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Introduction

I would like to start by giving some motivation and general
background concerning the theory of Borel equivalence relations
and then I will talk about some recent results in this theory.
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Classification problems

A classification problem is given by:

A collection of objects X.

An equivalence relation E on X.

A complete classification of X up to E consists of:

A set of invariants I.

A map c : X → I such that xEy ⇔ c(x) = c(y).

For this to be of any interest both I, c must be as explicit and
concrete as possible.
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Equivalence relations and reducibility

The theory of equivalence relations on well-behaved spaces, i.e.,
standard Borel spaces (like, e.g., Euclidean spaces, separable
Banach spaces, Polish groups, etc.), studies the set-theoretic
nature of possible (complete) invariants and develops a
mathematical framework for measuring the complexity of
classification problems.

In this talk I will be interested in Borel equivalence relations E on
standard Borel spaces X (i.e., E is Borel as a subset of the
product space X ×X).

The following simple concept is basic in organizing this study.
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Equivalence relations and reducibility

Definition

Let (X,E), (Y, F ) be equivalence relations. E is (Borel) reducible
to F , in symbols

E ≤B F,

if there is Borel map f : X → Y such that

x E y ⇔ f(x) F f(y).

Intuitive meaning:

The classification problem represented by E is at most as
complicated as that of F .

F -classes are complete invariants for E.
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Equivalence relations and reducibility

Definition

E is bi-reducible to F if E is reducible to F and vice versa.

E ∼B F ⇔ E ≤B F and F ≤B E.

We also put:

Definition

E <B F ⇔ E ≤B F and F �B E.
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Borel cardinality theory

The preceding concepts can be also interpreted as the basis of a
“definable” or Borel cardinality theory for quotient spaces.

E ≤B F means that there is a “Borel injection” of X/E into
Y/F , i.e., X/E has Borel cardinality less than or equal to
that of Y/F , in symbols

|X/E|B ≤ |Y/F |B

E ∼B F means that X/E and Y/F have the same Borel
cardinality, in symbols

|X/E|B = |Y/F |B

E <B F means that X/E has strictly smaller Borel
cardinality than Y/F , in symbols

|X/E|B < |Y/F |B
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Countable Borel equivalence relations

Definition

E is countable if every E-class is countable.

Example

Any equivalence relation, EX
Γ , induced by a Borel action of a

countable group Γ on X

We actually have:

Theorem (Feldman-Moore)

Every countable E is of the form EX
Γ .

Example

Turing equivalence
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Countable Borel equivalence relations

Up to bireducibility they also include:

Example (K)

EX
G for G second countable locally compact group (e.g., Lie group)

Example (Hjorth-K)

Isomorphism of countable structures that are of “finite type”, e.g.,
finitely generated groups, locally finite trees, finite rank torsion-free
abelian groups, finite transcendence degree fields, etc.

Example (Hjorth-K)

Conformal equivalence of Riemann surfaces
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Hyperfinite

We will now consider the structure of ≤B on the countable Borel
equivalence relations.

The simplest countable Borel equivalence relations are the smooth
ones, which have a trivial structure. A countable Borel equivalence
relation is smooth if it admits a Borel transversal.

The next more complicated ones are the so-called hyperfinite ones.

Definition

E is hyperfinite if E =
⋃

nEn, with En increasing and finite (i.e.,
having equivalence classes that are finite).

Theorem (Slaman-Steel, Weiss)

E is hyperfinite iff it is of the form EX
Z .
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Hyperfinite

The hyperfinite equivalence relations have been classified under
bireducibility (and also isomorphism).

Theorem (Dougherty-Jackson-K)

Up to Borel bireducibility, there is only one non-smooth,
hyperfinite equivalence relation, namely E0.

Here E0 is the equivalence relation on 2N given by

xE0y ⇐⇒ ∃m∀n ≥ m(xn = yn).
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Universal

The hyperfinite equivalence relations are the simplest non-trivial
countable equivalence relations. At the other end there are the
most complex ones, the so-called universal ones.

Theorem (Dougherty-Jackson-K)

There is a universal countable Borel equivalence relation, E∞. It
satisfies E ≤B E∞ , for all countable E.

It is of course unique up to bi-reducibility.

Example

E∞ ∼B (the shift equivalence relation on 2F2)
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Universal

Another manifestation of universality is given by the following
results:

Theorem (Thomas-Velickovic)

Isomorphism of finitely generated groups is (up to bi-reducibility) a
universal countable Borel equivalence relation.

Theorem (Hjorth-K)

Conformal equivalence of Riemann surfaces is (up to
bi-reducibility) a universal countable Borel equivalence relation.
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Intermediate

Theorem (Dougherty-Jackson-K)

E0 <B E∞

There are countable equivalence relations which are neither
hyperfinite nor universal.

Theorem (Adams, Jackson-K-Louveau)

There exist intermediate countable Borel equivalence relations E,
i.e.,

E0 <B E <B E∞

Example

E = (the free part of the shift equivalence relation on 2F2)
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Intermediate

Since the early 1990’s a small finite number of intermediate
equivalence relations were known and they were linearly ordered
under ≤B. This lead to the following basic problems:

Problem

Are there infinitely many?

Problem

Does non-linearity occur here?

Theorem (Adams-K, 2000)

Every Borel partial order embeds into ≤B on the countable
equivalence relations.
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Set theoretic rigidity

The proof of the preceding theorem of Adams-K used Zimmer’s
cocycle superrigidity theory for ergodic actions of linear algebraic
groups and their lattices.

The key point is that there is a phenomenon of set theoretic
rigidity analogous to the measure theoretic rigidity phenomena
discovered by Zimmer.
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Set theoretic rigidity

(Measure theoretic rigidity) Under certain circumstances,
when a countable group acts preserving a probability measure,
the equivalence relation associated with the action together
with the measure “encode” or “remember” a lot about the
group (and the action).

(Set theoretic rigidity) Such information is simply encoded
in the Borel cardinality of the (quotient) orbit space.
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Set theoretic rigidity

Some set theoretic rigidity results:

Theorem (Adams-K)

|Tm/GLm(Z)|B = |Tn/GLn(Z)|B ⇔ m = n

Below Γp = SO7(Z[1/p]), p prime. Also Ep is the free part of the
shift equivalence relation on 2Γp .

Theorem (Adams-K)

Ep ≤B Eq ⇔ p = q
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Set theoretic rigidity

Since that time many other such set theoretic rigidity results have
been obtained but they all used sophisticated methods of ergodic
theory.

Theorem (Hjorth-K)

Let Γp = (Z/pZ ? Z/pZ)× Z. Then if Ep is the free part of the
shift equivalence relation on 2Γp , then the Ep are incomparable in
Borel reducibility. Similarly if for each subset S of odd primes, we
consider the group ΓS = (?p∈S(Z/pZ ? Z/pZ))× Z.
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Set theoretic rigidity

Here are also some striking such rigidity results from algebra:

Let ∼=n be isomorphism of torsion-free abelian groups of rank n,
i.e., subgroups of (Qn,+). This can be seen to be (up to ∼B) a
countable Borel equivalence relation.

Theorem (Thomas)

(∼=m) ∼B (∼=n)⇔ m = n

Thus
E0 ∼B (∼=1) <B (∼=2) <B (∼=3) <B · · ·
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Set theoretic rigidity

To this day it is unknown how to produce even a single example of
a pair of incomparable under Borel reducibility countable Borel
equivalence relations without using ergodic theory.
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Picture of ≤B on countable equivalence relations
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Algebraic structure

Although it was known for the last 20 years or so that the poset of
countable Borel equivalence relations under Borel reducibility was
quite complicated, practically nothing was known until very
recently about the structure of this poset.

Rather surprisingly progress was made recently from an unexpected
source: Tarski’s theory of cardinal algebras.

The following is joint work with Henry Macdonald.
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Cardinal algebras

In the late 1940’s Tarski published the book Cardinal Algebras in
which he developed an algebraic approach to the theory of cardinal
addition, devoid of the use of the full Axiom of Choice, which of
course trivializes it. A cardinal algebra is an algebraic system
consisting of an abelian semigroup with identity (viewed additively)
augmented with an infinitary addition operation for infinite
sequences, satisfying certain axioms.

The theory of cardinal algebras seems to have been largely
forgotten but I will show that they appear naturally in the context
of the current theory of countable Borel equivalence relations. As a
result one can apply Tarski’s theory to discover a number of
interesting laws governing the structure of countable Borel
equivalence relations, which, in retrospect rather surprisingly, have
not been realized before.
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Cardinal algebras

In order to give the flavor of the results that one can obtain by
applying Tarski’s theory of cardinal algebras to Borel equivalence
relations, I will mention a few representative examples.

Below if n > 0 is a positive integer and E an equivalence relation
on X, then nE is the direct sum of n copies of E, i.e., the
equivalence relation F on X × {0, 1, . . . , n− 1} (where E lives on
X), defined by (x, i)F (y, j) ⇐⇒ xEy & i = j.
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Cardinal algebras

Theorem (K-Macdonald)

(i) (Existence of least upper bounds) Any increasing sequence
F0 ≤B F1 ≤B . . . of countable Borel equivalence relations has a
least upper bound (in the pre-order ≤B).
(ii) (Interpolation) If S, T are countable sets of countable Borel
equivalence relations and ∀E ∈ S∀F ∈ T (E ≤B F ), then there is
a countable Borel equivalence relation G such that
∀E ∈ S∀F ∈ T (E ≤B G ≤B F ).
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Cardinal algebras

Theorem

(iii) (Cancelation) If n > 0 and E,F are countable Borel
equivalence relations, then

nE ≤B nF =⇒ E ≤B F

and therefore
nE ∼B nF =⇒ E ∼B F.

(iv) (Dichotomy for integer multiples) For any countable Borel
equivalence relation E, exactly one of the following holds:

(a) E <B 2E <B 3E <B . . . ,

(b) E ∼B 2E ∼B 3E ∼B . . . .
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What is a cardinal algebra?

A cardinal algebra is a system 〈A,+,
∑
〉, where 〈A,+〉 is an

abelian semigroup with identity, which will be denoted by 0, and∑
: AN → A is an infinitary operation, satisfying the following

axioms, where we put
∑

n<∞ an =
∑

((an)n∈N):

(A)
∑

n<∞ an = a0 +
∑

n<∞ an+1.

(B)
∑

n<∞(an + bn) =
∑

n<∞ an +
∑

n<∞ bn.

(C) If a+ b =
∑

n<∞ cn, then there are (an), (bn) such that

a =
∑
n<∞

an, b =
∑
n<∞

bn, cn = an + bn.

(D) If (an), (bn) are such that an = bn + an+1, then there is c
such that for each n, an = c+

∑
i<∞ bn+i.
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The poset of a cardinal algebra

In a cardinal algebra A, let

a ≤ b ⇐⇒ ∃c(a+ c = b).

It turns out that this is a partial ordering. Moreover all the
expected commutativity, associativity laws for +,

∑
and

monotonicity with respect to ≤ hold.

Borel equivalence relations, cardinal algebras and structurability



Countable Borel equivalence relations and cardinal algebras

Definition

Let E be the class of countable Borel equivalence relations. We
denote by [E ] the quotient space of E by ∼B, i.e.,
[E ] = {[E] : E ∈ E}, where [E] = {F ∈ E : E ∼B F}. We call [E]
the bireducibility type of E (in E).

If Ei, i < n, where n ≤ ∞, are equivalence relations, with Ei living
on Xi, then we let

⊕
i<nEi be the equivalence relation on⊔

i<nXi =
⋃

i<nXi × {i} given by

(x, j)
⊕
i<n

Ei(y, k) ⇐⇒ j = k & xEjy.

We can now define on [E ],

[E] + [F ] = [E ⊕ F ],∑
n

[En] = [
⊕
n

En].
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Countable Borel equivalence relations and cardinal algebras

We now have

Theorem (K-Macdonald)

〈[E ],+,
∑
〉 is a cardinal algebra. Moreover, for E,F ∈ [E ],

E ≤B F ⇐⇒ [E] ≤ [F ].

Thus all the laws of cardinal algebras that are proved in Tarski’s
book are valid for countable Borel equivalence relations, in
particular those stated in earlier slides.

Remark

It is unknown if the bireducibilty types of arbitrary Borel
equivalence relations form a cardinal algebra. It is known however
that even it is a cardinal algebra, its partial order will not be that
of reducibility.
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Cancelation laws

In particular, recall the cancelation law for sums:

If n > 0 and E,F are countable Borel equivalence relations, then

nE ∼B nF =⇒ E ∼B F.

On can ask whether there an analogous result for products.
If E,F are equivalence relations, on X,Y , resp., their product
E × F is the equivalence relation on X × Y defined by:

(x, y)E × F (x′, y′) ⇐⇒ xEx′ & yFy′.

For n ≥ 1 we let En be the product of n copies of E.
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Cancelation laws

As opposed to the case of sums, we show that cancelation fails for
products:

Theorem (K-Macdonald)

There are countable Borel equivalence relations E <B F such that
E2 ∼B F 2.
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Cancelation laws

The proof is inspired by tanother result of Tarski in cardinal
arithmetic that states that the Axiom of Choice is equivalent to
the statement: For any two infinite cardinals κ, λ,
(κ2 = λ2 =⇒ κ = λ).

As opposed to the proof of Tarski’s Theorem, which makes use of
the Hartogs number of an infinite cardinal to produce, assuming
the Axiom of Choice fails, two infinite cardinals µ, ν such that if
κ = µ+ ν, λ = µ · ν, then κ2 = λ2 but κ < λ, the proof of this
theorem uses some deep results of ergodic theory and geometric
group theory, thus it is far from elementary.
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Cancelation laws

Idea of the proof: Take a countable group Γ which is the infinite
direct sum of a countable group which is torsion free, simple and
has property (T). Then take a countable group ∆ which is the
infinite direct sum of a countable group which is torsion, simple and
has property (T) (these exist by results of Ol’shanskǐi). Let R be
the equivalence relation induced by the free part of the shift action
of Γ on [0, 1]Γ and similarly define S for ∆. Then it turns out that
if E = R⊕ S and F = R× S, then E <B F but E2 ∼B F 2.
Among other things the proof uses Popa’s superrigidity theory.
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Algebraic structure

Despite these results, in general the algebraic structure of the
hierarchical order of Borel reducibility remains quite mysterious.
For example consider the following simple question:

Problem

Are there two incomparable, under Borel reducibility, countable
Borel equivalence relations that have an infimum in the Borel
reducibility order?

Some progress has been achieved very recently by systematically
studying the concept of structurability of equivalence relations,
that has played an important role in this theory. This is joint work
with Ronnie Chen.
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Structurabilty

It will take too long to discuss in detail this theory, so I will
concentrate on a couple of results that in particular answer the
above question.

Let E be a countable Borel equivalence relation and K a class of
countable structures (like, e.g., linear orders, graphs, etc.). We say
that E is K-structurable if there is a Borel way to put a structure
in K on each equivalence class.

Examples

Hyperfinite, treeable, induced by a free Borel action of a fixed
countable group Γ, etc.
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Structurabilty

Fix now a Borel class of countable structures K (e.g., the class of
trees). We then have the following universality result:

Theorem (K-Solecki-Todorcevic, Miller)

There is a K-structurable countable Borel equivalence relation
E∞K, which is invariantly universal for the class of K-structurable
countable Borel equivalence relations. This is unique up to Borel
isomorphism.

Example

The universal equivalence relation for the class of equivalence
relations induced by a a free Borel action of a fixed countable
group Γ, is the one induced by the free part of the shift action of Γ
on [0, 1]Γ.
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Structurabilty

The next result shows that the Borel reducibility order contains a
very large distributive lattice. Below a countable Borel equivalence
relation E is called universally structurable if it is of the form E∞K.

Theorem (Chen-K)

The order of Borel reducibility among universally structurable
relations is a countably complete, distributive lattice, whose
(countable) infs and sups coincide with those in the class of all
countable Borel equivalence relations. Moreover, every Borel
partial order embeds into this lattice.

This in particular shows that there is a large class of incomparable
under Borel reducibility countable Borel equivalence relations that
admit (even countable) sups and infs and provide a positive answer
to the above question.
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