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Abstract. Starting with a left ideal J of L1(G) we consider its annihilator J⊥

in L∞(G) and the generated VN(G)-bimodule in B(L2(G)), Bim(J⊥). We prove that
Bim(J⊥) = (Ran J)⊥ when G is weakly amenable discrete, compact or abelian, where
Ran J is a suitable saturation of J in the trace class. We define jointly harmonic func-
tions and jointly harmonic operators and show that, for these classes of groups, the space
of jointly harmonic operators is the VN(G)-bimodule generated by the space of jointly
harmonic functions. Using this, we give a proof of the following result of Izumi and Jawor-
ski–Neufang: the non-commutative Poisson boundary is isomorphic to the crossed product
of the space of harmonic functions by G.

1. Introduction. Let J be an ideal of the Fourier algebra A(G) of a
locally compact group G. There are two ‘canonical’ ways to construct from
J an L∞(G)-bimodule in B(L2(G)). One way is to consider the annihilator
J⊥ of J within VN(G) and then take the L∞(G)-bimodule generated by J⊥,
denoted by Bim(J⊥). The other way is to take the saturation of J within the
trace class on L2(G), which we call Sat J , and then consider its annihilator.
This gives a masa bimodule (Sat J)⊥ in B(L2(G)). In [1], we proved that
these two procedures yield the same bimodule:

(∗) Bim(J⊥) = (Sat J)⊥.

In [22], Neufang and Runde introduced the notion of σ-harmonic oper-

ators H̃σ (where σ belongs to the space of completely bounded multipliers
M cbA(G) of A(G)) as an extension of the notion of σ-harmonic functionals
on A(G) defined and studied by Chu and Lau [4]. One of the main results
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of [22] is that when σ is positive definite and normalised, H̃σ is the von
Neumann algebra on L2(G) generated by the algebra DG of multiplication
operators together with the space Hσ of harmonic functionals. In [2], for a
subset Σ ⊆ M cbA(G) we considered the set of jointly harmonic function-

als HΣ (resp. operators H̃Σ). Using the equality (∗), we showed that, for any

Σ ⊆M cbA(G), we have H̃Σ = Bim(HΣ), thus obtaining a generalization of
the result of Neufang and Runde.

Another concept of harmonicity was introduced and studied by Jaworski
and Neufang [19]. Recall that a function φ ∈ L∞(G) is said to be harmonic
with respect to a probability measure µ on G [13, 12] if it is a fixed point
point of the map Pµ on L∞(G) given by

(Pµφ)(s) =
�

G

φ(st) dµ(t).

The space of µ-harmonic functions is denoted by H(µ). If G is abelian, it fol-
lows from the Choquet–Deny theorem that if the support of µ generates G as
a closed subgroup, then H(µ) consists of constants. In particular, it is a sub-
algebra of L∞(G). Consider the natural isometric representation µ 7→ Θ(µ)
of the measure algebra M(G) on B(L2(G)) introduced by Ghahramani [14].
For µ ∈M(G), the mapΘ(µ) extends the action φ 7→ Pµ(φ), φ ∈ L∞(G). For
a probability measure µ, the harmonic operators T are defined in [19] by the
relation Θ(µ)T = T . The collection of all µ-harmonic operators is denoted

by H̃(µ). The non-commutative Poisson boundary of µ, denoted by H̃µ, is

defined to be the space H̃(µ), equipped with a certain von Neumann algebra

structure [17]. The space H(µ) yields a von Neumann subalgebra of H̃(µ)
denoted by Hµ. Non-commutative Poisson boundaries were first considered

by Izumi for discrete groups in [18] where he showed that H̃µ is the crossed
product of Hµ by G acting by left translations. Jaworski and Neufang [19]
extended this to locally compact G, thus answering a question in [18]. This
result was further generalised in [20] to locally compact quantum groups.

When G is abelian, the settings described in the previous two paragraphs
are connected by the usual Fourier transform. (In particular, H̃(µ) is a
subalgebra of B(L2(G)) in this case.) We discuss this relation in Section 4.

One may ask: What is a dual version of (∗)? Can it be used to study

the space H̃(µ) of harmonic operators? The present paper focuses on these
questions. Instead of an ideal of A(G), we start with a left ideal J of L1(G).
We then consider its annihilator J⊥ in L∞(G) and the VN(G)-bimodule
Bim(J⊥) generated by the collection {Mf : f ∈ J⊥} of multiplication op-
erators in B(L2(G)). We also construct a suitable saturation RanJ of J
within the trace class T (G) on L2(G). When G is abelian, utilising Fourier
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transform and using (∗) we show (Section 4) that

(Ran J)⊥ = Bim(J⊥).

The following question then arises: Is this formula true for any locally com-
pact group G? We show that equality does occur when G is weakly amenable
and either discrete (Section 5) or compact (Section 6).

Given a set Λ ⊆ M(G) (not necessarily consisting of probability mea-
sures), in Section 7 we define the spaceH(Λ) of jointly Λ-harmonic functions
to be the set of functions in L∞(G) which are µ-harmonic for every µ in Λ,

and we introduce in an analogous fashion the corresponding space H̃(Λ)
of jointly Λ-harmonic operators. As a consequence of our previous results,
we recover H̃(Λ) when the group is compact, weakly amenable discrete or
abelian: we show that it is the weak-∗ closed VN(G)-bimodule generated by
H(Λ) in B(L2(G)). When Λ is a singleton consisting of a probability mea-
sure µ, using this we give a proof of the above mentioned result of Izumi
and Jaworski–Neufang: the non-commutative Poisson boundary H̃µ is iso-
morphic to the crossed product of Hµ by a canonical action of G.

2. Preliminaries. Let G be a second countable locally compact group
equipped with a left Haar measure. As usual, the corresponding Lebesgue
spaces on G are denoted by Lp(G) for 1 ≤ p ≤ ∞. We denote by λ : G →
B(L2(G)), s 7→ λs, the left regular representation of the group G, given by
(λsf)(t) = f(s−1t); here B(L2(G)) denotes the algebra of bounded linear
operators on L2(G). We write (·, ·) for the inner product and we use 〈·, ·〉
for the various Banach space dualities, in particular for the duality between
L1(G) and L∞(G). For φ ∈ L∞(G), let Mφ be the operator on L2(G) of
multiplication by φ. We denote by DG or D the algebra {Mφ : φ ∈ L∞(G)}.
This is a maximal abelian selfadjoint algebra (for brevity, masa).

The predual T (G) of B(L2(G)) can be identified with the space of all
functions the form h : G × G → C, defined marginally almost everywhere
(see for example [1]) and given by

(1) h(x, y) =

∞∑
i=1

fi(x)gi(y),

where
∑∞

i=1 ‖fi‖22 <∞ and
∑∞

i=1 ‖gi‖22 <∞. The norm on T (G) is given by

‖h‖t = inf
{ ∞∑
i=1

‖fi‖2‖gi‖2
}

where the infimum is taken over all representations (1) of h. The pairing
between B(L2(G)) and T (G) is given by

〈T, h〉t :=

∞∑
i=1

(Tfi, ḡi).
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The group von Neumann algebra of G is the algebra

VN(G) = span{λx : x ∈ G}w
∗
,

acting on L2(G). Its predual can be identified with the Fourier algebra A(G)
of G [10] which is the (commutative, regular, semisimple) Banach algebra
consisting of all complex functions u on G of the form

(2) u(x) = (λxf, g), x ∈ G, where f, g ∈ L2(G).

The pairing between VN(G) and A(G) is given by 〈λx, u〉A = u(x). A func-
tion σ : G → C is called a multiplier of A(G) if σu ∈ A(G) for every
u ∈ A(G). If σ is a multiplier of A(G), the map mσ : A(G) → A(G) given
by mσ(u) = σu is automatically bounded. A multiplier σ of A(G) is called
completely bounded [7] if the dual m∗σ : VN(G)→ VN(G) of mσ is completely
bounded. We write M cbA(G) for the algebra of all completely bounded mul-
tipliers of A(G). If σ is in M cbA(G) and h ∈ T (G), it was shown by Gilbert
and Bożejko–Fendler [3] that N(σ)h is in T (G), where N(σ)(s, t) = σ(ts−1).

Let J be a closed ideal of A(G). Consider the norm closed masa bimodule

Sat J = span(N(J)T (G))
‖·‖t

of T (G) generated by N(J). Denote by (Sat J)⊥ the annihilator of SatJ
in B(L2(G)). Let J⊥ be the annihilator of J in VN(G), and Bim(J⊥) the
weak-∗ closed masa bimodule generated by J⊥ in B(L2(G)).

The following result was proved in [1]:

Theorem 2.1. Let J⊆A(G) be a closed ideal. Then (Sat J)⊥=Bim(J⊥).

3. Ideals of L1(G) and bimodules over VN(G). Throughout this
section, we fix a locally compact group G. Let ρ : G → B(L2(G)), r 7→ ρr,
be the right regular representation of G on L2(G), given by

(ρrf)(s) = ∆(r)1/2f(sr), f ∈ L2(G), s, r ∈ G,
where ∆ denotes the modular function of G.

Denote by ad ρr the map on B(L2(G)) given by ad ρr(T ) = ρrTρ
∗
r , T ∈

B(L2(G)). Let M(G) be the measure algebra of G, that is, the (convolution)
Banach algebra of all bounded, complex Borel measures on G. We identify
L1(G) with the (closed) ideal of M(G) consisting of all measures absolutely
continuous with respect to Haar measure. Define a representation Θ of the
algebra M(G) on B(L2(G)) by

〈Θ(µ)(T ), h〉t =
�

G

〈ad ρr(T ), h〉t dµ(r)

for every h ∈ T (G). This representation was introduced and studied by
Størmer for abelian groups [26] and by Ghahramani [14] for locally compact
groups. See [21] for more references.
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Since ad ρr and Θ(µ) are (bounded) weak-∗ continuous maps, they have
(bounded) preduals θr and θ(µ) : T (G)→ T (G). Thus,

θ(µ)(h) =
�

G

θr(h) dµ(r), h ∈ T (G).

Note that for r ∈ G we have [1, Lemma 4.1]

(3) θr(h) = ∆(r−1)hr−1 , h ∈ T (G).

Here hr(s, t) = h(sr, tr) and s, t, r ∈ G. Therefore, if f ∈ L1(G) then

θ(f)(h) =
�

G

∆(r−1)hr−1f(r) dr, h ∈ T (G).

Let J ⊆ L1(G) be a closed left ideal; we denote by J⊥ its annihilator in
L∞(G). Set

Ran J = span {θ(f)(h) : f ∈ J, h ∈ T (G)}‖·‖t ⊆ T (G).

Given a subspace U ⊆ L∞(G), we let

Bim(U) = span {AMaB : A,B ∈ VN(G), a ∈ U}w
∗
⊆ B(L2(G));

thus, Bim(U) is the weak-∗ closed VN(G)-bimodule generated by the multi-
plication operators with symbols coming from U .

We denote by (Ran J)⊥ the annihilator of Ran J within B(L2(G)). We
are interested in the relation between (Ran J)⊥ and Bim(J⊥).

Lemma 3.1. The space (Ran J)⊥ is the intersection of the kernels of the
maps {Θ(f) : f ∈ J}. We write this as

(Ran J)⊥ = kerΘ(J).

Consequently, (Ran J)⊥ is a VN(G)-bimodule.

Proof. Since Θ(f) is a VN(G)-bimodule map for every f ∈ J , the space
kerΘ(J) is a VN(G)-bimodule. The equality (Ran J)⊥ = kerΘ(J) follows
directly from the definition.

Remark 3.2. Let s, t ∈ G, f ∈ L1(G) and a ∈ L∞(G). Then

Θ(f)(λ∗sMaλt) = λ∗sΘ(f)(Ma)λt = λ∗s

( �
G

ρrMaρ
∗
rf(r) dr

)
λt = λ∗sMgλt,

where

g(x) =
�

G

a(xr)f(r) dr =
�

G

f(x−1z)a(z) dz = 〈a, λxf〉, x ∈ G.

Lemma 3.3. Let s, t ∈ G and a ∈ L∞(G). Then

λ∗sMaλt ∈ (Ran J)⊥ ⇐⇒ a ∈ J⊥.
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Proof. Since (Ran J)⊥ is a VN(G)-bimodule, it suffices to show that
a ∈ J⊥ if and only if Ma ∈ (Ran J)⊥.

Suppose a ∈ J⊥ and f ∈ J . By Remark 3.2,

Θ(f)(Ma) = Mg, where g(x) = 〈a, λxf〉, x ∈ G.

Since f ∈ J and J is a closed left ideal, λxf ∈ J [11, 2.43], and so g
vanishes almost everywhere. Thus, Θ(f)(Ma) = 0 for all f ∈ J and so
Ma ∈ (Ran J)⊥.

Suppose, conversely, that Ma ∈ (Ran J)⊥. Then for every f ∈ J we have
Θ(f)(Ma) = 0 and so, by Remark 3.2,

〈a, λxf〉 = 0 for almost all x.

Thus, for all g ∈ L1(G), we have
�

G

g(x)〈a, λxf〉 dx = 0.

Therefore

〈a, (g ∗ f)〉 =
�

G

(g ∗ f)(y)a(y) dy =
�

G

( �
G

g(x)f(x−1y) dx
)
a(y) dy

=
�

G

g(x)
( �
G

f(x−1y)a(y) dy
)
dx =

�

G

g(x)〈a, λxf〉 dx = 0.

Let (gi) be an approximate unit for L1(G). Then

〈a, f〉 = lim 〈a, gi ∗ f〉 = 0,

and hence a ∈ J⊥.

Proposition 3.4. For every left ideal J ⊆ L1(G), we have

(4) Bim(J⊥) ⊆ (Ran J)⊥.

Proof. Since the maps Θ(f) are weak-∗ continuous, it suffices, by Lem-
ma 3.1, to show that if a ∈ J⊥ and s, t ∈ G, then Θ(f)(λ∗sMaλt) = 0 for all
f ∈ J . But this follows from Lemma 3.3.

In the subsequent sections, we will show that equality holds in (4) whenG
is weakly amenable discrete, compact or abelian. We do not know whether
equality holds in (4) for a general locally compact group G; in the next
lemma, we establish a useful restricted version, which should be compared
to [1, Lemma 4.6]. We identify the annihilator J⊥ of an ideal J ⊆ L1(G)
with its image in the masa D = DG.

Proposition 3.5. For every left ideal J ⊆ L1(G),

Bim(J⊥) ∩ D = (Ran J)⊥ ∩ D = J⊥.
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Proof. Trivially, J⊥ ⊆ Bim(J⊥)∩D, while, by Proposition 3.4, Bim(J⊥)
∩ D ⊆ (Ran J)⊥ ∩ D. It remains to show that if Ma ∈ (Ran J)⊥ ∩ D, then
a ∈ J⊥. But this follows from Lemma 3.3.

4. The abelian case. In [2], we used Theorem 2.1 to investigate the re-
lation between σ-harmonic functionals (where σ is a multiplier of the Fourier
algebra) and σ-harmonic operators.

In this section we assume that G is a second countable locally compact
abelian group and we obtain the equality

Bim(J⊥) = (RanJ)⊥

for an ideal J ⊆ L1(G).

For this, we use Theorem 2.1 for the dual group Γ . To see the connection,
let µ be a probability measure on G and let σ be the Fourier transform
of µ, that is, σ = µ̂, where µ̂(x) =

	
G x(r) dµ(r) for x ∈ Γ. As L1(G) is a

convolution ideal in M(G) and A(Γ ) = {f̂ : f ∈ L1(G)}, the function σ
is a multiplier of A(Γ ) which, since VN(Γ ) is an abelian C∗-algebra, is
completely bounded (see, for example, [9, Prop. 2.2.6]). It is not hard to see
that in this case the space of µ-harmonic functions on G is identified with
the space of σ̌-harmonic functionals on A(Γ ) (here σ̌(t) = σ(t−1)) via the
dual of the Fourier transform. In [2], we used Theorem 2.1 to investigate
the relation between σ-harmonic functionals (where σ is a multiplier of the
Fourier algebra) and σ-harmonic operators.

In this section, we consider ideals both of A(Γ ) and of L1(G). For clarity,
if I is an ideal of A(Γ ), we will denote by BimDΓ (I⊥) the DΓ -bimodule of
B(L2(Γ )) generated by the annihilator I⊥ of I in VN(Γ ), while if I is an ideal
of L1(G) we will denote by BimVN(G)(I

⊥) the VN(G)-bimodule of B(L2(G))
generated by the multiplication operators with symbols in the annihilator
I⊥ of I in L∞(G).

For a closed ideal J ⊆ L1(G), we wish to prove the equality

(5) (Ran J)⊥ = BimVN(G)(J
⊥).

Let F : L2(G) → L2(Γ ) be the unitary operator such that F (f) = f̂ ,
f ∈ L1(G) ∩ L2(G), and

Φ : B(L2(G))→ B(L2(Γ )), Φ(T ) = FTF−1.

It is clear that Φ(DG) = VN(Γ ) and Φ(VN(G)) = DΓ , and it is readily
verified that

Φ(BimVN(G)(J
⊥)) = BimDΓ (Φ(J⊥)) and Φ((Ran J)⊥) = Ψ(Ran J)⊥,

where Ψ : T (G)→ T (Γ ) denotes the predual of the map Φ−1. Hence, (5) is
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equivalent to

(6) (Ψ(Ran J))⊥ = BimDΓ (Φ(J⊥)),

after identifying J⊥ with its image in DG.
We will need the following lemma.

Lemma 4.1. Let h ∈ T (G) and f ∈ L1(G). Then

Ψ(θ(f)(h)) = N(φ(f̂))Ψ(h),

where φ denotes the map φ(u)(x) = u(x−1) for x ∈ Γ and N(σ)(s, t) =
σ(ts−1).

Proof. Since the maps Ψ and θ(f) are linear and continuous on T (G), it
suffices to prove the lemma when h(x, y) = ξ(x)η̄(y), where ξ, η are continu-
ous with compact support. Note that since F : L2(G)→ L2(Γ ) is a unitary
operator, the map F2 given on elementary tensors by F2(ξ⊗η) = F (ξ)⊗F (η)
is a well-defined bounded linear map from T (G) into T (Γ ). Since the func-
tion (s, t, r) 7→ h(sr−1, tr−1)f(r) is in L1(G×G×G), for x, y ∈ Γ we have

F2(θ(f)(h))(x, y) =
�

G

�

G

x(s)y(t)(θ(f)h)(s, t) ds dt

=
�

G

�

G

�

G

x(s)y(t)h(sr−1, tr−1)f(r) dr ds dt

=
�

G

�

G

�

G

x(sr)y(tr)h(s, t)f(r) dr ds dt

=
�

G

�

G

�

G

x(s)x(r)y(t)y(r)h(s, t)f(r) dr ds dt

=
�

G

�

G

�

G

x(s)y(t)(xy)(r)h(s, t)f(r) dr ds dt

=
�

G

�

G

x(s)y(t)
( �
G

(xy)(r)f(r) dr
)
h(s, t) ds dt

= f̂(xy)
�

G

�

G

x(s)y(t)h(s, t) ds dt = f̂(xy)F2(h)(x, y).

But it is not hard to verify that, for all such ξ, η,

Ψ(ξ ⊗ η̄)(x, y) = (ξ̂ ⊗ η̂)(x, y) = F2(ξ ⊗ η̄)(x, y−1)
and so

(7) Ψ(h)(x, y) = F2(h)(x, y−1) for all h ∈ T (G).

Thus the previous equality gives

Ψ(θ(f)(h))(x, y) = F2(θ(f)(h))(x, y−1) = f̂(xy−1)F2(h)(x, y−1)

= φ(f̂)(yx−1)Ψ(h)(x, y),

i.e. Ψ(θ(f)(h)) = N(φ(f̂))Ψ(h).



Bimodules over VN(G) and the Poisson boundary 9

An operator T ∈ B(L2(Γ )) is in (Ψ(Ran J))⊥ if and only if 〈T, Ψ(θ(f)h)〉t
= 0 for all f ∈ J and h ∈ T (G). It follows from Lemma 4.1 that this

is equivalent to the statement that 〈T,N(φ(f̂))Ψ(h)〉t = 0 for all f ∈ J
and h ∈ T (G). Noting that Ψ maps T (G) onto T (Γ ), we find that T is in
(Ψ(Ran J))⊥ if and only if it annihilates N(φ(Ĵ))T (Γ ), i.e. if and only if T

is in (Satφ(Ĵ))⊥. (Here Ĵ = {f̂ : f ∈ J}.)
We have thus shown that

(Ψ(Ran J))⊥ = (Satφ(Ĵ))⊥.

Using Theorem 2.1 for the ideal φ(Ĵ) ⊆ A(Γ ), we see that

(Satφ(Ĵ))⊥ = BimDΓ (φ(Ĵ)⊥)

and so

(Ψ(Ran J))⊥ = BimDΓ (φ(Ĵ)⊥).

Thus the required equality (6) becomes

BimDΓ (φ(Ĵ)⊥) = BimDΓ (Φ(J⊥)).

It now suffices to prove that

(φ(Ĵ))⊥ = Φ(J⊥).

We have

Φ(J⊥) =
{
Φ(Mg) : Mg ∈ DG,

�

G

g(s)f(s) ds = 0 for all f ∈ J
}
.

On the other hand, using the equality VN(Γ ) = Φ(DG), we have

(φ(Ĵ))⊥ = {T ∈ VN(Γ ) : 〈T, φ(f̂)〉A = 0 for all f ∈ J}
= {Φ(Mg) : Mg ∈ DG, 〈Φ(Mg), φ(f̂)〉A = 0 for all f ∈ J},

where 〈·, ·〉A denotes the Banach space duality between VN(Γ ) and A(Γ ).

Thus, it suffices to prove that, for any f ∈ L1(G) and g ∈ L∞(G),

(8) 〈Φ(Mg), φ(f̂)〉A =
�

G

g(s)f(s) ds.

Fix f ∈ L1(G) and note that both sides of (8) are linear and weak-∗ contin-
uous functions of g. Since L∞(G) is the weak-∗ closed linear span of the set
{x : x ∈ Γ} of characters, it suffices to prove (8) when g is a character x.

Now Φ(Mx) = λx. Since 〈λx, f̂〉A = f̂(x), we have

〈Φ(Mx), φ(f̂)〉A = 〈λx, φ(f̂)〉A = φ(f̂)(x) = f̂(x−1)

=
�

G

f(s)x−1(s) ds =
�

G

f(s)x(s) ds,

as required.
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This proves

Proposition 4.2. Let G be a second countable locally compact abelian
group. Then, for any closed ideal J ⊆ L1(G),

(Ran J)⊥ = Bim(J⊥).

5. The discrete case. In this section we assume that G is discrete; in
this case, the Haar measure coincides with the counting measure. We denote
by δs the function on G defined by δs(t) = 1 if s = t and δs(t) = 0 if s 6= t;
note that {δs}s∈G is an orthonormal basis of L2(G). Let X be an operator
in B(L2(G)). We denote by [X(s, t)] be the matrix of X with respect to the
basis {δs}s∈G. The diagonal D(X) of X is the operator on L2(G) whose
matrix with respect to the basis {δs}s∈G is given by D(X)(s, t) = 0 if s 6= t
and D(X)(s, t) = X(s, t) if s = t. For t ∈ G, we denote by Dt(X) the
tth diagonal of X, given by Dt(X) = λtD(λt−1X). Note that the maps
X 7→ Dt(X) are weak-∗ continuous and linear.

Also note that Dr(X) = SN(δr)(X), Schur multiplication by the matrix
[N(δr)(s, t)]. Indeed,

SN(δr)([X(s, t)]) = [δr(ts
−1)(X(s, t))] =

[{
X(s, rs), t = rs

0, t 6= rs

]
.

Thus, if u : G→ C is finitely supported, then SN(u)(X) is a linear combina-
tion of diagonals of X.

Suppose that the group G is weakly amenable in the sense of [5]. This
means that there exists a net {ui}i∈I consisting of finitely supported ele-
ments of A(G) and a positive constant L such that ‖ui‖mcb ≤ L for all i and
ui(s)→ 1 for all s ∈ G (here ‖ui‖mcb is the completely bounded norm of ui
as a multiplier of A(G), or equivalently of the Schur multiplier SN(ui)). It
follows that for each h ∈ T (G) we have

‖N(ui)h‖t ≤ L‖h‖t for all i.

Proposition 5.1. Let G be a weakly amenable (discrete) group. Then
each A ∈ B(L2(G)) is in the weak-∗ closed linear span of its diagonals.

Proof. Recall that the diagonals of A are SN(δt)(A), t ∈ G. Thus if
h ∈ T (G) annihilates all diagonals of A, then

0 = 〈SN(δt)(A), h〉 = 〈A,N(δt)h〉 for all t ∈ G.

But N(δt)h(s, r) = δt(rs
−1)h(s, r) = h(s, ts) when r = ts, and N(δt)h(s, r)

= 0 otherwise. Thus A must annihilate all the diagonals of h. If we prove
that h is in the trace-norm closed linear span of its diagonals, it will follow
that 〈A, h〉 = 0, as required.
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It thus remains to prove that h is in the trace-norm closed linear span of
its diagonals. For this, observe first that given ε > 0 there is an hε ∈ T (G),
supported on finitely many diagonals, such that ‖h− hε‖t < ε (it suffices to
take hε of the form php where p is the projection on the span of a suitably
large but finite subset {δt : t ∈ F}, since such projections tend strongly to
the identity).

But note that
lim
i
‖N(ui)hε − hε‖t = 0.

This is because on each of the finitely many non-zero diagonals Dt(hε) we
have N(ui)Dt(hε) = ui(t)Dt(hε), hence

‖N(ui)Dt(hε)−Dt(hε)‖t = |ui(t)− 1| ‖Dt(hε)‖t,
and ui(t) → 1. Therefore we can choose i0 such that ‖N(ui)hε − hε‖t < ε
for all i ≥ i0.

Thus we finally have, for all i ≥ i0,
‖N(ui)h− h‖t ≤ ‖N(ui)(h− hε)‖t + ‖N(ui)hε − hε‖t + ‖hε − h‖t

≤ L‖h− hε‖t + ‖N(ui)hε − hε‖t + ‖hε − h‖t < Lε+ ε+ ε.

This shows that h is in the trace-norm closed linear span of the family
{N(ui)h : i ∈ I}; but as observed above, since each ui is finitely supported,
each N(ui)h is a linear combination of diagonals of h. This proves the claim
and concludes the proof of the proposition.

Lemma 5.2. Let G be a discrete group and J ⊆ L1(G) be a closed left
ideal. If X ∈ (Ran J)⊥, then Dt(X) ∈ (Ran J)⊥ for all t ∈ G.

Proof. A direct calculation shows that

D(ρsXρs∗) = ρsD(X)ρs∗ .

It follows by the weak-∗ continuity of D that

Θ(f)D(X) = D(Θ(f)(X))

for f ∈ L1(G). The conclusion follows from Lemma 3.1.

Proposition 5.3. Let G be a discrete weakly amenable group and let
J ⊆ L1(G) be a closed left ideal. Then

(Ran J)⊥ = Bim(J⊥).

Proof. Let X ∈ (Ran J)⊥. Since (Ran J)⊥ is a VN(G)-bimodule, we
have λt−1X ∈ (Ran J)⊥ and it follows from Lemma 5.2 that D(λt−1X) ∈
(Ran J)⊥. Now, D(λt−1X) = Mat for some at ∈ `∞(G). It follows from
Lemma 3.3 that at ∈ J⊥, and hence Dt(X) ∈ Bim(J⊥). Since the operator
X is in the weak-∗ closed linear span of its diagonals (Proposition 5.1), we
infer that X ∈ Bim(J⊥).

By Proposition 3.4, the proof is complete.
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Remark 5.4. In a previous version of this paper we claimed that Propo-
sition 5.3 holds in any discrete group. We wish to thank J. Crann and M.
Neufang who pointed out that our argument was incomplete.

6. The compact case. In this section we assume that G is compact.
We denote by Ĝ the unitary dual of G, that is, the set of all (equivalence

classes of) irreducible representations. If π ∈ Ĝ, we denote by Hπ the space
of the representation π, and by dπ its dimension. Suppose that for each
irreducible representation (π,Hπ) of G we are given a subspace Eπ ⊆ Hπ

(possibly trivial). If Eπ 6= {0} choose an orthonormal basis e1, . . . , esπ of
Eπ and extend it to an orthonormal basis e1, . . . , edπ of Hπ. If Eπ = {0}
let e1, . . . , edπ be an orthonormal basis of Hπ. For π ∈ Ĝ, we denote by πij ,
1 ≤ i, j ≤ dπ, the matrix coefficients of the representation π with respect to
the basis e1, . . . , edπ of Hπ; thus,

(9) πij(s) = (π(s)ej , ei), s ∈ G, i, j = 1, . . . , dπ.

Let E = {Eπ}π∈Ĝ and consider the set

J(E) = span
{
πij : 1 ≤ i ≤ dπ, 1 ≤ j ≤ sπ, π ∈ Ĝ, Eπ 6= {0}

}‖·‖1
,

where ‖ · ‖1 is the L1(G) norm. Clearly, J(E) is a closed left ideal of L1(G),
being invariant under left translations. Conversely, every closed left ideal of
L1(G) is of this form [16, 38.13] for some E = {Eπ}π∈Ĝ.

Denoting by J(E)⊥ the annihilator in L∞(G), we have:

Proposition 6.1. The space J(E)⊥ is the weak-∗ closure of the linear
span of

S :=
{
π′ij : 1 ≤ i ≤ dπ′ , sπ′ < j ≤ dπ′ , Eπ′ 6= {0}

}
∪
{
π′ij : 1 ≤ i, j ≤ dπ′ , Eπ′ = {0}

}
.

Proof. Let π′ ∈ Ĝ be such that Eπ′ 6= {0} and let 1 ≤ k ≤ dπ′ and

sπ′ < l ≤ dπ′ . Let π ∈ Ĝ be such that Eπ 6= {0} and let 1 ≤ i ≤ dπ and

1 ≤ j ≤ sπ. If π′ is not equivalent to π, then
	
π′kl(t)πij(t) dt = 0 for all k, l

by the Schur orthogonality relations [11, 5.8]. If π′ is equivalent to π, then	
π′kl(t)πij(t) dt = 0 for all k since j 6= l. Moreover, it is clear that⋃{

π′ij : 1 ≤ i, j ≤ dπ′ , Eπ′ = {0}
}
⊆ J(E)⊥.

Hence S ⊆ J(E)⊥.

For the reverse containment, we show that the preannihilator S⊥ is con-
tained in J(E). Now S⊥ is a closed left ideal in L1(G), since the linear span
of S is invariant under left translations. Take f ∈ S⊥. Let (gν) be an approx-
imate unit for L1(G) consisting of functions in L2(G) and set fν = gν ∗ f ;



Bimodules over VN(G) and the Poisson boundary 13

so fν ∈ L2(G) and ‖f − fν‖1 → 0. Since each fν is in S⊥, it is orthogo-
nal (in the L2(G) sense) to π′ij ’s whose conjugates generate S and hence,

by the Peter–Weyl theorem, fν belongs to the L2(G) closed span of the
remaining π′ij ’s, that is, to the closure of

span
{
π′ij : 1 ≤ i ≤ dπ′ , 1 ≤ j ≤ sπ′ , Eπ′ 6= {0}

}
in L2(G). But the L2(G) closure of this set is contained in its L1(G) closure,
which coincides with J(E). Thus fν ∈ J(E) for each ν, and so f ∈ J(E).

Remark 6.2. The above proposition may be proved using the theory of
strong M-bases in Banach spaces:

Let X be a Banach space. A family (ui) of vectors is called a Marku-
shevich basis or an M -basis of X [15, Definition 1.7] if there exists a family
(u′i) in the dual X∗ of X such that

(1) 〈u′i, uj〉X = δij , where 〈·, ·〉X is the pairing between X∗ and X,

(2) span{ui}
‖·‖

= X,

(3) span{u′i}
w∗

= X∗.

The family (ui) is called a strong M -basis [15, Definition 1.32] if for every
x ∈ X we have

x ∈ span{ui : 〈u′i, x〉X 6= 0}‖·‖.

It follows from [8, 2.9.3] that the family {πij : 1 ≤ i, j ≤ dπ, π ∈ Ĝ} as
defined in (9) is a strong M -basis of the space L1(G). Proposition 6.1 now
follows from [15, Proposition 1.35].

By the Peter–Weyl theorem (see for example [11, Theorem 5.12]), L2(G)
is the orthogonal direct sum

L2(G) =
⊕
π∈Ĝ

Eπ

where
Eπ = span

{√
dπ πij : 1 ≤ i, j ≤ dπ

}
.

Moreover,
√
dπ πij , 1 ≤ i, j ≤ dπ, is an orthonormal basis of Eπ. If π ∈ Ĝ,

denote by Pπ ∈ B(L2(G)) the orthogonal projection onto Eπ.
With respect to this decomposition, each T ∈ B(L2(G)) corresponds to

an infinite matrix T = [Tπ,π′ ] of operators Tπ,π′ ∈ B(E ′π, Eπ) which act on
finite-dimensional spaces, where Tπ,π′ = PπTPπ′ .

Remark 6.3. If π ∈ Ĝ then Pπ ∈ VN(G).

Proof. Since Eπ is ρs-invariant, we have Pπρs = ρsPπ for all s ∈ G.

Remark 6.4. An operator T is in (Ran J)⊥ (resp. Bim(J⊥)) if and only
if Tπ,π′ is in (RanJ)⊥ (resp. Bim(J⊥)) for all π, π′ ∈ Ĝ.
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Proof. Since (RanJ)⊥ is a VN(G)-bimodule, if T ∈ (Ran J)⊥ then, by
Remark 6.3, Tπ,π′ = PπTPπ′ is in (Ran J)⊥. Conversely, if Tπ,π′ ∈ (Ran J)⊥

for all π, π′ ∈ Ĝ then, since T is in the weak-∗ closed linear span of {Tπ,π′ :

π, π′ ∈ Ĝ} and (Ran J)⊥ is a weak-∗ closed subspace, it follows that T is in
(Ran J)⊥.

The proof for Bim(J⊥) is identical.

Theorem 6.5. Let G be a compact group and J ⊆ L1(G) be a closed left
ideal. Then

(Ran J)⊥ = Bim(J⊥).

Proof. As noted in the introduction to this section, the ideal J is of the
form J(E) for some E = {Eπ}π∈Ĝ. By Proposition 3.4, it is enough to show

that if an operator T is in (Ran J)⊥, then T ∈ Bim(J⊥). By Remark 6.4, it

suffices to prove that Tπ,π′ ∈ Bim(J⊥) for all π, π′ ∈ Ĝ.

Fix π, π′ ∈ Ĝ and write P := Pπ and Q := Pπ′ to simplify notation. We
have to prove that PTQ ∈ Bim(J⊥). Recall that the linear span of the set

{Mπijλs : π ∈ Ĝ, 1 ≤ i, j ≤ dπ, s ∈ G}

is a ∗-algebra with trivial commutant, and it is weak-∗ dense in B(L2(G)).
It follows that the linear span of the set

(∗) {PMπijλsQ : π ∈ Ĝ, 1 ≤ i, j ≤ dπ, s ∈ G}

is weak-∗ dense in B(QL2(G), PL2(G)). Since B(QL2(G), PL2(G)) is finite-
dimensional, we have

span{PMπijλsQ : π ∈ Ĝ, 1 ≤ i, j ≤ dπ, s ∈ G} = B(QL2(G), PL2(G)).

From the generating set (∗) we choose an algebraic basis {PMkλskQ :

1 ≤ k ≤ m} of B(QL2(G), PL2(G)), where each Mk is Mπij for some π ∈ Ĝ
and some 1 ≤ i, j ≤ dπ. There are scalars ck such that

(10) PTQ =

m∑
k=1

ckPMkλskQ.

We will show that the only non-zero terms in this sum are those for which
Mk = Mπij for some π, i, j, where either Eπ = {0}, or Eπ 6= {0} and

sπ < j ≤ dπ. Since such terms are in Bim(J⊥), it will follow that PTQ is in
Bim(J⊥), thus completing the proof.

For a continuous function f we have (recalling that Θ(f) is a VN(G)-
bimodule map)

(11) Θ(f)(PTQ) =
m∑
k=1

ckPΘ(f)(Mk)λskQ.
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Fix k ∈ {1, . . . ,m}, and let πij be such that Mk = Mπij . Then

Θ(f)(Mk) = Θ(f)(Mπij ) =
�

G

f(r)(ρrMπijρ
∗
r) dr = Mg

where g(x) =
	
G f(r)πij(xr) dr (Remark 3.2), that is,

g(x) =
(
f,
∑
k

πik(x)πkj

)
=
∑
k

πik(x)(f, πkj).

Let π′ ∈ Ĝ be such that Eπ′ 6= {0} and choose f = dπ′π
′
nn where

1 ≤ n ≤ sπ′ . Then, by the orthogonality relations,

g(x) =
∑
k

πik(x) δnkδnjδππ′ = πin(x) δnjδππ′ .

It follows that

Θ(f)(Mπij ) = Θ(dπ′π
′
nn)(Mπij ) = Mπinδnjδππ′ = Mπijδnjδππ′ .

Hence all the monomials in the expression (11) for Θ(f)(PTQ) must vanish,
except when π = π′ and j = n, in which case they are left unchanged. Thus
(11) gives

(12) Θ(f)(PTQ) =
∑
k

ckPMkλskQ,

the summation being over those k for which Mk = M
π′in

.

Now f ∈ J since 1 ≤ n ≤ sπ′ ; thus, by Lemma 3.1, Θ(f)(PTQ) = 0
and therefore the sum (12) must vanish. But the monomials PMkλskQ are
linearly independent (they were chosen from an algebraic basis) and so each
term must vanish.

Thus, for all π′ij with Eπ′ 6= {0}, 1 ≤ i ≤ dπ′ and 1 ≤ j ≤ sπ′ , all
terms of the form ckPMπ′ij

λskQ must vanish in the sum (10). Therefore in

this sum the only non-zero terms remaining are of the form ckPMkλskQ
where Mk = Mπij for some πij with Eπ 6= {0} and sπ < j ≤ dπ or for

some πij with Eπ = {0}. By Proposition 6.1, these are in Bim(J⊥), hence
PTQ ∈ Bim(J⊥) as required.

7. Jointly harmonic operators. In this section,G is a locally compact
group. If µ is a probability measure on G, let Pµ be the map on L∞(G) given
by

(Pµφ)(s) =
�

G

φ(st) dµ(t).

A function φ is called µ-harmonic [13, 12] if

Pµφ = φ.
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More generally, given a set Λ ⊆ M(G) (not necessarily consisting of
probability measures) we define the setH(Λ) of jointly Λ-harmonic functions
by letting

H(Λ) := {φ ∈ L∞(G) : Pµφ = φ for all µ ∈ Λ} .

Note that H(Λ) is a weak-∗ closed linear subspace of L∞(G). The preanni-
hilator of H(Λ) in L1(G) is

JΛ := span{f ∗ µ− f : f ∈ L1(G), µ ∈ Λ}

[4, p. 8]. Since H(Λ) is invariant under left translations, the space JΛ is a
left ideal in L1(G).

The map Θ(µ) extends Pµ (under the natural identification of L∞(G)
with DG): for every φ ∈ L∞(G) and any µ ∈M(G), we have

Θ(µ)(Mφ) = MPµφ,

and so φ ∈ H(Λ) if and only if Θ(µ)(Mφ) = Mφ for all µ ∈ Λ. It is therefore

natural to define the set H̃(Λ) of all jointly Λ-harmonic operators by letting

H̃(Λ) := {T ∈ B(L2(G)) : Θ(µ)(T ) = T for all µ ∈ Λ}.

This weak-∗ closed subspace of B(L2(G)) is a VN(G)-bimodule (as Θ(µ) is a
VN(G)-bimodule map for every µ) and it contains {Ma : a ∈ H(Λ)}; hence
it contains Bim(H(Λ)).

Theorem 7.1. If Λ ⊆M(G) then

H̃(Λ) = (RanJΛ)⊥.

Proof. Recall that Ran JΛ is the closed linear span of θ(u)h where u ∈ JΛ
and h ∈ T (G). If u = f ∗ µ− f where f ∈ L1(G), µ ∈ Λ and T ∈ B(L2(G))
then

〈T, θ(u)h〉t = 〈Θ(f)Θ(µ− δe)T, h〉t.

By Lemma 3.1, T ∈ (Ran JΛ)⊥ if and only if

(13) Θ(f)Θ(µ− δe)T = 0, f ∈ L1(G), µ ∈ Λ.

Since Θ is the integral of a bounded representation of G, namely Ad ρ, if X
is a non-zero operator then Θ(f)(X) must be non-zero for some f ∈ L1(G).
Thus, (13) holds true if and only if

Θ(µ− δe)T = 0 for all µ ∈ Λ

i.e. if and only if T ∈ H̃(Λ).

Theorems 7.1 and 6.5 and Propositions 5.3 and 4.2 imply the following
corollary.



Bimodules over VN(G) and the Poisson boundary 17

Corollary 7.2. Let G be a locally compact group such that (Ran J)⊥ =
Bim(J⊥) for every closed left ideal J of L1(G). Then

(14) H̃(Λ) = Bim(H(Λ)).

In particular, (14) holds true if G is abelian, or weakly amenable discrete,
or compact.

8. The non-commutative Poisson boundary. In this section, we
discuss the case where Λ is a singleton consisting of a probability measure,
say µ. There exists a norm one projection Ẽ on H̃(µ) := H̃(Λ) given by
a pointwise-weak-∗ limit of convex combinations of iterates of Θ(µ). The

non-commutative Poisson boundary of µ, denoted by H̃µ, is defined to be

the space H̃(µ), equipped with the unique von Neumann algebra structure

defined through the Choi–Effros product � given by T � S = Ẽ(TS) [17].
The space H(µ) := H(Λ) is closed under � and therefore is a von Neumann

subalgebra of H̃µ denoted by Hµ.

Thus H̃(µ) is an injective weak-∗ closed operator system, and in fact so
is its subspace H(µ) (it is the range of a contractive projection from D).
Moreover, H(µ) admits a natural action α of G by weak-∗ continuous unital
completely positive isometries, given by the restriction of the action of G on
L∞(G) by left translation: (αsφ)(t) = φ(s−1t) (the space H(µ) is invariant
under translation because Pµ commutes with each αs).

We wish to show that the operator system H̃(µ) is isomorphic, as a dual
operator system, to the operator system crossed product GnαH(µ), which
we now define:

Let M be a dual operator system, and let s 7→ αs be a point-weak-∗

continuous action ofG onM by weak-∗ continuous unital completely positive
isometries. The action is encoded by the map

α̃ :M→ L∞(G,M) : v 7→ (α−1s (v))s∈G,

which is a unital completely positive isometry. Let B := B(L2(G)) and
identify L∞(G,M) with L∞(G) ⊗̄M ⊆ B ⊗̄M. We also have a map

G→ B ⊗̄M : s 7→ λ̃s := λs ⊗ I.
Definition 8.1. The crossed product GnαM is defined to be the sub-

space of B ⊗̄M generated by α̃(M) · λ̃(G); it is the weak-∗ closed space

GnαM := span{α̃(v)λ̃s : v ∈M, s ∈ G}
w∗

⊆ B ⊗̄M.

Remark 8.2. If M is an injective operator system (as in the case
M = H(µ) considered here), it follows from the well known corresponding
result for von Neumann algebra crossed products [27, Theorem X.1.7] that
the crossed product is independent of the representation of M as a weak-∗
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closed operator subsystem of some B(H). This is becauseM admits a unique
von Neumann algebra structure, N say, induced by the Choi–Effros product
and its original operator space structure. Then GnαM is isomorphic, as a
dual operator system, to the von Neumann algebra crossed product GnN ,
which does not depend on the representation of N on Hilbert space.

Let V ∈ B ⊗̄ B be the fundamental unitary, given by

(V ξ)(s, t) = ξ(st, t)∆(t)1/2, ξ ∈ L2(G)⊗ L2(G),

and define

Γ̃ : B → B ⊗̄ B by Γ̃ (T ) := V (T ⊗ I)V ∗.

Note that Γ̃ is clearly a normal ∗-homomorphism and an isometry, hence a
normal unital completely positive map.

Proposition 8.3. We have Γ̃ (Bim(H(µ))) = GnαH(µ). In particular,

(15) Gnα H(µ) ⊆ Γ̃ (H̃(µ)).

Proof. It is not hard to verify that V (λr ⊗ I) = (λr ⊗ I)V for all r ∈ G
and (I ⊗Mf )V = V (I ⊗Mf ) for all f ∈ L∞(G).

Thus, V ∈ B ⊗̄ D. It follows that

Γ̃ (T ) = V (T ⊗ I)V ∗ ∈ B ⊗̄ D for all T ∈ B,
Γ̃ (λr) = λr ⊗ I = λ̃r for all r ∈ G.

If φ ∈ H(µ) and s ∈ G then the element (α̃φ)(s) = α−1s (φ) of H(µ) acts
as a multiplication operator on L2(G) as follows:

((α̃φ)(s)η)(t) = (α−1s (φ))(t)η(t) = φ(st)η(t), η ∈ L2(G), t ∈ G.

We claim that, for every φ ∈ H(µ) and r ∈ G,

(16) Γ̃ (Mφλr) = α̃(φ)λ̃r.

Now Γ̃ (Mφλr) = Γ̃ (Mφ)λ̃r so it suffices to prove that Γ̃ (Mφ) = α̃(φ), or
equivalently (α̃(φ))V = V (Mφ ⊗ I). Indeed, for all ξ, η ∈ L2(G),

(α̃(φ)V (ξ ⊗ η))(s, t) = (αs−1φ)(t)V (ξ ⊗ η))(s, t) = φ(st)ξ(st)η(t)∆(t)1/2,

(V (Mφ ⊗ I)(ξ ⊗ η))(s, t) = (V (φξ ⊗ η))(s, t)) = (φξ)(st)η(t)∆(t)1/2,

which proves the claim.

By linearity and weak-∗ continuity,

Γ̃
(
span{Mφλr : φ ∈ H(µ), r ∈ G}w

∗)
= span{α̃(φ)λ̃r : φ ∈ H(µ), r ∈ G}

w∗

,

i.e. Γ̃ (Bim(H(µ))) = Gnα H(µ).

Since Bim(H(µ)) ⊆ H̃(µ), we have in particular GnαH(µ) ⊆ Γ̃ (H̃(µ)).
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In case G is weakly amenable discrete, compact or abelian, by Corol-
lary 7.2 we know that Bim(H(µ)) = H̃(µ). Therefore the previous proposi-
tion yields:

Proposition 8.4. Assume that G is weakly amenable discrete, compact
or abelian. Then Γ̃ is an isomorphism of dual operator spaces between H̃(µ)
and the crossed product Gnα H(µ).

Corollary 8.5. Assume that G is weakly amenable discrete, compact
or abelian. Then the crossed product G nα H(µ) is an injective operator
system.

For G weakly amenable discrete, compact or abelian we obtain the fol-
lowing corollary, established by Izumi [18] for discrete groups, by Jaworski
and Neufang [19] for locally compact groups and by Kalantar, Neufang and
Ruan [20] for locally compact quantum groups. Analogous results were ob-
tained in [25] for complex contractive measures.

Using these results together with Theorem 7.1 we obtain, for any locally
compact group G, the equality (Ran JΛ)⊥ = Bim(J⊥Λ ) when Λ = {µ} and µ
is a probability measure.

Corollary 8.6. Assume that G is weakly amenable discrete, compact or
abelian. Let µ be a probability measure on G. The non-commutative Poisson
boundary H̃µ is ∗-isomorphic to the crossed product Gnα Hµ.

Proof. It follows from the definition of the von Neumann algebra struc-
ture on Hµ that αs(φ � ψ) = αs(φ) � αs(ψ) for φ, ψ ∈ Hµ. Thus G acts
on the von Neumann algebra Hµ by weak-∗ continuous ∗-automorphisms.

The corollary now follows from Proposition 8.4 and the fact that Γ̃ induces
a completely positive surjective isometry between von Neumann algebras,
which must therefore be a ∗-homomorphism [9, Corollary 5.2.3].

Added in proof (June 2019). In the recent preprint [6] it is shown that, for any
locally compact group G with the approximation property (AP) of Haagerup and Kraus,
the relation (Ran J)⊥ = Bim(J⊥) holds for every closed left ideal J of L1(G). It follows
that, in this paper, the conclusions of Corollary 7.2, Proposition 8.4, Corollary 8.5 and
Corollary 8.6 hold for any locally compact group G with the AP.
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