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The following is a brief and sketchy introduction to the rudiments of the theory of operator
algebras, particularly C*-algebras. The text consists of rough lecture notes given by the
author in the summer school in Operator Theory held in July 2011 at the University of the
Aegean in Chios.

The notion of a C*-algebra is a fascinating common abstraction of the structure of two
seemingly very different objects: on the one hand, the algebra of continuous functions on a
(locally) compact space; and on the other, an algebra of bounded operators on Hilbert space
closed in the norm and under adjoints.

The aim of the first part of these notes (sections one to five) is to describe as briefly and
as simply as possible this process of abstraction, culminating in the two Gelfand–Naimark
theorems (3.9, 5.3). In the final section we give a brief sketch of what one can do when the
‘adjoint’ operation is not available, at least in the case where there exists a ‘parametrization’
in terms of ‘(possibly continuous) coordinates’.

Many proofs are only sketched and many others are omitted altogether.

1 C*-algebras: basics

1.1 BpHq
In these notes, the action takes place via bounded operators on Hilbert space - either directly,
or indirectly through representations by operators of more abstract structures (e.g. C*-
algebras).

The space of all bounded linear operators T : H Ñ H on a Hilbert space H is denoted
BpHq. It is complete under the norm

}T } “ supt}Tx} : x P b1pHqu

(here b1pX q denotes the closed unit ball of a normed space X ) and is an algebra under
composition. Moreover, because it acts on a Hilbert space, it has additional structure: an
involution T Ñ T ˚ defined via

xT ˚x, yy “ xx, Tyy for all x, y P H.

This satisfies
}T ˚T } “ }T }2 the C˚ property.

These fundamental properties of BpHq (norm-completeness, involution, C˚ property) moti-
vate the definition of an abstract C*-algebra.

1.2 C*-algebras

Definition 1 (a) A Banach algebra A is a complex algebra equipped with a complete
norm which is sub-multiplicative:

}ab} ď }a} }b} for all a, b P A.
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(b) A C*-algebra A is a Banach algebra equipped with an involution1 a Ñ a˚ satisfying
the C*-condition

}a˚a} “ }a}2 for all a P A.

If A has a unit 1 then necessarily 1˚ “ 1 and }1} “ 1. If not, adjoin a unit:

Definition 2 If A is a C*-algebra let

A„ “: A‘ C
with pa, zqpb, wq “: pab` wa` zb, zwq pa, zq˚ “: pa˚, z̄q

}pa, zq} “: supt}ab` zb} : b P b1Au

Thus the norm of A„ is defined by identifying each pa, zq P A„ with the operator Lpa,zq :
AÑ A : bÑ ab` zb acting on the Banach space A.

Definition 3 A morphism φ : AÑ B between C*-algebras is a linear map that preserves
products and the involution.

We will see later that morphisms are automatically contractive (hence continuous), and that
1-1 morphisms are isometric (this is one instance where the algebraic structure ‘forces’ the
topological behaviour).

Basic Examples:

• C, the set of complex numbers.

• CpKq, the set of all continuous functions f : K Ñ C, where K is a compact Hausdorff
space. With pointwise operations, f˚ptq “ fptq and the sup norm, CpKq is an abelian,
unital algebra.

• C0pXq, where X is a locally compact Hausdorff space. This consists of all functions
f : X Ñ C which are continuous and ‘vanish at infinity’, meaning that given ε ą 0
there is a compact Kf,ε Ď X such that |fpxq| ă ε for all x R Kf,ε. With the same
operations and norm as above, this is an abelian C*-algebra, which is nonunital if and
only if X is non-compact.

We will see later (section 3.2) that all abelian C*-algebras can be represented as C0pXq
for suitable X.

• MnpCq, the set of all n ˆ n matrices with complex entries. With matrix operations,
A˚ “ conjugate transpose, and }A} “ supt}Ax}2 : x P `2pnq, }x}2 “ 1u, this is a
non-abelian (when n ą 1), unital algebra.

1that is, a map on A such that pa` λbq˚ “ a˚ ` λ̄b˚, pabq˚ “ b˚a˚, a˚˚ “ a for all a, b P A and λ P C
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• BpHq is a non-abelian, unital C*-algebra; it is infinite dimensional when H is infinite-
dimensional.

We will see later (section 5.2) that all C*-algebras can be represented as closed selfad-
joint subalgebras of BpHq for suitable H.

• KpHq “ tA P BpHq : Apb1pHqq compact in Hu: the compact operators. This is a
closed selfadjoint subalgebra of BpHq, hence a C*-algebra. It is nonabelian and non-
unital when H is infinite-dimensional.

Non-examples:

• ApDq “ tf P CpDq : f |D holomorphicu : the disc algebra (here D “ tz P C : |z| ă 1u).

This is a closed subalgebra of the C*-algebra CpDq but not a *-subalgebra, because if
f P ApDq then f̄ is not holomorphic unless it is constant; thus the diagonal ApDq X
ApDq˚ “ C1 is trivial: ApDq is an antisymmetric algebra.

• Tn “ tpaijq PMnpCq : aij “ 0 for i ą ju: the upper-triangular matrices.

A closed subalgebra of the C*-algebra MnpCq but not a *-subalgebra. Here the diagonal
Tn X T

˚
n is Dn, the diagonal matrices: a maximal abelian selfadjoint algebra (masa) in

Mn.

• MoopCq: infinite matrices with finite support.

To define a norm (and operations), consider its elements as operators acting on `2pNq
with its usual basis. This is a selfadjoint algebra and its norm satisfies the C*-condition,
but it is not complete.

Its completion is K, the set of compact operators on `2: a non-unital, non-abelian
C*-algebra.

2 Examples and constructions

• If X is an index set and A is a C*-algebra, the Banach space `8pX,Aq of all bounded
functions a : X Ñ A (with norm }a}

8
“ supt}apxq}A : x P Xu) becomes a C*-algebra with

pointwise product and involution.
Its subspace c0pX,Aq consisting of all a : X Ñ A with 2 lim

xÑ8
}apxq}A “ 0 is a C*-algebra.

The subset c00pX,Aq consisting of all functions of finite support is a dense *-subalgebra,
which is proper when X is infinite.

• If X is a locally compact Hausdorff space then CbpX,Aq is the *-subalgebra of `8pX,Aq
consisting of continuous bounded functions. It is closed, hence a C*-algebra. (This is denoted
CpX,Aq when X is compact.)

2i.e. such that for each ε ą 0 there is a finite subset Xε Ď X s.t. x R Xε ñ }apxq}A ă ε
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• The C*-algebra C0pX,Aq consists of those f P CbpX,Aq which ‘vanish at infinity’, i.e.
such that the function tÑ }fptq}A is in C0pXq (see Basic Examples).

More generally, consider subsets of the Cartesian product
ś

Ai of a family of C*-algebras:

Definition 4 (i) The direct sum A1‘¨ ¨ ¨‘An of C*-algebras is a C*-algebra under pointwise
operations and involution and the norm

}pa1, . . . , anq} “ maxt}a1} , . . . , }an}u.

(ii) Let tAiu be a family of C*-algebras. Their direct product or `8-direct sum
À

`8 Ai
is the subset of the Cartesian product

ś

Ai consisting of all paiq P
ś

Ai such that iÑ }ai}Ai
is bounded. It is a C*-algebra under pointwise operations and involution and the norm

}paiq} “ supt}ai}Ai : i P Iu.

(iii) The direct sum or c0-direct sum
À

c0
Ai of a family tAiu of C*-algebras is the closed

selfadjoint subalgebra of their direct product consisting of all paiq P
ś

Ai such that iÑ }ai}Ai
vanishes at infinity.

In case Ai “ A for all i, the direct product is just `8pI,Aq and the direct sum is c0pX,Aq.

• If A is a C*-algebra and n P N, the space MnpAq of all matrices raijs with entries aij P A
becomes a *-algebra with product raijsrbijs “ rcijs where cij “

ř

k aikbkj and involution
raijs

˚ “ rdijs where dij “ a˚ji. It is of course non-commutative when n ą 1.
But how does one define a norm on MnpAq satisfying the C*-condition?
Consider two special cases:

• Suppose A is C0pXq. Then we may identify MnpC0pXqq (as a *-algebra) with C0pX,Mnq,
i.e. Mn-valued continuous functions onX vanishing at infinity: each matrix rfijs PMnpC0pXqq
defines naturally a function F : X Ñ Mn : xÑ rfijpxqs which is continuous with respect to
the norm on Mn.3

Thus we may define

}rfijs} “ }F }8 “ supt}rfijpxqs}Mn
: x P Xu

and it is easy to verify that this satisfies the C*-condition, because the norm on Mn satisfies
the C*-condition.
• Suppose A is BpHq for some Hilbert space H. Then we may identify MnpBpHqq with
BpHnq: Given a matrix raijs of bounded operators aij on H, we define an operator A on Hn

by

A

»

—

–

ξ1
...
ξn

fi

ffi

fl

“

»

—

–

ř

j a1jξj
...

ř

j anjξj

fi

ffi

fl

3 Conversely, of course, if F : X Ñ Mn is continuous, then its entries fij given by fijpxq “ xF pxqej , eiy
form an nˆ n matrix of continuous functions.
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(this identification preserves the algebraic operations, including the involution).4 Hence
one defines the norm }raijs} of raijs P MnpBpHqq to be the norm }A} of the corresponding
operator on Hn.

• In order to define a C*-algebra structure on MnpAq for a general C*-algebra A, one uses
the Gelfand - Naimark Theorem (see section 5.2).

3 Spectral Theory

3.1 The spectrum

Definition 5 If A is a unital C*-algebra and GLpAq denotes the group of invertible elements
of A, the spectrum of an element a P A is

σpaq “ σApaq “ tλ P C : λ1´ a R GLpAqu.

If A is non-unital, the spectrum of a P A is defined by

σpaq “ σA„paq.

In this case, necessarily 0 P σpaq.

Proposition 3.1 The spectrum σpaq is a compact nonempty subset of C.

Sketch of proof. (i) σpaq is bounded: In a unital C*-algebra, if }x} ă 1 then
ř

ně0 x
n

converges to an element y such that p1´ xqy “ yp1´ xq “ 1, hence p1´ xq P GLpAq. The
proof is the same 5 as the case A “ C. Hence if a P A and λ P C satisfies |λ| ą }a} then
} a
λ
} ă 1 so λ R σpaq: the spectrum is bounded by }a}.

(ii) σpaq is closed: To prove this, we prove that GLpAq is open; see Lemma 3.2 below.

(iii) σpaq is nonempty: This is proved by contradiction: one shows that for each φ in the
Banach space dual of A, the function f : λÑ φppλ1´aq´1q is analytic on its domain Czσpaq
and lim|λ|Ñ8 fpλq “ 0; so if σpaq were empty, this function would be analytic on C and
vanishing at infinity, hence would be zero by Liouville’s theorem; hence φpa´1q “ fp0q “ 0
for all φ, which is absurd by Hahn-Banach. l

Lemma 3.2 The set GLpAq is open in A and the map x Ñ x´1 is continuous (hence a
homeomorphism) on GLpAq.

4 Conversely any A P BpHnq defines an nˆ n matrix of operators aij on H by xaijξ, ηyH “ xAξj , ηiyHn ,
where ξj P Hn is the column vector having ξ at the j-th entry and zeroes elsewhere (and ηi is defined
analogously).

5since
ř

}xn} ď
ř

}x}
n
, the series

ř

xn converges absolutely, hence (completeness!) it converges in A
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Proof. We have seen that if }1´ x} ă 1 then x P GLpAq. Thus 1 is an interior point of
GLpAq. To show that every a P GLpAq is an interior point of GLpAq, just notice that the
map xÑ ax is a homeomorphism of GLpAq (with inverse y Ñ a´1y) and it maps 1 to a.6

To show that inversion is continuous, let a, b P GLpAq. Then

›

›a´1
´ b´1

›

› “
›

›b´1
pb´ aqa´1

›

› “
›

›pb´1
´ a´1

qpb´ aqa´1
` a´1

pb´ aqa´1
›

›

ď
›

›b´1
´ a´1

›

› }b´ a}
›

›a´1
›

›`
›

›a´1
›

›

2
}b´ a}

hence
›

›a´1
´ b´1

›

› p1´ }b´ a}
›

›a´1
›

›q ď
›

›a´1
›

›

2
}b´ a} .

It follows that
lim
bÑa

›

›b´1
´ a´1

›

› “ 0. l

The spectral radius of a P A is defined to be

ρpaq “ supt|λ| : λ P σpaqu.

It satisfies ρpaq ď }a}, but equality may fail.7 In fact, it can be shown that

ρpaq “ lim
n
}an}1{n . (1)

This is the Gelfand-Beurling formula.

Exercise 3.3 Any morphism φ : AÑ B between (non-unital) C*-algebras extends uniquely
to a unital morphism φ„ : A„ Ñ B„ by φ„pa, λq “ pφpaq, λq.

If φ : AÑ B is a morphism, then σpφpaqq Ď σpaq Y t0u for all a P A. If A and B are
unital and φp1q “ 1 then σpφpaqq Ď σpaq for all a P A.

An element a P A is said to be normal if a˚a “ aa˚, selfadjoint if a “ a˚ and unitary if (A
is unital and) u˚u “ 1 “ uu˚.

Proposition 3.4
(i) a “ a˚ ùñ σpaq Ď R
(ii) a “ b˚b ùñ σpaq Ď R`
(iii) u˚u “ 1 “ uu˚ ùñ σpuq Ď T.

Proof of (iii). We have ρpuq ď }u} “ 1 so σpuq Ď D. It remains to show that if λ P σpuq
then |λ| ě 1. Now λ ‰ 0 since u is invertible; and if |λ| ă 1, then since σpu´1q Ď D (because
ρpu´1q ď }u´1} “ 1) the element x “ pλ´1 ´ u´1q is invertible. But then pλ ´ uqu´1 “

λpu´1 ´ λ´1q is invertible and hence so is λ´ u, contradiction. Hence |λ| ě 1.

Proof of (i). Let uptq “ exppitaq pt P Rq (defined by the power series which converges
absolutely). Note that uptq˚ “ expp´itaq because a “ a˚. As in the case a P R, one

6In fact, if y P GLpAq, the ball tx P A : }x´ y} ă 1
}y´1}

u is in GLpAq.
7 Consider for instance any a ‰ 0 with a2 “ 0.
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shows that the function t Ñ uptq is norm-differentiable and u1ptq “ auptq “ uptqa. It
follows that if fptq “ uptqup´tq then f 1ptq “ 0 for all t P R so fptq “ fp0q “ 1 hence
uptquptq˚ “ uptq˚uptq “ 1. Thus by (iii) we have σpexp itaq Ď T.

Let λ P σpaq. Then 8

exppiaq ´ exppiλq1 “ eiλpexp ipa´ λq ´ 1q “ eiλ
8
ÿ

n“1

in

n!
pa´ λqn

“ eiλpa´ λqb

where b P A commutes with a´ λ. Thus exppiaq ´ exppiλq1 cannot be invertible. Therefore
eiλ P σpexppiaqq Ď T and so λ P R.

Second proof of (i). Let a “ a˚. Suppose that λ ` iµ P σpaq for some λ, µ P R; we show
that µ “ 0. If µ ‰ 0, then the element a´pλ` iµq1 “ µpa´λ1

µ
´ i1q would not be invertible.

But then i P σpbq where b “ a´λ1
µ

is selfadjoint. Let n P N. Then n` 1 P σpn1´ ibq because

pn1´ ibq ´ pn` 1q1 “ ´ipb´ i1q is not invertible. Therefore |n` 1| ď }n1´ ib} and hence

pn` 1q2 ď }n1´ ib}2
pC˚q
“ }pn1´ ibq˚pn1´ ibq}

pb“b˚q
“

›

›n21` b2
›

› ď n2
`
›

›b2
›

› .

Thus 2n` 1 ď }b2} for all n, a contradiction.
The proof of (ii) is non-trivial: see Theorem 4.7.

Lemma 3.5 If aa˚ “ a˚a then ρpaq “ supt|λ| : λ P σpaqu “ }a}.

Proof. Since a˚a “ aa˚, we have

}a}4 “ }a˚a}2 “ }pa˚aq˚pa˚aq} “
›

›pa2
q
˚a2

›

› “ }a2
}

2

hence }a}2 “ }a2} and inductively }a}2
n
“ }a2n} for all n. Thus, by the Gelfand - Beurling

formula (1), ρpaq “ lim
›

›a2n
›

›

2´n
“ }a}. l

A fundamental consequence of the C˚-property combined with completeness is the following:

Proposition 3.6 The norm of a C*-algebra is determined by its algebraic structure. Thus
if A is a *-algebra, there is at most one norm }¨} on A such that pA, }¨}q is a C*-algebra.

Proof. }a}2 “ }a˚a} “ ρpa˚aq.

Corollary 3.7 Every morphism ρ : AÑ B between C*-algebras is automatically contractive.

Using Gelfand Theory (see the next section) one can show that an injective morphism is
in fact an isometry.

8 One can show that e´iλ exppiaq “ exp ipa´ λq because a and λ1 commute.
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Dependence of the spectrum on the algebra. If A is a unital C*-algebra and B is a
closed subalgebra of A containing the identity of A, then every b P B satisfies σApbq Ď σBpbq.
Indeed if λ R σBpbq then λ1 ´ b has an inverse in B hence also in A. But equality need not
hold:

For example suppose A “ CpTq, the continuous functions on the unit circle. Let B be the
subalgebra consisting of all f P A having a continuous extension to D which is holomorphic
in D. 9 Let b P B be the function bpzq “ z. The function b´1 given by b´1pzq “ 1

z
is

continuous on T, but is not in B.
It is remarkable that if B is a C*-subalgebra this cannot happen:

Proposition 3.8 (Permanence of spectrum) If A is a unital C*-algebra and B is a C*-
subalgebra of A containing the identity of A (i.e. 1A P B Ď A), then every b P B satisfies

σApbq “ σBpbq.

Proof. It is enough to show that if b P B has an inverse in A, then this inverse is contained
in B.

Suppose first that b “ b˚. Since σBpbq Ď R, for each n P N we have i
n
R σBpbq. Thus

the elements xn “ b´ i
n
1 are invertible in B: each x´1

n belongs to B. But since xn Ñ b and
inversion is continuous on the space GLpAq, x´1

n Ñ b´1. Since x´1
n P B and B is closed, it

follows that b´1 P B as required.
For the general case, if b P B is invertible in A, so is b˚ (verify) and hence so is x “ b˚b.

But x is selfadjoint, so by the previous paragraph x P GLpBq: if y “ x´1, then y P GLpBq.
We have yb˚b “ yx “ 1 and so

b´1
“ pyb˚bqb´1

“ pyb˚qpbb´1
q “ yb˚

hence b´1 P B, which completes the proof.

3.2 Gelfand theory for commutative C*-algebras

Theorem 3.9 [Gelfand-Naimark 1] Every commutative C*-algebra A is isometrically *-
isomorphic to C0pÂq where Â is the set of nonzero morphisms φ : A Ñ C which, equipped
with the topology of pointwise convergence, is a locally compact Hausdorff space. For each
a P A the function â : ÂÑ C : φÑ φpaq is in C0pÂq. The Gelfand transform:

AÑ C0pÂq : aÑ â

is an isometric *-isomorphism. The algebra A is unital if and only if Â is compact.

In more detail: Â is the set of all nonzero multiplicative linear forms (characters) φ :
A Ñ C. Each φ P Â necessarily satisfies }φ} ď 1 and, when A is unital, }φ} “ φp1q “ 1.
The topology on Â is 10 pointwise convergence: φi Ñ φ iff φipaq Ñ φpaq for all a P A.

9This is isomorphic to the disc algebra.
10In fact, since Â is contained in the unit ball of the (Banach space) dual A˚ of A, this topology is just

the restriction of the w*-topology of A˚ to Â.
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When A is non-abelian there may be no characters (consider M2pCq or BpHq, for exam-
ple).

When A is abelian there are ‘many’ characters: for each a P A there exists φ P Â such
that }a} “ |φpaq|.

When A is also unital, Â is compact and A is isometrically *-isomorphic to CpÂq.
When A is abelian but non-unital every φ P Â extends uniquely to a character φ„ P xA„

by φ„p1q “ 1, and there is exactly one φ8 P xA„ that vanishes on A. Thus A is *-isomorphic
the algebra of those continuous functions on the ‘one-point compactification’ ÂYtφ8u of Â
which vanish at φ8; this algebra is in fact isomorphic to C0pÂq.

Sketch of proof in the unital case We assume that A is abelian and unital.
(a) The compact space Â. Let φ : A Ñ C be a character. Then kerφ is an ideal, so
φp1q2 “ φp1q ‰ 0 (for if φp1q “ 0 then φpaq “ φpa1q “ 0 for all a, a contradiction), hence
φp1q “ 1. Also for all a P A we have φpaq P σpaq because φpaq1´ a is in kerφ which cannot
contain invertible elements, being a proper ideal. Thus |φpaq| ď ρpaq ď }a}.

In fact the equality
σpaq “ tφpaq : φ P Âu (:)

holds; we prove this in the Appendix.
Note also that each character φ is selfadjoint:

φpa˚q “ φpaq for all a P A.

Indeed, it suffices to prove that if a “ a˚ then φpaq P R; but this is clear since φpaq P σpaq
and σpaq Ď R.

The inequality |φpaq| ď }a} shows that Â is contained in the space ΠaPADa, the Cartesian
product of the compact spaces Da “ tz P C : |z| ď }a}u; and the product topology is just
the topology of pointwise convergence. But in fact Â is closed in this product: if φi Ñ ψ
pointwise, then it is clear that ψ is linear and multiplicative, because each φi is linear and
multiplicative, and ψ ‰ 0 because ψp1q “ limi φip1q “ 1; thus ψ P pA.

(b) The Gelfand map G : aÑ â. For each a P A the function

â : ÂÑ C where âpφq “ φpaq, pφ P Âq

is continuous by the very definition of the topology on Â. This gives a well defined map

G : AÑ CpÂq : aÑ â .

If a, b P A, since each φ P Â is linear, multiplicative and *-preserving, we have

{pa` bqpφq “ φpa` bq “ φpaq ` φpbq “ âpφq ` b̂pφq

ypabqpφq “ φpabq “ φpaqφpbq “ âpφqb̂pφq

ypa˚qpφq “ φpa˚q “ φpaq “ âpφq

10



therefore

Gpa` bq “ Gpaq ` Gpbq, Gpabq “ GpaqGpbq and Gpa˚q “ pGpaqq˚

that is, the map G is a morphism of *-algebras. Hence it is automatically contractive; but
in fact it can be seen directly to be isometric:

}â}
8
“ supt|âpφq| : φ P Âu
“ supt|φpaq| : φ P Âu “ supt|λ| : λ P σpaqu (by :q

“ }a}

by Lemma 3.5, because a is normal since A is abelian.

(c) The Gelfand map is onto CpÂq. Consider the range GpAq: it is a *-subalgebra of
CpÂq, because G is a *-homomorphism. It contains the constants, because Gp1q “ 1 (: the
constant function 1). It separates the points of Â, because if φ, ψ P Â are different, they
must differ at some a P A, so

Gpaqpφq “ φpaq ‰ ψpaq “ Gpaqpψq.

By the Stone – Weierstrass Theorem, GpAq must be dense in CpÂq. But it is closed, since
A is complete and G is isometric. Hence GpAq “ CpÂq. l

Appendix: A note on characters

Let A be an abelian unital Banach algebra, and let pA be the set of all nonzero morphisms
φ : AÑ C.

In section 3.2, we saw that

tφpaq : φ P pAu Ď σpaq.

We wish to show that equality in fact holds.
So fix a λ0 P σpaq and let J0 “ txpa ´ λ01q : x P Au. One easily sees that J0 is an ideal of

A, and it is proper since a ´ λ01 is not invertible. It is enough to find φ P pA such that the
ideal kerφ contains J0.

We will show that J0 is contained in a maximal proper ideal of A.

Remark 3.10 If J is a proper ideal of A, then }1´ x} ě 1 for all x P J . In particular,
the closure of a proper ideal is a proper ideal.

Indeed, if }1´ x} ă 1 then, as we know, x P GLpAq, so x cannot belong to a proper ideal.
l
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Remark 3.11 J0 is contained in a maximal proper idealM of A, which is therefore closed.

Proof. Let F be the family of all ideals J of A which contain J0 but do not contain 1; order
F by inclusion. If G Ď F is a totally ordered subset of F , let JG be the union of all elements
of G. Of course JG contains J0 and does not contain 1; it is easy to verify that JG is an
ideal, hence it is an upper bound for G.

Zorn’s lemma shows that there exists M P F which is maximal in the partially ordered
set pF,Ďq. ThusM is an ideal containing J0 and it is proper because 1 RM. In fact it is a
maximal proper ideal; for if N is a proper ideal of A containingM, then it contains J0 and,
since it is proper, cannot contain 1; thus N P F , hence N “M because M is a maximal
member of F .

In particular M is closed, because its closure M is an ideal and does not contain 1 by
Remark 3.10, hence M “M by maximality. l

Note the essential use of 1 in the above argument: in fact the conclusion may fail in
non-unital algebras: If for example A “ c0, the Banach algebra of null sequences, then it
can be shown that the ideal J “ c00 (the set of sequences of finite support) is contained in
no maximal ideal.

Now let B “ A{M. It is well known that (since M is a closed subspace) B is a Banach
space with respect to the quotient norm

}a`M} “ inft}a` x} : x PMu “ distpa,Mq.

Remark 3.12 A{M is a Banach algebra.

Proof. Of course A{M is an algebra. We have to prove that

}ab`M} ď }a`M} }b`M} , a, b P A.

If x, y PM then

}a` x} }b` y} ě }pa` xqpb` yq} “ }ab` xb` ay ` xy} .

But xb` ay ` xy PM, so }ab` xb` ay ` xy} ě }ab`M}. Thus

}a` x} }b` y} ě }ab`M}

and the required inequality follows by taking the inf over x and y in M. l

Remark 3.13 B “ A{M is a division algebra with identity 1`M: that is, if a`M is not
the zero element 0`M of B, then a`M is invertible.

12



Proof. We need to find b P A so that pa`Mqpb`Mq “ 1`M, equivalently ab`M “ 1`M,
i.e. ab´ 1 PM. Set

J “ aA`M “ tab` x : b P A, x PMu.
This is easily seen to be an ideal of A and it clearly contains M. But it also contains a
which is not in M; hence, by maximality of M, we must have J “ A. Thus there exists
b P A and x PM so that ab` x “ 1, in other words ab´ 1 “ ´x PM. l

Remark 3.14 If B is a division Banach algebra, there is an isomorphism aÑ λpaq : B Ñ C.

Proof. The spectrum σpaq of each a P B is nonempty. Thus there exists λpaq P C such that
a ´ λpaq1 is not invertible. By the last remark, a ´ λpaq1 “ 0, i.e. a “ λpaq1. Now if
µ P σpaq then a´ µ1 is not invertible, hence a “ µ1 and so µ “ λpaq.

Thus σpaq “ tλpaqu is a singleton. Therefore we have a well defined map

aÑ λpaq : B Ñ C.

It is easy to verify that this is an injective algebra morphism: for example, a “ λpaq1 and
b “ λpbq1 gives ab “ λpaqλpbq1, but then λpaqλpbq P σpabq “ tλpabqu and so λpaqλpbq “
λpabq. l

Conclusion of the proof To show that tφpaq : φ P pAu “ σpaq, we need a character φ of A
such that φpaq “ λ0. Consider a maximal idealM of A containing J0 and define φ : AÑ C
as follows:

φ : A Ñ B Ñ C
x Ñ x`M Ñ λpx`Mq

where λ : B Ñ C is the isomorphism of the last Remark. This is a composition of morphisms,
hence a morphism. Its kernel is precisely M, so φ ‰ 0 and, since a ´ λ01 P J0 Ď M, we
have φpa´ λ01q “ 0 i.e. φpaq “ λ0. l

3.3 Functional calculus and spectral theorem

3.3.1 The Continuous Functional Calculus for selfadjoint operators

Let A be a selfadjoint 11 element of the unital C*-algebra BpHq.
For any (complex) polynomial ppλq “

n
ř

k“0

ckλ
k we have a (normal) element ppAq “

n
ř

k“0

ckA
k

of BpHq. We wish to extend the map

Φ0 : pÑ ppAq

to a map f Ñ fpAq defined on all continuous functions f : σpAq Ñ C. Since the polynomials
are dense in CpσpAqq, it is enough to prove that Φ0 is continuous in the norm of CpσpAqq.

11 The functional calculus can be defined for normal operators as well. We restrict to the selfadjoint case
for simplicity.
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Theorem 3.15 If A P BpHq is selfadjoint and p is a polynomial,

}ppAq} “ supt|ppλq| : λ P σpAqu ” }p}σpAq.

In particular Φ0ppq only depends on the values of p on σpAq; thus Φ0 is well defined on the
subspace of CpσpAqq consisting of polynomial functions.

The proof of Theorem 3.15 is an immediate consequence of the fact that the spectral
radius of a normal element (ppAq is normal) equals its norm, together with the following
entirely algebraic fact:

Lemma 3.16 (Spectral mapping lemma) If A P BpHq is selfadjoint and p is a polyno-
mial,

σpppAqq “ tppλq : λ P σpAqu.

Definition 6 Let A “ A˚ P BpHq. The continuous functional calculus for A is the
unique continuous extension

Φc : pCpσpAqq, }.}σpAqq Ñ pBpHq, }.}q : f Ñ fpAq

of the map Φo : p Ñ ppAq. Thus if f is continuous on σpAq, the operator fpAq P BpHq is
defined by the limit

fpAq “ lim pnpAq

where ppnq is any sequence of polynomials such that }pn ´ f}σpAq Ñ 0.

It is easily verified that Φc is an isometric *-homomorphism, which is uniquely determined
by the conditions Φcp1q “ I and Φcpidq “ A (where idpλq “ λ is the identity function on
σpAq).

3.3.2 Connection with Gelfand Theory

Keeping the notations of the last section, letA Ď BpHq be the C*-algebra generated by A and
the identity. It is a unital, abelian C*-algebra, the norm closure of tppAq : p a polynomialu.
But this closure is precisely the set

tfpAq : f P CpσpAqqu.

We determine pA:
Given any λ P σpAq, the map φλ : AÑ C given by

φλpfpAqq “ fpλq

is obviously a nonzero multiplicative linear functional.
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Conversely, let φ P pA. Then the number λ “ φpAq is in σApAq “ σpAq (Proposition 3.8).

For any polynomial pptq “
n
ř

k“0

ckt
k, we have, since φ is linear and multiplicative,

φpppAqq “
n
ÿ

k“0

ckφpAq
k
“ ppλq “ φλpppAqq.

But φ and φλ are continuous on A and the set tppAq : p a polynomialu is dense in A;
therefore φ “ φλ.

Thus we have a bijection
λÑ φλ : σpAq Ñ pA.

In fact this bijection is continuous and hence, since σpAq is compact, a homeomorphism.
For this we have to show that if λn Ñ λ then φλnpBq Ñ φλpBq for all B P A. Indeed, each
B P A is of the form B “ fpAq for some f P CpσpAqq; and the definition of φλ gives

φλnpBq “ φλnpfpAqq “ fpλnq Ñ fpλq “ φλpfpAqq “ φλpBq

since f is a continuous function. We summarize

Theorem 3.17 If A is a selfadjoint operator and A “ tfpAq : f P CpσpAqqu is the unital
C*-algebra generated by A, then the map

λÑ φλ : σpAq Ñ pA,

where φλpfpAqq “ fpλq, is a homeomorphism. If pA is identified with σpAq via this homeo-
morphism, then the functional calculus

f Ñ fpAq : CpσpAqq Ñ A

is the inverse of the Gelfand transform.

To prove the last sentence, take any B “ fpAq P A and, for any φ “ φλ P pA, consider

B̂pφλq “ φλpBq “ φλpfpAqq “ fpλq.

So, if we identify each λ with φλ, then B̂ is identified with f .

3.3.3 The Spectral Theorem

If A P BpHq is selfadjoint and K “ σpAq, the continuous functional calculus Φc : CpKq Ñ
BpHq is a representation of the (abelian) C*-algebra CpKq on H.

We will construct a ‘measure’ Ep¨q whose values are not numbers, but projections on H,
satisfying

Φcpfq “

ż

K

fpλqdEλ
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for each f P CpKq and in particular

A “ Φcpidq “

ż

K

λdEλ.

In fact, this construction works for any (automatically contractive) *-representation
π : CpKq Ñ BpHq:

Sketch of the construction Fix x, y P H and consider the map

CpKq ÝÑ C : f ÝÑ xπpfqx, yy.

This is a linear functional, bounded by }x}.}y}, because

|xπpfqx, yy| ď }πpfq}.}x}.}y} ď }f}8.}x}.}y} .

By the Riesz representation theorem, there is a unique complex regular Borel measure µx,y
on K so that

ż

K

fdµx,y “ xπpfqx, yy for each f P CpKq (2)

satisfying 12

}µx,y} ď }x}.}y}.

Now fix a Borel set Ω Ď K and consider the map

H ˆH ÝÑ C : px, yq ÝÑ µx,ypΩq.

One shows that this is sesquilinear and bounded by 1, that is

|µx,ypΩq| ď }µx,y} ď }x}.}y}.

Therefore there is a unique bounded operator EpΩq P BpHq satisfying

xEpΩqx, yy “ µx,ypΩq for all x, y P BpHq
and }EpΩq} ď 1 for all Borel Ω Ď K.

One shows that Ep¨q is a ‘spectral measure’, that is:

1. EpΩq˚ “ EpΩq

2. EpΩ1 X Ω2q “ EpΩ1q.EpΩ2q

3. EpHq “ 0 and EpKq “ I

12 }µx,y} is the total variation of the measure µx,y; it equals the norm of the corresponding functional on
CpKq.
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4. for x, y P H, the map µxy : Ω Ñ xEpΩqx, yy is a σ-additive complex-valued set function
on the Borel σ-algebra of K.

We now define integration with respect to the ‘measure’ Ep¨q: If

f “
ÿ

i

λiχΩi

is a simple Borel function (with λi P C and Ωi Ď K pairwise disjoint Borel sets such that
YΩi “ K), define

ż

K

fpλqdEλ “
ÿ

i

λiEpΩiq P BpHq.

Observe that
Bˆ

ż

K

fpλqdEλ

˙

x, y

F

“

ż

K

fdµx,y

for all x, y P H.
One shows that the mapping f Ñ

ş

fdE is linear, and also a *-homomorphism, that is

ż

f̄dE “

ˆ
ż

fdE

˙˚

and

ż

fgdE “

ˆ
ż

fdE

˙ˆ
ż

gdE

˙

for all simple Borel functions f, g.
One shows that

›

›

›

›

ż

fdE

›

›

›

›

ď supt|fpλq| : λ P Ku.

Hence the map f Ñ
ş

fdE extends uniquely to a contractive linear mapping L8pKq Ñ BpHq,
where L8pKq is the C*-algebra of all bounded Borel functions on K. This extension is also
a *-homomorphism. Finally, if f : K Ñ C is continuous, then

Bˆ
ż

K

fpλqdEλ

˙

x, y

F

“

ż

K

fdµx,y

“ xπpfqx, yy for all x, y P H,

and so

ż

K

fpλqdEλ “ πpfq.

This concludes the (sketch of the) construction of the spectral measure corresponding to the
representation π. Notice that Ep¨q is ‘regular’ in the sense that µx,x is (by construction) a
regular Borel (positive) measure for each x P H. Uniqueness of Ep¨q follows by the uniqueness
part of the Riesz representation theorem.

We summarize:

Theorem 3.18 Every representation π of CpKq on a Hilbert space H determines a unique
regular Borel spectral measure Ep¨q on K so that

ż

K

fdE “ πpfq pf P CpKqq.
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Applying this to the representation given by the continuous functional calculus
Φc : CpσpAqq Ñ BpHq, we obtain

Theorem 3.19 If A P BpHq is a selfadjoint operator, there exists a unique regular Borel
spectral measure Ep.q on σpAq so that

ż

σpAq

fdE “ fpAq pf P CpKqq and in particular A “

ż

σpAq

λdEλ.

Notice that in the course of the construction leading to Theorem 3.18 we have defined the
operator-valued integral

ş

fdE for every bounded Borel function. This leads to an extension
of the functional calculus:

Proposition 3.20 (Borel Functional calculus) The map Φc : CpσpAq Ñ BpHq extends
uniquely to a contractive *-representation f Ñ fpAq :“

ş

σpAq
fdE of the C*-algebra L8pσpAqq

of all bounded Borel functions on σpAq. In particular, if Ω Ď σpAq is a Borel set, χΩpAq “
EpΩq.

Remark 3.21 The spectral Theorem and the Borel functional calculus are also valid for a
normal operator A P BpHq. The proof is the same as the selfadjoint case, provided one
extends the continuous functional calculus to normal operators.

4 Positivity

Definition 7 An element a P A is positive (written a ě 0) if a “ a˚ and σpaq Ď R`.
We write A` “ ta P A : a ě 0u.
If a, b are selfadjoint, we define a ď b by b´ a P A`.

Examples 4.1 In CpXq: f ě 0 iff fptq P R` for all t P X because σpfq “ fpXq.
In BpHq: T ě 0 iff xTξ, ξy ě 0 for all ξ P H.

Remark 4.2 Any morphism π : AÑ B between C*-algebras preserves order:

a ě 0 ñ πpaq ě 0.

Proof. If a “ a˚ and σpaq Ď r0,`8q then πpaq˚ “ πpa˚q and

σpπpaqq Ď σpaq Y t0u Ď r0,`8q

so πpaq ě 0.

Remark 4.3 In a unital C*-algebra, if a “ a˚ then ´}a}1 ď a ď }a}1.
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Proof. Observe that }a}1´ a is selfadjoint and

σp}a}1´ aq “ t}a} ´ λ : λ P σpaqu Ď R`
because λ P R and λ ď }a} for λ P σpaq. Hence }a}1´ a ě 0; the other inequality is proved
similarly.

Proposition 4.4 Every positive element of a C*-algebra has a unique positive square root.
In fact

a P A` if and only if there exists b P A` such that a “ b2.

Proof. If a “ b2 where b P A`, then a “ a˚ and σpaq “ tλ2 : λ P σpbqu by the Spectral
mapping Lemma 3.16; thus σpaq Ď R` since b ě 0 and therefore a ě 0.

Conversely, suppose a ě 0 and consider the C*-subalgebra C “ C˚paq of A generated
by a; it is *-isomorphic to the algebra CopXq for some space X via the Gelfand transform
x Ñ x̂. Note that a P C` since σCpaq “ σApaq. The Gelfand transform and its inverse
preserve order. Since a ě 0, we have â ě 0. Look at the function

?
â P CopXq. This is the

image of some b P A, which must be positive because
?
â ě 0; also pb̂q2 “ â, so b2 “ a.

Uniqueness: Let b P A` be as in the last paragraph and suppose there exists c P A`
which also satisfies c2 “ a. Observe that ac “ ca. Since b is in C˚paq, it is a limit of
polynomials in a, so it follows that bc “ cb. Now consider the C*-algebra C˚pb, cq: it is
abelian and contains a, so we may view b, c, a as continuous functions on the same space and
then it is clear that b “ c.

Proposition 4.5 For any C*-algebra the set A` is a cone:

a, b P A`, λ ě 0 ùñ λa P A`, a` b P A`.

Proof. The first assertion is immediate from the definition of positivity. Hence, for the
second one, passing to the unitisation if necessary, it is enough to assume that 0 ď a ď 1
and 0 ď b ď 1 and prove that a`b

2
ě 0.

But we have the following characterization:

Lemma 4.6 In a unital C*-algebra, if x “ x˚ and }x} ď 1, then

x ě 0 ðñ }1´ x} ď 1.

Thus if a and b are positive contractions then a`b
2

is a selfadjoint contraction and
›

›1´ a`b
2

›

› “ 1
2
}p1´ aq ` p1´ bq} ď 1

2
p}1´ a} ` }1´ b}q ď 1 so that a`b

2
ě 0, completing

the proof of the Proposition.

Proof of the Lemma. Considering the C*-algebra generated by x and 1, there is no loss in
assuming that x is a continuous function on a compact set. Then the Lemma is just an
application of the triangle inequality: The assumption is that ´1 ď xptq ď 1 for all t and
we need to conclude that

xptq ě 0 ðñ |1´ xptq| ď 1.

But this is obvious!

We now have the machinery to complete the proof of Proposition 3.4:
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Theorem 4.7 In any C*-algebra, any element of the form a˚a is positive.

Proof. Of course a˚a is selfadjoint. 13 So it can be written

a˚a “ b´ c where b, c ě 0, bc “ 0

(to see this, consider a˚a as a function and let b and c be its positive and negative parts).
We will show that c “ 0.

Let x “ ca˚. Observe that

xx˚ “ ca˚ac “ cpb´ cqc “ ´c3

and so, since c ě 0,
´xx˚ P A`.

On the other hand, if we write x “ u` iv with u, v selfadjoint, we find

xx˚ ` x˚x “ 2u2
` 2v2

P A`

since A` is a cone. Again using the fact that A` is a cone, we conclude that

x˚x “ ´xx˚ ` pxx˚ ` x˚xq P A`.

Thus we have
σpx˚xq Ď R` and σpxx˚q Ď R´.

But in any unital algebra we have σpkhq Ď σphkq Y t0u. 14

It follows that σpxx˚q “ t0u. Thus }xx˚} “ 0 (xx˚ is selfadjoint) showing that ´c3 “

xx˚ “ 0 and so c “ 0. l

5 The Gelfand - Naimark Theorem

5.1 The GNS construction

Definition 8 A state on a C*-algebra A is a positive linear map φ : A Ñ C of norm 1,
i.e. such that φpa˚aq ě 0 for all a P A and }φ} “ 1. A state is called faithful if φpa˚aq ą 0
whenever a ‰ 0.

Note. When A is unital and φ is positive, }φ} “ φp1q.

13If a were normal, we could consider it as a function â on a locally compact space, and then we could
conclude that a˚a corresponds to the function â˚â “ |â|2 which is nonnegative; the difficulty is that a need
not lie in an abelian C*-algebra.

14Indeed if λ R σphkq is nonzero then the element y “ λ´11` λ´1kpλ1´ hkq´1h satisfies
ypλ1´ khq “ pλ1´ khqy “ 1 and so λ R σpkhq.
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Examples 5.1 On BpHq,
‚ the map φpT q “ xTξ, ξy (where ξ P H is a unit vector)
‚ the map ψpT q “

ř

i xTξi, ξiy where
ř

}ξi}
2
“ 1 (called a ‘density matrix’ in physics).

On CpKq,
‚ the map φpfq “ fptq for t P K
‚ the map ψpfq “

ş

fdµ for a probability measure µ.
For a C*-algebra A, if π : A Ñ BpHq is a representation and ξ P H a unit vector, the map
φpaq “ xπpaqξ, ξy.

In fact, every state on a C*-algebra arises as in the last example.

Theorem 5.2 (Gelfand, Naimark, Segal) For every state φ on a C*-algebra A there is
a triple pπφ,Hφ, ξφq where πφ is a representation of A on a Hilbert space Hφ and ξφ P Hφ a
cyclic 15 unit vector such that

φpaq “ xπφpaqξφ, ξφy for all a P A.

The GNS triple pπφ,Hφ, ξφq is uniquely determined by this relation up to unitary equivalence.

Motivation: the abelian case Consider a state φ on A “ CpKq. By the Riesz represen-
tation theorem, there is a unique positive Borel measure µ on K so that

φpfq “

ż

K

fdµ for all f P CpKq.

Define the seminorm

~f~ “

ˆ
ż

K

|f |2dµ

˙1{2

“ φp|f |2q1{2, f P CpKq.

The set Nφ “ tf P CpKq :
ş

|f |2dµ “ 0u is a subspace of CpKq (it consists of all f P CpKq
that vanish µ-a.e.) and the seminorm ~ ¨ ~ induces a norm, }¨}2 on H0 :“ CpKq{Nφ. The
completion is of course just the Hilbert space L2pK,µq.

We may represent the C*-algebra A on this Hilbert space by observing that for each
f P A the map CpKq Ñ CpKq : g Ñ fg preserves Nφ (it is a (left) ideal of A) and hence
induces a map

π0pfq : H0 Ñ H0 : rgs Ñ rfgs

(here rgs denotes the coset g `Nφ). But this map is bounded in the norm }¨}2:

}π0pfqrgs}
2
2 “ }rfgs}

2
2 “

ż

|fg|2dµ ď sup |f |2
ż

|g|2dµ “ }f}2
8
}rgs}22

15 i.e. such that πφpAqξφ is dense in Hφ.
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and hence extends to a bounded operator πpfq on L2pK,µq (: the operator of multiplication
by f). It is now easy to check that π : A Ñ BpL2pK,µqq is a representation. Note finally
that the vector ξφ :“ r1s is cyclic for π (indeed πpAqξφ “ trf1s : f P Au “ H0) and satisfies

xπpfqξf , ξfy “

ż

pf1q1dµ “

ż

fdµ “ φpfq

for all f P A.

Proof of the Theorem (sketch). Assume for simplicity that A is unital. Define the sesquilin-
ear form

xa, byφ “ φpb˚aq, a, b P A.
The set

Nφ “ ta P A : φpa˚aq “ 0u

is a left ideal of A. This follows from the Cauchy-Schwarz inequality

|φpb˚aq|2 ď φpa˚aqφpb˚bq, a, b P A.

In particular
(a) Nφ is a linear subspace of A and the quotient H0 “ A{Nφ acquires the scalar product

xras, rbsy “ φpb˚aq, a, b P A.

(b) For each a P A the map bÑ ab leaves Nφ invariant, so it induces a linear map

π0paq : H0 Ñ H0 : rbs Ñ rabs.

Now observe that the map π0paq is bounded on pH0, }¨}q (where }rbs}2 “ xrbs, rbsy “ φpb˚bq).
Indeed, if rbs, rcs are in H0,

| xπ0paqrbs, rcsy |
2
“ | xrabs, rcsy |2 “ |φpc˚abq|2

ď φpc˚cqφppabq˚abq “ φpc˚cqφpb˚a˚abq

“ φpc˚cqφbpa
˚aq where φbpxq “ φpb˚xbq

ď φpc˚cq }φb} }a
˚a} “ φpc˚cqφbp1q }a}

2

“ φpc˚cqφpb˚bq }a}2 “ }rcs}2 }rbs}2 }a}2

(where we have used the fact that φb is a positive linear form and its norm is φbp1q).
So π0paq extends to a bounded operator πpaq on the completion Hφ of H0. It is easy to

see that the map
π : AÑ BpHφq : aÑ πpaq

is a *-representation (it suffices to verify that π0 is a *-homomorphism). Finally, setting
ξφ “ r1s P Hφ (a unit vector), we have πpAqξφ “ tπpaqr1s : a P Au “ tras : a P Au “ H0,
which is dense in Hφ and

xπpaqξφ, ξφy “ xras, r1sy “ φp1˚aq “ φpaq. l
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5.2 The universal representation

Theorem 5.3 (Gelfand, Naimark) For every C*-algebra A there exists a representation
pπ,Hq which is one to one (called faithful).

The idea of the proof: We may adjoin an identity, if necessary; so we may assume A unital.
Let SpAq be the set of all states. For each φ P SpAq consider the triple pπφ,Hφ, ξφq; ‘adding
up’ all these representations, we obtain a representation pπ,Hq.

More precisely:
The space H consists of all families pxφqφPSpAq of vectors xφ P Hφ such that

ř

φ }xφ}
2
Hφ
ă

8. 16 Given a family pAφqφPSpAq of operators where Aφ P BpHφq such that supφ }Aφ} ă 8, the
map A “: ‘Aφ given by Appxφqq “ pAφxφq is a well defined bounded operator onH. Thus for
each a P A, since supφ }πφpaq} ď }a}, we may define the operator πpaq :“

ř

φ πφpaq P BpHq;
one can readily verify that the map AÑ BpHq : aÑ πpaq is a *-representation of A.

It remains to prove that it is faithful. This follows from the fact (see the following lemma)
that for each nonzero a P A there exists ψ P SpAq such that ψpa˚aq ą 0. Denoting by xψ P H
the family pxφqφ with xψ “ ξψ and xφ “ 0 for all φ ‰ ψ we have

}πpaqxφ}
2
H “ }πψpaqξψ}

2
“ xπψpa

˚aqξψ, ξψy “ ψapa
˚aq ą 0

which proves that πpaq ‰ 0, as required.
It remains to prove the following

Lemma 5.4 For each nonzero a P A there exists ψ P SpAq such that ψpa˚aq ą 0.

Proof. Consider the real Banach space Ah of all selfadjoint elements of A. The set A` is
a closed convex cone in Ah and the element b :“ ´a˚a P Ah is not in A`. By the Hahn -
Banach separation theorem, there is a (real-linear) functional ω : Ah Ñ R and a c P R such
that ωpbq ă c and ωpxq ě c for all x P A`. Note that c ď 0 because 0 “ ωp0q ě c since
0 P A`.

We claim that ωpA`q Ď R`. Indeed, if ωpyq ă 0 for some y P A` then ωpnyq “ nωpyq ă c
for large enough n P N, contradicting the fact that ωpxq ě c for all x P A`.

We extend ω to a complex linear map ωc : AÑ C by setting

ωcpx` iyq “ ωpxq ` iωpyq, x, y P Ah.

Then ωc|Ah “ ω, hence ωc is positive and so ψ :“ ωc
}ωc}

is a state; finally }ωc}ψpbq “ ωpbq ă c

and so ψpa˚aq “ ´ψpbq ą 0 since c ď 0. l

16 that is, such that sup
F

ÿ

φPF
}xφ}

2
Hφ
ă 8, where the supremum ranges over all finite subsets F of SpAq
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6 Bimodules over masas

6.1 Von Neumann algebras

Apart from the norm, BpHq is equipped with other natural topologies.
We will concentrate on the weak* topology that BpHq has as a dual Banach space:
For ξ, η P H, we denote by ωξ,η the linear form on BpHq given by

ωξ,ηpT q “ xTξ, ηy , T P BpHq.

This is clearly bounded (by }ξ} }η}). We denote by BpHq
„

the linear space spanned by these
linear forms, and by BpHq̊ its closure in the dual Banach space of BpHq.

Each T P BpHq defines a bounded linear form φT on BpHq
„

by evaluation: φT pωq “ ωpT q,
and in particular, φT pωξ,ηq “ xTξ, ηy. Conversely, each bounded linear form φ on BpHq

„

defines an operator Tφ P BpHq such that xTφξ, ηy “ φpωξ,ηq for all ξ, η P H. 17

Proposition 6.1 The map T Ñ φT is an isometric isomorphism from BpHq onto the Ba-
nach space dual of BpHq

„
(and hence of its closure BpHq̊ ) with inverse φÑ Tφ.

Thus BpHq acquires a weak* topology, as the dual of the Banach space BpHq̊ : a net Ti
converges to 0 in this topology if and only if ωpTiq Ñ 0 for all ω P BpHq̊ . For norm bounded
nets (in particular, for sequences), this is equivalent to the requirement that xTiξ, ηy Ñ 0 for
all ξ, η P H.

A von Neumann algebraM is a selfadjoint unital subalgebra of BpHq which is closed
in the weak* topology.

Theorem 6.2 (von Neumann’s bicommutant theorem) If A Ď BpHq is a selfadjoint
unital algebra and T P BpHq, the following are equivalent:

(a) T P A2.
(b) For each ξ P H, the operator T is in the closed linear span of tAx : A P Au.
(c) T is in the weak*-closure of A.

For later use, note that the equivalence of (b) and (c) says that a selfadjoint unital algebra
is weak*-closed if and only if it is equal to the annihilator of a set of vector (or rank one)
functionals, i.e. functionals of the form ωξ,η.

Of course every von Neumann algebra is a C*-algebra but not conversely. For example
the algebra of compact operators on an infinite dimensional Hilbert space is a C*-algebra,
but is not weak*-closed in BpHq, hence it is not a von Neumann algebra.

Similarly, the set of all multiplication operators tMf : f P Cpr0, 1squ is a C*-algebra C of
operators on L2pr0, 1sq, but is not weak*-closed. It is not hard to see that the bicommutant
C2 is the set M “ tMf : f P L8pr0, 1squ, and this is a von Neumann algebra. 18

17 because the map pξ, ηq Ñ φpωξ,ηq is a bounded sesquilinear form on HˆH
18 In fact M “ C1.
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Abelian von Neumann algebras It can be shown that any abelian von Neumann al-
gebra M is *-isomorphic (isometrically, of course) to the algebra L8pX,µq for a suitable
measure space pX,µq, where X may be taken locally compact Hausdorff and µ a regular
Borel measure. In fact the *-isomorphism is bicontinuous for the weak* topology onM and
the weak* topology on L8pX,µq as the dual of L1pX,µq. For this reason, the theory of von
Neumann algebras is sometimes described as “non-commutative measure theory”, while the
theory of C*-algebras is thought of as “non-commutative topology”.

A maximal abelian selfadjoint algebra (masa for short) M is an abelian selfadjoint sub-
algebra of some BpHq which is maximal among abelian selfadjoint subalgebras of BpHq. It
is not hard to see that maximality is equivalent to the requirement that M “M1; hence a
masa is automatically a von Neumann algebra.

A masa M is not only *-isomorphic, it is spatially isomorphic (that is, unitarily equiva-
lent) to a multiplication algebra

Mµ :“ tMf : f P L8pX,µqu Ď BpL2
pµqq.

In fact when M acts on a separable space, then it is spatially isomorphic to one of the
following: L8pr0, 1sq (with Lebesgue measure), `8pnq, or L8pr0, 1sq ‘ `8pnq, for some n P N
or n “ ℵ0.

The first case arises whenM has no minimal projections, the second when each projection
in M dominates a minimal projection in M, and the third when there are n minimal
projections whose sum is not the identity operator.

In this last caseM is unitarily equivalent to the von Neumann algebraMµ ‘Dn acting
on L2pr0, 1s, µq ‘ `2pnq (here µ denotes Lebesgue measure and Dn denotes the set of all
bounded operators on `2pnq which are diagonal with respect to the usual orthonormal basis
of `2pnq).

6.2 The support of an operator

In the sequel we shall assume that all Hilbert spaces are separable. In particular the predual
of BpHq, and of every von Neumann algebra, will be separable. The material that follows is
based on [1, 7, 22] and [23].

An operator T P Bp`2q is said to vanish on a rectangle AˆB Ď NˆN if P pBqTP pAq “ 0,
where P pAq is the projection onto the space spanned by the basis elements tej : j P Au.
Notice that these projections belong to the masa D Ď Bp`2q of all diagonal operators. Thus
D codifies the ‘coordinate system’ induced by the usual basis of `2. More generally, every
masaM Ď BpHq can be said to introduce a ‘coordinate system’: After a unitary equivalence,
we may identify H with L2pX,µq and M with the multiplication masa Mµ of L8pX,µq;
the ‘coordinate system’ is indexed by X. In this representation, we say that an operator
T P BpHq vanishes on a Borel rectangle AˆB Ď X ˆX if P pBqTP pAq “ 0, where P pAq is
the projection onto the space of all f P L2pX,µq that vanish almost everywhere on Ac; thus
P pAq is an element of M, namely the multiplication operator corresponding to χA.
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Definition 9 We say that a set of operators T Ď BpHq is supported in a set Ω Ď X ˆX
if P pBqTP pAq “ 0 for all T P T whenever ΩX pAˆBq “ H.

If Ω is a measurable set of positive product measure, then it supports nonzero operators,
for example any Hilbert-Schmidt operator whose kernel vanishes almost everywhere (with
respect to product measure) on Ωc. However even sets of product measure zero can support
nonzero operators: for example the diagonal ∆ “ tpx, xq : x P r0, 1su supports the identity
operator, as well as any multiplication operator Mf with f P L8pr0, 1sq.

A set Ω Ď XˆX is said to be marginally null if it is contained in a union pNˆXqYpXˆ
Mq, where µpNq “ µpMq “ 0. Such a set cannot support a nonzero operator T , because
pN c ˆM cq X Ω “ H whereas P pM cqTP pN cq “ T ‰ 0.

One would like to define ‘the support’ of a set T of operators to be the complement of
the union of the family E all Borel rectangles on which T vanishes. However this union is
in general non-measurable. The way around this difficulty is the following: there exists a
countable set tEnu Ď E whose union E (a measurable set) ‘almost contains’ every Borel
rectangle A ˆ B P E , in the sense that pA ˆ BqzE is marginally null. Thus Ec ‘almost
contains’ every subset of X ˆX supporting T .

Definition 10 The complement Ec of the union of the rectangles in tEnu is defined to be
the support of T and is denoted supp T .

Let us call two subsets E,F of X ˆ X marginally equivalent (written E » F ) if their
symmetric difference is marginally null; let us call a subset E of X ˆ X ω-open if it is
marginally equivalent to a countable union of Borel rectangles; the complements of ω-open
sets are of course called ω-closed sets. Thus supp T is ω-closed; it is uniquely determined
(up to marginal equivalence) and is the smallest ω-closed set supporting T .

6.3 Masa bimodules, reflexivity and operator synthesis

Fix any set Ω Ď X ˆ Y . The set of all operators which are supported in Ω is denoted
MmaxpΩq.

This is easily seen to be a weak-* closed linear space. Also, it is a bimodule over the masa
M: indeed if T is supported in Ω, then so is MfTMg, for every Mf ,Mg in the masa M.

It is not hard to see that MmaxpΩq is reflexive in the sense of Loginov-Shulman [17]; that
is, MmaxpΩq is equal to the annihilator of a set of rank one functionals. 19 The support of
MmaxpΩq is an ω-closed set, it contains Ω and is, up to marginally null sets, the smallest
ω-closed set containing Ω; it is called the ω-closure of Ω.

It can be shown conversely that if anM-bimodule T is reflexive, then it is necessarily of
the form T “MmaxpΩq, where Ω can be chosen ω-closed; in fact, Ω is the support of T .

Thus there is a bijective correspondence between reflexive M-bimodules and ω-closed
subsets of X ˆX.

19Indeed, MmaxpΩq is the annihilator of the set of all functionals ωP pAqf,P pBqg, where f, g P L2pX,µq are
arbitrary and A,B are Borel subsets of X satisfying pAˆBq X Ω “ H.
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Note that, in case X comes equipped with a topology, the support of a masa bimodule
cannot always be chosen to be topologically closed. For example, there is a reflexive M-
bimodule U Ă BpL2pr0, 1sq (whereM is the masa of L8pr0, 1sq) such that the smallest closed
subset of r0, 1sˆ r0, 1s supporting U is the whole of r0, 1sˆ r0, 1s, although U ‰ BpL2pr0, 1sq.
20

We have seen that for unital and selfadjoint operator algebras, closure in the weak-*
topology automatically implies reflexivity (von Neumann’s bicommutant theorem, 6.2). For
non-selfadjoint algebras this is no longer true: the simplest example is the algebra of all 2ˆ2
complex matrices of the form r a b0 a s; but this algebra is not a masa bimodule. What happens
in the masa bimodule case?

If U Ď BpHq is a weak-* closed subspace which is a bimodule over a discrete masa D
(so that H may be realized as `2 and D as the algebra of all diagonal matrices), then it is
automatically (and trivially) reflexive: its support Ω is the complement of the set of all pairs
pm,nq P NˆN such that um,n “ 0 for every U “ rum,ns in U ; hence, since ωen,empUq “ um,n,
U is the annihilator of all rank one functionals tωen,em : pm,nq P Ωcu; equivalently, every
matrix which vanishes in Ωc must be in U , and so U “MmaxpΩq.

When the masa M is not generated by its minimal projections, the situation is more
complex. Arveson [1] was the first to exhibit a weak-* closed masa bimodule U with support
Ω for which U ‰ MmaxpΩq. He called this phenomenon failure of operator synthesis, as his
example was based on the failure of spectral synthesis in the group algebra L1pR3q.

He proved 21 that any weak-* closed masa bimodule U with support Ω lies between two
extremal weak-* closed masa bimodules: MminpΩq Ď U ĎMmaxpΩq.

The predual approach [22] When the masa M is identified with the multiplication
algebra of L8pX,µq acting on H “ L2pX,µq, every element ω P BpHq

„
is identified with a

function on X ˆX; indeed ω “
n
ř

k“1

ωfk,gk corresponds to the function

Fωps, tq “
n
ÿ

k“1

fkpsqḡkptq, ps, tq P X ˆX.

In fact every element ω P BpHq
˚

admits a representation ω “
ř8

k“1 ωfk,gk with
ř

k }fk} }gk} “
}ω} ă 8 and hence defines the function

Fωps, tq “
8
ÿ

k“1

fkpsqḡkptq, ps, tq P X ˆX

where the series converges marginally almost everywhere on X ˆ X, that is for all ps, tq P
XˆX outside a marginally null set. Two functions define the same element of BpHq

˚
if and

only if they agree marginally almost everywhere.

20One can take U “ tM ` PXP : M PM, X P BpHqu where P “ P pAq and A Ď r0, 1s is chosen so that
both A and Ac intersect every open set in a set of nonzero Lebesgue measure.

21for the separably acting unital algebra case
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The space T pXq of all (marginal equivalence classes of) functions on X ˆX of the above
form, equipped with the norm }¨}t inherited from BpHq

˚
coincides with the projective tensor

product L1pX,µqpbL1pX,µq. Given any ω-closed set Ω Ď X ˆX we consider the subspaces

ΦpΩq “ th P T pXq : h “ 0 marginally a.e. on Ωu

Ψ0pΩq “ th P T pXq : h “ 0 marginally a.e. in an ω-open neighbourhood of Ωu

where an ω-open neighbourhood of Ω is a countable cover of Ω by Borel rectangles. It can
be shown that the annihilator of Ψ0pΩq in BpHq is MmaxpΩq, while the annihilator of ΦpΩq
is the minimal weak-* closed bimodule MminpΩq having support Ω. This leads to the

Definition 11 An ω-closed set Ω is said to satisfy operator synthesis if MminpΩq “MmaxpΩq,
equivalently is every h P T pXq that vanishes (marginally a.e.) on Ω can be approximated (in
the norm }¨}t) by elements of T pXq vanishing in an ω-open neighbourhood of Ω.

The investigation of conditions that imply operator synthesis is an active area of research,
with close connections to harmonic analysis. We refer the reader to the contribution of I.G.
Todorov [27] in these proceedings.
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Neumann). Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics].
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