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Euxaplotieg

Euxapiotoupe Seppa:

® TOUG oUYYyevelg, ouvadedpoug, @idoug Kat pabntég Tou Anpr|tpn IoU CUPHETEIXAV OTO
Suuepo.

® TOUG OMANTEG Y1a TG OMIALEG TOUG KAl Y1d Td Kelpeva 1ou ouveloEpepav ota [Ipaxktuika.

o v Koounteia tg XxoAng Octuikov Emompev tou EBvikou kat Karodiotprakou
[Maveruotnpiou ABNVOV yia v OIKOVOUIKI] U0t PN g £€kdoong tev ITparktikmv

autou tou Sinpépou.






Anprtpng atiodpag

O Anuntpng 'atdoupag yevvnOnke to 1962. 'EAaBe 1o mtuyio tou ano to Tpnpa Mabn-
patkev tou EKITA kat 1o §18aktopiko tou dimiepa, pe ermBAérnovia kadnyntr) tov Steven
Lalley, aro to ITavermotijpio Purdue to 1992. L1 ouvéxela eixe petadidakropikég Séoeig
oto [avermotpo Yale, to [averuotpio Kpring, to [Tavermotpio Cambridge kat to Ila-
vermotpo Purdue.

Enéotpeye otnv EAAada, apxikd oto Tprpa Mabnpatikev tou IMavemotnpiov Kprjing
(mpoypappa Epsuvniov ESotepikov tng ITET) v nepiobo 1999-2001, kat otr) cuvéxela
dietédeoe pédog AEII tou levikou Turpatog tou Feonovikou Iavermotnpiovu €éng 10 2016.
Yripée ertiong Ermokérnng Kabnynug oto [Maveruot)pio g California, San Diego. Ao
10 2016 uninpetovoe ®g Kabnyntrg oto Tprpa Mabnpatkev tou EKIIA.

O Anuntpng Fatdoupag xapaxinpidotav armo 10 €UP0G TOV EPEUVITIKAOV evilapepOVIimOv
10U 1a oroia ekteivoviav oe Sidpopeg meploxég g Mabnuatikng Avaduong kat g Ocw-
ptag IMBavottev. To gpeuvnuikd ToU £pyo eivatl H1eBvwg avayveplopévo Kat cuprneptAap-
Bavetl dnpootevosilg oAU VYPNAnNG otdbung ot Oswpia Métpou, ) Oewpia ITiBavottev,
v Appovikn AvdAuor, v Kuptr) Feopetpikr) Avaduon kat v Epyodikr) Ocwpia. Ymup-
e 18waitepa agooiwpévog 6aokalog: oto Turua Mabnuatikev tou EKIIA §i6age mAri0og
S1aPoPETIKOV PabnPAT®V 1000 0€ MPOMIUXIAKO 000 Kdl O€ PETATTUX1AKO eminedo. Eixe
MOAU ONPAVIIKY] EMTIPPOL] OTr) VEd Yevid TV anodoitewv tou Turpatog kat kabodrynoe pe-
ydAo ap1fpo petantux1akov Smepatkev epyactov. O Anuitpng €puye avaraviexa tov
AexépBpn tou 2020. To KeVO TIOU AP VEL OTO TPOITTUXIAKO KAl PETATTTUX1AKO Tpoypapa
tou Turfpatog eivat oAU peydlo.

H xowotnta tou tnnpatog Sa tov Supdrtal mavia pe ouyKivnon Kat 9a kpatnoet {oviavr)

) PvNpn tou.






Dimitris Gatzouras

Dimitris Gatzouras was born in 1962. He obtained his degree from the Department
of Mathematics of NKUA and his PhD from Purdue University in 1992 (advisor: Steven
Lalley). He has held postdoctoral positions at Yale University, the University of Crete,
the University of Cambridge and Purdue University.

He returned to Greece, initially in the Mathematics Department of the University
of Crete (program for researchers from abroad of the GSRT) from 1999 to 2001, and
then was a faculty member of the General Department of the Agricultural University of
Athens until 2016. He was also a Visiting Professor in the University of California at
San Diego. Since 2016 he served as a Professor in the Department of Mathematics of
NKUA.

Dimitris Gatzouras was characterized by the wide range of his research interests.
These extended in several areas of Mathematical Analysis and Probability Theory. His
research is internationally recognised and consists of publications of a very high stan-
dard, in Measure Theory, in Probability Theory, in Harmonic Analysis, in Convex Geo-
metric Analysis and in Ergodic Theory. He was a particularly devoted Teacher: in the
Department of Mathematics of NKUA he taught a large number of different courses at
the undergraduate as well as the graduate level. He exerted a very important influence
on the new generation of the Department’s graduates and supervised a large number of
postgraduate theses.

Dimitris passed away unexpectedly in December 2020. His departure has created a
very wide vacuum in the undergraduate and graduate program of the Department.

Our department’s community will always remember him affectionately and will keep
his memory alive.
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Spectral Radius Formulae for the Measure Algebra
and the Fourier-Stieltjes Algebra

Michael Anoussis

In memory of Dimitris Gatzouras

Abstract

We present a spectral radius formula for the measure algebra of a compact
group, and apply it to the study of random walks on compact groups. These are
results of joint work with D. Gatzouras. We also present a spectral radius formula
for the Fourier-Stieltjes algebra, obtained by P. Ohrysko and M. Roginskaya.

1 A Spectral Radius Formula for the Measure Algebra

Throughout this note G is a locally compact group, A¢g is the left Haar measure on G,
and when G is compact, Ag will be assumed to be normalized to have total mass equal
to 1. We shall denote by LP(G), 1 < p < oo, the Banach space of equivalence classes
of p-integrable functions on G. We will denote by M (G) the space of complex, regular,
Borel measures on GG, and by ||u|| the total variation norm of © € M (G). It is well known
that when y has a density f € L'(G) with respect to Haar measure, then ||u| = || f|1.
We will also consider the space L'(G) as a subspace of M(G), identifying a function
f € LY(G) with the measure with density f. Under this identification L!(G) is an ideal
of M (G). We will denote by 15 the function identically equal to 1 on G.

If A is a unital Banach algebra and = € A, o(x) will denote the spectrum of z, and
p(z) the spectral radius of z. Recall that

nHl/n nHl/n )

p(x) = lim_|a

= inf ||z

n—>o0 neN

The unitary dual G of G is the set of all equivalence classes of irreducible unitary
representations of G. Recall that when G is a compact group, the space G considered
as a topological space, is equipped with the discrete topology. Finally, for R € @ dr
will stand for the dimension of K.

If f ¢ LY(G), f will denote n-fold convolution of f with itself: f* = f x---x* f,
n € N. Similarly, for y € M(G), u™ = p -+ % p, n € N, will denote n-fold convolution
of p with itself.

If f € LY(Q), f will denote its Fourier transform:

~

(R = /G R (z7Y) f()ra(do);



recall that || f(R)|| < || f]l1 for all R € G, and that (f * g)(R) = G(R)f(R) for all R € G
and f,g € L'(G). Similarly, for u € M(G), ji will denote the Fourier transform of y:

iR = [ R(a™) p(d)

again |f(R)| < ||u|| for all R € G, and (i * v)(R) = P(R)fi(R) for all R € G and v €
M(G). For a measure p € M(G), pa.c and ps will denote its absolutely continuous
and singular parts respectively, with respect to Haar measure \;. Recall that ||u| =
ltta.c.|| + ||s]| for p € M(G). Finally, if @ and b are non-negative numbers, a \VV b denotes
their maximum: a V b = max{a, b}.

The following theorem which establishes a spectral formula for the measure algebra
of a compact group is proved in [1].

Theorem 1.1. Let G be a compact group, let G be its unitary dual, and let u € M(G).
Then
: nl/n _ ~ : ny ||1/n
i (a7 = sup p(A(R)) v inf ("), [
ReG
Corollary 1.2. Let G be a compact group, let G be its unitary dual, and let f € L'(G).

Then

~

lim | fy/" = max p(F(R)).

n——aoo REG

Remarks.

(1) Recall that the radical Rad [L!(G)] of the ideal L!(G) is the closed two-sided ideal
in M (G) consisting of those i € M (G) for which

: ny (1/n _
Tllrelgll([f/*u] )l =0

for all v € M(G). Thus Corollary 1.2 extends to Rad [L'(G)]: ie., for p €

Rad [L(G)],
im "]V = sup p(A(R)).- (1.1)

RedG

(2) On the other hand, (1.1) does not extend to all of M (G), and this reflects the fact
that M (G) is asymmetric (cf. [5]). In fact (1.1) cannot hold on any asymmetric
subalgebra of M (G). For suppose A is asymmetric. Then there exists a self-
adjoint measure p € A, i.e., with u* = p where p*(B) = u (B~1), whose spectrum
o(u) contains a non-real complex number A = u + iv, and we may, without loss
of generality, assume that ||| = 1 and that v > 0. Then there exists a polynomial
p, with p(0) = 0 and such that |p()\)| > max,¢_1 1] [p(z)|. (For example, consider
ic

the entire function f(z) = ze '“*, where c is such that

[FA=[Ale® > 1= max |f(z)],
z€[—1,1]

and approximate it by its Taylor polynomial, uniformly on the closed unit disc.

We thank V. Nestoridis for this particular construction.) Since p is a polynomial



without constant coefficient and A is an algebra, we have that v = p(u) € A. On
the other hand, p(\) € o(v), whence p(v) > |p(\)|. Since p = p*, the operator
L(R) is self-adjoint and hence its spectrum is real for any R € G; since V(R) =
p (1i(R)). and therefore o (V(R)) = p (o (i(R))). we must then have that p(D(R)) <
max,e(—11] |p(z)| for all R € G. Thus the measure v € A cannot satisfy (1.1).

(3) We would like to note that, in contrast, formula (1.1) does hold for all central
measures on a compact simple Lie group. This follows from results of Ragozin
[14] (Corollary 3.4 and its extension to the disconnected case, p. 228, in [14]), in
conjunction with usual Gelfand theory. Note that for such groups, the algebra of
central measures Z (M (G)) is in fact symmetric [14, p. 221].

2 An Application

If G is a compact group and p a regular Borel probability measure on G, we shall say
that the pair (G, ) is adapted if i is not supported by a proper closed subgroup of G.
When (G, i) is adapted, we shall say that p is strictly aperiodic if it is not concentrated
on a coset of a proper, closed, normal subgroup of G.

As an application of the spectral radius formula of Theorem 1.1 the following is

proved in [1].

Theorem 2.1. Suppose G is a compact group, and j. a regular Borel probability measure
on G. Then

i = 2al = sup p(E(R)) v inf [l(a"), "
ReG {1¢} "€

In particular, ||p" — Ag|| — 0 iff

(1) (G, p) is adapted and 1 is strictly aperiodic, and
2 w, MQ, ... are not all singular with respect to Haar measure \g.
Moreover, the convergence |u™ — Ag|| — 0 takes place exponentially fast when it holds.

Corollary 2.2. Suppose G is a compact group, and 1 a regular Borel probability measure
on G. Suppose further that p is absolutely continuous with respect to Haar measure Ag
on GG. Then

lim [|u" = Ac|" = max p(A(R)).
n o0 RGG\{IG}

If in particular (G, 1) is adapted and . strictly aperiodic, then ||u™ — Ag|| — 0 exponen-
tially fast.

Remarks.

(1) Corollary 2.2 already appears in [10, Theorem 13 and §5.2] (see also [9]). However,

Corollary 2.2 also gives the rate of decay of ||u™ — Ag||; in particular, the estimate

lim [|u" = Ac|" = max p(i(R)) =a
n o0 REG\{].G}



is sharp, in the sense that, for each € > 0, one has that

a" < ||p" = Al < (a+ )",
for sufficiently large n.

(2) This estimate, valid when p has an L'-density, is also to be compared to a well
known estimate of Diaconis and Shahshahani [6], of use only when p™ has an
L?-density: [|u" — Aa|* < Y ps, dr [A(R)"]5 (here | |2 denotes the Hilbert-

Schmidt norm).

(3) A weak form of Theorem 2.1 seems to first have appeared in Bhattacharya [4,
Theorems 2 and 3]. In the general form presented here, it also appears in Mindlin
[11, Theorem 1], and in Ross and Xu [15, Theorem 4.1] (except again for the

precise rate of decay to 0).
The following lemma is implicit in the proof of Theorem 3.3.5 in [16].

Lemma 2.3. Let G be a compact group, and j. a regular Borel probability measure on G
not supported by a proper closed subgroup of G. If p(ﬁ(R)) = 1 for some R € G with
R # 1, then there exists a closed, normal, proper subgroup H of G with u(gH) = 1 for
some g € G.

Proof of Theorem 2.1. We provide a proof in case y has a non-trivial absolutely contin-

uous part. It is straightforward to verify that u™ — A\g = (1 — Ag)", so that

I =2al" — sup p (1= A6)(R)) V inf ("), "
ReqG "

= sup  p(f(R)) V inf [|(u"), ",
ReG~ {15} neN
by Theorem 1.1. Since 4. # 0, we must have that ||us|]| < 1. Since (G,u) is
adapted and p is strictly aperiodic, we also have that p(ﬁ(R)) <lforall R € G
with R # 1g, by Lemma 2.3. It then follows from the Riemann-Lebesgue lemma that
SUDpeG (14} p(A(R)) < 1; for if F C G is a finite set for which Ha.c. (R < 2 (1= |lusl)
forall R € G~ F, then

1R < fta.c. (R + |7 (R < 5(1 = llusll) + sl = 5 (1 + llus)
forall R € é ~ F\ , whence

sup  p(A(R)) < max p(A(R))V sup |[[A(R)|

ReG~ {1} ReF\{15} ReGF
< max p(ER)V(3+ ) < L
REF\{IG}

On the other hand, , which implies || (,u”)SHI/" < us]|-

Thus

(1)l < Ml (es)™

sup  p(f(R)) V inf || (u"), V" < 1,
ReG{1¢} ne



and so ||u" — Ag|| — 0, exponentially fast.

We prove the necessity of conditions (1) and (2). If (G, ) is not adapted, then u" is
concentrated on a closed proper subgroup of G. If i is not strictly aperiodic, there is a
proper, closed, normal subgroup N of G and g € G such that u is concentrated on gN
and consequently p" is concentrated on g"N. In either case, " is singular with respect
to Ag for all n € N. If 4" is singular with respect to Ag for all n € N, then ||u" — Ag|| = 2
for all n € N, whence " cannot converge to \g in norm.

O

3 A spectral radius formula for the Fourier-Stieltjes algebra

The Fourier algebra and the Fourier-Stieltjes algebra of a locally compact group were
introduced by Eymard in [7]. They are important objects of study in the area of Noncom-
mutative Harmonic Analysis. We refer the reader to the monograph [8] for information
about these algebras.

Let G be a locally compact group and B(G) be the space of all functions of the form

(R(z)&,n)

where R is a unitary representation of G in a Hilbert space H and &, are vectors in H.
If f € L'(G) we denote by

1fllc=(c)
the C*-norm of f, defined by

£l = sup{||R(f)] : R € G}.
The map

u > sup {' /G w(z) f(z)dw

is a norm on B(G). The space B(G) with this norm and pointwise multiplication is a

e LG flleme < 1}

Banach algebra, called the Fourier-Stieltjes algebra of the group G.
The Fourier algebra A(G) of a locally compact group G is the space of all functions

of the form
(AM@)&,m)

where ) is the left regular representation of G and ¢, 7 are in L?(G). It is a closed ideal
of B(G).

If G is abelian, the dual Gof Gisa locally compact group and then the Fourier-
Stieltjes transform p — [1 is an isometric isomorphism from the measure algebra M (G)
onto the Fourier-Stieltjes algebra B((A; ) of the group G. Similarly, the Fourier transform
f — [ is an isometric isomorphism from L'(G) onto the Fourier algebra A(@) of the
group G.

Recall that the measure algebra M (G) decomposes as

M(G) = LY(G) & My(G)



where L' (@) is identified via the Radon-Nikodym Theorem with the space of absolutely
continuous measures with respect to the Haar measure and M(G) is the space of
singular measures (i.e. the space of measures supported on a set of zero Haar measure).

Arsac has proved in [3] that there exists a subspace Bs(G) of the Fourier-Stieltjes
algebra such that B(G) decomposes as

B(G) = A(G) & B,(G).

If G is abelian, then the space of Fourier-Stieltjes transforms of measures in M,(G)
is the space B, (@ ) For more information about this decomposition of the Fourier-Stieljes
algebra the reader is referred to [13].

Let f € B(G). We will write

f = fa.c. + fs
with f,.. € A(G) and f; € Bs(G).
The following result was proved by Ohrysko and Roginskaya in [12].

Theorem 3.1. Let G be a locally compact group and f € B(G). Then, the spectral radius
p(f) of f is given by the following formula

p(f) = 1 flloo v inf [[(f™)s]l M/

Remarks.

(1) We recall that if G is a locally compact group, then G is an abelian compact group
if and only if its dual group G is an abelian discrete group. Thus, it follows from
Theorem 1.1 that the conclusion of Theorem 3.1 holds for discrete abelian groups
and similarly it follows from Theorem 3.1 that the conclusion of Theorem 1.1 holds

for abelian compact groups.

(2) A consequence of Theorem 3.1 is that the spectral radius formula of Theorem 1.1

is valid for all abelian locally compact groups.

(3) Itis proved in [2] that the spectral radius formula of Theorem 1.1 is valid for locally

compact motion groups.
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Half-space depth and threshold for the measure of

random polytopes
Silouanos Brazitikos™

Dedicated to the memory of Dimitris Gatzouras

Abstract

Given a probability measure p on R”, Tukey’s half-space depth is defined for any
z € R" by ¢, (x) = inf{u(H) : H € H(x)}. where H(x) is the set of all half-spaces
H of R” containing x. We show that if y is log-concave then

e < [ pueydnte) < et
R’VL

where L, is the isotropic constant of i and c¢;,c; > 0 are absolute constants.
Tukey’s half-space depth plays an important role in the study of the question if
there exists a threshold for the expected measure of the random polytope Ky =
conv{Xy,...,Xn}, where X;, Xs,... are independent random points in R" dis-
tributed according to ;. We present a general approach to this problem, which is
based on the Cramer transform A}, of .

1 Introduction

Our starting point is the last (chronologically) published paper of Dimitris. In a joint
work with A. Giannopoulos [13] they studied the question to obtain a threshold for
the expected volume of a random polytope defined as the convex hull of independent
random points with a given distribution. To get a feeling of the problem, consider first
the example of the hypercube [0, 1]” that was first examined in [11]. This polytope
has 2" vertices and volume 1. Let N = N(n), and let Z, Zs,... Zy be independent
random variables, each uniformly distributed over [0, 1|”. Form the convex hull K of
these random points, and let V;, y be its expected volume, that is V,, v = E|Kx|. How
large should N (n) be to pick up significant volume? The answer is surprisingly small.
Namely, let k = 27/ e7t1/2 where v is Euler’s constant and € > 0. Then, we have that

lim sup{V, n: N<(k—¢€)"} =0
n—oo

and
le inf{V, n: N> (k+€)"}=1.

*The talk is based on joint works with A. Giannopoulos and M. Pafis, supported by the Hellenic Founda-
tion for Research and Innovation (H.F.R.I.) under the “First Call for H.F.R.I. Research Projects to support
Faculty members and Researchers and the procurement of high-cost research equipment grant” (Project
Number: 1849) and the “Third Call for H.F.R.I. PhD Fellowships” (Fellowship Number: 5779).



In [13], a very general result of this type was proved. In this work, Z; have independent
identically distributed coordinates, according to a measure u (they imposed on it some
very mild assumptions) supported on a bounded interval. Using sophisticated tech-
niques from large deviations theory, they proved that in that case there is also a sharp
threshold, given by x = E,(A*), where A* is the Cramer transform of the measure p, i.e.
the Legendre transform of the log-Laplace transform of ;1 (see Section 3). According to a
general geometric lemma, to do this, the main task is to study Tukey’s half-space depth
¢, which is defined for any x € R" by ¢, () = inf{u(H) : H € H(z)}, where H(x) is
the set of all half-spaces H of R" containing z. In recent works with A. Giannopoulos

and M. Pafis we revisit these questions.

2 Tukey’s half-space depth

The first work in statistics where some form of the half-space depth appears is an article
of Hodges [14] from 1955. Tukey introduced the half-space depth for data sets in [20]
as a tool that enables efficient visualization of random samples in the plane. The term
“depth” also comes from Tukey’s article. A formal definition of the half-space depth
as a way to distinguish points that fit the overall pattern of a multivariable probability
distribution and to obtain an efficient description, visualization, and nonparametric
statistical inference for multivariable data, was given by Donoho and Gasko in [10] (see
also [19]). We refer the reader to the survey article of Nagy, Schutt and Werner [16] for
an overview of this topic, with an emphasis on its connections with convex geometry,

and many references. In [4] we study the expectation

Eu(@,u) = A&” @u(x) dﬂ(m)

of ¢, with respect to p. The following question was asked in [1]: Does there exist an
absolute constant ¢ € (0,1) such that E,(¢,) < ¢” for all n > 1 and all log-concave
probability measures p in R”?

We provide an affirmative answer.

Theorem 2.1. Let ;i be a log-concave probability measure on R, n > ng. Then, E,(¢,) <
exp (—cn/ Li) where L, is the isotropic constant of u and ¢ > 0, ng € N are absolute
constants.

Since the quantity E, (¢,,) is affinely invariant, we may assume that p is isotropic. If
ft is a log-concave measure on R" with density f,, the isotropic constant of 4 is defined
by

(WP Fu@)\ T
Lﬂ T ( fRn fu(fl’)dx > [d tC (/.L)] )

where Cov(yu) is the covariance matrix of x4 with entries

Cov(p)i; == Jon @i fu(@)dz Jpn xifu(2) do [pn 2 fu(z) do
v Jon ful@) dz S fu(@)dz oo fu(z)da
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We say that a log-concave probability measure 4 on R" is isotropic if is centered (it has
its barycenter at the origin) and Cov(u) = I,,, where [, is the identity n X n matrix. Note
that a convex body K of volume 1 is isotropic if and only if the log-concave probability
measure with density L 1x/r, is isotropic. The hyperplane conjecture asks if there
exists an absolute constant C' > 0 such that

L, := max{L, : p is an isotropic log-concave probability measure on R"} < C

for all n > 1. Let us mention here that the best known upper bound for L, is due
to Klartag and Lehec [15] (after breakthrough work of Y. Chen [8]) who showed that
L, < c(Inn)*, where ¢ > 0 is an absolute constant.

In fact, Theorem 2.1 is a special case of a more general result.

Theorem 2.2. Let i1 and v be two log-concave probability measures on R™, n > ng, with
the same barycenter. Then,

Buln) = [ pula)dvla) < exp (<en/1L3)
for some absolute constants ¢ > 0 and ng € N.

We also show that, apart from the value of the isotropic constant L, the exponential

estimate provided by Theorem 2.1 is sharp.

Theorem 2.3. Let i1 be a log-concave probability measure on R". Then,

[ u@duto) > e,

where ¢ > 0 is an absolute constarnt.

The proof of Theorem 2.2 and Theorem 2.3 makes use of several facts about isotropic
log-concave probability measures. In particular, we exploit the properties of the family
of the L;-centroid bodies Z;(u) of u; for any ¢ > 1 the body Z;(u) is the centrally

symmetric convex body whose support function is

o) = [ Jwtane)

Several variants of the threshold problem for the expected volume of random poly-
topes have been studied. Besides [11] and [13], the articles [18] and [2], [3] address
the same question for a number of cases where X; have rotationally invariant densities.
Exponential in the dimension upper and lower thresholds are obtained in [12] for the
case where X; are uniformly distributed in a simplex.

An upper threshold was obtained recently by Chakraborti, Tkocz and Vritsiou in
[7] for a large family of distributions: If p is an even log-concave probability measure
supported on a convex body K in R" and if X, X5, ... are independent random points

distributed according to u then for any n < N < exp(cin/ Li) we have that
E.v (IKN])
K]

where cj,co > 0 are absolute constants. In [4] we obtain an analogous estimate in a

< exp (*CQTL/L%L) ,

more general setting.

11



Theorem 2.4. Let i1 be a centered log-concave probability measure on R". Let X1, Xo, ...
be independent random points in R" distributed according to y and for any N > n
consider the random polytope Ky = conv{Xi,...,Xn}. Then, for any centered log-
concave probability measure v on R" and any N < exp(cin/L?) we have that

E,~ (v(Ky)) < exp (—CQTL/LZ) ,

where c1, co > 0 are absolute constants.

Theorem 2.4 shows that if N1(n) = exp(cn/L2), where ¢ > 0 is an absolute constant,
then

sup (Sup{E V(Kn)]: N < Nl(n)}) —0
JT8%

as n — 0o, where the first supremum is over all centered log-concave probability mea-
sures p and v on R"”.

A lower threshold is also established in [7] for the case where p is an even k-
concave measure on R” with 0 < k < 1/n, supported on a convex body K in R"™. If
X1, Xo, ... are independent random points in R™ distributed according to p and Ky =
conv{Xy,..., Xy} as before, then for any M > C and any N > exp (L(logn + 2log M))

we have that
EMN (’K N D 1
2 r-Y
K] M
where C' > 0 is an absolute constant. Since the family of log-concave probability
measures corresponds to the case K = 0, it is natural to ask for an analogue of this
result for O-concave, i.e. log-concave, probability measures. We obtain the next lower

threshold for the case v = p.

Theorem 2.5. Let§ € (1/n? 1). Then,

irﬁf inf {E (1((L+8)KN)] : N > exp (C6 ' n(2/5) nlnn)} —1

as n — 0o, where the first infimum is over all log-concave probability measures p on R"
and C > 0 is an absolute constant.

It should be noted that an exponential in the dimension lower threshold is not
possible in full generality. For example, in the case where X; are uniformly distributed in
the Euclidean ball one needs N > exp(cn Inn) points so that the volume of a random Ky
will be significantly large. Thus, apart from the constants depending on ¢, Theorem 2.5
is sharp. However, it provides a weak threshold in the sense that we estimate the
expectation E,, v (11(1 4+ 6)K ) (for an arbitrarily small but positive value of §) while the
original question is about EMN (,LL(K N)) We are able to “remove the d-term”, however
the dependence on n is worse. More precisely, we show that there exists an absolute
constant C' > 0 such that

irﬁf inf {IE [W(KnN)] : N > exp(C(nln n)2u(n))} —1

as n — oo, where the first infimum is over all log-concave probability measures p on R"
and u(n) is any function with u(n) — oo as n — oo.

12



3 The threshold problem

In [5] we study the question to obtain a threshold for the expected measure of a random
polytope defined as the convex hull of independent random points with a log-concave
distribution. The general formulation of the problem is the following. Given a log-
concave probability measure p on R”, let X1, Xo, ... be independent random points in

R"™ distributed according to px and for any N > n define the random polytope
Ky =conv{Xy,..., Xn}.

Then, consider the expectation E,~ [¢(K v )| of the measure of K, where V= u®- - -eu
(N times). This is an affinely invariant quantity, so we may assume that y is centered,
i.e. the barycenter of y is at the origin.

Given § € (0,1) we say that u satisfies a “0-upper threshold” with constant p; if
sup{E,~[u(Kn)] : N < exp(oin)} < 6 (3.1)
and that p satisfies a “§-lower threshold” with constant g5 if
inf{E, ~[u(Kn)] : N > exp(o2n)} = 1 — 0. (3.2)

Then, we define the functions 0;(u,0) = sup{e; : (38.1) holds true} and ps(p,d) =
inf{ o2 : (3.2) holds true}. Our main goal is to obtain upper bounds for the difference

o(p,0) := 02(p, 6) — 01(, 0)

for any fixed § € (0, %)

One may also consider a sequence {1, }52 ; of log-concave probability measures i,
on R™. Then, we say that {1, }°2 ; exhibits a “sharp threshold” if there exists a sequence
{0, }22, of positive reals such that 6,, — 0 and o(pn, 6,,) — 0 as n — oo.

We present a general approach to the problem, working with an arbitrary log-concave
probability measure 1 on R”, which is based on the Cramer transform of x. Recall that
the logarithmic Laplace transform of p is defined by

MO =t ( [ Saut)),  gem
and the Cramer transform of y is the Legendre transform of A, defined by

(@) = sup {(2,6) ~ MO},  w e R™
£€Rn

For every ¢t > 0 we set

Bi(p) :={z e R" : A}, (z) < t}.
From the definition of A}, one can easily check that for every x € R" we have ou(x) <
exp(—Aj,(7)). In particular, for any ¢ > 0 and for all x ¢ Bi(u) we have that ¢, (r) <
exp(—t). A main idea, which appears in all the previous works on this topic, is to show
that ¢, is almost constant on the boundary 0(B;(u)) of B(p). Our first main result
shows that this is true, in general, if ¢ = pg is the uniform measure on a centered

convex body of volume 1 in R".

13



Theorem 3.1. Let K be a centered convex body of volume 1 in R". Then, for everyt > 0
we have that

int (i () 2 € Bulp)} > 15 exp(—t — 2v/).

This implies that
Wk (2) = 5vn <A™ (2) < wpye (o)

1
for every z € R", where w, () =In (5157 ).

Theorem 3.1 may be viewed as a version of Cramér’s theorem (see [9]) for random
vectors uniformly distributed in convex bodies. Its proof exploits techniques from the
theory of large deviations and a theorem of Nguyen [17] which is exactly the ingredient
that forces us to consider only uniform measures on convex bodies. It seems harder to
prove, if true, an analogous estimate for any centered log-concave probability measure
won R™.

The second step in our approach is to consider, for any centered log-concave prob-
ability measure 4 on R”, the parameter

_ Var,(A})

Bu) = B (A2)? (3.3)

provided that
852 = (B ((4)%))"7% < oo

Roughly speaking, the plan is the following: provided that ¢, is “almost constant” on
O(By(p)) for all t > 0 and that S(u) = 0,(1), one can establish a “sharp threshold” for

the expected measure of K with
02~ o1 ~ [|ALll L) = Eu(AL)-

Note that it is not clear in advance that A;: has bounded second or higher order mo-
ments, which is necessary so that 5(u) would be well-defined. We obtain an affirmative
answer in the case of the uniform measure on a convex body. In fact we cover the more
general case of k-concave probability measures, x € (0,1/n], which are supported on a

centered convex body.

Theorem 3.2. Let K be a centered convex body of volume 1 in R™. Let k € (0,1/n] and
let i1 be a centered k-concave probability measure with supp(u) = K. Then,

mAZ(m)
/e 2 du(r) < oo.

In particular, for all p > 1 we have that EM((A;(x))p) < 00.

The method of proof of Theorem 3.2 gives in fact reasonable upper bounds for
A} |lr(u)- In particular, if we assume that 1 = px is the uniform measure on a cen-
tered convex body then we obtain a sharp two sided estimate for the most interesting
case where p = 1 or 2.

14



Theorem 3.3. Let K be a centered convex body of volume 1 in R™, n > 2. Then,

Cln/LlQLK < ||A:K||L1(HK) < ||A:K||L2(HK) < eenlunn,

where L, is the isotropic constant of the uniform measure jix on K and ci,co > 0 are

absolute constants.

The left-hand side inequality of Theorem 3.3 follows easily from Theorem 2.1, one
of the main results in [4]. Both the lower and the upper bound are of optimal order
with respect to the dimension. This can be seen e.g. from the example of the uniform
measure on the cube or the Euclidean ball, respectively.

Besides Theorem 3.2, we show that AZ has finite moments of all orders in the
following cases:

(i) If p is a centered probability measure on R which is absolutely continuous with
respect to Lebesgue measure or a product of such measures.

(i) If i is a centered log-concave probability measure on R™ and there exists a function
g:[1,00) = [1,00) with lim;_,o g(¢)/ In(t+1) = +oco such that Z;" (1) 2 g(t)Z5 (1)
for all ¢ > 2, where {Z;" (1) }+>1 is the family of one-sided L;-centroid bodies of .

Again, it seems harder to prove, if true, an analogous result for any centered log-concave
probability measure p on R™.

Next we show how one can use the previous results to obtain bounds for o(yu, ).
We also clarify the role of the parameter $(;). One would hope that 3(u) is small as
the dimension increases, e.g. (1) < ¢/y/n. If so, then the next general result provides

satisfactory lower bounds for g; (i, 9).

Theorem 3.4. Let i be a centered log-concave probability measure on R". Assume that
B(pn) < 1/8 and 88(pn) < 6 < 1. Ifn/Li > c21n(2/0)+/0/B(p) where L,, is the isotropic

constant of i, then
E,. (A7)
.

o1(,6) > (1~ /830

We are able to give satisfactory upper bounds for g2(u, ) in the case where u = ux
is the uniform measure on a centered convex body K of volume 1 in R".

Theorem 3.5. Let K be a centered convex body of volume 1 in R™. Let f(pux) < 1/2 and
28(px) <6 <1.Ifn/L% > c2In(2/6)\/0/B(ux) then

paliee,§) < (14 V/EBGur)3) i),

Combining these two results we see that, provided that 3(ux) is small compared to
a fixed 6 € (0,1), we have a threshold of the order

¢ [Varu (As,)
0) < — _ PRV HKZ

o(px,9) < 5

The above discussion leaves open the question to estimate

B = sup{B(p) : p is a centered log-concave probability measure on R"}.

15



We illustrate the method that we develop in this work with a number of examples. We
consider first the standard examples of the uniform measure on the unit cube and the
Gaussian measure. As a direct consequence of our results, in both cases we obtain a
bound g(u,d) < ¢(d)/+/n for the threshold, where ¢(d) > 0 is a constant depending on
0. Finally, we examine the case of the uniform measure on the Euclidean ball D,, of
volume 1 in R". Here, we exploit the general fact that, for any centered convex body K

of volume 1 in R", if we consider the function wy,,. () = In(1/¢,, («)) and the parameter

Var# (WHK )

") = T ()2

then

Blux) = (r(ux) + O(Ly, V) (1+O(Lf, /).

In the case of the ball D,,, working with wy,, is easier than working with A7, p, - and we
can check that

7(up,) = O(1/n).

This leads to the following sharp threshold for the Euclidean ball.

Theorem 3.6. Let D, be the centered Euclidean ball of volume 1 in R". Then, the

sequence i, := pp, exhibits a sharp threshold with o(pi,, ) < \/ﬁ and e.g. in the case

where n is even we have that

MHg +0(Vn)

asn — oo, where Hy, = Y11 1.
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MaOaivovtag moAuovupa otov §1akpito Kubo

AfeEavbpog Eokevalng’

Ot aviootnteg twv Littlewood xat Bohnenblust-Hille

Eow K € {R,C} kat ay, ag, ... € K. Tetpippéva, éxoupe 6t

Z la;| = max{‘ Zaixi
i>1

i>1

: max |z;| < 1}.
i>1

Me agoppn v napandve tautotnta, o Daniell €éBeoe v €€1g epdtnon).
Epdtnon. Yriapxet otabepd C' < 0o wote yia kabe {a;j}ij>1 C K va éxoupe

> ayl < CSHP{‘ > az‘sz’yj‘ |zl 1Yl < 1} ;

i,5>1 1,51

IMpénet va onueiwOet 611 6ev tibetat mepiloplopdg oto mANOog TV a;j, Ondte avadnroupe
pla aviodtnta oty oroia 1 otabepd eivar aveapnin g Swdoraong. It didonun ep-
yaoia [11] o Littlewood artévinoe apvnukd otnv gepwinor tou Daniell kat arébede to €8ng

ONPavtiko arnotéAeopa.
H %-avwétqta tou Littlewood. Yriapxet otabepd C' < 0o dote yia kabe {ai;}ij>1.
3/4
4/3 . .
(3 Jas)"" < osup {| S aigaigs| = lellews Iyl <1}
4,521 5,521
ErmAéov, o ekBEng % eival o éAdx10T0g yla TOoV OIT0i0 1] MAPATAVe aviootntda 10XUEL.

H aviootnta tou Littlewood eivat e161kr) mepimntoorn piag oAU YEVIKOTEPNS AVIOOTNTAG

yla moAumvupa mou peAet)Onke yla npotn @opd amnd toug Bohnenblust kat Hille [2].

Av a = (aq,9,...) etval pia edikd pndevikyy akodoubia @uokev aplOpov kat © =

(1,2, ...), 1ote 9a Xpnoporolovpe toug cupBoAiopols |af = |ag| + |as] + -+ kat x® =
[ SR

xl x2 PEEErY

IMoAuvwvupiky avicotnta Bohnenblust-Hille. T'a xdbe d € N, unapyet otabepd Bgf <

00 ®WOTE yla KABe TIOAUDVUIO TG 110PONS

Vo= (z1,z2,...), p(z) = Z Cax™

lor|<d

*To mapdv eivar n mepidAnyn pag opidiag mou 86Onke oto ouvédplo otr pvhun tou A. Tatdoupa
(ITavermot)po Abnvev, 12-13 Maptiou 2022) kat Baociletal otg Kowveg epyaoieg [6, 7] pe toug P. Ivanisvili
Kkat L. Streck.
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va 1oXUel
24\ 57
(3 leal#) ¥ < B sup {lp(a): ol < 1.
loe|<d

ErurmAéov, o ekbétng 2Td1 etvat BeAtiotog.

H akp18ig acUPIMIOTIKY OUPIEPIPOPA TRV OTABEPROV BE} Kat Bélc MAPApPEVeL AYVQOoTr).
[Map'éda autd yvepiloupe ott o1 §Uo eivat oAU S1aPopeTikég PETAdy Toug, e181koTEPA ATt
Bélc < OVidled yig pa otabepa C > 1 evo lim supdﬁoo(BéR)l/d = 1+ V2 (evbewukd
avagdépoupe ta [4, 1, 3, 5]).

H Baon Walsh

Ta évav guoko apdpo n € N kat éva uroovvoro S C {1,...,n} n avtiotoyxn ocuvaptnon
Walsh wg : {—1,1}" — {—1,1} opiCetat wg wg(z) = [[;cq i, 0mov x = (z1,...,2,) €
{=1,1}". Ot 2" 1o Mfog ouvaptnoels {ws}scqi,.. »} etvar ava &vo xaBeteg 01O XDPO
Lo mou opiletat and 1o opodpopgpo pétpo rmbavotuag oo {—1,1}" xat ouvenog kabe

ouvaptor f: {—1,1}" — R pnopet va avarttuyBei povadikd og

vee{-L1}",  fl@)= Y  f(S)ws(e),

Sg{lv'"7n}

f(8) = Eu[f(@)ws(x)].

Aépe ou 1 ouvaptnon f €xel Badpod to rodv d kat ypagoupe deg(f) < d av f(S) =0 yia
KABe ovvoro S C {1,...,n} pe |S| > d. To avartuypa Walsh eivat s§aipetikd xprjopo
otnVv avaduon oto d1akpttd kKuBo. Xe autn tv opidia Sa Soupe PeEPIKEG EPAPHOYES TOU

OtV UToAOY10T1KY) dewpia pabnong (computational learning theory).

MaOaivovtag KAACELS OUVAPTI|OEWDV OTO S1aKrpLto Kubo

‘Eoww n € N, F pa kAdon npaypatikev ouvaptjosev oto {—1, 1} kat f € F pia dyveot
ouvaptnon. O®a pag arnaocyoAnoel 10 £Efg UMOAOYIOTIKO TPoBAnpa. Ag urnobécoupe Ot
X1, Xo, ... eivar pua akodoubia ave§dpuntov tuxaiov petaBAntov, Kabepia ek 1oV oroiwv
efvat opodpopea katavepnpévn oto {—1,1}".

Avalnroupe 1o eddyioto NV € N wote yvopidoviag ta edopéva

(lef(Xl))’ R (XNaf(XN))a

va PIopoupe va kataokeudooupe pia wyaia b : {—1,1}" — R n onoia va eivat pia kadn
nipoogyylon g f pe peyddn mbavotnta. Eidikdtepa, o autt) tnv niepidnyn 9a {ntrjoouie
n ouvdapwmon h va wavornotei ||h — f H2L2 < & pe Tubavotnta touddyiotov 1 — § érou ot

g,0 € (0,1) etval 6uo mpoermdeypéveg MApApeTpot.
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O AAyop10pog Xapndou BaOpou

To napanave nipoBAnpa £xet pedetnOet ot PBAoypadia yia rmoAAég Srapopetikég KAAOELS
F ouvaptrjoeov. To mpoto oxXetko avotnpd padnpatko anotédeopa ivat o Siaonpog ai-
yop1Opog (Low-Degree Algorithm) tev Linial, Mansour kat Nisan [10] ot ortoiot peAétnoav
Vv KAAoT)

Fra={f{-1,1}" = [-1,1] : deg(f) <d}.
O aAyop1Bog toug divel o 811G TTIOAUGVULIIKO @pAyua yia thv rapapetpo N.

O AAydp18pog Xapndo Ba®pov. Ecton € N, d € {1,...,n} xate,d € (0,1). Yndpxet
évag alyopidpog mou pabaivel kabe f € F, 4 pe mbavotnta tovdaxiotov 1 — § kat Lo-
opdaApa to oAU € ard to oAy N deiypata, orou N < % log (%).

Anodeiln. H 16éa eival va nidpoupe apretd Selypata @ote va PITOPECOURE va UTIOAOYi-
OOUME Pe PeydAn akpiBela 6Aoug toug cuvieheotég oto avartuypa Walsh g f. T éva
uroouvodo S C {1,...,n} pe |S| < d Sewpovpe tov eprelpikéd ouviedeotry Walsh

1 N
=N > F(Xws(X5).
j=1

H tuyaia petaBAnu) ag eivat éva dBpotopa avedapmiov ppaypévev tuxaiov petabAntov

kat wavorotel Elag] = f (S), ondte ano v avicotta Hoeffding £xoupe v ektipnon

Vo>0,  P{las— f(S) > b} <2 N2

N = N(b) = { 10g<§§<>ﬂ

d
P{las — f(S)| < b,V S} >1 _2§ <Z>6_sz/2 S1_s

Zuvenwg, av opicoupe

Sa &xoupe

arto v srmdoyn ou N. 'Eote G 10 evdexopevo oto aplotepd 1EAog autrg TS avioot|tag

kat Sewpovpe v txata cuvapmon h : {—1,1}" — R nou opiletat wg

Vae{-1,1}", h(z) = Z aswg(T).

SC{1,...,n}
Tote, ano v tauvtdtnta Parseval, oto evbexopevo Gy, €xoups
4 /n
2 ; 2 2
=13, = Ylas — F(S)? < Y <k>b <e
s k=0

ya b? <¢e/ Zzzo (Z) Avuikabiotoviag autr) v tpr) tou b oto N £€xoupue to anotédsoua.
O

21



Mua RaAUtepn EKTIPENOY)

H extipnon tov Linial, Mansour kat Nisan fjtav 1o povo yveoto @pdypa yla autr) v

noootnta peXpPt rmou rpocpata ot Iyer, Rao, Reis, Rothvoss kat Yehudayoff [8] aniédei§av

atnly Od7575(nd_1 log n) delypata apkouv Baoidépevor ot pia 16éa tov Kushilevitz kat Man-

sour [9]. To KUp10 anotéAeopa autig g opAiag eivatl pia AoyaptOpikn eKtipnon amo 1o
, {£1} , , , , ,

[6]. ®a oupbodidoupe pe By Vv gAayiot otabepd yla v oroia 1oxvet 10 £§1g: yia

n > d xkat k&0 ouvapwnon f: {—1,1}" — R Babpou to noAv d, éxoupe

d+1

(Y 1Fs)E) < BEVIf

[S|<d
Tautidovtag v f pe v MAEOYPAPHIKY TG MEKTAct oto ouvexr) kuBo [—1,1]", énetat
ot

L f ()| = s |f(2)]

KAl CUVETTOG Béﬂ} < B&R. Eivat yveooto [5] ot uniapyxet C' > 1 oote Béﬂ} < CVdlogd,

@cdpnpa. Eow €, € (0,1), n € N, d € {1,...,n} xat pa ouvapwmon f € F, 4. Av 10

N € N wavoroiet

eSd? {£1}\24 n
Nz (B s ().

e N avefdputa kat opodpopda tuxaia deiypata mg popong (z, f(x)), orou x €
{=1,1}", apkouv yla va kataokeuaotel pia wyaia ouvvapton b : {—1,1}" — R nou

wavorotet ||h — f H%Q < € pe rubavétnta tovAdayiotov 1 — 4.

Anobeln. 'Onwg mipv, otabeporotovpe b > 0 xkat opidoupe

N = N@b) = {;Mg (?ki; (Zm 7

WOoTE av

10t 10 evbexopevo Gy €xel TubBavotnta

d
P(Gy) = P{|as — f(S)| < b,V S} >1— 2;0 <Z>6—Nb2/2 >1-6.

'Eote pia véa rapdpetpog a > b kat 9swpoupe v tuxaia okoyEveld OuvOA@V Y, IOU
opidetal og
Yo = {S: |Oés‘ > CL}

Kat v wyaia ovvaptnon hep 0 {—1,1}" — R, émou

Vae{-L1}",  hopz)= > asws().
SeXq
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Sto evbexopevo Gy éxoupe ot av S € %, tote |f(S)] > a — b, eve av S ¢ %, tote
| f (S)] < a+b. Zuvenwg, oupnepaivoupe and v avicétta Bohnenblust-Hille oto

01aKkp1T6 KUBO OTL

2 2 2d 2d 2d
Sal < (a =) 37 ()T < (BT ( —b)" 7T
SeX,
'Eto1, ouvbuddoviag tnv tautotnta tou Parseval pe pia akopn epappoyr) g aviootntag

Bohnenblust-Hille kataAfjyoupe niog 1 tuxaia ouvaptnon A, 1kavorolet

o — fl2, = 3 (as = F(S)2+ 3 F(S)? <08 + (a+ )71 S [f(S)|rT

SeX, S¢S, S¢x,
< (BT (17— )7 + (a+ b)7).

AlaAéyoviag g BEAtioteg tapap€rpougs a, b yia tig oroieg to 6e€i péAog evat PIKPOTEPO TOU

€, ETIETAL TO CUPIEPACHA TOU Ye®PPATOG. [l

Kate gpaypata

H nipéogpatn epyaoia [7] mepdapBavel KATO @pAypatd yia Tov eAdax1oto apifpo detypatov
IoU  arattouvial yia va udlet xaveig pia yevikn ouvapwmon f € F, 4. To Kevipikd
arotédeopa ou dpbpou Seixver rwg Q24 . 5(logn) deiypata eivar anapaita ya avtd o
OKOITO, KATL ITOU artode1kvuel MG 10 Jedpnpa g IPonyouHevng evotntag eivat féAtioto
kaboig n — oo. H 18¢a eival mwg av pa vAdon F nepirapBaver k Boolean cuvaptr-
OE1G TIOU aréXouv IoAU avd 8uvo, tdte Kavévag adyopiBpog Sev propei va tg Sexmpiost
Xpnowonoovrag Atyotepa aro 2(log k) detypata. uvenog, to anotédeopa £netat eneidr)
n petpwkn evipornia g KAGong (Fr.q4, || - |1,) oupnepipépetat AoyapBpikd oto n kabog
n — o0o. To xkUplo 1eEXVIKO amotédeopa tou [7] elval pia véa eKtipnorn g PEIPIKIG €V-
1portiag autrg g KAAong rou eivat Bédtotn kabog n — o0 kat kabog d — 00, yia
d < logy n.
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Joint ergodicity of sequences - An exposition

Nikos Frantzikinakis*

Abstract

A collection of integer sequences is jointly ergodic if for every ergodic measure
preserving system the multiple ergodic averages, with iterates given by this col-
lection of sequences, converge in the mean to the product of the integrals of the
functions involved. Convenient necessary and sufficient conditions for joint ergod-
icity were given in [11] and this exposition uses a simplified version of the argument
in [11] in order to recover its main results under somewhat stronger assumptions.
The argument we give is rather short and avoids deep tools from ergodic theory. The
main result can be used to prove new ergodic theorems and give vast simplifications
of older results that depended on deep machinery from ergodic theory.

1 Introduction

The polynomial Szemerédi theorem of Bergelson and Leibman [1] states that if A is a set
of integers with positive upper density and p1,...,p; € Z[t| are polynomials with zero

constant term, then there exist m,n € N such that
m>m+p1(n)7"'7m+pf(n) €A

This generalizes the theorem of Szemerédi [28] on arithmetic progressions that corre-
sponds to the case where p1(n) = n,p2(n) = 2n,...,ps(n) = ¢n. The proof of Bergelson
and Leibman uses ergodic theory and up to this day it is the only proof that covers the
full generality of this result. Using the correspondence principle of Furstenberg [14, 15]
it turns out that it suffices to verify the following: For every measure preserving system
(X, X, u,T) and set A € X with positive measure, there exists n € N such that

p(ANT P AN . AT P A) > 0.

The proof of this multiple recurrence property proceeds by analyzing the limiting behav-
jor in L? (1) of the following multiple ergodic averages (see our notation for averages in
Section 1.1)

E, e TP fr - TP fy, (1.1)

Finding an explicit formula for this limit for all polynomials is still an unresolved prob-
lem, but in some cases the limit takes a particularly simple form, namely, it is the
product of the integrals of the functions fi,..., fr. Due to congruence obstructions
this can only be the case for totally ergodic systems, which is the reason why we are

particularly interested in this class of systems. The prototypical result was established

*The author was supported by the Hellenic Foundation for Research and Innovation, Project No: 1684.
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by Furstenberg and Weiss [16] and states that in a totally ergodic system for every
fyg € L (1) we have

lim_ Eneiy 7719 = [ fd [ gd 1.2)
N—o00

in L?(p). The proof of this result is rather involved and its most difficult component is
the analysis of a special class of two step distal systems, called Conze-Lesigne systems
(introduced in [7]), that control the limiting behavior of these averages. Conze-Lesigne
systems are particular examples of systems with nilpotent structure, a concept that
has played an important role in subsequent developments in the field. By combining
the Host-Kra theory of characteristic factors [17] and equidistribution results on nil-
manifolds from [22], the author and Kra extended in [13] the result of Furstenberg and
Weiss by showing that in a totally ergodic system if the polynomials p;, ..., p; € Z[t] are
rationally independent,! then for all f1,..., f; € L°°(u) we have

lim E,ecqy Tpl(”)fl~...-Tpf(”)fg:/fld,u--~/fgdu (1.3)
N—o0

in L?(y). If the polynomials are rationally dependent, then easy examples of totally
ergodic circle rotations show that the previous limit formula fails. In fact, when p;(n) =
n,pa(n) = 2n,...,pe(n) = ¢n, the limit can be computed using the results in [17, 30, 31]
and it turns out that it genuinely depends on the (¢ — 1)-step nilsystems that are factors
of the original system. So in order to obtain an explicit limit formula for the averages (1.1)
for dependent polynomials, the use of deep structural results from ergodic theory and
equidistribution results on nilmanifolds seems unavoidable. This is not the case though
for rationally independent polynomials, and it has been a tantalizing open problem for
quite a while to get an “elementary” proof for the limit formulas (1.2) and (1.3). The
main purpose of this note is to reproduce a simplified version of an argument from [11]
that accomplishes this goal. Moreover, as in [11], our main result (Theorem 2.1) gives
a rather general statement that applies to a variety of sequences, not just polynomials,
and this allows to prove some new convergence results and establish some conjectures.
We record a few examples from recent literature in Section 2.3. As in [11], our argument
was motivated by techniques of Peluse [24] and Peluse and Prendiville [26] of finitary
nature that were originally devised to give quantitative estimates for special cases of the
polynomial Szemerédi theorem.

1.1 Definitions and notation

With N we denote the set of positive integers and with Z, the set of non-negative
integers. For t € R we let e(t) := ¢*™. With T we denote the one dimensional torus
and we often identify it with R/Z or with [0,1). With R(z) we denote the real part
of the complex number z. For N € N we let [N] := {1,...,N}. Ifa: N* — Cis a
bounded sequence for some s € N and A is a non-empty finite subset of N¥, we let

Eneca a(n) = ﬁ ZneA a(n)

'A collection of integer polynomials is rationally independent, if every non-trivial linear combination of

the polynomials is non-constant.
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2 Main results

2.1 Definitions
In order to facilitate our exposition we reproduce some definitions from [11].

Definition. We say that the collection of sequences a1, ...,a,: N — Z is jointly ergodic
Jor the ergodic system (X, X, u,T), if for all f1,..., fy € L*°(u) we have

lim EnG[N} Tal(n)fl SR Ta[(n)fg = /f1 du - ...- /fg du (2.1)
N—ro0

in L2(u).

If a collection of sequences is jointly ergodic for every ergodic system, then an er-
godic decomposition argument shows that the limit formula (2.1) holds for every system
(X, X, u, T) (not necessarily ergodic), if we use in place of the integrals f fi du the con-
ditional expectations E( f;|Z(T")) (Z(T') is the o-algebra of T-invariant sets). This implies

that the following strong multiple recurrence property holds
lim Ene[N] ,U,(A n Tﬁal(n)A N---N T*W(”)A) > (M(A))€+17
N—o0

for every system (X, X, u,T) and every A € X. It is then a consequence of the corre-
spondence principle of Furstenberg [15] that every set of integers with positive upper
density contains patterns of the form m,m + ay(n),...,m + ag(n), for some m,n € N.

Definition. If (X, X', u,T) is a system we defined its spectrum as follows
Spec(T) := {t € [0,1): Tf = e(t) f for some non-zero f € L*(u)}.
For the definition of the seminorms || - ||s we refer the reader to Section 3.2.
Definition. We say that the collection of sequences aq,...,ap: N — Z is:

(i) good for seminorm estimates for the system (X, X, u, T, if there exists s € N such
that if fi,..., fr € L>(p) and || fi]|s = O for some ¢ € {1, ..., ¢}, then

RN Tam e, =0
in L2(”),

(ii) good for equidistribution on S C [0, 1), if for all ¢1,...,t; € S, not all of them 0, we
have
lim E,cnje(ar(n)ts + -+ ag(n)ty) = 0. (2.2)

N—oo

It is known [18, 23] that if py,...,p,: N — 7Z are polynomials with pairwise non-
constant differences, then they are good for seminorm estimates for every ergodic sys-
tem. They are also good for equidistribution for all totally ergodic systems if and only
if the polynomials are rationally independent; this follows easily from a well known
equidistribution result of Weyl. If cy,...,cy are positive distinct non-integers, then it
can be shown [9] that the collection of sequences [n“],. .., [n%] is good for seminorm
estimates and good for equidistribution for all ergodic systems.
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2.2 Main result

We are now ready to state our main result (in applications we are going to use it for

S=10,1)and § = ([0,1)\ Q) U {0}.).

Theorem 2.1. Let S be a susbet of [0,1) with countable complement in [0,1). The
collection of sequences a1, . ..,a;: N — 7 is jointly ergodic for all systems with spectrum
in S if and only if it is good _for seminorm estimates and equidistribution for these systems.

Remarks. e The necessity of the conditions is easy to establish, the interesting part is
the sufficiency.

e Theorem 1.1 in [11] uses somewhat weaker assumptions. The stronger assumption
we use here allows to simplify the proof in [11].

e Theorem 1.4 in [11] shows that under weaker equidistribution hypothesis, which
are satisfied by collections of rationally independent integer polynomials, the rational
Kronecker factor controls the limiting behavior of the associated multiple ergodic aver-

ages. One can deduce this result from Theorem 2.1 as in [11, Section 5].

In order to facilitate understanding, we are going to first prove Theorem 2.1 for £ = 2
in Section 4 and then explain the necessary changes needed for the proof of the general
case in Section 5.

Since for totally ergodic systems (X, X, u, T') we have Spec(T') C ([0,1) \ Q) U {0},
an immediate consequence of Theorem 2.1 (for S = ([0,1) \ Q) U {0}) is the following
result:

Corollary 2.2. The collection of sequences ai,...,ap: N — Z is jointly ergodic for all
totally ergodic systems if and only if it is good for seminorm estimates for all totally
ergodic systems and (2.2) holds for all t1,...,ty € [0,1) that are either irrational or zero
but not all of them zero.

This applies to collections of rationally independent polynomials p1,...,p; € Zlt],
hence we recover the limit formulas (1.2) and (1.3).

2.3 Applications

Theorem 2.1 can be used to give significantly simpler proofs of results in [3, 9, 13, 16,
20] (the parts that correspond to joint ergodicity properties). But it also gives access
to convergence results not previously known. The main reason why Theorem 2.1 is
advantageous for these applications, is that it enables us to bypass some difficult and
often inaccessible equidistribution results on nilmanifolds that need to be established in
order to use the Host-Kra theory of characteristic factors. We record a few instances of
these applications below. We remark that in all these cases the most difficult component
is to verify the good seminorm property; verifying the needed good equidistribution
property is usually a simple matter.

Theorem 2.1 was used in [12] to prove the following joint ergodicity result for se-
quences given by fractional powers of primes.
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Theorem 2.3 ([12]). Letcy,...,cy be distinct positive non-integers. Then the collection of
sequences [pSl], ..., [p%] is jointly ergodic for every ergodic system.

Previously this was only known for £ = 1 and for £ = 2 it was not even known for
nilsystems or weakly mixing systems.
Another very interesting application of Theorem 2.1 was recently obtained by Tsinas

[29] who verified a conjecture of the author from [9] (see also [10, Problem 23]).

Theorem 2.4 ([29]). Let ai,...,as: [1,00) — R be functions from a Hardy field® that
have polynomial growth. Then the collection of sequences |ai(n)],...,[as(n)] is jointly
ergodic for all ergodic systems if whenever a(t) is a non-trivial linear combination of the

functions aq, . .., ay we have
) — )] _
t—o0 logt
Jor all polynomials p € Z|[t].

Previously this was known for ¢/ = 1 (it follows easily from [6]) and for general ¢
partial progress was made in [4, 9, 20, 27].

Theorem 2.1 was also used in [11] in order to address a problem of Bergelson,
Moreira, and Richter [4, Conjecture 6.1]. It establishes an extension of the limit formula

(1.3) that covers iterates given by polynomials with fractional powers.

Theorem 2.5. Let a1,...,a;: Ry — R be linearly independent functions of the form
Zle a;t% where ay,...,a € Q and cy,...,c; € (0,400). Then the collection of se-
quences [a1(n)], ..., [as(n)] is jointly ergodic for all totally ergodic systems.

Lastly, Theorem 2.1 was recently extended by Best and Moragues [5] to a large
class of countable Abelian group actions, and this extension was subsequently used
by Donoso, Koutsogiannis, and Sun [8] to prove joint ergodicity results for commuting
transformations with polynomial iterates under some ergodicity assumptions.

3 Background

3.1 Measure preserving systems

A measure preserving system, or simply a system, is a quadruple (X, X, u,T) where
(X, X, u) is a Lebesgue probability space and 7: X — X is an invertible, measurable,
measure preserving transformation. Throughout, for n € N we denote by 7" the com-
position T o --- o T (n times) and let T~ := (T")~! and 7° := idx. Also, for f € L?(p)
and n € Z we denote by 1™ f the function f o T™.

2This class includes all linear combinations of the functions t*(logt)®(loglogt)¢, a, b, c € R, and more
generally, all functions defined on some half-line [¢, c0) using a finite combination of the symbols +, —, X, :

,log, exp, operating on the real variable ¢t and on real constants.
3This condition is close to being necessary, in the sense that if it fails for some non-linear p, then

the collection of sequences a1, ...,a¢ is not going to be jointly ergodic for some ergodic rotation on the

/-dimensional torus.
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We say that the system (X, X, u, T) is ergodic if the only functions f € L?(u) that
satisfy T'f = f are the constant ones. It is totally ergodic if (X, X, u, T d) is ergodic for
every d € N, or equivalently, if the system is ergodic and Spec(T") C ([0,1) \ Q) U {0}.

A function f € L?(u) is an eigenfunction of the system if T'f = e(«a) f for some « € R.
We denote with £(7T') the set of all eigenfunctions of the system with unit modulus.

3.2 Gowers-Host-Kra seminorms

Throughout, we use the following notation:

Definition. Let (X, X, u,T) be a system and f € L*(u). If n = (n1,...,ns) € Z°,
n' = (nf,...,n.) €Z% e=(e1,...,¢65) €{0,1}*, and z € C, we let

@) e-n:=€ny+ -+ €sns;

(ii) |n|:=|n1|+ -+ |ns

(iii) C'z := 2 if [ is even and C'z = Z if | is odd:

(iv) A, f:=T"f f.n€Z;

W Anf = Ay - Ap f = [Teeqonys CHIT 2.
For instance, we have

A(m,nz)f — f . Tm?, Tn27, Ternzf7 ni,ng € 7.

Given an ergodic system (X, X, u,T) we will make extensive use of the seminorms

Gowers-Host-Kra seminorms, or uniformity seminorms, and are defined inductively for
f € L*°(u) as follows:
I = [ 7,

s+1 . s
LAY = Jim EnepllAnfI2 8.1

s» § € N, on L*(u), that were introduced in [17]. They are often refereed to as

and for s € Z we let

For instance, we have
4 : r n 2
1718 = Jim Bnep| [ F-17f dul
N—o0
An application of the mean ergodic theorem shows that
mfm% = Nlllinoo Ean[Nl] lelinoo ETLQE[NQ} /f ’ Tnl? ) TnQ? : Tnl+n2f dyt. (3.2)

Likewise, by successive applications of the mean ergodic theorem, it can be shown that
the limit in (3.1) exists and for f € L*°(u) and s € Z; we have that (see [17] or [19,
Chapter 8])

mfmzs = lim --- Nhgloo EmG[Nl] o 'EnSG[Ns] /A(m,...,ns)fdﬂ- (3.3)

N1~>oo
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For s’ € [s] it can be shown that we can take any s’ of the iterative limits to be simulta-
neous limits (i.e. average over [N]* and let N — oc) without changing the value of the
limit. This was originally proved in [17] and for a much simpler proof see [2]. Taking

s’ = s gives

712 = i Enepy [ Auf dp 6.4
N—o00
For s > 2 taking s’ = s — 1 and using the mean ergodic theorem gives
28 : 2
91 = i Epeiyos| [ Aufdal .5
—00
Lastly, for s > 3 taking s’ = s — 2 gives
171 = Jim Epepnys-2lAnf]l2. (3.6)
—00

3.3 Soft inverse theorems

Recall that if (X, X, 4, T') is a system, with £(T") we denote the set of its eigenfunctions
with unit modulus.

Proposition 3.1. Let (X, X, u,T) be an ergodic system and f € L*(u) be 1-bounded.
Then

518 < sup R( [ £xan).

x€E(T)

Proof. Let K(T) be the closed subspace of L?(;) spanned by all eigenfunctions of the
system. It is not hard to prove (see for example [19, Chapter 8, Theorem 1]) that

1712 = 0712

where f := E(f|KC(T)). Since the system is ergodic and the underlying probability space
is Lebesgue, the subspace K(T') has an orthonormal basis of eigenfunctions of modulus
one, say (x;)jen. Then f = Y721 ¢j Xj where

o= [Foxpdn= [ fxpdu jen.
We have
LA = D lesl* < suplles ) D les = sup(le; ) 112, < sup | / £ dul,
j=1 JjEN j=1 JEN JEN

where the first identity follows by orthonormality and direct computation using (3.2),
the second identity follows by the Parseval identity, and the last estimate holds since all
functions involved are 1-bounded. The result now follows since the set £(T") is invariant
under multiplication by unit modulus constants. O

Proposition 3.2. Let (X, X, u,T) be an ergodic system and f € L*(u) be such that
I flls+2 > O for some s € Z..

(i) If s = 0, then there exists x € £(T') such that §R( Jf- XdM) > 0.
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(i) Ifs > 1, then there exist x,, € £(T'), n € N*®, such that
liminfEne[N]séﬁ(/Anf  Xn d,u) > 0.
N—oo — - -

Proof. If s = 0, then the conclusion follows immediately from Proposition 3.1.
Suppose that s > 1. By (3.6) we have that

: 4
Jim Byene18n 13 > 0.

Using Proposition 3.1 we deduce that

l}wgofEﬂe[N}s X:gg)%(/Anf : Xdu) > 0.

This immediately implies the asserted estimate. O

3.4 Gowers-Cauchy-Schwarz estimates
We will use the following variant of the so called Gowers-Cauchy-Schwarz inequality:

Lemma 3.3. Let (X, X, u,T) be a system, for s € N let f. € L>®(u), e € {0,1}°, be
1-bounded functions, and g, € L*(u), n € N°. Let also 1l := (1,...,1). Then for every
N € N we have

25
Ene[nys / H T%fe - gndp| < Eppens /Ann/fl'T_ngn,n/ dp,
ec{0,1}*

where for every n,n’ € N° the function g, , is equal to a product of 2° functions that
belong to the set {gy,g,,n € N°}.

Proof. For notational simplicity we give the details only for s = 2. The general case can
be proved in a similar manner by successively applying the Cauchy-Schwarz inequality
with respect to the variables ng, ..., n;, exactly as we do below for s = 2. We have that
2

‘Em,an[N] /fO . Tn1f1 . Tn2f2 . Tn1+n2f3 “ Gnyms du‘

is bounded by (we use that fy, f1 are 1-bounded)

2

EmG[N]/)Enze[N]Tnng'Tnl+n2f3 “Gnina| A

After expanding the square we find that this expression is equal to
En, (] /Enz,nge[N] T2 fy - TnzfQ Lt £ Tm—l-nz?g “Gnina  Gny dy.

After composing with T7"?, exchanging E, ¢(y) with E,, v cn]. using the Cauchy-
Schwarz inequality, and that fs is 1-bounded, we get that the square of the last expres-
sion is bounded by

Eng,néE[N] /

P _ _ 2
Enle[N] TnlfS : Tn1+n2 n2f3 A (gn1,7’L2 : gnhn/z) d/’L
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As before, we expand the square, and compose with 7~"'. We arrive at the expression

n1,n2,n},nLE[N]
n, —ni1 nl—no n! 4+nl,—ni1—ns —n1—no — —
/f3T ! 1f3'T 2 f3T 1R f3T ! (gnl,nz'gnl,né'gn’l,ng'gn/l,n’Q)d,ua

which is equal to the right hand side of the asserted estimate when s = 2 (for n :=
(n1,n2), n' := (n},n})). Combining the previous two estimates gives the asserted bound
for s = 2. O

4 Proof of the main result for / = 2

The goal of this section is to give a proof for the sufficiency of the conditions in Theo-

rem 2.1 for £ = 2 (the necessity is simple). It suffices to prove the following:

Theorem 4.1. Let S be a susbet of [0, 1) with countable complement in [0,1). Suppose
that the sequences a,b: N — Z are good for equidistribution on S and seminorm estimates
Jor the system (X, X, u, T') with Spec(T) C S. Then for all f,g € L*°(u) we have

i B 7071909 = [ - [ gd @
—00

in L2(p).

The proof of Theorem 2.1 for general / is similar to the case { = 2 but involves an
additional induction and is notationally more complicated; we describe the modifications

needed to get the more general statement in Section 5.

4.1 Preparation

In order to ease the exposition of the proof of Theorem 4.1 we use this subsection to
gather some preparatory results. We are going to complete the proof of Theorem 4.1 in
Section 4.2.

4.1.1 The case where g is an eigenfunction

We are going to make essential use of the good equidistribution assumption for the

sequences a,b: N — Z to prove the next result.
Proposition 4.2. Theorem 4.1 holds if g is an eigenfunction of the system.

Proof. If f is constant, then the conclusion easily follows from our equidistribution
assumption. Thus, it suffices to show that if [ fdu =0 and x € £(T), then

; a(n) ¢ pb(n),,
ngnooEne[N]T [-T"x =0

in L?(u).
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Suppose that the eigenvalue of x is e(«) for some o € Spec(T'). Then Tb(”)x =
e(b(n)a) x, so it suffices to show that

] a(n) £ _
]\;E)noo EnE[N} ey T f =0 (4.2)

in L?(u) where ¢, := e(b(n)a), n € N. To this end, we invoke the theorem of Herglotz
(see for example [21, Section 7.6]) for the positive definite sequence a(n) := [ f-T"fdu,
n € Z. It gives that there exists a positive bounded measure o on T (thought of as [0, 1))
such that

/f ST fdp = /e(nt) do(t), ne€Z. (4.3)

Note that o does not have a point mass on 0 because f has integral 0, or on any other
number on the complement of Spec(7") (we leave these standard facts as an exercise for

the reader). A simple computation that uses (4.3) shows that

—

2 = HEnE[N} cne(a(n)t)HLz(g), N € N.

Using this identity, the bounded convergence theorem, and the fact that the bounded
measure ¢ does not have point masses on 0 and on the countable set [0,1) \ S (since it
is contained on the complement of Spec(7')), we get that (4.2) would follow if we show

that for every non-zero t € S we have
lim K,y e(a(n)t + b(n)a) = 0.
N—o00

Since a € Spec(T) C S, this follows from our assumption that the pair of sequences
a,b: N — Z is good for equidistribution on S. O
4.1.2 Positivity for g implies positivity for an averaged function g

Our next goal is to show that if the positivity property (4.4) below holds, then it also
holds when we replace g with an averaged function g. This is a simple but crucial

observation because uniformity properties of g are easier to analyse than those of g.

Proposition 4.3. Let (X, X, u,T) be a systemand f,g € L*°(u) be such that

lim sup HEHE{N} Ta(”)f . Tb(”)g)

N—oo

> 0. (4.4)
L% ()

Then there exist N, — oo and 1-bounded g, € L*>(p), k € N, such that for
§:= lim By, T~ Mg, - 7000 F (4.5)
k—o00
where the limit is a weak limit (note that then g € L*(p)), we have

> 0. (4.6)

lim sup L)

N—oo

Eyepy T f - T g)

Proof. We can assume that both f and g are 1-bounded. For fixed f € L*(u) we let
C = C(f) be the L?(u) closure of all linear combinations of all subsequential weak-limits
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of sequences of the form E, ¢y T gy - T+ F where gy € L>*(u), N € N, are
1-bounded functions.
We first claim that if g is orthogonal to the subspace C, then

lim E,cin 7% f - T g =0
N—o0
in L?(;1). Indeed, if this is not the case, then there exist a > 0 and N} — oo such that

HENE[Nk] ToM £ . Tb(n)g‘

>a, keN.
L2(w)

If we define the 1-bounded functions gi := E, ¢y, T f . T"Mg k € N, we deduce
that
Eneny /gk . T“(”)f . Tb(")g dp>a?, keN. (4.7)

By passing to a subsequence, we can assume that the sequence of 1-bounded functions
Bl T g, . ToM)=b")F ke N, converges in the weak topology of L%(y) to a
function h € C. Then composing with 7% in (4.7) we deduce that IE hdu # 0,
contradicting our assumption that g is orthogonal to the subspace C. This proves our
claim.

From the previous claim we conclude that
lim B,y 7% f - T (g —E(gIC)) =0
N—oo

in L2(;1), where E(g|C) denotes the orthogonal projection of g onto the closed subspace
C. Hence, if (4.4) holds, then

> 0.

lim sup HEnE[N] Ta(n)f . Tb(n)E(QIC)’ 12(n)

N—oo

Using the definition of C and an approximation argument, we get that there exist Ny —
oo and 1-bounded functions g, € L (i), k € N, such that for g as in (4.5) we have that
(4.6) holds. Lastly, since f and gx, k € N, are 1-bounded functions, the same holds for
g. This completes the proof. O

4.1.3 Seminorms of averaged functions

Our next goal is to use Lemma 3.3 in order to show that if the uniformity seminorm of
an average of functions is positive, then some positiveness property holds for iterated
differences of the individual functions. Note that we do not impose any assumptions on
the sequences a,b: N — Z here.

Proposition 4.4. Let (X, X, u,T) be an ergodic system, and § € L*°(u) be as in (4.5)
and satisfy ||g||s+2 > 0 for some s € Z..

(i) If s = 0, then there exists x € £(T') such that

lim sup E, ¢ n,] %(/gk L)L b) d,u) > 0.

k—oo
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(i) If s > 1, then there exist x,, v € E(T). n,n' € N°, such that

. , i , a(n) (A , .
l}&lgofEQ@ €[N]: III?LSSPEHG[NH §R</(An ngk) T (A n— f) Xnn dﬂ) >0

Remark 1. The key point is that positivity properties of expressions involving A,g,
n € N*+2_ imply positivity properties of expressions involving Anf, n e N

Proof. Suppose that s > 1, the argument is similar if s = 0. Proposition 3.2 gives that
there exist x, € £(T), n € N°, such that

I}HO%fEQG[N]S %(/Ang : Xﬂd,u> > 0.

Since Ang = ng{o;}sC'g'T“ﬂﬁ, n € N% and g = limg o0 Enen,) fon (the limit is a
weak limit) where

from =Tt g . TaM=bOF  pp e N, (4.8)

we deduce that

1}{7n1nf lim Ene[Nk] 3%( ne[N]s / H C| |T€ n-~ Tm—i— —H“fk:n Xn d#)
e ec{0,1}5\{1}

For fixed k,n € N, we apply Lemma 3.3 with fi := f . fe = Clelf for e € {0,1}%\ 1,
and g, := Xn. 7 € N®, and deduce that

lim inf lim sup E,.c(n,) Eprenv)s /Ann’fk,n “Xnn dpp >0

N—© koo

for some x,,, € E(T). n,n’ € N° (we used that £(T) is closed under products and
composition with iterates of T). Note that A, (w - z) = A, (w) - Ay (2) and A, (THw) =
TFA, (w) for all w,z € L®(u) and k € N, n € Z°. Using this, equation (4.8), and
keeping in mind that the limsup of a sum is at most the sum of the limsups, the
asserted estimate follows from the last one after composing each function inside the
integral with 7°("), O

4.2 Proof of Theorem 4.1

We are now ready to prove Theorem 4.1.

4.2.1 Reduction to a degree lowering property

Since the sequences a,b: N — 7Z are good for seminorms estimates for the system
(X, X, u, T), there exists s € Z, such that the seminorms || - ||s12 control the averages
(4.1), in the sense that if f,g € L*°(u) are such that || f]|s42 = 0 or ||g||s+2 = 0, then

Jim By T f .M g =0 4.9)

in L?(y). Our goal is to show that a similar property holds with s — 1 in place of s.
Namely, using terminology from [26], we are going to establish the following ‘“degree
lowering property’”
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Proposition 4.5. Let S be a susbet of [0,1) with countable complement in [0,1). Let
a,b: N — 7 be good for equidistribution for S and (X, X, u, T') be an ergodic system with
spectrumin S. If for some s € 7 the seminorms || - ||s+2 control the averages (4.1), then

also the seminorms || - ||s+1 control the averages (4.1).

This “degree lowering property” is the heart of the proof of Theorem 4.1. Iterating
this property s + 1 times we deduce that the seminorms || - |; control the averages (4.1).

Since || flls = | [ f dp

Proposition 4.6. In order to verify Theorem 4.1 it suffices to verify Proposition 4.5.

, this proves Theorem 4.1.* So we get the following:

4.2.2 Proof of Proposition 4.5

We work under the assumption of Proposition 4.5 and our aim is to show that if f €
L>(u) satisfies ||f|ls+1 = 0, then (4.9) holds (similarly we show that if ¢ € L>(u)
satisfies ||g|ls+1 = 0, then (4.9) holds). Equivalently, it suffices to show that if (4.4)
holds, then || f|ls+1 > 0.

Suppose that s > 1, the argument is similar if s = 0 (in this case the conclusion is
that [ fdup # 0). Using (4.4) and Proposition 4.3, we deduce that

lim sup
N—o0

> 0,
L2(p)

E,cpv T £ - TH) g)

where
g:= lim By, T Mg, - 720, (4.10)
k—o0

for some sequence of integers N — oo and 1-bounded functions g € L>®(u), k € N,
where the limit is a weak limit. Since, by assumption, the seminorms || - ||s+2 control
the averages in (4.9) we get that

lglls+2 > 0. (4.11)

Using Proposition 4.4 we deduce that
liminf E,, ,, e[n)s lim sup Ene[Nk]SR< /(An_n,gk) . Ta(n)(A wf)- Tb(n)xn ! d,u> >0
N—oo —— k—00 - = - = —=

for some x,, v € € (T), n,n’ € N*. Using the Cauchy-Schwarz inequality we get

> 0.
L2 (n)

lim inf E,, ¢ (v} lim sup HIEHE[ N T (A F) - Ty
N—oo 777 k—oo - -

The advantage now is that since x,,» € £(T), n,n’ € N9, the average over n is much
simpler to analyse than the original one in Theorem 4.1. In fact, using Proposition 4.2 we
get that it converges in L?(1) to the product of the integrals of the individual functions.
We deduce that

1}\1721?; Epne[n)s

/An_n,fdu-/xn,n, d,u’ >0

and as a consequence

2
/An_n/fdu‘ > 0.

lﬁlglof EE7H/€[N]S

*We use here that Theorem 4.1 holds if f or g is constant, which follows from Proposition 4.2.
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Since | [ A, f du| remains the same if we change the sign of some of the coordinates of
n, we deduce using a simple computation that

- - nj 2
1wngnemst1( —]\?)'(/Anfdu) > 0.

It follows that

i By

/Anfdp)z >0

(the limit exists by (3.5)). Hence, by (3.5) we have that

Iflls+1 >0

as required. This concludes the proof of Proposition 4.5 and by Proposition 4.6 the proof
of Theorem 4.1.

5 Proof of the main result for general /

We now give a summary of the proof of Theorem 2.1 for general ¢, the reader should
find it easy to fill in the missing details.

Let S be a susbet of [0, 1) with countable complement in [0, 1). Suppose that collec-
tion of sequences ay, ...,as: N — Z is good for seminorm estimates and equidistribution
for the ergodic system (X, X, u,T) with specrum in S. Our goal is to show that for all
fi,--.y fo € L*°(u) we have

lim Ene[N]T‘“(”)fl-...-Ta’f(")fg:/fldu-...-/fgd,u in L%(n). (5.1)

N—o0

Our proof will deviate slightly from the argument given in the case { = 2, because a
statement analogous to Proposition 4.2 cannot be proved directly when only one of the
functions is in £(T') (the theorem of Herglotz is no longer applicable). As a substitute
for this we are going to use an induction that we describe next.

We consider ¢ > 2 fixed and we are going to show the following property by finite
induction on m € {1,...,¢}:
(Pp) If fj € E(T) for at least £ — m values of j € [¢], then (5.1) holds.

If we show this, then taking m = /¢ gives that (5.1) holds for all functions f1,..., fy €
L*>°(u) (and as a consequence Theorem 2.1 holds).

For m = 1 we can show that (P;) holds as in Proposition 4.2 using the good equidis-
tribution assumption of the sequences ay, ..., a, and the theorem of Herglotz.

Suppose now that property (P,,,—1) holds for some m € {2,.../}. We are going to
show that property (P,,) holds. To this end, we assume, without loss of generality, that
fj € E(T) for j =m+1,...,4 and we are going to show that (5.1) holds by employing
a degree lowering argument, similar to the one we used in the previous section. More
precisely, our plan is to show that if for some s € Z, the seminorms || - ||s+2 control the
averages in (5.1), in the sense that if || f;||s42 = 0 for some i € {1,...,¢} and f; € £(T') for

j=m+1,...,¢, we have that the averages in (5.1) converge to 0, then the seminorms
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Il - lls+1 also control these averages. Since, by our good seminorm assumption, the
seminorms || - [|s+2 control the averages (5.1) for some s € N, iterating this degree

lowering property s + 1 times we deduce that the seminorms || - ||; control the averages

in (5.1), and this easily implies that property (P,,) holds.
So suppose that

lim sup HE%[N] T T‘”(")fg‘

N—o0

L) >0 (5.2)

for some 1-bounded functions fi,..., f; € L>(u) with f; € E(T) for j = m+1,...,¢.
Then arguing as in the proof of Proposition 4.3 we get that (5.2) continues to hold if in

place of the function f; we use the function fl defined by

L

fi:= Jm Erepy,) Mgy [Ty, (5.3)
j=2

for some N — oo and 1-bounded functions g € L>®(u), k € N, where the limit is a

weak limit (note that then f; € L>(p)). Since, by our assumption, the seminorms ||- || s 2

control the averages (5.1) we deduce that || f;||s4+2 > 0. As in the proof of Proposition 4.4

we get for s > 1 that there exist x,, v € £(T). n,n’ € N°, such that

N—oo

L
liminfE,, e lizrisgp Ene(ng) §R( /(An_n/gk)T‘“(”)anwH T (")(Ai_ﬁrfj) d,u) > 0,
j=2

and a somewhat simpler statement for s = 0 that can be dealt in a similar fashion. The
advantage now is that since for all n,n’ € N* we have x,, v € £(T) and A,/ f; € E(T)
forj =m+1,...,{, property (P,,—_1) applies and gives that the average over the variable
n converges in L2( 1) to the product of the integrals of the corresponding functions. We
then deduce as in the proof of Proposition 4.6 that

I fills41 >0 for j=2,...L

Furthermore, since [ > 2 we can apply the same argument for the second position
instead of the first and deduce in a similar fashion that || f1[|s+1 > 0. We conclude that
the seminorms | - ||s4+1 control the averages (5.1). This shows that property (F,,) holds
and concludes the proof of the induction and the proof of Theorem 2.1.
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A sharp upper bound for the Hausdorff dimension
of the set of exceptional points for the strong

density theorem

Panagiotis Georgopoulos and Constantinos Gryllakis

Abstract

Given an £ C R™, Lebesgue measurable, we construct a real function
1 : Rt — R (depending on E) increasing, with lim+ ¥ (t) = 0 such that
t—0

. |RN E°|
lim

—— =0 for ae. z € F
ok TR D (d(R)

(where R is an interval in R™ and d stands for the diameter). This gives a new
constructive proof of a problem posed by S. J. Taylor (1959) [5, p. 314]. Further-
more, the constructive method we use, gives a sharp upper bound for the Hausdorff

dimension of the set of exceptional points, for the strong density theorem of Saks.

Introduction

S. Ulam in [3, Problem 146, p. 228] (see also [8, p.78]) posed the following problem:
Suppose that F is any Lebesgue measurable set on the real line. Does there exist a real
function ¢ : Rt — R™ (depending on FE) increasing such that lilrn+ ¥ (t) = 0 and

t—0

INnE*
lim B =0 ae in E7?
e T
(here I denotes an interval in R, E° is the complement of £ and | - | stands for the

Lebesgue measure).

The affirmative answer to this question was given by S. J. Taylor in [5] and of course
this is a strengthening of the Lebesgue density theorem. However, the problem, whether
does there exist a function v independent of F, has a negative solution (see [5, Theorem
4, p. 312]). Also, in [5], the problem for a similar strengthening of the strong density
theorem of Saks was posed (for Saks’ strong density theorem, see [4, p. 129]).

Problem ([5, p. 314]). Given an m-dimensional Lebesgue measurable set F, does
there exist a real function 1 (¢) increasing with tl_i>r(§1+ ¥ (t) = 0 such that

|RN E°|

m —— =10 for ae. x € E7?
zer |R[-9¢(d(R))
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(R is an interval in R™, d is the diameter).

As S. J. Taylor remarked, the direct methods in [5] did not give this strongest form
of the density theorem in m-space.

The affirmative answer to this problem was given by S. J. Taylor in [6], assuming
the usual form of the strong density theorem and applying an ingenious strengthening
of Egoroff’s theorem. The answer given is not constructive and gives no information on
how the function ¢ depends on the set F.

In [9] we give a new constructive answer to the problem of S. J. Taylor in [5], that
gives a function v not only for a particular set, but for an uncountable class of sets.

To be precise, given a sequence {(wy,u,): n € N} in R? with w,, > 0, u,, > 0 for
58]

n € N such that the series ) w, - u, converges, we say that a set £ C R? belongs
n=1
oo

to {(wn,un): n € N} if E = |J (I, x Jp,), where I, x J, are disjoint intervals in R?
n=1

with |I,,| = wy, |Jn| = u, for n € N. Clearly, every bounded open set belongs to some

sequence as above and there are uncountably many sets belonging to a given sequence
(this kind of definition in one dimension is also considered in [1] for a different purpose).
As a result we have that, given a sequence {(wy,uy): n € N} as above, we construct
a®y : RT — RT (depending on {(wy,,u,): n € N}) increasing, with tl_i}r(])f1+ ¥ (t) = 0 such
that for every set E belonging to {(wy, u,): n € N}

i (A x B)N E“|
ve(axB) |A X B|-1(d(A x B))

d(AxB)—0

=0 for a.e. r € F

(where A x B is an interval in Rz). (We remark that the Problem in [5,p.314] is somewhat
misstated, since the ratio following the limit is not uniquely determined, for given d(A x
B))

It should be noted that, this kind of result can be obtained in one dimension by the
direct methods of [5]. Also, our method equally works in any dimension, but we restrict
to R? for notational simplicity.

Furthermore, the constructive method we use, gives a sharp upper bound of the
Hausdorff dimension of the set of exceptional points, for the strong density theorem of
Saks.

To be precise, in [2] A. S. Besicovitch proved that, given a perfect set E C [0, 1] and
denoting by ¢ the sequence a1, as, ... of the lengths of interior complementary intervals
of F/, then the Hausdorff dimension of the set of exceptional points, for the Lebesgue
density theorem (for E), is bounded above by the Besicovitch-Taylor index (or exponent

of convergence) of the sequence {a,, : n € N} (defined as

epr{an : n € N} :=inf{c > 0: Zafl converges}  (see [7, p. 34])

n=1
and this bound is sharp. In this paper we prove that, given a bounded, open set £ C R
(R is an open interval in R2) and if F is written as a countable union of disjoint intervals,
[ee]
ie. E= |J (I, x Jp), then the Hausdorff dimension of the set of exceptional points, for

n=1
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the strong density theorem (for E), is bounded above by
1+ min{epr{|I,| : n € N}, epr{|Jn|: n € N}}

and this bound is sharp. Also, working in higher dimensions we have analogous bounds.

It should be noted that, clearly this bound is non-trivial, only in case that at least one
o o
of the series Y |I,|, > |Jn| converges.

n=1 n=1
A final remark. The problem, (in the classical proofs of the strong density theorem),

of estimating the Hausdorff dimension of the set of exceptional points is that the sections
of this set vary. So, there is no effective way of estimating its Hausdorff dimension. The
advantage of the present proof is that the set of exceptional points is “placed” as a subset
of a cartesian product of R and a null set. So, after estimating the Hausdorff dimension
of this null set, we can estimate that of the set of exceptional points, by standard results
of the theory.
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Harmonic functions, crossed products and

approximation properties
Aristides Katavolos

In memory of Dimitris Gatzouras

Abstract

The space of harmonic functions on a locally compact group G is the fixed point
space of a certain Markov operator. Its ‘quantization’, the corresponding fixed point
space of operators on LG, coincides with the weak* closed bimodule over the group
von Neumann algebra generated by this space. We examine the analogous spaces
of jointly harmonic functions and their quantized operator bimodules. This leads
to two different notions of crossed product of operator spaces by actions of G which

coincide when G satisfies a certain approximation property.

The talk is a survey of joint work with M. Anoussis and I. G. Todorov, and of more

recent work by D. Andreou.

1 Appetizer: The diagonal problem

Let I" be a (discrete) group. Any ¢ € ¢*°I" defines a multiplication operator f — ¢f :
(T — ¢*T which we denote by the same symbol ¢ (here (¢f)(s) = ¢(s)f(s) for s € I.

This multiplication operator is “diagonal” with respect to the orthonormal basis
{0s: s €'} of /°T.

For r € G, if )\, is the translation operator d; ~ 6,5, the operator ¢\, € B(¢°I')
“lives” on the r-th diagonal. Thus the space of operators with finitely many nonzero

diagonals is
n
{Z Girr; 1 s €L, €m € N} .
i=1

It is not hard to show that this space contains the set of “matrix units” {E, s : r,s € I'}
and hence is dense in B({?T") for the w*-topology (recall that B(¢°T') is the dual of the

Banach space S!(£°I") of trace class operators). But,

Question 1.1. Is it true that every X € B(¢’I') is the “sum of its diagonals™ More
precisely, is it true that if D,.(X) € B(¢?T") denotes the r-th diagonal of X, then

lim Z D,(X) — X in some sense? (CC: finite subset)

Fcca
rekF

An incorrect answer appears in more than one classic book...
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Question 1.2. What if we introduce “multipliers” u € ¢°°T" (more general than x r)? Can
we find, for each X € B(¢?T'), a net (u;) of finitely supported functions on I' (possibly
depending on X), so that

hm Z u;(r ) — X 77

2 Harmonic functions

Let i € M(G) be a probability measure on a locally compact group G.

e A function ¢ : G — C is said to be y-harmonic if

/G o(st)dpu(t) = 6(s). Write 6 € H(p).

We studied the notion of y-harmonic functions, and its connection to random walks,
in a seminar [10] with Dimitris Gatzouras and others.

Here, we will limit ourselves to the functional analysis approach.

Thus a p-harmonic function ¢ is a fixed point of the map P, given by

(Puo)(s) = [ olstautt

The map P, is positive, unital, w*-continuous on L*>(G).

3 The (classical) Poisson boundary

The space H(u) of p-harmonic functions is the range of a positive unital projection
defined on L°°G. This projection can be obtained by averaging over iterates of P,, as
follows:

Note that, since L*°G is a dual Banach space, so is B(L°>°G), and hence its unit ball
is w*-compact.

Define

1 _
Ey = (I+P,+ (PyoBy)+--+P!7") € ball BL®G)
and let E, € B(L>™G) be a w*-cluster point of {E,, }.

Then it can be shown that £, is a unital positive projection onto H(pw).

The space H(u) is not an algebra under pointwise multiplication. But, using the

projection E,, it can be equipped with an associative multiplication ¢, by defining

ot :=Eu(¢¥), ¢ €H(p).

Then (H(p),¢) becomes a C*-algebra; since it is w*-closed, it is a von Neumann
algebra; and since it is abelian, it is an L space:

Thus there exists a probability space (2, v), called the Poisson boundary of ;. so
that H(u) ~ L>(Q,v).

Let us remark that the von Neumann algebra structure on (#(u),¢) is independent
of the choice of cluster point for {E,,} (see section 5).
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4 From Harmonic functions to Harmonic operators

Recall that an ¢ € L*°G is a p-harmonic function if
| etstiautt) = o).

If we consider ¢ € L°°G as a multiplication operator acting on LG, we may write the

previous equality as an operator-valued integral

Pu¢ = /Gptqﬁp{ldu(t) € B(L*G)

which should be interpreted in the “weak” sense. Here p is the right regular represen-
tation G ~ L?G given by

(prf)(s) = A(r)' 2 f(sr), feL*G), s,;reG

where A : G — R is the modular function, defined by d(tr) = A(r)dt.

This interpretation allows us to extend the notion of harmonic functions to operators

(quantisation):

e Let us call an operator T € B(L?G) a u-harmonic operator if
/ piTp; tdu(t) =T . Write T € H(u) .
a

So p-harmonic operators are fixed points of the map
0, : B(L*G) — B(L*G) : T — /GptTptldu(t)

which is an extension of P, and a weak* continuous unital and completely positive map.
(Such maps are sometimes called Markov operators.)

Complete positivity means that, not only does ©, map positive operators to positive
operators, but for all n its n-th ampliation has the same property: If an n X n matrix
[Tij] of operators defines a positive operator on (L2G)(™, then [0,(T};)] also defines a
positive operator on (L2G)™.

5 The non-commutative Poisson boundary

The following construction is due to Arveson [5] and Izumi [7]:
Let £, € B(B(L?>G)) be a w*-cluster point of { E,,}, where

~ 1

E, (I+6,+--+0.7"): B(L’G) — B(L*G).

" on

(This uses the fact that B(L?G) is a dual Banach space, and hence so is B(B(L*G)).)
Then Eu is a unital completely positive projection onto H(u).

Using Eu’ we can equip ﬁ(u) with an associative multiplication ¢ by defining

ToS:=E,(TS), T,SecH(u).
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Then the space N, := (H(u),) is a (non abelian) von Neumann algebra and (H (1), <)
is an abelian *-subalgebra.

As in the classical case, the von Neumann algebra structure on N, . is independent
of the choice of cluster point for {En} indeed every completely positive isometric linear
isomorphism between von Neumann algebras must be a *-isomorphism.

The algebra N, is called the non-commutative Poisson boundary of ;.

We would like to find a more “concrete” description. Perhaps the subalgebra H (u) ~
L (€2, v) may provide a “coordinate representation” for NV,,.

6 Left Ideals of L'(G) and VN(G) bimodules

Observe that the preannihilator .J,, of #(u), given by

Jyi=H(p) L = {f e L'G: /Gqﬁ(t)f(t)dt =0Vp e H(u)} Cc L'G

is invariant under left translations by G (because H(u) is) so J, 1 is a left (convolution)

ideal.

More generally, consider any closed left ideal J C L'G.
Then J+ C L*G C B(L?G) is annihilated by the maps ©,, for all f € J (here
dvs(t) := f(t)dt); hence J* lies in

ker O(J) = {T e B(L*(@)) : /GptTptlf(t)dt =0 forall fe J}

= ﬂ ker@Vf .
feJ

But each O, , commutes with left or right multiplication by left-translation operators
{\, t € G} on L*(G). Thus ker ©(J) is a bimodule over the w*-closed linear span of
{M\t, t € G}, which is known as the von Neumann algebra VN(G) of G. 1t follows that
ker ©(.J) also contains the w*-closed space

Bim(J*1) := span® {¢)\; : ¢ € J1,t € G}
which is a bimodule over VN(G) (since A\s¢\; = ¢s\s where ¢s(t) = ¢(s~1t)).
Thus for every closed left ideal J C L'G we have the inclusion
Bim(J1) C ker ©(.J).
We think of the elements of Bim(J*) as w*-limits of “polynomials” > ¢;\;, whose coef-
ficients ¢; € L°°G are annihilated by all f € J. On the other hand, ker O(.J) consists of

all operators annihilated by {0,,, f € J}.

When can we approximate such operators by suitable polynomials | ¢; A, ?

Theorem 6.1. If G has the Approximation Property AP of Haagerup-Kraus, then the

equality
Bim(J1) = ker ©(.J).

holds for every left ideal J C L*(G).
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(See section 8 for the Approximation Property).

Thie validity of this equality was first proved for G abelian, or compact, or weakly
amenable discrete with M. Anoussis and I.G. Todorov [3]. The general case was then
proved by J. Crann and M. Neufang [4].

7 Application to jointly harmonic operators

Given a family A C M (G) of (complex valued) measures, the set H(A) of jointly harmonic
Jfunctions is the set [ ueA H(p) consisting of all ¢ € L>°G which are p-harmonic for all
we A

Correspondingly, we define the set of all jointly harmonic operators to be

H(A) == {T € B(L*(G)) : p-harmonic for all p € A}
= {T € B(L*(G)) : ©(u)(T) =T for all € A}.

Clearly, H(A) 2 Bim(#(A)) where Bim(#(A)) is the w*-closed linear space generated
by {¢pX : ¢ € H(A),t € G}.

Theorem 6.1 is applicable not only to ideals J C L'(G) which are preannihilators of
p-harmonic functions, but also to preannihilators of jointly A-harmonic functions:

Theorem 7.1. Suppose G has the Approximation Property.
Forany A C M(G),
H(A) = Bim(H(A)) .

Remark In the special case of functions which are 4 harmonic for a probability
measure, the equality H(z) = Bim(#(u)) holds for all groups. This was shown for
discrete groups by M. Izumi [7], and then for general locally compact groups by W.
Jaworski and M. Neufang [8] using completely different methods.

The crucial point, in this special case, is that the space H () is linearly and covari-
antly completely isometrically isomorphic to a von Neumann algebra, namely L (), v)
where ({2, v) is the Poisson boundary.

8 Interlude: the approximation property AP

Very roughly, a locally compact G has the approximation property AP of Haagerup-
Kraus when the Fourier algebra A(G) contains an (unbounded) approximate identity
of a weak form. The Fourier algebra of G consists of all functions u : G — C of the
form u(s) = (\sf, g) where f, g € L?G. Every such fuction defines a bounded mutiplier
M, : VN(G) — VN(G) satisfying M,,(A\s) = u(s)\s for all s € G.

The following can be taken as the definition: G has the AP if and only if there
is a net (u;) of compactly supported functions in A(G) such that (M,,) converges in
the stable point-weak* topology to the identity, i.e. (M,, ® id)(a) — a weak* for all
a € VN(G)®B(?) [6, Theorem 1.9].

The AP is a weak form of amenability.
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Examples Groups with the AP: Amenable groups, such as abelian or compact groups, but

also some non-amenable, such as IF,,.
Groups without the AP: SL(3,7Z), SL(3,R).

Under the AP, we can answer Question 1.2:

Proposition 8.1. IfI' is a discrete group with the AP, every operator in B(EQF) can be

w*-approximated by linear combinations of its own diagonals.

Indeed the M,, mentionned above extend to operators defined on the whole of
B(L?G) and provide the required multipliers.

9 Change of perspective: The crossed product

Let us return to the space H(A) of functions in L°>°G which are jointly harmonic for a
family A of complex measures on G, together with its “quantised” cousin ﬁ(A) of jointly
harmonic operators. Note that G acts on H(A) by left translations. We wish to use
H(A) together with this action to describe the space H(A).

More generally: Let V C B(H) be a w*-closed linear space of operators on some
Hilbert space H (a dual operator space) and let s — o be an action of GG on V by weak*
continuous complete isometries.

We wish to represent both G and V simultaneously and covariantly on the same
space. For this, we “create more space” by enlarging [ to accomodate both:

Consider
VRL™G C V&B(L*G) C B(H ® L*G)

(we use @ for the w*-closure of the algebraic tensor product).

We represent V on H® L%G as follows: thinking of V®L>G as consisting of V-valued
L™ functions on G, we associate to each v € V the function s +— a3 !(v).

More precisely, for each v € V, we define 7, (v) € VRL>*(G) by duality:

(Ta(V),w ® h) = / (ag (), w)h(s)ds, we Vi, he L'G).
G

(Here V, is the space of all w*-continuous linear forms on V, and we are using the fact

that the projective tensor product of simple tensors of V, and L!(G) has VRL™G as its

dual.)

We also define a map
AN:G = BH®L?G) : s+ Ag:=1dg ® \s.
So we have the representations
To 1V = VOB(L?G) C B(H ® L*G)
A:G — B(H® L*G).
The point is that now the action o becomes “inner”: it is implemented by the unitary

group A:

Talas(v) = Agma(V)ATL.
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This setup allows us to define two versions of the crossed product:

e The spatial crossed product V x, GG is defined to be the weak* closed subspace of
V&B(L?G) generated by all “polynomials” in { ), : s € G} with “coefficients” from 7, (V):
it is the weak* closed space

V Xo G = span{ma(v) A, v € V, s € G}w* C VRB(L*G).

e The Fubini crossed product ) x 5 G is defined to be the following fixed point subspace
of VRB(L*G):

VxE G .= {T € VRB(L*G) : (as @ Adp)(T) = T Vs € G}

Here a5 := as ® Adps acts on a simple tensor T' = x ® y as follows:
as(T) = as(x) ® psyps "

It is not hard to see that 7,()) and A(G) are both elementwise fixed by the action
a; hence so is the spatial crossed product generated by them;

VNQGQVNEG.

But do we have equality? In other words, can every a-fixed point be w*-approximated
by “polynomials” of the above form?

It is a classical result (see, for example, [9, Corollary X.1.22]) that these two crossed
products coincide in case V is a von Neumann algebra. However, for more general dual

operator spaces, they can be distinct.

Theorem 9.1 (D. Andreou, [1]). The equalityV x,G =V x 5 G holds for all dual operator
spaces V if and only if the group G has the AP.

Note that the “if” direction was also proved by Crann - Neufang [4] using a different
approach.
This Theorem can be viewed as a dynamical characterization of the AP.

10 Bimodules and Crossed products

We now apply these concepts to the Kernel-Bimodule problem. The key is the following:
In the special case where V = L°°G and G acts by left translation (we write G <
L* @) both crossed products can be represented on L?(G):

Proposition 10.1 (D. Andreou, [1]). There is an isometric normal*-morphismV : B(L?G) —
B(L*G)®B(L?G) such that: for any closed left ideal J of L*(G), we have

Bim(J1) % Jt %0, G and  kerO(J) ~ JE xE_ G

ag :

Therefore, applying Theorem 9.1, we obtain a conceptually different proof of Theorem
6.1:

Under the AP, the equality Bim(J*) = ker ©(.J) holds for all closed left ideals J C L'G. In
particular, forany A C M (G), the space H(A) of jointly harmonic operators is (isomorphic
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to) the spatial crossed product of the space H(A) of jointly harmonic functions by the
translation action of G.

Concluding Remarks We have seen that if a group G has the AP, then
Jt Xoe G=Jt ><1§G G for all closed left ideals J of L'(G) ()

but we do not know whether the converse holds:

Question: Is the AP necessary for the validity of (x)?
Or is some weaker approximation property sufficient?
Or is (*) valid for all locally compact bgroups G?

Acknowledgment. Thanks are due to D. Andreou and M. Anoussis for their help in

the preparation of this survey.
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Simultaneous tiling
Mihail N. Kolountzalkis*

Dedicated to the memory of Dimitris Gatzouras

Abstract

We discuss problems of simultaneous tiling. This means that we have an object
(set, function) which tiles space with two or more different sets of translations. The
most famous problem of this type is the Steinhaus problem which asks for a set
simultaneously tiling the plane with all rotates of the integer lattice as translation

sets.
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For the purposes of this paper ! tiling is by translation only [16]. We have an object

T (the tile) which may be a set or a function on some abelian group G (usually the

Euclidean space but it may be Z% or a finite group) which we are translating around
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Figure 1: An L-shaped tile. The red point is the origin

by a set of translations A, in such a way that everything in the group G is covered
exactly once, with the possible exception of a set of zero Haar measure, to account for
such irrelevant things such as boundaries overlapping, which we generally do not care
about. One convenient way to define tiling by a function f (which can be an indicator

Figure 2: A translational tiling by the L-shaped region. The red points are the translation set.

function, if we want tiling by a set) when translated at the locations A is to demand that

Zf(x—/\) = const., (1.1)

AEA

for almost all x € G. To avoid most issues of convergence it makes sense to ask that
f > 0, though some interesting problems do arise with signed f [20].

2 Tiling in Fourier space

It is easy to see that (1.1) may be rewritten as a convolution
f *dp = const. (2.1)

where 6y = ) xen Ox is the measure that encodes the locations A by placing a unit mass

on each of them. Taking the Fourier Transform of this we obtain
o = Cép. (2.2)

This implies that the tempered distribution SX is supported on the zeros of fplus the
origin

supp o C {f: 0} U {0}). 2.3)
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Figure 3: The collection §, of point masses that encodes the set A

Let us now restrict ourselves to the case of G = R and A C R¢ being a lattice A = AZ4,

where A is a non-singular d x d matrix. The Poisson summation formula reads

1

(5 = 76 *
A |det A A

in this case, where A* = A~ Z is the dual lattice of A, so the tiling of f with A becomes
equivalent to
J?()\*) =0 forall \* € A"\ {0}.

Figure 4: A lattice A and its dual A*

3 The Steinhaus tiling problem

In the Steinhaus tiling problem we are seeking a tile that can tile simultaneously with
many different sets of translations. The most important case is: can we find a subset
of the plane which can tile (by translations) with all rotates of the integer lattice Z2? In
some sense we are asking for a set in the plane that can behave simultaneously like all
these rotated squares (Fig. 5). There are two major variations of the Steinhaus problem:
the measurable and the set-theoretic case. In the measurable case we demand our
tile to be a Lebesgue measurable subset of R? and we are, at the same time, relaxing
our requirements and are allowing a subset of measure O of space not to be covered

exactly once by the translates of the tile. In the set-theoretic case we allow the tile to
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Figure 5: The rotated squares are fundamental domains of all rotates of Z?

by any subset and we typically ask that every point is covered exactly once, allowing no
exceptions.

Komjath [22] answered the Steinhaus question in the affirmative in R? when tiling
by all rotates of the set B = Z x {0} showing that there are such Steinhaus sets (but
such a set A cannot be measurable as was shown recently in [18]). Sierpinski [26]
showed that a bounded set A which is either closed or open cannot have the lattice
Steinhaus property (that is, intersect all rigid motions of Z? at exactly one point -
another way to say that A tiles precisely with all rotates of ZQ). Croft [5] and Beck [1]
showed that no bounded and measurable set A can have the lattice Steinhaus property
(but see also [23]). Kolountzakis [14, 13] and Kolountzakis and Wolff [19] proved that
any measurable set in the plane that has the measurable Steinhaus property must
necessarily have very slow decay at infinity (any such set must have measure 1). In
[19] it was also shown that there can be no measurable Steinhaus sets in dimension
d > 3 (tiling with all rotates pZ?, where p is in the full orthogonal group) a fact that was
also shown later by Kolountzakis and Papadimitrakis [17] by a very different method.
See also [3, 24, 4, 27]. Kolountzakis [15] looks at the case where we are only asking
for our set to tile with finitely many lattices, not all rotates as in the original problem,
which we are also doing in this paper. In a major result Jackson and Mauldin [11, 10]
proved the existence of Steinhaus sets in the plane which tile with all rotates of Z? (not
necessarily measurable). Their method does not extend to higher dimension d > 3. See
also [25, 12]. It was also shown in [18] that a set A which tiles with all rotates of a finite
set B cannot be measurable.

4 Steinhaus problem in Fourier space

Most of the results on the measurable Steinhaus problem start by observing that if
E C R? is Steinhaus then every rotate RyFE of E tiles with Z?, which means that for
every angle 6 the Fourier Transform 1R/9\E vanishes on Z? \ {0} since Z? is the dual
lattice of itself. This implies that fg vanishes on all rotates of Z2. In other words L\E
vanishes on all circles centered at the origin that go through at least one integer lattice

point. The number of these circles is large. There are a little less than O(R?) such
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Figure 6: The Fourier Transform of any Steinhaus set must vanish on all circles centered at
the origin that go through at least one integer lattice point

circles of radius < R. Many zeros of a function sometimes imply decay at infinity, and,
by the usual uncertaintly principle (both f and f cannot decay fast at infinity), since

1/5 is small at infinity it follows that 1 is large (e.g., E¥ cannot be bounded).

5 Allowing functions instead of sets in the Steinhaus problem

Let us now relax our requirements and allow our tile to be a function instead of a
set (instead of indicator function, in other words). Satisfying the requirements of the
Steinhaus tiling problem with a function is generally much easier than with a set. The
problem becomes interesting only if one asks for further properties that this function
should have. Therefore we try to find a function with small support, or to prove that
the support of such a function must necessarily be large. Asking for f to have a small
support goes against f having the ability to tile space, especially with many different
sets of translations 7'. The reason is that for f to tile by translations with 7" its Fourier
transform must contain a rich set of zeros [16]. This set of zeros must be able to
support the Fourier transform of the measure dp = ZteT d¢ (which encodes the set of
translations). By the well known uncertainty principle in harmonic analysis a rich set

of zeros for fusually requires (in various different senses) a large support for f [9].

It is very easy to take J?to vanish on the required circles, but one must do it in a way
that ensures that f is itself small in some sense, such as the diameter of its support or

the volume of its support.
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6 Small diameter of the support: lower bounds

The first thing that comes to mind is to take f to be a convolution. It takes a moment to
verify that if f tiles with a set of translates 7' then so does g * f for any g € Ll(Rd). One
can either verify this by checking the definition of tiling for g * f or observe that tiling is
a condition that can be checked on the Fourier side [16] and _;k\f =g- ]?has an even
richer set of zeros that f

So, since [ has to vanish on the dual lattices Af\ {0} we can take

f:]-Dl*]-DQ*"'*lDNv (6~1)

where D; is a fundamental parallelepiped of A;. Since D; + A; is a tiling it follows that
T—D\i vanishes on A} \ {0} and that f vanishes on their union and hence tiles with all
A;. This can be slightly generalized by taking, instead if the indicator functions 1p, any
function f; that tiles with A;

f=fixfox-fN. (6.2)

N\
L
X7

v

Figure 7: The fundamental domains of several lattices. A constant fraction of them project to
a set of large diameter onto one of the coordinate axes.

The following observation (see detailed proof in [21]) was already made in [19] in the

case f; = 1p,.

Theorem 1. If Ay, ..., Ay are lattices in R% of volume ¢; < vol A; and f = fi* fo*-- % fy
then
diamsupp f > CyN. (6.3)

The reason is that a constant fraction of the supports of the f; project onto a constant
fraction of their diameter onto some line, say one of the axes. This implies (obvious if
the f; are nonnegative; one needs the Titchmarsh convolution theorem in the general
case) that so does the support of the convolution f = fi *--- % fy (shown in Fig. 7 for
the f; being the indicator functions of fundamental parallelepipeds of the lattices).

If the lattices A; satisfy some “roundness” assumption, e.g. if each A; is assumed to

have a fundamental domain of diameter bounded independent of /V (as in the important
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case when all the lattices are rotates of Zd), then the convolution tile (6.1) has diameter
which is also at most C' - N.

On the other hand we have the following rather general lower bound for the diameter

of the support [19] assuming only a certain genericity assumption (6.4) on the A;.
Theorem 2. IfAq,...,Ax C R% d > 1, are lattices of volume equal to 1 such that

AN A; ={0} foralli#j, (6.4)
then if f tiles with all these lattices we have

diam supp f > Cle/d. (6.5)

The main question is therefore:

Question 1. Can the gap between the lower bound (6.5) and the linear upper bound
O(N ) achievable by the convolution tile (6.1) (in the case of “round” lattices, having

fundamental domains bounded in diameter by a constant) be bridged?

Are there examples of lattices A;, i = 1,2,..., N, satisfying (6.4) and a non-zero
function f € L'(R?) that tiles with all A; and such that

diamsupp f = o(N)?

In other words, do there exist collections of lattices for which a common tile f can

be found which is diameter-wise more efficient than the convolution construction (6.1)?

7 A case of large diameter

We observe now [21] that for some collections of lattices the linear upper bound can-
not be improved. The lattices given are both ‘“round” (have a fundamental domain
bounded independent of N) and satisfy the genericity assumption (6.4). There are how-

ever collinearities so, in some sense, this is not a generic situtation.

Theorem 3. For d > 1 and for each N there are lattices A1, ..., Ax C R%, of volume 1,
such that if f € LY(R%), [ f # 0, tiles with all of them then

diam supp f > CyN.

Proof. We give the proof in the case d = 2. It works with obvious changes in all dimen-

sions d > 2 and it is even easier in dimension d = 1.

Take A} to be generated by the two vectors
u; = (0,a;),v; = (1/a;,0),

61



o >~
F -~

1

Figure 8: The fundamental rectangles of the lattices of Theorem 7 which have only very long
common tiles.

where the numbers a1, ..., ay are linearly independent over (Q and
09 <a; <1.
If f tiles with all A; then fvanishes on all points of the form
0,k-a;), i=1,2,...,N, keZ\ {0}

Since all these points are different it follows that the density of zeros on the y-axis is
> C - N. This implies that
diamsuppma(f) > C - N

(say, by Jensen’s formula) where 72 (f) is the one-variable function

ma(f)(y) = /Rf(a:,y) dz.

(This is not an identically zero function by our assumption on the integral of f.) This in
turn implies
diamsupp f > C - N.

8 Small volume of the support

Another measure of the size of the support is its volume. Can we construct a common
tile f for the lattices A; such that |supp f| is small?

In the case of f given by (6.1) it is clear that
suppf=D1+ Da+ ...+ Dy.

To keep things concrete let us assume that all |Dz| = 1 in (6.1) (unimodular lattices).
Then the Brunn-Minkowski inequality [7] says that

d
|supp f| = |D1+ -+ Dn| > <|D1|1/d+"'+‘DN|1/d> ZNd'
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This lower bound
|supp f| > CN?

clearly holds also for functions of the form

f=hx*fex-xfn, [i =0, (8.1)
where for all i = 1,2, ..., N we assume that the nonnegative function f tiles with A;.
We have proved [21]:
Theorem 4. For any collection of lattices A1, . .., Ay in R? of volume at least 1 and any

common tile f for them of the form

f:fl*fQ*'”*fNa szOa
with f; tiling with A;, we have
jsupp f| > N°.

But when the functions f are signed (or complex) we only have

supp f C supp f1 + - - -supp fn,

not necessarily equality, which brings us to the next question.

Question 2. If f is given by (8.1), is it true that

lsupp f| > CN9? (8.2)

If one requires that the lattices A1, As,...,Axy C R? have the same volume, say 1,
and the sum A] + A3 + ... + A} of their dual lattices is direct, then, by [15, Theo-
rem 2], they possess a measurable common almost fundamental domain E (generally
unbounded).See Fig. 9.

In this case, |E| = vol(A;) = 1. So then one can take f = 1g, which tiles with all
A;,i=1,2,..., N, with |supp f| = |E| = 1.

Motivated by the previous observation, but now dropping the equal volume assump-

tion, we ask the following:

Question 3. Consider the lattices A1, Ao, ..., Ay, with % < vol(A;) < 2. Is there a
function f that tiles with all A;, such that

|supp f| = o(N%)?

Question 4. In the case when A4, ..., Ay all have volume 1 and satisfy some sort of
genericity condition, such as A} + - - - A}y being a direct sum, as in [15, Theorem 2], can
the common fundamental domain of the A; be bounded? In the construction of [15,
Theorem 2] the unboundedness is unavoidable, but is it in the nature of things?
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Move by Ay

Figure 9: How to rearrange the fundamental domains of two lattices so that they agree almost
everywhere [15, Theorem 2]. One breaks up the two domains into smaller and smaller parts,
then moves each by a vector in its own lattice so that they agree almost completely.

9 Small length of the support in d =1

In the simplest case in dimension d = 1, and for two lattices only, a basic question is
to ask if the convolution (8.1) is best in terms of the length of the support. Here we can

give [21] a simple lower bound assuming a nonnegative function.

Theorem 5. Suppose the nonnegative f : R — R=0 is measurable and tiles with both
A1 = Z and with Ay = oZ, where a € (0,1):

1
—n) =1, —na) = =, for almost eR.
Zf(x n) nzezzf(x no) » foralmost every x

(9.1)

neL

Then
(9.2)

1
|supp f| > [a—‘a > 2.

Remark 2. If we assume the first equation in (9.1) then the constant in the second
equation is forced to be 1/a. This is because f f = 1 (from the first equation), so
repeating f at a set of translates of density 1/a will give a constant (assuming it tiles)

at that level.
Remark 3. Notice that if « is just a little less than 1 then (9.2) gives a lower bound of

2a, which shows that the convolution 1jg 1j* 1y o is almost optimal in this case, having

support of size 1 + «.
But if, on the other hand, « is just over 1/2 then the lower bound is just over 1 but

the convolution upper bound is just over 3/2, a considerable gap.

Proof. From the first equation in (9.1) it follows that f(x) < 1 for almost every z. For
the second equation to be true it therefore follows that for almost every z € R there are
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at least [1/«] different values of n € Z such that f(x — na) > 0. Using this for almost
all z € [0, ) (which ensures that for different = the locations  — na are also different)
gives (9.2). O

Question 5. What is the least possible length of the support of f for a nonnegative f
that tiles with both Z and aZ.?

10 Very small diameter of the support with relations among
the lattices

If we have N lattices
Aq,...,Ay CR?

we can find a function that tiles with them all, namely the function f in (6.1). If
our lattices are assumed to each have a fundamental domain bounded by ~ 1 then
diamsupp f = O(N), and this cannot be improved for functions f arising from (6.1).
We show here [21] that we can choose the lattices A; so that a common tiling function
exists which is much more tight than that, tighter even than what Theorem 6 imposes.
Of course our lattices will not satisfy the genericity condition (6.4) of Theorem 6, but will

satisfy a lot of relations (their intersection will be a large lattice, in terms of density).

Fix a large prime p and consider the group Zg. Any nonzero element g of this group
generates a cyclic subgroup of order p. It follows that Zg has

p—1
different cyclic subgroups. For each such subgroup (G, which we now view as a subset
of {0,1,...,p— 1}d, consider the lattice

Ag = (pZ)* + G.

This contains the lattice A = (pZ)? and has volume

PR SN
[ —— 1
| v |
| . of |

[ I
| . . ]
i, . |
| ]
L -

I’arza{
I’”’i"";‘“ﬁj

Figure 10: How we construct the (pZ)?-periodic set A¢ from the subgroup G of Zg

vol(pZ)® 44

Yl
G|

vol AG =
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The function f = 1y ,)a, [0, p)¢ being a fundamental domain of A, tiles with A and,
therefore, with any larger group, so f is a common tile of all Ag.

In order to make the volume of the Ag equal to 1 we shrink everything by N 1/d,
Ng=N""0g, f(x)=fFNY).
So we have ~ N lattices A’G of volume 1 and a common tile f’ for them with

diam supp f’ = diamsupp f - NV = \/&prl/d = \/&Nﬁ_% = \/&Nf“dl*l).

We have proved:

Theorem 6. In dimension d > 2 and for arbitrarily large N we can find N lattices of

volume 1 and a common tile f for them with
1
diam supp f = Oy (N d(d—1>> ,

and, consequently, with

supp f| = Oq (Nﬁ) . (10.1)

Question 6. Derive a lower bound for diam supp f, for f tiling with A+, ..., Ay C R? and
with f > 0 (or just f f > 0) under no algebraic conditions for the lattices A, assuming
only that vol A; ~ 1.

Question 7. In Theorem 10 we have used the cyclic subgroups of Zg because they are
easier to count. However the same argument could be carried out using a larger class
of subgroups, perhaps all of them. What is the estimate that can be achieved this way
to replace (10.1)?

11 Almost matching upper and lower bounds for the diame-
ter,d =1

The construction that we used to prove Theorem 10 gives nothing in dimension d = 1.
Yet, we can prove [21] that, if we allow relations among the lattices, we can achieve

diam supp f = o(N) in dimension 1 as well.
Let us start by defining

1

We will first construct a function f which tiles with all the A;, j = 1,2,..., N, such that
diamsupp f = o(1).
The Fourier transform of such an f must vanish on the dual lattices

A =XN'Z=(N+H)Z (j=12,...,N)
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except at 0. Write
N
U=JW+5)z \{0}.
j=1

By a result of Erdés [6] U, the set of integers which are divisible by one of the integers

in{N +1,N+2,...,2N}, has density tending to O with N. Tenenbaum [28] has given

the estimate that this density is at most
log” ) N’ .

where 6 = 0.086071 - - - is an explicit constant.

It is an important result of Beurling [2] that if A is a uniformly discrete set of real
numbers of upper density p then for any € > 0 we can find a continuous function f,

~

not identically zero, supported by the interval [0, p + €] such that f(\) = 0 for all A € A.

~

We can even ask that f(0) = 1if 0 ¢ A. By Tenenbaum’s estimate (11.1) we can take
p = log_5+0(1) N and the set U, being a set of integers and thus uniformly discrete,
satisfies the assumptions of Beurling’s theorem, so there is a function f supported in
the interval [0, log~0te) N |, with integral 1, such that f = 0 on U. It follows that f
tiles with all A;.

We now scale by a factor of N
J'(@) = f@@/N), ;= NA;, diamsupp f = O(Nlog >+ N)
and obtain the first half of the following theorem.

Theorem 7. We can find N lattices A; C R of with volA; ~ 1 and a function f with
f f > 0 and supported in an interval of length

N
logé—o(l) N)
which tiles with all A;.

Furthermore, for any € > 0 any such function f must have

diam supp f > N1

Arguing similarly we can also prove the lower bound for diam supp f in Theorem 11.
If we assume that f tiles with all A; = \;Z, with, say, 1 < \; <2,j=1,2,...,N, then

fvanishes on
N
A"z \ {0}
j=1

If this set is large then Jensen’s formula implies that diam supp f is also large. It was
proved in [8, Theorem 1.1, special case ¢/ = n] that, for any € > 0, the above union of
arithmetic progressions contains at least ¢, /N2~¢ points in [0,2N]. By Jensen’s formula
then we have diam supp f >, N'~¢ and this completes the proof of Theorem 11.

Question 8. Can we ensure f > 0 in the first half of Theorem 11?

67



References

(1]

(2]
(3]

(4]

(5]

6l

(7]

(8]

(9l

(10]

(11]

(12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

J. Beck, On a lattice point problem of H. Steinhaus, Studia Sci. Math. Hung 24 (1989),
263-268.

A Beurling, Collected Works of Arne Beurling (2 vol.), edited by L. Carleson et al, 1989.

W. K. Chan and R. Mauldin, Steinhaus tiling problem and integral quadratic forms, Pro-
ceedings of the American Mathematical Society 135 (2007), no. 2, 337-342.

M. Ciucu, A remark on sets having the Steinhaus property, Combinatorica 16 (1996), no.
3, 321-324.

H. T. Croft, Three lattice-point problems of Steinhaus, The Quarterly Journal of Mathemat-
ics 33 (1982), no. 1, 71-83.

Paul Erdés, Note on sequences of integers no one of which is divisible by any other, J.
London Math. Soc 10 (1935), no. 1, 126-128.

R. Gardner, The Brunn-Minkowski inequality, Bulletin of the American Mathematical So-
ciety 39 (2002), no. 3, 355-405.

S. Gilboa and R. Pinchasi, On the union of arithmetic progressions, SIAM Journal on
Discrete Mathematics 28 (2014), no. 3, 1062-1073.

V. Havin and B. Jéricke, The Uncertainty Principle in Harmonic Analysis, Springer, Berlin,
1994.

S. Jackson and R. Mauldin, On a lattice problem of H. Steinhaus, Journal of the American
Mathematical Society 15 (2002), no. 4, 817-856.

S. Jackson and R. D. Mauldin, Sets meeting isometric copies of the lattice Z2 in exactly one
point, Proceedings of the National Academy of Sciences 99 (2002), no. 25, 15883-15887.

S. Jackson and R. D. Mauldin, Survey of the Steinhaus tiling problem, Bulletin of Symbolic
Logic 9 (2003), no. 03, 335-361.

M. N. Kolountzakis, A new estimate for a problem of Steinhaus, International Mathematics
Research Notices 1996 (1996), no. 11, 547-555.

M. N. Kolountzakis, A problem of Steinhaus: Can all placements of a planar set contain
exactly one lattice point?, Progress in Mathematics 139 (1996), 559-566.

M. N. Kolountzakis, Multi-lattice tiles, International Mathematics Research Notices 1997
(1997), no. 19, 937-952.

M. N. Kolountzakis, The study of translational tiling with Fourier Analysis, Fourier Analysis
and Convexity (L. Brandolini, ed.), Birkhauser, 2004, pp. 131-187.

M. N. Kolountzakis and M. Papadimitrakis, The Steinhaus tiling problem and the range of
certain quadratic_forms, Illinois Journal of Mathematics 46 (2002), no. 3, 947-951.

M. N. Kolountzakis and M. Papadimitrakis, Measurable steinhaus sets do not exist for
finite sets or the integers in the plane, Bulletin of the London Mathematical Society 49
(2017), no. 5, 798-805.

M. N. Kolountzakis and T. Wolff, On the Steinhaus tiling problem, Mathematika 46 (1999),
no. 02, 253-280.

M. N. Kolountzakis and N. Lev, Tiling by translates of a function: results and open problems,
Discrete Analysis (2021), 28122.

68



(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

M. N. Kolountzakis and E. Papageorgiou, Functions tiling with several lattices, arXiv
preprint arXiv:2106.11701 (2021).

P. Komjath, A lattice-point problem of Steinhaus, The Quarterly Journal of Mathematics
43 (1992), no. 2, 235-241.

E. Mallinikova and S. Rukshin, On one Steinhaus problem, Vestnik St. Petersburg Univ.
Math. 28 (1995), no. 1, 28-32.

R. Mauldin and A. Yingst, Comments about the Steinhaus tiling problem, Proceedings of
the American Mathematical Society 131 (2003), no. 7, 2071-2079.

R. D. Mauldin, Some problems in set theory, analysis and geometry, Paul Erdés and his
Mathematics I (2001), 493-505.

W. Sierpinski, Sur un probleme de H. Steinhaus concernant les ensembles de points sur le
plan, Fundamenta Mathematicae 2 (1958), no. 46, 191-194.

S. M. Srivastava and R. Thangadurai, On Steinhaus sets, Expositiones Mathematicae 23
(2005), no. 2, 171-177.

G. Tenenbaum, Lois de répartition des diviseurs, Séminaire Delange-Pisot-Poitou. Théorie
des nombres 19 (1980), no. 1, 1-3.

Mihail N. Kolountzakis: Department of Mathematics and Applied Mathematics, Univer-

sity of Crete, Voutes Campus, 70013 Heraklion, Crete, Greece.

E-mail: kolount@gmail.com

69






Prime Orbits and Mobius Randomness
Giorgos Kotsovolis

In memory of Dimitris Gatzouras

1 Introduction

The celebrated Prime Number Theorem was proved in 1896 independently by both
Hadamard and de la Vallée Poussin. It constituted a major breakthrough in the field of

number theory. It states that the number of prime numbers up to some integer NV is

asymptotically equal to lojgv ~ - 1f we denote by 7m(N) the number of prime numbers < N,
then it states N
dt
W(N):/ 17+0<N6_C‘/1°gN),
o logt

for some absolute constant c. (Note that throughout this transcript the Big O notation
f(z) = O(g(x)) means that there is some constant C' such that —Cyg(z) < f(z) <
Cg(x).) Improving the error term of this asymptotic formula has proven to be one of
the biggest obstacles in all of mathematics and it is related to the notorious Riemann
Hypothesis. In particular, the Riemann Hypothesis is equivalent to the statement that

N
— dt lie
W(N)—/O logtJrO(Nz )

for every € > 0,

This is not the only interesting version of the Prime Number Theorem though. In the
study of prime numbers one of the most important function is the Mdébius function,
which is the function x4 : N — {—1,0,1} such that

0, if n is not square-free
pn(n) = )
(—=1)", if n is square free

where r is the number of primes appearing in the prime decomposition of n. An equiva-
lent form of the Prime Number Theorem is the following equation concerning the Cesaro

Averages of the Mobius function:

1 N
N Z wu(n) — 0.
n=1

Again, the Riemann Hypothesis is related to the “speed” of that convergence, and it
predicts that for every ¢ > 0,

N 1
" un) = O(NE).

Another theorem connected to the distribution of the prime numbers is Dirichlet’s the-
orem regarding arithmetic progressions.
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Theorem (Dirichlet). For all pairs of integers (a, b) with gcd(a, b) = 1, the arithmetic pro-
gression an + b contains infinitely many prime numbers. Regarding the Mobius function,

a closely related theorem states that

1 & .
N Z p(n)e*™ e 0,
n=1
for all a € Q.
The purpose of this expository article is to explain the dynamical interpretations of
these results and to generalize them in different settings, where one can hope to have

generalized Prime Number Theorems.

2 Dynamical Interpretations

The aforementioned results carry dynamical interpretations. The function u is a mul-
tiplicative function and one of the main principles of number theory is that additive
structures and multiplicative structures behave independently. Say that two sequences
an, b, are independent if

1 & 1 & 1 &
th;anbn—thnz:lanth;bn.

It then happens that the equation % 227:1 ,u(n)e%m“ — 0 can be translated in that the
Mobius sequence is independent from rational rotations. Hence, comes the question:
What is an appropriate class of sequences that we can expect the Mobius function to be
independent from? We need some definitions first (see [4]).

Definition. We say the the four-tuple (X, A, v, T') is a dynamical system if (X', 4,v) is
a measure space and T : X — X is a measure preserving function (i.e. for every A € A
we have that v(T71(A)) = v(A)).

The measure v is called ergodic for the dynamical system (X', A, v, T) iff for every
set A € Ast. T71(A) = A we have that v(A) € {0,1}. It probably seems like it is
a lot to ask for a dynamical system to have this property, but it can easily be proved
that if we consider the space M of measures v that make 7' be measure preserving,
then under the weak™ topology, X is a compact, convex space with extreme points the
ergodic measures. Hence, using functional analytic tools (such as the Krein-Milman
Theorem), we see that most of the times assuming ergodicity is just a mild condition,
simply because extreme points are the “building blocks” of a convex compact space.

The branch of mathematics that deals with the evolution of dynamical systems is
called Ergodic Theory, and it has proven to be very closely related to Number Theory.
Pick any function f in C(X)(i.e. the space of continuous functions assuming some
topology on X) and some x € X. Form the sequence a,(z) = f(1T"(z)) (We will of-
ten be forgetting about the x-dependence). The nature of these sequences is additive
(i.e. aptm(x) = a,(T™(x))) and one could expect that they are independent from the
Mobius function. It has been proved that this is false. Every dynamical system can be
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associated with a non-negative number the entropy which is heuristically the measure
of how random the system is in its evolution. In particular, when systems have zero
entropy they are called deterministic, and when the systems have positive entropy they
demonstrate random-like behaviour.

It has been proven that there are dynamical systems of positive entropy that have
correlations with the Mébius function and hence cannot be orthogonal from it. However,

for zero entropy systems there is a widely open conjecture due to P. Sarnak.

Mobius Disjointness Conjecture (P. Sarnak). The Mébius function is orthogonal from

every zero-entropy Dynamical System.

This has proved to be an amazingly hard problem and only very few cases are known.

Avery interesting class of dynamical systems are systems that come from Lie Groups,
homogeneous spaces. The branch that deals with them is called Homogeneous Dynam-
ics and is interesting from a number theoretical point of view.
Let GG be some Lie Group and let I" be a lattice that is a discrete subgroup such that
the volume of a fundamental domain of G/I' evaluated using the Haar measure of
G is finite. If a € G we call a system of the form (G/I', A, pipaar, I’ — gal') a
homogeneous system. Examples of these systems are the torus R/Z or the space
SLy(R)/SLy(Z). These two systems are in some sense the prototypes, since for a ran-
dom Lie Group GG we have the two structural opposites that G can be nilpotent (like R)
and G can be semisimple (like SL2(R)).

When a Homogeneous system originates from a nilpotent group G, it is called a
nilmanifold, and nilmanifolds always have zero entropy. The Mobius Disjointness Con-
jeture was proven in 2008 in the case of nilmanifolds by B. Green and T. Tao [6], [5].
For semisimple homogeneous systems (i.e. when G is a semisimple Lie Group), the
problem seems much harder and only a few cases are known. In 2011, J.Bourgain,
P. Sarnak and T. Ziegler proved the first case for semisimple systems [1]. They proved
Sarnak’s conjecture for systems of the form SLs(R)/T', where I is any lattice. In 2015,
in his PhD thesis, R. Peckner generalized this result to higher dimensions, proving the
conjecture for connected Real Groups, under a unipotent action (i.e. the element a in

the definition of the translation of the homogeneous system is a unipotent element) [9].

3 Why should this conjecture hold?

Even though there have been some cases proved, why should one believe this conjec-
ture? For one, P. Sarnak proved that the Chowla conjecture [2] would imply, if proved,

the Mdébius Disjointness Conjecture.

Chowla’s Conjecture. For any fixed integer m and exponents ay, as, ..., a6, > 0, with at

least one of the a; odd, we have

1
23w D) 2% () 0.

n<x

Furthermore, a simpler version of Mdbius Disjointness conjecture was proved in 2018,
a result of B. Host and N. Fratzikinakis [3].
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Theorem. For every zero dynamical system (X, A,v,T) with zero entropy and at most
countably many ergodic components (i.e. viewing v as a point in the convex, compact
space M of T—invariant measures, it can be written as an integral on countably many
extreme points) and every y € X, we have that

— 0.

1 s g(T™(y)uln)
log N ; n

4 Why is Mobius Disjointness Important?

In one sentence, the Mobius Disjointness conjecture is the obstacle to allow us to have
prime number theorems for dynamical systems and study the distribution of prime
numbers in those systems.

Suppose we are given a dynamical system (X, A, v, T'), a function f € C(X). Birkhoff
showed [4] that the sums of the form

1 N
N 2 /()

converge for v-almost all points x € X. If the measure v is an ergodic one, then it
converges to [ f(y)dv(y) for v-almost all x € X. If, furthermore, the space M of
invariant measures is a single set {v'}, that is there exists a unique measure that makes
T measure invariant, then the system is called uniquely ergodic and Birkhoff’s result
holds for all x € X.

A natural question to ask is the following: What if we restrict the summation only
on prime numbers? Is a prime number theorem for the system & true? Will that also
converge to [ f(y) dv(y) even assuming that the system is uniquely ergodic? We restrict
ourselves to O entropy systems, in order to have a chance to succeed. In mathematical

terms, is it true that |
o)

EEY 1@@) > [ fw vty

p<N
We refer to results of this type as prime number theorems because for example if we
take X to be the trivial 1-point system then this results is equivalent to the prime
number theorem. If we look at the 1—-dimensional torus with a rational rotation this is
equivalent with the prime number theorem on arithmetic progressions.

The next system we can look at is irrational rotations of the torus. In this case,
Vinogradov managed to prove that the sequence ap, is equidistributed, proving the
conjecture and also providing an error term for the convergence. This proof is a part
of his proof of the ternary Goldbach problem; which states that every big enough odd
number is a sum of three primes. A key point of the proof is the notion of Type I and
Type II sums.
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5 Type I and Type I sums

For a dynamical system (X, A, v, T) we call sums of the form

1 N
D HT )
n=1

Type I sums, and sums of the form

1 N
NXHUMMM@W@%
n=1

Type II sums. Essentially thus, Type II sums are Type I sums for the system
(X x X,0(Ax A),v,T" x Th.

In principle, good error terms for Type I and Type II sums can help prove the Moébius
Disjointness Conjecture for the system A and a prime number theorem for the system.

B. Green and T. Tao in their series of papers managed in 2008 to prove that for
all nilmanifolds (G/I', A, dg,x — gx) one can get a logarithmic saving in Type I sums,
meaning that assuming f is bounded by 1, + 27]:7:1 f(T*)(2) can be bounded by

However, the product of two nilmanifolds is again a nilmanifold and thus this also
holds for Type II sums. Hence, they proved the two conjectures for these spaces.

The situation is fundamentally different in semisimple systems. For example, as
mentioned before, J. Bourgain, P. Sarnak and T. Ziegler proved Mébius Disjointness for

11
SLy(R)/I' under the action of the horocycle flow (v — 01 x) and R. Peckner proved

it for SL,,(R)/T". However, the distribution of prime orbits (i.e. the orbit restricted only
on prime times) is still an open problem. Why?

Well, the answer is simply that we don’t have good error terms. Actually, we do not
have any error terms:

For example lets consider the example SL2(R)/IT" or even with I' = SLy(Z). In their
2011 paper P. Sarnak and A. Ubis give good error terms for Type I sums in this case.

By computing effective equidistribution Theorems for Type I sums and using sieve
methods they managed to prove that the closure of a generic prime orbit has volume at
least 0, 1. That means that, at the very least the closure of the orbit under prime times
is not too “weird”, in the sense that it is not a null set. Of course, for a generic point x
the expected result is that the prime orbit will be dense and even more, equidistributed.

However, Type II sums are a very different story and that is because the space
SLy(R) x SLy(R) is not that well understood. The only tools, so far, we have to study
Type I sums on that space are Marina Ratner’s Theorems [10], that can reduce Type Il
sums to the study of commensurator groups. At this points it should be mentioned that
Elon Lindenstrauss and Amir Mohammadi managed to give an effective density theorem
for type Il sums on SL2(R)/T" when I is an arithmetic lattice [8]. This gives hope for
effective equidistribution results.
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6 Horocycle flows

Among the homogeneous spaces one might try to understand in order to prove the
aforementioned conjectures, horocycles flows are certainly one of the most interesting
classes. We define what a horocycle flow is now. Suppose we have a homogeneous

space G/T" and a point x € G . Define
U={a€G,g"ag™" — e}.
U is called a horosphere and the reason for the name is that if G = SL2(R) and ¢

1

2
looks like a generalized circle (could be a line in some cases). Horocycle flows, that

0
is a non-trivial point of the geodesic flow, such as < ) the orbit Uz for x € G

is one parameter families inside horospheres are examples of unipotent elements, as
it can easily be noticed by the defining equations that all points in such a flow have
eigenvalues 1, when treated as groups of matrices. Unipotent flows are of central role
because of Ratner’s theorems [10](See next section).

The action of such groups is also a great place to look at because they always
have zero entropy. The dynamics of such spaces are particularly beautiful and better
understood than general actions.

Take once more the example of X = SLy(R)/SLy(Z). In this space, the action of

1t

U = <O 1) is ergodic and also mixing:

If H is a group acting on a space L?(X), we call the action mixing if for any f, g €
LX),

| fusig@ydgta) — [ g@rdgta) [ 1) doo)
X x x

This is a much stronger property than ergodicity. Even further, this mixing convergence
can be made effective and in fact it is known that the decay is at least exponential[7],
[13], [12]:
<e ™

’/Xf(ut:v)g(x) dg(x)—/Xg(x) dg(x)/){f(x) dg(z)

The decay is linked with the spectral gap of the space, that is the first eigenvalue of
the Laplacian. Big questions related to this problem are the Selberg and Ramanujan

Conjectures.

7 Unipotent Orbits and Ratner

In the case of SL2(R), two of the most interesting transformations one can consider to

make the space into a dynamical system are the geodesic flow and the horocycle flow.
—t
e

The geodesic flow is the transformation g; : z — z. However, this system

et

has positive entropy. It is thus not to interest for us. The horocycle flow is the system
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1 ¢
with transformation u; : © — 0 1 z This system does have zero entropy. Actions

like that coming from unipotent elements are particularly beautiful as explained by the
rigidity theorems of Marina Ratner, as in the following.

Theorem (Marina Ratner). Let G/T" a homogeneous spaces and u; a one parameter
subgroup consisting of unipotent element and x € G/I". Then w,x is eduidistributed in its
closure and its closure is algebraic in the sense that it is some homogeneous space H /T

Jor some H subgroup of G containing the family {u,}.

Specifically for the case of SLy(R)/I', we have that when I is cocompact every orbit
is equidistributed (that is, we have unique ergodicity) and when I is not cocompact every
orbit is either equidistributed in the whole space or isomorphic to a one dimensional
torus. Which case occurs has to do with whether the orbit touches the real line on an
irrational point or not, respectively.

To understand how much better the unipotent case is from the geodesic one, in the
geodesic case the orbits can be dense but very far from equidistributed or even worse
form very complicated objects.

Unfortunately, effectivization of Ratner’s proof is a very hard task and not much is
known around that problem [8].

As mentioned earlier, P. Sarnak and A. Ubis [11] gave an effective version of Ratner’s
theorem for the space SLy(R) explaining Type I sums for these spaces. However, there
is no effective Ratner theorem for SLy(R) x SLa(R) yet.

It has been proved that most Type Il sums are well behaved converging to ( [, it (y)dg)Q,
however nothing is known for the speed of that convergence, forbidding us to pass to
prime orbits.
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From Compressed Sensing to Deep Unfolding:

Redundancy Unites
Vicky Kouni

In Memory of D. Gatzouras

Abstract

We examine Compressed Sensing from a model-based and a data-driven point of
view. In the first part, we solve analysis-sparsity-based Compressed Sensing (anal-
ysis CS), employing spark deficient Gabor frames, and compare numerically our
method with state-of-the-art Gabor transforms. Our results confirm that the high
redundancy provided by spark deficient Gabor frames improves the performance
and reconstruction quality of the CS algorithm. In the second part, we propose a
new deep unfolding network coined DECONET, which jointly learns a redundant
sparsifying analysis operator and solves the analysis CS problem. We deliver mean-
ingful - in terms of sparsifier’s redundancy and number of layers - generalization
error bounds for DECONET, using a chaining technique. Finally, we confirm the

validity of our theoretical results in terms of adequate numerical experiments.

1 Model-based Compressed Sensing

1.1 Introduction to CS & Sparse Data Models

Compressed Sensing (CS) deals with recovering x € F" (F = R or C) from incomplete,

noisy measurements y = Az +e € F™, m < n, |le]2 < e. CS heavily relies on the
following two principles. First, the measurement matrix A must meet conditions (small
coherence, restricted isometry property [1], etc.) ensuring exact/approximate recon-
struction of z. Random Gaussian matrices have proven to work well. Second, we
impose a sparse data model for z [2], that is, we assume that x has very few non-zero
coefficients.

Sparse data models are split in synthesis and analysis sparsity. In the former
[1, 2], = is considered to be sparse when x = Ds. D € F"*" is an orthogonal/unitary
matrix and s - the synthesis representation of z - is sparse. On the other hand, in
the analysis sparsity model [3, 4, 5], we assume there exists a redundant analysis
operator W € RV*" N > n, so that Wz is sparse. The two models coincide when
W = D~!. But the interesting case is when considering a redundant W, so analysis
sparsity differentiates itself from its “twin”. In this paper, we solely focus on analysis
sparsity. The optimization problem that emerges when employing analysis sparsity in

CS is the analysis I -minimization problem

m'ﬁrn |Wx|1 subjectto |Az—y|2<e. (1.1)
el
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As mentioned earlier, we prefer to employ analysis sparsity in CS, due to some ad-
vantages it has compared to its synthesis counterpart. For example, analysis sparsity
provides flexibility in modelling sparse signals, since it leverages the redundancy of
the involved analysis operators [6]. Moreover, it is computationally more appealing to
solve the optimization algorithm of analysis CS since a) the actual optimization takes
place in the ambient space b) the algorithm may need less measurements for perfect

reconstruction [3].

1.1.1 Related Work, Motivation & Contributions

We are inspired by [3, 4], which propose analysis operators associated with full spark
Jrames (=overcomplete bases) [7]. However, the full spark property is not beneficial for
analysis [1-minimization, since it restricts the amount of linear dependencies in W,
which in turn could be leveraged by (1.1). To overcome this obstacle, we need analysis
operators exhibiting more linear dependencies among their rows. To that end, we employ
spark deficient Gabor frames [8], which have enhanced linear dependencies and are little
explored in terms of analysis CS. We associate to such a frame a redundant analysis
operator WW. In the end, we present numerical comparisons of the proposed operator to 3
famous Gabor analysis operators and explore an interesting number-theoretic outcome.

1.2 Spark Deficient Gabor Frames

Definition. A discrete Gabor system (g, a, b) is defined as a collection of time-frequency
shifts of the so-called window vector g € C”, expressed as

Gp.q(k) = egmqbk/ng(k —pa), k=0,...n—1, (1.2)

a, b denoting time and frequency (lattice) parameters respectively, p = 0,...,n/a — 1
(n/a € NJand ¢ = 0,...,n/b—1 (n/b € N) denoting time and frequency shift indices,
respectively. If (g, a,b) with elements as in (1.2) spans C”, then it is a Gabor frame for
C" and ab < n.

Remark 4. Due to (1.2), the number of elements in (g, a, b) is N = n?/ab. Furthermore,
a, b play a crucial role in a signal’s good time-frequency resolution w.r.t. a Gabor frame,
but they are typically chosen through experiments.

Definition (Gabor Transform). W, : C" — CN denotes the Gabor analysis operator
- also known as digital Gabor transform (DGT) - whose action on a signal x € C" is
defined as

Wy :x— Wyx = ((x,gﬁ)l]\ial. (1.3)

Definition (Spark of a frame in C"). The spark of a set ® -denoted by sp(®)- of N
vectors in C" is the size of the smallest linearly dependent subset of ®. A frame ® is full
spark if and only if every set of n elements of ® is a basis, or equivalently sp(®) = n+1,
otherwise it is spark deficient.

We state here the following auxiliary definition.
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Definition. The symplectic group SL(2,Z, ) consists of all matrices

G = (: ?) (1.4)

such that «, 3, 7, 6 € Z, and od — Sy = 1(modn). To each such matrix corresponds a
unitary matrix given by the explicit formula

9 n _
Ue = e}(p;) R T R F (1.5)
n u,v=1
where 6 is an arbitrary phase, f3~! = lmodn and 7 = — eXp(%)~

We restrict ourselves to a specific Z € SL(2,Z,,), that is, the Zauner matrix

-1 —1
z-(° _ (0" , (1.6)
1 -1 1 n—1
with corresponding unitary Uz (produced by combining (1.5) and (1.6)).

Theorem 1.1 ([9]). Let n € N such that 2 t n, 3 | n and n is square-free. Then, any

eigenvector of the Zauner unitary matrix Uz, generates a spark deficient Gabor frame for
Ccn.

Remark 5. A simple way to choose n relies on prime factorization: take k prime numbers
P, ..., PRk, with aq, ..., oy not all a multiple of 2 and p; = 3,p; # 2,4 = 2,...,k, such
that n = 3%1pg? - - .. pz‘" Since a,b | n, we may also choose a = 1 and b = p}*,i =
1,..., k. Otherwise, both a,b can be taken from the prime factorization of n. We have

seen empirically that this method for fixing (n, a,b) produces satisfying results.

1.3 Numerical Experiments

We compare star-DGT to 3 other DGTs generated by state-of-the-art window vectors

(Gaussian, Hann, Hamming) in time-frequency analysis on:
e 2 synthetic real-valued signals: Cusp & Sing (Wavelab),
e 2 real-world speech signals (TIMIT),
by solving four different instances of (1.1) (one for each DGT) and report the results in
Fig. 1 and Table 1.
1.3.1 Discussion

As illustrated in Fig. 1, star-DGT outperforms all DGTs based on state-of-the-art window
vectors. Furthermore, we observe in Table 1 that for different pairs of (a, b) for a given
z € R”, star-DGT outperforms the rest of DGTs. Interestingly, all DGTs achieve the
smallest relative error when a,b are chosen as the two largest factors in the prime
factorization of n. Overall, our results indicate improved performance of analysis [1-
minimization when employing W, .
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Figure 1: Rate of approximate success for synthetic signals, with a randomly subsampled
identity A € R™*" and additive zero-mean Gaussian noise with std= 0.001. Red: Gaussian,

magenta: Hann, black: Hamming, blue: proposed.

Relative Error ||Z — z||2/||x]|2

Parameters SI12141, n = 21735 SX224, n = 24633

@O sy | 21 | (1,23) | (7.17) | (17,23) | (21,23)
Windows

Gaussian 0.8916 | 0.8904 | 0.8897 | 0.8918 | 0.8910 | 0.8835
Hann 0.8917 | 0.8905 | 0.8897 | 0.8933 | 0.8925 | 0.8939
Hamming 0.8917 | 0.8905 | 0.8897 | 0.8932 | 0.8923 | 0.8940
star 0.8759 | 0.8743 | 0.8734 | 0.8881 | 0.8828 | 0.8835

Table 1: Fixed m = % with varying (a, b), for two example speech signals. Bold letters
indicate the best performance among all windows. Italic letters indicate the min. rel.

error achieved by star window among all pairs (a, b).

1.4 Conclusion and Future Work

In this paper, We took advantage of a window vector to generate a spark deficient Gabor
frame and associated to it a (highly) redundant analysis operator, namely star-DGT.
We numerically compared star-DGT to 3 other DGTs generated by common window
vectors in the field of Gabor Analysis, by solving the analysis /1-minimization problem,
for synthetic and real-world data. Our experiments confirm improved performance: the
increased amount of linear dependencies provided by this SDGF, yields in all cases a
lower relative reconstruction error, as m increases. As future direction, we would like to
develop a mathematical framework explaining why star-DGT benefits more when (a, b)

are chosen as the two largest primes in the prime factorization of n.

2 Deep Learning in Compressed Sensing

2.1 Introduction to Deep Unfolding Networks

Model-based CS has the advantage of being well-studied in the last 16 years, with many
theoretical guarantees explaining its success. Nevertheless, the employed optimization
algorithms typically need many iterations to converge to a solution of the problem and
the quality of the reconstructed signal may be low, even for m = n/2. A plausible recent
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alternative relies on Deep Neural Networks (DNNs), which offer higher reconstruction

quality in a significantly faster way.

Definition (DNN). A Deep Neural Network with L layers is a tuple
¢ = ((Tlao—l)w"v(TLaUL))’ 2.1)

where T, : RVe-1 s RN, with Ty(x) = Wz + by, are affine maps and o, : RV¢ s RV,
{=1,..., L, are (nonlinear) activation functions. For £ =1, ..., L, we call W, weights,
by biases and the output of the /th layer of ® has the form o,(Wyx + by). The function
h: RNo s RMNL given by h = oy, 01y, o --- 00y o1} is the realization of .

Definition. A deep residual network with L layers and shared parameters W, b is a DNN
with the same Wy, by and oy across all layers, i.e., Wy =W, by =b,0p=0,V/=1,..., L.
The (th layer of such a DNN has the form o(Wz + b) + z.

The task of a DNN is the approximation of a function f : RN — RV, based on a
given training set S = {(z;,v:)};_y = {(zi, f(zi)};_;. drawn ii.d. from an (unknown)
distribution D°. In optimization language, this pertains to finding/learning the un-

known parameters mé, = (Wy, by) that minimize the training mean-squared error (MSE)

1 S
MSEtrain(h) = ~ > Nhimoy,.mon) (i) — fl@)]3- (2.2)
=1

A new line of research lies on merging DNNs and optimization algorithms, leading to the
so-called deep unfolding/unrolling [10]. The latter pertains to interpreting the iterations
of well-studied optimization algorithms for analysis CS as layers of a DNN - called deep
unfolding network (DUN) - which implements a decoder: given measurements y € R™,
we get h(y) = &~z € R™.

2.2 Relater Work, Motivation & Contribution

State-of-the-art (SotA) DUNs jointly learn a decoder for CS and a sparsifying transform
[11], [12], [13]. Moreover, there exists few recent studies on the generalization error [14]
of proposed unfolding networks [11]. The drawback of [11, 12] is that the learnable
sparsifiers satisfy some orthogonality constraint, so CS is solved under the synthesis
sparsity model. On the other hand, [13] employs its handier analysis counterpart;
but it provides no generalization analysis of the proposed framework. Similarly, we
propose a new DUN dubbed DECONET, based on an optimal analysis-/; algorithm [15].
DECONET jointly learns a decoder for CS and a redundant sparsifying analysis operator;
thus, we address the CS problem under the analysis sparsity model. Our novelty
lies on estimating the generalization error of the proposed analysis-based unfolding
network. To that end, we upper bound the generalization error of DECONET in terms
of the Rademacher complexity [16] of the associated hypothesis class. In the end, we

numerically confirm the validity of our theoretical findings.
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2.3 Derivation of a New Unfolding Network for CS

As stated in [15], the analysis /;-minimization problem (1.1) transforms into
min ||Wz|; + HHx —z0l5 st [ly— Az <e, (2.3)
reR”™ 2

where p is a smoothing parameter and zg is an initial guess on . Then, (2.3) is associ-
ated to the dual

maximize (y, 2%) — e||2?||2

2.4)
s.t. ATZ2 —WTl =0, |2Ye < 1.

Finally, after a collection of arguments and calculations, Algorithm 1 is presented (we
call it analysis conic form (ACF) from now on), with S(-) and 7 () being soft-thresholding
and truncation operators, respectively. ACF also involves step sizes {t.}, {t;} > 0 and a
step size multiplier 0 < {6y}, with typical update rules giving 0 < {¢}.}x>0. { t2 }x>0 < 1
0< {0k}k20 <1.

Algorithm 1: ACF
Input : o€ R, 2} € RY, 22 € R™, € Ry, step sizes {t}}, {2}
Output: solution z, of (2.3)

Oy < 1, u(l):z(l),u%:zg;

=

2 for iterations kK =0,1,... do

3 zp — xo+ (1= 0)WTut + 0, Wzl — (1 — 0p) ATui — 0, AT22);
a | zig T = Op)up + Oz} — 0, G Way, 0, t1):

5 ziq < S((1 = Op)uj + Op2f — 0, "2 (y — Axy), 0, t2e);

6 up g < (1= 0p)up, + Opzpy g

7 uz_H +— (1- Hk)ui + sz,%H;

o | B 2/(1+ (14 4/(002))

9 end for

Remark 6. According to [15], ACF is guaranteed to converge to a solution &, of (2.3),
for which z,, e Z, with £ being an optimal solution of (1.1). Furthermore, the optimal
solution 7 is identified to this uniquely determined Z, and it is argued that there are
situations where Z and Z, coincide. Henceforward, we stick to the formulation of [15]

and speak about the solution .

We consider a standard scenario for ACF with zé = u(l) = 0, z% = ug = 0, t(l) =
2=0=10< {t:},{t3}, {0} < 1, p > 1, 3p = ATy, with A € R™*" being an
appropriately normalized random matrix, with ||Al|2—2 ~ 1. We concatenate the dual
variables in one vector, i.e., v} = (21,22, up,u?)’ € RM*CNT2M) for k > 0, with vy = 0,

and do the calculations, so that

T (Glog — bl 91311%)
2., 12 n—1,2

T(Gyo — by, 0, t3)

S(G2vy, — 2,0, Ht2e)

Vg1 = Dyvg + Ok
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where Dy, O, € REN+T2m)x(2N+2m) qenend on 6y, 0y: G} € RN*(2N+2m) depends on
W, A, t,lg, Ok, s Gi e Rm*(2N+2m) qgepends on W, A, tz, Ok, s bl,l€ € RY depends on W,
t,lg, Ok, To; bz € R™ depends on A, tz, 0k, xo and y. As one may notice, (2.5) resembles
a DNN. In order to enable learning, we assume that W is unknown and learned from
s idd: D, with unknown D?. Hence, the trainable

parameters are the entries of IW. Moreover, we consider W to be bounded with respect

a training sequence S = {(x;,y;)}5_

to the operator norm || - ||2—,2 by some A > 0, so we write W € B,.
Based on (2.5), we formulate ACF as a neural network with L layers/iterations and

output of the kth layer defined as

fily) = o(y), (2.6)
fx(v) = Dg—1v + O_10(v), k=2,...,L, 2.7)
where
o(y)" = (T(—teWao, t5), S(t5(y — Amg), t3e),
T( tOW'x()? tO) S(t%(y - A$0)7 t%fj))T’ (28)
o(v)" = (T(Gjv — ) S(Gjv —b7), (2.9)
T(Gio—bt),S(G2v —b3)E, k=2,...,L.

We denote the composition of L such layers (all having the same W) as

@) = frofr10--0 fi(y). (2.10)

The intermediate decoder of (2.10) constitutes the realization of a DNN with L layers,
that reconstructs v from y. Now, we apply

e an affine ¢ : RGN+2m)x1 3 R" g0 that & := ¢(f (v)),

e a truncating ¢ : R" — R" to push ¢(f& (y)) inside a ly-ball of radius By, for

some constant By > 0.

For a fixed number of layers L, the learnable decoder is

deciyy () = Y(S(fiF (1)))- (2.11)

We call Decoding Network (DECONET) the DNN that implements such a decoder, which
is parameterized by V.
We introduce the hypothesis class of DECONET

L={n:R™—=R": h(y) = b(d(fir(v)), W € Ba}, 2.12)

consisting of all the functions/decoders that DECONET can implement. Given HY and
S (with |S| = s), DECONET yields a decoder hs € H! that aims at reconstructing x
from y. In order to measure the reconstruction error of a hypothesis h € HL on S, we
employ the train MSE (2.2). The true loss is

L(h) = By~ (lh(y) — z]13). (2.13)
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We are interested in the generalization error, given as the difference between the train
MSE and the true loss
GE(h) = |Lorain(h) — L(R)]. (2.14)

The generalization error is important, because it tells us how well a DNN performs on
unseen data. But since D is unknown, wwe estimate (2.14) in terms of the empirical
Rademacher complexity [16] associated to HEL:

S n

Rs(H") =E sup Y > einhn(xs), (2.15)
heH" =1 k=1
€ being a Rademacher vector. We do so in a series of steps, described in the following
subsections. The proofs of all our results can be found in [17].

2.4 Theoretical Results
2.4.1 Boundedness of DECONET’s Outputs

We make some typical (for the machine learning literature) assuptions for S, i.e., we
assume that ||z||2 < Bi, for some constant By, > 0 and ||h(y)|l2 < Bout for some
h(y) — zll2 < [Jz|l2 + |h(y)]|2 £ Bin + Bout. We now take
into account the number of training samples and pass to matrix notation. Hence,

IY|lr < +/$Bin and

constant By, > 0; thus,

IhX)lIF = [ (e(fiy (Y)))IlF < V/5Bour. (2.16)

We upper-bound the output fﬁV(Y) with respect to the Frobenius norm, after any
number of layers k and especially for k¥ < L, so that ¢ and v are not applied after the
final layer L.

Lemma 2.1. Letk € N. Forany W € By, step sizes 0 < {t}}, {t3} < 1 witht} =t3 =1,
tl, =12, = 0, step size multiplier 0 < {0} < 1 with §y = 6_; = 1, and smoothing
parameter 1 > 1, the following holds for the output of the functions f{fV defined in (2.6) -
(2.7):

k—1

Z <<HA||2—>2(61,¢—1A + coi-1]|All2—2) + CQ,i—l)

=0

1A le < 2ulY|F

k-1
: H Fj) + [|Alja=2(c1 =1 A + co p—1]|All2—2) + C2,k—1] , (2.17)
=i

where {Cl,k}kZOy {02776}1620 <lwithec), 1 =co_1 =0, and
T) = 2[e1pA® + okl Al5 0 + 2/l Allas2A(crk + cop)] +1, 2.18)

Moreover, if ¢ A < 1, c1 xA% < 1, cax||Al35 < 1, then we have the simplified upper
bound
1A (Dle < 20 Y |2 (| All2—2 + 1)(G: + 1), (2.19)

where (j, = % withy = 4(A + ||A||22 + 1) + 1. In fact, it can be proven that I'y, < ~
forallk > 0.
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2.5 Lipschitzness Results

We prove that the intermediate decoder (2.10) is Lipschitz continuous w.r.t. W and
explicitly calculate the Lipschitz constants, which depend on L.

Theorem 2.2. Let fVLV defined as in (2.10), L > 2, dictionary W € By, step sizes 0 <
{ti b0, {2 k>0 < 1witht) =2 = 1,t1, =12, = 0, step size multiplier 0 < {0y }r>0 < 1
with 0y = 0_1 = 1, and smoothing parameter . > 1. Then, for any Wy, Wy € By, we

have
1, (V) = fir, WlF < KL||[Wh — Wal|aoo, (2.20)
where
L L—k
Ky, = 24|l <M_1’A|2—>2 +3 ( (05an T )

k—2

Zz<<||A|H eriat A+ ait]| Allasz) + caie 1>

i=0

-2
r|+2 ||AH2~)2(Clk‘ oA + o 2|l All2—2) + o 2)

j=1

<.

“(2Act -1+ ||Allas2(c1p—1 + c26—1)) + Cl,k—1||A||2—>2)), (2.21)

with {T';}r>0. {c1x}tk>0. {c2k}k>0 defined as in Lemma 2.1 and ¢i,—1 = c3 -1 = 0.
Moreover, if c; ;A < 1, chAQ <1, CQ,kHA||%_>2 < 1, for all k > 0, then we have the
simplified upper bound

K <2p|Y[F ([|Al252(L = 1+ 171 + 2([|Allas2 + D([[Alla2 +3)k) . (2.22)

where

_ _ 200 _
oy = L<7L 1Ly 2)>_7(7 2) 2.23)

(v=1)  (v—1)72 (v — 1)

with v as in Lemma 2.1.
We can now prove the Lipschitzness of the main decoder defined in (2.11).

Corollary 2.3. Leth € H” defined as in (2.12) with L > 2 and dictionary W € By. Then,
Sor any W1, Wy € By, we have:

[0(o(fi, (V) — W(o(flp, VDIlr < 1 (A + [|Allam2)KL|We — Willp, (2.24)

with K, as in Theorem 2.2.

2.6 Covering numbers and Dudley’s inequality

For a fixed number of layers L € N, we define the set M C R"** corresponding to the
hypothesis class H” to be

M= {(h(y) h(y2)] .. |h(ys)) €R™: he HEY
= {U(e((fi(Y))) € R™: W € By} (2.25)
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The column elements of each matrix in M are the reconstructions given by a decoder
h € HY when applied to the measurements ;. Since M is parameterized by W like HE
is, we have

1 S n
Rs(HY) = Rs(M) =E sup - €in M. (2.26)
(H7) (M) MGMS;; kMg

We employ Dudley’s inequality [1] in order to upper bound the right hand side of

(2.26) in terms of the covering numbers of M. Therefore,

\/gBout

RS(HL)ngm*B‘“‘t)/ *Slog NM, [ - |l ). ©.27)
0

S

We estimate N (M, || - ||, ) by means of

Proposition 2.4. The following estimate holds for the covering numbers of M:

(2.28)

Nn
NM, |- lle) < (1 L 2AA IIA!\m)KL) |

LE
2.7 Generalization Error Bounds

We are now in position to deliver generalization error bounds for DECONET.

Theorem 2.5. Let H be the hypothesis class defined in (2.12). Then, for§ € (0,1), with
probability at least 1 — §, for all h € H”, the generalization error is bounded as

L(h) < £(h) +8(Bin + Bout)Boutﬁ\/log (e <1 1A ;;ﬁ[f;?)&))

+ 4<Bin + Bout)2 \/ W, (2.29)

Under some additional, simplifying assuptions, similar to the ones presented in

with K, defined in (2.21).

Section 2.4.1, we obtain

Corollary 2.6. Let HL be the hypothesis class defined in (2.12) and assume that c; ;A <
1 oe1 kA2 <1, eopl|Al35 < 1, forallk > 0, with {c1x}, {c11} < 1 defined as in Lemma
2.1. Then, for § € (0,1), with probability at least 1 — §, for all h € H', the generalization
error is bounded as

L(h) <£(h) + 8(Bun + Bow) <Boutﬁ\/log (e (1 + HYHF(}\?/;;]iJr rm)))

210%(4/5)) (2.30)

S

with k1, as in Theorem 2.2 and p, q, r > 0 constants depending on || Al|2—2, A, p.

All the previous results are summarized in
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Theorem 2.7. Let H be the hypothesis class defined in (2.12). Assume there exist pair-

samples {(x;,y;)};_,, withy; = Ax; + e, |le||2 < e, for some € > 0, that are drawn i.i.d.

according to an unknown distribution D, and that it holds ||y;||2 < Bi, almost surely with
Bin = Bout in the definition of the truncating function 1. Let us further assume that for
step sizes 0 < {t} }r>0. {t3 }r>0 < 1, step size multiplier 0 < {0 }r>0 < 1 and smoothing
parameter > 1, we have = 0, "tEA < 1, =10, A2 < 1, p10 12| Aljos2 < 1, for all
k > 0. Then, for§ € (0, 1), with probability at least 1 —§, for allh € H*, the generalization

error is bounded as

. Nn pt+al+rrp
< 2 _ - =5
E(h) _»C(h) + 16Bout \/j\/log <€ <1 + \/gBout >)

4 16Boyt 210gs(4/5)7 2.31)

with k1, as in Theorem 2.2 and constants p, q, v > 0 as in Corollary 2.6.

Corollary 2.8 (Informal). According to (2.23), we have that L enters at most exponentially
in the definition of k1,. If we consider the dependence of the generalization error bound
(2.31) only on L, N, s and treat all other terms as constants, we roughly have

£~ £ 54/ F 2.32)

2.8 Numerical Experiments

We train and test DECONET on real-world image datasets (MNIST and CIFAR10). We
consider the vectorized version of images. We report the test MSE (which approximates
the true loss (2.13))

. 1& B B
Liest(h) = ; > @) — ll3, (2.33)
=1

where P = {(g;,Z;)},_, is a set of p test data, not used in the training phase. We also

report the empirical generalization error (EGE) defined by
£gen = ’ﬁtest(h) - ﬁt'rain(h)’- (2.34)

We use (2.34) - which can be explicitly computed - to evaluate GE.

2.8.1 Discussion

As illustrated in Fig. 2, the test MSEs drop as L and NV increase. This is a reasonable
behaviour for a standard analysis CS scenario, since the performance and reconstruc-
tion quality of (1.1) typically benefit from the (high) redundancy of the involved sparsifier
and the increasing number of iterations/layers. Moreover, EGEs appear to grow like
\/ﬁ, as L and N increase, which confirms our theoretical findings in Section 2.7.
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Figure 2: Performance plot for 10- and 50-layer DECONET with m = n/4, tested on MNIST
(top) and CIFAR1O0 (bottom) datasets.

2.8.2 Conclusion & Future Work

In this paper, we derived a new unfolding network coined DECONET with L € N layers.
DECONET jointly learns a decoder for CS and a redundant sparsifying analysis operator
W € RVX" We estimated DECONET’s generalization error (which roughly scales like
VNL), employing chaining. To our knowledge, we are the first to present generaliza-
tion error bounds of an unfolding network solving analysis CS. Finally, we presented
numerical experiments, which confirmed our theory. As a future direction, we would
like to characterize (e.g. in terms of structure) the redundant sparsifying transform that
DECONET learns.

References

[1] S. Foucart and H. Rauhut. “An invitation to compressive sensing”. In: A mathematical
introduction to compressive sensing, Springer, 2013, pp 1-39.

[2] M. Elad. “Sparse and redundant representations. From theory to applications in signal
and image processing”. With a foreword by Alfred M. Bruckstein. Springer, New York,
2010. xx+376 pp.

[8] M. Genzel, G. Kutyniok and M. Marz. “/;-analysis minimization and generalized (co-

)sparsity: when does recovery succeed?”. Appl. Comput. Harmon. Anal. 52 (2021), pp.
82-140.

[4] M. Kabanava and H. Rauhut. “Analysis ¢;-recovery with frames and Gaussian measure-
ments”. Acta Appl. Math. 140.1 (2015), pp. 173-195.

90



[6] E. Candés, Y. C. Eldar, D. Needell and P. Randall. “Compressed sensing with coherent
and redundant dictionaries”. Appl. Comput. Harmon. Anal. 31.1 (2011), pp. 59-73.

[6] V. Kouni and H. Rauhut. “Spark Deficient Gabor Frame Provides A Novel Analysis Opera-
tor For Compressed Sensing”. In: Neural Information Processing. Ed. by T. Mantoro et al.
Cham: Springer International Publishing, 2021, pp. 700-708.

[7]1 P. G. Casazza, G. Kutyniok and F. Philipp. “Introduction to finite frame theory”. Finite
Jrames, 2013, pp. 1-53.

[8] R.-D. Malikiosis. “Spark deficient Gabor frames”. Pacific J. Math. 294.1 (2018), pp. 159-
180.

[9] H. B. Dang, K. Blanchfield, I. Bengtssn and D. M. Appleby. “Linear dependencies in Weyl-
Heisenberg orbits”. Quantum Inf. Process. 12.11 (2013), pp. 3449-3475.

[10] M. Vishal, Y. Liand Y. C. Eldar. “Algorithm Unrolling: Interpretable, Efficient Deep Learn-
ing for Signal and Image Processing”. IEEE Signal Process. Mag. 38.2 (2021), pp. 18-44.

[11] A. Behboodi, H. Rauhut and E. Schnoor. “Compressive Sensing and Neural Networks from
a Statistical Learning Perspective”. arXiv:2010.15658 (2020).

[12] Y. Yang, J. Sun, H. Li and Z. Xu. “ADMM-Net: A Deep Learning Approach for Compressive
Sensing MRI”. arXiv:1705.06869 (2017).

[13] V. Kouni, G. Paraskevopoulos, H. Rauhut and G. C. Alexandropoulos. “ADMM-DAD Net: A
Deep Unfolding Network for Analysis Compressed Sensing”. In: Int. Conf. Acoust., Speech
and Signal Process. IEEE, 2022, pp. 1506-1510.

[14] S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge University Press, 2014.

[15] S. R. Becker, E. J. Candés and M. C. Grant. “Templates for convex cone problems with
applications to sparse signal recovery”. Math. Program. Comput. 3.3 (2011), pp. 165-218.

[16] C. Ma et al. “Rademacher complexity and the generalization error of residual networks”.
Commun. Math. Sci. 18.6 (2020), pp. 1755-1774.

[17] V. Kouni and Y. Panagakis. “DECONET: an Unfolding Network for Analysis-based Com-
pressed Sensing with Generalization Error Estimates”. arXiv:2205.07050 (2022).

Vicky Kouni: Department of Informatics and Telecommunications, National and Kapodis-

trian University of Athens, Greece, Panepistimioupolis 157-84, Athens, Greece.

E-mail: vicky-kouni@di.uoa.gr

91






Convergence rates to steady states for a heat

conduction model - the chain of oscillators
Angeliki Menegaki
In memory of Dimitris Gatzouras

Abstract

In this summary we present the main results from the works [Men20, BM22]
where we study the long-time behaviour of an out-of-equilibrium heat conduction
model.

1 Introduction

The main objective is to find estimates on the speed of the convergence to a stationary

state for a heat conducting system.

1.1 Motivation

The motivation for this study is the rigorous mathematical understanding of Fourier’s
law. Fourier’s law is a physical macroscopic law that relates the local thermal flux
J(t,z) to small variations of temperature V7'(¢,z) through a proportionality constant

x(T') known as thermal conductivity:

J(t,x) = —k(T)VT(t,x). (1.1)

At the microscopic scale, matter is made out of particles assumed to evolve according
to the classical laws of mechanics, and one of the goals of statistical physics is to model
heat conductivity through a system of interacting atoms and to achieve a rigorous
derivation of constitutive laws such as Fourier’s law [BLRB0O, FB19, Lep16, DhaO8].
Understanding macroscopic laws of matter when starting from a microscopic system
of interacting atoms is a challenge addressed to mathematicians by Hilbert in his 6t
problem [HilO2].

A paradigmatic set up where Fourier’s law is observed to hold with high precision is
when one considers a fluid in a cylindrical slab of height A and uniform cross sectional
area A, coupled at the two boundaries, the top and the bottom of the cylinder, to two
heat reservoirs at different temperatures. This is known as the Benard experiment
[BLRBOO]. The two heat reservoirs keep the system out of equilibrium and produce a
stationary heat flow. If there is a non-equilibrium steady state (NESS) that is described
by a phase-space measure, one would like to prove that the following limit exists:
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o V()
0<k(N):= A}gnoom

where NV is the microscopic length of the cylinder,

AT  T-T,
N N

is the effective temperature gradient, (J (,x)) is the expectation of the heat flux with

(1.2)

respect to the non equilibrium steady state and where we write J N (t,z) to stress the
dependence of J on N. The above limit allows us to define the thermal conductivity and
the very existence of the limit is a formulation of Fourier’s law.

Our main objective is therefore to investigate how certain quantities, such as the
relaxation rates to the NESS of such systems (the spectral gap of the associated dynam-
ics), scale with the system size, since these are crucial to making sure that the thermal
conductivity has a thermodynamic limit.

1.2 Preliminaries

We give here some definitions in order to state later our main results.

Definition (Entropy and Log-Sobolev Inequalities). For a probability measure ¢ on some
Borel set ) the entropy Ent,,(F") of a positive measurable function F' : 2 — R>q with

/Q F(2)logH(F(z)) du(x) < oo

Ent,,(F) ::/QF( 1og< // > dp(z). (1.3)

We say that u satisfies a logarithmic Sobolev inequality LSI(k) iff

Entu( ) >z vaHL2 (dp)

for all smooth functions f. The LSI(k) implies [Led99, Prop. 2.1] that p satisfies a spectral
gap inequality (Poincaré Inequality) SGI(k)

Varu(f) < % vaH%?(du) :

Logarithmic Sobolev (and other functional) inequalities are very effective tools to

is defined as

study the concentration of measure phenomenon and to quantify the relaxation rates,
i.e. the mixing properties, of the dynamics of many-particle systems [Gro93, BES85,
Led99, Led01, GZ03, ABC"00]. This is since the spectral gap (the speed of relaxation)
is known to be determined by the constant in the Log-Sobolev inequalities. We define
the spectral gap to be the size of the gap between 0 and the rest of the spectrum of the
associated generator L which can be also characterized by

A= inf —(Lf, ) r2(ap)

fece Var,(f)
IV Al 22 gy 70

where Var, is the variance relative to the equilibrium measure .
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Figure 1: Homogeneous chain: Spectral gap ~ N 3.
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Figure 2: Chain with impurity: Spectral gap ~ e~ V.
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Figure 3: Disordered chain: Spectral gap ~ e~V

Figure 4: The one-dimensional harmonic chain of oscillators connected to heat baths (big
discs) and with various pinning potentials (differently colored discs indicate different pinning

strengths).

2 Description of the model and state of the art

The model we focus on is a prototypical example of out-of-equilibrium systems and is
a generalized version of the historical Fermi-Pasta-Ulam (FPU) chain. It consists of a
chain of NV interacting oscillators on the phase space R24N | where the variables are qi, i
fori =1,..., N: the displacements of the particles from their equilibrium positions and
their momenta, respectively. Each particle has its own pinning potential and it interacts
with its nearest neighbours through an interaction potential. We call H the Hamiltonian
energy.

The dynamics of this model is such that the particles at the boundary are coupled to
heat baths, modelled by Langevin (Ornstein-Uhlenbeck) processes at (possibly) different
temperatures 3, lie Fand they are subject to friction. F C {1,..., N} here is the
subset of the particles on which we impose friction and noise and we also denote by
v; > 0 the friction strength at the i-th particle.

The time evolution is then for particles i € {1,..., N} described by a coupled system
of SDEs:

dgi(t) = (Vp,H)dt and

27;
dpi(t) = (— Vg H —vipibicr) dt + bicry % AW

]

(2.1)

where 7;,1 € F are the friction coefficients.

The generator of the dynamics, restricting for simplification to the 1-dimensional
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case and when F = {1, N} is:

N
L= (piOy — g, HOp,) — 11P10p, — INDPNOpy + M B5 05 + YN BN Oay -
i=1

Note that this operator is neither elliptic nor coercive, facts that make all the classical
tools fail when it comes to the study of the regularity or the long-time behaviour of

solutions.

2.1 In the literature

The non-equilibrium steady state for the purely harmonic chain, i.e. when both poten-
tials are quadratic (harmonic), was made precise in [RLL67]. Anharmonic chains were
studied in various works [JP98, EPRB99a, EPRB99b, Car07, RBT02, CEHRB18], where
existence, uniqueness of a non-equilibrium steady state and exponential convergence
towards it were proven in certain cases. More specifically the existence, uniqueness
of a steady state and exponential convergence, hold under the assumptions that both
the interaction and pinning potentials behave as polynomials near infinity and that the
interaction is stronger than the pinning potential. The last assumption is important as
there are some works which exhibit cases where the relaxation rate is not exponential,
i.e. where there is lack of spectral gap [Hai09, HMO09]. The existing results are however
not quantitative, i.e. they do not give information on the scaling of these rates in terms
of N, since compactness arguments are employed. Quantitative results for the spectral
gap are therefore missing and even in the simplest case of the linear (harmonic) chain,
the dependence on the dimension of the spectral gap was not known. Attempts have
been made through hypocoercive techniques to get N-dependent estimates under cer-
tain conditions on the potentials: see the discussion in [Vil09, Section 9.2] where this
question was first raised. The techniques discussed in Villani’s monograph however
only yield non-optimal estimates.

3 Main results

3.1 On the long time behaviour

Regarding the long time behaviour of the system, we provide explicit rates of conver-
gence to the non-equilibrium steady state (with optimal lower bound) in a 1-dimensional
weakly anharmonic scenario, i.e. when both potentials are N-dependent perturbations
of the harmonic ones.

The first statement concerns a contraction property in Wasserstein-2 distance. We
recall the definition of the Kantorovich-Rubinstein-Wasserstein L2-distance Wa(pu, v)
between two probability measures p, v:

Waluv)? =inf [ o= yldn(ay)
RN xRN

where the infimum is taken over the set of all the couplings, i.e. the joint measures 7
on RV x RN with left and right marginals ; and v respectively.
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Theorem 3.1. We consider a 1-dimensional chain of coupled oscillators with rigidly fixed
edges so that the dynamics are described by the system (2.1) with

(L E N = (g —a)? N
o) =3 (% 4o + Ufha)) + 3 (0 4 v - ) +

i=1 i=1 (3.1)
2 2
q7 qn
c—= +c—=
+ 2 + 2
Jora > 0,c > 0 and under the assumption that
sup | V2Upi, (@i) 12, sup [[V2U (r) 2 < O (3.2)

q; T4
where r; = q;11 — q; and cN < N—92 1 For a fixed number of particles N, there is a

unique stationary state, in particular, for initial data f&, fg we have:
3 _2g
Wa(P/ f3, P f§) < CacN7e™ N5 Wa(f3, f3) (3.3)
Jor Cq ¢, Ao dimensionless constants.
The proof relies on

e an application of a generalized version of the I';-calculus of Bakry-Emery [BE85]
for elliptic operators recently generalized by Baudoin for hypoelliptic operators
[Baul7] and

e a careful analysis of a high-dimensional matrix equation.

The generalised I'3-calculus allows us to prove the validity of a Log-Sobolev inequal-
ity for the invariant measure, with constant Cy < N3. With this inequality in hand
we also give a convergence to the stationary measure in relative entropy as in [Vil09,
Section 6]. We first recall the definitions of the following functionals:

For two probability measures ;. and v on R2N with v < 1, we define the Boltzmann

H functional (relative entropy)

H,(v)= / hlogh du, v = hu (3.4)
R2N
and the relative Fisher information
h 2
I,(v) = / VA du, v = hpu. (3.5)
RQN h

Theorem 3.2. We consider a weakly anharmonic 1-dimensional chain of coupled oscil-
lators with rigidly fixed edges whose dynamics are described by the system (2.1) under
the same assumptions as in the Theorem 3.1 above. For a fixed number of particles N,
assuming that (i) i is the invariant measure for P; and (ii) that it satisfies a Log-Sobolev
inequality with constant Cy > 0, forall0 < f € L'(u) with

E(f) < o0, and /fdu =1,
we have a convergence to the non-equilibrium steady state in the following sense:

Hu(Puf ) + T (Puf ) < Aa, NN (Hy () + Tu(f ) 3.6)

Jor dimensionless constants \, ¢, \o.

!This is what we call a weakly anharmonic chain of oscillators.
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Figure 5: Spectral gap ~ Figure 6: Spectral gap ~ Figure 7: Spectral gap ~
NS, N4, N3,

3.2 On the spectral gap

Furthermore, we study the spectral gap for purely harmonic chains and d-dimensional
grids of oscillators, and proved the optimal lower and upper bounds. We also treat
non-homogeneous scenarios where the coefficients of the pinning potentials are not
identical. In particular we look at chains of oscillators with an impurity (so that the
particle in the middle of the chain has pinning potential significantly weaker than the
pinning potential of all the other particles) as well as at disordered chains of oscillators,
see Fig 1,2,3. As regards the d-dimensional grids, the spectral gap depends on which
particles are exposed to friction, cf. Fig. 5,6,7. These are explained in the statement
below.
Our setting is the following, we look at the system (2.1) with 7 C {1,..., N}? and

(pu m[_]\}}dp>

H(q,p) = 5

+ Vaelq) where Vac(q) = Y ailal” +) eyl — g 3.7
1€[N]4 g

Theorem 3.3. Let the positive masses m; and interaction strengths c; of all oscillators

coincide, N% be the number of oscillators, placed in a square grid with N oscillators on

each side, and d the dimension of the networlk.

e (Homogeneous chain): Let the pinning strength a; be the same for all oscillators,
then

(i) if two particles located at the corners (1,...,1),(N,...,N), see Fig. 5, are
exposed to the same non-zero friction and non-zero diffusion, the spectral gap

of the generator decays at the optimal rate N —3d,
Ay = O(N73),

In particular for the one-dimensional chain of oscillators Ay = O(N~3).

(ii) if the same non-zero friction and non-zero diffusion for particles located at the
center of two opposite edges of the network

(L, [N/2],..., [N/21), (N, [N/2], ..., [N/2]),

see Fig. 6, the spectral gap of the generator decays at the optimal rate
N=3=@=D: Ay = O(N—3-(d=D),
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(iii) if d = 2 and the particles exposed to the same non-zero friction are located at
opposite edges of the network, the spectral gap satisfies A\xy < O(N =5/ 2).

e (Chain with impurity): Let N be even. We assume that all masses and interaction
parameters are positive and coincide and the friction parameters y; of the boundary
particles

I[N = {i € [N]% 3ip, - in € {1, N}} of [N]¢:={1,..,N}¢

satisfy SUP;eo[N]d Vi € (0, c)where c is independent of N and the friction is non-zero
on at least one boundary edge. Then, if the pinning strength a., ) at the center
point cq(N) = (N/2,..,N/2) of the network is sufficiently small compared to the
pinning strength of all other oscillators, the spectral gap A\ of the generator decays
at least exponentially fast in N, for alld > 1.

In dimension 1 this rate is the optimal one.

e (Disordered chain): We assume that all masses and interaction parameters are
positive and coincide and the friction parameters y; of the particles at the boundary

I[£N]? = {i € [£N]% ||i]loo = N} of the network [+N]* := {~N,..., N}¢

satisfy SUPjeg+N]d Vi € (0, ¢) where ¢ is independent of N and the friction is non-
zero on at least one boundary edge. Then, if the pinning strengths are iid random
variables distributed according to some compactly supported density p € C.(0, 00),
the spectral gap Ay of the generator decays exponentially fast in N, for alld > 1,
Jfor all but finitely many N.

The method of proof relies on a new approach for studying non-symmetric spectral
problems that reduces the problem to a spectral analysis of discrete Schrédinger opera-
tors. Using a Wigner matrix representation we reduce the study of this high dimensional
spectral analysis to the study of resolvents involving only the heat bath sites.
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A generic result on the Hardy space H!
Vassili Nestoridis

In memory of Dimitri Gatzouras

Abstract

According to the Hardy’s inequality, if f is a holomorphic function on the unit
disc of class H', then the sequence a(f) of the Taylor coefficients of the primitive of f
belongs to the space /!. We show that generically for all f in H'! the sequence a(f) is

outside any ¢? space smaller than ¢! i.e. with0 < p < 1; thus, a(f) € 61\< U €p>
0<p<1
holds generically for every f in H'.

1 Introduction

We start with a question asked by Dimitri Gatzouras about extendability of ana-
lytic curves in the plane. Next we use Baire’s theorem to prove our main result, that
generically for every function f in the Hardy class H'! in the open unit disc D of the
complex plane C, the sequence a(f) of the Taylor coefficients of the primitive of f lies
in /' < ( U 12 )

0<p<1
Baire’s theorem was also used to prove generic existence of universal Taylor series

in D or more generally in any simply connected domain {2 in C ([9], [10], [6]). The proof
except Baire’s theorem, uses Mergelyan’s theorem that, for every compact set K C C
with connected complement, every function f in A(K), (that is, continuous on K and
holomorphic in K9, can be uniformly on K approximated by polynomials. There is no
satisfactory version of Mergelyan’s theorem is several complex variables. That is why
the theory of universal Taylor series in several variables is less developed.

In order to prove generic existence of universal Taylor series on a product {2 =
{21 X -+ - x {2, of planar simply connected domains {21, ..., {2, except Baire’s theorem we
need a Mergelyan’s type theorem, asserting that, if the planar compact sets K1,..., K,
have connected complements, then every function f in A(K; X- - - X K,,) can be uniformly
approximated by polynomials. Such a statement was claimed to be true in [3]; however,
recently a counterexample was found in [2]. This led to the definition of a new function
algebra Ap(K) for K C C" compact. This algebra Ap(K) contains all uniform on
K limits of polynomials and is contained in A(K). If Ky,..., K, are planar compact
sets with connected complements, then every function f in Ap(K; x --- x K,,) can,
indeed, be uniformly approximated by polynomials. The algebra Ap(K) consists of
all functions continuous on K and holomorphic in every analytic disc in K. Thus,
replacing A(K) by Ap(K), we can establish generic existence of universal Taylor series
on products {2 = (21 X --- X {2, of planar simply connected domains (21, ..., {2,. The

103



universal approximation holds on products K = K1, X --- x K, of planar compact sets
Ki,..., K, with connected complements, such that K N {2 = () and it is realized by
the partial sums of the Taylor development of the universal function according to any
a-priori fixed enumeration of the monomials in the Taylor expansion [4], [5].

2 A question of D. Gatzouras

Acurve v : I — R?, where [ is an open interval, is called analytic if 7/(¢y) # 0 and
[&.°]

() = 3 ay - (t — to)" for some a, = a,(tp) € R? holds on an open interval around
n=0

any poin? tp in I. Certainly among all parametrizations of any given curve there are
parametrizations where the previous definition does not hold. If for a parametrization
I>t — 5(t) € R? the above definition holds, then the curve is called analytic and the
parameter ? is called a conformal parameter for the curve. In [11] we prove that for any
analytic curve the arclength s is a global conformal parameter. So, if we have an analytic
curve on an open interval in order to investigate if there is an analytic extension one
could consider the parametrization by arc length s and examine if there is an extension
which is analytic with respect to s. Several examples are given in [11] but initially the
curves y = z%, x € (0,+00), for a > 0 were not examined. D. Gatzouras suggested that
this example should be included in the list of examples and he asked the question if this
curve can be analytically extended beyond the point (0,0). If a = 1,2,... is a natural

number, then obviously the curve is continued over (—o0,+00) as the graph of the
111

17273
of a natural number, then writing * = yl/ % we see that it has an analytic extension for

function y(z) = 2 and « is a conformal parameter. For a = .. to be the inverse

y € (—00,+00) and y is a conformal parameter. For the remaining values of a > 0, my
feeling was that the curve is not analytically extended beyond (0,0) but I did not see
how to prove it; that is why I asked for help from John Pardon. Indeed, if the curve is

extendable analytically beyond the point (0,0), considering the parametrization by arc

. Y dx dy

length s such that v(s = 0) = (0,0) we see that, since — = (— y =& ) 0,

& ’Y( ) ( ) ds 1s=0 dsls=0" dsls=0 ?é

.. dx dy .
at least one of the derivatives — nd — is non zero.
S 1s=0 ds ls=0
x
Assume that —‘ is non zero. By assumption v, x and y are expressed as power

S 1s=0
series with strictly positive radius of convergence with center s = 0. Thus, the function

s — x(s) defined on one open interval with center s = 0 has a holomorphic extension
on a disc in C = R? centered at O = (0,0) = (0 + i - 0). Since the derivative of this
function is not zero at s = 0, it follows that on a smaller disc centered at O this function
is invertible and the inverse function is holomorphic, hence representable as a power
series of x. The derivative of this function is non-zero. Since s is a power series of x
in a small interval and 7 is a power series of s, it follows that v is a power series of

x and the derivative dl is not zero on a small interval around x = 0. Thus, on this
€T
small interval around = = 0 the function z — y(z) = Im7(s(z)) has a holomorphic

extension on a disc centered to O = (0 + i - 0) = (0,0). Thus, for every natural number
mn

n the derivative d—z should converge to a finite value as + — 07. Since y = 29,

X
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dy
d = a—1
an d ax

d
n = [a] + 1 the xllntl)'*‘ Eg(ﬂf) is equal to oo.

, it follows easily that a is equal to a natural number; otherwise for

mn

So C}n this case a is a natural number, which is a contradiction.
If d—y # 0, then a similar argument shows that a is the inverse of a natural
s ls=0
number, \irhich is also absurd.

Thus, we have proven the following

Proposition 2.1. The curvey = 2%, x € (0, +00) for a > 0 can be analytically continued
beyond the point (0,0), if and only if, a is a natural number or the inverse of a natural
number.

All this has been added in [11] and in the acknowledgement the names D. Gatzouras
and J. Pardon are included.

3 Main result

In this section we apply Baire’s theorem and we prove our main result which is a
new generic result on the Hardy space H' on the open unit disc D of the complex plane

1 27 )
C. A function f holomorphic on D belongs to H! if || f||g1 = sup — | f(re'?)|do
0<r<1 27 Jo

is finite. The space H'! endowed with the norm|| ||z is a complex Banach space. The
set of polynomials is a dense subset of H ()} According to the Hardy’s inequality, if
f € H' and a(f) denotes the sequence of the Taylor coefficients of the primitive F(f) of
f satisfying F(f)(0) = 0 (and F'(f) = f), then a(f) belongs to ¢'.

Proposition 3.1. Let 0 < p < 1. Then there exists f = f, in H', such that a(f) ¢ (P.

1
Proof. Let f(z) = ﬁ v > 0. Then f € H' if and only if v < 1. Developing
-z
o —1 1) —1
in Taylor series f(z) = > 0,2" where ¢,, = (n+'y > = 1y +1) '(7+n ) ~
n=0 n n:
v—1
[12].
I'(v) 5 ,
Thus, a(f) = (an)zozo and a9 = 0, a, = nn_l N (n >0,n — 4o00) and
N 1
lanl” > e

2p—1

1
For§ < p < 1choose v € {
It follows that a(f) ¢ ¢P.

1
For 0 < p < 5 for any v € (0, 1) we have a(f) ¢ ¢P.
The proof is complete. H

, 1) and hence (2 —v)p < 1.

Definition 3.2. Let 0 < p < 1. Denote by A, the set of f € H!, such that, a(f) ¢ ".

Proposition 3.3. Let0 < p < 1. Then A,, is a subset of H I which is dense and Gj.
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Proof. Proposition 3.1 shows that A, # (. Let f € A,. If P is a polynomial then
f+ P € A,. Since the set of polynomials is dense in H L ([1], it follows that the set
{f + P : P polynomial} is dense in H'. Since the last set is contained in A,, it follows
that A, is dense in H'.

In order to show that A, is a Gy is suffices to prove that H! \ A, is a denumerable
union of closed subsets of H'.

For M and N natural numbers we consider the set

o0 N
Bu = {r et 0= mer, SO0 <o)
n=0 n—

! n+1)P —

Then H' A4, = U {ﬂEM,N}.
M N
We verify that each set E)/y is a closed subset of H 1. Indeed, let fr € Eun

be a sequence converging in H' to some f € H!. Then f; converges uniformly on
compacta of D to f, which implies 7, (f%) k—> nn(f) for every n = 0,1,2,... ([1]).
— 0

N P N p
Since ) M < M for all k, it follows ) M < M; thatis, f € Ey,n and

n=0 (n + 1)p n=0 (TL + 1)]3
the set Fys v is closed in H L. The same holds for the intersections ﬂ Ey v and their

N
denumerable union H' ~ A, is an F,. The proof is complete. W

Theorem 3.4. The set ﬂ Ay, is a G5 and dense subset of H L It follows that for the
O<p<1
generic function f in H' the sequence a(f) belongs to /! ~ [ U Ep].
0<p<1

oo

Proof. Applying Baire’s theorem to the complete space H I we find that ﬂ A_1isa
n=2 "

G5 and dense subset of H!. Since the family of /P spaces is increasing, it follows that

oo
ﬂ A1 = ﬂ A,; this gives the first part of the statement of Theorem 3.4. This
n=2 " o<p<t
combined with the fact that a(f) € ¢! for all f € H' ([1]), completes the proof. M

4 Baire’s theorem, Mergelyan theorem and Universality

Baire’s theorem combined with Mergelyan theorem yields generic existence of uni-

versal Taylor series on simply connected planar domains.

Definition 4.1. Let K be a compact subset of C”, n > 1. Then P(K) denotes the
set of all uniform on K limits of polynomials and A(K) denotes the set of functions
f: K — C continues on K and holomorphic in K°.

If K= () then A(K) = C(K). The inclusion P(K) C A(K) always hold.
Theorem 4.2. (Mergelyan [8]). Let K C C be a compact set such that C\. K is connected.

Then P(K) = A(K).
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Definition 4.3. Let {2 C C be a simply connected domain and { € 2. A function
f:§2 — C holomorphic on {2 belongs to the class U({2, () of universal Taylor series
with center (, if for every compact set K C C ~\ (2 with C \ K connected and every
h € A(K), there is a sequence Sy (f,()(z) of partial sums of the Taylor development of
f with center ¢ which converges uniformly on K towards h.

Theorem 4.4. (9], [10], [6]). If {2 C C is a simply connected domain and { € {2, then the
classU(£2,() is a dense and G subset of the space H({2) of holomorphic functions on {2
endowed with the topology of uniform convergence on compacta of 2.

The proof of Theorem 4.4 uses Baire’s theorem combined with Mergelyan’s theorem.
One of the uses of Mergelyan theorem in this proof is the following.

Let K1 C (2 be a compact set with C \ K; connected and let ¢ € H({2). Let
Ky C C~ {2 be a compact set with C \. K5 connected and let h be a polynomial. We

1
need to find a polynomial P, such that, sup |P(z)—¢(z)| < eand sup |P(z)—h(z)| < —,
z€K1 z€K> S

where ¢ > 0 and s > 0 are given.

Indeed, since K1 N K5 = () the union K7 U K5 has also connected complement. Thus
Mergelian’s theorem applies for the compact set K = K;UK5. The function H : K — C
defined by H|K; = ¢ and H|Ky = h belongs to A(K); thus, there exists a polynomnial
P such that sup |P(z) — H(z)| < min (6, é)

This yieldzsE g’le desired result.

As mentioned in the introduction there is no satisfactory Mergelyan’s theorem in
several variables and the theory of universal Taylor series in C” is less developed. If we
wish to obtain existence of universal Taylor series on products {2 = (21 X --- X {2, of
planar simply connected domains (21, ..., {2,, we need a Mergelyan’s type theorem of
the following form.

“If K1,..., K, are planar compact sets with connected complements C \ K;, then
A(K) = P(K) where K = K1 x --- x K;”.

Counterexample 4.5. Let n = 2, K; = {0} and K2 = D be the closed unit disc in C.
Then C\ K and C~\ K3 are connected. Let h : K1 x Ky — C be the function h(z1, 22) =
|22] for all (21,29) € K1 x Ko = {0} x D. We have h € A(K; x K3) = C(K; x K3)
because the interior of K1 x Kj in C? is empty. We show that h ¢ P(K; x K3); indeed,
if a sequence of polynomials converges uniformly on K7 X K> to h, then by Wieirstrass
theorem the function |z2| = h(0, z2) should be holomorphic on the open unit disc D,
which is absurd. Thus, h ¢ P(K; x Ks) and P(K; x Ka) # A(K1 x K2). R

A careful examination of the previous counterexample leads to the following defini-
tion ([2]).

Definition 4.6. Let K C C™ be compact. A function f : K — C belongs to the class
Ap(K), if it is continuous on K and the following holds:
For every injective holomorphic mapping ¢ : D — K on an open disc D C C the

composition f o @ is holomorphic on D.
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If n =1 then Ap(K) = A(K). For n > 1, this is no longer true. For instance the
function h in Counterexample 4.5 belongs to A(K; X K2) \ Ap(K; x Ks). In general
we have the inclusion P(K) C Ap(K) C A(K). Furthermore, if O(K) denotes the set
of uniform on K limits of functions holomorphic in (varying) open sets containing K,
then we have P(K) C O(K) C Ap(K) C A(K). Thus, the algebra Ap(K) is better
for approximation than A(K). Mergelyan type theorems will be those giving conditions
assuring that Ap(K) coincides with P(K) or O(K).

I tried to prove that if K,..., K, are planar compact sets with connected comple-
ments, then Ap(K) = P(K), where K = K; X ---x K, butI failed. My impression was
that we would need several months in order to prove this. However, Myrto Manolaki in

three days at Oberwolfach gave a proof of this ([2]).

Theorem 4.7. Let K1, ..., K,, be planar compact sets with connected complements. Then
Ap(K) = P(K), where K = K1 x --- K.

Theorem 4.7 allows to prove generic existence of universal Taylor series on products
2= (2 x---x {2, of planar simply connected domain {21, ..., §2,, ([4],[5]).

Theorem 4.8. Let (21,..., (2, be planar simply connected domains and ( € {2 = ()} x

- X {2, If f is holomorphic in (2, then Sy(f,()(z), N =0,1,2,... denote the sequence
of partial sums of the Taylor development of f with center ( following any a-priori given
enumeration of the monomials in this development.

There exists a holomorphic function f on {2, such that, for every compact planar sets
Ki,..., K, with connected complements, such that K N2 = ) where K = K| x --- x K,
the sequence Sy(f,¢)(z), N =0,1,2,... is uniformly dense on Ap(K). The set of such
functions f is a dense and G subset of the space H ({2) of holomorphic functions on {2
endowed with the topology of uniform convergence on compacta of 2.

When (? is planar the functions in the class U ({2, ¢) have very wild properties; see for
example [6], [7], as well as, the works of Stephen Gardiner at al where potential theory
is used to address these wild properties. It is natural to ask the question, if in several
variables, the functions f of Theorem 4.8 satisfy similar wild properties. For instance
the class U(f2,() is independent of the center ( in the simply connected domain (2. Is
there an analogue in several variables in the frame of Theorem 4.8?

Acknowledgement. I would like to thank A. Siskakis for the proof of Proposition 3.1.
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On the inversion of the Laplace transform
Nickos Papadatos

In Memory of Dimitris Gatzouras

Abstract

The Laplace transform is a useful and powerful analytic tool with applications to
several areas of applied mathematics, including differential equations, probabil-
ity and statistics. Similarly to the inversion of the Fourier transform, inversion
formulae for the Laplace transform are of central importance; such formulae are
old and well-known (Fourier-Mellin or Bromwich integral, Post-Widder inversion).
The present work is motivated from an elementary statistical problem, namely, the
unbiased estimation of a parametric function of the scale in the basic model of a
random sample from exponential distribution. The form of the uniformly minimum
variance unbiased estimator of a parametric function h(\), as well as its variance,
are obtained as series in Laguerre polynomials and the corresponding Fourier coef-
ficients, and a particular application of this result yields a novel inversion formula

for the Laplace transform.

Key words and phrases: Exponential Distribution, Unbiased Estimation; Laplace Transform; Laguerre

Polynomials.

1 Introduction

For a function u : (0,00) — R, its Laplace transform is defined by the integral
o0
p(N) = / exp(—A\z)u(z)dz, (1.1)
0
provided that there exists A\g > 0 such that
o
/ exp(—Aoz)|u(z)|dz < oo.
0

There is a second version of the Laplace transform, related to probability measures
w supported in (a subset of) [0, c0), namely,

bu(N) = /[0 (A (o) (1.2)

it is just a matter of notation to express ¢, () as Eexp(—AX) where the nonnegative
random variable X has distribution function F(z) = p([0,z]), > 0, and E denotes
expectation. In this setup, ¢,()) is denoted as Mx(—\) and it is called the moment
generating function of X. It is clear that formulae (1.1) and (1.2) coincide if X has a
density u (w.r. to Lebesgue measure on [0, c0)). An inversion formula for the probabilistic
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version (1.2) can be found in Billingsley (1995) or Schilling et al (2012), and it is based
on an ingenious application of the law of large numbers. The formula can be written as

(x > 0)
(o) + o) =i S G YY) s
k=0

Regarding (1.1), it is known from Lerch (1903) that the transformation © — ¢ is one

to one. Furthermore, there are two well-known inversion formulae for (1.1), namely, the
Fourier-Mellin or Bromwich integral (see Boas (1983), Cohen (2007)),

1 y+iT
u(x) = lim / exp(sz)o(s)ds, (1.4)
g

271 T—o0 T

where v > 0 is greater than the real part of every pole of (the analytic extension of)
¢, and the Post (1930) or Post-Widder formula (see Widder (1946), Post (1930), Cohen

(2007)),
u(z) = lim (=1)" (B)HH o™ (E> (1.5)

n nl T x

The above inversions hold under some mild restrictions, e.g., (1.4) is satisfied for almost
all z € (0,00) (clearly, this is the best we can expect, but the formula in itself is
complicated and, so, inconvenient for purposes of computation, as can be seen when
applied to trivial exemplary cases), and (1.5) holds at continuity points of u, provided
that u is smooth in pieces and that the growth of |u| at infinity is at most of exponential
order.

The present work is motivated from an elementary statistical inference problem
which, at a first glance, seems to be unrelated to Laplace inversion. The problem is
to find the minimum variance unbiased estimator of a given parametric function h(\),
based on a random sample Xi,...,X,, from Exp()), with A > 0 unknown, or, more
generally, from I'(a, \) with @ > 0 fixed and known and A > 0 an unknown parameter
(for the definitions see Section 2). The main result provides necessary and sufficient
conditions on h so that a solution of this problem exists, and shows that the solution

(whenever exists) can be presented as a series in Laguerre polynomials,

Ln(z) = Zn:(—n’f(?;)i;. (1.6)

k=0

A particular application of the main result yields a novel inversion formula for the

Laplace transform; see Section 3.

2 On the best unbiased estimator of a parametric function of

the scale parameter in exponential/gamma models

2.1 Preliminaries and a simple parametric inference problem

The probability density of the exponential distribution, Exp(}), is given by
fa(x) = Nexp(—Ax), = >0,
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while the Gamma distribution, I'(a, A), has probability density

_ A? a—1 _
iz) = I‘(a)x exp(—Azx), x>0, 2.1

where a > 0 and A\ > 0 are positive constants, so that Exp(A) = I'(1, A).

From now on, we suppose that a > 0 is known (given), and we assume that A > 0
is the (unique) unknown parameter to be estimated from the data. More generally, we
wish to estimate an arbitrary parametric function h(\) by using a suitable choice of an
estimator

T = T(Xla"'7Xn)7

where T is a real valued measurable function with domain (0, 00)" and X3, ..., X,, are
iid (independent, identically distributed) random variables with density (2.1). Of course,
the actual value of T' (when X; = z1,..., X, = x,) must not vary with A, but 7" may
depends on n or a (since both are fixed and known).

So, the problem can be formulated as follows:

Problem 1. Let h(\) : (0,00) — R be a given (arbitrary) parametric function and suppose
that X7, ..., X, are iid with density (2.1). Under what conditions on h is it possible to
find an estimator 7' = T'(X1, ..., X,,) such that

(i) ExT = h(\) forall A >0, and
(i) ExT? < 0o for all A > 0?
And, in case that such a T exists, how can we obtain the best possible estimator for A?

An estimator satisfying condition 1 is called unbiased; as we shall see, unbiased-
ness restricts the class of possible estimators in such a way that the family of permitted
parametric functions h is quite narrow. Condition 2 means that T € NysqL?(un(N)),
where yi,,(\) is the product probability measure of (Xi,...,X,) on [0,00)". Then, pro-
vided E\T = h()), the quantity Ey (7 — h()))? can be written as VaryT = E T2 — h(\)?,
and it is called the variance of the estimator T'. Even if T' is not unbiased, the quantity
E(T —h(\))? is called MSE (mean squared error), and it is the most important measure
of closeness between a point estimator 7'(X1,. .., X,) and a parametric function h(\),
traditionally used in statistics for a long time. The subscript A in E) and Var) denotes
that the true probability measure of the X;’s is as in (2.1).

It is clear that, if we restrict ourselves to the class of unbiased estimators, those with
smaller variance are preferable. In the plausible case that we can pick an estimator 7™

satisfying
() ExT* = h(\) forall A > 0,
(ii) VaryT™ < oo for all A > 0, and

(iii) for any unbiased estimator 7" and for all A > 0, Var)T™ < Var)T',
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it follows that this is the best we can do. Such an estimator 7™ is then called uniformly
minimum variance unbiased estimator (UMVUE for short), and this is what we could
name as best. In order to be able to obtain the UMVUE it is necessary and sufficient
that the class

Tn, = {T : T is an unbiased estimator for h(\) with finite variance (for all A > 0)}

is nonempty. This follows from one of the most fundamental result in parametric in-
ference, adapted to the present particular case of Gamma distributions with a known.
Indeed, the following is true; see Lehmann and Gasella (1998).

Theorem 2.1. (Rao-Blackwell / Lehmann-Scheffé). Let X1,..., X, be a random sample
Jrom (2.1) with A > 0 unknown and a > 0 known. Let alsoh : (0,00) — R be a parametric
function, and suppose that Ty, is nonempty. Set X = X1 + --- + X,,. Then,

(i) The conditional probability distribution of (X1, ..., X,,) given X is independent of \.
(ii) For any T € T, the (unique w.p. 1) UMVUE is given by the conditional expectation
X).

(iii) Equivalently, the UMVUE of h(\) is the unique (w.p. 1) unbiased estimator in T, which
is a function of X, u = u(X). Hence, u(X) = E(T(Xl, ey Xn) ’ X) =T*(X).

T(X) = E(T(Xl, X))

Remark 2.1. It is well-known that the distribution of X = X +---+ X, is I'(na, A). In
view of Theorem 2.1, and substituting a for na > 0, Problem 1 reduces to an equivalent,

much simper, reformulation, as follows.

Problem 2. Let h(\) : (0,00) — R be a given (arbitrary) parametric function and suppose
that X is a random variable having probability density (2.1), with ¢ > 0 fixed and known,
and A > 0 an unknown parameter. Under what conditions on h does the UMVUE
u = u(X) of h(\) exists for all A? And, in case that it exists, how can we obtain its

form?

Since, by definition, Ex¢)(X) = [;° fa(2)y(z)dz for arbitrary measurable 1, the
imposed condition of a finite second moment on u for all A implies that

/ 2% L exp(—Az)u(x)?dz < oco. (2.2)
0

In other words, u € L?()\) for all A > 0, where L?()) is the Lebesgue space of functions
u : (0,00) — R satisfying (2.2). Thus, it is reasonable to define

L3 == Nyso L*(N). (2.3)

We can rewrite the unbiasedness restriction Eyu(X) = h()\) as

T / 2 exp(~Ax)ue)dz, A> 0. 2.4
0

It is then obvious that the rhs of (2.4) defines a holomorphic function in the right half-
plane C* = {\ € C : Re()\) > 0} whenever u € L3. This means that the function A —
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['(a)A~*h()) is holomorphic, and hence, h()\) must be holomorphic in C*. This already
imposes a serious restriction to the allowable parametric functions, e.g., it is necessary
that h € C*°(0,0); in fact, the analytic extension of h should have no singularities in
the right half-plane. As a simple example, for the C*°(0, o) parametric function h(\) =
1/(A2—2X\+2), no unbiased estimator exist (for all A > 0), because of the poles 14 of h.
However, regarding Problem 2, the analyticity of h is not sufficient to provide a positive
answer. To see this, it suffices to observe that for u € L3, [, #* ! exp(—Az)u(x)dz — 0
as A — 400, by dominated convergence. Then, any holomorphic function A that growths
faster than e* at infinity, e.g. h(\) = exp(\?), cannot be written as the expectation of

some u € L%; see (2.4).

2.2 Results

We are now in a position to state the main results.

Theorem 2.2. Assume that X is a random variable with probability density f) as in
(2.1), with A > 0 unknown. For a given parametric function h()), its UMVUE u(X) exists
in L(Q) if and only if the following two conditions are satisfied.

(1) The function h can be extended to an holomorphic_function in C*, and

(2) Forany A > 0,

D Ba(N)? < oo, (2.5)
n=0

where

n!lal

_ (_1)n d"” n—1 .
Ba(\) = =\ [A h(A)} : 2.6)
here, [a), = H?:_Ol (a+j) =T(a+n)/T'(a) denotes the ascending factorial (Pochhammer
symbol).

Theorem 2.3. Let h be a parametric_ function satisfying (1) and (2) of Theorem 2.2. For
fixed A > 0 define the function

A
H(y) := h(ﬂ) lyl < 1. 2.7)

Then, an alternative simplified form of the constants (3,(\) in (2.6) is given by

npr(n)
.00 = UL (0 ©.8)

nllal,

Theorem 2.4. Assume that (1) and (2) of Theorem 2.2 are satisfied and fix Ay > 0. Then,
the function u(x) for which u(X) is the UMVUE of h()\) is given by

w(@) = Bu(X0)dniro (2) (2.9)
n=0

where {qn.\, () }72 is the complete orthonormal polynomial system corresponding to the
weight function f),, with the convention that each g,.), is of degree n and with strictly
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positive leading coefficient. The series converges a.e. on (0,00) and in L*()\) for every
A > Ao, and the resulting function u(x), given by (2.9), is independent of the choice of \.
Furthermore, for any A > 0, the variance of the UMVUE is given by

Varu(X) =3 Ba(M)?, (2.10)

where the constants (3,(\) are completely determined from h(\); see (2.6) or (2.8).

Example 1. We compare the expression (2.10) with the classical information inequality,
namely, the famous Cramér-Rao (CR) lower bound (LB¢ ). Since, as is well-known, the
regularity conditions are satisfied for f), the bound states that for a random sample
X1,..., X, (of size n) from f), and for any unbiased estimator 7" = T'(X,...,X,,) of
h()), the inequality VaryT' > h/(M\)?/(nI()\)) := LBcp is satisfied; here, I()) is the

Fisher information, defined as
9 2
a
—1 X = —.

Thus, the CR-bound reads as Vary\T > A2h/(\)?/(na). On the other hand, the series
expansion (2.10) (applied with na in place of a; see Problems 1 and 2) yields

e 2 m 2
Varyu(X) = Z M(dd)\m [)\m lh()\)]> '

I(\) :=E,

Since u(X) is the UMVUE and thus, Var,T > Var)u(X) for any unbiased estimator 7,
it is clear that the CR-bound is implied by the preceding series, on just keeping its first

term.

2.3 Proofs

We first state some auxiliary lemmas.

Lemma 2.2. Forz > 0,a > 0and XA > 0,

dn[”f()} o [A”If()} 0,1,2 2.11)
d n )\ d)\n )\ ) b ) )
Proof. By Leibnitz formula and (2.1) it is easily seen that both sides of (2.11) are equal
to "
ny (Az)F
I'(a+n)fr(x -1 k( )7
@+ mAE@ 20 ()

Lemma 2.3. (Rodrigues’ formula; see Afendras and Papadatos (2015)). Forxz > 0,a >0
and \ > 0,

dr
[ nf)\ ] = \/ nn'f)\ QTL/\ a n:071727"'a (2.12)

dan
where {qn\ ()} is the complete orthonormal system with respect to f\, standardized
so that g,.) has degree n and positive leading coefficient. The polynomials gy, satisfy
the orthogonality condition

B[40 (0)r (X)] = i F2(@)ia (2) g () dxz{ N

0 if n#m.
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One important observation is that, as (2.12) and (2.11) show, we may produce the
orthonormal set ¢,.) by differentiate w.r. to the parameter ), instead of z.; more pre-
cisely,

(—1)" d" [ n } (=" d" ryn-1
A\ \T % Ax)| = A [)\ Ax} . (2.13)

Thus, (2.13) obtains the following

Corollary 2.4. Forz >0,a>0,A>0andn € {0,1,...},
(D" (4" [\

" - p iy PY . 2.14

r(a) (o) = L= (0 [ ] 214

We now proceed to verify the results of Theorems 2.2-2.4.

Assume first that the UMVUE of h(\) is u(X ), and suppose that it has finite variance
for all A > 0. Multiplying the equation Eyu(X) = h(A\) by \* ! and then taking n
derivatives w.t. to A, we subsequently obtain

oy = " @)u(e)ds

PUVICYIE /0 OOA"*fA(x)u(x)dx,
Tl = / (dd:n[v NG >D u()de,

a e = [T (g e a] ) e

o ()\dd:n [A“h(xﬂ) ~ [ @@ 2.15)

n!lal,

note that the differentiation can be passed under the integral sign, due to the assumed
(squared) integrability of u with respect to f) for all A > 0. We conclude from (2.15) that
the constants /3, () of (2.6) are the Fourier coefficients of u with respect to the orthonor-
mal polynomial system {gy.» }7° . corresponding to the weight function f). It should be
noticed that the orthonormal polynomial system corresponding to a probability measure
(having finite moments of any order) is unique, apart from a possible multiplication of
each polynomial by £1. Moreover, since our system {g,.» }>°, is complete in L*()), see
Afendras et al (2011), Parseval’s identity yields

Eyu(X)? = / Sr@)u(@)?de =3 Ba(0)?
0 n=0
Thus, assuming that u € L3, and since 3y(\) = Eyxu(X) = h(\), we get
Varyu(X) = Zﬁn()\)z, for all A > 0.

Conversely, assume that h is holomorphic in C* and that the series in (2.6) is finite
for all A > 0. Then we may define the function u(x; \) as

Zﬁn Yan:a(z), >0, (2.16)
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where, by Riesz-Fisher, the series converges in L?()), that is,
00 2
/ (uN(J:; A) — u(z; A)) fa(z)de — 0, N — oo,
0

with un(z; \) = Zg:o Bn(A)gn:a(z). It remains to show that the limiting function u(z; \)
does not depend on )\, and that it is the unique UMVUE of h(\). To this end, choose a
fixed \g > 0 with \g < A\ and write

= Bu(Ao)gniro(x), >0, N=0,1,2,... . (2.17)
n=0

From the convergence of the series (2.5) (with A\ = )¢) it is easily seen that u N(:t:) is
Cauchy L?()\g), and hence, it converges (in the norm of L?(\g)) to a function u(z) €
L?()\o). Moreover, is easy to check that for any A > ), we can find a constant C) =
C(A, Xo) such that fy(z) < Cyfy,(z) for all z > 0. This implies that uy is also Cauchy
L?()\) for any fixed A > Ag; indeed, if € > 0 is arbitrary, we can find N(€) such that
I (un, () — un, (2))? fr, (x)dz < €/Cy for all Ny, Ny > N(€) and, then,

o)

/ ™ (u, (&) — 1wy (2))? fa(x)da < O / (u, (&) — uy (2))? Fro (@) < €.
0 0

The preceding argument verifies that the limiting function u, defined as the L?(\g)-
limit of the sequence in (2.17), belongs to L?()\) for all A > )g, in symbols, u(z) €
Masx L%()\). From the orthogonality of the polynomials gy.), (n > 1) and go.\, = 1
we immediately see that E) jun(X) = Bo(Ao) = h(Ao), and clearly, this is also true
for u, i.e., Ey,u(X) = h()\o). However, the situation is different when A # ), that is,
the expectation of uy(X) w.r. to f) varies with both N and A. More precisely, since
qosx () = 1,

N
Exun (X) = h(Xo) + 3 Ba(A0)Erdning (X), N=1,2,... A>0.

n=1

2
On the other hand, we have shown that for A > Ao, E) (uN (X)— u(X)) — 0, so that,
by the Cauchy-Schwarz inequality,

o\ 1/2
Extn(X) ~ Exu(X)| < Exlun(X) = u(X)| < (Ex|un(X) = u(x)[*) " 0.
It follows that Eyu(X) = limy Eyun(X). Hence, the expectation of u(X) w.r. to f) can
be obtained as the limit of the expectations of uy(X) (w.r. to f)). Next, we see that
the calculation of Eyuy (X) requires evaluation of the expectations E gy, (X). that is,
integrals of the polynomials gy.),(z) w.r. to a different weight function (f) instead of
fxo), under which these polynomials are no longer orthogonal.
In order to calculate E g, (X) we proceed as follows. We have
NG

E/\Qn;)\O(X) = 0 f)\ (Z‘ f)\O( )qn /\0( )d.%'

= /\0 /0 I (z) exp ( — (A= )\o)x> Gn:xo ()de.
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The last integral can be viewed as the n-th Fourier coefficient of the bounded C'*°(0, co)
function w(z) := exp ( — (A= )\g)x), x > 0, with respect to the corresponding or-
thonormal polynomial system {g,.», }°, in L?(\g). On the other hand, it is known that
the same Fourier coefficients can be conveniently obtained by using the identity (see
Afendras and Papadatos (2015), Afendras et al (2011))

E,, [qn; " (X)w(X)} — rj[a]nEAO [anw)( X)} 7

provided E), [X” (w(”) (X))Z} < o00. Since w™ (x) = (Mg — A\)™ exp ( - (A= )\g)x) is a

bounded function of x, because A > \g, we can apply the preceding formulae to deduce

A

Exgning (X) = (x))

QWIE)\O [X” exp (= (0 - AO)X)]

A straightforward computation now yields

X[ e X
nra —Az)dx = [al], ,
F(a)/o x exp(—Az)dz = [a] Nnta

Ex, [X"exp ( - (A= )\U)Xﬂ =
and thus,

n! A
Recalling that £, (o) is given by (2.6) with A = )\, we have
—1)"Xo d”
E)\UN(X) = Z ( ) 0

— vnllal, dan Ao ((—1)" [(711];1 (1 - >:\0> >
_ ii’ (1 _ Ai))n {)\O;;L =ty } 2.18)
' A=Xg

n=0
Though the preceding formula appears to be quite complicated at a first glance (e.g.,

Exa(X) = (-1 12 (1-2)

3 [A"—lh(x)}

it seems that it is not an easy task to obtain its limiting value as N — o0), this is not
the case. In fact, (2.18) represents a Taylor development around y = 0 of the function
Hy,(y) := h(%) ly| < 1. Recall that h()) has been assumed to be holomorphic in

Re(\) > 0, so that H),(y) is analytic in the open disc |y| < 1. Writing H)(\Z) (y) for
%H 2o (¥), we shall verify below the equality

(" (0) = {/\ch;l [A”*%(A)}

}, n=0,1,.... (2.19)
A=Xo

Assuming for a while that (2.19) is valid, and substituting it to (2.18), we obtain the
simple formula

N (n) n
Z H,,”(0) Ao

Since |1 —Ao/A| < 1 (for A > \/2), we conclude from Taylor’s theorem that Eyuy(X) —
H),(1 = Xo/A\) = h(N). Thus, Eyxu(X) = limy Eyuny(X) = h()), and this verifies that
u(X) is the (unique) UMVUE of h()), for every A > \g. [To see uniqueness, repeat
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the previous construction with \; in place of A\g. Then, as we showed, the produced
estimator u(X) will satisfy Exu(X) = h(\) = Eyu(X) for all A > max{\o, A1}, so it
must be identical to u(X ).] Furthermore, (2.6) shows that v has the same Fourier
coefficients as the function u(x; \) defined by (2.16); thus u(z) = u(z; A) is independent
of A\, and Parseval’s identity yields (2.10). The orthogonal polynomials for the weight
function f) are called generalized Laguerre (Laguerre when a = 1). The a.e. convergence
of the Laguerre series expansion of a function v € L?()\) is a well-known (Carleson-Hunt
type) result that can be found in Mackenhoupt (1970); see also Uspensky (1927) and
Stempak (2000).

It remains to show (2.19). Using Leibnitz formula we first calculate

dn . B " )\kh(k)()\) B
/\dTn[’\ lh(A)]—(n—l)!kzl(k)M, n=12,..., (2.20)

while the lhs equals to h(\) for n = 0. Next, we define H)(y) = h()\/(l —y)) ly| < 1, so

that H\"(y) = Hx(y) and H\")(0) = h(}). Forn = 1, H\(y) = AW/ (A/(l —y))/(l —y)%
and H}(0) = Ah/(\) equals to the sum in the rhs of (2.20) (with n = 1). We shall prove,

using induction on n, the formula (valid for A > 0, |y| < 1)

" AR (A /(1 —
Hi")(y):(n—l)lz< ))‘h ()‘/(1 y)) n=1.92

1 k (k‘—l)!(l_y)n—I—k’ )Lyt (2.21)

which, setting y = 0, yields the rhs of (2.20); then, the substitution A\ — )\ verifies

(2.19). Noting that (2.21) is true for n = 1, we assume that it is true for some n. Then,
(n+1) d — (n\ RPN /(1 - y))
H = — —1)!
» W dy{(n ) Z(k)(k—l)!(l—y)”+k

A d {h(k)(A/(l - y))}

JaE—mia| 0o
ny N RO/ —y) A
2 ey R (e o e

~ony A B/ —y))
' (k)(k—l)! (1 — y)nthtl

(n+k)

3
T
=

n MNep®E) (N /(1 —
= (n_l)!z(k_1>(k—1>(k—1)!§1/—(y)"21k

n nN NRB( /(1 —
—l—(n—l)!Z(rH—k;)( )(Ah (A/(=y))

P k/)(k— 1)!(1 _ y)n+1+k
n+1 kp (k) _
n ny AR V(A = y))
= (n—l)!g {(k—l) + (n+k) } ey g
p <k:—1) (k> (k— DY —y)ntit
n n
where the last equality follows from ( k ) =0fork=n+1and (k—1) < b1 > =0 for
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k = 1. It is now obvious that

n n (k—1)n! (n+ k)n!
(k_l)(k—1)+<n+k)(k:) ERCED I TS TR
- {k(k—1)+(n+k)(n+1—k)}m
n!
= D
n+1
= n( ) ).

This shows that (2.21) holds with n + 1 in place of n, and concludes the inductional

argument.

3 A novel inversion formula of the Laplace transform

The results of Section 2 apply to the particular case where a = 1, i.e., when X follows
the exponential distribution with parameter A > 0, Exp()), with probability density

a(z) = Nexp(—=Az), = >0. (3.1)

In this case, Lemma 2.3 produces the corresponding orthonormal polynomial system,

namely,

dale) = -1k (1) O,

k=0 k
The preceding polynomials are functions of Az (this is also true for a # 1, since it is
easily seen that g,.(z) = gn;1(Ax)). Hence, it is convenient to define p,(z) = gn.1(2),
so that ¢,.\(z) = pn(Az). Then, the polynomial system {p,(z)}>2, is the complete
orthonormal system corresponding to fi (i.e., Exp(1)), that is,

1 if n=m,

E pn(X)pm(X)] = /OOO e " pn(2)pm(z)dz = { 0 if nsm

where E stands for E;. Traditionally, the polynomials L, (z) = (—1)"p,(z) (with alter-
nating leading coefficients) are called Laguerre polynomials, see (1.6), and they are also
orthonormal w.r. to fi(z) =e *, 2 > 0.

Consider now Problem 2 with ¢ = 1. This reduces in finding the function

u € L = NysoL? ((0, 00), e_)‘x)

for which -
Eyu(X) := / Aexp(—Az)u(z)dx = h(A), A >0,
0

provided that h(\) allows such a construction. Theorem 2.2 provides a necessary and
sufficient condition on h, namely, i()) is holomorphic for A € C* = {\ € C : Re(\) > 0}

satisfying
00 2
(_1)n i n—1
2 e [A h(A)} <00, A>0. (3.2)

n=0
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In view of Theorem 2.3, the preceding condition can be rewritten as

< [ 1y 2
Z(W) < oo, A>0, (3.3)

n=0

where Hy(y) = h,(/\/(l - y)), yl < 1.
It is obvious that the equation Eyu(X) = h()) can be written in terms of the Laplace
transform of u, (1.1), as

M) = /0 " Nexp(—Az)u(z)ds = Exu(X) = h(\).

Hence, given the (holomorphic in CT) Laplace transform ¢, one can check the validity of
either (3.2) or (3.3) for h(\) := A¢(A), in order to ensure that the inverse function u(x)
of ¢()\) exists in L%; if this is the case, then Theorem (2.4) applies and u is obtained as
a Laguerre polynomial series with constants derived from the derivatives of ¢.
Translating Theorems 2.2-2.4 to the Laplace-transform case, we obtain the following

Theorem 3.1. (A) Assume that ¢(\) is an holomorphic function of A € C*, such that

[eS) n 2
3 (7; ()\;)\n [A%(A)D) <00, A>0, (3.4)

n=0
0o (n) 2
o 0
> ( An,( )> < oo, A>0, (3.5)

n=0

or, equivalently,

where A A
b = 2 o(), i<t 36

N 1_y¢ - | (3.6)

Then, ¢ is the Laplace transform of a function u € L%. Moreover, for every fixed \g > 0,

the inverse Laplace transform, u, is given by

o'} (I)(n)(o
u(z) = ;‘) A;ﬂ ) Ln(Mo), (3.7)
where the Laguerre polynomials L,, are given by (1.6). The series converges a.e. and
in L? (R+, e_m) Sor every A > Ay, and the sum of the series does not dependent on the
particular choice of \g.

(B) If ¢ is the Laplace transform of a function u € L% then ¢ is holomorphic in C* and
satisfies (3.4) (equivalently, (3.5)).

Since the choice of Ay does not affect the validity of (3.7), we may set Ag = 1. Then,
the function @) in (3.6) reduces to ®1(y) = (1—y) '¢((1—y)~') = ®(y). say. and from
(3.7) we obtain the (Taylor-like) Laplace inversion formula

< d) (o 1 1
u(z) = nz:; n!( ) L,(x), where ®(y) = iy qb(l — y)’ (3.8)

which is valid almost everywhere in (0, 00).
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At this point we note that all inversion formulae of ¢()\) provide approximating
functions for u(x) in some sense. For instance, (3.8) says that

N
™ (0
un(z) = Z n'() L,(xz) = u(x), a.e., (3.9
n=0 ’

while (1.4) can be written in our case as
1 1+iN
wy(z) == — exp(sx)p(s)ds — u(x), a.e.,
2mi J1 N

and (1.5) reads as

one) = C (N> Tam(Y

N . ;) — u(z) at continuity points x of u(z).

Hence, it would be desirable to compare the degree of approximation of the preceding
formulae; however, this is beyond the scope of the present work. We merely point out
a possible advantage of the new inversion formula: The approximating functions uy

in (3.9) are polynomials, and the formula becomes exact for any polynomial v when
N > deg(u).

Acknowledgement. I would like to cordially thank A. Giannopoulos for organizing this
meeting in memory of our friend and colleague Dimitris, and also for providing me

bibliographic material regarding the a.e. convergence of Laguerre series.
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Systolic inequality and width of metric spaces
Panos Papasoglu

In memory of Dimitris Gatzouras

Abstract

The systole sys(M™) of a Riemannian manifold M" is the length of the shortest
non-contractible closed curve on M"™. Lowener showed in 1949 that for the torus
T (with any metric) one has (sys T)2 < —3 areal’. Gromov generalized this result

to all aspherical manifolds in 1983. We give here another approach to Gromov’s
systolic inequality based on a conjecture of Guth about the Uryson width of metric
spaces.

1 Some History

The problem of the existence of closed geodesics in closed Riemannian manifolds M"
was raised by Poincaré in 1905. It is relatively easy to see (modulo technicalities)
that closed geodesics exist for non-simply connected manifolds, so the first non-trivial
instance of the problem is the case of the 2-sphere. This was resolved by Birkhoff in
1917 [1]. Lusternic-Fet [16] generalized this to all closed manifolds in 1951.

One may ask the finer question of a bound of the length of such a closed geodesic in
terms of the volume of the manifold. This is interesting even for non-simply connected
Riemannian manifolds. In this case the shortest non-contractible geodesic is called the
systole of the manifold.

The first result in this vain is due to Lowener who showed that for the 2-dimensional
torus T’ (with any metric) one has

(sysT)? < areaT.

S

The constant in Lowener’s theorem is optimal. It is natural to ask whether one
can extend Lowener’s result to other surfaces or higher dimensional manifolds. Accola
(1960) and Blatter (1962) gave some weak bounds for surfaces using Complex Analysis,
and their bounds were improved further by Hebda and Burago in 1980. Berger, mo-
tivated by conversations with Thom, popularized the question for general manifolds in
the 60’s and eventually Gromov in 1983 [8] proved two quite general results. He showed
for surfaces of genus g, S, that

sys(Sy)

2
tends to 0 as g — oo and that
area Sy

sys M™ < ¢, y/vol(M™)
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where c,, is a constant that depends only on the dimension of the manifold and M" is
assumed to be aspherical. We recall that M™" is called aspherical if any continuous map
f : S¥ — M"™ extends continuously to the ball B¥*! (where S* is the k-sphere, and
k > 2).

Note that the n-th root is to be expected in any bound of this form as when one
rescales the metric by A the volume is multiplied by A". The value of the constant ¢, is

significant and Gromov gave the bound

cn <6(n+1)n"/(n+ 1)L

Guth in 2010 improved this bound in the case of the n-dimensional torus 7™ to 8n.

We remark that there is no lower bound for the systole as one can always ‘pinch’ the
metric making the systole arbitrarily small.

One can not expect a similar result for manifolds that are not aspherical. For
example consider S2 x St equipped with a Riemannian metric such that S? is very
small and S! is very large, then one can arrange that the volume is 1 while the systole
is arbitrarily large.

Gromov’s proof of the systolic inequality was quite indirect. He used the isometric
embedding M"™ — L°°(M") given by x — dist (z, -) to define the filling radius of M".
Here we see M™ as an n-cycle in L°°(M") and the filling radius is the smallest R such
that M™ bounds an n + 1-chain in its R-neighborhood. The result follows now from two
inequalities:

sys(M™) < 6FillRad (M™)

FillRad (M™) < ¢, {/vol(M™).

The second inequality required a quite technical extension of classical isoperimetric
inequalities to the infinite dimensional space L (M™).

We will outline here a more direct proof of Gromov’s systolic inequality relying on
[18]. This new method led to an improvement of the constant ¢, by Nabutovsky to
¢, =n [17].

2 Uryson width and Guth’s conjecture

The Uryson width is a notion of topological dimension theory that was introduced to
Riemannian Geometry by Gromov [8], [9], [10].

Intuitively small k-Uryson width means that an n-dimensional space ‘is close’ to a
k-dimensional space (where we assume k < n). For example if we consider a torus
T? = S' x S! where one of the S'’s has very small length € and the other has, say,
length 1 then T? is ‘close’ to the circle of length 1-a lower dimensional manifold.

We recall now the precise definition: if X is a metric space we say that X has
g-Uryson width < W if there exists a ¢g-dimensional simplicial complex Y and a contin-
uous map 7 : X — Y such that every fiber 7~!(y) has diameter < W. We write then
that UW,(X) < W.
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Guth ([4],[5]) proved the following theorem answering a conjecture of Gromov:

Theorem 2.1. There exists €, > 0 so that the following holds. If (M™,g) is a closed
Riemannian manifold and there exists a radius R such that every ball of radius R in
(M", g) has volume at most €, R" then UW,,_1(M", g) < R.

Karasev gave recently [17] an elementary proof of the following:
Theorem 2.2. If (M"; g) is a closed aspherical Riemannian manifold, then

sys(M"™) < AUW,_1(M",g).

Gromov had shown earlier a similar inequality but his proof used the filling radius
and the inequality was weaker.

Guth’s result implies Gromov’s systolic inequality:

We choose R so that ¢, R" = vol(M"™). Then

sys(M™) < AUW,_1(M",g9) < 4R =

{1/4%77, v/ vol(M™)

However Guth’s proof is also quite technical relying on an embedding of M™ in a
high dimensional cube complex, so it does not lead to an improvement of the constant
in the systolic inequality.

Guth formulated a conjecture which would generalize his theorem to metric spaces.
We explain this now.

In order to obtain a bound for the Uryson width of a general metric space, similar to
the above result, one needs a notion of volume. One could use the n-dimensional Haus-
dorff measure H M,, (which coincides with Riemannian volume in the case of manifolds
M™) however this would not work well for general metric spaces. Moreover the results
obtained would be far from optimal. Indeed consider an n-dimensional e-thickening of
an interval (with small €). This metric space has a very small 1-Uryson width but its
n — 1-Hausdorff measure is infinite. It turns out that the Hausdorff content is more
appropriate:

Definition 2.1. The n-dimensional Hausdor[f content HC,,(U) of a subset of a metric

space X is the infimum of ) ;2 rI* over all coverings of U by countably many balls
B (aci, ’l“i) .

The Hausdorftf content is not a measure, however it provides us with a notion of
volume that is well adopted to Hausdorff width. Moreover clearly HC,,(U) < HM,(U)
so a bound on H(C, leads to stronger results.

Conjecture (Guth). There exists ¢, > 0 so that the following holds. If X is a metric
space and there exists a radius R such that every ball B of radius R in X satisfies
HC,(B) < ¢, R" thenUW,,_1(X) < R.

Guth’s conjecture was proved by Liokumovich-Lishak-Nabutovsky-Rotman [15] us-
ing a method similar to the one used by Guth.

Our aim here is to outline a direct proof relying only on the co-area inequality.

We note also that Nabutovsky [17] used this method to show that one can take
¢y, = n in Gromov’s systolic inequality.
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3 Proof of Guth’s conjecture

We give now a sketch of the proof of Guth’s conjecture before going into the details.

Let X be a compact metric space. We argue by induction. The theorem is easy to
see for n = 1 (see Lemma 3.2 below).

The main idea in order to reduce to the lower dimension case, is to consider a subset
Y C X of minimal n — 1-Hausdorff content separating the space in ‘small’ pieces. One
can show that such a subset has locally small n — 1-Hausdorff content by applying the
co-area inequality.

By induction there is a map f : ¥ — ¥ where ¥ is an n — 1-simplicial complex
such that the preimages f~!(r) have small diameter. By adding ‘cones’ appropriately
to ¥ and using the fact that simplicial complexes are ANR’s we may extend this map to
f : X — Y/ and obtain a map that satisfies the conditions of the conjecture.

One interesting feature of this proof is that even in the manifold case in order to carry
out the induction one needs to prove the result for general metric spaces (in this case
one could restrict to Riemannian polyhedra). So considering the more general context
of metric spaces as suggested by Guth turns out to simplify the proof in the manifold
case.

There are some technicalities to deal with: the Hausdorff content is not a measure
so we work with a slight variation of this, and there is no guarantee that there is a
Y C X as above with minimal n — 1-content. However, as we work with inequalities, it
suffices to consider such Y which is ‘nearly’ minimal.

We give a definition that will allow us to sidestep the problem that Hausdorff content

is not a measure so it is not additive:

Definition 3.1. The (-restricted n-dimensional Hausdorff content H Cﬁ(U ) of a subset
of a metric space X is the infimum of 221 ri over all coverings of U by countably many
balls B(x;,r;) where r; < ( for all i.

Clearly we have HCS(U) > HC,(U). We remark that if U is contained in a ball of
radius ¢ then HCS(U) = HC,,(U).

Notation. We denote by B(z,r) the open metric ball of radius r and center = and by
B(x,7) the closed ball. When we don’t care about the center we denote it by B(r) (B(r)
respectively). We denote by S(z, ) the sphere of radius r and center z, and we denote
this by S, when the center is obvious. Finally we denote by B(r2) \ B(r1) the annulus
between two concentric metric balls.

The co-area formula [2, Theorem 13.4.2] is our main tool. It turns out that the
co-area inequality applies to Hausdorff content ([15]). We state this here for (-restricted

Hausdorff content.

Lemma 3.1. Let U C B(rq2) \ B(r1) be a closed set of a proper metric space. Then
T2
/ HCS_ (S, NU)dr <2HCS(U)
T1

The same inequality applies to the Hausdorff content.
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Proof. We outline a proof of this. If B(R) is a ball and S, is a sphere then S, N B(R) is
contained in a ball of radius < R for any r, so HC,,_1(S, N B(R)) < R"! for any r. So
if B(R) is a ball contained in an annulus B(r3) \ B(r1) and ¢ > R we have

T2
/ HCS_ (S, NB(R))dr <2R-R"™' (x).
71

Note now that if U is any closed set for any € > 0 there is a covering of U by finitely
many balls B;(r;), i = 1,...,k so that r; < ¢ and S_F_, " — HCS(U) < € and the result

i=1"1

follows by (*). Clearly this proof applies to HC),(U) as well. O
We treat now the case n = 1.

Lemma 3.2. Let X be a proper metric space and let R > 0. If for any x € X the 1-

1
dimensional Hausdor{f content of the ball B(x, R) is bounded by mR then UW(X) <
R.

1
Proof. We set § = — R. We fix £y € X and we consider the closed annuli A; = {x €
X :10(k —1)R < d(zo,x) < 10kR}, k > 1,k € N. Each A, is compact so it has a finite
covering by balls B;(r;) such that r; < 26 for all j. Let

ap — HC%(S(A]C)
We pick for each A, a covering by open balls B;(r;) such that

er—ak<5 (*)

By doing this for all k¥ we obtain a covering U of X by open balls.
Suppose that we have a finite sequence of balls in U, Bi(r1), ..., By(r,) such that
Bi(r;) intersects B;1(ri4+1) for all i. We claim that if this happens then

n
> i <106,
i=1

We may assume by taking a smaller n if necessary and arguing by contradiction
that
n
126 > r; > 106.
i=1
So all these balls are contained in a ball B(z, R) which is contained either in a
single annulus Ay, or in a union of two annuli Ay U Aiy1. However by our hypothesis
the content of B(x, R) is bounded by 4, so we could replace these balls in I/ by finitely
many balls Bs(rs), s € S such that their union contains B(x, R) and

er < 20.

seSs

It follows that the sequence By (r1), ..., By (1) violates (x) for at least one of Ay, Aj.
Let B € U. We note now that if By(r1), ..., By (7y) is a finite sequence of balls from
U containing B such that B;(r;) intersects B, (r;+1) their union has diameter < R/2.
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We introduce an equivalence relation on /. We say that two balls B, B’ in U are
equivalent if there is a finite sequence of balls B; = B, Bs, ..., B, = B’ such that any
two successive balls in the sequence intersect.

We replace then each equivalence class of balls from U/ by their union.

In this way we obtain a cover of X by sets say D);, ¢ € N such that each D; is open
(as a finite union of open balls), and closed (since its complement is open). It follows
that the map f : X — N where f(Dy) = k is continuous and

diamf (k) = diamDy < R

so UWy(X) < R.
O

If U is an open subset of a Riemannian manifold then vol, (U) is equal to the n-
Hausdorff measure of U which is in turn greater or equal to the n-dimensional Hausdorff

content.

Theorem 3.3. There is an ¢, > 0 such that the following holds. If X is a compact metric
space such that for any x € X the n-dimensional Hausdor{f content of the ball B(z, R) is
bounded by €, R" then UW,,_1(X) < R.

Proof. We will prove by induction on n that there is a continuous map 7 : X — % where
¥ is a finite simplicial complex of dimension < n — 1 such that diam 7~ (y) < R for any
y € X. The theorem holds for n = 1 by Lemma 3.2.

Definition 3.2. Let Z C X closed. We say that 7 is a D-separating subset if

X\z=||u
i€l
where the U; are open disjoint sets of diameter < D and [ is finite. We say that the
open sets U; are the pieces of the decomposition of X by Z.

We set ( = R/1000. Let b(D) be the infimum of HCﬁ_l(Z) over all D-separating
sets Z. It is not clear whether there exists a D-separating set realizing b(D) however it
will be sufficient for us to consider sets with content close enough to b(D): We say that
Z is a 6-minimal D-separating set if Z is D-separating and

HCS_(Z) —b(D) < 6.
In what follows our statements will be true for § sufficiently small.
The theorem follows from the next lemma:

Lemma 3.4. There is an ¢, > 0 such that the following holds. If X is a compact metric
space such that for any x € X the n-dimensional Hausdor{f content of the ball B(x, R) is
bounded by €, R" then there is a finite simplicial complex 3. of dimension < n — 1 and a

continuous map f : X — ¥ such that: diam f~'(e) < R for any simplex e € X.
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Proof. We prove this by induction on n. For n = 1 the statement follows by Lemma 3.2.
In particular we may take ¢; = 1/100.

We will show that the lemma holds for €, where we define ¢, inductively by ¢, =
€n—1/1000"+1,

We assume now that the lemma holds for n — 1 for some n > 2.

Lemma 3.5. Lete¢,_; be the constant provided by Lemma 3.4 and let €, = en,1/1000”+1.
Let X be a compact metric space such that for any x € X the n-dimensional Hausdorff
content of the ball B(z, R) is bounded by €, R" . Let Z be a §-minimal R/4-separating
subset of X. Then for any ball of radius R/1000, B(z, R/1000),

R n—1
HC' (ZNB 1 < e .
C,_1(Zn B(z,R/1000)) < € 1(1000)

Proof. We argue by contradiction assuming that Z does not satisfy this inequality for
some z. We take
We note that (R/1000)" > €, R™. It follows that HC,,(B(z, R)) = HCS(B(z, R)). By
the co-area inequality (Lemma 3.1) and our hypothesis that HCS(B(z, R)) < €, R" we
have that for some r € [R/100, R/50]
HCS_ S(x,r) < 2006, R™! < -1 1
If Zy = S(z,r) and Zy = B(x,r) N Z we set Z' = (Z \ Z3) U Z;. We claim that Z’ is
R/4-separating. Indeed let
xX\z=||u
el
where [ is finite and the U; are open disjoint sets of diameter < R/4. Let U = B(z,7).
Then
X\Z =| |\ B(z,r)uU.
iel
If Bi(r;),1 € I is a cover of Z by balls of radius < ( so that
St HCY_(2) <6
il

we get a cover of Z' by omitting all balls from this cover intersecting B(x, R/1000) and
adding appropriately balls that cover S(z,r) and approximate H CfHS (z,7) up to 4.
We have then

R en1R"!

HCS_ (2 < HCS_((Z) — e (—o )™ 4 20
Cn-1(2) < HCy1(2) = en1 (3555 5 - 1000"

+90

contradicting the §-minimality property of Z if we take

€n—1 R 1
1000™
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We prove now Lemma 3.4. Let Z be a §-minimal R/4-separating subset of X. By
Lemma 3.5 and our inductive hypothesis there is a continuous map 7 : Z — Y1 where
¥ is a finite simplicial complex of dimension < n — 2 such that diam 7} *(e) < R/1000
for any simplex e € ;.

Let U be a piece of the decomposition of X by Z. Clearly U C Z so 71(9U) is
contained in a finite subcomplex of 3J;. We denote by i the minimal such subcomplex
of >1.

We define a new simplicial complex ¥ as follows: For each closure of a connected
component U we consider the cone Cy; over Yy (which is a simplicial complex of dimen-
sion < n — 1). We glue Cy to ¥; along their common subcomplex Y.

We will need some facts from topology that we recall now (see eg [12]). Any finite
simplicial complex is an Absolute Neighborhood Retract (ANR). A contractible ANR is
an Absolute Retract (AR). In particular the cone of a finite simplicial complex is an AR.
A space A is an AR if and only if it is an absolute extensor i.e. if it has the following
property: if B is any metric space, K C B is closed and f : K — A is continuous then
f can be extended continuously to the whole of B.

By the above facts it follows that for each U the map m; : U — Xy C Cpy can be
extended to a continuous map 7 : U — Cy C X. Since X is the union of Z with the
pieces of the decomposition of X by Z and since the map 7 is continuous on the closure
of each piece we have that the map 7 : X — 3 is continuous.

Let e be a maximal simplex of .. Then e is either a simplex of >; or a cone of a
simplex ¢’ of ¥1. If 7(U) intersects e then in the first case U intersects 7; ' (¢) while in

the second case dU intersects 7, *(¢/) . Since
diam 7, *(¢/) < R/1000 and diam(U) < R/4
we have that
diam7~!(e) < R.
O

Clearly the theorem follows from the lemma as any point of X is contained in some
simplex e of 2.
O

As we remarked in the previous section this Theorem gives a new proof of the systolic
inequality for aspherical manifolds. It turns out that the result is also valid for proper

metric spaces.

4 Final remarks and open problems

Gromov’s work on systolic inequalities gave rise to a branch of geometry called often
systolic geometry or curvature free geometry. This is because one tries to find relations
between the geometry and topology of the manifold that apply to all manifolds without
any curvature restrictions. For a beautiful introduction to the subject we refer to Guth’s
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ICM talk [7]. There is a number of interesting open problems and we state some here to
give a flavor of the subject:

Is there a bound for the length of the shortest periodic geodesic in terms of volume
for general manifolds? Croke, answering a conjecture of Gromov, showed that this is
the case for the 2-sphere S? but this is not known for the 3-sphere S3.

The geometry a surfaces of high genus is not very well understood. A major unre-
solved question is Buser’s conjecture, stating that there is a constant ¢ such that any
surface S, admits a pants decomposition where all curves of the decomposition have
length bounded by C\/M . The necessity of length at least ~ \/M can be seen
by considering a standard sphere with many small handles attached. In fact one may
think of such surfaces as a 2-dimensional analog of expander graphs. However unlike
the case of expanders we don’t have good ways to construct random surfaces.

Is it true that among all orientable surfaces of area 1 the torus has the largest
systole? This is known for surfaces of genus g = 2 and g > 20.
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