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1 TRO equivalence

1.1 A TRO M is a linear subspace of some B(Hjp, Hy) such
that
MM*M C M.

TRO’s arise as:

e Corners of C*-algebras,

e injective operator spaces,

e normalizing spaces of (possibly nonselfadjoint) algebras
(w. Todorov).

e A TRO M is a Hilbert (bi)-module over the C*-algebras
M*M and MM*. Conversely, Hilbert modules can be
represented as TRO'’s.

w*-closed TRO’s are generated by their partial isometries;
they need not contain any unitaries.

1.2 Normalisers: A normaliser of A C B(H;) into B C B(H>)
is T' € B(Hy, Hy) such that T*BT C A and T*AT C B.

TRO equivalence: existence of ‘sufficiently many’ normalis-
ers.

Definition 1 Two (w*-closed) algebras A, B are called TRO
equivalent if there exists a TRO M such that A = [M*BM]~""
and B = [MAM*]~*".

Examples: unitarily equivalence; Morita equivalence of W *-
algebras.

Example: A ~pro My(A) with M = C,(A):
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1.3 TRO equivalence is an equivalence relation.

1.4 Theorem 2 The reflexive algebras A, B are TRO equiva-
lent if and only if there exists a x—isomorphism

0: A(A) — A(B)

such that
6(Lat(A)) = Lat(B).

Reflexive algebras: Given a (unital, w*-closed) algebra
A C B(H) and a (strongly closed) lattice of projections L,
let

Lat(A) ={P € Proj(H) : PXAP = {0}}
Alg(£) ={A e B(H): PrPAP=0VYP e L}
A reflexive : A= Alg L.
Examples: W* algebras,

nest algebras (here £ is totally ordered - a nest)
CSL algebras (elements of £ commute).



2 TRO equivalence vs
spacial Morita equivalence.

Example 3 There exist nests N1, No which are isomorphic but
the algebras N{', N3 are not isomorphic. Thus isomorphism of
the lattices does not guarantee TRO equivalence, even for mul-
tiplicity free nest algebras. See item 3.1 below.

On Hy = 2(QnN [0, 1]) define, for each t € [0, 1],
Qf ={f :suppf C [0,1]}
Q¢ ={f :suppf C [0,%)}.
On L?([0,1], \) define, for each t € [0, 1],

Ne={f :suppf € [0,]}.
Let
M ={QF :te[0,1]} on Hy=/QnNI0,1])
No={QFf ® Ny :t €[0,1]} on Ho= Hy @ L*([0,1], \).
2.2 Proposition Two CSL algebras A, B have isomorphic lat-

tices iff they are “spacially Morita equivalent”:

Definition Let A C B(H),B C B(H2) be w*-closed alge-
bras. If there exist spaces U C B(Hiy, H2),V C B(Hs, Hy)
such that BUA C U, AVBCV, DU = A, [UV]TY =
B then we say that the algebras A, B are spacially Morita
equivalent and the system

(71 8)
uaB
is called a spacial Morita context.
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2.3 In general, TRO equivalence = spacial Morita equivalence.

2.4 Definition: Given a commutative subspace lattice (CSL) L,
the class of all w*-closed algebras A containing a masa and
s.t. Lat A = £ has a minimal element Ap,in(L) [Arveson].
In case Apin(L) = Alg L we say L is synthetic.

Using these methods, one shows:

Proposition 4 Synthesis is preserved under lattice isomor-
phisms.

Qu: Under epimorphisms?

3 TRO equivalence and CSL algebras.

Definition 5 Let ¢ : L1 — Lo be an isomorphism between
CSL’s. Then ¢ restricts to an isomorphism between the ‘atomic
parts’, but not necessarily between the ’‘continuous parts’ (see
example above). If it does, we say ¢ respects continuity.

Proposition 6 Two CSL algebras are TRO equivalent iff there
exists an isomorphism between their lattices which respects con-
tinuity.



Consequences of TRO equivalence for CSL algebras:

Let A, B be CSL algebras which are TRO equivalent via M.
There is a bijective correspondence between the w*—closed ide-
als of the algebras A and B. It follows that

A strongly reflexive < B strongly reflexive
Ri(A)=0< Ri(B)=0
A semisimple < B semisimple

A=Rad(A)™" < B=Rad(B)™"



4 Morita equivalence for W*-algebras
(Rieffel)

The category 49 of Hilbert A-modules for a W* algebra A:
Objects: (H, ) where 7 is a normal (: w*-continuous) *-representation.
Morphisms:

HomA(H1,H2) = {T S B(Hl, HQ) : T7r1(a) = 7r2(a)T Ya € ./4}
A functor F : 491 — M is called a x-functor if
T e HomA(Hl, HQ) = f(T)* = f(T*)

Example: If ¢ : B — A is a *-isomorphism, then F(H, «) =
(H,« o ¢) on objects and F(T') = T on morphisms defines an
equivalence *-functor F : 49t — gIM.

Theorem 7 (Rieffel) 49 and g9 are equivalent via *-functors
(write A ~g B) iff there is an ‘abstract Morita context’ ( % %)
for W*-algebras.

equivalently [Connes]
A~r B <= 3 faithful normal reprs. s.t. a(A) ~ 5(B)".

In view of Theorem 2 this remark has the following equivalent
version:

Theorem 8 The W*-algebras A, B are Morita equivalent if and
only if they have faithful normal representations o, 3 on Hilbert
spaces such that the algebras a(A), B(B) are TRO equivalent.

A~p B <= d faithful normal * reps:  «(A) ~rro B(B)
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5.1

5.2

5.3

The category 91 for dual operator algebras.

Dual operator algebras: (unital) w*-closed subalgebras (A, w*)
of some B(H). There is an abstract characterisation (Le
Merdy): they are the operator algebras that have an oper-
ator space predual.

The categories 42N and 4O of Hilbert .A-modules.
Objects Ob( 49M):

Completely contractive unital w*-contns. reps (normal reprs.)
(H, ).

HomA(Hl, HQ) = {T € B(Hl, HQ) : TOq(CL) = O@(CL)T Ya € .A}
Objects: Ob( 42IM) = Ob( 4M).

Hom® (Hy, Hy) = {T € B(Hy, Hs) : Tai(a) = az(a)T Ya € A(A)}.

Observe that 49 C 409 If A is a W* algebra then
AM = 4O

A A-extension of a functor F is a functor

Fo: 4 0M — zOM

such that
AM — AOM
FL P
Bgﬁ — B@Dﬁ
commutes.



6 The main theorem.

6.1 Definition We say that the unital dual operator algebras
A, B are A-equivalent if there exists an equivalence functor

F o N g
with a A—extension to an equivalence x-functor
FO: 4 OM — gOM.

We write A ~a B.
Observe that for W*-algebras, A ~a B <— A ~p B.

6.2 Theorem Let A, B be unital dual operator algebras.
A~a B <= 3compl. isom. normal reps: a(A) ~rro G(B).

(cf. theorem 8)

7 Properties of the equivalence functors

Suppose that A, B are unital dual operator algebras and A ~A B
via F.

7.1 F is equivalent to a functor F;; of ‘tensoring by’ a suitable
bimodule U.

7.2 F maps completely isometric representations to completely
isometric representations.

7.3 F ‘preserves reflexivity’: If o is a compl. isom. repr. and

B = F(a) then a(A) is reflexive iff 5(B) is.
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7.4 F ‘respects’ the lattices: If (H,a) € 491 with correspond-
ing object (F(H), ) € M then

FP(Lat(a(A))) = Lat(3(B)).

7.5 F is a normal functor, i.e. ‘w*-continuous’.

8 Examples and applications.

8.1 1If A ~ao B then A can be completely isometrically rere-
sented as a CSL algebra iff B can be so represented.

8.2 If L is a non-synthetic CSL then A, (£) cannot be isomet-
rically represented as a CSL algebra, although its diagonal,
L', is a CSL algebra (a vN algebra with abelian commu-
tant).But note A (L) can be represented as a reflexive
algebra: consider (Apin(£))(®) (infinite ampliation).

8.3 Two CSL algebras are A-equivalent iff they are TRO equiv-
alent.

It follows from Theorem 2 that two CSL algebras, both with
continuous lattices, or both with totally atomic lattices, are
A—equivalent iff they have isomorphic lattices.

8.4 If two nest algebras A, B are similar then there exists an
equivalence functor

F i N - g,

8.5 But they are not always A-equivalent: There exists an ex-
ample of similar nest algebras with unitarily equivalent di-
agonals which are not A—equivalent.
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Example 9 Let A7, N5 be the nests of Example 3. Define the
‘ordinal sums’ of A7 and N5, namely the nests

L1={N®0:NecMN}U{lg &M : M e N>} C B(H, ® H»)
EQZ{M@O:MENQ}U{IHQ@N:NENl}CB(HQ@Hl).

Now Nj and Nj are similar (by the similarity theorem [David-
son]), hence so are £1 and L2. So by (8.4), if A = Alg(Ly)
and B = Alg(Ls) the categories 49 and g9 are equivalent.
Observe that A(A) ~yni: A(B) because A(A) = N{' & NJ and
A(B) = Nj & NY.

Suppose A ~a B. Then, by (8.3), A ~rro B. So by 2 there
exists a x—isomorphism

0 : A(A) — A(B) such that 0(L1) = La.

Since the diagonals are masas the map 6 must be unitarily im-
plemented. Now there exist two possibilities:

M&0 forsome N e Ny (a)
0(Im, ©0) =
Iy, ® N for some N e N; (b)

(@) = M =it NS |amy))
0) = M ~unit NG SN [ney)

Both lead to a contradiction because A7 is totally atomic while
the others are not.
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