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The following is a brief and sketchy introduction to the rudiments of the theory of operator
algebras, particularly C*-algebras. The text consists of rough lecture notes given by the
author in the summer school in Operator Theory held in July 2011 at the University of the
Aegean in Chios.

The notion of a C*-algebra is a fascinating common abstraction of the structure of two
seemingly very different objects: on the one hand, the algebra of continuous functions on a
(locally) compact space; and on the other, an algebra of bounded operators on Hilbert space
closed in the norm and under adjoints.

The aim of the first part of these notes (sections one to five) is to describe as briefly and
as simply as possible this process of abstraction, culminating in the two Gelfand—Naimark
theorems (3.9, 5.3). In the final section we give a brief sketch of what one can do when the
‘adjoint’ operation is not available, at least in the case where there exists a ‘parametrization’
in terms of ‘(possibly continuous) coordinates’.

Many proofs are only sketched and many others are omitted altogether.

1  C*-algebras: basics

1.1 B(H)

In these notes, the action takes place via bounded operators on Hilbert space - either directly,
or indirectly through representations by operators of more abstract structures (e.g. C*-
algebras).

The space of all bounded linear operators T : H — H on a Hilbert space H is denoted
B(H). Tt is complete under the norm

|7 = sup{|T=| -z € by (H)}

(here by(X) denotes the closed unit ball of a normed space X) and is an algebra under
composition. Moreover, because it acts on a Hilbert space, it has additional structure: an
involution T — T™ defined via

(T*x,y) =<{x,Tyy forall z,yeH.

This satisfies
|T*T| = ||T)? the C™* property.

These fundamental properties of B(?) (norm-completeness, involution, C* property) moti-
vate the definition of an abstract C*-algebra.

1.2 C*-algebras

Definition 1 (a) A Banach algebra A is a complez algebra equipped with a complete
norm which is sub-multiplicative:

|ab|| < |all ||5] for all a,be A.



(b) A C*-algebra A is a Banach algebra equipped with an involution' a — a* satisfying
the C*-condition
la*al = [a|? for all a e A.

If A has a unit 1 then necessarily 1* = 1 and |1 = 1. If not, adjoin a unit:

Definition 2 If A is a C*-algebra let

A~ =A@ C
with  (a, z)(b,w) =: (ab + wa + zb, zw) (a,2)* =: (a*, 2)
[(a, 2)[ =: sup{flab + zb] : b€ by A}

Thus the norm of A~ is defined by identifying each (a,z) € A~ with the operator L, .y :
A— A:b— ab+ zb acting on the Banach space A.

Definition 3 A morphism ¢ : A — B between C*-algebras is a linear map that preserves
products and the involution.

We will see later that morphisms are automatically contractive (hence continuous), and that
1-1 morphisms are isometric (this is one instance where the algebraic structure ‘forces’ the
topological behaviour).

Basic Examples:
e C, the set of complex numbers.

e ((K), the set of all continuous functions f : K — C, where K is a compact Hausdorff
space. With pointwise operations, f*(t) = f(¢) and the sup norm, C'(K) is an abelian,
unital algebra.

e (y(X), where X is a locally compact Hausdorff space. This consists of all functions
f : X — C which are continuous and ‘vanish at infinity’, meaning that given ¢ > 0
there is a compact Ky, < X such that |f(z)| < ¢ for all x ¢ Ky.. With the same
operations and norm as above, this is an abelian C*-algebra, which is nonunital if and
only if X is non-compact.

We will see later (section 3.2) that all abelian C*-algebras can be represented as Co(X)
for suitable X.

e M,(C), the set of all n x n matrices with complex entries. With matrix operations,
A* = conjugate transpose, and |A| = sup{|Az|, : @ € £*(n),|z|, = 1}, this is a
non-abelian (when n > 1), unital algebra.

that is, a map on A such that (a + \b)* = a* + \b*, (ab)* = b*a*, a** = a for all a,be A and A e C



e B(#H) is a non-abelian, unital C*-algebra; it is infinite dimensional when H is infinite-
dimensional.

We will see later (section 5.2) that all C*-algebras can be represented as closed selfad-
joint subalgebras of B(H) for suitable H.

o K(H) = {A e B(H) : A(bi(H)) compact in H}: the compact operators. This is a
closed selfadjoint subalgebra of B(H), hence a C*-algebra. It is nonabelian and non-
unital when H is infinite-dimensional.

Non-examples:

e A(D) = {f e C(D): f|p holomorphic} : the disc algebra (here D = {z e C : |z| < 1}).

This is a closed subalgebra of the C*-algebra C(D) but not a *-subalgebra, because if
f € A(D) then f is not holomorphic unless it is constant; thus the diagonal A(D) N
A(D)* = C1 s trivial: A(D) is an antisymmetric algebra.

o T, = {(aij) € M,,(C) : a;; = 0 for i > j}: the upper-triangular matrices.

A closed subalgebra of the C*-algebra M,,(C) but not a *-subalgebra. Here the diagonal
T, nT} is D, the diagonal matrices: a mazimal abelian selfadjoint algebra (masa) in
M,.

e M,,(C): infinite matrices with finite support.

To define a norm (and operations), consider its elements as operators acting on (*(N)
with its usual basis. This is a selfadjoint algebra and its norm satisfies the C*-condition,
but it is not complete.

Its completion is K, the set of compact operators on (?: a non-unital, non-abelian
C*-algebra.

2 Examples and constructions

e If X is an index set and A is a C*-algebra, the Banach space ¢*(X,.A) of all bounded
functions a : X — A (with norm |al|, = sup{|la(z)| 4 : € X}) becomes a C*-algebra with
pointwise product and involution.

Its subspace (X, .A) consisting of all a : X — A with ? l}grolo la(z)]| 4 = 0 is a C*-algebra.
The subset cyo(X,.A) consisting of all functions of finite support is a dense *-subalgebra,
which is proper when X is infinite.

e If X is a locally compact Hausdorff space then Cy(X,.A) is the *-subalgebra of £*(X,.A)
consisting of continuous bounded functions. It is closed, hence a C*-algebra. (This is denoted
C(X,.A) when X is compact.)

?i.e. such that for each £ > 0 there is a finite subset X. € X s.t. ¢ X, = |a(z)| 4, <€



e The C*-algebra Cy(X,.A) consists of those f € Cy(X,.A) which ‘vanish at infinity’, i.e.
such that the function ¢t — || f(t)] 4 is in Co(X) (see Basic Examples).

More generally, consider subsets of the Cartesian product [ [.A4; of a family of C*-algebras:

Definition 4 (i) The direct sum A;@®- - -DA,, of C*-algebras is a C*-algebra under pointwise
operations and involution and the norm

[(ar, s an)| = max{fad] ;... [an]}-

(i) Let {A;} be a family of C*-algebras. Their direct product or {*-direct sum @, A;
is the subset of the Cartesian product [ [ A; consisting of all (a;) € [ [ A; such that i — |a;] 4,
is bounded. It is a C*-algebra under pointwise operations and involution and the norm

[(ai) = sup{fai] 4, - €1}

(i4i) The direct sum or co-direct sum B, A; of a family {A;} of C*-algebras is the closed
selfadjoint subalgebra of their direct product consisting of all (a;) € [ [ A; such that i — |a; 4,
vanishes at infinity.

In case A; = A for all 4, the direct product is just ¢*(1,.A) and the direct sum is ¢y(X,.A).

o If Aisa C*-algebra and n € N, the space M,(A) of all matrices [a;;] with entries a;; € A
becomes a *-algebra with product [a;;|[bi;] = [ci;] where ¢;; = 3, aixbr; and involution
lai;]* = [di;] where di; = a;. Tt is of course non-commutative when n > 1.

But how does one define a norm on M, (A) satisfying the C*-condition?

Consider two special cases:
e Suppose A is Cy(X). Then we may identify M, (Co(X)) (as a *-algebra) with Cy(X, M,,),
i.e. M,-valued continuous functions on X vanishing at infinity: each matrix [ f;;] € M,,(Co(X))
defines naturally a function F': X — M, :  — [fi;(z)] which is continuous with respect to
the norm on M,,.?

Thus we may define

ILfi Il = 11, = sup{lILfis ()], : 7 € X}

and it is easy to verify that this satisfies the C*-condition, because the norm on M, satisfies
the C*-condition.
e Suppose A is B(#H) for some Hilbert space H. Then we may identify M, (B(H)) with
B(H"): Given a matrix [a;;] of bounded operators a;; on H, we define an operator A on H"
by
&1 Zj a1;&;
Al : :

é;n Z 5 C.Lnj fj

3 Conversely, of course, if F': X — M, is continuous, then its entries f;; given by fi;(z) = (F(x)e;,e;)
form an n x n matrix of continuous functions.




(this identification preserves the algebraic operations, including the involution).* Hence

one defines the norm |[a;;]|| of [a;;] € M,(B(H)) to be the norm |A| of the corresponding
operator on H".

e In order to define a C*-algebra structure on M, (.A) for a general C*-algebra A, one uses
the Gelfand - Naimark Theorem (see section 5.2).

3 Spectral Theory

3.1 The spectrum

Definition 5 If A is a unital C*-algebra and GL(.A) denotes the group of invertible elements
of A, the spectrum of an element a € A is

o(a)=0c4(a) ={ e C:A\1—a¢ GL(A)}.
If A is non-unital, the spectrum of a € A is defined by
o(a) = oa~(a).
In this case, necessarily 0 € o(a).
Proposition 3.1 The spectrum o(a) is a compact nonempty subset of C.

Sketch of proof. (i) o(a) is bounded: In a unital C*-algebra, if || < 1 then >} _ 2"
converges to an element y such that (1 —z)y = y(1 — ) = 1, hence (1 — x) € GL(A). The
proof is the same ° as the case A = C. Hence if a € A and \ € C satisfies |\| > [a| then
|5l < 1so A ¢ o(a): the spectrum is bounded by |a.

(ii) o(a) is closed: To prove this, we prove that GL(.A) is open; see Lemma 3.2 below.

(7ii) o(a) is nonempty: This is proved by contradiction: one shows that for each ¢ in the
Banach space dual of A, the function f : A — ¢((A1—a)™') is analytic on its domain C\o(a)
and limye f(A) = 0; so if o(a) were empty, this function would be analytic on C and
vanishing at infinity, hence would be zero by Liouville’s theorem; hence ¢(a™t) = f(0) = 0
for all ¢, which is absurd by Hahn-Banach. []

Lemma 3.2 The set GL(A) is open in A and the map v — x~' is continuous (hence a
homeomorphism) on GL(A).

* Conversely any A € B(H") defines an n x n matrix of operators a;; on H by {ai;&,m)q, = (A&, 0i)gn,
where ¢; € H" is the column vector having £ at the j-th entry and zeroes elsewhere (and 7; is defined
analogously).

Ssince Y ||z < Y| z|", the series >} 2™ converges absolutely, hence (completeness!) it converges in A



Proof. We have seen that if |1 — z| < 1 then x € GL(A). Thus 1 is an interior point of
GL(A). To show that every a € GL(A) is an interior point of GL(.A), just notice that the
map ¥ — az is a homeomorphism of GL(A) (with inverse y — a~'y) and it maps 1 to a.’
To show that inversion is continuous, let a,b € GL(.A). Then

Ha’l — b’lH = Hb’l(b — a)a’lH = H(b’1 —a Hb—-a)at+a (b a)a’lH

<ot =a 1o~ al o] + o b~ al

hence
a7t =07 (1~ b~ al a7} < [a”"[* 15— al.
It follows that
lim b~ —a”'|=0. O

b—a

The spectral radius of a € A is defined to be
pla) = sup{[A[ : A € o(a)}.
It satisfies p(a) < ||al|, but equality may fail.” In fact, it can be shown that
pla) = lim "] g
This is the Gelfand-Beurling formula.

Exercise 3.3 Any morphism ¢ : A — B between (non-unital) C*-algebras extends uniquely
to a unital morphism ¢~ : A~ — B~ by ¢~ (a, \) = (¢(a), N).

If ¢ : A— B is a morphism, then o(¢(a)) € o(a) u {0} for all a € A. If A and B are
unital and ¢(1) = 1 then o(¢(a)) < o(a) for all a € A.

An element a € A is said to be normal if a*a = aa*, selfadjoint if a = a* and unitary if (A
is unital and) v*u = 1 = wu*.

Proposition 3.4

(i) a =a* = o(a) =R

(i) a = b*b = o(a) < R

(iii) v*u =1 = wu* = o(u) < T.

Proof of (iii). We have p(u) < |ul| = 1 so o(u) € D. It remains to show that if A\ € o(u)
then [\| = 1. Now A # 0 since u is invertible; and if |\| < 1, then since o(u™!) € D (because
p(u™) < |lul| = 1) the element z = (A\™' — u™!) is invertible. But then (A — w)u™! =
Au™!' — A71) is invertible and hence so is A — u, contradiction. Hence |A| > 1.

Proof of (i). Let u(t) = exp(ita) (t € R) (defined by the power series which converges
absolutely). Note that u(t)* = exp(—ita) because a = a*. As in the case a € R, one

OIn fact, if y € GL(A), the ball {z e A: |z —y| < ”y—}lu} is in GL(A).
7 Consider for instance any a # 0 with a2 = 0.



shows that the function ¢ — w(t) is norm-differentiable and u/'(t) = au(t) = wu(t)a. Tt
follows that if f(tf) = w(t)u(—t) then f'(t) = 0 for all £ € R so f(t) = f(0) = 1 hence
u(t)u(t)* = u(t)*u(t) = 1. Thus by (iii) we have o(expita) < T.

Let A € o(a). Then ®

3|®3'

exp(ia) — exp(iA)1 = e (expi(a — \) — 1) Z
=ea—\)b

where b € A commutes with a — A. Thus exp(ia) — exp(iA)1 cannot be invertible. Therefore
e € o(exp(ia)) € T and so X € R.

Second proof of (i). Let a = a*. Suppose that A + iy € o(a) for some A\, u € R; we show
that g = 0. If p # 0, then the element a — (A +iu)1 = ,u(“ AL 1) would not be invertible.

But then i € o(b) where b = £ u/\l is selfadjoint. Let n e N. Then n+ 1€ o(nl —ib) because
(n1 —ib) — (n+ 1)1 = —i(b —41) is not invertible. Therefore |n + 1| < ||n1 — ib|| and hence

(n+ 12 < o1 — b2 ‘S |(n1 — ib)*(n1 — b)) "2 21 + 02 < n? + 12

Thus 2n + 1 < |[b?| for all n, a contradiction.
The proof of (ii) is non-trivial: see Theorem 4.7.

Lemma 3.5 If aa* = a*a then p(a) = sup{|\| : A e o(a)} = |a].

Proof. Since a*a = aa*, we have
)

lal* = [a*al* = |(a*a)*(a*a)| = |(a®)*a®| = |a*|?
hence |a|? = |a?| and inductively |a|*" = ||a*"| for all n. Thus, by the Gelfand - Beurling
formula (1), p(a) = lim |a*" H2 " lall. I

A fundamental consequence of the C*-property combined with completeness is the following:
Proposition 3.6 The norm of a C*-algebra is determined by its algebraic structure. Thus
if A is a *-algebra, there is at most one norm |-| on A such that (A, |-|) is a C*-algebra.
Proof. lal* = a*a] = p(a*a).

Corollary 3.7 Every morphism p : A — B between C*-algebras is automatically contractive.

Using Gelfand Theory (see the next section) one can show that an injective morphism is
in fact an isometry.

8 One can show that e~** exp(ia) = expi(a — \) because a and A1 commute.



Dependence of the spectrum on the algebra. If A is a unital C*-algebra and B is a
closed subalgebra of A containing the identity of A, then every b € B satisfies 0 4(b) < o5(b).
Indeed if A ¢ o5(b) then A1 — b has an inverse in B hence also in 4. But equality need not
hold:

For example suppose A = C(T), the continuous functions on the unit circle. Let B be the
subalgebra consisting of all f € A having a continuous extension to D which is holomorphic
in D. ? Let b € B be the function b(z) = z. The function b~ given by b~*(z) = I is
continuous on T, but is not in B.

It is remarkable that if B is a C*-subalgebra this cannot happen:

Proposition 3.8 (Permanence of spectrum) If A is a unital C*-algebra and B is a C*-
subalgebra of A containing the identity of A (i.e. 14€ B < A), then every b € B satisfies

o4(b) = op(b).

Proof. Tt is enough to show that if b € B has an inverse in 4, then this inverse is contained
in B.

Suppose first that b = b*. Since oz(b) < R, for each n € N we have % ¢ op(b). Thus
the elements x,, = b — %1 are invertible in B: each z,! belongs to B. But since z,, — b and
inversion is continuous on the space GL(A), z;* — b~'. Since z,;' € B and B is closed, it
follows that b=! € B as required.

For the general case, if b € B is invertible in A, so is b* (verify) and hence so is z = b*b.
But z is selfadjoint, so by the previous paragraph x € GL(B): if y = 71, then y € GL(B).
We have yb*b = yr = 1 and so

b7 = (yb*b)b~t = (yb*)(bb7") = yb*

hence b~! € B, which completes the proof.

3.2 Gelfand theory for commutative C*-algebras

Theorem 3.9 [Gelfand-Naimark 1] Every commutative C*-algebra A is isometrically *-
isomorphic to C’o(fl) where A is the set of nonzero morphisms ¢ : A — C which, equipped
with the topology of pointwise convergence, is a locally compact Hausdorff space. For each
a € A the function a: A — C: ¢ — ¢(a) is in Co(A). The Gelfand transform:

~

A - Oo(A) fa—a
is an isometric *~isomorphism. The algebra A is unital if and only zf.,zl 15 compact.

In more detail: .{l is the set of all nonzero multiplicative linear forms (characters) ¢ :
A — C. Each ¢ € A necessarily satisfies |¢]| < 1 and, when A is unital, [¢| = ¢(1) = 1.
The topology on A is ' pointwise convergence: ¢; — ¢ iff ¢;(a) — ¢(a) for all a € A.

9This is isomorphic to the disc algebra.
10Tn fact, since A is contained in the unit ball of the (Banach space) dual A* of A, this topology is just
the restriction of the w*-topology of A* to A.



When A is non-abelian there may be no characters (consider My (C) or B(H), for exam-

ple). .
When A is abelian there are ‘many’ characters: for each a € A there exists ¢ € A such
that [a] = |¢(a)|.

When A is also unital, A is compact and A is isometrically *-isomorphic to C(A).

When A is abelian but non-unital every ¢ € A extends uniquely to a character ¢~ € A~
by ¢~ (1) = 1, and there is exactly one ¢, € A~ that vanishes on A. Thus A is *-isomorphic
the algebra of those continuous functions on the ‘one-point compactification’ A U {¢,} of A
which vanish at ¢..; this algebra is in fact isomorphic to Co(A).

Sketch of proof in the unital case We assume that A is abelian and unital.

(a) The compact space A, Let ¢ : A — C be a character. Then ker ¢ is an ideal, so
#(1)? = ¢(1) # 0 (for if (1) = 0 then ¢(a) = ¢(al) = 0 for all a, a contradiction), hence
(1) = 1. Also for all a € A we have ¢(a) € o(a) because ¢(a)l — a is in ker ¢ which cannot

contain invertible elements, being a proper ideal. Thus |¢(a)| < p(a) < ||a|.
In fact the equality
o(a) = {¢(a) : ¢ € A} (1)
holds; we prove this in the Appendix.
Note also that each character ¢ is selfadjoint:

d(a*) = ¢(a) forall ae A

Indeed, it suffices to prove that if a = a* then ¢(a) € R; but this is clear since ¢(a) € o(a)
and o(a) < R.

The inequality |¢(a)| < |al shows that A is contained in the space I e 4Dg, the Cartesian
product of the compact spaces D, = {z € C : |z| < |a|}; and the product topology is just
the topology of pointwise convergence. But in fact A is closed in this product: if O; — U
pointwise, then it is clear that 1 is linear and multiplicative, because each ¢; is linear and

multiplicative, and ¢ # 0 because ¥ (1) = lim; ¢;(1) = 1; thus ¢ € A.
(b) The Gelfand map G : a — a. For each a € A the function

i:A—C where a(d)=¢(a), (¢ A)
is continuous by the very definition of the topology on A. This gives a well defined map
G:A-CA):a—a.

If a,b € A, since each ¢ € A is linear, multiplicative and *-preserving, we have

~

(a+0)(¢) = ¢la +b) é(a) + ¢(b) = a(d) + b(9)
= ¢(a)p(b) = a(d)b(¢)
= ¢(a) = af




therefore
G(a+0b) =G(a) +G(b), G(ab) =G(a)g(b) and G(a*) = (G(a))*

that is, the map G is a morphism of *-algebras. Hence it is automatically contractive; but
in fact it can be seen directly to be isometric:

lal,, = sup{la(@)] : ¢ € A}
— sup{|é(a)] : 6 € A} = sup{]A|: e (@)} (by 1)

by Lemma 3.5, because a is normal since A is abelian.

~

(c) The Gelfand map is onto C(A). Consider the range G(A): it is a *-subalgebra of

~

C(A), because G is a *-homomorphism. It contains the constants, because G(1) = 1 (: the
constant function 1). It separates the points of A, because if ¢, € A are different, they
must differ at some a € A, so

G(a)(¢) = o(a) # ¥(a) = G(a)(¢).

By the Stone — Weierstrass Theorem, G(A) must be dense in C (A). But it is closed, since
A is complete and G is isometric. Hence G(A) = C(A). [

Appendix: A note on characters

Let A be an abelian unital Banach algebra, and let A be the set of all nonzero morphisms
¢: A— C.

In section 3.2, we saw that

{(6(a) : p € A} < o(a).

We wish to show that equality in fact holds.
So fix a A\g € o(a) and let Jy = {x(a — A1) : © € A}. One easily sees that J, is an ideal of
A, and it is proper since a — \g1 is not invertible. It is enough to find ¢ € A such that the
ideal ker ¢ contains J.

We will show that 7 is contained in a maximal proper ideal of A.

Remark 3.10 If J is a proper ideal of A, then |1 —z| =1 for all x € J. In particular,
the closure of a proper ideal is a proper ideal.

Indeed, if |1 — 2| < 1 then, as we know, 2 € GL(A), so x cannot belong to a proper ideal.

[

11



Remark 3.11 7 is contained in a mazimal proper ideal M of A, which is therefore closed.

Proof. Let F be the family of all ideals J of A which contain [y but do not contain 1; order
F by inclusion. If G < F'is a totally ordered subset of F', let Jg be the union of all elements
of G. Of course Jg contains Jy and does not contain 1; it is easy to verify that Jg is an
ideal, hence it is an upper bound for G.

Zorn’s lemma shows that there exists M € F' which is maximal in the partially ordered
set (F,<). Thus M is an ideal containing [, and it is proper because 1 ¢ M. In fact it is a
maximal proper ideal; for if A/ is a proper ideal of A containing M, then it contains J, and,
since it is proper, cannot contain 1; thus N € F, hence N' = M because M is a maximal
member of F.

In particular M is closed, because its closure M is an ideal and does not contain 1 by
Remark 3.10, hence M = M by maximality. []

Note the essential use of 1 in the above argument: in fact the conclusion may fail in
non-unital algebras: If for example A = ¢j, the Banach algebra of null sequences, then it
can be shown that the ideal J = ¢y (the set of sequences of finite support) is contained in
no maximal ideal.

Now let B = A/M. It is well known that (since M is a closed subspace) B is a Banach
space with respect to the quotient norm

la + M|| = inf{|la + z|| : € M} = dist(a, M).

Remark 3.12 A/ M is a Banach algebra.

Proof. Of course A/M is an algebra. We have to prove that
lab+ M| < |a+ M| |b+ M|, a,be A
If 2,y € M then

la+ ] o+y| =]

(a+z)(b+y)| = |ab+ b+ ay + zy|| .
But xb + ay + xy € M, so |ab + zb + ay + zy| = |ab + M|. Thus

la+ [ [b+y| = ab+ M|
and the required inequality follows by taking the inf over z and y in M. []

Remark 3.13 B = A/M is a division algebra with identity 1 + M: that is, if a + M is not
the zero element 0 + M of B, then a + M is invertible.

12



Proof. We need to find b € A so that (a+M)(b+M) = 1+ M, equivalently ab+ M = 1+ M,
ie. ab—1e M. Set
J=aA+M={ab+zx:be A xe Mj.

This is easily seen to be an ideal of A and it clearly contains M. But it also contains a
which is not in M; hence, by maximality of M, we must have J = A. Thus there exists
be Aand x € M so that ab+ x = 1, in other words ab— 1= -z e M. [

Remark 3.14 If B is a division Banach algebra, there is an isomorphism a — A a) : B — C.

Proof. The spectrum o(a) of each a € B is nonempty. Thus there exists A(a) € C such that
a — A(a)1 is not invertible. By the last remark, a — A(a)1 = 0, i.e. a = A(a)l. Now if
w € o(a) then a — 1 is not invertible, hence a = 1 and so g = A(a).

Thus o(a) = {A(a)} is a singleton. Therefore we have a well defined map

a— Ma): B—C.
It is easy to verify that this is an injective algebra morphism: for example, a = A(a)1 and
a

b = A(b)1 gives ab = A(a)A(b)1, but then A(a)A\(b) € o(ab) = {A(ab)} and so A(a)\(b) =
A(ab). [

Conclusion of the proof To show that {¢(a) : ¢ € A} = o(a), we need a character ¢ of A
such that ¢(a) = Ag. Consider a maximal ideal M of A containing Jy and define ¢ : A — C

as follows:

p: A — B — C
r — z+M — MNz+M)

where \ : B — C is the isomorphism of the last Remark. This is a composition of morphisms,
hence a morphism. Its kernel is precisely M, so ¢ # 0 and, since a — A\l € Jy S M, we
have ¢p(a — A\ogl) = 0 ie. ¢(a) = No. [

3.3 Functional calculus and spectral theorem
3.3.1 The Continuous Functional Calculus for selfadjoint operators

Let A be a selfadjoint ! element of the unital C*-algebra B(H).

For any (complex) polynomial p(\) = > ¢ A\* we have a (normal) element p(A) = Y. ¢, A
k=0 k=0
of B(H). We wish to extend the map

Qy:p— p(A)

toamap f — f(A) defined on all continuous functions f : o(A) — C. Since the polynomials
are dense in C'(0(A)), it is enough to prove that ®q is continuous in the norm of C(c(A)).

11 The functional calculus can be defined for normal operators as well. We restrict to the selfadjoint case
for simplicity.
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Theorem 3.15 If A€ B(H) is selfadjoint and p is a polynomial,

Ip(A)| = sup{[p(N)| : A € a(A)} = [Ip]o(a)-

In particular ®y(p) only depends on the values of p on o(A); thus @ is well defined on the
subspace of C(c(A)) consisting of polynomial functions.

The proof of Theorem 3.15 is an immediate consequence of the fact that the spectral
radius of a normal element (p(A) is normal) equals its norm, together with the following
entirely algebraic fact:

Lemma 3.16 (Spectral mapping lemma) If A € B(H) is selfadjoint and p is a polyno-
mial,

a(p(A)) = {p(A\) : Ae a(A)}.

Definition 6 Let A = A* € B(H). The continuous functional calculus for A is the
unique continuous extension

Oc: (Cla(A)), [oay) = (BH), []) - [ — F(A)

of the map ®, : p — p(A). Thus if f is continuous on o(A), the operator f(A) € B(H) is
defined by the limit
f(A) =limp,(A)

where (p,) is any sequence of polynomials such that |p, — f| 4 — 0.

It is easily verified that ®. is an isometric *~homomorphism, which is uniquely determined
by the conditions ®.(1) = I and ®.(id) = A (where id(A) = X\ is the identity function on
a(A)).

3.3.2 Connection with Gelfand Theory

Keeping the notations of the last section, let A < B(H) be the C*-algebra generated by A and
the identity. It is a unital, abelian C*-algebra, the norm closure of {p(A) : p a polynomial}.
But this closure is precisely the set

{f(A): [ eC(a(A))}.

We determine A:
Given any A € 0(A), the map ¢, : A — C given by

is obviously a nonzero multiplicative linear functional.

14



Conversely, let ¢ € A. Then the number A = ¢(A) isin o4(A) = o(A) (Proposition 3.8).
For any polynomial p(t) = > c,t, we have, since ¢ is linear and multiplicative,
k=0

n

o(p(A) = Y, (A = p(A) = ga(p(A)).

k=0

But ¢ and ¢, are continuous on A and the set {p(A) : p a polynomial} is dense in A;
therefore ¢ = ¢,.
Thus we have a bijection

)\—>¢)\:U(A)—>./Zl\.

In fact this bijection is continuous and hence, since o(A) is compact, a homeomorphism.
For this we have to show that if A, — X then ¢, (B) — ¢\(B) for all B € A. Indeed, each
B e Ais of the form B = f(A) for some f € C(c(A)); and the definition of ¢, gives

Or,(B) = o2, (f(A)) = f(An) = f(A) = oa(f(A)) = ¢a(B)
since f is a continuous function. We summarize

Theorem 3.17 If A is a selfadjoint operator and A = {f(A) : f € C(0(A))} is the unital
C*-algebra generated by A, then the map

A~

A= oy:0(A) > A,

where ¢A(f(A)) = F(N), is a homeomorphism. If A is identified with o(A) via this homeo-

morphism, then the functional calculus
f— f(A): C(o(4)) — A
1s the inverse of the Gelfand transform.

To prove the last sentence, take any B = f(A) € A and, for any ¢ = ¢, € .Z, consider

B(¢x) = ¢x(B) = a(f(A)) = f(N).

So, if we identify each A with ¢,, then B is identified with f.

3.3.3 The Spectral Theorem

If Ae B(H) is selfadjoint and K = o(A), the continuous functional calculus @, : C(K) —
B(H) is a representation of the (abelian) C*-algebra C'(K) on H.

We will construct a ‘measure’ F(-) whose values are not numbers, but projections on H,
satisfying

B.(f) = Lf(A)dEA
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for each f € C(K) and in particular

A= @, (id) J B},

K

In fact, this construction works for any (automatically contractive) *-representation

m:C(K) - B(H):

Sketch of the construction Fix x,y € H and consider the map
CK) — C: f—(n(f)z,y).
This is a linear functional, bounded by ||z|.|y||, because

[ (P gl < m (O ]lyl < 1 f - Iyl

By the Riesz representation theorem, there is a unique complex regular Borel measure i ,
on K so that

f fdpg,y = {m(f)x,y) for each f e C(K) (2)
K
satisfying
[yl < ]yl
Now fix a Borel set 2 € K and consider the map
HxH— C: (2,y) — Hoy().
One shows that this is sesquilinear and bounded by 1, that is
|2y ()] < [yl < 1]yl
Therefore there is a unique bounded operator F(Q) € B(H) satisfying

(EQ)z,y) = pay(2)  for all z,y € B(H)
and ||E(Q)| <1 for all Borel Q2 € K.

One shows that E(-) is a ‘spectral measure’, that is:

2. E( n Q) = E(Q).E(Q)
3. E(g)=0 and E(K)=1

12|tz | is the total variation of the measure pi,.,; it equals the norm of the corresponding functional on
C(K).
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4. for x,y € H, the map ji,, : Q@ — (E(Q)z,y) is a o-additive complex-valued set function
on the Borel o-algebra of K.

We now define integration with respect to the ‘measure’ E(-): If
f = Z )\iXQi

is a simple Borel function (with \; € C and €; € K pairwise disjoint Borel sets such that

u(?; = K), define
J FOAEy = > NE(:) € B(H).

<(f f(A)dEA) x,y> _ f Fdpay
K K
for all x,y € H.

One shows that the mapping f — { fdE is linear, and also a *-homomorphism, that is

J fdE = (J de>* and f fgdE = ( J de) ( J ng>

for all simple Borel functions f, g.
One shows that

Observe that

| deH < sup{|f(V)] : A e K}

Hence the map f — § fdE extends uniquely to a contractive linear mapping £*(K) — B(H),
where LP(K) is the C*-algebra of all bounded Borel functions on K. This extension is also
*_homomorphism. Finally, if f : K — C is continuous, then

(0w 1o

={r(f)x,y) for all z,yeH,
and so JK FNAE, = 7(f).

This concludes the (sketch of the) construction of the spectral measure corresponding to the
representation w. Notice that E(-) is ‘regular’ in the sense that p, ., is (by construction) a
regular Borel (positive) measure for each x € H. Uniqueness of E(-) follows by the uniqueness
part of the Riesz representation theorem.

We summarize:

Theorem 3.18 FEwvery representation m of C(K) on a Hilbert space H determines a unique
reqular Borel spectral measure E(-) on K so that

| ram==ts) (reca.
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Applying this to the representation given by the continuous functional calculus

®.: C(o(A)) — B(H), we obtain

Theorem 3.19 If A € B(H) is a selfadjoint operator, there exists a unique regular Borel
spectral measure E(.) on o(A) so that

f fdE = f(A) (fe C(K)) andin particular A = J AE).
o(A) a(A)

Notice that in the course of the construction leading to Theorem 3.18 we have defined the
operator-valued integral § fdE for every bounded Borel function. This leads to an extension
of the functional calculus:

Proposition 3.20 (Borel Functional calculus) The map ®. : C(c(A) — B(H) extends
uniquely to a contractive *-representation f — f(A) := SU(A) fdE of the C*-algebra L* (o (A))
of all bounded Borel functions on o(A). In particular, if Q < o(A) is a Borel set, xo(A) =

Remark 3.21 The spectral Theorem and the Borel functional calculus are also valid for a
normal operator A € B(H). The proof is the same as the selfadjoint case, provided one
extends the continuous functional calculus to normal operators.

4 Positivity

Definition 7 An element a € A is positive (written a = 0) if a = a* and o(a) € R,

We write A, = {ae A:a>0}.

If a,b are selfadjoint, we define a < b byb—ae A,.

Examples 4.1 In C(X): f =0 iff f(t) e Ry for allt € X because o(f) = f(X).
In B(H): T =0 iff (TE,£) >0 forall { € H.

Remark 4.2 Any morphism w : A — B between C*-algebras preserves order:
a=>0 = 7(a)=0.
Proof. If a = a* and o(a) < [0, +0) then 7(a)* = 7(a*) and
o(m(a)) € o(a) U {0} < [0, +o0)
so m(a) = 0.

Remark 4.3 In a unital C*-algebra, if a = a* then —|al|1 <a < |a|1.
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Proof. Observe that ||a| 1 — a is selfadjoint and
o(lal 1~ a) = {Ja] ~A: Aeo(a)} =R,

because A € R and A < |a| for A € o(a). Hence ||a| 1 — a = 0; the other inequality is proved
similarly.

Proposition 4.4 FEvery positive element of a C*-algebra has a unique positive square root.
In fact

ae A, if and only if there exists be A, such that a = b°.

Proof. If a = b* where b € A, then a = a* and o(a) = {\* : X\ € o(b)} by the Spectral
mapping Lemma 3.16; thus o(a) € R, since b = 0 and therefore a > 0.

Conversely, suppose a > 0 and consider the C*-subalgebra C = C*(a) of A generated
by a; it is *-isomorphic to the algebra C,(X) for some space X via the Gelfand transform
x — &. Note that a € Cy since o¢(a) = o4(a). The Gelfand transform and its inverse
preserve order. Since a > 0, we have G > 0. Look at the function va € C,(X). This is the
image of some b € A, which must be positive because v/a = 0; also (13)2 = a, so b? = a.

Uniqueness: Let b € A, be as in the last paragraph and suppose there exists ¢ € A,
which also satisfies ¢> = a. Observe that ac = ca. Since b is in C*(a), it is a limit of
polynomials in a, so it follows that bc = cb. Now consider the C*-algebra C*(b,c): it is
abelian and contains a, so we may view b, ¢, a as continuous functions on the same space and
then it is clear that b = c.

Proposition 4.5 For any C*-algebra the set A, is a cone:
a,be Ay, A\ >0 = XaceA,,a+beA,.

Proof. The first assertion is immediate from the definition of positivity. Hence, for the
second one, passing to the unitisation if necessary, it is enough to assume that 0 < a < 1
and 0 < b < 1 and prove that “TH’ = 0.

But we have the following characterization:
Lemma 4.6 In a unital C*-algebra, if v = z* and |z| < 1, then

x>0 <= |1—-z|<1l

Thus if a and b are positive contractions then “T“’ is a selfadjoint contraction and
1—2| =1j1-a)+(1-0)] < i(1—al+]|1-0]) <1 sothat %> > 0, completing
the proof of the Proposition.

Proof of the Lemma. Considering the C*-algebra generated by x and 1, there is no loss in
assuming that x is a continuous function on a compact set. Then the Lemma is just an
application of the triangle inequality: The assumption is that —1 < z(¢) < 1 for all ¢ and
we need to conclude that

r(t) >0 <= |[1—=z() <L
But this is obvious!

We now have the machinery to complete the proof of Proposition 3.4:
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Theorem 4.7 In any C*-algebra, any element of the form a*a is positive.

Proof. Of course a*a is selfadjoint. ¥ So it can be written
a*a=b—c¢ whereb,c>0,bc=0

(to see this, consider a*a as a function and let b and ¢ be its positive and negative parts).
We will show that ¢ = 0.
Let x = ca*. Observe that

ra* = ca*ac = ¢(b— c)c = —c*

and so, since ¢ = 0,
—zr* e A,.

On the other hand, if we write = u + v with u, v selfadjoint, we find
zr* + ¥ = 2u® + 0% e A,
since A, is a cone. Again using the fact that A, is a cone, we conclude that
r¥r = —xa* + (va¥ 4+ 2¥x) € Aj.

Thus we have
o(z*r) <Ry and o(xz®) < R_.

But in any unital algebra we have o(kh) < o(hk) U {0}. ™
It follows that o(zx*) = {0}. Thus |xz*| = 0 (zz* is selfadjoint) showing that —c¢* =
zx* =0andsoc=0. J

5 The Gelfand - Naimark Theorem

5.1 The GNS construction

Definition 8 A state on a C*-algebra A is a positive linear map ¢ : A — C of norm 1,
i.e. such that ¢(a*a) =0 for alla € A and ||¢| = 1. A state is called faithful if ¢p(a*a) > 0
whenever a # 0.

Note. When A is unital and ¢ is positive, |¢| = ¢(1).

13If a were normal, we could consider it as a function & on a locally compact space, and then we could
conclude that a*a corresponds to the function a*a = |a|? which is nonnegative; the difficulty is that a need
not lie in an abelian C*-algebra.

“Tndeed if A ¢ o(hk) is nonzero then the element y = A~'1 + A"'k(\1 — hk)~'h  satisfies
y(Al — kh) = (A1 — kh)y = 1 and so A ¢ o(kh).
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Examples 5.1 On B(H),

o the map ¢(T) = (T€, &) (where £ € H is a unit vector)

o the map Y(T) = 3. {T&, &) where ), ||sz2 =1 (called a ‘density matriz’ in physics).
On C(K),

o the map ¢(f) = f(t) forte K
o the map Y(f) = § fdu for a probability measure pu.
For a C*-algebra A, if m1 : A — B(H) is a representation and & € H a unit vector, the map

¢(a) = (r(a)§, &).
In fact, every state on a C*-algebra arises as in the last example.

Theorem 5.2 (Gelfand, Naimark, Segal) For every state ¢ on a C*-algebra A there is
a triple (mgy, Hy, &y) where my is a representation of A on a Hilbert space Hy and £y € Hy a
cyclic ¥ unit vector such that

o(a) = (mp(a)éy, &sy  for all a e A.

The GNS triple (my, Hy, Ep) is uniquely determined by this relation up to unitary equivalence.

Motivation: the abelian case Consider a state ¢ on A = C(K). By the Riesz represen-
tation theorem, there is a unique positive Borel measure @ on K so that

6(f) — L fdu  forall feC(K).

Define the seminorm

71l = (L \f!Qdu) T s, reow.

The set N, = {f € C(K) : {|f]?dp = 0} is a subspace of C(K) (it consists of all f € C(K)
that vanish p-a.e.) and the seminorm || - || induces a norm, |-|, on Hy := C(K)/Ny. The
completion is of course just the Hilbert space L*(K, ).

We may represent the C*-algebra A on this Hilbert space by observing that for each
f e Athe map C(K) — C(K) : g — fg preserves Ny (it is a (left) ideal of A) and hence
induces a map

mo(f) : Ho — Ho : [g] — [f9]
(here [g] denotes the coset g + Ny). But this map is bounded in the norm |-||,:

Imo(AlallZ = [[Fgll2 = f FoPdp < sup |fP f 9Pdu = 112 4]

15 j.e. such that m,(A)E, is dense in Hy.
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and hence extends to a bounded operator m(f) on L?(K, u) (: the operator of multiplication
by f). It is now easy to check that 7 : A — B(L*(K,u)) is a representation. Note finally
that the vector &4 := [1] is cyclic for 7 (indeed 7w(A)&, = {[f1] : f € A} = Hy) and satisfies

(F)En&p) = f(fl)idu - ffdu o)
for all fe A.

Proof of the Theorem (sketch). Assume for simplicity that A is unital. Define the sesquilin-
ear form

(a,b), = ¢(b*a), a,be A

The set
Ny ={ae A: ¢(a*a) = 0}

is a left ideal of A. This follows from the Cauchy-Schwarz inequality
6(b*0)? < 9(a*a)6(b"), a,be A

In particular
(a) N, is alinear subspace of A and the quotient Hy, = A/N, acquires the scalar product

(a), (b)) = 6(b"a), a,be A
(b) For each a € A the map b — ab leaves N, invariant, so it induces a linear map
7T0(CL) . HO — HO . [b] — [ab]

Now observe that the map 7(a) is bounded on (Hy, |-|) (where ||[b]|* = {[b], [b]) = $(b*D)).
Indeed, if [b], [¢] are in Hy,

| {mo(a)[b], [e]) [* = [{[ab], [e]) [ = [é(c"ab)[?

(c*e)g((ab)ab) = d(c*c)p(b"a*ab)

(c*c)pp(a®a)  where @y(x) = P(b*xb)

(c*e) [ ol la*all = é(c*c)¢u(1) [al®

(¢*)(6°) [al* = [[e]* B ol

(where we have used the fact that ¢, is a positive linear form and its norm is ¢,(1)).

So mp(a) extends to a bounded operator m(a) on the completion H, of Hy. It is easy to
see that the map

c*c)o

m:A—B(H,) :a— 7(a)

is a *-representation (it suffices to verify that 7y is a *-homomorphism). Finally, setting
€, = [1] € Hp (a unit vector), we have 7(A)&; = {n(a)[1] : a € A} = {[a] : a € A} = H,,
which is dense in H4 and

(m(a)8p, &p) = (lal, [1]) = ¢(1%a) = ¢(a). O
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5.2 The universal representation

Theorem 5.3 (Gelfand, Naimark) For every C*-algebra A there exists a representation
(7, H) which is one to one (called faithful ).

The idea of the proof: We may adjoin an identity, if necessary; so we may assume A unital.
Let S(A) be the set of all states. For each ¢ € S(.A) consider the triple (74, He, &p); ‘adding
up’ all these representations, we obtain a representation (7, H).

More precisely:

The space H consists of all families (z4)ges(a) of vectors zs € Hy such that >, H%H;¢ <
o0. '% Given a family (Ag)ges(4) of operators where Ay € B(H,,) such that sup,, | Ag| < oo, the
map A =: @Ay given by A((z4)) = (Apzye) is a well defined bounded operator on . Thus for
each a € A, since sup,, ||74(a)| < |af, we may define the operator 7(a) := >, 7y(a) € B(H);
one can readily verify that the map A — B(H) : a — m(a) is a *-representation of A.

It remains to prove that it is faithful. This follows from the fact (see the following lemma)
that for each nonzero a € A there exists ¢ € S(.A) such that ¢(a*a) > 0. Denoting by x,, € H
the family (z4), with z, = &, and x4 = 0 for all ¢ # ¢ we have

Im(@)xsl3, = my(a)6y|* = (my(a*a)éy, &) = ala*a) > 0

which proves that 7(a) # 0, as required.
It remains to prove the following

Lemma 5.4 For each nonzero a € A there exists 1 € S(A) such that ¥(a*a) > 0.

Proof. Consider the real Banach space A;, of all selfadjoint elements of A. The set A, is
a closed convex cone in A;, and the element b := —a*a € A;, is not in A,. By the Hahn -
Banach separation theorem, there is a (real-linear) functional w : A, — R and a ¢ € R such
that w(b) < ¢ and w(x) = ¢ for all z € A,. Note that ¢ < 0 because 0 = w(0) > ¢ since
0e A,.

We claim that w(A, ) € R,. Indeed, if w(y) < 0 for some y € A, then w(ny) = nw(y) < ¢
for large enough n € N, contradicting the fact that w(z) = ¢ for all x € A,.

We extend w to a complex linear map w, : A — C by setting

we(r +1y) = w(x) +iw(y), =,y Ap.

Then w,| 4, = w, hence w, is positive and so ¢ := 105 is a state; finally [we| (b)) = w(b) < ¢
and so ¥ (a*a) = —1(b) > 0 since ¢ < 0. [

16 that is, such that sup Z Hx(pH?{d} < o0, where the supremum ranges over all finite subsets F of S(A)
PEF
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6 Bimodules over masas

6.1 Von Neumann algebras

Apart from the norm, B(H) is equipped with other natural topologies.
We will concentrate on the weak™ topology that B(#) has as a dual Banach space:
For &,m € H, we denote by we,, the linear form on B(H) given by

wen(T) =<T&my, T eB(H).

This is clearly bounded (by || ||n]). We denote by B(#) _ the linear space spanned by these
linear forms, and by B(#), its closure in the dual Banach space of B(H).

Each T' € B(#) defines a bounded linear form ¢ on B(H) _ by evaluation: ¢p(w) = w(T),
and in particular, ¢r(we,) = (T'€,n). Conversely, each bounded linear form ¢ on B(#H) _
defines an operator Ty € B(H) such that (T, n) = ¢(we,) for all &, ne H. 17

Proposition 6.1 The map T — ¢r is an isometric isomorphism from B(H) onto the Ba-
nach space dual of B(H) . (and hence of its closure B(H), ) with inverse ¢ — T,.

Thus B(H) acquires a weak™® topology, as the dual of the Banach space B(H),: a net T;
converges to 0 in this topology if and only if w(7;) — 0 for all w € B(H),. For norm bounded
nets (in particular, for sequences), this is equivalent to the requirement that (7;¢,n) — 0 for
all £,meH.

A von Neumann algebra M is a selfadjoint unital subalgebra of B(#) which is closed

in the weak™ topology.

Theorem 6.2 (von Neumann’s bicommutant theorem) If A < B(H) is a selfadjoint
unital algebra and T € B(H), the following are equivalent:

(a) T e A”.

(b) For each & € H, the operator T' is in the closed linear span of {Ax : A€ A}.

(c) T is in the weak*-closure of A.

For later use, note that the equivalence of (b) and (c) says that a selfadjoint unital algebra
is weak*-closed if and only if it is equal to the annihilator of a set of wvector (or rank one)
functionals, i.e. functionals of the form we,,.

Of course every von Neumann algebra is a C*-algebra but not conversely. For example
the algebra of compact operators on an infinite dimensional Hilbert space is a C*-algebra,
but is not weak*-closed in B(#), hence it is not a von Neumann algebra.

Similarly, the set of all multiplication operators {M; : f € C([0,1])} is a C*-algebra C of
operators on L*([0,1]), but is not weak*-closed. It is not hard to see that the bicommutant
C” is the set M = {M; : f € L*(]0,1])}, and this is a von Neumann algebra. '®

7 because the map (£,7) — ¢(we ;) is a bounded sesquilinear form on H x H
18 In fact M = C'.
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Abelian von Neumann algebras It can be shown that any abelian von Neumann al-
gebra M is *-isomorphic (isometrically, of course) to the algebra L*(X, u) for a suitable
measure space (X, p), where X may be taken locally compact Hausdorff and p a regular
Borel measure. In fact the *-isomorphism is bicontinuous for the weak™ topology on M and
the weak* topology on L®(X, i) as the dual of L'(X, ). For this reason, the theory of von
Neumann algebras is sometimes described as “non-commutative measure theory”, while the
theory of C*-algebras is thought of as “non-commutative topology”.

A mazimal abelian selfadjoint algebra (masa for short) M is an abelian selfadjoint sub-
algebra of some B(H) which is maximal among abelian selfadjoint subalgebras of B(#H). It
is not hard to see that maximality is equivalent to the requirement that M = M/’; hence a
masa is automatically a von Neumann algebra.

A masa M is not only *-isomorphic, it is spatially isomorphic (that is, unitarily equiva-
lent) to a multiplication algebra

M, = {M; : f € L(X, p)} € B(L*(n)).

In fact when M acts on a separable space, then it is spatially isomorphic to one of the
following: L*([0,1]) (with Lebesgue measure), £*(n), or L*([0,1]) ® ¢{*(n), for some n € N
or n = Ng.

The first case arises when M has no minimal projections, the second when each projection
in M dominates a minimal projection in M, and the third when there are m minimal
projections whose sum is not the identity operator.

In this last case M is unitarily equivalent to the von Neumann algebra M, @ D,, acting
on L*([0,1], 1) ® ¢*(n) (here p denotes Lebesgue measure and D, denotes the set of all
bounded operators on £%(n) which are diagonal with respect to the usual orthonormal basis

of (2(n)).

6.2 The support of an operator

In the sequel we shall assume that all Hilbert spaces are separable. In particular the predual
of B(H), and of every von Neumann algebra, will be separable. The material that follows is

based on [1, 7, 22] and [23].

An operator T' € B(¢?) is said to vanish on a rectangle A x B € Nx N if P(B)TP(A) = 0,
where P(A) is the projection onto the space spanned by the basis elements {e; : j € A}.
Notice that these projections belong to the masa D < B(¢?) of all diagonal operators. Thus
D codifies the ‘coordinate system’ induced by the usual basis of £2. More generally, every
masa M < B(H) can be said to introduce a ‘coordinate system’: After a unitary equivalence,
we may identify H with L*(X, ) and M with the multiplication masa M, of L®(X, p);
the ‘coordinate system’ is indexed by X. In this representation, we say that an operator
T € B(H) vanishes on a Borel rectangle A x B < X x X if P(B)TP(A) = 0, where P(A) is
the projection onto the space of all f € L?(X, 1) that vanish almost everywhere on A¢; thus
P(A) is an element of M, namely the multiplication operator corresponding to x 4.
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Definition 9 We say that a set of operators T < B(H) is supported in a set Q € X x X
if P(B)TP(A) =0 for all T € T whenever Q n (A x B) = &.

If Q is a measurable set of positive product measure, then it supports nonzero operators,
for example any Hilbert-Schmidt operator whose kernel vanishes almost everywhere (with
respect to product measure) on Q°. However even sets of product measure zero can support
nonzero operators: for example the diagonal A = {(z,z) : x € [0,1]} supports the identity
operator, as well as any multiplication operator M, with f e L*([0,1]).

A set Q € X x X is said to be marginally nullif it is contained in a union (N x X)u (X x
M), where p(N) = p(M) = 0. Such a set cannot support a nonzero operator 7', because
(N x M) n Q= & whereas P(M)TP(N¢) =T # 0.

One would like to define ‘the support’ of a set 7 of operators to be the complement of
the union of the family £ all Borel rectangles on which 7 vanishes. However this union is
in general non-measurable. The way around this difficulty is the following: there exists a
countable set {F,} < £ whose union E (a measurable set) ‘almost contains’ every Borel
rectangle A x B € &, in the sense that (A x B)\E is marginally null. Thus E° ‘almost
contains’ every subset of X x X supporting 7.

Definition 10 The complement E° of the union of the rectangles in {E,} is defined to be
the support of T and is denoted supp T .

Let us call two subsets E, F of X x X marginally equivalent (written E ~ F') if their
symmetric difference is marginally null; let us call a subset E of X x X w-open if it is
marginally equivalent to a countable union of Borel rectangles; the complements of w-open
sets are of course called w-closed sets. Thus supp T is w-closed; it is uniquely determined
(up to marginal equivalence) and is the smallest w-closed set supporting 7T .

6.3 Masa bimodules, reflexivity and operator synthesis

Fix any set 2 € X x Y. The set of all operators which are supported in €2 is denoted
i)jtmax(gz)'

This is easily seen to be a weak-* closed linear space. Also, it is a bimodule over the masa
M: indeed if T" is supported in €2, then so is M;T'M,, for every My, M, in the masa M.

It is not hard to see that M., (Q) is reflexive in the sense of Loginov-Shulman [17]; that
is, Muax() is equal to the annihilator of a set of rank one functionals. ' The support of
Munax () is an w-closed set, it contains  and is, up to marginally null sets, the smallest
w-closed set containing §2; it is called the w-closure of 2.

It can be shown conversely that if an M-bimodule 7T is reflexive, then it is necessarily of
the form T = M ,ax(2), where Q can be chosen w-closed; in fact, €2 is the support of 7.

Thus there is a bijective correspondence between reflerive M-bimodules and w-closed
subsets of X x X.

Yndeed, M ax () is the annihilator of the set of all functionals Wp(A)f,P(B)g» Where f, g€ L?(X,p) are
arbitrary and A, B are Borel subsets of X satisfying (4 x B) n Q = (.
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Note that, in case X comes equipped with a topology, the support of a masa bimodule
cannot always be chosen to be topologically closed. For example, there is a reflexive M-
bimodule U = B(L*([0, 1]) (where M is the masa of L*([0,1])) such that the smallest closed
subset of [0, 1] x [0, 1] supporting U is the whole of [0, 1] x [0, 1], although U ## B(L*([0, 1]).
20

We have seen that for unital and selfadjoint operator algebras, closure in the weak-*
topology automatically implies reflexivity (von Neumann’s bicommutant theorem, 6.2). For
non-selfadjoint algebras this is no longer true: the simplest example is the algebra of all 2 x 2
complex matrices of the form [ ?]; but this algebra is not a masa bimodule. What happens
in the masa bimodule case?

If Y < B(H) is a weak-* closed subspace which is a bimodule over a discrete masa D
(so that H may be realized as > and D as the algebra of all diagonal matrices), then it is
automatically (and trivially) reflexive: its support €2 is the complement of the set of all pairs
(m,n) € N x N such that u,,, = 0 for every U = [uy, ] in U; hence, since we,, ¢, (U) = tm.n,
U is the annihilator of all rank one functionals {w, .,, : (m,n) € Q¢}; equivalently, every
matrix which vanishes in Q¢ must be in U, and so U = M. ().

When the masa M is not generated by its minimal projections, the situation is more
complex. Arveson [1] was the first to exhibit a weak-* closed masa bimodule ¢/ with support
Q) for which U # Myax (). He called this phenomenon failure of operator synthesis, as his
example was based on the failure of spectral synthesis in the group algebra L!(R3).

He proved 2! that any weak-* closed masa bimodule ¢ with support € lies between two
extremal weak-* closed masa bimodules: M,in () € U S Max (92).

The predual approach [22] When the masa M is identified with the multiplication
algebra of L®(X, u) acting on H = L?(X, u1), every element w € B(H)_ is identified with a

function on X x X; indeed w = )] wy, 4 corresponds to the function
k=1

Fu(s,t) = Y fu()an(t), (s,t) e X x X.
k=1

In fact every element w € B(H), admits a representation w = >, wy, 4 with >, ||l |gx] =
|w|| < o0 and hence defines the function

Fu(s.t) = Y fuls)gr(t), (s;t)e X x X
k=1

where the series converges marginally almost everywhere on X x X, that is for all (s,t) €
X x X outside a marginally null set. Two functions define the same element of B(#), if and
only if they agree marginally almost everywhere.

200ne can take U = {M + PXP: M € M, X € B(H)} where P = P(A) and A c [0, 1] is chosen so that
both A and A€ intersect every open set in a set of nonzero Lebesgue measure.
2Ifor the separably acting unital algebra case
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The space T'(X) of all (marginal equivalence classes of ) functions on X x X of the above
form, equipped with the norm |-|, inherited from B(#H), coincides with the projective tensor
product L'(X, 1)®L" (X, p1). Given any w-closed set Q € X x X we consider the subspaces

O(Q2) = {heT(X):h=0marginally a.e. on €}
Uy (Q) = {heT(X):h=0marginally a.e. in an w-open neighbourhood of Q}

where an w-open neighbourhood of €2 is a countable cover of €2 by Borel rectangles. It can
be shown that the annihilator of Uy () in B(H) is Myax(€2), while the annihilator of ®(2)
is the minimal weak-* closed bimodule 9,,;,(€2) having support €. This leads to the

Definition 11 Anw-closed set Q) is said to satisfy operator synthesis if Mpnin () = Max (),
equivalently is every h € T(X) that vanishes (marginally a.e.) on Q can be approzimated (in
the norm |-|,) by elements of T'(X) vanishing in an w-open neighbourhood of Q.

The investigation of conditions that imply operator synthesis is an active area of research,
with close connections to harmonic analysis. We refer the reader to the contribution of I.G.
Todorov [27] in these proceedings.
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