathcal{A}\mathfrak{D}\mathfrak{M}$$
 $\mathcal{F}\downarrow \mathcal{F}^{\delta}\downarrow$
 $\mathcal{B}\mathfrak{M} \hookrightarrow \mathcal{B}\mathfrak{D}\mathfrak{M}$

commutes.

6 The main theorem.

6.1 **Definition** We say that the unital dual operator algebras \mathcal{A}, \mathcal{B} are Δ -equivalent if there exists an equivalence functor

$$\mathcal{F}: A\mathfrak{M} \leftrightarrow B\mathfrak{M}$$

with a Δ -extension to an equivalence *-functor

$$\mathcal{F}^{\delta}: \mathcal{ADM} \leftrightarrow \mathcal{BDM}.$$

We write $\mathcal{A} \sim_{\Delta} \mathcal{B}$.

Observe that for W*-algebras, $\mathcal{A} \sim_{\Delta} \mathcal{B} \iff \mathcal{A} \sim_{R} \mathcal{B}$.

6.2 **Theorem** Let \mathcal{A}, \mathcal{B} be unital dual operator algebras.

$$\mathcal{A} \sim_{\Delta} \mathcal{B} \iff \exists \text{ compl. isom. normal reps: } \alpha(\mathcal{A}) \sim_{TRO} \beta(\mathcal{B}).$$
 (cf. theorem 8)

7 Properties of the equivalence functors

Suppose that \mathcal{A}, \mathcal{B} are unital dual operator algebras and $\mathcal{A} \sim_{\Delta} \mathcal{B}$ via \mathcal{F} .

- 7.1 \mathcal{F} is equivalent to a functor $\mathcal{F}_{\mathcal{U}}$ of 'tensoring by' a suitable bimodule \mathcal{U} .
- 7.2 \mathcal{F} maps completely isometric representations to completely isometric representations.
- 7.3 \mathcal{F} 'preserves reflexivity': If α is a compl. isom. repr. and $\beta = \mathcal{F}(\alpha)$ then $\alpha(\mathcal{A})$ is reflexive iff $\beta(\mathcal{B})$ is.

7.4 \mathcal{F} 'respects' the lattices: If $(H, \alpha) \in \mathcal{A}\mathfrak{M}$ with corresponding object $(\mathcal{F}(H), \beta) \in \mathcal{B}\mathfrak{M}$ then

$$\mathcal{F}^{\delta}(\operatorname{Lat}(\alpha(\mathcal{A}))) = \operatorname{Lat}(\beta(\mathcal{B})).$$

7.5 \mathcal{F} is a normal functor, i.e. 'w*-continuous'.

8 Examples and applications.

- 8.1 If $\mathcal{A} \sim_{\Delta} \mathcal{B}$ then \mathcal{A} can be completely isometrically reresented as a CSL algebra iff \mathcal{B} can be so represented.
- 8.2 If \mathcal{L} is a non-synthetic CSL then $\mathcal{A}_{min}(\mathcal{L})$ cannot be isometrically represented as a CSL algebra, although its diagonal, \mathcal{L}' , is a CSL algebra (a vN algebra with abelian commutant). But note $\mathcal{A}_{min}(\mathcal{L})$ can be represented as a reflexive algebra: consider $(\mathcal{A}_{min}(\mathcal{L}))^{(\infty)}$ (infinite ampliation).
- 8.3 Two CSL algebras are Δ -equivalent iff they are TRO equivalent.
 - It follows from Theorem 2 that two CSL algebras, both with continuous lattices, or both with totally atomic lattices, are Δ -equivalent iff they have isomorphic lattices.
- 8.4 If two nest algebras \mathcal{A}, \mathcal{B} are similar then there exists an equivalence functor

$$\mathcal{F}: \mathcal{A}\mathfrak{M} \leftrightarrow \mathcal{B}\mathfrak{M}.$$

8.5 But they are not always Δ -equivalent: There exists an example of similar nest algebras with unitarily equivalent diagonals which are not Δ -equivalent.

Example 9 Let $\mathcal{N}_1, \mathcal{N}_2$ be the nests of Example 3. Define the 'ordinal sums' of \mathcal{N}_1 and \mathcal{N}_2 , namely the nests

$$\mathcal{L}_1 = \{ N \oplus 0 : N \in \mathcal{N}_1 \} \cup \{ I_{H_1} \oplus M : M \in \mathcal{N}_2 \} \subset B(H_1 \oplus H_2)$$

$$\mathcal{L}_2 = \{ M \oplus 0 : M \in \mathcal{N}_2 \} \cup \{ I_{H_2} \oplus N : N \in \mathcal{N}_1 \} \subset B(H_2 \oplus H_1).$$

Now \mathcal{N}_1 and \mathcal{N}_2 are similar (by the similarity theorem [Davidson]), hence so are \mathcal{L}_1 and \mathcal{L}_2 . So by (8.4), if $\mathcal{A} = \text{Alg}(\mathcal{L}_1)$ and $\mathcal{B} = \text{Alg}(\mathcal{L}_2)$ the categories $_{\mathcal{A}}\mathfrak{M}$ and $_{\mathcal{B}}\mathfrak{M}$ are equivalent. Observe that $\Delta(\mathcal{A}) \simeq_{unit} \Delta(\mathcal{B})$ because $\Delta(\mathcal{A}) = \mathcal{N}_1'' \oplus \mathcal{N}_2''$ and $\Delta(\mathcal{B}) = \mathcal{N}_2'' \oplus \mathcal{N}_1''$.

Suppose $\mathcal{A} \sim_{\Delta} \mathcal{B}$. Then, by (8.3), $\mathcal{A} \sim_{TRO} \mathcal{B}$. So by 2 there exists a *-isomorphism

$$\theta: \Delta(\mathcal{A}) \to \Delta(\mathcal{B})$$
 such that $\theta(\mathcal{L}_1) = \mathcal{L}_2$.

Since the diagonals are mass the map θ must be unitarily implemented. Now there exist two possibilities:

$$\theta(I_{H_1} \oplus 0) = \begin{cases} M \oplus 0 & \text{for some } N \in \mathcal{N}_2 \ (a) \\ I_{H_2} \oplus N & \text{for some } N \in \mathcal{N}_1 \ (b) \end{cases}$$

$$(a) \implies \mathcal{N}_{1}'' \simeq_{unit} (\mathcal{N}_{2}''|_{M(H_{2})})$$

$$(b) \implies \mathcal{N}_{1}'' \simeq_{unit} (\mathcal{N}_{2}'' \oplus \mathcal{N}_{1}''|_{N(H_{1})})$$

Both lead to a contradiction because \mathcal{N}_1'' is totally atomic while the others are not.