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1 TRO equivalence

1.1 A TRO M is a linear subspace of some B(H1, H2) such

that

MM∗M⊆M.

TRO’s arise as:

• Corners of C*-algebras,

• injective operator spaces,

• normalizing spaces of (possibly nonselfadjoint) algebras

(w. Todorov).

• A TRO M is a Hilbert (bi)-module over the C*-algebras

M∗M and MM∗. Conversely, Hilbert modules can be

represented as TRO’s.

w*-closed TRO’s are generated by their partial isometries;

they need not contain any unitaries.

1.2 Normalisers: A normaliser of A ⊆ B(H1) into B ⊆ B(H2)

is T ∈ B(H1, H2) such that T ∗BT ⊆ A and T ∗AT ⊆ B.

TRO equivalence: existence of ‘sufficiently many’ normalis-

ers.

Definition 1 Two (w*-closed) algebras A,B are called TRO

equivalent if there exists a TROM such that A = [M∗BM]−w∗

and B = [MAM∗]−w∗
.

Examples: unitarily equivalence; Morita equivalence of W ∗-

algebras.

Example: A ∼TRO Mn(A) with M = Cn(A):
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1.3 TRO equivalence is an equivalence relation.

1.4 Theorem 2 The reflexive algebras A,B are TRO equiva-

lent if and only if there exists a ∗−isomorphism

θ : ∆(A)′ → ∆(B)′

such that

θ(Lat(A)) = Lat(B).

Reflexive algebras: Given a (unital, w*-closed) algebra

A ⊆ B(H) and a (strongly closed) lattice of projections L,

let

Lat(A) ={P ∈ Proj(H) : P⊥AP = {0}}
Alg(L) ={A ∈ B(H) : P⊥AP = 0 ∀P ∈ L}

A reflexive : A = AlgL.

Examples: W* algebras,

nest algebras (here L is totally ordered - a nest)

CSL algebras (elements of L commute).
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2 TRO equivalence vs

spacial Morita equivalence.

Example 3 There exist nests N1,N2 which are isomorphic but

the algebras N ′′
1 ,N ′′

2 are not isomorphic. Thus isomorphism of

the lattices does not guarantee TRO equivalence, even for mul-

tiplicity free nest algebras. See item 3.1 below.

On H1 = `2(Q ∩ [0, 1]) define, for each t ∈ [0, 1],

Q+
t ={f : suppf ⊆ [0, t]}

Q−
t ={f : suppf ⊆ [0, t)}.

On L2([0, 1], λ) define, for each t ∈ [0, 1],

Nt = {f : suppf ⊆ [0, t]}.

Let

N1 ={Q±
t : t ∈ [0, 1]} on H1 = `2(Q ∩ [0, 1])

N2 ={Q±
t ⊕Nt : t ∈ [0, 1]} on H2 ≡ H1 ⊕ L2([0, 1], λ).

2.2 Proposition Two CSL algebras A,B have isomorphic lat-

tices iff they are “spacially Morita equivalent”:

Definition Let A ⊂ B(H1),B ⊂ B(H2) be w∗-closed alge-

bras. If there exist spaces U ⊂ B(H1, H2),V ⊂ B(H2, H1)

such that BUA ⊂ U , AVB ⊂ V , [VU ]−w∗
= A, [UV ]−w∗

=

B then we say that the algebras A,B are spacially Morita

equivalent and the system(A V
U B

)
is called a spacial Morita context.
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2.3 In general, TRO equivalence ⇒ spacial Morita equivalence.

2.4 Definition: Given a commutative subspace lattice (CSL) L,

the class of all w*-closed algebras A containing a masa and

s.t. LatA = L has a minimal element Amin(L) [Arveson].

In case Amin(L) = Alg L we say L is synthetic.

Using these methods, one shows:

Proposition 4 Synthesis is preserved under lattice isomor-

phisms.

Qu: Under epimorphisms?

3 TRO equivalence and CSL algebras.

Definition 5 Let φ : L1 → L2 be an isomorphism between

CSL’s. Then φ restricts to an isomorphism between the ‘atomic

parts’, but not necessarily between the ’continuous parts’ (see

example above). If it does, we say φ respects continuity.

Proposition 6 Two CSL algebras are TRO equivalent iff there

exists an isomorphism between their lattices which respects con-

tinuity.
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Consequences of TRO equivalence for CSL algebras:

Let A,B be CSL algebras which are TRO equivalent via M.

There is a bijective correspondence between the w∗−closed ide-

als of the algebras A and B. It follows that

A strongly reflexive ⇔ B strongly reflexive

R1(A) = 0 ⇔ R1(B) = 0

A semisimple ⇔ B semisimple

A = Rad(A)−w∗
⇔ B = Rad(B)−w∗
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4 Morita equivalence for W*-algebras

(Rieffel)

The category AM of Hilbert A-modules for a W* algebra A:

Objects: (H, π) where π is a normal (: w*-continuous) *-representation.

Morphisms:

HomA(H1, H2) = {T ∈ B(H1, H2) : Tπ1(a) = π2(a)T ∀a ∈ A}.

A functor F : AM → BM is called a ∗-functor if

T ∈ HomA(H1, H2) ⇒ F(T )∗ = F(T ∗)

Example: If φ : B → A is a *-isomorphism, then F(H, α) =

(H, α ◦ φ) on objects and F(T ) = T on morphisms defines an

equivalence *-functor F : AM → BM.

Theorem 7 (Rieffel) AM and BM are equivalent via *-functors

(write A ∼R B) iff there is an ‘abstract Morita context’
( A X
X ∗ B

)
for W*-algebras.

equivalently [Connes]

A ∼R B ⇐⇒ ∃ faithful normal reprs. s.t. α(A)′ ' β(B)′.

In view of Theorem 2 this remark has the following equivalent

version:

Theorem 8 The W*-algebras A,B are Morita equivalent if and

only if they have faithful normal representations α, β on Hilbert

spaces such that the algebras α(A), β(B) are TRO equivalent.

A ∼R B ⇐⇒ ∃ faithful normal * reps: α(A) ∼TRO β(B)
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5 The category M for dual operator algebras.

5.1 Dual operator algebras: (unital) w*-closed subalgebras (A, w∗)

of some B(H). There is an abstract characterisation (Le

Merdy): they are the operator algebras that have an oper-

ator space predual.

5.2 The categories AM and ADM of Hilbert A-modules.

Objects Ob(AM):

Completely contractive unital w*-contns. reps (normal reprs.)

(H, α).

HomA(H1, H2) = {T ∈ B(H1, H2) : Tα1(a) = α2(a)T ∀a ∈ A}.

Objects: Ob(ADM) = Ob(AM).

HomD
A(H1, H2) = {T ∈ B(H1, H2) : Tα1(a) = α2(a)T ∀a ∈ ∆(A)}.

Observe that AM ⊆ ADM; If A is a W ∗ algebra then

AM = ADM.

5.3 A ∆-extension of a functor F is a functor

Fδ : ADM −→ BDM

such that

AM ↪→ ADM

F ↓ Fδ ↓
BM ↪→ BDM

commutes.
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6 The main theorem.

6.1 Definition We say that the unital dual operator algebras

A,B are ∆-equivalent if there exists an equivalence functor

F : AM ↔ BM

with a ∆−extension to an equivalence ∗-functor

Fδ : ADM ↔ BDM.

We write A ∼∆ B.

Observe that for W*-algebras, A ∼∆ B ⇐⇒ A ∼R B.

6.2 Theorem Let A,B be unital dual operator algebras.

A ∼∆ B ⇐⇒ ∃ compl. isom. normal reps: α(A) ∼TRO β(B).

(cf. theorem 8)

7 Properties of the equivalence functors

Suppose thatA,B are unital dual operator algebras andA ∼∆ B
via F .

7.1 F is equivalent to a functor FU of ‘tensoring by’ a suitable

bimodule U .

7.2 F maps completely isometric representations to completely

isometric representations.

7.3 F ‘preserves reflexivity’: If α is a compl. isom. repr. and

β = F(α) then α(A) is reflexive iff β(B) is.
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7.4 F ‘respects’ the lattices: If (H, α) ∈ AM with correspond-

ing object (F(H), β) ∈ BM then

Fδ(Lat(α(A))) = Lat(β(B)).

7.5 F is a normal functor, i.e. ‘w*-continuous’.

8 Examples and applications.

8.1 If A ∼∆ B then A can be completely isometrically rere-

sented as a CSL algebra iff B can be so represented.

8.2 If L is a non-synthetic CSL thenAmin(L) cannot be isomet-

rically represented as a CSL algebra, although its diagonal,

L′, is a CSL algebra (a vN algebra with abelian commu-

tant).But note Amin(L) can be represented as a reflexive

algebra: consider (Amin(L))(∞) (infinite ampliation).

8.3 Two CSL algebras are ∆-equivalent iff they are TRO equiv-

alent.

It follows from Theorem 2 that two CSL algebras, both with

continuous lattices, or both with totally atomic lattices, are

∆−equivalent iff they have isomorphic lattices.

8.4 If two nest algebras A,B are similar then there exists an

equivalence functor

F : AM ↔ BM.

8.5 But they are not always ∆-equivalent: There exists an ex-

ample of similar nest algebras with unitarily equivalent di-

agonals which are not ∆−equivalent.
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Example 9 Let N1,N2 be the nests of Example 3. Define the

‘ordinal sums’ of N1 and N2, namely the nests

L1 ={N ⊕ 0 : N ∈ N1} ∪ {IH1
⊕M : M ∈ N2} ⊂ B(H1 ⊕H2)

L2 ={M ⊕ 0 : M ∈ N2} ∪ {IH2
⊕N : N ∈ N1} ⊂ B(H2 ⊕H1).

Now N1 and N2 are similar (by the similarity theorem [David-

son]), hence so are L1 and L2. So by (8.4), if A = Alg(L1)

and B = Alg(L2) the categories AM and BM are equivalent.

Observe that ∆(A) 'unit ∆(B) because ∆(A) = N ′′
1 ⊕N ′′

2 and

∆(B) = N ′′
2 ⊕N ′′

1 .

Suppose A ∼∆ B. Then, by (8.3), A ∼TRO B. So by 2 there

exists a ∗−isomorphism

θ : ∆(A) → ∆(B) such that θ(L1) = L2.

Since the diagonals are masas the map θ must be unitarily im-

plemented. Now there exist two possibilities:

θ(IH1
⊕ 0) =


M ⊕ 0 for some N ∈ N2 (a)

IH2
⊕N for some N ∈ N1 (b)

(a) =⇒ N ′′
1 'unit (N ′′

2 |M(H2))

(b) =⇒ N ′′
1 'unit (N ′′

2 ⊕N ′′
1 |N(H1))

Both lead to a contradiction because N ′′
1 is totally atomic while

the others are not.
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